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Train motion model calibration: research agenda and practical
recommendations

Alex Cunillera1∗, Nikola Bešinović1, Ramon Lentink2, Niels van Oort1 and Rob M.P. Goverde1

Abstract— An accurate train motion model is a key com-
ponent of a wide spectrum of railway applications, from
timetabling algorithms to Automatic Train Operation systems.
Therefore, model calibration has become crucial in the railway
industry, although this topic has not received the attention and
recognition in academia that its practical relevance deserves.
Several data-driven techniques have been devised to calibrate
train dynamics models, although an overview that describes the
current state of the art in the field and highlights the following
steps to be researched is still missing in the literature. Thus,
this article has four main goals. First, giving a brief insight
into the broad variety of techniques used for train motion
model calibration, focusing on those techniques that use on-
board measurements and are applicable in railway operation.
Second, highlighting the main research steps to be tackled,
considering the current main challenges in railway research.
Third, outlining practical recommendations to practitioners
who need to calibrate their algorithms and applications. And
fourth, contributing to giving train motion model calibration
its due recognition.

I. INTRODUCTION

Nowadays, a wide variety of railway applications rely on
a model of the train dynamics that is usually modelled by
means of Newton’s second law. This train motion model
considers the tractive and brake effort that a train engine
can apply, the running resistances that affect its motion and
the effect of the track geometry on the train dynamics. This
model has proven to be able to reproduce and predict train
dynamics accurately. However, the precision of this model
depends strongly on an accurate description of both train and
track characteristics [1]. Moreover, research showed that the
model parameters are generally not provided accurately and
therefore have to be calibrated using operational data [2].

An accurate train motion model calibration may impact
railway industry in various areas. Timetable planners need
accurate rolling stock and track data, since the feasibility and
future performance of their plans depends significantly on the
performance and precision of the models and information
used for their design [3]. However, planners usually face a
high level of uncertainty at this early stage, hindering their
work and jeopardising the feasibility of the designed projects
at later stages [4]. Moreover, feasible train paths have to be
determined over lines, networks and stations. For instance,
timetable planners use a calibrated train motion model in mi-
croscopic simulations to check the feasibility of the designed
timetables, and to detect and predict conflicts among train
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services [5]. Moreover, infrastructure capacity is one of the
most challenging issues at several levels of railway planning.
Among other approaches, accurate planning and effective
operation help to predict and mitigate capacity issues at
bottlenecks [3]. Beyond planning, the train motion model
is also the core of simulators and railway operation applica-
tions like energy-efficient train trajectory calculators, Driver
Advisory Systems (DAS) and Automatic Train Operation
(ATO). Thus, an accurate model calibration may contribute to
achieving high punctuality rates, leading to higher passenger
satisfaction and better freight service. Ultimately, emerging
technologies like moving block and virtual coupling will also
need an accurate train motion model calibration, since they
aim to push the existing boundaries of the network capacity
[6].

In this article, we briefly review the train motion model
calibration techniques present in the existing literature, fo-
cusing on the techniques that use on-board measurements.
We consider references published from January 2000 to
December 2021, since the new types of sensors implemented
in the railway industry evolve continuously, and so the
measured types of data do. This leads to the phase out of
classical calibration techniques and to the development of
new ones. We propose a research agenda based on the current
state of art in train motion model calibration, mentioning
several research gaps and the main challenges to be faced
in the following years. This analysis has been performed in
line with the current demands in a wide range of railway
applications, namely energy-efficiency, automation, capacity
and accuracy in planning and operation.

The main contributions of this article are:

• A brief overview of the existing train motion model
calibration methods, with a special focus on those that
use on-board measurements as input data.

• A research agenda based on the current state of art and
research challenges in railways.

• Practical recommendations regarding train motion cali-
bration for practitioners, software developers and rolling
stock manufacturers.

• Highlighting the importance of train motion model
calibration in the railway industry and research and
giving its deserved recognition.

The rest of this article is organized as follows. In Section II
the train motion model parameter estimation problem is de-
scribed. Section III shows the current state of the art in train
motion model calibration. A research agenda is proposed
in Section IV, along with research gaps and techniques that
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might be of interest for this topic in the following years. Last,
Section V summarizes the main conclusions drawn from this
article.

II. TRAIN MOTION MODEL CALIBRATION

The train motion model that describes a train’s dynamics
is obtained by means of Newton’s second law

mρv̇ = f(v)− r(v)− g(s), (1)

where v is the train speed, s is the location, the dot represents
a time derivative, m is the mass of the train, ρ is the rotating
mass coefficient that accounts for the inertia of the rotating
parts of the train, f(v) is the applied tractive and brake effort,
g(s) is the resistance to the train motion due to the track
geometry, namely the effect of grades and curves on the
train dynamics. r represents the running resistance of a train,
which is usually described as a quadratic function of the
speed, which is generally called the Davis equation [7],

r(v, s) = r0 + r1v + r2v
2, (2)

where r0, r1 and r2 are the running resistance parameters that
model the train dynamics. Physically, the running resistance
parameters should be strictly positive, although some authors
neglect the linear factor r1 [8]–[14].

Furthermore, adhesion and the engine and brake charac-
teristics limit the maximum applied effort,

fb(v) ≤ f(v) ≤ min(ft, pt/v), (3)

where ft and fb(v) are the maximum traction and brake
effort, respectively, and pt is the maximum traction power.

Likewise, the train acceleration may also be bounded to
ensure passenger comfort in the case of passenger trains, and
to preserve the integrity of the rolling stock composition in
the case of freight trains. Moreover, trains are often assumed
to brake under normal operation conditions following prede-
fined brake curves with piecewise constant deceleration rates.
Therefore,

−amin(v) ≤ v̇ ≤ amax(v). (4)

Note that most of the parameters and bounds mentioned
may show spatiotemporal variations, but these dependences
are not made explicit.

However, the train motion model is essentially linked to
a train’s trajectory, namely its movement along the track
between two stops. Usually, four different driving phases can
be distinguished in a train trajectory. Acceleration, coasting,
which implies letting the train run without applying traction
or braking, cruising at a certain target speed, and braking,
which often requires matching a certain deceleration rate.

Usually, coasting is the most relevant driving phase for
parameter estimation. In this phase, no effort is applied and
the running resistance can be calibrated from speed mea-
surements, assuming that the track geometry is represented
accurately in the track description. The acceleration phase is
generally considered to be the second most relevant driving
phase since the train driver can be instructed to accelerate
with maximum traction and control the applied effort f in

(1) in the estimation process. However, this approach requires
knowing the maximum applied effort or the efficiency of the
traction engine and the energy consumption. In turn, cruising
adds an extra layer of difficulty to model calibration, since
there are several ways of driving close to a target speed.
Furthermore, the combination of brake effort and running
resistance may lead to an overestimation of the resistance
parameters [15].

Moreover, in the case of manually-driven trains, the max-
imum effort applied and the brake curves performed may
show small variations and deviations. This may compromise
the performance of simulators and eco-driving-based tech-
niques, which use these bounds and curves as input and aim
to incorporate and reproduce the driving style accurately in
order to generate realistic results. As a consequence, driving-
induced parameter variations also have to be considered
when performing train motion model calibration.

The mass, the rotating mass coefficient, the three running
resistance parameters, the maximum tractive and brake ef-
forts, the maximum power, and the brake curves have there-
fore to be calibrated in order to guarantee the performance
and feasibility of the applications in which the train motion
model is embedded.

Furthermore, besides driving-induced variability, physical
sources of spatiotemporal parameter uncertainty and vari-
ations also exist. Adhesion limits the maximum tractive
and brake effort. It can be low when snowing and raining,
in autumn, due to fallen leaves on tracks, and due to a
bad maintenance condition of wheels and rails. However,
adhesion can be estimated by comparing the wheel rotation
speed with the train speed. Furthermore, at higher speeds
the maximum effort is determined by the maximum tractive
power. The engine temperature and wear and the electric
power available in the catenary may alter the applicable
power. The maximum brake effort is also affected by wear
and weather conditions, however, Automatic Train Protection
(ATP) systems usually assume brake rates lower than the
maximum capacity of a train. Therefore, neglecting bad
adhesion conditions and brake failures, trains usually follow
predefined brake curves in normal operation conditions,
which in turn may be the target of the calibration. The mass
and rotating inertia coefficients can be introduced in the rest
of the parameters, obtaining mass-specific parameters and
reducing the number of parameters to be estimated by two.
However, the mass can be estimated by summing the rolling
stock tare, passengers and freight load and the mass of staff
and operational resources needed, like fuel and water. It is
usually considered to be constant between consecutive stops.
Furthermore, the track description constitutes an extra source
of uncertainty that might impact the accuracy of the train
motion model. The track geometry, namely the grades and
curves, is usually described to be piecewise constant, and
sometimes its values are linked by means of parabolic terms.
Moreover, not all the grades and curves are represented there,
but only the most restrictive ones in each track interval.

The running resistance parameters have received most
attention in the train motion calibration literature since they
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determine the energy consumption of the train. Generally, it
is considered that r0 and r1 model the mechanical resistance.
In particular, r0 is mass-dependent and contains the influence
of the wheel and rail contact and the internal frictions, while
r1 accounts for the flange friction between rail and wheel
and the resistance due to the air momentum. Parameter r2
models the contribution of the aerodynamic drag into the
running resistance, which in turn depends on the train head
geometry and cross section. This term also accounts for the
extra resistance due to the extra air pressure when running
through a tunnel. Moreover, r1 is also supposed to contain the
non-quadratic contribution of the aerodynamic drag. Thus,
the wind may influence their values along the trajectory of
a train [16]. Although there are several empirical or semi-
empirical formulas that try to model the running resistance,
most of them are outdated and tend to overestimate the actual
resistance [17].

Thus, train motion model calibration constitutes a difficult
challenge for the accurate performance of railway applica-
tions. We show the current state of the art in the next section.

III. STATE OF THE ART

Three main classical types of full-scale tests for deter-
mining the running resistance exist: cruising, pulling and
coasting tests [8], [18]. The European Committee for Stan-
darization describes such tests in a European standard [19].
The first method consists in measuring the power consumed
by the traction system of a train running at a constant low
speed. To this end, the energy efficiency of the traction
system must be known and is highly sensitive to undesired
accelerations and uncertainties in the track gradients. The
second method implies pulling a train by means of a cable
and measuring the resistance force using a dynamometer.
However, the train has to be pulled smoothly on a straight
track with constant gradient. Moreover, this method is only
applicable at low speeds and is sensitive to accelerations and
delays in the applied effort. In the third method, the rolling
stock is accelerated until a certain target speed and then the
traction and brake commands are disconnected, so that the
rolling stock decelerates by coasting. These tests have to
be performed in a straight, level track in order to guarantee
their accuracy. Again, the method is sensitive to variations in
the track geometry and it has to be repeated several times to
obtain accurate statistics, although no energy consumption or
tractive efficiency data is needed. These three test methods
are resource-demanding and the accuracy of the first two is
significantly lower than that of the coasting test.

Further methods to estimate the quadratic parameter of
the running resistance, r2, are modelling the air drag on the
rolling stock by means of Computational Fluid Dynamics
(CFD) and performing scaled wind tunnel tests [2]. Never-
theless, these methods usually lead to overestimated values of
the running resistance, so an estimation based on operational
data is of special relevance for the large amount of data
available, low resource demand and cost and potential pre-
cision. Moreover, the estimates obtained from scale tests in
wind tunnels require a scale correction. Particularly, freight

trains of variable rolling stock composition and geometry
benefit from operational data-based parameter estimation,
where tests and CFD model calibration are not available [13].

Moreover, [20] and [21] propose new full-scale tests that
do not require using track geometry data. Running resistance
parameters r1 and r2 are calculated from three or more
coasting tests at different speeds at the same location and
applying (1) to the difference of speed measured during the
tests. The mass factor ρ and parameter r0 can be calculated
by performing swinging tests at low speeds in a steep uphill
track section, that is to say, by letting the train coast and run
backwards due to the force of gravity.

Beyond tests, model calibration can also be performed us-
ing operational data. Two main approaches can be described.
On the one hand, offline calibration techniques analyze
historical operational data, obtaining the set of parameters
that fit best to the considered data set or to each individual
trajectory. On the other hand, online algorithms estimate
parameters on-the-go, being able to monitor parameter vari-
ability along the train run. Tables I and II outline the offline
and online calibration techniques available in the existing
literature, respectively.

TABLE I
OFFLINE CALIBRATION METHODS

Method Technique Estimated Referencesclassification used parameters

Regression Least squares
regression

r0, r1, r2 [13], [17], [22]
r2 in tunnels [12]

Constrained
optimization

SQP: Sequen-
tial Quadratic
Programming

m, r0, r1, r2
mechanical
efficiency

[8]

Maximum
likelihood
estimation

Expectation–
maximization
algorithm

m [23]

Kalman-like
state
observers

Iterative
learning
identification

r0, r1, r2 [24]

Metaheuristics

Simulated
annealing

max. effort
cruise speed
coast length
brake rates

[25]

Genetic
algorithm

max. effort
cruise speed
coast length
brake rates

[11]

train length
r0, r2, ft, pt
cruise speed
brake rates

[9], [10]

Bilevel
evolutionary
algorithm
+ SQP

r0, r1, r2 [26]

Simulation

Simulation-
based
optimization

r0, r1
braking
distance

[27]

r0, r2 [14]
Iteration-
based search

brake rates
cruise speed [28]
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TABLE II
ONLINE CALIBRATION METHODS

Method Technique Estimated Referencesclassification used parameters

Regression

Recursive
least squares

r0, r1, r2 [29]
m, r0, r1 [30], [31]

Multi-
innovation
least squares

r0, r1, r2 [29]

Kalman-like
state
observers

Unscented
Kalman
filter

r0, r2 [32]
r0, r1, r2
ft, pt
brake rates
switching
points

[15]

Extended
Kalman
filters +
Gaussian sum
theory

r0, r1, r2 [33]

Bayesian
statistics

Particle filter r0, r1, r2 [34]

Gradient
descent

Multi-start
gradient
optimization

r0, r1, r2 [35]

IV. RESEARCH AGENDA AND PRACTICAL
RECOMMENDATIONS

Several research directions and recommendations for
scholars and practitioners based on the analysis of the
references reviewed in this article are outlined as follows:

A. Research agenda

• The implementation of on-board eco-driving-based ap-
plications like real-time train trajectory optimizers,
DAS and ATO could be promoted and favoured if an
easily-implementable parameter estimation framework
for such applications has been developed [15]. This
framework should be capable of performing an accurate
online estimation of the maximum amount of input
parameters of eco-driving algorithms as possible in real
time, while consuming the least amount of computa-
tional resources. An initial step has been taken in this
direction [15], although the method presented there is
difficult to be tuned and does not make use of traction
and brake measurements, which are required for a more
accurate model calibration. Particularly, freight trains of
variable rolling stock composition could benefit from
such an on-board online calibration framework [35].

• An on-board calibration framework should be robust
under anomalous or missing data however, few of the
techniques reviewed deal with this problem [8], [29],
[35]. For instance, the GNSS signal may be lost or its
accuracy may be low when passing through tunnels or in
station areas. More effort should be put into developing
such robust calibration techniques, since they should be
able to produce reliable estimates in adverse scenarios.

• Although the main sources of train motion parameter
variation are widely thought to be known among the
railway community, some of the references analyzed

show that this general belief is not always correct [22].
Moreover, only a few references have focused on veri-
fying the impact of each individual source of variation
[12], [22], [36]. Therefore, a research on gauging the
impact of individual sources of parameter variation
could be of special interest for both scientists, prac-
titioners and rolling stock manufacturers. Particularly,
rolling stock designers may particularly benefit from it.
This research should emphasize on the impact of tunnels
in the running resistance parameters, as may boost the
accuracy of energy consumption calculations and eco-
driving-based applications [12], [37]. The impact of
weather conditions, namely wind strength and direction,
precipitations and temperature could also be gauged
thanks to the availability of public weather data sources
[37]. Moreover, the wind-dependent running resistance
equation proposed in [16] could also be verified. Last,
the impact of some rolling stock characteristics and
rail and track conditions could also be assessed. For
example, assessing the parameter variability in a fleet
of trains of the same rolling stock composition could
lead to highlighting the importance of individual train
calibrations and train-tailored railway solutions [15],
[36].

• The variability of the maximum applied tractive effort
and power, the deceleration rates and the switching
points between driving phases also depend on the driv-
ing style, particularly in the case of manually-driven
trains [9], [15], [25]. Researching the influence of the
driving style on the parameter variability is still to be
researched. In particular, the driving-induced param-
eter variability under different punctuality conditions,
namely for delayed, on-time and early trains, is still to
be explored systematically [25]. Moreover, each driving
phase could be studied separately, although historically
most efforts have been addressed towards researching
the coasting phase in order to calibrate the running
resistance and, ultimately, to gauge its impact on energy
consumption. Note that not all the parameters can be
explored in the mentioned driving phase. For instance,
accurate parameter bounds and statistics could be deter-
mined and used as input for offline stochastic simulation
methods [9], [25].

B. Practical recommendations

• One of the main obstacles towards a rigorous model
validation and comparison of the proposed parameter
estimation techniques is the lack of ground-truth data for
the real value of the parameters to be estimated. Several
of the references presented in this article validate the
techniques proposed using simulations, however, this
approach does not guarantee that the simulated case
studies may represent real operation faithfully or that
the proposed technique may also be accurate when using
real data. Therefore, we suggest the establishment of a
publicly available data set for validation and comparison
of train motion model calibration frameworks. Railway
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undertakings or rolling stock manufacturers interested
in this topic could publish from 50 to 100 runs of the
same rolling stock unit in a certain line. This data set
should contain track description data, including track
geometry and speed limits, GNSS location and speed
measurements and tractive and brake effort applied. En-
ergy consumption, locomotives’ tractive wheels rotation
speed and rolling stock mass could be an asset. There
is no such a publicly available data set for operating
trains [38].

• In several of the references covered in this literature
review the authors found difficulties when estimating
the linear parameter of the running resistance, r1, par-
ticularly when applying least squares-based regressions
and analyzing data from coasting tests [8], [13], [14]
This parameter is recognized to be the most difficult
running resistance parameter to be estimated, and it is
sometimes neglected and set equal to zero [8]–[14],
while other authors consider it to be strictly positive
[15], [21], [22], [35]. Furthermore, sometimes least
squares regressions lead to a negative value of this pa-
rameter, which physically is not correct [29]. Therefore,
to solve the mentioned constrained parameter optimiza-
tion problem by means of least squares regressions, we
recommend using a modified version of the standard
regression that is able to cope with non-negativity
constraints, like including a regularization term in the
objective functional or applying any other constrained
optimization technique. Moreover, speed measurements
have an uneven distribution since trains usually run at
certain speed intervals close to a cruise speed during
most of their journey [12]. Therefore, the data used has
to be weighted to account for this uneven speed distri-
bution and avoid overfitting the resistance parameters in
the mentioned speed operation interval and underfitting
them, for instance, at low speeds. Furthermore, the
value of the rotating mass coefficient may influence the
estimation of the running resistance parameters [12],
although few of the references analyzed take this into
consideration.

• Offline model calibration frameworks may have some
advantages over online algorithms, depending on the
scope of the application in which they are embedded.
Some of them can be implemented and used more
easily than their online counterparts. Furthermore, of-
fline techniques are able to process larger amounts of
data, which may lead to more accurate estimations for
some applications. Moreover, these offline frameworks
usually produce a single set of estimated parameters for
each trajectory or a set of trajectories, which constitute
a more convenient input for some applications. Thus,
offline calibration frameworks are more suitable for
planning and timetabling applications [9], [25], while
online frameworks are more relevant for real-time on-
board applications [15] and for freight trains with vari-
able rolling stock composition [35].

• The race for achieving higher grades of automation and

energy-efficiency in railways generates some needs in
terms of measured data for automation algorithms and
their calibration [15], [29], [35]. To this end, regarding
new rolling stock, we recommend train manufactur-
ers and rolling stock owners to develop and purchase
rolling stock that incorporates sensors and equipment
for measuring GNSS location accurately, speed, the
applied tractive and brake effort, energy consumption
if possible and the rotation speed of the locomotives’
tractive wheels. According to the references reviewed,
measuring the acceleration directly leads to noisy data
and to inaccurate parameter estimations [39], so new
calibration techniques may not rely on accelerometers
until their accuracy is not enhanced. Regarding the
measurement rate, we recommend a sampling rate of 1s,
since a higher measurement rate requires subsampling,
noise filtering and more storage capacity, while lower
rates may not be suitable for all applications or may
compromise the estimation accuracy.

• Due to the potential influence of the track description
uncertainties on the performance of the train motion
model and its associated applications, we request infras-
tructure managers to commit to describe the network ge-
ometry in the most accurate possible way. This will also
benefit the computation of continuous braking curves in
the latest generation of train protection systems such as
ETCS.

• Last, in order to contribute to highlighting the rele-
vance of model calibration in research we recommend
researchers to explicitly mention in the abstract and
keywords of scientific articles when model calibration
is performed. We have observed that researchers tend to
not mention this explicitly when calibration is not the
central topic of the article.

V. CONCLUSIONS

In this article the train motion model calibration problem
has been described and a research agenda and practical
recommendations based on the current state of the art have
been proposed. An accurate calibration of eco-driving-based
applications, the development of robust on-board calibration
frameworks and gauging the individual impact of individ-
ual train characteristics, weather and driving variability on
the train motion model parameters are among the research
challenges outlined. Moreover, several practical recommen-
dations to researchers and practitioners are outlined, includ-
ing the establishment of a publicly available data set for
validation and comparison of model calibration frameworks,
some advice on running resistance parameters estimation, an
analysis of the applicability of online and offline calibration
frameworks, recommendations on the most relevant variables
to be measured on-board for facilitating parameter estimation
and a request to infrastructure managers to describe the track
geometry in the most accurate possible way. We expect
that this article contributes to giving train motion model
calibration its deserved relevance in the railway academia
and industry.
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