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SUMMARY

Backward Stochastic Differential Equations (BSDEs) are interesting mathematical ob-
jects with lots of promising applications. Within mathematical finance, they can be seen
as an extension of the classical replicating portfolio scheme. They are linked to Partial
Differential Equations (PDEs) through Feynman–Kac type formulas. They also find ap-
plications in optimal control theory with the Hamilton–Jacobi–Bellman (HJB) equation.

In light of the previous global financial crisis, financial industries are required to con-
sider more and more risk factors in their business. Therefore, there is a renewed inter-
est in advanced quantitative tools in mathematical finance, where BSDEs are promising
formulations. However, one of the main obstacles in putting BSDEs into industrial ap-
plications is the difficulty to solve BSDEs analytically or numerically.

The main aims of this research are to study various numerical schemes in the ap-
proximation of the occurring expectations and their applications in numerically solving
BSDEs. We focus on numerical expectation/finite measure integration, since the major-
ity of the BSDE solvers consists of two parts, conditional expectations computations and
deterministic functions to map these expectations to target approximations. By simply
changing the approximation for conditional expectations, we can effectively generate
various schemes for BSDEs that can suit different requirements. Furthermore, our re-
sults carry implications in numerical integration too.

In this thesis, we focus on the mathematical properties of these approximations. We
will discuss the fundamental assumptions for them, give complete descriptions, derive
error bounds and conduct numerical experiments. The main goal is to analyse these
approximations. We will also touch upon the financial applications of BSDEs, in finan-
cial derivatives pricing and value adjustments computation, and software engineering,
in Python and GPU computing.

The main subjects of this thesis are Fourier expansion methods and the Stochas-
tic Grid Bundling Method (SGBM). The Fourier expansion method makes use of the
fact that we can use trigonometric functions to form a complete basis of bounded do-
main/periodic functions. This method generates integration approximations based on
the sum of Fourier transforms of the integrated measure. We add localization elements
to them in this thesis. SGBM is a least-squares Monte Carlo scheme that combines
regress-later and stochastic partition techniques. By regress-later, we mean that the inte-
grand and the regression basis are defined on the same variable (adapted to a filtration at
a later time step). By stochastic partition, we mean that we separate the domain of ran-
dom variables which we condition into separated sets (bundles) based on Monte-Carlo
simulations. We define approximations on distinct bundles separately. In this thesis, we
derive a baseline error bound for SGBM and discuss the limitation of not being able to
perform truncation with regress-later schemes. Finally, we briefly study the branching
method, a forward simulation method for BSDEs and also its limitations.

xi



xii SUMMARY

In Chapter 2, we study a localized Fourier expansion method, the quick SWIFT method,
and provide an alternative derivation based on the periodic wavelets literature. This
method combines the effectiveness of Fourier-based methods and the simplicity of a
wavelet-based formula, resulting in an algorithm that is both accurate and easy to im-
plement. Furthermore, we mitigate the problem of inaccurate approximations near the
computational boundaries by means of an antireflective boundary technique. To ex-
tend localized Fourier expansions to higher dimensions, we adapt results from lattice
sequences in Chapter 3 to design the cosine expansion lattice scheme. We also compare
localization based on lattices and on wavelets.

In Chapter 4, the basic idea of the SGBM will be introduced and an upper error
bound is established for the simplest two-step version of SGBM. A full error analysis is
also conducted for the explicit version of the numerical BSDE algorithm based on time
discretization. Building on top of the SGBM for BSDE algorithm, we develop a Python
demonstrator for pricing total valuation adjustment (XVA) in Chapter 5. This chapter
shows the potential of using SGBM on a real-world risk management problem by focus-
ing on XVA, an advanced risk management concept with increasing relevance. We also
test the potential of developing a simple yet highly efficient code with SGBM by incor-
porating CUDA Python on the software engineering side.

In Chapter 6, we study two numerical schemes inspired by the branching method
to solve BSDEs with discontinuous drivers. The numerical experiments reveal that the
complex local polynomials based approximation is not efficient while a simple random-
ization procedure provides very good results. In order to motivate the study of this type
of BSDEs, we extend a viscosity solution characterization to the case of an American op-
tion with a general payoff function in a multi-dimensional setting and link the viscosity
solution of a semilinear PDE to a BSDE with a discontinuous driver.

The schemes for the expectation approximations in this thesis are well-justified and
can be implemented immediately. Based on the results of this thesis, one can further
study and solve the industrial application of BSDEs by identifying suitable BSDE models,
developing the discretization scheme for BSDEs under different conditions and produc-
ing industrial level software.



SAMENVATTING

Backward Stochastic Differential Equations (BSDE’s) zijn interessante wiskundige objec-
ten met een groot aantal veelbelovende toepassingen. Binnen de financiële wiskunde
kunnen ze worden gezien als een uitbreiding van de klassieke “replicating portfolio” me-
thodologie. Ze kunnen worden gelinkt aan partiële differentiaalvergelijkingen (PDE’s)
via formules van het Feynman-Kac type. BSDE’s worden ook toegepast in optimale be-
sturingstheorie door middel van de Hamilton-Jacobi-Bellman-vergelijking (HJB).

Als gevolg van de vorige wereldwijde financiële crisis worden financiële instanties
steeds meer verplicht om rekening te houden met verschillende risico’s. Hierdoor is er
veel vraag naar geavanceerde kwantitatieve methoden om deze risico’s te bepalen en
BSDE formuleringen zijn hier veelbelovend voor. Een van de belangrijkste obstakels bij
het gebruiken van BSDE’s in industriële toepassingen is de moeilijkheid om BSDE’s ana-
lytisch of numeriek op te lossen.

De belangrijkste doelstellingen van dit onderzoek zijn het analyseren van verschil-
lende numerieke methoden in de benadering van de verwachtingen die optreden bij het
berekenen van deze risico’s en het toepassen van deze methoden bij het numeriek op-
lossen van BSDE’s. We richten ons op numerieke integratie voor verwachtingen/eindige
maten, aangezien het merendeel van de BSDE-oplossers bestaat uit het berekenen van
voorwaardelijke verwachtingen en deze te gebruiken voor het bepalen van een doelfunc-
tie. Door middel van verschillende methoden voor het benaderen van de voorwaarde-
lijke verwachtingen kunnen we meerdere methoden definiëren voor het oplossen van
BSDE’s die aan verschillende eisen voldoen. Bovendien kunnen deze resultaten ook ge-
bruikt worden voor numerieke integratie.

In dit proefschrift richten we ons op de wiskundige eigenschappen van deze bena-
deringen. We zullen de fundamentele aannames bespreken, foutgrenzen afleiden en
numerieke analyses uitvoeren. Het hoofddoel is om deze benaderingen te analyseren.
We zullen ook ingaan op de financiële toepassingen van BSDE’s, zoals in het prijzen van
financiële derivaten en de berekening van XVA, en het programmeren ervan in Python
en met GPU’s.

De focus van deze scriptie ligt op Fourier expansie methoden en de Stochastic Grid
Bundling Method (SGBM). De Fourier expansie methode maakt gebruik van het feit dat
trigonometrische functies een basis vormen voor periodieke functies en functies met
een begrensd domein. Deze methode maakt een benadering van integralen gebaseerd
op een som van Fourier transformaties van de geïntegreerde maat. In deze scriptie voe-
gen we daar ook elementen van lokalisatie aan toe. SGBM is een least-squares Monte
Carlo methode die de zogenaamde regress-later en stochastische-partitietechnieken com-
bineert. Met regress-later bedoelen we dat de integrand en de regressiebasis zijn gede-
finieerd op dezelfde variabele (aangepast aan een filtratie in een latere tijdstap). Met
een stochastische partitie bedoelen we dat we het domein van de conditionele stochasti-
sche variabelen verdelen in sets (de zogenaamde bundels) met behulp van Monte-Carlo-
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simulaties. We definieëren vervolgens afzonderlijk voor elke bundel de benaderingen. In
dit proefschrift leiden we een foutgrens af voor SGBM en bespreken we wanneer het niet
mogelijk is om truncatie uit te voeren met regress-later-schema’s. Tot slot bestuderen
we kort de branching methode, een voorwaartse-simulatiemethode voor BSDE’s, en de
beperkingen van deze methode.

In Hoofdstuk 2 bestuderen we een gelokaliseerde Fourier-expansie method, de quick-
SWIFT-methode, en geven we een alternatieve afleiding op basis van de periodieke wa-
velets. Deze methode combineert de effectiviteit van Fourier-gebaseerde methoden en
de eenvoud van wavelet-gebaseerde methoden, wat leidt tot een algoritme dat zowel
nauwkeurig als eenvoudig te implementeren is. Verder gebruiken we een anti-reflectieve
randtechniek om het probleem van onnauwkeurige benaderingen rond de randen te
verminderen. Om gelokaliseerde Fourier-expansie methoden uit te breiden naar hogere
dimensies passen we in Hoofdstuk 3 roosterreeksen toe om een cosinus-expansie roos-
termethode te definieren. We vergelijken de lokalisatie op basis van roosters en op basis
van wavelets.

In Hoofdstuk 4 wordt SGBM geïntroduceerd en wordt een bovengrens voor de fout
afgeleid voor de eenvoudigste twee-stap versie van SGBM. Verder maken we ook een vol-
ledige foutenanalyse van de expliciete versie van BSDEs gebaseerd op tijdsdiscretisatie.
Voortbouwend op SGBM voor BSDEs ontwikkelen we een Python-tool voor het prijzen
van de total valuation adjustment (XVA) in Hoofdstuk 5. Dit hoofdstuk laat het potentiaal
zien van SGBM in praktische risico-management problemen door het toe te passen voor
XVA, iets wat in risico management met steeds hogere noodzaak berekend moet worden.
Verder ontwikkelen we ook een eenvoudige maar zeer effectieve variant van SGBM door
het te implementeren in CUDA Python.

In Hoofdstuk 6 bestuderen we twee numerieke schema’s geïnspireerd door de bran-
ching methode om BSDE’s met discontinue drivers op te lossen. De numerieke expe-
rimenten laten zien dat de benadering gebaseerd op complexe lokale polynomen niet
efficiënt is, hoewel een simpele randomisatie-methode tot hele goede resultaten leidt.
Verder dragen we ook bij aan de theorie van dit type BSDEs en breiden we een karakte-
risering van de viscositeitsoplossing uit naar een Amerikaanse optie met een algemene
uitbetalingsfunctie in een hoog-dimensionale setting. We laten ook zien dat de viscosi-
teitsoplossing van een semi-lineaire PDE gelinkt is aan een BSDE met een discontinue
driver.

De methoden die in dit proefschrift worden besproken voor het benaderen van ver-
wachtingen zijn allen goed onderbouwd en kunnen eenvoudig worden geïmplemen-
teerd. Op basis van de resultaten van dit proefschrift kan men BSDE’s gebruiken in en
verder uitbreiden naar verschillende industriële toepassingen door het definiëren van
geschikte BSDE-modellen en het ontwikkelen van discretisatie-methoden en het produ-
ceren van efficiënte en effectieve software.



1
INTRODUCTION

1.1. BACKGROUND
This thesis focuses on the numerical analysis of backward stochastic differential equa-
tions (BSDEs), especially on their application in finance.

In the wake of the previous global financial crisis, there has been a renewed focus on
possible risks in financial markets and new regulations have been introduced requiring
financial institutes to take new measures into their daily practices. For example, when
trading financial derivatives, each party involved must take into account the risk of the
counterparty default and post or collect collateral accordingly. This leads to the extra
factors of so-called valuation adjustments in option pricing. The increasing complexity
of financial model dynamics and the increasing number of risk factors rise the need to
advance the available mathematical tools.

We believe that the system of BSDEs (see Equation (1.1)) is one of the tools that
should be included in the context of industrial quantitative finance. In the context of
finance, BSDEs can be seen as the natural consequence of the replicating portfolio pric-
ing, a common technique in mathematical finance, see Section 1.2.3. Thus, it is only
logical to include BSDEs for solving financial risk management problems.

Moreover, BSDEs have been a popular research subject within the academic circle
ever since its general notion was introduced in [1] and [2]. Apart from all the research
interests, which it has attracted as a mathematical object in its own right [3–5], there is
a lot of effort in studying BSDEs’ possible applications in economics, finance and game
theory. There are works in the context of total valuation adjustment (XVA) [6], indiffer-
ence pricing and risk measures [7], mean-field games [8], and more. A BSDE is a capable
tool to model the new developments in risk management with all these support from
academia.

Despite the above, we face a major obstacle when considering BSDEs in actual indus-
trial applications. While BSDEs can cleanly and effectively model dynamics in finance,
solving them to retrieve the necessary information is far from trivial. Finding an analytic
solution for such equations is often difficult or even impossible, therefore, numerical

1
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methods that can efficiently solve BSDEs within limited computational budget are an
important component of applying BSDEs in the industry. This thesis thus is devoted
to study whether we can design efficient algorithms to approximate BSDEs numerically
and implement these algorithms in finance-inspired test cases.

In the next section, we introduce the system of BSDEs and the basic assumptions
and settings we adopt in this thesis and describe the general discretization and approx-
imation schemes for BSDEs. Moreover, we will further elaborate on the applications of
BSDEs we consider in this thesis.

1.2. BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS

1.2.1. SETTING
We begin with the definition of BSDEs we consider in this thesis. Given a filtered com-
plete probability space (Ω,F,F,P), with F := (Ft )0≤t≤T a filtration satisfying the usual con-
ditions of being right-complete and P-complete for a fixed terminal time T > 0, the pro-
cess Wt = (W1,t , . . . ,Wd ,t )> is a d-dimensional standard Brownian motion adapted to the
filtration F and we are interested in solving the following systems of BSDEs, or so-called
decoupled forward-backward stochastic differential equations (FBSDEs).{

d X t =µ(t , X t )d t +σ(t , X t )dWt , X0 = x0,
dYt =− f (t , X t ,Yt , Zt )d t +Z>

t dWt , YT = g (XT ),
(1.1)

where 0 ≤ t ≤ T . The functions µ : [0,T ]×Rq →Rq and σ : [0,T ]×Rq →Rq×d refer to the
drift and the diffusion coefficients of the forward stochastic process, X , and x0 ∈F0 is the
initial condition for X . The function f : [0,T ]×Rq ×R×Rd is called the driver function
of the backward process and the terminal condition YT is given by g (XT ) for a function
g :R→R. All stochastic integrals with Wt are of the Itô type.

Remark 1.1. This system is called a system of forward-backward equations since it con-
tains both a forward process X , where the initial condition is adapted to F0: x0 is known,
and a backward process with only the final condition adapted to FT : g (XT ) is known.
The significance of this difference will be further elaborated later in this section. This
is a decoupled system since the processes Y and Z are not involved in µ and σ and the
backward dynamics have no influence on the forward dynamics.

While this is not the simplest setting for BSDEs, this is the most commonly used one
and this choice ensures our numerical algorithms can be applied to most cases immedi-
ately. Further comments on how results from this thesis could be applied to other forms
of BSDEs can be found in Chapter 7.

It is assumed that bothµ(t , x) andσ(t , x) are measurable functions that are uniformly
Lipschitz in x and satisfy a linear growth condition in x. Therefore, there exists a unique
strong solution for the forward stochastic differential equation,

X t = x0 +
∫ t

0
µ(τ, Xτ)dτ+

∫ t

0
σ(τ, Xτ)dWτ. (1.2)

This process also satisfies the Markov property, namely E[Xτ|Ft ] = E[Xτ|X t ] for τ ≥ t ,
where E[·] denotes the expectation with respect to probability measure P.
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Remark 1.2. While the above assumptions are enforced throughout the whole thesis,
additional assumptions are required to ensure our numerical schemes are well-defined.
These additional assumptions will be presented in the later chapters along with the nu-
merical schemes as these assumptions have a direct impact on the derivations and errors
of these schemes.

Given that a solution exists for the forward equation, a pair of adapted processes
(Yt , Zt ) is said to be the solution of the BSDE (1.1) if Y is a continuous real-valued adapted
process such that E[sup[0,T ] ‖Yt |2] <∞ , Z is a real-valued predictable process such that∫ T

0 |Zt |2d t <∞ almost surely in P and the pair satisfies Equation (1.1).
In an application, the processes Y and Z normally are the values of interest that we

are trying to calculate. In a replicating portfolio financial model for instance, Y would be
the price process of the target financial derivative and Z would be related to the hedging
process, see Section 1.2.3. We would like to calculate Y0 to get the derivative price at the
initial time in this case.

As stated before, it is unlikely for us to identify elementary expressions for the pro-
cesses Y and Z . Therefore, we have to rely on numerical solutions.

1.2.2. DISCRETIZATION
While alternatives exist, one example being [9], the majority of numerical schemes for
solving BSDEs is based on the ideas of discretization and backward recursion. For this
type of schemes, we construct a time grid π = {0 = t0 < . . . < tP = T } on the interval
[0,T ] and for p = P − 1,P − 2, . . .0, we use the known information (Yp+1, Zp+1) and an
approximation function q to approximate (Yp , Zp ) = q(Yp+1, Zp+1).

In particular, we denote and let ∆p := tp+1 − tk , ∆Wl ,p := Wl ,tp+1 −Wl ,tp , and ∆Wp :=
(∆W1,p , . . . ,∆Wd ,p )> be the time-step, the Brownian motion increment along the l-th di-
mension and the Brownian motion increment, respectively, for p ∈ {0, . . . ,P − 1}. Note
that ∆Wl ,p ∼ N (0,∆p ) is a normally distributed process for all l and p. The backward
dynamics in Equation (1.1) would then be discretized along the time grid π, so that we
can derive the approximation dynamics.

The basic discretization of the forward dynamics (1.2) is well studied. For example,
one can use the classic Euler-Maruyama scheme to define a discretized forward process
X π:

X π
t0

:= x0, X π
tp+1

:= X π
tp
+µ(tk , X π

tp
)∆t +σ(tp , X π

tp
)∆Wp , p = 0, . . . ,P −1.

However, the discretization for the backward dynamics is not as simple. One key diffi-
culty in solving a BSDE is that the pair (Yt , Zt ) must be adapted to the underlying filtra-
tion. The terminal condition YT is given by g (XT ), where g is a deterministic function.
Therefore, YT is adapted to the filtration FT and a naive Euler discretization on the back-
ward equation fails to produce an adapted solution.

Adopting the notation X = (X ,Y , Z ), we can observe from the backward equation,

Ytp = Ytp+1 +
∫ tp+1

tp

f (τ,Xτ)dτ−
∫ tp+1

tp

Z>
τ dWτ, (1.3)

that a simple discretization is not sufficient to produce an approximation. It is because
we would require the value of Ytp+1 to approximate Ytp , but Ytp+1 is not Ftp adapted. For
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further discussion on this, the reader may refer to the introduction in [10].
To tackle this problem, we follow the standard methods in the literature. By taking

conditional expectations on both sides of Equation (1.3) and approximating the time
integral by a θ-time discretization, as in [11] and [12], we get

Ytp = Ep [Ytp+1 ]+
∫ tp+1

tp

Ep [ f (τ,Xτ)]dτ

≈ Ep [Ytp+1 ]+∆tθ1 f (tp ,Xtp )+∆t (1−θ1)Ep [ f (tp+1,Xtp+1 )], θ1 ∈ [0,1].

The notation Ep and Ex
p are defined as

Ep [·] := E[·|X tp ] = E[·|Ftp ], and Ex
p [·] = E[·|X tp = x].

For the process Z , we derive a recursive approximation formula by multiplying by ∆Wp

to both sides of Equation (1.3) and taking conditional expectations,

0 =Ep [Ytp+1∆Wp+1]+
∫ tp+1

tp

Ep [ f (τ,Xτ)∆Wp+1]dτ−
∫ tp+1

tp

Ep [Zτ]dτ

≈Ep [Ytp+1∆Wp+1]+∆t (1−θ2)Ep [ f (tp+1,Xtp+1 )∆Wp+1]

−∆tθ2Ztp −∆t (1−θ2)Ep [Ztp+1 ], θ2 ∈ (0,1].

Again, we applied the θ-method to the time integral. However, the two parameters for
the θ-method, θ1 and θ2, need not necessarily be the same. We define a discrete-time
approximation (Y π, Zπ) for (Y , Z ):

Y π
tP

:= g (X π
tP

), Zπ
tP

= (∇g (X π
tP

)σ(tP , X π
tP

))>, (1.4a)

for p = P −1, . . . ,0,

Zπ
tp

:=−1−θ2

θ2
Ep [Zπ

tp+1
]+ 1

θ2∆t
Ep [Y π

tp+1
∆Wp ]+ 1−θ2

θ2
Ep [ f (tp+1,Xπtp

)∆Wp+1], (1.4b)

Y π
tp

:= Ep [Y π
tp+1

]+∆tθ1 f (tp ,Xπtp
)+∆t (1−θ1)Ep [ f (tp+1,Xπtp+1

)], (1.4c)

Again, we used the simplifying notation Xπ = (X π,Y π, Zπ) 1. Note that various combina-
tions of θ1 and θ2 give different approximation schemes. We have an explicit scheme for
Y π if θ1 = 0, and an implicit scheme otherwise. The variable Zπ

tp
depends on Ep [Zπ

tp+1
]

only if θ2 6= 1.
Also, since the terminal processes Y π

tP
and Zπ

tP
are deterministic with respect to X π

tP

and X π is a Markov process, one can show by induction that Y π
tp
= yπp (X π

tp
), Zπ

tp
= zπp (X π

tp
),

where zπp and yπp are deterministic functions related to the discretization scheme. We
shall use the notation (yπp (x), zπp (x)) when we wish to emphasize the dependence of our
approximation in this thesis.

From Equation (1.4), one can observe that there are two components in each time
step in this type of BSDE approximations, the conditional expectations in the form of

1In most applications, the forward dynamics are also discretized and approximated by a Markov process.
Therefore, we use Xπ here instead of X .
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Ep [Ytp+1 ],Ep [Ytp+1∆Wp ], etc. and deterministic functions to calculate Ytp and Ztp . With
the function given in Equation (1.4), all we need is an efficient way to approximate mul-
tiple conditional expectations at each time-step.

The majority of so-called probabilistic methods for solving BSDEs relies on this time
discretization idea (even if the exact functions are different), they differ by the meth-
ods for calculating the appearing conditional expectations. Techniques used include
least-squares Monte Carlo regression in [13–17], chaos decomposition formulas in [18],
cubature methods in [19], Fourier expansion technique in [12], among others.

In Chapter 2 and Chapter 4, we will follow the same line of reasoning. We will derive
complete numerical algorithms for approximating BSDEs based on the approximating
dynamics in Equation (1.4) and different approximation methods for the conditional ex-
pectations. We will use an alternative formulation in Chapter 6, but it is still a combina-
tion of conditional expectation approximation and deterministic functions.

Therefore, the result in this thesis is not just applicable to BSDEs, but it also con-
tributes to the study of finite measure integration approximation in general. In Section
1.3, we introduce the three different schemes we use to approximate expectations in this
thesis. But first, we discuss two applications of BSDEs that are related to this thesis.
These applications give an insight into the usefulness of BSDEs.

1.2.3. BSDES AND REPLICATING PORTFOLIOS
One of the particularly interesting interpretations of BSDEs is to consider them as a nat-
ural product of the replicating portfolio pricing method, by which we mean that if we
apply the famous replicating portfolio pricing argument in mathematical finance, we
will deduce a relevant BSDE and the pricing information is the solution of the BSDE.

In this subsection, we review a simple replicating portfolio argument in a heuristic
manner and derive a system of BSDEs. The argument in this section serves as an exam-
ple of the above connection and we may skip over some details. For further information
about financial mathematics and replicating portfolios, one refers to [20]. For the math-
ematical setting of BSDEs in this context, one may consult other sections of this thesis.

Consider a market with one risky asset X , following the Black and Scholes dynamics
and one riskless asset B with riskfree rate r̄ , and they progress according to the following
stochastic dynamics.

dBt = r̄ Bt d t
d X t = µ̄X t d t + σ̄X t dWt .

(1.5)

Assume that there is a financial product that will provide a payoff based on a deter-
ministic function g acting on the value of the risky asset X at time T : g (XT ). A common
pricing/hedging technique is to construct a self-financing portfolio V consisting of only
the above two assets and its value should match g (XT ) at time T . Based on the no arbi-
trage principle, the value of this portfolio should equal the target financial product at all
time before T , especially at the initial time 0.

With the self-financing assumption and denoting the amount of riskless assets and
risky assets in portfolio V at time t by (at ,bt ), we have

Vt =at Bt +bt X t

dVt =at dBt +bt d X t
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=(r̄at Bt + µ̄X tbt )d t + σ̄X tbt dWt

=
[

r̄ Vt + µ̄− r̄

σ̄
σ̄X tbt X t

]
d t + σ̄X tbt dWt . (1.6)

Combining Equation (1.5), Equation (1.6) and the replicating requirement, we have{
d X t = µ̄X t d t + σ̄X t dWt ;

dVt =
[

r̄ Vt + µ̄−r̄
σ̄ σ̄bt X t

]
d t + σ̄bt X t dWt , VT = g (XT ).

This is indeed a BSDE system with (V , σ̄bt X t ) being the solution of the system. From this
point on, there are many different methods to calculate or approximate the product’s
price at the beginning, V0, for example, we can deduce the Black-Scholes partial differ-
ential equation (PDE) after applying Itô’s formula on V and use a numerical algorithm
for the PDE to get the price.

However, when the asset models in Equation (1.5) or the market dynamics in Equa-
tion (1.6) change, the PDE method or other schemes may not be feasible anymore but
the fundamental idea above is still valid and in general we can still deduce a system of
BSDEs. That is one of the reasons why the BSDE framework is such a strong tool in math-
ematical finance research.

In this thesis, the readers will also see some applications of BSDEs of this type. In
Section 2.5.2, the same argument as above is used to price a European option. In Section
2.5.3, the market dynamics are changed such that one cannot finance by the riskless
interest rate but with a higher interest rate and we price through an alternative BSDE.
Finally, following the same idea but using market dynamics involving counterparty risk
and margin requirement, Lesniewski and Richer [21] derived a system of BSDEs to price
financial products. In Chapter 5, we use a special case of Lesniewski and Richer’s BSDE
to design an XVA approximation demonstrator.

1.2.4. BSDES AND PARTIAL DIFFERENTIAL EQUATIONS
In the previous subsection, we briefly mentioned that after we have deduced a repli-
cating portfolio BSDE, one of the ways to perform the calculation is to transform the
BSDE into a PDE. In fact, the connection between BSDEs and PDEs is a key factor for the
BSDE’s popularity ever since its introduction.

Let’s recall the function µ : R+ ×Rd → Rd and σ : R+ ×Rd → Rd×d from Equation
(1.2) which satisfy the Lipschitz and linear growth conditions. For each (t , x) ∈ [0,T )×
Rd , we denote by {X t ,x

s , t ≤ s ≤ T } the unique strong solution of the following stochastic
differential equation in this subsection:{

d X t ,x
s = µ(s, X t ,x

s )d s +σ(s, X t ,x
s )dWs , t ≤ s ≤ T

X t ,x
s = x.

In [2], the authors have proven the following two theorems.

Theorem 1.1 (Adapted from [2], Theorem 3.1). If u : [0,T ]×Rd is differentiable with re-
spect to the first variable and twice differentiable with respect to the second one, and it
solves {

∂u
∂t (t , x)+L u(t , x)+ f (t , x,u(t , x), (∇uσ)(t , x)) = 0

u(T, x) = g (x),
(1.7)



1.3. NUMERICAL METHODS

1

7

where

L = 1

2

d∑
i , j=1

(σσ>)i j (t , x)
∂2

∂xi∂x j
+

d∑
i=1

bi (t , x)
∂

∂xi
.

Then u(t , x) = Y t ,x
t , t ≥ 0, x ∈Rd , where {(Y t ,x

s , Z t ,x
s ); t ≤ s ≤ T }t≥0,x∈Rd is the unique solu-

tion of the BSDE

Y t ,x
s = g (X t ,x

T )+
∫ T

s
f (r, X t ,x

r ,Y t ,x
r , Z t ,x

r )dr −
∫ T

s
Z t ,x

r dWr , t ≤ s ≤ T. (1.8)

Theorem 1.2 (Adapted from [2], Theorem 4.3). Assume that f (t , x, y, z) is globally Lips-
chitz with respect to (x, y, z) uniformly in t and g (x) is Lipschitz in x, the function u(t , x) :=
Y t ,x

t (see Equation (1.8)) is the unique viscosity solution of the backward parabolic PDE
(1.7).

The above results and followup works established a close link between BSDEs and
PDEs. In particular, this connection provides the opportunity of solving PDEs (in high
dimensions) with stochastic methods, which we are interested in.

In Chapter 6, we work on the connection between a particular type of PDE inspired
by American option pricing and BSDEs and use the result to derive a Monte-Carlo pric-
ing method. For further information on viscosity solutions and the PDE-BSDE connec-
tion in general, readers are referred to that chapter.

1.3. NUMERICAL METHODS
In this section, we briefly discuss the three schemes for approximating expectations
E[f(X )] we use in this thesis.

1.3.1. FOURIER EXPANSION METHODS
The first scheme that we are interested in, is based on Fourier series. Fourier based ap-
proximation has been one of the most popular ways to approximate expectations as the
Fourier transform of a probability measure is usually more widely known than its density.
In this particular version of Fourier method, the Fourier expansion method, we project
the integrand f to a function space spanned by trigonometric functions and calculate the
expectation of the projection as our approximant. There are two main advantages of this
scheme. First, this scheme does not involve inverse Fourier transforms, which are ex-
pensive to calculate. Second, the main approximant is in the form of a simple finite sum,
therefore it can be computed efficiently. We will provide further details on this method
later, but we review its application history in mathematical finance here.

While approximation in similar form can be found in other contexts, for example
[22], it was introduced to European option pricing with the COS method in [23]. This
article used the framework that the fair value of a financial option can be expressed as
the expectation of the discounted payoff function of such option under the risk neutral
measure and applied a cosine series approximation to this expectation.

Ever since, there has been numerous extensions of the COS method, including pric-
ing Bermudan options [24], finding ruin probability [25], solving backward stochastic
differential equations [12] and computation of valuation adjustment [26].
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The original COS method works as follows. It is based on the fact that any function
defined in the bounded interval [a,b], it can be represented by a cosine series:

f(x) =
∞∑

k=0

′Ak cos
(
kπ

x −a

b −a

)
,

with Ak being the cosine coefficient2

Ak = 2

b −a

∫ b

a
f(x)cos

(
kπ

x −a

b −a

)
d x.

Therefore, by replacing the original function with a truncated cosine series, we may ex-
press the expectation as a sum of cosine transforms:

E[f(X )] ≈
N−1∑
k=0

′AkE

[
cos

(
kπ

X −a

b −a

)]
,

and the cosine transform can be simply calculated from the Fourier transform.
There are two disadvantages when applying the original COS method. The cosine

coefficients Ak may be difficult to calculate, especially in a time recursion situation, as
in Equation (1.4). Also, while the derivation can be extended easily to higher dimensions
with a tensor argument, the COS method suffers from the curse of dimensionality.

In Chapter 2, we address the first point by further studying the SWIFT method in-
troduced in [27] and its quick variant from [28]. The SWIFT methods were derived in a
similar way as the original COS method. Instead of using the cosine series expansion, it
is based on the following expansion formula.

f(x) = 1

N

N∑
r=1−N

BrϕN ,r (x), (1.9)

where

ϕN ,r (x) =
N∑

k=1
cos

(
2k −1

2N
π(2ϑx − r )

)
.

Since the basisϕN ,r is constructed from cosine functions, its expectation E
[
ϕN ,r (X )

]
can

again be calculated by Fourier transforms. Thus, the approximation

E[f(X )] ≈ 1

N

N∑
r=1−N

BrE[ϕN ,r (X )]

preserves all the advantages of the Fourier expansion methods.
More importantly, we have

Br = 2ϑ

N

∫ 2−ϑN

−2−ϑN
f(x)ϕN ,r (x)d x ≈ f

(
r

2ϑ

)
, (1.10)

which means that the expansion coefficient can be read from the integrand immediately.
This simplifies finding expansion coefficients and addresses the first disadvantage of the

2The notation
∑′ means a summation with the first term weighted by half.
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COS method. The SWIFT method is our starting point in Chapter 2. We rigorously derive
the Equations 1.9 and 1.10, beginning with Theorem 2.1, on top of deriving a numerical
scheme for BSDEs.

In Chapter 3, we address the problem of the curse of dimensionality with the results
from lattice sequences.

1.3.2. STOCHASTIC GRID BUNDLING METHOD
As stated in the previous subsection, the curse of dimensionality is one of the main con-
cerns in designing a numerical scheme. Notably, higher-dimensional PDEs are common
in the financial context. When facing higher-dimensional problems, the Monte-Carlo
scheme is the most popular choice as it does not suffer from the curse of dimensionality
and it is general as it can be applied to many different integration problems. Therefore,
we would also consider one particular version of the Monte-Carlo method, the Stochas-
tic Grid Bundling Method (SGBM) and its application to BSDEs.

SGBM was first invented to price Bermudan options ([29, 30]). It is designed for
expectations calculation with a high-dimensional random variable in a time-recurring
setting and to avoid applying so-called nested Monte-Carlo schemes. By nested Monte-
Carlo, we mean that in order to calculate the conditional expectation: E[f(X t+∆t )|X t = x],
we simulate N samples of the dynamics X : {X k }1≤k≤N , starting at time t with X n

t = x
and use the approximation E[f(X t+∆t )|X t = x] ≈ 1

N

∑N
k=1 f(X k

t+∆t ). Nested Monte-Carlo is
computationally expensive, especially for Equation (1.4), where we must progress back-
wards on a time grid.

SGBM is a non-nested Monte Carlo scheme and only performs one simulation step
with the process X starting at time 0 till terminal time T . This scheme achieves accurate
approximations for E[f(X t+∆t )|X t ], where 0 < t < T and ∆t > 0 by applying bundling and
regress-later techniques, two new advanced techniques for least-squares Monte-Carlo
methods.

First is the bundling approach at time t , where we partition the whole simulation
cloud into non-overlapping subsets based on the realized values {X k

t }1≤k≤N at time t ,
then we perform our regression separately within these bundles. Namely, we approx-
imate E[f(X t+∆t )|X t ∈ B] for some subset B instead of E[f(X t+∆t )|X t ] as a whole func-
tion defined on Rd . The idea is that for a smaller domain B, the processes {X k

t+∆t |X k
t ∈

B} would share similar "characteristics" such that we can use a simpler approximation
scheme and have accurate results. A non-overlapping partition also facilitates parallel
computing.

Within each bundle, we perform a least-squares regression. However, unlike usual
least-squares regression for dynamic programming problems, where the target function
is defined at the end of a time interval while the basis functions are measured at the
beginning of the time interval3, we use basis functions defined at the end of the inter-
val with regress-later methodology. In this case, the conditional expectation is approxi-
mated with the analytic expectation of the basis functions.

It has been shown in the literature that regress-later schemes remove the statistical
error from the regress-now approach and theoretically can have better results. There-
fore, it is used in the SGBM algorithm. For further reference to regress-later schemes,

3It is called the regress-now approach.
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one might check out [31].
To facilitate a better understanding of our material, we present SGBM in a simplified

algorithmic context here. The goal of SGBM is to find simulated approximations for the
conditional expectation E[f(X t+∆t )|X t ] defined on the Markovian stochastic process X
and adapted to the filtration at time t : Ft .

We first simulation N ×B samples for process X : (X n)n=1,2,...,N×B starting at a given
initial condition at time 0, through time t , and ending at time t +∆t . This is the simula-
tion step.

Next, we rank the samples X n according to a real-valued ranking function S and the
samples’ realized values at time t . So, we line up the evaluated results as

S(X #1
t ) ≤S(X #2

t ) ≤ . . .S(X #N×B
t ).

Afterwards, we designate the first B samples with smallest ranking values in the first
bundle B1, denoted as (X 1,n)1≤n≤N , the next B samples into the second bundle, denoted
as (X 2,n)1≤n≤N , so on and so forth. This is the partition step.

Within each bundle, we perform the regression step. We have a predefined set of
real-valued basis functions (η1, . . . ,ηQ ) for each bundle. We develop a localized approxi-
mation by solving the matrix equation

η1(X b,1
t+∆t ) ηQ (X b,1

t+∆t )
. . .

η1(X b,n
t+∆t ) ηQ (X b,n

t+∆t )


 αb

1
...
αb

Q

=


f(X b,1

t+∆t
)

...

f(X b,n
t+∆t

)


to identify the regression coefficients (αb

q )1≤q≤Q for each bundle. Denote the basis func-
tions matrix on the left hand side of the above equation by I , we solve the above equa-
tion by first multiplying both sides of the equation by I on the left. The matrix I>I is
invertible and the regression coefficient is given by(

αb
1 , . . . ,αb

Q

)> = (I>I )−1I>
(
f(X b,1

t+∆t
), . . . , f(X b,n

t+∆t
)
)>

This is the regression step.
Finally, the approximation samples are given by the combination of results from all

bundles. For each sample X n
t , the approximated samples for the conditional expectation

are given by

E[f(X t+∆t )|X t = X n
t ] ≈

B∑
b=1

1Bb (X n
t )

Q∑
q=1

αb
qE[ηq (X t+∆t )|X t = X n

t ].

We determine which bundle the sample belongs to, and use the localized regression for
that bundle to construct an approximation for the target function. In particular, the re-
sulting samples can be used in the regression step in a backward-in-time recurring set-
ting.

Equipped with the basic notion of SGBM, we investigate its properties further in this
thesis. Chapters 4 and 5 concern the application of SGBM with the time discretization
scheme (1.4) to solving BSDEs, both from the theoretical and practical point of view.
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1.3.3. BRANCHING METHODS
Alternatively, we can derive a Monte-Carlo scheme to solve BSDEs based on directly tak-
ing expectations on the backward dynamics. Recall the notation in Section 1.2.4, we here
consider a special BSDE of the form

Y x,t
s = g (X x,t

T )+
∫ T

s

(∑
l

al (Y x,t
r )l

)
dr −

∫ T

s
Z t ,x

r dWr , t ≤ s ≤ T,

the function u as defined in Theorem 1.2 has the following expression:

u(t , x) = Ex
t

[
g (XT )

F̄ (T − t )
1τ≥T−t +1τ<T−t

∑
l

al

ρ(τ)
u(t +τ, X t ,x

t+τ)l

]
4.

Here, τ is a random time, independent of the Brownian motion Wt and

F̄ (t ) :=P[τ> t ] =
∫ ∞

t
ρ(s)d s, t ≥ 0.

Heuristically, the above expression can be approximated by multiple recurring forward
simulations of a killing time τ and the corresponding forward process X t up to the killing
time τ. This pure forward simulation scheme for a BSDE, based on a so-called branching
process, was first introduced in [32] and [33].

In practice, instead of conducting the branching simulations on the whole prede-
fined time domain [s,T ], we can also work with the time grid π= {0 = t0 ≤ t1 ≤ . . . tN = T }
and use the following recurring formula:

u(tn , x) = Ex
tn

[
u(tn+1, X tn ,x

tn+1
)

F̄ (tn+1 − tn)
1τ>tn+1−tn +1τ≤tn+1−tn

∑
l

αl

ρ(τ)
(u(tn +τ, X tn ,x

tn+τ))l

]
.

A backward iteration is then used to complete the whole approximation. At any time pe-
riod, we compute the branching algorithm with the above formula at predefined space
grid points and an interpolation is performed to recover the function u at that time
points across the whole domain. Then, we move on to the previous time point. By re-
stricting ourselves to small time intervals, the algorithm will be stable. Again, one can
see that the approximation of the BSDE is a combination of a deterministic recurring
scheme and a conditional expectation calculation.

There has been work on generalizing the application of the branching processes-
based scheme. In [34], the authors proposed a new numerical scheme based on branch-
ing processes for a more general class of BSDEs:

Y t ,x
s = g (X t ,x

T )+
∫ T

s
f (X t ,s

r ,Y t ,s
r )dr −

∫ T

s
Z t ,x

r dWr , t ≤ s ≤ T,

In Chapter 6, we extend the branching process to American option inspired BSDEs.

4The expression is an alternative formulation of a branching process used by Prof. Xavier Warin. This formu-
lation has the advantage of reducing the variance in the Monte Carlo simulation.
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1.4. OUTLINE OF THE THESIS
The remainder of the thesis is organized as follows.

In Chapter 2 we rigorously derive the SWIFT method, mentioned in the previous sub-
section, for expectation approximation using trigonometric wavelets. We propose a nu-
merical algorithm for BSDEs based on time discretization and the SWIFT method. Fur-
thermore, we mitigate the problem of errors occurring near the computational bound-
aries by means of an antireflective boundary technique, giving an improved approxima-
tion. In Chapter 3, we extend the localized Fourier expansion method to higher dimen-
sions by using a lattice sequence from Quasi Monte-Carlo rules. We study the error of
this scheme and compare the results in Chapter 2 and 3.

Chapter 4 contains the theoretical justification of a simple two-step SGBM regression
and a full explicit time discretization SGBM for a BSDE algorithm. We will also establish
an upper error bound for the local regression and a full error analysis for the complete
scheme. Numerical experiments on more general time discretization schemes are also
included in Chapter 4. These SGBM algorithms for BSDE schemes are applied to an XVA
inspired BSDE in Chapter 5. We present a Python demonstrator based on the SGBM al-
gorithm and make use of GPU computing in this chapter and show results from applying
this code to pricing problems up to 40 dimensions.

Chapter 6 is based on a joint work in the CEMRACS 2017 research school, in which
we prove that the price of a general American option can be seen as a unique viscosity
solution of a non-linear parabolic PDE. Using the connection between PDEs and BSDEs
and the branching processes scheme, we derive stochastic methods for approximating
this viscosity solution.

In Chapter 7 we draw conclusions for each numerical scheme and for the complete
thesis work. An outlook and further research from this thesis will also be discussed.

While we aim for consistent notations and unifying definitions in this thesis, since
this thesis covers a broad range of topics with various conventions, the meaning of the
notations may change from chapter to chapter. We ask the readers’ understanding.
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2
THE WAVELETS-BASED SWIFT

METHOD

In this chapter, we introduce a Fourier expansion based wavelet algorithm in the BSDE
context. The Shannon Wavelet Inverse Fourier Technique (SWIFT method) was pro-
posed in [2] for pricing European options and a so-called quick SWIFT variant was de-
veloped in [3] for pricing American and barrier options. The quick SWIFT method, while
also based on Shannon wavelets, has the additional benefit of simplifying the algorithm
and the error formula. Moreover, it is much easier to adjust individual approximation
values because wavelets form a localized basis. We propose a new approach to solving
BSDEs by combining a general θ-method for time-integration, as used in [4] and [5],
with the SWIFT method. We also improve on previous work on SWIFT by providing an
alternative derivation that takes into account the computational range.

This chapter is organized as follows. In Section 2.1, the class of BSDEs under our
consideration along with some notations and standing assumptions will be introduced.
Section 2.2 contains the derivation of the SWIFT formula and our numerical algorithm
for the BSDEs, while Section 2.3 is related to the error and computational complexity of
our algorithm. We further improve our algorithm along the computational boundary in
Section 2.4. Various numerical experiments are performed in Section 2.5 and concluding
remarks are given in Section 2.6.

2.1. SETTINGS AND ASSUMPTIONS
In this chapter, we focus on the case of one-dimensional BSDEs. Therefore, we have:

• µ : [0,T ]×R→R;

• σ : [0,T ]×R→R;

This chapter is based on the article ’On the wavelets-based SWIFT method for backward stochastic differential
equations’, published in IMA Journal of Numerical Analysis [1].
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• f : [0,T ]×R×R×R; and

• g :R→R.

Furthermore, we assume that we have a fixed uniform time-step ∆t = tp+1 − tp , ∀p and
define ∆Wp+1 :=Wtp+1 −Wtp ∼N (0,∆t ), a normally distributed process in this chapter.

The discretized forward process X π is defined by

X π
t0

:= x0, X π
tp+1

:= X π
tp
+µ(tp , X π

tp
)∆t +σ(tp , X π

tp
)∆Wp+1, p = 0, . . . ,P −1,

which is derived from the classical Euler discretization. Note that we only defined the
discretized process at the discrete time points here. While it is possible to extend the
definition to [0,T ], it is not necessary for our presentation.

Throughout this chapter, in addition to the conditions forµ andσ from Section 1.2.1,
we assume the following to be true:

(A1) The function f (t , x, y, z) is continuous with respect to (x, y, z) and all one-sided
derivatives exist.

(A2) The function g (x) is continuous in x and all left- and right-side derivatives exist.

When dealing with the discretization scheme with θ1 6= 1, we add one more assumption:

(A3) The function f is Lipschitz in (y, z), namely,

| f (t , x, y1, z1)− f (t , x, y2, z2)| ≤C (|y1 − y2|+ |z1 − z2|); x, y1, y2, z1, z2 ∈R, t ∈ [0,T ],

for some constant C .

Under assumptions (A1)-(A3) ((A1)-(A2) if θ1 = 1), the numerical algorithm for the FB-
SDE, which will be given in Section 2.2, is well-defined. Although, Dx g =∇g in Equation
(1.4a) may be undefined at countable many distinctive points, it can just be replaced by
a one-sided derivative at these points. The conditions above can also ensure satisfac-
tory performance of our algorithms in general, with more details coming in Section 2.3.
However, the above conditions are not sufficient to assure the existence of the pair of
adapted processes (Y , Z ), which is the foundation of any numerical algorithm. We intro-
duce an extra assumption to ensure the existence and uniqueness of the solution (Y , Z )
to Equation (1.1).

(A4) There exists a constant C such that

| f (t , x, y, z)|+ |g (x)| ≤C (1+|x|k +|y |+ |z|), ∀x, y, z ∈R, t ∈ [0,T ],k ≥ 1

2
.

For further results on the existence and uniqueness of the solution of BSDEs, readers are
referred to [6] and further research extending this result. The last point we would like to
raise is that the convergence rate of the discretized process to the original process also
depends on the functions µ, σ, f and g . We shall discuss these requirements in Section
2.3.1; these conditions are not included in the standing assumptions.
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2.2. SWIFT METHOD
For the computation of the expectations appearing in the discrete FBSDEs (1.4), we will
use the wavelet-based SWIFT method. In this section, we first provide an alternative
derivation for the SWIFT formula used in [2] and [3]. Instead of using an approxima-
tion space based on Shannon wavelets on the whole real line, we construct a Shannon
wavelet scaling function on a finite domain and derive our formula with this scaling
function. This approach is beneficial since a truncation of the integration range is re-
quired when calculating the wavelet coefficients for the SWIFT formula. Incorporating
the truncated range in the scaling function simplifies the formula for the approximation
error. Next, we apply the SWIFT method to compute the conditional expectations in the
discrete-time approximation of the FBSDE in Equation (1.4) and produce an algorithm
for solving FBSDEs recursively, backwards in time. In Sections 2.2.1 and 2.2.2, we derive
the SWIFT formula with the finite range approach and compute the relevant expecta-
tions for the FBSDE algorithm. Section 2.2.3 and 2.2.4 discuss the approximations of the
functions zπp (x) and yπp (x).

2.2.1. SCALING FUNCTIONS
We begin our discussion with some preliminary definitions and results. For any fixed
real number ϑ and integer N 6= 0, we define an inner product and a norm:

< v, w >:= 2ϑ

N

∫ 2−ϑN

−2−ϑN
v(x)w(x)d x, ||v ||2 :=p< v, v >.

A function v is said to be in the L2((−2−ϑN ,2−ϑN ]) space if ||v ||2 is a finite number. It
can be shown that the set

Γϑ,N :=
{

cos

((
2n −1

2N
π

)
2ϑx

)
, sin

((
2n −1

2N
π

)
2ϑx

)∣∣∣∣n = 1,2, . . .

}
,

is orthonormal with respect to this inner product and is dense in L2((−2−ϑN ,2−ϑN ]).
Equipped with the above definitions, we construct an approximation space together

with a localized basis, which are the foundations of the truncated SWIFT approximation
method. Consider 2N distinctive functions ϕN ,r :R→R,

ϕN ,r (x) :=
N∑

k=1

(
cos

((
2k −1

2N
π

)
2ϑx

)
cos

((
2k −1

2N
π

)
2ϑ

(
r

2ϑ

))
+sin

((
2k −1

2N
π

)
2ϑx

)
sin

((
2k −1

2N
π

)
2ϑ

(
r

2ϑ

)))
=

N∑
k=1

cos

(
2k −1

2N
π

(
2ϑx − r

))
(2.1)

=


N if x = 2N

2ϑ
l + r

2ϑ
for l an even integer,

−N if x = 2N
2ϑ

l + r
2ϑ

for l an odd integer,
sin

(
π(2ϑx−r )

)
2sin

(
π

2N (2ϑx−r )
) otherwise,
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where r belongs to the integer set {1−N ,2−N , . . . , N }. This definition is a special case
of the scaling functions given in Equation (2.13) of [7], in which the authors presented
a uniform approach for the construction of wavelets based on orthogonal polynomials.
The properties ofϕN ,r have been extensively studied in [7] and those that are relevant to
our numerical method are listed in the next theorem along with their proof.

Theorem 2.1. The scaling function ϕN ,r , which is defined in Equation (2.1), satisfies the
following properties:

(a) The inner product between two scaling functions is given by the following equation:

<ϕN ,r ,ϕN ,s >=ϕN ,r

(
s

2ϑ

)
, r, s ∈ {1−N ,2−N , . . . , N }.

Thus, {ϕN ,r |r = 1−N ,2−N , . . . , N } form an orthogonal set.

(b) The scaling function ϕN ,r is localized around r
2ϑ

. By this we mean that for the sub-
space

VN := span

{
cos

(
(2k −1)π

2N
2ϑx

)
, sin

(
(2k −1)π

2N
2ϑx

)∣∣∣∣k = 1,2, . . . , N

}
,

we have ∣∣∣∣∣∣∣∣ ϕN ,r

ϕN ,r (2−ϑr )

∣∣∣∣∣∣∣∣
2

= min

{
||χ||2 :χ ∈VN ,χ

(
r

2ϑ

)
= 1

}
.

(c) {ϕN ,r |r = 1−N ,2−N , . . . , N } is a basis for VN .

(d) The scaling function ϕN ,r is also a kernel polynomial in the sense that for any func-
tion v in V j , we have

< v,ϕN ,r >= v

(
r

2ϑ

)
.

Proof. We can demonstrate (a) by direct computation and applying the orthonormality
of the set Γϑ,N , such that

<ϕN ,r ,ϕN ,s >=
N∑

k=1

(
cos

((
2k −1

2N
π

)
2ϑ

(
r

2ϑ

))
cos

((
2k −1

2N
π

)
2ϑ

(
s

2ϑ

))
+ sin

((
2k −1

2N
π

)
2ϑ

(
r

2ϑ

))
sin

((
2k −1

2N
π

)
2ϑ

(
s

2ϑ

)))
=ϕN ,r

(
s

2ϑ

)

=
{

N , if s = r,
sin((s−r )π)

2sin
(

(s−r )π
2N

) = 0, otherwise.

Next, let

χ(x) =
N∑

k=1

(
ck cos

(
(2k −1)π

2N
2ϑx

)
+dk sin

(
(2k −1)π

2N
2ϑx

))
,
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and χ
(

r
2ϑ

)
= 1 for some constants ck and dk . By a simple application of the Cauchy-

Schwarz inequality, we get

1 =χ2
(

r

2ϑ

)
=

(
N∑

k=1

(
ck cos

(
(2k −1)π

2N
r

)
+dk sin

(
(2k −1)π

2N
r

)))2

≤
(

N∑
k=1

(c2
k +d 2

k )

)(
N∑

k=1

((
cos

(
(2k −1)π

2N
r

))2

+
(
sin

(
(2k −1)π

2N
r

))2))
= N ||χ||22.

The last equality follows from the orthonormality of set Γϑ,N and since ck and dk are

arbitrary, ||χ||22 ≥ 1
N for any χ ∈VN , such that χ

(
r

2ϑ

)
= 1. On the other hand, as

ϕN ,r

(
r

2ϑ

)
=

N∑
k=1

((
cos

(
(2k −1)π

2N
2ϑ

r

2ϑ

))2

+
(
sin

(
(2k −1)π

2N
2ϑ

r

2ϑ

))2)
= N ,

We know that ∣∣∣∣∣∣∣∣ ϕN ,r

ϕN ,r (2−ϑr )

∣∣∣∣∣∣∣∣2

2

= <ϕN ,r ,ϕN ,r >
N 2 = 1

N
,

which concludes the proof of (b). Statement (c) is true since {ϕN ,r |r = 1−N ,2−N , . . . , N }
has the same number of elements as the spanning set of VN ; its elements are orthogonal
and therefore independent of each other.

Part (d) follows from parts (a) and (c). For any v ∈ VN , v(·) = ∑N
s=1−N VsϕN ,s (·) by (c),

and from part (a), we have

< v,ϕN ,r >=
N∑

s=1−N
Vs <ϕN ,s ,ϕN ,r >=

N∑
s=1−N

VsϕN ,s

( r

2m

)
= v

( r

2m

)
.

The space VN and the scaling functions {ϕN ,r }r=1−N ,...,N are our approximation space
and our basis functions, respectively. As a result, for any function v in the L2((−2−ϑN ,2−ϑN ])
space, its projection on VN , denoted as HVN v , can be written in the form

1

N

N∑
r=1−N

< HVN v,ϕN ,r >ϕN ,r = 1

N

N∑
r=1−N

< v,ϕN ,r >ϕN ,r .

2.2.2. QUICK SWIFT FORMULA AND COEFFICIENTS
Assume we wish to approximate a finite integral

∫
R v(ς)q(ς)dς, where v is within

L2((−2−ϑN ,2−ϑN ]) and we have
∫
R q(ς)dς <∞. We shall approach this problem by re-

placing v by HVN v . This gives us the following approximation:∫
R

v(ς)q(ς)dς

≈
∫
R

q(ς)
1

N

N∑
r=1−N

< v,ϕN ,r >ϕN ,r (ς)dς
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=
∫
R

q(ς)
1

N

N∑
r=1−N

2ϑ

N

∫ 2−ϑN

−2−ϑN
v(%)

N∑
k1=1

cos
(
Ck1 (2ϑ%− r )

)
d%

N∑
k2=1

cos
(
Ck2 (2ϑς− r )

)
dς

=
N∑

r=1−N

∫
R

q(ς)
2
ϑ
2

N

N∑
k2=1

cos
(
Ck2 (2ϑς− r )

)
dς

∫ 2−ϑN

−2−ϑN
v(%)

2
ϑ
2

N

N∑
k2=1

cos
(
Ck2 (2ϑ%− r )

)
d%,

which is the SWIFT formula, proposed in [2], with Ck := 2k−1
2N π. In the above deriva-

tion, we only listed the dependency to dummy variable ς of the functions v and q . In
practice, v and q will depend on other variables, like for example, time. We will put the
additional dependency in our notation without further notice in the remainder of this
chapter whenever it is necessary for the presentation.

Remark 2.1. While the accuracy of the approximation depends on other properties of the
functions v and q and shall be studied in the rest of this chapter, v ∈ L2((−2−ϑN ,2−ϑN ])
and q being integrable are the only conditions needed for the above approximation to
be well-defined.

Remark 2.2. We only define the approximation on the set (−2−ϑN ,2−ϑN ] that centers

around zero. For any function v such that
∫ b

a (v(ς))2dς < ∞ for a finite range (a,b],

we need to perform a change of variables ς′ = ς− a+b
2 , for ς′ ∈ (a − a+b

2 ,b − a+b
2 ], let

v ′(ς′) = v(ς′ + a+b
2 ) = v(ς). Then, we can pick N and ϑ accordingly and perform the

approximation on v ′. With a slight abuse of notation, we assume that we perform this
tedious step implicitly and apply the SWIFT formula with any finite range [a,b].

In this work, we shall adopt the quick variant of the SWIFT formula proposed in [3].
Instead of replacing v with HVN v , we approximate v by

v(x) ≈ 1

N

N∑
r=1−N

v

(
r

2ϑ

)
ϕN ,r (x).

The reason behind this is left for the error section, but this gives an approximation for
Ex

p [v(tp+1, X π
tp+1

)], which we see in the discrete-time approximation of FBSDE,

Ex
p [v(tp+1, X π

tp+1
)] ≈Ex

p

[
1

N

N∑
r=1−N

v

(
tp+1,

r

2ϑ

)
ϕN ,r (X π

tp+1
)

]

= 1

N

N∑
r=1−N

v

(
tp+1,

r

2ϑ

)
Ex

p [ϕN ,r (X π
tp+1

)]. (2.2)

The expectation Ex
p [ϕN ,r (X π

tp+1
)] can be computed by

Ex
p [ϕN ,r (X π

tp+1
)] = Ex

p

[
N∑

k=1
cos

(
2ϑCk X π

tp+1
−Ck r

)]

=ℜ
{

N∑
k=1

Ex
p

[
exp

(
ı2ϑCk (x +µ(tp , x)∆t +σ(tp , x)∆Wp+1)

)
exp(−ıCk r )

]}

=ℜ
{

N∑
k=1

exp
(
ı2ϑCk x

)
F

(
tp , x,2ϑCk

)
exp(−ıCk r )

}
, (2.3)
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where the real part of a complex number is denoted by ℜ{} and F is the characteristic
function of X π

tp+1
−X π

tp
, i.e.

F (τ,ς,%) := exp

(
ı%µ(τ,ς)∆t − 1

2
%2σ2(τ,ς)∆t

)
.

In this thesis, the notation F will be used exclusively to denote characteristic functions
of probability measures/Fourier transforms of measures.

The authors of [3] demonstrated how to calculate the vector (Ex
p [ϕN ,r (X π

tp+1
)])r=(1−N ,...,N )

with a Fast Fourier Transform (FFT) algorithm. The computations induced by Equation
(2.3) in our algorithm have the computational complexity of O(N log(N )).

Expectations in the form Ex
p [v(X π

tp+1
)∆Wp+1] also occur in the discrete-time approx-

imation of the FBSDE and they can be computed by:

Ex
p [v(tp+1, X π

tp+1
)∆Wp+1] ≈Ex

p

[
1

N

N∑
r=1−N

v

(
tp+1,

r

2ϑ

)
ϕN ,r (X π

tp+1
)∆Wp+1

]

= 1

N

N∑
r=1−N

v

(
tp+1,

r

2ϑ

)
Ex

p [ϕN ,r (X π
tp+1

)∆Wp+1],

with Ex
p [ϕN ,r (X π

tp+1
)∆Wp+1] given by the formula:

Ex
p [ϕN ,r (X π

tp+1
)∆Wp+1] =σ(tp , x)∆tEx

p [DxϕN ,r (X π
tp+1

)]

=ℜ
{

ıσ(tp , x)∆t
N∑

k=1
2ϑCkE

x
p

[
exp

(
ı2ϑCk (x +µ(tp , x)∆t +σ(tp , x)∆Wp+1)

)
exp(−ıCk r )

]}

=ℜ
{

ıσ(tp , x)∆t
N∑

k=1
2ϑCk exp

(
ı2ϑCk x

)
F

(
tp , x,2ϑCk

)
exp(−ıCk r )

}
, (2.4)

where the first equality sign follows from an integration by parts argument and we also
note that DxϕN ,r (x) =−∑N

k=1 2ϑCk sin
(
2ϑCk x −Ck r

)
. Once again, we can use the FFT to

compute these expectations.
In the next two sections, we will combine the quick variant of the SWIFT formula and

the discrete-time approximation of the FBSDE in Equation (1.4).

2.2.3. QUICK SWIFT APPROXIMATION OF FUNCTION zπp (x)
There are three different expectations,

Ex
p [Zπ

tp+1
],Ex

p [Y π
p+1∆Wtp+1 ], and Ex

p [ f (tp+1,Xπtp+1
)∆Wp+1],

that need to be approximated in Equation (1.4b). Applying the quick SWIFT formula, we
have:

Ex
p [Zπ

tp+1
] ≈ 1

N

N∑
r=1−N

zπp+1

(
r

2ϑ

)
ℜ

{
N∑

k=1
e ı2ϑCk xF

(
tp , x,2ϑCk

)
e−ıCk r

}
;

Ex
p [Y π

tp+1
∆Wp+1] ≈ 1

N

N∑
r=1−N

yπp+1

(
r

2ϑ

)
×
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ℜ
{

ıσ(tp , x)∆t
N∑

k=1
2ϑCk e ı2ϑCk xF

(
tp , x,2ϑCk

)
e−ıCk r

}
;

Ex
p [ f (tp+1,Xπtp+1

)∆Wp+1] ≈ 1

N

N∑
r=1−N

f

(
tp+1,

r

2ϑ
, yπp+1

(
r

2ϑ

)
, zπp+1

(
r

2ϑ

))
×

ℜ
{

ıσ(tp , x)∆t
N∑

k=1
2ϑCk e ı2ϑCk xF

(
tp , x,2ϑCk

)
e−ıCk r

}
.

We denote the approximation of the FBSDE by a SWIFT-type formula combined with
the Euler discretization at point (tp , x) by (ŷπp (x), ẑπp (x)), then ẑπp satisfies the following
recursive relation:

ẑπp (x) =ℜ
{

1

N

N∑
k=1

e ı2ϑCk x

[
F

(
tp , x,2ϑCk

) N∑
r=1−N

(
−1−θ2

θ2
ẑπp+1

(
r

2ϑ

)
e−ıCk r

)]}

+ℜ
{

ı

N
σ(tp , x)

N∑
k=1

e ı2ϑCk x 2ϑCkF
(
tp , x,2ϑCk

)
×[

N∑
r=1−N

(
1

θ2
ŷπp+1

(
r

2ϑ

)
+ (1−θ2)∆t

θ2
f

(
tk+1,

r

2ϑ
, ŷπp+1

(
r

2ϑ

)
, ẑπp+1

(
r

2ϑ

))
e−ıCk r

)]}
,

(2.5)

for p = 0,1, . . . ,P −1.

2.2.4. QUICK SWIFT APPROXIMATION OF FUNCTION yπp (x)
Equation (1.4c) for Y π

tp
contains an explicit and an implicit part if θ1 > 0. The explicit part

is denoted by:
h(tp , x) := Ex

p [Y π
tp+1

]+∆t (1−θ1)Ex
p [ f (tp+1,Xπtp+1

)]. (2.6)

The function h is a linear combination of two expectations, Ex
p [Y π

tp+1
] and

Ex
p [ f (tp+1,Xπtp+1

)], and they can be approximated by the following quick SWIFT formulas:

Ex
p [Y π

tp+1
] ≈ 1

N

N∑
r=1−N

yπp+1

(
r

2ϑ

)
ℜ

{
N∑

k=1
e ı2ϑCk xF

(
tp , x,2ϑCk

)
e−ıCk r

}
; (2.7a)

Ex
p [ f (tp+1,Xπtp+1

)] ≈ 1

N

N∑
r=1−N

f

(
tp+1,

r

2ϑ
, yπp+1

(
r

2ϑ

)
, zπp+1

(
r

2ϑ

))
×

ℜ
{

N∑
k=1

e ı2mCk xF
(
tp , x,2ϑCk

)
e−ıCk r

}
. (2.7b)

Therefore, we have an approximation for h:

ĥ(tp , x) :=Ex
p [ŷπp+1(X π

tp+1
)]+∆t (1−θ1)Ex

p [ f (tp+1, X π
tp+1

, ŷπp+1(X π
tp+1

), ẑπp+1(X π
tp+1

))]

=ℜ
{

1

N

N∑
k=1

e ı2ϑCk xF
(
tp , x,2ϑCk

)
·
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N∑
r=1−N

[
ŷπp+1

(
r

2ϑ

)
+∆t (1−θ1) f

(
tp+1,

r

2ϑ
, ŷπp+1

(
r

2ϑ

)
, ẑπp+1

(
r

2ϑ

))]
e−ıCk r

}
,

(2.8)

and the function ŷπp is defined implicitly by:

ŷπp (x) =∆tθ1 f (tp , x, ŷπp (x), ẑπp (x))+ ĥ(tp , x). (2.9)

Whenever θ1 6= 0, Picard iterations are performed I times to recover ŷπp (x), which is
the same procedure used in both [8] and [5]. The initial guess for the iterations is defined
as the approximation of Ex

p [Y π
tp+1

] as in Equation (2.7a). The conditions for convergent

iterations and an extra error induced will be discussed in Section 2.3.3.
The overall algorithm to generate an approximation (ŷπ0 (x), ẑπ0 (x)) for (Y0, Z0) has

been summarized in Algorithm 1.

For r = 1−N to N do,
ŷπP (2−ϑr ) = g (2−ϑr ), ẑπP (2−ϑr ) =σDx g (2−ϑr ) and

f̂ πP (2−ϑr ) = f (T,2−ϑr, ŷπP (2−ϑr ), ẑπP (2−ϑr )).

Compute (E2−ϑr
P−1 [ϕN ,k (X π

tP
)])r,k=1−N ,...,N and (E2−ϑr

P−1 [ϕN ,k (X π
tP

)∆WP ])r,k=1−J ,...,J

with (2.3) and (2.4).
For p = P −1 to 1 do,

Compute the function (ẑπp (2−ϑr ))r=1−N ,...,N with (2.5).

Compute the function (ŷπp (2−ϑr ))r=1−N ,...,N with (2.9) and Picard iterations if
necessary.
Compute the functions ( f (tp ,2−ϑr, ŷπp (2−ϑr ), ẑπp (2−ϑr )))r=1−N ,...,N .

Compute (E2−ϑr
p−1 [ϕN ,k (X π

tp
)])r,k=1−N ,...,N and (E2−ϑr

p−1 [ϕN ,k (X π
tp

)∆Wp ])r,k=1−N ,...,N

with (2.3) and (2.4) if the distribution of (X π
tp
−X π

tp−1
) is time-dependent.

Compute ẑπ0 (x0) and ŷπ0 (x0) at time zero.

Algorithm 1: Quick SWIFT method.

2.3. ERRORS AND COMPUTATIONAL COMPLEXITY
In this section, we shall discuss the major components of the error when solving an FB-
SDE with a SWIFT-type method. They are the discretization error of the FBSDE, the er-
ror of approximation with the SWIFT formula and the error introduced by the Picard
iteration. We will also discuss the computational complexity of the SWIFT method. For
notational simplicity, we shall use C to denote a generic constant whose value and de-
pendency may change from line to line.

2.3.1. DISCRETIZATION ERROR OF THE FBSDE
The error due to the discrete-time approximation of the stochastic process depends on
the parameters θ1 and θ2, the drift µ, the volatility σ, the driver function f and the ter-
minal condition g . It is difficult to provide a universal result for all FBSDEs for which our



2

26 2. THE WAVELETS-BASED SWIFT METHOD

method can be applied. However, under some specific assumptions, we can derive an
error bound for the global error due to time discretization. Adopting the following error
notation:

ε
y
p (Xp ) :=yp (X tp )− yπp (X π

tp
), εz

p := zp (X tp )− zπp (X π
tp

), ε f
p (X tp ) := f (tp ,Xtp )− f (tp ,Xπtp

),

one of the results for the discretization error is in the following theorem.

Theorem 2.2 ([5],Theorem 1.). Assume that the forward process has constant coefficients
µ and σ and the discretization scheme with θ1 = θ2 = 1

2 . If

Ex
P−1[|εz

P |] ∼ O((∆t )3), Ex
P−1[|εy

P |] ∼ O((∆t )3),

then
Ex

0

[
|εy

p |+
p
∆t |εz

p |
]
≤C (∆t )2, for 1 ≤ p ≤ P,

where the constant C depends on numbers T , µ and σ and functions g and f .

For general drift and diffusion coefficients, we may only have first-order weak conver-
gence for the Euler discretization of forward process X and it may become the dominat-
ing error of our algorithm. For the proof of Theorem 2.2 and other convergence results,
readers are referred to [5] and the references therein.

2.3.2. ERROR IN SWIFT FORMULAS
In this subsection, we shall discuss the error of the numerical approximation by the
SWIFT-type formulas. In order for our formula to be applicable for both the one-step
approximation and the recursive case, we adopt the following setting.

Consider an expectation E[v(X π
t+∆t )|X π

t = x] for a function v defined on R and as-
sume that v is continuous with all its left- and right-side derivatives well-defined, we
define our expectation approximation as

Ê[v(X π
t+∆t )|X π

t = x] := 1

N

N∑
r=1−N

ρv

(
r

2ϑ

)
E[ϕN ,r (X π

t+∆t )|X π
t = x], (2.10)

where {ρv (2−ϑr )}r=1−N ,...,N is an approximation vector related to function v , to be de-
fined. For any function v :R→R and given range (−2−ϑN ,2−ϑN ], we associate v with an
alternating extension defined below.

Definition 2.3. An alternating extension of a function v , denoted by ṽ , is a function de-
fined on R such that it satisfies:

(a) ṽ(x) = v(x) ∀x ∈ (−2−ϑN ,2−ϑN ];

(b) ṽ(x +21−ϑN ) =−ṽ(x) ∀x ∈R.

The difference between the approximation value and the true value is given by

E[v(X π
t+∆t )|X π

t = x]− Ê[v(X π
t+∆t )|X π

t = x]

=E[v(X π
t+∆t )|X π

t = x]−E[ṽ(X π
t+∆t )|X π

t = x]
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+E[ṽ(X π
t+∆t )|X π

t = x]−E[HVN v(X π
t+∆t )|X π

t = x]

+E
[

1

N

N∑
r=1−N

< HVN v,ϕN ,r >ϕN ,r (X π
t+∆t )

∣∣∣∣∣ X π
t = x

]

− 1

N

N∑
r=1−N

ρv

(
r

2ϑ

)
E[ϕN ,r (X π

t+∆t )|X π
t = x]

=E[v(X π
t+∆t )1{X π

t+∆t∉(−2−ϑN ,2−ϑN ]}|X π
t = x]−E[ṽ(X π

t+∆t )1{X π
t+∆t∉(−2−ϑN ,2−ϑN ]}|X π

t = x]

+E[ṽ(X π
t+∆t )−HVN v(X π

t+∆t )|X π
t = x]

+ 1

N

N∑
r=1−N

(
HVN v

(
r

2ϑ

)
−ρv

(
r

2ϑ

))
E[ϕN ,r (X π

t+∆t )|X π
t = x] (2.11)

=E[v(X π
t+∆t )1{X π

t+∆t∉(−2−ϑN ,2−ϑN ]}|X π
t = x]−E[ṽ(X π

t+∆t )1{X π
t+∆t∉(−2−ϑN ,2−ϑN ]}|X π

t = x]

+E[ṽ(X π
t+∆t )−HVN v(X π

t+∆t )|X π
t = x]

+ 1

N

N∑
r=1−N

(
HVN v

(
r

2ϑ

)
− v

(
r

2ϑ

))
E[ϕN ,r (X π

t+∆t )|X π
t = x]

+ 1

N

N∑
r=1−N

(
v

(
r

2ϑ

)
−ρv

(
r

2ϑ

))
E[ϕN ,r (X π

t+∆t )|X π
t = x]. (2.12)

We derive the above formula by telescoping and using the properties of the scaling func-
tion. By taking absolute values on both sides of Equation (2.12), we get a simple bound
for the approximation error:∣∣E[v(X π

t+∆t )|X π
t = x]− Ê[v(X π

t+∆t )|X π
t = x]

∣∣
≤|E[v(X π

t+∆t )1{X π
t+∆t∉(−2−ϑN ,2−ϑN ]}|X π

t = x]|+E[|ṽ(X π
t+∆t )|1{X π

t+∆t∉(−2−ϑN ,2−ϑN ]}|X π
t = x]

+E[|ṽ(X π
t+∆t )−HVN v(X π

t+∆t )| |X π
t = x]

+ 1

N

N∑
r=1−N

∣∣∣∣HVN v

(
r

2ϑ

)
− ṽ

(
r

2ϑ

)∣∣∣∣ |E[ϕN ,r (X π
t+∆t )|X π

t = x]|

+ 1

N

N∑
r=1−N

∣∣∣∣v (
r

2ϑ

)
−ρv

(
r

2ϑ

)∣∣∣∣ |E[ϕN ,r (X π
t+∆t )|X π

t = x]|.

Errors of a SWIFT-type method can be separated into four (in Equation (2.11)) or five
(in Equation (2.12)) parts and they will be discussed one by one. Note that the first three
terms in Equation (2.11) and (2.12) are the same.

The first error term is related to the tail behaviour of the probability measure and
function v . It is finite, as otherwise the original expectation would be infinite. Also, its
value should decrease (heuristically speaking, not in strict mathematical sense) when a
wider computational domain is used. Assuming v to be uniformly bounded by a number
C , this term is bounded by C ·P(X π

t+∆t ∉ (−2−ϑN ,2−ϑN ]|X π
t = x). Similarly, the second

term is related to the tail probability. Because of the continuity of v and the periodicity
of ṽ , ṽ is uniformly bounded by some number C ′ and the second error term is bounded
by C ′ ·P(X π

t+∆t ∉ (−2−ϑN ,2−ϑN ]|X π
t = x).

The third part is related to the projection error on VN . From the assumption that v
is continuous with all left- and right-side derivatives of v existing, ṽ = limN→∞ HVN v ,
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a.e.. This can be shown by adopting the classical Dirichlet’s kernel argument, which is
included in the appendix. Applying the dominated convergence theorem,

E[ṽ(X π
t+∆t )−HVN v(X π

t+∆t ) |X π
t = x] =

∞∑
k=N+1

< v,cos(2ϑCk ·) > E[cos(2ϑCk X π
t+∆t )|X π

t = x]

+
∞∑

k=N+1
< v, sin(2ϑCk ·) > E[sin(2ϑCk X π

t+∆t )|X π
t = x].

Note that in this part, we only require ṽ = limN→∞ HVN v , a.e., so that we can relax the re-
quirement on v from being continuous to being piecewise continuous. Using an integra-
tion by parts argument, if the forward process has a smooth density, this error converges
exponentially with respect to N but increases with the computational range.

Remark 2.3. In fact, the projection error in the SWIFT formula can be controlled under
alternative conditions. Assume that the probability density function q of X π

t+πt |X π
t = x,

is in L2(R), then,

|E[ṽ(X π
t+∆t )−HVN v(X π

t+∆t )|X π
t = x]−E[ṽ(X π

t+∆t )1{X π
t+∆t∉(−2−ϑN ,2−ϑN ]}|X π

t = x]|
=|E[ṽ(X π

t+∆t )−HVN v(X π
t+∆t )1{X π

t+∆t∈(−2−ϑN ,2−ϑN ]}|X π
t = x]

−E[HVN v(X π
t+∆t )1{X π

t+∆t∉(−2−ϑN ,2−ϑN ]}|X π
t = x]|

≤||ṽ −HVN v ||2
(∫
R
q2(ς|x)dς

) 1
2 +C ·P(X π

t+∆t ∉ (−2−ϑN ,2ϑN ]|X π
t = x),

with C depending on the function HVN v . While we do not use this alternative proof in
this chapter, it implies that the SWIFT formula can be used in a more general setting and
is suitable for other applications as well.

In the usual variant of the SWIFT formula, we set ρv (2−ϑr ) =< v,ϕN ,r >, so the fourth
term of Equation (2.11) is by definition zero and the error of applying the SWIFT for-
mula will only consist of the first three terms. However, the calculation of < v,ϕN ,r > is
difficult and time-consuming, if not impossible in practice, especially in the recursive
case. Therefore, we propose picking ρv (2−ϑr ) = v̂(2−ϑr ), an approximation of the origi-
nal function v . While it will introduce an extra error, we shall demonstrate that this error
can be controlled and that the computation is much simpler.

For the sum in the fourth term of Equation (2.12), we need to consider two cases.

When r 6= N , the pointwise convergence of HVN v guarantees that
∣∣∣HVN v

(
r

2ϑ

)
− ṽ

(
r

2ϑ

)∣∣∣→
0. Therefore, these terms are bounded when N is large enough. When r = N , it is
likely that ṽ is discontinuous at 2−ϑN and the above argument does not hold. How-
ever, we note that this error term is also a weighted sum of HVN v(2−ϑr )− v(2−ϑr ), with
the weight given by 1

N E[ϕN ,r (X π
t+∆t )|X π

t = x]. Assume that P(X π
t+∆t 6∈ (λ−b,λ+b)) < ε1

and 1
N ϕN ,N (x) < ε2, when x ∈ (λ−b,λ+b), for some positive numbers b,ε1 and ε2 and

some number λ, then

1

N
E[ϕN ,N (X π

t+∆t )|X π
t = x] <P(X π

t+∆t 6∈ (λ−b,λ+b))+ε2P(X π
t+∆t ∈ (λ−b,λ+b)) < ε1 +ε2.
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These assumptions are satisfied when the distribution of X π is centered around a point
λ, which is true with a diffusion process whose diffusion coefficient is small, the com-
putational range is sufficiently large so that λ is far away from the boundary, and the
wavelet order is sufficiently high. If these conditions are met, the weight for the term∣∣∣HVN v

(
N
2ϑ

)
− ṽ

(
N
2ϑ

)∣∣∣ is small and the weighted term can be bounded. By combining the

two arguments above, we can bound this error term when the computational range is
sufficiently large and the wavelet order is sufficiently high.

In the one-step case, we pick ρv = v . Equation (2.11) along with the above analysis
covers all approximation errors.

In the backward recursive case, we can use Equation (2.12) to study the error prop-
agation at each time step. For example, in our BSDE algorithm, we let v = yπp+1 or zπp+1
and ρv = ŷπp+1 or ẑπp+1. In these cases, the fifth term of Equation (2.12) is comparing our
approximation with the true value at the next time step. The error accumulates in a re-
cursive way by applying this error analysis from time step t0 to tp−1. Further discussion
of the error propagation will be given in Section 2.3.4.

The error for approximating E[v(X π
t+∆t )(Wt+∆t −Wt )|X π

t = x] with

Ê[v(X π
t+∆t )(Wt+∆t −Wt )|X π

t = x] := 1

N

N∑
r=1−N

ρv

(
r

2ϑ

)
E[ϕN ,r (X π

t+∆t )(Wt+∆−Wt )|X π
t = x],

(2.13)
can be studied in a similar way.

Remark 2.4. It is clear from the derivation that the assumption of the function v being
continuous with left- and right-side derivatives is crucial in applying the quick version of
the SWIFT formula. In our FBSDE algorithm, the functions y and z at intermediate time
points, p = 1, . . . ,P−1, satisfy the above conditions. This can be observed from Equations
(2.5) and (2.9). However, we may still face an issue at the terminal time, as Dx g may
contain discontinuities. We propose a mixed algorithm to deal with this situation. At the
terminal time, the usual SWIFT formulas are used and then the algorithm switches to
the quick version in all subsequent time steps, see Algorithm 2.

2.3.3. PICARD ITERATION ERROR

When θ1 6= 0, a Picard iteration must be performed with the equation:

y =∆tθ1 f (tp , x, y, ẑπp (x))+ ĥ(tp , x),

to find the fixed point y . It is well-known that this iterative algorithm will converge to the
unique fixed point if the function ∆tθ1 f is a contraction map of y , namely,

|∆tθ1 f (tp , x, y1, ẑπp (x))−∆tθ1 f (tp , x, y2, ẑπp (x))| ≤ ξ|y1 − y2|,

with ξ ∈ [0,1) for all x ∈ (−2−ϑN ,2−ϑN ]. This condition is satisfied when the driver func-
tion is Lipschitz in y and ∆t is small enough.
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For r = 1−N to N do,
ŷπP (2−ϑr ) =< g ,ϕN ,r >, ẑπP (2−ϑr ) =<σDx g ,ϕN ,r > and

f̂ πP (2−ϑr ) =< f (T, ·, g (·),σDx (·)),ϕN ,r > .

Compute (E2−ϑr
P−1 [ϕN ,k (X π

tP
)])r,k=1−N ,...,N and (E2−ϑr

P−1 [ϕN ,k (X π
tP

)∆WP ])r,k=1−N ,...,N

with (2.3) and (2.4).
For p = P −1 to 1 do,

Compute the function (ẑπp (2−ϑr ))r=1−N ,...,N with (2.5).

Compute the function (ŷπp (2−ϑr ))r=1−N ,...,N with (2.9) and Picard iterations if
necessary.
Compute the functions ( f (tp ,2−ϑr, ŷπp (2−ϑr ), ẑπp (2−ϑr )))r=1−N ,...,N .

Compute (E2−ϑr
p−1 [ϕN ,k (X π

tp
)])r,k=1−N ,...,N and (E2−ϑr

p−1 [ϕN ,k (X π
tp

)∆Wp ])r,k=1−N ,...,N

with (2.3) and (2.4) if the distribution of (X π
tp
−X π

tp−1
) is time-dependent.

Compute ẑπ0 (x0) and ŷπ0 (x0) at time zero.

Algorithm 2: Mixed SWIFT method

We adopt the following notation:
ŷπ,I

P (x) := g (x);

ŷπ,0
p (x) := 1

N

N∑
r=1−N

ŷπ,I
p+1

(
r

2ϑ

)
ℜ

{
N∑

k=1
e ı2ϑCk xF (tp , x,2ϑCk )e−ıCk r

}
;

ŷπ,i+1
p (x) :=∆tθ1 f (tp , x, ŷπ,i

p (x), ẑπp (x))+ ĥ(tp , x),

for p = 0, . . . ,P−1 and i = 0, . . . , I−1. It is clear that ŷπ,I
p (x) = ĥ(tp , x) when θ1 = 0 and I ≥ 1,

which is the explicit scheme. The above notations are consistent with the notations in
Section 2.2.4 except we should replace the ŷπp+1 with ŷπ,I

p+1 in equation (2.6). Furthermore,
for any given x, we know by definition that yπp (x) is the unique fixed point that satisfies

y =∆tθ1 f (tp , x, y, zπp (x))+h(tp , x).

Note that the notation ŷπp was defined by Equation (2.9).
With the above notations and given the extra information that f is Lipschitz with

respect to z, we can derive the one-step approximation error for function yπ:

|ŷπ,I
p (x)− yπp (x)| ≤ |ŷπ,I

p (x)− ŷπp (x)|+ |ŷπp (x)− yπp (x)|
≤εPi car d

p +∆tθ1| f (tp , x, ŷπp (x), ẑπp (x))− f (tp , x, yπp (x), zπp (x))|+ |ĥ(tp , x)−h(tp , x)|
≤εPi car d

p +ξ|ŷπp (x)− yπp (x)|+ξ|ẑπp (x)− zπp (x)|+ |ĥ(tp , x)−h(tp , x)|
≤(1+ξ)εPi car d

p +ξ|ŷπ,I
p (x)− yπp (x)|+ξ|ẑπp (x)− zπp (x)|+ |ĥ(tp , x)−h(tp , x)|.

The term εPi car d
p := |ŷπ,I

p (x)− ŷπp (x)| is the error of applying Picard iterations, which de-
pends on ∆t and the Lipschitz coefficient of f with respect to y , as stated before in this
section. The constant C is related to the Lipschitz coefficient of f from standing as-
sumption (A3) and ξ :=C∆tθ1 ≤ 1. The last inequality is due to a telescoping argument
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of the term |ŷπp (x)− yπp (x)|. Rearranging the terms gives us the following error bound:

|ŷπ,I
p (x)− yπp (x)| ≤ 1+ξ

1−ξε
Pi car d
p + 1

1−ξ (ξ|ẑπp (x)− zπp (x)|+ |ĥ(tp , x)−h(tp , x)|). (2.14)

2.3.4. THE ERRORS OF THE FBSDE RECURSIVE SCHEME
Given an FBSDE system, a time partition and a discretization scheme, we may apply the
result in Section 2.3.2 to derive a local approximation error for the related expectations.
When we are approximating expectations with the functions yπp+1 and zπp+1 in the BSDE
scheme, the approximation vector is given by{

ρyπp+1
= {ŷπ,I

p+1(2−ϑr )}r=1−N ,...,N ;

ρzπp+1
= {ẑπp+1(2−ϑr )}r=1−N ,...,N ,

for p = 0, . . . ,P −2. At the terminal time tP = T , they are defined as{
ρyπP

= {Y π
T |X π

T = 2−ϑr }r=1−N ,...,N ;

ρzπP
= {Zπ

T |X π
T = 2−ϑr }r=1−N ,...,N ,

or {
ρyπP

= {< Y π
T ,ϕN ,r >}r=1−N ,...,N ;

ρzπP
= {< Zπ

T ,ϕN ,r >}r=1−N ,...,N ,

depending on the scheme we used. When approximating expectations involving
f (tp+1, x, yπp+1(x), zπp+1(x)), the approximation vector

ρ fp+1 = { f (tp+1,2−ϑr,ρyπp+1
(2−ϑr ),ρzπp+1

(2−ϑr )}r=1−N ,...,N ,

for p = 0, . . .P −1.
From Equation (2.12), we know that the approximation error for the SWIFT formula

consists of four parts. Therefore, the local approximation errors at point (t , x) by the
SWIFT formula for any function v , denoted as ζϑ,N

v (tp , x) or ζϑ,N ,W
v (tp , x) for the two

types of expectations, are given by

ζϑ,N
v (tp , x) :=Ex

p [v(X π
tp+1

)1{X π
tp+1

∉(−2−ϑN ,2−ϑN ]}]−Ex
p [ṽ(X π

tp+1
)1{X π

tp+1
∉(−2−ϑN ,2−ϑN ]}]

+Ex
p [ṽ(X π

tp+1
)−HVN v(X π

tp+1
)]

+ 1

N

N∑
r=1−N

(
HVN v

(
r

2ϑ

)
− v

(
r

2ϑ

))
Ex

p [ϕN ,r (X π
tp+1

)];

ζϑ,N ,W
v (tp , x) :=Ex

p [v(X π
tp+1

)1{X π
tp+1

∉(−2−ϑN ,2−ϑN ]}∆Wp+1]

−Ex
p [ṽ(X π

tp+1
)1{X π

tp+1
∉(−2−ϑN ,2−ϑN ]}∆Wp+1]

+Ex
p [(ṽ(X π

tp+1
)−HVN v(X π

tp+1
))∆Wp+1]

+ 1

N

N∑
r=1−N

(
HVN v

(
r

2ϑ

)
− v

(
r

2ϑ

))
Ex

p [ϕN ,r (X π
tp+1

)∆Wp+1].
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Applying all the results above and the standing assumptions, we can derive the re-
curring error formulas of our SWIFT BSDE scheme:

1

C1
|zπp (x)− ẑπp (x)|

≤|ζϑ,N
zπp+1

(tp , x)|+ |ζϑ,N ,W
yπp+1

(tp , x)|+ |ζϑ,N ,W
fp+1

(tp , x)|

+ 1

N

N∑
r=1−N

∣∣∣∣zπp+1

(
r

2ϑ

)
−ρzπp+1

(
r

2ϑ

)∣∣∣∣ (|Ex
p [ϕN ,r (X π

tp+1
)]|+Ex

p [ϕN ,r (X π
tp+1

)∆Wp+1]|)

+ 1

N

N∑
r=1−N

∣∣∣∣yπp+1

(
r

2ϑ

)
−ρyπp+1

( r

2m

)∣∣∣∣ |Ex
p [ϕJ ,r (X π

tp+1
)∆Wp+1]|, (2.15)

and

1

C2
|yπp (x)− ŷπ,I

p (x)|

≤C3 +|ζϑ,N
zπp+1

(tp , x)|+ |ζϑ,N ,W
yπp+1

(tp , x)|+ |ζϑ,N ,W
fp+1

(tp , x)|+ |ζϑ,N
yπp+1

(tp , x)|+ |ζϑ,N
fp+1

(tp , x)|

+ 1

N

N∑
r=1−N

∣∣∣∣zπp+1

(
r

2ϑ

)
− ẑπp+1

(
r

2ϑ

)∣∣∣∣ (|Ex
p [ϕN ,r (X π

tp+1
)]|+Ex

p [ϕN ,r (X π
tp+1

)∆Wp+1]|)

+ 1

N

N∑
r=1−N

∣∣∣∣yπp+1

(
r

2ϑ

)
− ŷπp+1

(
r

2ϑ

)∣∣∣∣ (|Ex
p [ϕN ,r (X π

tp+1
)]|+Ex

p [ϕN ,r (X π
tp+1

)∆Wp+1]|), (2.16)

with constants C1, C2 and C3 depending on the underlying FBSDE, the discretization
scheme and the Picard iteration errors, but not depending on ϑ and M . Their proof is
left for the appendix.

ERROR BOUND AND CHOICE OF PARAMETERS

An error bound at (0, x0) for applying the SWIFT scheme to a FBSDE system can be found
by repeatedly applying Equations (2.15) and (2.16). This bound is given by the weighted
sum of the local approximation errors for each point in the grid {(0, x0)}∪ {(tp ,2−ϑr )|p =
1, . . . ,P and r = 1−N , . . . , N }, with the weight being 1 for (0, x0) and the weight being

∑
u∈υp

1

N p

p∏
l=1

(|Eul−1
l [ϕN ,ul (X π

tl
)]|+ |Eul−1

l [ϕN ,ul (X π
tl

)∆Wl+1]|), (2.17)

for {(tp ,2−ϑr )|p = 1, . . . ,P and r = 1−N , . . . , N }, where υp is the set containing length p+1
vectors u = (u0,u1, . . . ,up ), with the first element u0 = x0 and other elements equal to
2−ϑr for r = 1−N , . . . , N . A simple example of deriving such an error bound is included
in the appendix.

However, as this error bound uses local approximation errors from multiple points
in a grid, actually calculating the error bound would be costly. The weight and the local
error behave differently at different grid points. Whenever |r | is small, the local error
converges exponentially in numerical tests with fixed 2−ϑN and increasing N , but it may
fail to converge to zero when |r | is close to N . On the other hand, when |r | is close to N ,
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the weight in Equation (2.17) tends to zero quickly and reduces the error. We do not have
a simple formula to describe this balance. Last but not least, parameter P , the number
of time points, affects the total number of terms in the error bound, the value of the local
error and the value of the weight in Equation (2.17). It is highly non-trivial to quantify
the effect of P on the overall error from this error bound.

In practice, we would recommend a three-step approach to select the parameters for
the scheme and get a global picture of what the error may be. First of all, pick param-
eter P based on the discretization error for (X ,Y , Z ). This can be done either through
the error bound in Section 2.3.1 or other existing error bounds in the literature. The rea-
son is that ϑ and N have no effect on the discretization error while P affects each part
of the approximation error. Next, we should choose our parameters N and ϑ according
to error formula (2.12). The interest is in the third term in the equation, which increases
with the truncation range but decreases with the wavelet order N . Therefore we should
first fix the truncation range 2−ϑN to a constant value a in our scheme, the tail proba-
bility outside our computational range is below a fixed tolerance level. This can be done
heuristically by considering the cumulants of XT , see [9]. Finally, we pick an N value
such that the overall error converges and adjust ϑ accordingly so that the truncation
range remains the same. This approach is very useful for applications (compared to the
error bound itself).

2.3.5. COMPUTATIONAL COMPLEXITY
At each time-step tp , the following operations have to be performed:

• Computation of Ex
p [ϕN ,k (X π

tp+1
)] and Ex

p [ϕN ,k (X π
tp+1

)∆Wp+1] by the FFT algorithm,

in O(N log(N )) operations. It is calculated only once at the terminal time-step if
the characteristic function of X π does not depend on the time point;

• Computation of ẑπp (x), ĥ(tp , x) and ŷπ,0
p (x) by matrix-vector multiplications, in

O(N 2) operations;

• Computation of ŷπ,I by I Picard iterations on an x-grid, in O(I N ) operations;

• Evaluation of f (tp , x, ŷπ,I
p (x), ẑπp (x)) in O(N ) operations.

The most time-consuming part in our algorithm is the matrix-vector multiplication. The
proposed algorithms have linear computational complexity with respect to the time-
steps P and the starting evaluation at terminal time is of order O(N ). In total, the com-
plexity of the SWIFT-type methods is O(N +P (N 2 + I N +N log(N )+N )).

2.4. ANTIREFLECTIVE BOUNDARY
Recalling Equation (2.12), the approximation of E[v(X π

t+∆t )|X π
t = x] by the SWIFT for-

mula may have a significant local error when two conditions are satisfied. The first
condition being that the alternating extension ṽ diverges from v in the range [−λ−
2−ϑN ,−2−ϑN ] or [2ϑN ,λ+2−ϑN ], for some number λ> 0 and the second condition be-
ing that the probability of X π

t+∆t |X π
t = x in the aforementioned ranges is large. While

the first condition is almost always true, given that X π is a diffusion process, the second
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Figure 2.1: The approximation range (−2−m J ,2−m J ] and the accuracy range [λ1,λ2].

condition is true only when the starting point x is close to the boundary −2−ϑN or 2−ϑN .
Therefore, there may be intervals (−2−ϑN ,λ1) and (λ2,2−ϑN ] where the SWIFT formula
is inaccurate.

We propose using an antireflective boundary technique to deal with this issue. An-
tireflective boundary conditions form a popular technique for extrapolation in image
deblurring methods. For its applications in image deblurring, the reader may refer to
[10, 11] and the references therein.

In practice, assume that we approximate a function f(x) by f̂(x) on (−2−ϑN ,2−ϑN ]
and we know that the approximation is accurate for x ∈ [λ1,λ2], namely, |f(x)− f̂(x)| <
ε, for some small positive real number ε. Given the numbers λ1 > −2−ϑN and λ2 <
2−ϑN , so that there is some inaccuracy near the boundary but (λ1,2λ1 + 2−ϑN ), (2λ2 −
2−ϑN ,λ2) ⊂ [λ1,λ2] (see Figure 2.1). We would extrapolate an approximation of f(x) for
x ∈ (−2−ϑN ,λ1) and x ∈ (λ2,2−ϑN ] by applying antireflective conditions with the accu-
rate approximation. For x ∈ (−2−ϑN ,2−ϑN ], we define

f̂a(x) := 2f̂(λ1)− f̂(2λ1 −x) for x ∈ (−2−ϑN ,λ1);
f̂a(x) := f̂(x) for x ∈ [λ1,λ2];
f̂a(x) := 2f̂(λ2)− f̂(2λ2 −x) for x ∈ (λ2,2−ϑN ),

(2.18)

and use f̂a instead of f̂ as our approximation.
If f is two times continuously differentiable on R, then, by a simple application of

Taylor’s theorem, we have:

f(x) =f(λ1)+ df

d x
(λ1)(x −λ1)+ 1

2

d 2f

d x2 (ς1)(x −λ1)2;

f(2λ1 −x) =f(λ1)− df

d x
(λ1)(x −λ1)+ 1

2

d 2f

d x2 (ς2)(x −λ1)2,

where x ∈ (2−ϑN ,λ1), ς1 ∈ (x,λ1) and ς2 ∈ (λ1,2λ1 − x). The approximation error for
x ∈ (−2−ϑN ,λ1) is then bounded by

|f(x)− f̂a(x)| ≤|f(x)−2f(λ1)+ f(2λ1 −x)|+2|f(λ1)− f̂(λ1)|+ |f(2λ1 −x)− f̂(2λ1 −x)|

≤(−2−ϑN −λ1)2 sup
ς∈(−2−ϑN ,2λ1+2−ϑN )

∣∣∣∣ d 2f

d x2 (ς)

∣∣∣∣+3ε.

A similar formula can be derived for the set (2λ2−2−ϑN ,2−ϑN ). For the recursive scheme,
one can just apply Equation (2.18) at each time-step.

Remark 2.5. The range of accurate approximations for the SWIFT formula depends on
the distribution of X π

t+∆t |X π
t =x , and, therefore, it is model dependent. The performance
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of applying the antireflective boundary technique with the SWIFT formula depends on
the smoothness of the target function with respect to starting point x, the accuracy of
the SWIFT formula in the range [λ1,λ2] and the length of the range.

2.5. NUMERICAL EXPERIMENTS
Several numerical studies have been performed in MATLAB 9.0.0. The computer is
equipped with Intel(R) Core(TM) i5-2520M CPU @ 2.50GHz and 7.7 GB RAM. Four dif-
ferent discretization schemes have been used to test the effect of various choices of θ on
the numerical algorithm. They are:

Scheme A: θ1 = 0, θ2 = 1, Scheme C: θ1 = 1, θ2 = 1,
Scheme B: θ1 = 0.5, θ2 = 1, Scheme D: θ1 = 0.5, θ2 = 0.5.

The function zπp is solved explicitly in all schemes while yπp is solved explicitly for scheme
A and implicitly with 5 Picard iterations for the other schemes.

For each given example, we associate our numerical algorithm with the computa-
tional domain [κ1 − L

p
κ2,κ1 + L

p
κ2], where cumulants κ1 = x0 +µ(0, x0)T and κ2 =

σ2(0, x0)T and L = 10. It is similar to the setting in [5]. The value 2−ϑN = L
p
κ2 is a

constant for each example. The value of N is assumed to be 29.

2.5.1. EXAMPLE 1
This example has been studied in [5] and is originally from [12]. The considered FBSDE
is {

d X t = dWt ,
dYt =−(Yt Zt −Zt +2.5Yt − sin(t +X t )cos(t +X t )−2sin(t +X t ))d t +Zt dWt .

We take the initial and terminal conditions x0 = 0 and YT = sin(XT +T ).
The exact solution is given by

(Yt , Zt ) = (sin(X t + t ),cos(X t + t )).

The terminal time is set to be T = 1 and (Y0, Z0) = (0,1). The driver function f depends on
both time t and current state X t . The results for the quick SWIFT method are presented
in Figure 2.2a while the results for the mixed SWIFT method are presented in Figure 2.2b.
We observe that there are no significant differences between the quick SWIFT and mixed
SWIFT method. For schemes A, B and C, both approximation errors for Y0(x0) and Z0(x0)
are of O(∆t ) order, while the errors converge with O((∆t )2) for scheme D.

Remark 2.6. The driver functions for some examples in this section are not universally
Lipschitz. However, one should notice that for the contraction argument in Section 2.3.3
to be valid, for any fixed z, the driver function should be Lipschitz with respect to y .
All the driver functions in this section satisfy this weaker condition. We aim for clear
presentation rather than general applicability when we designed the assumptions and
conditions and our method can be applied to a broader class of BSDEs than we described
here. For a more in-depth analysis of the application of Picard iterations in the numerical
treatment of BSDEs, the reader is referred to [8].
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(a) Quick SWIFT with N = 29
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(b) Mixed SWIFT with N = 29
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Figure 2.2: Results example 1, left: error in y(0, x0), right: error in z(0, x0)

2.5.2. EXAMPLE 2: EUROPEAN CALL OPTION

Next, we calculate the price v(t ,ST ) of a call option under the Black-Scholes model by
solving an FBSDE. The underlying process satisfies:

dSt = µ̄St d t + σ̄St dWt .

Along the line of reasoning in [5], we assume that the financial market is complete, there
are no trading restrictions and the call option can be perfectly hedged. Then
(v(t ,St ), σ̄St Ds v(t ,St )) solves the FBSDE,

{
dSt = µ̄St d t + σ̄St dWt ,

dYt =−(−r̄ Yt − µ̄−r̄
σ̄ Zt )d t +Zt dWt ,
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with terminal condition YT = max(ST −K ,0). The driver function is continuous and lin-
ear with respect to y and z. We use the following parameter values in our test:

S0 = 100,K = 100, r̄ = 0.1, µ̄= 0.2, σ̄= 0.25,T = 0.1.

The exact solutions Y0 = 3.65997 and Z0 = 14.14823 are given by the Black-Scholes for-
mula first shown in [13]. We switch to the log-asset domain X t = log(St ) and solve{

d X t =
(
µ̄− 1

2 σ̄
2
)

d t + σ̄dWt ,

dYt =−(−r̄ Yt − µ̄−r̄
σ̄ Zt )d t +Zt dWt ,

(2.19)

where YT = max(exp(XT )−K ,0).
For the result of the quick SWIFT method, we refer to Figure 2.3a. Immediately, we

notice that the result of scheme D does not improve when increasing the number of
time-steps. This is due to the discontinuity of the terminal value of Z which creates a
significant error. For the mixed SWIFT method, shown in Figure 2.3b, the error from the
discontinuity has been removed. The approximate values ŷπ0 (x0) and ẑπ0 (x0) converge
with approximately order one with respect to∆t for schemes A, B, and C and about order
two for scheme D.

Since the driver function in Equation (2.19) depends on µ̄, the approximation error
also depends on µ̄, even though the final result v(0, x0) is unrelated to the drift. For the
same number of time-steps P , the error increased with the increase of µ̄, as shown in
Figure 2.4.

The approximation algorithm can be further improved by applying antireflective
boundary conditions in the recursive time-steps. In Figure 2.5 we see results of adding
an antireflective step in a mixed SWIFT algorithm. The approximations near the middle
of computational range are almost identical with the reference value, but the approxi-
mations with antireflective adjustment near both ends of the interval appear to be much
better than the ones without.

2.5.3. EXAMPLE 3: BID-ASK SPREAD FOR INTEREST RATE
We next consider a financial model introduced in [14], where we have distinct borrowing
and lending interest rates. The resulting market is imperfect and the driver function is
non-linear.

Suppose that an agent can invest in bonds with risk-free return rate rr and borrow
money at rate rb > rr . For any European-type derivative with payoff g (XT ) at time T ,
where the underlying asset St = log(X t ) follows a geometric Brownian motion, its price
at time 0 can be obtained by solving the FBSDE:{

d X t =
(
µ̄− 1

2 σ̄
2
)

d t + σ̄dWt ,

dYt =−
(
−rr Yt − µ̄−rr

σ̄ Zt − (rb − rr )min
(
Yt − Zt

σ̄ ,0
))

d t +Zt dWt ,

with the payoff as the terminal condition. We use the example studied in both [15] and
[5]. The payoff function is given by

g (XT ) = (e XT −K1)+−2(e XT −K2)+,
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(a) Quick SWIFT with N = 29
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(b) Mixed SWIFT with N = 29
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Figure 2.3: Results example 2, left: error in y(0, x0), right: error in z(0, x0)

which equals a combination of a long call with strike K1 = 95 and two short calls with
strike K2 = 105. We use the parameter values

S0 = 100,rr = 0.01, µ̄= 0.05, σ̄= 0.2,T = 0.25,K1 = 95,K2 = 105,rb = 0.06.

We notice that ẑπ0 (x0) fails to converge to the reference value with scheme D in Figure
2.6a. The reference values, Y0 = 2.9584544 and Z0 = 0.55319, are obtained by the BCOS
method with a large number of time-steps P . Switching to the mixed SWIFT method,
whose results are shown in Figure 2.6b, the approximated error for Y converges to zero
with order of about one for schemes A, B and C and converges with order 3

2 for scheme D.
For schemes B and C, we also have a first-order convergence for Z but the convergence
order is higher for schemes A and D.
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Figure 2.4: Results example 2 for different values of µ̄ (Scheme C)
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Figure 2.5: Results example 2 with and without applying antireflective boundary technique (Scheme C, P =
1000 and N = 29)

2.5.4. EXAMPLE 4
This example is taken from [16]. For the forward process, the drift and diffusion coeffi-
cients are time- and state-dependent. We aim to solve the following FBSDE:{

d X t = 1
1+2exp(t+X t ) d t + exp(t+X t )

1+exp(t+X t ) dWt ,

dYt =−
(
− 2Yt

1+2exp(t+X t ) − 1
2

(
Yt Zt

1+exp(t+X t ) −Y 2
t Zt

))
d t +Zt dWt ,

with the terminal condition YT = g (XT ) = exp(T+XT )
1+exp(T+XT ) .

The exact solutions are given by

(Yt , Zt ) =
(

exp(t +X t )

1+exp(t +X t )
,

(exp(t +X t ))2

(1+exp(t +X t ))3

)
.
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(a) Quick SWIFT with N = 29
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(b) Mixed SWIFT with N = 29
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Figure 2.6: Results example 3, left: error in y(0, x0), right: error in z(0, x0)

We choose terminal time T = 1 and initial condition x0 = 1.

For the results of the quick SWIFT method, we refer to Figure 2.7. While the total
error is different for each scheme, the approximated values ŷπ0 (x0) and ẑπ0 (x0) converge
with O(∆t ) for all schemes, as expected. Here the weak order of the Euler scheme plays
a prominent role as the drift and volatility are state- and time- dependent.

2.5.5. DISCUSSION

Compared with the BCOS method, the computational time for the SWIFT-type method
is slightly lower when the number of basis functions used is the same and the forward
process is independent of time. The most time-consuming portion is the matrix-vector
multiplication used to calculate the value of ẑπp and ĥ. We acknowledge that for the same
error range, the BCOS and SWIFT-type methods may require different numbers of basis
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Figure 2.7: Results example 4, (N = 29), left: error in y(0, x0), right: error in z(0, x0)

functions.
From the numerical experiments, we conclude that the computation with scheme D

often fails to converge with ∆t when the time-step is small when using the quick SWIFT
method. This is due to the discontinuity of zπP (x) in x. Schemes A, B and C behave simi-
larly for the quick SWIFT and mixed SWIFT methods in our examples. However, scheme
D often has the best performance in the mixed SWIFT method. This means that damp-
ing the discontinuity in our scheme is beneficial. The graphs also demonstrate that with
a proper choice of SWIFT parameters, the approximation error itself will be dominated
by the discretization error and decreases with respect to the increase of parameter P . It
implies that the error of calculating expectations with SWIFT is relatively small.

2.6. CONCLUSION
A new probabilistic method for solving FBSDEs numerically has been proposed in this
chapter. It is derived from a time-discretization of the forward and backward stochastic
differential equations, taking conditional expectations to get an Ftp -adapted approxi-
mation and calculating the conditional expectations with the quick variant of the SWIFT
formula.

We have shown that in order to apply the quick variant of the SWIFT formula, the
continuity of the target function has to be ensured. While applying the quick variant
of the SWIFT formula instead of the original version introduces an extra error, it is of
the same order as the original version when the target function is continuous and drops
quickly with respect to N , due to the exponential convergence of the characteristic func-
tion for a smooth density. The error of applying the SWIFT method is relatively minor
compared to the discretization error for the stochastic process. However, the quick vari-
ant of the SWIFT formula can greatly reduce the difficulties of our algorithm and increase
the computational speed. So, we believe that the mixed SWIFT method provides a good
balance between efficiency and accuracy.

We have discussed the different approximation errors in detail in this work. Addi-



2

42 2. THE WAVELETS-BASED SWIFT METHOD

tional attention is needed for the error of the SWIFT formula near the computational
boundary, as we explained in Section 2.4. We also demonstrated how to improve our
algorithm with the antireflective boundary conditions. Finally, the applicability and the
effectiveness of our numerical algorithm have been tested with various FBSDEs, which
all give positive results with the mixed SWIFT method.

Overall, applying the SWIFT method to solve discretized BSDEs retains the high ac-
curacy of Fourier inversion techniques, although the computations involved are greatly
simplified. We also gain additional freedom in adjusting the approximation values at
each time point.

APPENDIX

POINTWISE CONVERGENCE OF ORTHOGONAL PROJECTION
We shall demonstrate that under some mild assumptions on a square integrable function
in (−2−ϑN ,2−ϑN ], its orthogonal projection on VN converges to the original function in
a pointwise fashion, therefore bounding our approximation error. It is an adaptation of
the standard Dirichlet kernel argument to our setting, a similar proof can be found in
standard Fourier series textbook, like [17].

Theorem 2.4. Let g be a square integrable function defined on the set (−2−ϑN ,2−ϑN ] and
the left- and right-side derivatives exist everywhere for its alternating extension g̃. If g̃ is
continuous in a neighborhood around point x, the following result holds:

lim
N→∞

HVN g(x) = g̃(x).

Proof. By direct calculation,

HVN g(x)

=2ϑ

N

N∑
k=1

(∫ 2−ϑN

−2−ϑN
g(ς)cos

(
2ϑCkς

)
dςcos

(
2ϑCk x

)
+

∫ 2−ϑN

−2−ϑN
g(ς)sin

(
2ϑCkς

)
dςsin

(
2ϑCk x

))

=2ϑ

N

N∑
k=1

(∫ 2−ϑN

−2−ϑN
g̃(ς)cos

(
2ϑCk (ς−x)

)
dς

)
= 2ϑ

N

N∑
k=1

(∫ 2−ϑN

−2−ϑN
g̃($+x)cos

(
2ϑCk$

)
d$

)

=2ϑ

N

∫ 2−ϑN

−2−ϑN
g̃($+x)ΥN ($)d$,

where

ΥN (x) :=
N∑

k=1
cos(2ϑCk x) = sin(2ϑ−1πx)

sin(2ϑ−1πx/N )
.

It can be shown that

2ϑ

N

∫ 2−ϑN

0
ΥN (ς)dς= 2ϑ

N

∫ 0

−2−ϑN
ΥN (ς)dς= 2

π

N∑
k=1

(−1)k+1

2k −1
=:

2

π
GN .

In fact, GN is the famous Gregory-Leibniz series and we have limN→∞GN = π
4 .
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Based on our assumption, at point x, limh→0+ g̃(x+h) = limh→0− g̃(x+h) = g̃(x). Also,
g(s+x)−g(x)

s 1{s∈(0,2−ϑN )} and g(s+x)−g(x)
s 1{s∈(−2−ϑN ,0)} are integrable functions on

(2−ϑN ,2−ϑN ]. Note that in our construction, 2−ϑN is a positive constant (a) and ϑ is a
function of N .

Therefore,

HVN g(x)− 4

π
GN g̃(x)

=2ϑ

N

∫ a

0
(g̃($+x)− g̃(x))ΥN ($)d$+ 2ϑ

N

∫ 0

−a
(g̃($+x)− g̃(x))ΥN ($)d$

= 2

π

∫ a

0

g̃($+x)− g̃(x)

$

π$/2a

sin(π$/2a)
sin(2ϑ−1π$)d$

+ 2

π

∫ 0

−a

g̃($+x)− g̃(x)

$

π$/2a

sin(π$/2a)
sin(2ϑ−1π$)d$.

Since x
sin(x) is integrable on [−π

2 , π2 ] and ϑ tends to infinity whenever N tends to infinity,
the last two terms go to 0, when N tends to infinity. This is due to the Riemann-Lebesgue
Lemma. So, we have

lim
N→∞

HVN g(x) = lim
N→∞

4

π
GN g̃(x) = g̃(x),

and complete the proof.

PROOF OF EQUATIONS (2.15) AND (2.16)
Proof. Using the discretization scheme Equations (1.4b), we have

|ẑπp (x)− zπp (x)| ≤1−θ2

θ2
|Ex

p [zπp+1(X π
tp+1

)]− Ê[zπp+1(X π
tp+1

)|X π
tp
= x]|

+ 1

θ2∆t
|Ex

p [yπp+1(X π
tp+1

)∆Wp+1]− Ê[yπp+1(X π
tp+1

)∆Wp+1|X π
tp
= x]|

+1−θ2

θ2
|Ex

p [ f (tp+1, X π
tp+1

, yπp+1(X π
tp+1

), zπp+1(X π
tp+1

))∆Wp+1]

− Ê[ f (tp+1, X π
tp+1

, yπp+1(X π
tp+1

), zπp+1(X π
tp+1

))∆Wp+1|X π
tp
= x]|

Since we enforced the standing assumption (A3), we may apply the error bounds Equa-
tion (2.10), (2.13) and (2.12).

|ẑπp (x)− zπp (x)|

≤1−θ2

θ2
|ζϑ,N

zπp+1
(tp , x)|+ 1

θ2∆t
|ζϑ,N ,W

yπp+1
(tp , x)|+ 1−θ2

θ2
|ζϑ,N ,W

fp+1
(tp , x)|

+1−θ2

θ2

1

N

N∑
r=1−N

∣∣∣∣zπp+1

(
r

2ϑ

)
−ρzπp+1

(
r

2ϑ

)∣∣∣∣ |Ex
p [ϕN ,r (X π

tp+1
)]|

+ 1

θ2∆t

1

N

N∑
r=1−N

∣∣∣∣yπp+1

(
r

2ϑ

)
−ρyπp+1

(
r

2ϑ

)∣∣∣∣ |Ex
p [ϕN ,r (X π

tp+1
)∆Wp+1]|
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+1−θ2

θ2

1

N

N∑
r=1−N

∣∣∣∣ f

(
tp+1,

r

2ϑ
, yπp+1

(
r

2ϑ

)
, zπp+1

(
r

2ϑ

))
−ρ fp+1

(
r

2ϑ

)∣∣∣∣ |Ex
p [ϕN ,r (X π

tp+1
)∆Wp+1]|

≤1−θ2

θ2
|ζϑ,N

zπp+1
(tp , x)|+ 1

θ2∆t
|ζϑ,N ,W

yπp+1
(tp , x)|+ 1−θ2

θ2
|ζϑ,N ,W

fp+1
(tp , x)|

+ (1−θ2)(1+C )

θ2

1

N

N∑
r=1−N

∣∣∣∣zπp+1

(
r

2ϑ

)
−ρzπp+1

(
r

2ϑ

)∣∣∣∣×
(|Ex

p [ϕN ,r (X π
tp+1

)]|+Ex
p [ϕN ,r (X π

tp+1
)∆Wp+1]|)

+
(

1

θ2∆t
+ (1−θ2)C

θ2

)
1

N

N∑
r=1−N

∣∣∣∣yπp+1

(
r

2ϑ

)
−ρyπp+1

(
r

2ϑ

)∣∣∣∣ |Ex
p [ϕN ,r (X π

tp+1
)∆Wp+1]|

Note that we have added some extra terms in the last inequality to simplify the expres-

sion. Taking the maximum over
{

(1−θ2)(1+C )
θ2

, 1
θ2∆t + (1−θ2)C

θ2

}
finishes the proof for Equa-

tion (2.15).
Using Equations (2.14), (2.15), (2.6), we have

|ŷπ,I
p − yπp (x)|

≤1+ξ
1−ξε

Pi car d
p + ξ

1−ξ |ẑ
π
p (x)− zπp (x)|+ 1

1−ξ |ĥ(tp , x)−h(tp , x)|

≤1+ξ
1−ξε

Pi car d
p + C1 ·ξ

1−ξ (|ζϑ,N
zπp+1

(tp , x)|+ |ζϑ,N ,W
yπp+1

(tp , x)|+ |ζϑ,N ,W
fp+1

(tp , x)|)

+C1 ·ξ
1−ξ

1

N

N∑
r=1−N

∣∣∣∣zπp+1

(
r

2ϑ

)
−ρzπp+1

(
r

2ϑ

)∣∣∣∣ (|Ex
p [ϕN ,r (X π

tp+1
)]|+Ex

p [ϕN ,r (X π
tp+1

)∆Wp+1]|)

+C1 ·ξ
1−ξ

1

N

N∑
r=1−N

∣∣∣∣yπp+1

(
r

2ϑ

)
−ρyπp+1

(
r

2ϑ

)∣∣∣∣ |Ex
p [ϕN ,r (X π

tp+1
)∆Wp+1]|

+ 1

1−ξ |E
x
p [yπp+1(X π

tp+1
)]− Ê[yπp+1(X π

tp+1
)|X π

tp
= x]|

+∆t (1−θ1)

1−ξ ×|Ex
p [ f (tp+1, X π

tp+1
, yπp+1(X π

tp+1
), zπp+1(X π

tp+1
)]

− Ê[ f (tp+1, X π
tp+1

, yπp+1(X π
tp+1

), zπp+1(X π
tp+1

))|X π
tp
= x]||

With the standing assumption (A3), we may apply the error bounds in Equation (2.8),
(2.10) and (2.12), and we derive:

|ŷπ,I
p − yπp (x)|

≤1+ξ
1−ξε

Pi car d
p + C1 ·ξ

1−ξ (|ζϑ,N
zπp+1

(tp , x)|+ |ζϑ,N ,W
yπp+1

(tp , x)|+ |ζϑ,N ,W
fp+1

(tp , x)|)

+ 1

1−ξ |ζ
ϑ,N
yπp+1

(tp , x)|+ ∆t (1−θ1)

1−ξ |ζϑ,N
fp+1

(tp , x)|

+C1 ·ξ
1−ξ

1

N

N∑
r=1−N

∣∣∣∣zπp+1

(
r

2ϑ

)
−ρzπp+1

(
r

2ϑ

)∣∣∣∣ (|Ex
p [ϕN ,r (X π

tp+1
)]|+Ex

p [ϕN ,r (X π
tp+1

)∆Wp+1]|)
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+C1 ·ξ
1−ξ

1

N

N∑
r=1−N

∣∣∣∣yπp+1

(
r

2ϑ

)
−ρyπp+1

(
r

2ϑ

)∣∣∣∣ |Ex
p [ϕN ,r (X π

tp+1
)∆Wp+1]|

+ 1

1−ξ
1

N

J∑
r=1−N

∣∣∣∣yπp+1

(
r

2ϑ

)
−ρyπp+1

(
r

2ϑ

)∣∣∣∣ |Ex
p [ϕN ,r (X π

tp+1
)]|

+∆t (1−θ1)

1−ξ
1

N

J∑
r=1−N

∣∣∣∣ f

(
tp+1,

r

2ϑ
, yπp+1

(
r

2ϑ

)
, zπp+1

(
r

2ϑ

))
−ρ fp+1

(
r

2ϑ

)∣∣∣∣ |Ex
p [ϕN ,r (X π

tp+1
)]|

≤1+ξ
1−ξε

Pi car d
p + C1 ·ξ

1−ξ (|ζϑ,N
zπp+1

(tp , x)|+ |ζϑ,N ,W
yπp+1

(tp , x)|+ |ζϑ,N ,W
fp+1

(tp , x)|)

+ 1

1−ξ |ζ
ϑ,N
yπp+1

(tp , x)|+ ∆t (1−θ1)

1−ξ |ζϑ,N
fp+1

(tp , x)|

+C1 ·ξ+C∆t (1−θ1))

1−ξ
1

N

N∑
r=1−N

∣∣∣∣zπp+1

(
r

2ϑ

)
−ρzπp+1

(
r

2ϑ

)∣∣∣∣×
(|Ex

p [ϕN ,r (X π
tp+1

)]|+Ex
p [ϕN ,r (X π

tp+1
)∆Wp+1]|)

+C1 ·ξ+1+C∆t (1−θ1)

1−ξ
1

N

N∑
r=1−N

∣∣∣∣yπp+1

(
r

2ϑ

)
−ρyπp+1

(
r

2ϑ

)∣∣∣∣×
(|Ex

p [ϕN ,r (X π
tp+1

)]|+Ex
p [ϕN ,r (X π

tp+1
)∆Wp+1]|).

This concludes the proof if C2 := C1·ξ+1+C∆t (1−θ1)
1−ξ and C3 := 1+ξ

1−ξ
εPi car d

p

C2
. Again, extra

terms are included in the expression to simplify the formula.

A SIMPLE EXAMPLE FOR DERIVING THE ERROR FORMULA

In this subsection, we would use the result in Section 2.3.4 to derive an error formula for
the approximation of Example 2 in Section 2.5.2. In addition to the parameters provided
in Section 2.5.2, we let θ1 = 0, θ2 = 1 and P = 2. Note that P = 2 is merely used here to
simplify our expression.

It is clear that driver function f and terminal function g satisfy all standing assump-
tions with the Lipschitz coefficient of f with respect to y and z being 0.4. We have
∆t = 0.05, ξ = εPi car d

p = 0 for p = 0,1 in our setting. Using the derivation in Appendix
2.6, Equations (2.15) and (2.16) can be simplified as follows:

1

20
|ẑπp (x)− zπp (x)|

≤|ζϑ,N ,W
yπp+1

(tp , x)|+ 1

N

N∑
r=1−N

∣∣∣∣yπp+1

(
r

2ϑ

)
−ρyπp+1

(
r

2ϑ

)∣∣∣∣ |Ex
p [ϕN ,r (X π

tp+1
)∆Wp+1]|

1

1.02
|ŷπ,I

p (x)− yπp (x)|
≤|ζϑ,N

yπp+1
(tp , x)|+ |ζϑ,N

fp+1
(tp , x)|

+ 1

N

N∑
r=1−N

∣∣∣∣zπp+1

(
r

2ϑ

)
−ρzπp+1

(
r

2ϑ

)∣∣∣∣ (|Ex
p [ϕN ,r (X π

tp+1
)]|+Ex

p [ϕN ,r (X π
tp+1

)∆Wp+1]|)
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+ 1

N

N∑
r=1−N

∣∣∣∣yπp+1

(
r

2ϑ

)
−ρyπp+1

(
r

2ϑ

)∣∣∣∣ (|Ex
p [ϕN ,r (X π

tp+1
)]|+Ex

p [ϕN ,r (X π
tp+1

)∆Wp+1]|),

for p = 0,1. Therefore, the error of applying the quick SWIFT scheme to the discretized
system reads:

|ŷπ,I
0 (x0)− yπ1 (x0)|

≤1.02|ζϑ,N
yπ1

(0, x0)|+1.02|ζϑ,N
f1

(0, x0)|

+1.02

N

N∑
r=1−N

∣∣∣∣zπ1 (
r

2ϑ

)
− ẑπ1

(
r

2ϑ

)∣∣∣∣ (|Ex0
0 [ϕN ,r (X π

t1
)]|+Ex0

0 [ϕN ,r (X π
t1

)∆W1]|)

+1.02

N

N∑
r=1−N

∣∣∣∣yπ1

(
r

2ϑ

)
− ŷπ,I

1

(
r

2ϑ

)∣∣∣∣ (|Ex0
0 [ϕN ,r (X π

t1
)]|+Ex0

0 [ϕN ,r (X π
t1

)∆W1]|)

≤1.02|ζϑ,N
yπ1

(0, x0)|+1.02|ζϑ,N
f1

(0, x0)|

+ 1

N

N∑
r=1−N

(
20.4

∣∣∣∣ζϑ,N ,W
yπ2

(
t1,

r

2ϑ

)∣∣∣∣+1.022
∣∣∣∣ζϑ,N

yπ2

(
t1,

r

2ϑ

)∣∣∣∣+1.022
∣∣∣∣ζϑ,N

f2

(
t1,

r

2ϑ

)∣∣∣∣)
(|Ex0

0 [ϕN ,r (X π
t1

)]|+Ex0
0 [ϕN ,r (X π

t1
)∆W1]|).

Note that there is no recurring error at t2 as we know the exact terminal condition.
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3
EXPLORATION OF A COSINE

EXPANSION LATTICE SCHEME

In Chapter 2, we developed a Fourier-cosine expansion based wavelet scheme for one-
dimensional BSDEs. Although we have shown that the SWIFT method is accurate and
efficient in the previous chapter, it cannot be simply extended to a higher-dimensional
problem with a tensor product extension. This trivial extension of the expectation com-
putation in Equation (2.2) will lead to the curse of dimensionality. In this chapter, we
design a higher-dimensional approximation scheme for expectation computation by
combining a lattice sequence from Quasi-Monte Carlo rules with the philosophy of the
Fourier-cosine method. The goal is to develop a Fourier-cosine based higher-dimensional
scheme for expectations which can be applied to Equation (1.4).

3.1. INTRODUCTION
In this chapter, we derive a numerical integration formula for a function f : Rs → R with
respect to a probability measure ν. Namely, we aim to approximate the following quan-
tity:

E[f(Y)] =
∫
Rs
f(y)ν(dy). (3.1)

The inspiration of this work comes from two types of promising methods in numerical
integration, Fourier-cosine based methods and lattice rules.

There have been some attempts to extend the Fourier-cosine scheme beyond the
one-dimensional situation, for example, in [1]. However, the tensor extension used in
previous studies suffers from the curse of dimensionality, with the number of summa-
tion terms increasing exponentially when the number of dimensions increases. There-
fore, further input is required for such extensions to be feasible in practice.

This chapter is based on the article ’Exploration of a cosine expansion lattice scheme’, working paper.
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Thus, we take the insight from Quasi-Monte Carlo (QMC) rules, which approximate
integrals of the form ∫

[0,1]s
f(y)dy

with equal weight quadrature rules

1

N

N−1∑
n=0

f(yn).

Readers are referred to [2], [3] and references therein for further details.
In particular, we are interested in the rank-1 lattice rule construction method for

quadrature points, where for a given positive number N under dimension s, one chooses
a vector g ∈ {1, . . . , N −1}s called the generating vector and generates a point set:({ng

N

})
0≤n<N−1

,

where the notation {} denotes the fractional part of the real number in each dimension.
The quadrature points are the result of applying some fixed function on this point set.

There have been numerous research papers supporting the implementation of lat-
tice rule QMC, in identifying a suitable generating vector [4–7], in efficient algorithms
to generate such vectors [8, 9], and in extensible lattice rules [10–13]. In [14], the au-
thors derived an error bound for QMC with tent transformed lattice rules for functions
within the half-period cosine space. Noting the connection between the half-period co-
sine space and the tensor extension of the cosine series, we are inspired to combine the
two approaches and transfer the rich results from the lattice literature to Fourier expan-
sion schemes.

This work is organized as follows. In Section 3.2, we present the two components
of the cosine expansion lattice scheme, the half-period cosine expansion and the tent
transformed lattice. We also present the full scheme in this section. In Section 3.3, we
give further details regarding our current results by providing an alternative formation
of its error bound and connecting the scheme to the periodic wavelets introduced in
Chapter 2. Numerical experiments are presented in Section 3.4 and we conclude our
findings in Section 3.5.

Before we begin, we mention some conventions used in this work. We assume all
the integrals in the computation to be finite, therefore Fubini’s theorem can be applied
and we exchange the order of integration without notice. The operations × and / act
component-wise when used on vectors.

Finally, some notation we use in this chapter:

• The natural number setN := {0,1,2, . . .};

• The positive integer set Z+ := {i ∈Z|i > 0}, similarly for R+;

• The truncated integer set, for s ∈Z+ we write [s] := {1, . . . , s};

• The indicator function 1D :Rs → {0,1}

1D(y) =
{

1, if y ∈D;
0, otherwise;



3.2. COSINE EXPANSION LATTICE SCHEME

3

51

• The ceil function d·e :R→Z, dye = min{i ∈Z|i ≥ y}.

3.2. COSINE EXPANSION LATTICE SCHEME
In this section, we introduce the cosine expansion lattice scheme, whose construction
consists of two parts: a projection of the original integrand on a reproducing kernel
space and a numerical integration technique based on a tent-transformed lattice rule.
We will briefly describe the intuition behind our derivation.

3.2.1. THE HALF-PERIOD COSINE SPACE

In a similar framework as the Fourier-cosine method from [15], we would like to define
a cosine based periodic expansion of function f in Rs . This allows us to connect the
expectation problem (3.1) to a Fourier transform.

The common practice to transform Equation (3.1) into a finite problem for com-
putational purposes is restricting the domain of integration to a predefined box D :=
[a1,b1] × ·· · × [as ,bs ]. This step is justified as long as D contains the majority of the
mass of the measure. In fact, this is equivalent to replacing the original integrand f(y)
by f(y)1D(y), or setting the function values outside D to zero.

The COS method, a well-known example of the Fourier-cosine schemes, uses this
concept to its advantage by replacing an originally non-periodic one-dimensional func-
tion f by a cosine series projection that coincides with f on the domain [a,b], but is peri-
odic throughout the whole real line.

To be precise, the integrand f is replaced by1

f̄(y) :=
N−1∑
k=1

′ f̃cos(k)cos
(
kπ

y −a

b −a

)
,

where

f̃cos(k) := 2

b −a

∫ b

a
f(y)cos

(
kπ

y −a

b −a

)
d x.

In this case, the original 1-D expectation is approximated by

E[f(Y )] ≈
∫
R

N−1∑
k=1

′ f̃cos(k)cos
(
kπ

y −a

b −a

)
ν(d y)

=
N−1∑
k=1

′ f̃cos(k)
∫
R

cos
(
kπ

y −a

b −a

)
ν(d y)

=
N−1∑
k=1

′ f̃cos(k)ℜ
{
F

(
kπ

b −a

)
exp

(
−ıkπ

a

b −a

)}
.

Note that within [a,b], f̄ is a projection of f onto a finite cosine series space and f̄ con-
verges to f in the L2([a,b]) norm, when N tends to infinity. However, when considering
the function f̄ on the whole domain R, it is a periodic function and it thus deviates from

1The notation
∑ ′ denotes the first term of the summation is weighted by one half.
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f itself. Once again, the error of this transformation is kept under control as the proba-
bility mass outside [a,b] is small and we make use of the Fourier transform F , which is
typically available, in the approximation.

The main goal of this work is to apply the same idea in a higher-dimensional setting.
Thus, we will consider a functional space built on cosine functions and use the series
projection of f onto such space as our replacement integrand. The space we pick is a
modification to the half-period cosine space introduced in Section 2.3 of [14] and their
article serves as an inspiration of the current work.

We define an inner product < ·, · >K cos
α,γ,s (D) as

< f,g>K cos
α,γ,s (D)=

∑
k∈Ns

f̃cos(k)g̃cos(k)d−1
α,γ,s (k),

for some real number α> 1/2 and vector γ ∈ (R+)s , where the multi-dimensional cosine
coefficients are given by

f̃cos(k) :=
∫

[0,1]s
f(y× (b−a)+a)2|k|0/2

s∏
j=1

cos(πk j y j )dy, (3.2)

for k = (k1, · · · ,ks ) ∈Ns . Here we define |k|0 := #{ j ∈ [s] : k j 6= 0} to be the number of non-
zero components in k. Note that only the portion of f within the predefined domain D is
used here.

For α> 1/2,k ∈Z and γ> 0, the one-dimensional d function is defined as:

dα,γ(k) :=
{

1 if k = 0;
γ|k|−2α if k 6= 0,

and the multidimensional d function is set as,

dα,γ,s (k) :=
s∏

j=1
dα,γ j (k j ),

for k = (k1, . . . ,ks ) ∈ Zs and γ = (γ1, . . . ,γs ) ∈ (R+)s . The d function is introduced to the
norm here to assess the decay rate of the cosine coefficients, as it is closely related to the
approximation error.

We define the corresponding norm as
√
< f, f>K cos

α,γ,s (D) and denote it by ||f||K cos
α,γ,s (D).

In particular, we have

||f||2K cos
α,γ,s (D) =

∑
k∈Ns

|̃fcos(k)|2
dα,γ,s (k)

= ∑
h∈Zs

2−|h|0
|̃fcos(h)|2
dα,γ,s (h)

.

The dummy variable is changed from k to h here in preparation for future computations.
We denote any function f such that ||f||K cos

α,γ,s (D) <∞ as f ∈HK cos
α,γ,s (D).

The half-period cosine space is an example of a reproducing kernel Hilbert space
with the corresponding reproducing kernel,

K cos
α,γ,s (D,x,y) :=

s∏
j=1

( ∑
k j ∈Z

dα,γ j (k j )cos

(
πk j

x j −a j

b j −a j

)
e

ıπk j
y j −a j
b j −a j

)
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= ∑
k∈Zs

dα,γ,s (k)

(
s∏

j=1
cos

(
πk j

x j −a j

b j −a j

))
e ıπk· y−a

b−a ,

and for the one-dimensional version,

K cos
α,γ (D, x, y) :=1+

∞∑
k=1

dα,γ(k)
p

2cos
(
πk

x −a

b −a

)p
2cos

(
πk

y −a

b −a

)
=1+

∞∑
k=1

dα,γ(k)cos
(
πk

x −a

b −a

)(
e ıπk y−a

b−a +e−ıπk y−a
b−a

)
= ∑

k∈Z
dα,γ(k)cos

(
πk

x −a

b −a

)
e ıπk y−a

b−a .

For any y ∈D and f ∈HK cos
α,γ,s (D), we have the reproducing property,

f(y) =< f,K cos
D,α,γ,s (·, y) >K cos

α,γ,s (D) .

Readers are referred to [16] and [2] for further information on reproducing kernel Hilbert
spaces.

In this work, we use an alternative kernel which drops the d function. It is defined as

K cos
s (x,y) :=

s∏
j=1

( ∑
k j ∈Z

cos

(
πk j

x j −a j

b j −a j

)
e

ıπk j
y j −a j
b j −a j

)
= ∑

k∈Zs

(
s∏

j=1
cos

(
πk j

x j −a j

b j −a j

))
e ıπk· y−a

b−a .

We suppress the D part here to simplify our notation.
Using the reproducing property, we have the following equation:

f(y) = ∑
k∈Ns

f̃cos(k)(
p

2)|k|0
s∏

j=1
cos

(
πki

yi −ai

bi −ai

)
, (3.3)

for any f ∈ HK cos
α,γ,s (D) and y ∈ D. We use the expansion at the right-hand side of (3.3) as

the replacement integrand in Equation (3.1), denoted by f̄.

Definition 3.1 (Half-period Cosine Expansion). For any given function f : Rs → R and
given domain D ⊂Rs , the half-period cosine expansion, f̄ :Rs →R, is defined as

f̄(y) := ∑
k∈Ns

f̃cos(k)(
p

2)|k|0
s∏

j=1
cos

(
πki

yi −ai

bi −ai

)
,

where the cosine coefficients are defined as in Equation 3.2.

3.2.2. LATTICE RULE APPROXIMATIONS
There are essentially two drawbacks when extending the COS method to higher dimen-
sions. First, the cosine coefficient f̃cos may be difficult to calculate, especially in a recur-
ring situation. In Chapter 2, we aimed to remedy this shortcoming by adopting a wavelet
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basis such that we can approximate Equation (3.1) as a weighted sum of local values, in
the form of

E[f(Y )] ≈ 1

N

N∑
n=1−N

f

(
r

2ϑ

)
E[ϕN ,n(Y )],

with ϕ being the wavelet basis functions. We will compare our current scheme to that
work in Section 3.3.2.

The second point of concern is that if we simply apply the tensor product of cosine
spaces in a higher-dimensional case, we will face the curse of dimensionality.

Here, we aim to address the above two issues by constructing quadrature rules for
the integration of ∫

Rs
f̄(y)ν(dy). (3.4)

In particular, the approximant takes the specific form,∫
Rs

1

N

N−1∑
n=0

f
(
pn

)
K cos

s

(
pn ,y

)
ν(dy), (3.5)

where P := {p0, . . . ,pN−1} is some predetermined quadrature points set.
For the half-period cosine space that we adopted in the previous section, Dick et.

al. showed in [14] that a combination of rank-1 lattice rules and tent transformations
converges well in the context of quasi-Monte Carlo methods. We will now introduce the
quadrature points proposed in [14] for the half-period cosine space, which we should
adapt for the approximation of Equation (3.5).

A lattice point set with N ≥ 2 points and generating vector g ∈ [N −1]s is given by

P (g, N ) :=
{{ng

N

}
: 0 ≤ n < N

}
.

The tent transformation, φ : [0,1] → [0,1] is defined as

φ(x) := 1−|2x −1|,

and the higher-dimensional version φ : [0,1]s → [0,1]s is obtained by applying the func-
tion component-wise. The tent-transformed lattice point set in [14] is given by

Pφ(g, N ) :=
{
φ

({ng

N

})
: 0 ≤ n < N

}
.

However, since we have to apply the quadrature points on a general box D, instead of
just on [0,1]s , we have to transform the lattice rules:

Pφ(g, N ,D) ={pφ,0, · · · ,pφ,N−1} :=
{
φ

({ng

N

})
× (b−a)+a : 0 ≤ n < N

}
.

We wish to quantify the integration error of applying Equation (3.5) to approximate
the expectation in the form of equation (3.4) for functions in the half-period cosine space
HK cos

α,γ,s (D). In addition to the above condition, we also enforce some convergence re-
quirements on the cosine transform of the measure ν.
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Theorem 3.2. Consider any function f ∈ HK cos
α,γ,s (D) and any probability measure ν such

that (∫
Rs

(
s∏

j=1
cos

(
πk j

y j −a j

b j −a j

))
ν(dy)

)2

≤ dβ+0.5+δ,ρ,s (k),

for some real number β> s, small positive number δ and vector ρ ∈ (R+)s . Therefore,

∑
k∈Ns

(∫
Rs

(
s∏

j=1
cos

(
πk j

y j −a j

b j −a j

))
ν(dy)

)2

/dβ,ρ,s (k) ≤M 2,

for some positive constant M ≤∞. Furthermore, we assume that β−α> 1/2, namely, the
cosine transform of the measure ν decays at least algebraically and quicker than the cosine
coefficients of f. The error for the numerical integration using the tent-transformed lattice
rule on D is then bounded by

ε2(f,ν,Pφ(g, N ,D)) :=
∣∣∣∣∣
∫
Rs

1

N

N−1∑
n=0

f̄
(
pφ,n

)
K cos

s

(
pφ,n ,y

)
ν(dy)−

∫
Rs
f̄(y)ν(dy)

∣∣∣∣∣
≤

( ∑
h∈L⊥\{0}

dα,γ,s (h)

) 1
2
(

s∏
i=1

Ci

) 1
2

M ||f||K cos
α,γ,s (D)

for some constant Ci , where L⊥ := {h ∈Zs : h ·g ≡ 0 ( mod N )} is the dual lattice.

Proof. The general flow of this proof follows the proof of Theorem 2 in [14]. Let f ∈
HK cos

α,γ,s (D) and f̄ be its half-period cosine expansion.
For any k ∈N, we have

cos(πkφ(y)) = cos(2πk y) for all y ∈ [0,1],

and hence

f̄
(
pφ,n

)= ∑
k∈Ns

f̃cos(k)(
p

2)|k|0
s∏

j=1
cos

(
πk jφ

({
ng j

N

}))

= ∑
k∈Ns

f̃cos(k)(
p

2)|k|0
s∏

j=1
cos

(
2πk j

ng j

N

)
= ∑

h∈Zs
(
p

2)−|h|0 f̃cos(h)e2πın(h·g)/N .

The reproducing kernel can be rewritten as

K cos
s

(
pφ,n ,y

)= ∑
k∈Zs

(
s∏

j=1
cos

(
πk j

y j −a j

b j −a j

))
e2πın(k·g)/N .

Therefore, we obtain∫
Rs

1

N

N−1∑
n=0

f̄
(
pφ,n

)
K cos

s

(
pφ,n ,y

)
ν(dy)
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=
∫
Rs

1

N

N−1∑
n=0

∑
h∈Zs

(
p

2)−|h|0 f̃cos(h)e2πın(h·g)/N
∑

k∈Zs

(
s∏

j=1
cos

(
πk j

y j −a j

b j −a j

))
e2πın(k·g)/Nν(dy)

=
∫
Rs

∑
h∈Zs

∑
k∈Zs

(
p

2)−|h|0 f̃cos(h)

(
s∏

j=1
cos

(
πk j

y j −a j

b j −a j

))
1

N

N−1∑
n=0

e2πın[(h+k)·g]/Nν(dy).

The sum 1
N

∑N−1
n=0 e2πın[(h+k)·g]/N is a character sum over the group Z/NZ, which is equal

to one if (h+k) ·g is a multiple of N and zero otherwise. From this, we get

∫
Rs

1

N

N−1∑
n=0

f̄
(
pφ,n

)
K cos

s

(
pφ,n ,y

)
ν(dy)−

∫
Rs
f̄(y)ν(dy)

=
∫
Rs

∑
h∈L⊥\{0}

∑
k∈Zs

(
p

2)−|h−k|0 f̃cos(h−k)

(
s∏

j=1
cos

(
πk j

y j −a j

b j −a j

))
ν(dy). (3.6)

Based on this formula and an application of the Cauchy-Schwarz inequality, we obtain∣∣∣∣∣
∫
Rs

1

N

N−1∑
n=0

f̄
(
pφ,n

)
K cos

s

(
pφ,n ,y

)
ν(dy)−

∫
Rs
f̄(y)ν(dy)

∣∣∣∣∣
=

∣∣∣∣∣ ∑
h∈L⊥\{0}

∑
k∈Zs

(
p

2)−|h−k|0 f̃cos(h−k)
∫
Rs

(
s∏

j=1
cos

(
πk j

y j −a j

b j −a j

))
ν(dy)

∣∣∣∣∣
≤

 ∑
h∈L⊥\{0}

∑
k∈Zs

2−|h−k|0 |̃fcos(h−k)|2
dα,γ,s (h−k)

(∫
Rs

(∏s
j=1 cos

(
πk j

y j −a j

b j −a j

))
ν(dy)

)2

dβ,ρ,s (k)


1
2

×

( ∑
h∈L⊥\{0}

∑
k∈Zs

dα,γ,s (h−k)dβ,ρ,s (k)

) 1
2

≤

 ∑
k∈Zs

( ∑
h∈Zs

2−|h−k|0 |̃fcos(h−k)|2
dα,γ,s (h−k)

) (∫
Rs

(∏s
j=1 cos

(
πk j

y j −a j

b j −a j

))
ν(dy)

)2

dβ,ρ,s (k)


1
2

×

( ∑
h∈L⊥\{0}

∑
k∈Zs

dα,γ,s (h−k)dβ,ρ,s (k)

) 1
2

≤||f||K cos
α,γ,s (D)

 ∑
k∈Zs

(∫
Rs

(∏s
j=1 cos

(
πk j

y j −a j

b j −a j

))
ν(dy)

)2

dβ,ρ,s (k)


1
2

×

( ∑
h∈L⊥\{0}

∑
k∈Zs

dα,γ,s (h−k)dβ,ρ,s (k)

) 1
2

≤||f||K cos
α,γ,s (D)M

( ∑
h∈L⊥\{0}

∑
k∈Zs

dα,γ,s (h−k)dβ,ρ,s (k)

) 1
2
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=:||f||K cos
α,γ,s (D)

( ∑
h∈L⊥\{0}

I (h)

) 1
2

. (3.7)

The calculation above also makes use of the smoothness assumption on the probability
measure.

Next, from direct calculation, we have

I (h) = ∑
k∈Zs

dα,γ,s (h−k)dβ,ρ,s (k)

= ∑
k∈Zs

s∏
j=1

dα,γ j (h j −k j )dβ,ρ j (k j )

=
s∏

j=1

∞∑
k j =−∞

dα,γ j (h j −k j )dβ,ρ j (k j ) =:
s∏

j=1
Ij (h j ). (3.8)

In order to control the error, we need to control the sum Ij in Equation (3.8) for all
h j ∈Z. We have three different cases to consider.

Case 1: h j = 0. In this case,

Ij (0) =
∞∑

k j =−∞
dα,γ j (−k j )dβ,ρ j (k j ) = 1+2γ jρ j

∞∑
k j =1

1

(k j )2α+2β
= 1+2γ jρ j ζ(2α+2β),

in which ζ denotes the Riemann zeta function.

Case 2: h j > 0. In this case,

Ij (h j ) =
∞∑

k j =−∞
dα,γ j (h j −k j )dβ,ρ j (k j )

=
∞∑

k j =1
dα,γ j (h j +k j )dβ,ρ j (k j )+dα,γ j (h j )+

h j −1∑
k j =1

dα,γ j (h j −k j )dβ,ρ j (k j )+dβ,ρ j (h j )

+
∞∑

k j =1
dα,γ j (k j )dβ,ρ j (h j +k j )

≤γ j |h j |−2α
∞∑

k j =1
ρ j |k j |−2β+dα,γ j (h j )+

h j −1∑
k j =1

γ j |h j −k j |−2αρ j |k j |−2β+ ρ j

γ j
dα,γ j (h j )

+ ρ j

γ j
dα,γ j (h j )

∞∑
k j =1

dα,γ j (k j )

≤ρ j ζ(2β)dα,γ j (h j )+dα,γ j (h j )+γ j |h j |−2α22α
h j −1∑
k j =1

ρ j |k j |−2(β−α) + ρ j

γ j
dα,γ j (h j )

+ρ jdα,γ j (h j )
∞∑

k j =1
|k j |−2α
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≤ρ j ζ(2β)dα,γ j (h j )+dα,γ j (h j )+22αρ j ζ(2(β−α))dα,γ j (h j )

+ ρ j

γ j
dα,γ j (h j )+ρ j ζ(2α)dα,γ j (h j ).

The above inequality simply follows from the definition and the orderings |h j +k j |−1 <
|h j |−1, |h j |−β < |h j |−α and (h j −1)×1 < (h j −2)×2 < ·· ·

(
h j

2

)
. Note that we use the con-

vention
∑0

k j =1 = 0 here, so the inequality also holds for h j = 1.

Case 3: h j < 0. The derivation of Case 3 is similar to Case 2. The only difference is
that we have the following orderings: | −h j + k j | > |h j | for k j > 0 and (−h j − 1)× 1 <
(−h j −2)×2 < ·· · <

(
h j

2

)2
.

Therefore,

Ij (h j ) =
∞∑

k j =−∞
dα,γ j (h j −k j )dβ,ρ j (k j )

=
∞∑

k j =1
dα,γ j (k j )dβ,ρ j (k j −h j )+dβ,ρ j (h j )+

−h j −1∑
k j =1

dα,γ j (h j +k j )dβ,ρ j (k j )+dα,γ j (h j )

+
∞∑

k j =1
dα,γ j (h j −k j )dβ,ρ j (k j )

≤ρ j ζ(2α)dα,γ j (h j )+ ρ j

γ j
dγ j ,α(h j )

+
−h j −1∑
k j =1

γ j |h j +k j |−2αρ j |k j |−2β+dα,γ j (h j )+ρ j ζ(2β)dα,γ j (h j )

≤ρ j (ζ(2α)+ζ(2β))dα,γ j (h j )+ ρ j

γ j
dγ j ,α(h j )

+dα,γ j (h j )+22αdα,γ j (h j )ρ j ζ(2(β−α)).

Finally, let C j = max{1+2γ jρ j ζ(2α+2β),1+ρ j

(
ζ(2α)+ζ(2β)+ 1

γ j
+22αζ(2(β−α))

)
},

which is independent of h j . Then,∣∣∣∣∣
∫
Rs

∑
h∈L⊥\{0}

∑
k∈Zs

(
p

2)−|h−k|0 f̃cos(h−k)

(
s∏

j=1
cos

(
πk j

y j −a j

b j −a j

))
ν(dy)

∣∣∣∣∣
≤

( ∑
h∈L⊥\{0}

s∏
j=1

C jdα,γ j (h j )

) 1
2

M ||f||K cos
α,γ,s (D) =

( ∑
h∈L⊥\{0}

dα,γ,s (h)

) 1
2
(

s∏
j=1

C j

) 1
2

M ||f||K cos
α,γ,s (D).

In this proof, we break down the sum in Equation (3.7) and derive a bound for each
dual lattice point h along each direction, namely, the Ij (h j ) terms in (3.8). By consid-
ering the three possible cases for hd , positive, negative and zero, we provide a bound in
each case. It is necessary to separate the three cases as we have to identify the section
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where both |h j −k j | and |k j | are smaller than |h j | when k j is moving along the real line
and apply a separated bound on these sections.

Taking the maximum out of the three cases and putting Ij (h j ) back into the sum in
Equation (3.5) finishes the proof.

Remark 3.1. The integrals of the form,
∫

[0,1]s f(y)dy, can be seen as special cases of Equa-
tion (3.4) where we take the probability measure as a uniform distribution over the whole
box D = [0,1]s . In this case,∫

Rs

(
s∏

j=1
cos

(
πk j

y j −a j

b j −a j

))
ν(dy) =

∫
[0,1]s

(
s∏

j=1
cos

(
πk j y j

))
dy

=
{

1 if k ≡ 0;
0 otherwise.

Therefore, we may simplify the square of the term in Equation (3.7), as follows

∑
h∈L⊥\{0}

( ∑
k∈Zs

(
p

2)−|h−k|0 f̃cos(h−k)
∫
Rs

(
s∏

j=1
cos

(
πk j

y j −a j

b j −a j

))
ν(dy)

)2

= ∑
h∈L⊥\{0}

(
p

2)−|h|0 f̃cos(h),

which is the same as the right-hand side of Equation (6) in [14]. Therefore, our numerical
integration can be seen as an extension of the Quasi-Monte Carlo (QMC) rules in [14].

The above proof is rather rough, note the 22α term in the last two cases. However, it
suggests we can still relate the integration error to the smoothness of the target function
f in terms of the cosine coefficients. The error can be controlled by the sum(∑

h∈L⊥\{0}dα,γ,s (h)
)1/2. Thus all the results for the worst-case error for the QMC inte-

gration in the half-period cosine space using tent-transformed lattice rules can be used
here. This opens the door for applying the generating vector for extensible lattice rules
from [13] and other results from the QMC literature to the half-period cosine expansion
scheme. We believe this result is a promising starting point for the study of lattice expan-
sions for higher-dimension numerical integration with general finite measure.

3.2.3. FULL APPROXIMATION SCHEMES AND ERRORS
Now, we can introduce the full approximation scheme. The final obstacle lies in the
reproducing kernel, which is defined as an infinite sum. Instead of calculating the full
sum, a truncated version is used in the actual algorithm. We define

K cos
s,K (x,y) := ∑

k∈Zs ,
∑ |ki |≤K

(
s∏

j=1
cos

(
πk j

x j −a j

b j −a j

))
e ıπk· y−a

b−a , K > s. (3.9)

For any expectation that satisfies the conditions in the previous section, we have our full
approximant:

E[f(Y)]
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≈
∫
Rs

1

N

N−1∑
n=0

f̄
(
pφ,n

)
K cos

s,K

(
pφ,n ,y

)
ν(dy)

= 1

N

N−1∑
n=0

f̄
(
pφ,n

)∫
Rs

∑
k∈Zs ,

∑ |ki |≤K

(
s∏

j=1
cos

(
πk jφ

({
ng j

N

})))
e ıπk· y−a

b−a ν(dy)

= 1

N

N−1∑
n=0

f̄
(
pφ,n

)( ∑
k∈Zs ,

∑ |ki |≤K

(
s∏

j=1
cos

(
πk jφ

({
ng j

N

})))
e−ıπk· a

b−a

∫
Rs

e ıπk· y
b−a ν(dy)

)

= 1

N

N−1∑
n=0

f̄
(
pφ,n

)( ∑
k∈Zs ,

∑ |ki |≤K

(
s∏

j=1
cos

(
πk jφ

({
ng j

N

})))
e−ıπk· a

b−a Fν

(
kπ

b−a

))
, (3.10)

where Fν is the Fourier transform of the measure ν. Recall from Equation (3.3) that f and
f̄ coincide in D. We can simply replace f̄ by f in the above scheme.

In practice, one would first calculate the expected reproducing kernel value∫
Rs K cos

s,K

(
pφ,n ,y

)
ν(dy) for each lattice point, possibly in an offline setting and then cal-

culate the main sum.
Define the absolute approximation error under this setting as ε and we see that

ε :=
∣∣∣∣∣E[f(Y)]−

∫
Rs

1

N

N−1∑
n=0

f
(
pφ,n

)
K cos

s,K

(
pφ,n ,y

)
ν(dy)

∣∣∣∣∣
≤ ∣∣E[f(Y)]−E[f̄(Y)]

∣∣
+

∣∣∣∣∣E[f̄(Y)]−
∫
Rs

1

N

N−1∑
n=0

f̄
(
pφ,n

)
K cos

s

(
pφ,n ,y

)
ν(dy)

∣∣∣∣∣
+

∣∣∣∣∣
∫
Rs

1

N

N−1∑
n=0

f̄
(
pφ,n

)
K cos

s

(
pφ,n ,y

)
ν(dy)−

∫
Rs

1

N

N−1∑
n=0

f̄
(
pφ,n

)
K cos

s,K

(
pφ,n ,y

)
ν(dy)

∣∣∣∣∣
≤E[

∣∣f(Y)− f̄(Y)
∣∣1{Rs \D}(Y)]+

( ∑
h∈L⊥\{0}

dα,γ,s (h)

) 1
2
(

s∏
i=1

Ci

) 1
2

M ||f||K cos
α,γ,s (D)

+ 1

N

N−1∑
n=0

∣∣f̄(pφ,n
)∣∣( ∑

k∈Zs ,
∑ |ki |>K

∣∣∣∣∣
∫
Rs

(
s∏

j=1
cos

(
πk j

y j −a j

b j −a j

))
ν(dy)

∣∣∣∣∣
)

.

For the third term, a bit more detail is required. Again we have the convergence
assumption on the cosine transform of measure ν with the additional condition that

β+0.5+δ> s. With the inequality (K −1)×1 < (K −2)×2 < . . . < ( K
2

)2
, for all K with K ∈N,

K > s and K > 2 and mathematical induction, one can show that if
∑ |ki | = K ,

(dβ+0.5+δ,ρ,s (k))
1
2 ≤ |K − s|−(β+0.5+δ)

s∏
j=1

max{1,
√
ρ j }.

There are in total 1
(s−1)!

∏s−1
j=1(K + j ) s-tuples of natural numbers satisfying

∑s
i=1 ki = K for

s ≥ 2. (see [17] for further explanation.) Taking into account all the possible combina-
tions of positive and negative signs among all dimensions when we consider all integers,
we have ∑

k∈Zs ,
∑ |ki |>K

(dβ+0.5+δ,ρ,s (k))
1
2



3.3. DISCUSSION

3

61

≤
∞∑

k=K+1
2s 1

(s −1)!

s−1∏
j=1

(k + j )×|k − s|−(β+0.5+δ)
s∏

j=1
max{1,

√
ρ j }

≤ 2s

(s −1)!

(
1+ 2s −1

K

)s−1 s∏
j=1

max{1,
√
ρ j }

∞∑
k=K+1

|k − s|−(β+1.5+δ−s).

The final inequality also holds when s = 1.
Therefore, we find the following error bound for the lattice expansion scheme:

ε≤E[
∣∣f(Y)− f̄(Y)

∣∣1{Rs \D}(Y)]+
( ∑

h∈L⊥\{0}

dα,γ,s (h)

) 1
2
(

s∏
i=1

Ci

) 1
2

M ||f||K cos
α,γ,s (D)

+ 1

N

N−1∑
n=0

∣∣f̄(pφ,n
)∣∣ 2s

(s −1)!

(
1+ 2s −1

K

)s−1 s∏
j=1

max{1,
√
ρ j }|K − s|−(β+0.5+δ−s). (3.11)

To conclude, we can apply the telescoping technique and describe our error by three
separate pieces: the projection error from a non-periodic to a periodic function, the lat-
tice integration error and the kernel truncation error. With this proof, we successfully ex-
tended the lattice integration in [14] to a more general setting and made use of both the
smoothness of the integrand in terms of cosine coefficients and the convergence of the
cosine transform with respect to the probability measure. However, with our “number
theory based” derivation, the model dimension s still heavily impacts the complete er-
ror bound, which may be an obstacle when applying the method to higher-dimensional
problems. Moreover, the assumption of the cosine transform’s decay is rough. Results
from Fourier analysis may be incorporated to further improve the error bound. Further
study for the error control is therefore recommended.

3.3. DISCUSSION
In Section 3.2, we have provided a justification for the cosine expansion lattice scheme.
We extended the tent transformed lattice rule in the half-cosine space to general proba-
bility measures, with its error controlled by the decay rate of the cosine transform of the
probability measures as well as the cosine coefficients of the integrands.

However, there are remaining questions. Is there a better way to control the approx-
imation error than simple algebraic manipulation? How does our current scheme con-
nect to previous work on wavelets? Here we aim to present some discussion on the above
issues.

3.3.1. ALTERNATIVE ERROR FORMULATION
The first possibility we would like to consider is whether the error of the approxima-
tion in Section 3.2.2 can be written in an alternative form. By doing so, we aim to avoid
bounding the term I (h) along each dimension, as this estimation is rough.

We revisit the derivation of ε2 in Section 3.2.2, specifically the right-hand side of
Equation (3.6). Note that the innermost sum in the expression can be rewritten as fol-
lows: ∑

k∈Zs
(
p

2)−|h−k|0 f̃cos(h−k)

(
s∏

j=1
cos

(
πk j

y j −a j

b j −a j

))
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= ∑
~k∈Zs

(
s∏

j=1
cos

(
πk j

y j −a j

b j −a j

))∫
[0,1]s

f(z× (b−a)+a)
s∏

j=1
cos(π(h j −k j )z j )dz

=
∞∑

k1=1

∑
k−1∈Zs−1

cos

(
πk1

y1 −a1

b1 −a1

)(
s∏

j=2
cos

(
πk j

y j −a j

b j −a j

))
×

∫
[0,1]s

f(z× (b−a)+a)cos(π(h1 −k1)z1)
s∏

j=2
cos(π(h j −k j )z j )dz

+ ∑
k−1∈Zs−1

(
s∏

j=2
cos

(
πk j

y j −a j

b j −a j

))
×

∫
[0,1]s

f(z× (b−a)+a)cos(πh1z1)
s∏

j=2
cos(π(h j −k j )z j )dz

+
−1∑

k1=−∞

∑
k−1∈Zs−1

cos

(
πk1

y1 −a1

b1 −a1

)(
s∏

j=2
cos

(
πk j

y j −a j

b j −a j

))
×

∫
[0,1]s

f(z× (b−a)+a)cos(π(h1 −k1)z1)
s∏

j=2
cos(π(h j −k j )z j )dz,

by using the definition of cosine coefficients. We separate the sum here in three parts ac-
cording to whenever k1 is positive, negative or zero. Next, we combine the terms whose
|k1| value is the same.∑

k∈Zs
(
p

2)−|h−k|0 f̃cos(h−k)

(
s∏

j=1
cos

(
πk j

y j −a j

b j −a j

))

= ∑
k−1∈Zs−1

(
s∏

j=2
cos

(
πk j

y j −a j

b j −a j

))∫
[0,1]s

f(z× (b−a)+a)cos(πh1z1)
s∏

j=2
cos(π(h j −k j )z j )dz

+
∞∑

k1=1

∑
k−1∈Zs−1

cos

(
πk1

y1 −a1

b1 −a1

)(
s∏

j=2
cos

(
πk j

y j −a j

b j −a j

))
×

∫
[0,1]s

f(z× (b−a)+a)(cos(π(h1 +k1)z1)+cos(π(h1 −k1)z1))
s∏

j=2
cos(π(h j −k j )z j )dz

= ∑
k1∈N0

∑
k−1∈Zs−1

(
s∏

j=1
cos

(
πk j

y j −a j

b j −a j

))
×

2|k1|0
∫

[0,1]s
f(z× (b−a)+a)cos(πh1z1)cos(πk1z1)

s∏
j=2

cos(π(h j −k j )z j )dz.

Then we repeat the similar steps of separating terms and combining those with the
same absolute value for k2, · · · ,ks , which leads to:∑

k∈Zs
(
p

2)−|h−k|0 f̃cos(h−k)

(
s∏

j=1
cos

(
πk j

y j −a j

b j −a j

))

= ∑
k∈Ns

0

∫
[0,1]s

f(z× (b−a)+a)

(
s∏

j=1
cos(πh j z j )

)
2|k|0/2

s∏
j=1

cos(πk j z j )dz×
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2|k|0/2

(
s∏

j=2
cos

(
πk j

y j −a j

b j −a j

))
.

This can be seen as the half-period cosine expansion of the function

fh(y) := f(y)

(
s∏

j=1
cos

(
πh j

y j −a j

b j −a j

))
.

Therefore, the right-hand side of Equation (3.6) can be rewritten as∫
Rs

∑
h∈L⊥\{0}

∑
k∈Zs

(
p

2)−|h−k|0 f̃cos(h−k)

(
s∏

j=1
cos

(
πk j

y j −a j

b j −a j

))
ν(dy)

= ∑
h∈L⊥\{0}

∫
Rs
f̄h(y)ν(dy).

To summarize, the error of this approximation is just the sum of functions f̄h inte-
grated over the probability measure ν over the dual lattice. The approximation error is
controlled by a series with individual terms

∫
Rs f̄h(y)ν(dy), a cosine transform with re-

spect to the cosine series of f under the probability measure ν. The decay rate of such
integral, depending on the combined smoothness of the measure ν and the function f,
is the key to limit the error of our scheme.

3.3.2. COSINE WAVELETS
We place our work in the context of the construction of wavelets in Chapter 2 to see the
similarities and differences between the two approaches. Instead of using the full Fourier
series for the wavelet construction, as in Chapter 2, we choose a “cosine function only"
basis set as our starting point, corresponding to the half-period cosine space we used in
Section 3.2.

Under this setting, we start our derivation from the set

Γa,b :=
{

1p
2

, cos
(
kπ

y −a

b −a

)∣∣∣k = 1,2, . . .

}
,

with [a,b] ∈R a finite range. We define an inner product

< f,g>L2([a,b]):=
2

b −a

∫ b

a
f(y)g(y)d y,

and the corresponding norm ||·||L2([a,b]). We denote any function f such that ||f||L2([a,b]) <
∞, as f ∈ L2([a,b]). We may suppress the range part from the notation L2([a,b]) if there
is no ambiguity in the context.

Equipped with the above definitions, we construct an approximation space together
with a localized basis. Consider the following function K wl

N ′ :R× [N ′] →R,

K wl
N ′ (x,r )

:=1

2
+

N ′−1∑
k=1

cos
(
kπ

x −a

b −a

)
cos

(
kπ

2r −1

2N ′

)
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=1

2
+ 1

2

N ′−1∑
k=1

cos

(
kπ

(
x −a

b −a
− 2r −1

2N ′

))
+ 1

2

N ′−1∑
k=1

cos

(
kπ

(
x −a

b −a
+ 2r −1

2N ′

))
(3.12)

=


N ′
2 if x−a

b−a = 2l ± 2r−1
2N ′ for l an integer,

sin((N ′− 1
2 )( x−a

b−a − 2r−1
2N ′ )π)

4sin( π2 ( x−a
b−a − 2r−1

2N ′ ))
+ sin((N ′− 1

2 )( x−a
b−a + 2r−1

2N ′ )π)

4sin( π2 ( x−a
b−a + 2r−1

2N ′ ))
otherwise,

where r = 1,2, . . . , N ′. This definition is again a special case of the scaling functions given
in Equation (2.13) of [18], in which the authors presented a uniform approach for the
construction of wavelets based on orthogonal polynomials. The properties of K wl

N ′ , that
are relevant to our numerical method are listed in the next proposition.

Proposition 3.3. The function K wl
N ′ , which is defined in Equation (3.12), satisfies the

following properties:

(a) The inner product of two scaling functions is given by the following equation:

<K wl
N ′ (·,r ),K wl

N ′ (·, q) >=K wl
N ′

(
a + 2r −1

2N ′ (b −a), q

)
, r, q = 1,2, . . . , N ′.

Thus, {K wl
N ′ (x,r )|r = 1, . . . , N ′} is an orthogonal set.

(b) The scaling function K wl
N ′ (·,r ) is localized around a + 2r−1

2N ′ (b −a). By this we mean
that for the subspace

VN ′ := span

{
1p
2

, cos
(
kπ

y −a

b −a

)∣∣∣k = 1,2, . . . , N ′−1

}
,

we have∣∣∣∣∣
∣∣∣∣∣ K wl

N ′ (·,r )

K wl
N ′ (a + 2r−1

2N ′ (b −a),r )

∣∣∣∣∣
∣∣∣∣∣
L2

= min

{
||f||L2 : f ∈VN ′ , f

(
a + 2r −1

2N ′ (b −a)

)
= 1

}
.

(c) {K wl
N ′ (·,r )|r = 1,2, . . . , N ′} is a basis for VN ′ .

(d) The scaling function K wl
N ′ is also a kernel polynomial in the sense that, for any func-

tion v in VN ′ , we have

< v,K wl
N ′ (·,r ) >L2([a,b])= v

(
a + 2r −1

2J
(b −a)

)
.

Readers are referred to [18] for further properties of such functions and for a con-
densed proof of the above properties one may follow the derivation of Theorem 2.1.

Applying the results obtained above, we may define the wavelet expansion fwl :R→R

for any function f ∈ L2([a,b]) by

fwl (y) := 2

N ′
N ′∑

r=1
f

(
a + 2r −1

2N ′ (b −a)

)
K wl

N ′ (y,r ),
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and approximate the expectation E[f(Y )] by,

E[f(Y )] ≈E
[

2

N ′
N ′∑

r=1
f

(
a + 2r −1

2N ′ (b −a)

)
K wl

N ′ (Y ,r )

]

= 2

N

N ′∑
r=1

f

(
a + 2r −1

2N ′ (b −a)

)
E

[
1

2
+

N ′−1∑
k=1

cos

(
kπ

Y −a

b −a

)
cos

(
kπ

2r −1

2N ′

)]

= 1

N ′
N ′∑

r=1
f

(
a + 2r −1

2N ′ (b −a)

)
E

[
1+

N ′−1∑
k=1

(e ıkπ Y −a
b−a +e−ıkπ Y −a

b−a )cos

(
kπ

2r −1

2N ′

)]

= 1

N ′
N ′∑

r=1
f

(
a + 2r −1

2N ′ (b −a)

) N ′−1∑
k=1−N ′

cos

(
kπ

2r −1

2N ′

)
e−ıπk a

b−a E
[

e ı kπ
b−a Y

]
.

Comparing this expression with Equation (3.10) when s = 1, it is clear that these two
formulas are of the same form. The main difference is that the wavelet formula can be
seen as an expansion scheme using the lattice points

Pwl (N ′, [a,b]) :=
{

a +n
2r −1

2N ′ (b −a) : 1 ≤ r ≤ N ′
}

,

with the kernel also bounded at the corresponding value N ′−1.
Considering a two-dimensional function f :R2 →R, we can extend the cosine wavelet

to two dimensions by applying the expansion to each dimension separately.

E[f(Y1,Y2)]

=E
[

2

N ′
N ′∑

r1=1
f

(
a1 + 2r1 −1

2N ′ (b1 −a1),Y2

)
K wl

N ′ (Y1,r1)

]

=E
[

4

N ′2
N ′∑

r1=1

N ′∑
r2=1

f

(
a1 + 2r1 −1

2N ′ (b1 −a1), a2 + 2r2 −1

2N ′ (b2 −a2)

)
K wl

N ′ (Y1,r1)K wl
N ′ (Y2,r2)

]

= 1

N ′2
N ′∑

r1=1

N ′∑
r2=1

f

(
a1 + 2r1 −1

2N ′ (b1 −a1), a2 + 2r2 −1

2N ′ (b2 −a2)

)
×

N ′−1∑
k1=1−N ′

N ′−1∑
k2=1−N ′

(
s∏

j=1
cos

(
k jπ

2r j −1

2N ′

))
e−ıπk· a

b−a E
[

e ı kπ
b−a ·Y

]
.

Again this is in a similar form as in Equation (3.10). However, the total number of
terms N ′2 increases with the dimension and there is no clear way to select the more
significant ones.

One of the key advantages of the cosine expansion lattice scheme is that we have
removed the link between the quadrature points and the number of summation terms
N . This allows us to apply an online/offline construction in our algorithm. We can first

compute the expectations of reproducing kernels E
[
K cos

s,K

(
pφ,n ,Y

)]
for all points in the

lattice sequence and use the stored values in the approximation scheme. This construc-
tion is not feasible in the cosine wavelets setting and it is one of the advantages from the
cosine expansion lattice scheme.
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3.4. NUMERICAL EXPERIMENTS
In this section, we perform numerical experiments to test the cosine expansion lattice
scheme.

In order to demonstrate that our scheme can inherit the results from the previous
literature, we use the lattice sequence from [13] and perform the tent-transformation on
them in all our tests. This sequence has been used in the numerical results section of
[14] and readers are referred to the references therein for further information.

All figures displaying numerical results in this section present the log absolute error
log10(|ε|) against the log number of lattice points log10(N ).

For the first two experiments, we compute the expectation with the following test
function:

f1
s,w (y) :=

s∏
j=1

(
1+ w j

21
(−10+42y2

j −42y5
j +21y6

j )

)
.

3.4.1. UNIFORM DISTRIBUTION

Whenever the reproducing kernel’s expectation E[K cos
s

(
pφ,n ,Y

)
] is known explicitly, we

can simplify the algorithm to its original form in Equation (3.5) instead of the full scheme
in Equation (3.10). This results in an algorithm that has no difference to the original
QMC rule in terms of computational complexity. As stated in Remark 3.1, this is indeed
the case for the uniform distribution.

In this subsection, we approximate

E[f1
s,w (Y)],

where Y follows a uniform distribution on the domain [0,1]× [−1,1]× [0,1]× [−1,1]×·· ·
for dimension s ∈ [8]. The reference value is

∏s
j=1

(
2+w j 2

3

)( j mod 2)
.

Note that we are not establishing a new numerical result or proof of convergence
here as this problem can be solved by the original QMC algorithm through a change
of variables. These tests serve two purposes. They establish the base line result as a
comparison to the results in the next section and allow us to provide comments on the
actual implementation of the QMC algorithm.

The result for w = 0.5 can be seen in Figure 3.1. All tests use 220 evaluations for their
final result. The reader should note that instead of having 1 as the common reference
value throughout all dimensions, as in [14], the reference values of our setting follow
those in Table 3.1. This is by design to demonstrate some key properties of lattice expan-
sions. Under this setting, results from neighboring dimensions form a pair, for example,
dimensions 4 and 5 share the same reference value. As demonstrated in Figure 3.1, the
absolute errors converge to similar limits for these pairs, while the results worsen when
the reference increases. This demonstrates that the QMC rules can be generalized to
higher dimensions, but their error depends on the value of the target integration, which
fits the result from Theorem 3.2.

Finally, it should be noted that the result for dimension 1 is particular strong. This is
because the function evaluation for y j ∈ [0,1), the monomial yk

j would always be around

zero which helps stabilizing the function evaluation. When we use a projection domain
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Table 3.1: Reference solution for Uniform Distribution

Dimension 1 2 3 4 5 6 7 8
Ref. Values 1 2.167 2.167 4.424 4.424 8.893 8.893 17.81

1 2 3 4 5 6
Log10(Number of lattice points)

−15.0
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s = 2
s = 3
s = 4
s = 5
s = 6
s = 7
s = 8

Figure 3.1: Absolute error verses the number of lattice points for uniform distribution.

that is larger than the unit box when approximating a polynomial, as we do in the up-
coming examples, the results may seem to be worse than standard QMC result and this
is one of the contributing factors.

3.4.2. NORMAL DISTRIBUTION
In this subsection, we approximate

E[f1
s,0.9(Y)],

where Y follows a multivariate normal distribution with mean 0 for all dimensions and
covariance matrix  0.52

. . .
0.52

 .

Further, we restrict our lattice to the box [−4.5,4.5]s and we study the cases of dimension
s ∈ [3]. We applied the full scheme in Equation (3.10) here with K = 27. The reference
values listed in vector form are (1.2324,1.4901,1.7705).

The convergence result can be seen in Figure 3.2. All tests use 218 evaluations for
their final result. The approximation value converges to the references value in all tests,
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Figure 3.2: Absolute error verses the number of lattice points for normal distribution.

as we would expect. We can observe the structure of the error plateauing for a while with
respect to the number of lattice points and suddenly improving when a critical number
is reached in Figure 3.2. This seems to be related to the lattice sequence.

In the case of the normal distribution, there is a final level of error for each dimen-
sion, where increasing the number of lattice points further would not improve the ap-
proximation result. This is related to the error of projecting a non-periodic function
to the half-period cosine space and the truncation of reproducing kernel. These errors
dominate when the lattice rule error has converged and limit the final result.

FURTHER STUDIES ON PARAMETERS

With the successful implementation of our scheme, we conducted further tests for the
selection of the kernel truncation parameter and projection domain. We did not con-
sider the generation and construction of different lattice sequences in this article con-
sidering the large amount of previous research and work on this topic. It is difficult to
draw a satisfying picture on this topic from a simple test. However, we would further
consider the choices of projection domain and kernel truncation limit K and their im-
pact on the approximation error. In the following tests, we focus on the two-dimensional
case.

In Figure 3.3, we see the result of the same test we used for the normal distribution
but instead of changing the test dimension s, we fixed the test dimension to 2 and var-
ied the projection domain through a variable L. The projection domain is defined as
[−0.5L,0.5L]2 and the kernel truncation K is fixed at 27.

From the result, we can see that the convergence behavior is similar among all tests
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Figure 3.3: Absolute error verses the number of lattice points for the normal distribution for different projection
domains.

for L ≥ 5. Our result implies that the lattice sequence has the most significant influence
on the convergence behavior with respect to the number of lattice points of our scheme.
When most of the probability mass is included in the projection range (L ≥ 5 here), the
projection range only affects the final error. As one can see, the error is the lowest when
L = 9, which can possibly be explained by the expression in Equation (3.11). The first
term at the right hand side decreases when the probability mass outside of the projection
range increases, while the rest of the terms relate to the averages of the integrand and
increase with the projection range. We have to find the balance for these two competing
effects when we choose the projection range.

Next, we can see the result of changing the kernel truncation factor K in Figure 3.4.
The projection domain is fixed as [−4.5,4.5]2. Once again, the approximation converges
to the final limit when the number of lattice points reaches 212. This again shows that
the kernel truncation is only related to the final limit of approximation but not to the
convergence behavior.

Another point of interest for us is the exponential decay of the Fourier transforms
(the building blocks of the reproducing kernel). When K ≥ 64, including more terms
in the reproducing kernel does not improve the approximation. This was one of the
main advantages of the COS method, making use of the smoothness of the probability
measure to achieve better convergence results. It seems that we can arrive at similar
results for this combined scheme.

However, the construction for the truncated kernel, defined in Equation (3.9), still
suffers from the curse of dimensionality. Under our current setting, this issue can be ad-
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Figure 3.4: Absolute error verses the number of lattice points for the normal distribution with varying K .

dressed through software engineering by making use of an online/offline construction,
in which we calculate and store the reproducing kernel in an offline stage and then use
the stored results in actual calculation. Parallel computing or GPU computing are also
possible means to speed up the computation.

We believe that this scheme is valuable for specifically making use of the smoothness
of the probability measure and the clear separation of the measure from the integrand,
which implies we may switch one part without affecting the other. Possible remedies to
be studied for this scheme may include hyperbolic cross or non-linear basis construc-
tions for the truncated kernel, or alternatively, different means for approximating the
reproducing kernel.

To conclude, our additional parameter of kernel truncation and domain projection
does not change the convergence behavior but only affects the final approximation error
when it is sufficiently large. However, the kernel construction still gives rise to the curse
of dimensionality.

3.4.3. ASYMMETRIC MULTIVARIATE LAPLACE DISTRIBUTION

Finally, we implement our scheme to a typical asymmetric 2-dimensional Laplace dis-
tribution Y, whose characteristic function is given by

FLap (k) = 1

1+0.5k>Σk− ıµ̄>k
,
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Figure 3.5: Absolute error verses the number of lattice points for Laplace distribution.

in this subsection2. In our setting, µ̄ is a 2-dimensional vector given by (0.3,−0.1)>, while
Σ is a 2 matrix defined as (

0.25 −0.15
−0.15 0.75

)
.

The mean and covariance of this distribution are given by µ̄ and Σ+ µ̄µ̄>, respectively.
For further information, readers are referred to [19]. In this test, we compare the algo-
rithm in Section 3.2 and the extended COS wavelet scheme in Section 3.3.2.

In this example, the integrand is simply Y1Y2 and the analytic solution for the expec-
tation is µ̄1µ̄2 + (Σ+ µ̄µ̄>)1,2 =−0.21.

We pick the projection domain [µ̄1−20Σ1,1, µ̄1+20Σ1,1]×[µ̄2−20Σ2,2, µ̄2+20Σ2,2] and
set the kernel truncation parameter K as 26 for the cosine expansion lattice scheme. For
the COS wavelet scheme, the order of the kernel and the number of lattice points are
linked. Therefore, when we use N lattice points for the lattice scheme, we pick N ′ =⌈p

N
⌉

for the respective wavelet test. We report in Figure 3.5.
It is clear that both schemes converge to the same limit. The approximation error is

dominated by the measure truncation error when the number of lattice points is high
enough and therefore they have similar end results. Comparing both schemes, it seems
that the COS wavelet performs better with a similar number of lattice points at the early
stage. This may suggest that its quadrature point distribution is more efficient. The dif-
ference in quadrature points for the two schemes can be seen in Figure 3.6.

However, there are still some shortcomings in the construction of the COS wavelet
that makes it a less attractive option comparing to the lattice scheme. For example, the

2Again, we use the notation F to denote characteristic functions in this thesis.
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COS Wavelet Lattice

Figure 3.6: The quadrature points distribution for COS wavelet(left) and lattice sequence(right).

COS wavelet is not extendable in the sense that we cannot simply add an extra evaluation
point to improve the approximation. A new evaluation from the beginning is required in
such case.

Nevertheless, this test suggests that it would be of great interest to implement other
quadrature rules with the half-cosine reproducing kernel.

Another point of interest is that in fact the cosine transform decay rateβ< 1.5 for this
example, so the rough error bound for the last term in Equation 3.11 fails to converge.
However, the success in applying our algorithm clearly shows that we underestimate
the decay rate of the cosine transform and a tighter error bound may be derived from
advanced results in Fourier analysis. This motivates us to derive better error bounds for
our scheme in the future.

3.5. CONCLUSION
Equipped with the Fourier-cosine projection technique, we extended the lattice sequence
from [13] to the broader space of probability measures (instead of just the uniform distri-
bution in [14]). The resulting approximation is reproducible and, in theory, this scheme
can be generalized to higher-dimensional space by the extension of the results from the
previous lattice literature.

The fact that our scheme concentrates all the information from the probability mea-
sure into the reproducing kernel and simply evaluates the integrand at some preset
quadrature points gives us flexibility. We may use the same set of quadrature points for
different probability measures as our derivation is not measure specific. Moreover, our
scheme can be adjusted and possibly improved by simply replacing the lattice sequence
by another one.
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The main remaining issue is the approximation of the reproducing kernel which still
suffers from the curse of dimensionality. However, with the rapid decay of the Fourier
transform and the specific form of the reproducing kernel, we believe that further re-
search on this topic would be fruitful.
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4
STOCHASTIC GRID BUNDLING

METHOD FOR BSDES

In this chapter, we apply the Stochastic Grid Bundling Method (SGBM) to numerically
solve BSDEs. The SGBM algorithm is based on conditional expectations approximation
by means of bundling of Monte Carlo sample paths and a local regress-later regression
within each bundle. The basic algorithm for solving the backward stochastic differential
equations will be introduced and an upper error bound is established for the local re-
gression. A full error analysis is also conducted for the explicit version of our algorithm
and numerical experiments are performed to demonstrate various properties of our al-
gorithm.

4.1. INTRODUCTION
The Stochastic Grid Bundling Method (SGBM) is a Monte Carlo based algorithm de-
signed to solve backward dynamic programming problems, with applications in pricing
Bermudan options in [2] and [3]. This algorithm has been further extended computa-
tionally by the incorporation of GPU acceleration in [4] and generalized to the compu-
tation of Credit Valuation Adjustment and Potential Future Exposure in [5]. In this work,
we will extend its applicability to the approximation of Backward Stochastic Differential
Equations (BSDEs). We shall also study the errors in the SGBM algorithm.

The SGBM algorithm is based on the so-called regress-later technique and on an
adaptive local basis approach. In usual Monte Carlo regression methods for backward-
in-time problems, the values of the target function at the end of a time interval are re-
gressed on certain dependent variables that are measured at the beginning of the time
interval (which is called the regress-now approach). This creates a statistical error. In-
stead, the dependent variable is projected onto a set of basis functions at the end of the
interval in a regress-later method, and a conditional expectation across the interval is

This chapter is based on the article ’Stochastic grid bundling method for backward stochastic differential equa-
tions’, published in International Journal of Computer Mathematics [1].
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then computed for each basis function. This difference removes the statistical error in
the regression step. Regress-later schemes have been further discussed in [6].

With an adaptive local basis approach, the whole simulation is partitioned into non-
overlapping subsets and we perform least-squares regressions separately within these
subsets, possibly with a different basis for each subset. The exact partition depends on
the simulated samples themselves and its purpose is to gather samples that share similar
"characteristics" such that the local regression is more accurate than the global one. For
further application of localization in numerical schemes, the reader may check out [7].
Since each partition is non-overlapping, SGBM is easy to scale up in dimensionality and
can facilitate parallel computing. We would like to test the SGBM algorithm in a new
problem setting such that we can take advantage of its nice properties and also get a
better understanding of the underlying principles.

In this work, we aim to construct an approximate scheme for BSDEs by the theta-
scheme from [8] and apply the SGBM algorithm. The rest of the chapter is organized as
follows. We start in Section 4.2 with the introduction of the SGBM algorithm, along with
the necessary time discretization scheme and assumptions. Section 4.3 will present an
error analysis of a simplified case of SGBM. The proof in this section forms the founda-
tion for the error bound in any algorithm applying SGBM. Later, in Section 4.4, we derive
the full error bound for a specific choice of discretization scheme as an example. The
chapter finishes with numerical experiments and a conclusion.

To close off this section, here is some further notation that is used in this chapter.

• For any vector x, |x| denotes its Euclidean norm and xk denotes its k-th compo-
nent.

• Similarly, Xk,t denotes the k-th component for any random process X t .

• The gradient ∇g is defined as
(
∂g
∂x1

, . . . , ∂g
∂xq

)
for any differentiable function g :Rq →

R.

• For any set S , the function 1S is the indicator function which takes value 1 when
the input is within set S and 0 otherwise.

• For any function space H containing functions φ :Rq →R, H+ is defined as the set
{{(x, y) ∈Rq ×R :φ(x) ≥ y} :φ ∈ H }.

• For any function φ and compact set A , the control constant Cφ,A is defined as an
extended real number supx∈A |φ(x)|.

• In general, the function set {η1, . . . ,ηQ } is used to denote a general regression basis
in this chapter.

4.2. ASSUMPTIONS AND ALGORITHM
In this section, we shall introduce the SGBM algorithm and its application to the approx-
imation of BSDEs. For the mathematical derivation in Section 4.2 and Section 4.4, we
use a simplified backward discretization scheme described in the upcoming subsection.
This is done for the interest of a clearer presentation.
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4.2.1. DISCRETIZATION SCHEME
For the forward process X t , we shall apply a Markovian approximation X π

tp
, tp ∈ π. The

most common choice is the Euler-Maruyama scheme, which will be explained in Section
4.5. However, our algorithm can work with any simulation method where the conditional
expectations over one time step are known for some specific functions.

The backward in time discretizations (Y π, Zπ) come from a special case of the dis-
cretization formula of Equation (1.4), by selecting (θ1,θ2) = (0,1):

yP (x) = g (x),

zp (x) = 1

∆p
Ex

tp

[
yp+1(X π

tp+1
)∆Wp

]
, p = P −1, . . . ,0,

yp (x) = Ex
tp

[
yp+1(X π

tp+1
)
]
+∆pE

x
tp

[
fp+1(yp+1(X π

tp+1
), zp+1(X π

tp+1
))

]
, p = P −1, . . . ,0, (4.1)

where fp (y, z) := f (tp , X π
tp

, y, z).

4.2.2. STANDING ASSUMPTIONS
To ensure the existence and uniqueness of the solution of the continuous BSDEs, some
basic assumptions are required. Moreover, these assumptions will affect the algorithm
designed regarding the admissible choice ofπ and the error bound of the scheme. In this
work, we assume the global Lipschitz condition as stated in Assumption 4.1. Note that
this assumption will affect the derivation and the result of the error bound for the com-
plete algorithm. Assumption 4.1 is in force here as it is the most common assumption in
the BSDE literature. Alternative assumptions can be found, for instance, in [9].

Assumption 4.1 (Globally Lipschitz driver).

(Aξ) i.) g is a measurable function.

ii.) The control constant CΦ,A <∞ for any given compact set A .

(AF ) i.) (t , x, y, z) 7→ f (t , x, y, z) is B(R)⊗B(Rq )⊗B(R)⊗B(Rd )-measurable.

ii.) For every p ≤ N , fp (y, z) as defined in Subsection 4.2.1 is Ftp ⊗B(R)⊗B(Rd )-
measurable and there exists an L f ∈ [0,+∞) such that

| fp (y, z)− fp (y ′, z ′)| ≤ L f (|y − y ′|+ |z − z ′|), ∀k ∈ {0, . . . , N },

for any (y, y ′, z, z ′) ∈R×R×Rd ×Rd .

iii.) There exists a C f ∈ [0,∞) such that

| fp (0,0)| ≤C f , ∀p ∈ {0, . . . ,P }.

iv.) The time discretization is such that

limsup
P→∞

Rπ <+∞, where Rπ = sup
0≤p≤P−2

∆p

∆p+1
.

Again, the assumption here is for the consistency of our derivation and does not im-
ply that our algorithm can only be applied when these assumptions are satisfied.
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4.2.3. STOCHASTIC GRID BUNDLING METHOD
We now introduce SGBM. Recall from Chapter 1 that due to the Markovian setting of
(X π

tp
,Ftp )tp∈π, there exist functions yp (x) and zp (x) such that

Y π
tp
= yp (X π

tp
), Zπ

tp
= zp (X π

tp
).

Our method is based on estimating these functions (yp (x), zp (x)) recursively backwards
in time by a local least-squares regression technique onto a finite function space with
basis functions (ηl )0≤l≤Q .

As a Monte Carlo based algorithm, our program starts with the simulation of M inde-
pendent samples of (X π

tp
)0≤p≤P , denoted by (X π,m

tp
)1≤m≤M ,0≤p≤P . Note that in this basic

algorithm, the simulation is only performed once. This scheme is therefore a non-nested
Monte Carlo scheme.

The next step is the backward recursion. Denote by yR
p the SGBM approximation of

the function yp . The function zR
p similarly means the approximation of zp .

At initialization, we assign the terminal values to each path for our approximations,
i.e.,

yR
P (X π,m

tP
) = g (X π,m

tP
), m = 1, . . . , M ,

The following steps are performed recursively, backwards in time, at tp , p = P −1, . . . ,0.
First, we bundle all paths into Btp (1), . . . ,Btp (B) non-overlapping partitions based on
the result of (X π,m

tp
). Note that our design allows the application of various clustering

techniques within the SGBM algorithm. A previous study in [4] compares the k-means
clustering with an equal partitioning, and shows that they are similar in accuracy. How-
ever, it remains an interesting problem which clustering technique would provide the
optimal result. We use the equal partition technique, which will be specified in Section
4.3, for the error analysis and the numerical experiment.

Next, we perform the regress-later approximation separately within each bundle.
The regress-later technique we are using combines the least-squares regression with the
(analytical) expectations of the basis functions to calculate the target expectations.

Generally speaking, for M Monte Carlo paths, a standard regress-now algorithm for
a dynamic programming problem finds a function ι within the space spanned by the
regression basis such that it minimizes the value 1

M

∑M
i=1(g(X i

t+δ)− ι(X i
t ))2 and approx-

imates the expectation Et [g(X t+δ)] by Et [ι(X t )] = ι(X t ). As a projection from a function
of X t+δ to a function of X t is performed then, it would introduce a statistical bias to the
approximation.

Instead, the regress-later technique we employ picks out a function κ such that it
minimizes 1

M

∑M
i=1(g(X i

t+δ)−κ(X i
t+δ))2 and approximates the expectation Et [g(X t+δ)] by

Et [κ(X t+δ)]. By using functions on the same variable in the regression basis, we can re-
move the statistical bias in the regression. However, the expectation of all basis functions
must preferably be known in order to apply the regress-later technique efficiently.

In the context of our algorithm, we define the bundle-wise regression parameters
αp+1(b), βp+1(b), γp+1(b) as

αp+1(b) = arg min
α∈RQ

∑M
m=1(η(X π,m

tp+1
)α− yR

p+1(X π,m
p+1 ))21Btp (b)(X π,m

tp
)∑M

m=1 1Btp (b)(X π.m
tp

)
,
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βi ,p+1(b) = arg min
β∈RQ

∑M
m=1(η(X π,m

tp+1
)β− zR

i ,p+1(X π,m
p+1 ))21Btp (b)(X π,m

tp
)∑M

m=1 1Btp (b)(X π.m
tp

)
,

γp+1(b) = arg min
γ∈RQ

∑M
m=1(η(X π,m

tp+1
)γ− fp+1(yR

p+1(X π,m
p+1 ), zR

p+1(X π,m
p+1 )))21Btp (b)(X π,m

tp
)∑M

m=1 1Btp (b)(X π.m
tp

)
.

The approximate functions within the bundle at time p are defined by the above param-

eters and the expectations Ex
tp

[η(X π
tp+1

)] and Ex
tp

[
η(X π

tp+1
)
∆Wr,p

∆p

]
:

zR
r,p (b, x) = Ex

tp

[
∆Wr,p

∆p
η(X π

tp+1
)

]
αp+1(b), r = 1, . . . ,d ;

yR
p (b, x) = Ex

tp

[
η(X π

tp+1
)
]

(αp+1(b)+∆pγp+1(b)).

This comes from putting the regression results back in Equation (4.1).
As the expectations related to the basis functions are the foundation of any regress-

later scheme, we assume that the following assumptions are satisfied.

Assumption 4.2. The regression basis {η1, . . . ,ηQ } is assumed to satisfy the following as-
sumptions.

(Aη) i.) Ex
tp

[ηl (X π
tp+1

)] and Ex
tp

[
ηl (X π

tp+1
)
∆Wr,p

∆p

]
are known, either analytically or em-

pirically, for all p = 0, . . .P −1, l = 1, . . . ,Q and r = 1, . . . ,d .

ii.) For any given compact set A in Rq , the constant Cη,A := maxl=1,...,Q Cηl ,A .
Moreover, there exists a constant CM ,A such that

Q∑
l=1

∣∣∣Ex
tp

[ηl (X π
tp+1

)]
∣∣∣≤CM ,A , ∀x ∈A , and p = 0, . . . ,P −1;

and
Q∑

l=1

∣∣∣∣Ex
tp

[
ηl (X π

tp+1
)
∆Wr,p

∆p

]∣∣∣∣≤CM ,A , ∀x ∈A , and p = 0, . . . ,P −1.

Next, to ensure the stability of our algorithm, |αp (b)|, |βr,p (b)| and |γp (b)| must be
bounded above for all p,b,r . In practice, this means that an error notion should be given
by the program when the Euclidean norm of any regression coefficient vector is greater
than a predetermined constant L. Further details on this requirement will be described
in Section 4.3.

Finally, to simplify notation, we define the notations below for the regression result
across the bundles.

ỹR
p+1(x1, x2) :=

B∑
b=1

1Btp (b)(x1)η(x2)αp+1(b),

z̃R
r,p+1(x1, x2) :=

B∑
b=1

1Btp (b)(x1)η(x2)βr,p+1(b),

f̃ R
p+1(x1, x2) :=

B∑
b=1

1Btp (b)(x1)η(x2)γp+1(b).
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4.3. REFINED REGRESSION
In this section, we derive a proof of an error bound for our regress-later strategy. In order
to ensure the stability of our algorithm, we have introduced a sample selection step into
the algorithm and modified the classical proof for nonparametric regression from [10],
which was used in [9], for the derivation of the error bound to SGBM.

In order to simplify expressions, different notations are used in this section. We con-
sider a random vector (X ,Y ), where X and Y are both Rq , following the probability mea-
sure ν. A cloud of simulation paths can be generated by independently simulating M
copies, {(X m ,Y m) : m = 1, . . . , M }, defined on a probability space (Ω̂, F̂, P̂). In our con-
tent, the pair (X ,Y ) represents the independent and dependent variables under consid-
eration and (X m ,Y m) are the simulated samples for (X ,Y ).

Denote by B a specific partition with B := {B(1), . . . ,B(B)} and
⋃B

b=1 B(b) = Rd . The
partition which is used in the regression estimates is based on the simulation data X m

in our setting and to which bundle a sample belongs solely depends on X m .
The main goal of SGBM is finding an effective and accurate way to approximate the

expectation E [ v(Y )|X ] in a recurrence setting for some deterministic function v : Rq →
R, and we begin with establishing an estimate ṽ : Rq ×Rq for v . Note that although v
solely depends on the dependent variables, the estimate ṽ depends on both the inde-
pendent and dependent variables in preparation for further calculation.

For a given partition and samples, one way to define the estimate ṽ is

ṽ(x, y) :=
B∑

b=1
1B(b)(x)ṽb(y) =

B∑
b=1

1B(b)(x)
Q∑

k=1
αk (b)ηk (y), (4.2)

where

ṽb := argmin
φ∈H

{∑M
m=1 1B(b)(X m)|v(Y m)−φ(Y m)|2∑M

m=1 1B(b)(X m)

}
.

Remark 4.1. It is possible that under some particular clustering scheme for SGBM, there
would be empty bundles in the resulting partition.

In practice, one could simply ignore these empty bundles in the algorithm. As there
are no samples in these bundles, approximations within these bundles are not needed
for the next time step. One point to note is that since least-squares regression requires
a sufficient number of samples to be accurate, adopting a bundling scheme that would
produce bundles with few samples may not be a good idea.

When generalizing the theoretical proof below to bundling methods other than equal
partition, one has to take this into account and define the measurable partitionB in such
a way that it is consistent with the practical bundling scheme while it also merges all
empty bundle to non-empty ones.

Further discussion on bundles with few samples under the equal partition scheme is
placed in Remark 4.4.

Note that functions ṽb :Rq →R are stochastic with respect to the simulation samples
(X m ,Y m). The linear vector space H is spanned by continuous functions {η1, . . . ,ηQ },
with ηl : Rq → R, ∀l = 1, . . . ,Q. Thus, the second equality in Equation (4.2) just follows
from the definition of H and typical least-squares regression. In fact, if we denote the
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total number of samples in a given bundle by #B(b) and let

{(X b,1,Y b,1), . . . , (X b,#B(b),Y b,#B(b))}

be the samples in this bundle, the coefficients α(b) satisfy

I>Iα(b) =I>v(Y b), (4.3)

with
I = (η j (Y b,i ))1≤i≤#B(b),1≤ j≤Q and v(Y b) = (v(Y b,1), . . . , v(Y b,#B(b)))>.

According to [10], system (4.3) is always solvable, in the next section, we also provide a
heuristic argument for its invertibility. Again, the coefficients α in each bundle can be
seen as random variables with respect to (X m ,Y m)m=1,...,M .

Reversely, we may select the simulation cloud based on the regression coefficients.
Let the set S be the set containing all possible collections of (xm , ym)1≤m≤M ∈ (Rq ×Rq )M

such that |α(b)|2 ≤ L for all b given that (X m ,Y m) = (xm , ym)1≤m≤M . We modify the
probability of the simulation cloud by only accepting those results that are in S. We
denote the modified expectation by ÊS and it is related to the original expectation by

ÊS [1A] = Ê[1A 1S ]
Ê[1S ]

. 1

Remark 4.2. In a regress-now scheme, especially in a recursion scheme, the resulting
approximation is truncated such that its value is within a bounded interval [C1,C2]. The
truncation guarantees the convergence and the stability of the scheme. However, trun-
cation is not feasible in our regress-later scheme as we have to keep the full function for
further operation. Therefore, we must instead control the output by limiting the admis-
sible samples.

Remark 4.3. The introduction of bundling here essentially serves two purposes. First of
all, clustering data may act as a localization of function v , thus a more accurate approx-
imation for v can be achieved with a lower order function basis. This is especially ben-
eficial for the high-dimensional case as basis functions in higher dimensions are gener-
ally complicated and hard to calculate. We need a method to increase accuracy without
adding more basis functions. Secondly, by partitioning data into non-overlapping bun-
dles, we can facilitate the application of parallel computing, which is important when
we are in a high-dimensional situation. However, while the above benefit depends on
the particular choice of basis, the analysis we do in this section is applicable for a more
general setting. So, we would not emphasis these points further in this section.

Using ν to denote the probability measure induced by the random variable (X ,Y )
and (X m ,Y m)m=1,...,M are independent and identical copies following the same law un-
der a different probability space, the following random norms (depending on the simu-
lation cloud (X m ,Y m)) are used to quantify the error of approximation.

Definition 4.3. Let f : Ω̂×Rq ×Rq →R be measurable. For any set B ⊂Rq , we define the
following random norms

||f||2B,∞ :=
∫
B

∫ |f(x, y)|2ν(d x,d y)∫
B

∫
ν(d x,d y)

; ||f||2B,# :=
∑M

m=1 1B(X m)|f(X m ,Y m)|2∑M
m=1 1B(X m)

.

1The situation of 0
0 should be understood as 0 and K

0 as ∞ in the rest of this chapter.
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We derive the following theorem for the estimation of the error. Since we only ac-
cept a simulation result that satisfies event S, we should only consider the average error
among all these accepted events.

Theorem 4.4. Assume that we perform an equal partition at the bundling step, namely,
we order all samples according to some specific measurable sorting function on X , and
separate them into almost-equal size bundles by the ordering. Further, assume a compact
set A ⊂Rq to be given such that Cv,A ≤∞ and

∫
v2(y)ν(d x,d y) ≤∞, namely, the function

v is within the L2 space with respect to the given probability measure. Then, for any real
function v, we have

ÊS

[Ï
|v(y)− ṽ(x, y)|2ν(d x,d y)

]
≤ϑ(L′)
Ê[1S ]

Ê

[
B∑

b=1

∫
B(b)

∫
ν(d x,d y)

(log(
∑M

m=1 1B(b)(X m)−1)+1)(Q +1)∑M
m=1 1B(b)(X m)−1

]

+ ÊS

[
B−1∑
b=1

∫
B(b)

∫
ν(d x,d y)

24L′

(
∑M

m=1 1B(b)(X m))

]

+ 12

Ê[1S ]
Ê

[ ∑
B∈B

∫
B

∫
ν(d x,d y)( inf

φ∈H
sup
x∈B

E
[|v(Y )−φ(Y )|2|X = x

]∧L′)

]

+ ÊS

[Ï
|v(y)− ṽ(x, y)|2(1−1A (y))ν(d x,d y)

]
,

for L′ := 2LQC 2
η,A + 2C 2

v,A , and ϑ(L′) a function depending on L′. Note that the set A is
introduced to avoid the restrictive assumption of v being bounded. It does not play a role
in the actual algorithm.

Proof. To prepare for our analysis, a more formal construction of the equal partition
technique needs to be introduced.

In practice, for samples (X m ,Y m)1≤m≤M and a measurable sorting function S :Rq →
R, the M different values can be ordered into,

S(X 1∗ ) ≤S(X 2∗ ) ≤ ·· · ≤S(X M∗
),

by simply putting {X 1∗ , · · · , X (M/B)∗ } into the first bundle, {X (M/B+1)∗ , · · · , X (2M/B)∗ } into
the second one, etc., assuming M can be divided by B for simplicity.

However, in order to conduct meaningful analysis, a measurable partition ofRq based
on the simulation cloud (X m)1≤m≤M is required. Thus for any simulation (X m)1≤m≤M

with {X 1∗ = x∗
1 , · · · , X M∗ = x∗

M }, we define

B(1) :=S−1((−∞,S(x∗
M/B )]),B(2) :=S−1((S(x∗

M/B ),S(x∗
2M/B )]), · · · ,

B(B) :=S−1(S(x∗
M−M/B ),∞)

and ∪B
b=1B(b) =Rq .

Therefore, B= {S−1((−∞,S(x1)]),S−1((S(x1),S(x2)]), · · · ,S−1((S(xB−1),∞))} if and
only if (X 1@

, X 2@
, · · ·X M @

) ∈ (S−1((−∞,S(x1))))M/B−1×{x1}×(S−1((x1, x2)))M/B−1×{x2}×
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· · ·× {xB−1}× (S−1((S(xB−1),∞)))M/B−1. The notation @ denotes any permutation of the
set {1,2, · · ·M }, noting that each sample is independent of the others and interchange-
able. This is measurable with respect to the sigma algebra generated by the simulation
cloud X m as there are finite permutations for fixed M and S is measurable.

Note that this setting is not unique for defining a workable partition and there may be
alternative definitions that may improve the analysis result. However, this is an intuitive
definition.

Assuming σ(B) to be the smallest sigma algebra to determine the partition, we no-
tice that it is smaller than the sigma algebra generated by the random samples X m ,
σ(B) ⊂σ(X m). This is because multiple realizations of the samples can lead to the same
partition. A simple thought experiment is to consider a fixed partition, and subsequently
move one interior sample within a bundle. If we conduct a new bundling with this new
set of samples, the partition will remain the same. Indeed, the samples within a bundle
are independent among each other and have the same distribution.

As for the actual analysis, we start by decomposing the error into different terms for
any given partition

B= {B(1), · · · ,B(B)} = {S−1((−∞,S(x1)]),S−1((S(x1),S(x2)]), · · · ,S−1((S(xB−1),∞))}.

In line with the Monte Carlo literature, we assume X i 6= X j , if i 6= j , andÏ
|v(y)− ṽ(x, y)|2ν(d x,d y)

≤ ∑
B∈B

∫
B

∫
|v(y)− ṽ(x, y)|21A (y)ν(d x,d y)+

Ï
|v(y)− ṽ(x, y)|2(1−1A (y))ν(d x,d y)

=
B∑

b=1

∫
B(b)

∫
ν(d x,d y)

(
||(v − ṽ)1A ||B(b),∞−2||(v − ṽ)1A ||B(b)\{xb },#

+2||(v − ṽ)1A ||B(b)\{xb },# −2||(v − ṽ)1A ||B(b),# +2||(v − ṽ)1A ||B(b),#

)2

+
Ï

|v(y)− ṽ(x, y)|2(1−1A (y))ν(d x,d y)

≤
B∑

b=1

∫
B(b)

∫
ν(d x,d y)

(
max{||(v − ṽ)1A ||B(b),∞−2||(v − ṽ)1A ||B(b)\{xb },#,0}

+2||(v − ṽ)1A ||B(b)\{xb },# −2||(v − ṽ)1A ||B(b),# +2||(v − ṽ)1A ||B(b),#

)2

+
Ï

|v(y)− ṽ(x, y)|2(1−1A (y))ν(d x,d y)

≤
B∑

b=1

∫
B(b)

∫
ν(d x,d y)3max{||(v − ṽ)1A ||B(b),∞−2||(v − ṽ)1A ||B(b)\{xb },#,0}2

+
B−1∑
b=1

∫
B(b)

∫
ν(d x,d y)12(||(v − ṽ)1A ||B(b)\{xb },# −||(v − ṽ)1A ||B(b),#)2

+ ∑
B∈B

12
∫
B

∫
ν(d x,d y)||(v − ṽ)1A ||2B,# +

Ï
|v(y)− ṽ(x, y)|2(1−1A (y))ν(d x,d y)
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=:
B∑

b=1

∫
B(b)

∫
ν(d x,d y)T1,B(b) +

B−1∑
b=1

∫
B(b)

∫
ν(d x,d y)T2,B(b)

+ ∑
B∈B

∫
B

∫
ν(d x,d y)T3,B +

Ï
|v(y)− ṽ(x, y)|2(1−1A (y))ν(d x,d y), (4.4)

with a slight abuse of notation, {xB } :=; above.
Note that the easiest way to conceptualize the term ||(v − ṽ)1A ||B(b)\{xb },# is that we

simply remove the sample that is used for defining the partition. Thus,

M∑
m=1

1B(b)\{xb }(X m) =
M∑

m=1
1B(b)(X m)−1.

This is done to ensure that all samples in the empirical norm || · ||B(b)\{xb },# are indepen-
dent of each other.

As the last term cannot be further simplified, we now focus on the first three terms.
The meaning of all error terms will be discussed in the next subsection.

The first term we study is T3,B , which represents the best possible approximation
from the space H to the target function under the empirical norm within the bundle. To
begin, within any bundle B(b) under any given partition B, it is obvious that

||1A (v − ṽ)||B(b),# ≤ ||v − ṽb ||B(b),# = min
φ∈H

||v −φ||B(b),#,

for any B(b). Only the ṽb term in the series of ṽ matters and ṽb is the function that min-
imizes the approximation difference under the empirical norm within the given bundle.

Alternatively, we may consider the following composite norm

sup
x∈B(b)

(
E
[
(f(Y ))2|X = x

]) 1
2 , (4.5)

for any given bundle B(b). For the sake of simplicity, we assume there exists an element
φB(b) within the space H such that v(·)−φB(b)(·) minimizes the norm, namely,

sup
x∈B(b)

E
[|v(Y )−φB(b)(Y )|2|X = x

]= inf
φ∈H

sup
x∈B(b)

E
[|v(Y )−φ(Y )|2|X = x

]
.

As φB(b) ∈ H , it is clear that under the empirical norm, we have

||1A (v − ṽ)||2B(b),# ≤ ||v − ṽb ||2B(b),# ≤ ||v −φB(b)||2B(b),# =
∑#B(b)

m=1 |v(Y b,m)−φB(Y b,m)|2
#B(b)

.

Without loss of generality, assume (X b,#B(b),Y b,#B(b)) is the bundle defining the sam-
ple as stated in the construction of an equal partition if b 6= B . Recalling that samples
within a bundle are i.i.d. given the partition, we can take the conditional expectation of
the empirical norm with respect to the position of (X b,#B(b),Y b,#B(b))1≤m≤#B(b)−1.

Ê
[
||1A (v − ṽ)||2B,#

∣∣∣σ(B), X b,1, X b,2, · · · , X b,#B(b)−1
]

≤
∑#B(b)

m=1 Ê
[ |v(Y b,m)−φB(Y b,m)|2∣∣σ(B), X b,1, · · · , X b,#B(b)−1

]
#B(b)
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=
∑#B(b)−1

m=1 E
[ |v(Y )−φB(Y )|2∣∣ X = X b,m ∈B(b)\{xb}

]+E[ |v(Y )−φB(Y )|2∣∣ X = xb
]

#B(b)

≤
∑#B(b)

m=1 supx∈B(b)E
[ |v(Y )−φB(Y )|2∣∣ X = x

]
#B(b)

= inf
φ∈H

sup
x∈B(b)

E
[ |v(Y )−φ(Y )|2∣∣ X = x

]
.

There are some details in the above calculation that require explanation. Note that the
boundary point information is included in σ(B), therefore we only calculate conditional
expectations with the remaining samples. For the last bundle B(B), the separation is not
necessary as no sample is used to define the bundle, but this does not alter the result. We
use the fact that each sample is independent within the bundle in the first equality.

Next, if the minimal element φB(b) does not exist, one has to adjust the derivation
above with a limiting argument. This means that by the definition of the infimum, one
can find a sequence of functions (v −φB(b),n)n∈Z+ , such that

sup
x∈B(b)

E
[|v(Y )−φB(b),n(Y )|2|X = x

]≤ inf
φ∈H

sup
x∈B(b)

E
[|v(Y )−φ(Y )|2|X = x

]+ 1

n
.

By repeating the above argument for each function in the sequence, replacing the infi-
mum in the proof by the corresponding upper bound and taking n to infinity (with the
eventual inequality), we arrive at the same conclusion.

Thereafter, if we consider the expectation of the empirical norm conditioning on
σ(B), we have

Ê
[
||1A (v − ṽ)||2B,#

∣∣∣σ(B)
]
=Ê

[
|Ê

[
||1A (v − ṽ)||2B,#

∣∣∣σ(B), X b,1, X b,2, · · · , X b,#B(b)−1
]∣∣∣σ(B)

]
≤ inf
φ∈H

sup
x∈B(b)

E
[ |v(Y )−φ(Y )|2∣∣ X = x

]
.

Note that this bound is defined on all given partitions and solely depends on the
partition but not on the choice of φB for any bundle B. Our calculation here is purely
within a bundle given the partition is known. Therefore, even if the minimum function
φB(b) or the sequence (φB(b),n)n∈Z+ is not unique, the actual choice of these functions
does not matter as long as they are picked in a consistent and measurable way.

Here, we derive a bound for the expectation of the weight summation T3,B in (4.4)
with respect to the simulation cloud, i.e.,

ÊS

[ ∑
B∈B

∫
B

∫
ν(d x,d y)T3,B

]

≤ 12ÊS

[ ∑
B∈B

∫
B

∫
ν(d x,d y)||v −φB ||2B,#

]

≤ 12

Ê[1S ]
Ê

[ ∑
B∈B

∫
B

∫
ν(d x,d y)Ê

[
||v −φB ||2B,#

∣∣∣σ(B)
]]

(4.6)

≤ 12

Ê[1S ]
Ê

[ ∑
B∈B

∫
B

∫
ν(d x,d y) inf

φ∈H
sup
x∈B

E
[|v(Y )−φ(Y )|2|X = x

]]
.
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In this inequality, we expand the denominator of our adjusted probability by also includ-
ing the rejected cases and applying the results above for each partition.

However, for an unbounded bundle B, it is possible to find an example such that
supx∈B E

[|v(Y )−φ(Y )|2|X = x
]=∞. An alternative bound is required to ensure that our

error bound is not trivial. Note that given the square norm |α(b)|2 ≤ L, we have

∀y,b, |ṽB(b)(y)1A (y)|2 ≤
(

Q∑
l=1

|αl (b)|2
)(

Q∑
l=1

|ηl (y)1A (y)|2
)
≤ LQ max

l=1...,Q
max
y∈A

|ηl (y)|2,

and

||(v − ṽ)1A ||2B,# =
∑M

m=1 1B(X m)|(v(Y m)−φB(Y m))1A |2∑M
m=1 1B(X m)

≤
∑M

m=1 1B(X m)(2|(v(Y m)1A |2 +2|φB(Y m))1A |2∑M
m=1 1B(X m)

≤
∑M

m=1 1B(X m)(2C 2
v,A +2LQC 2

η,A )∑M
m=1 1B(X m)

= L′.

We shall use this alternative bound in Equation (4.6) for any bundle B such that
supx∈B E

[|v(Y )−φ(Y )|2|X = x
]> L′. Combining the two error bounds, we have

ÊS

[ ∑
B∈B

T3,B

]
≤ 12

Ê[1S ]
Ê

[ ∑
B∈B

∫
B

∫
ν(d x,d y)( inf

φ∈H
sup
x∈B

E
[|v(Y )−φ(Y )|2|X = x

]∧L′)

]
.

Next, we consider the term T1,B in (4.4). This term concerns the difference between
the theoretical projection and the empirical regression function within each bundle.
Here we restate that S denotes the modified probability, based on the regression coef-
ficients, where A is a compact set defined with respect to Y only.

By taking conditional expectations with respect to σ(B), we have,

ÊS

[
B∑

b=1

∫
B(b)

∫
ν(d x,d y)T1,B(b)

]

= 1

Ê[1S ]
Ê

[
B∑

b=1

∫
B(b)

∫
ν(d x,d y)Ê[T1,B(b)1S |σ(B)]

]

= 1

Ê[1S ]
Ê

[
B∑

b=1

∫
B(b)

∫
ν(d x,d y) ×

ÊB(b)[1S 3max{||1A (v − ṽ)||B(b),∞−2||(v − ṽ)1A ||B(b)\{xb },#,0}2]
]

.

It is important that we condition on the smaller sigma algebra such that all samples
have an identical conditional distribution. If we can condition on the whole sigma alge-
bra generated by (X m)1≤m≤M , each Y m will have a different distribution depending on
the position of X m . Within each (given) bundle B(b), we may consider the two norms
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|| · ||B(b),∞ and || · ||B(b)\{xb },# as the theoretical and empirical L2 norms of a random pro-

cess satisfying the probability distribution PB(b) :=
∫
B(b)ν(d x,·)∫

B(b)

∫
ν(d x,d y)

and extend our nota-

tion for expectations to this measure. In other words, PB(b) is the conditional probabil-
ity of Y m given that X m is within the bundle. As only the samples within bundle B(b)
are considered in T1,B(b), we only have to consider the identically distributed samples
following PB(b). Thus, we simplify the notation with this measure.

Assume that
∑M

m=1 1B(b)\{xb }(X m) = N − 1 and let u > 864L′/(N − 1) be arbitrary, by
Theorem 11.2 in [10], we find

P̂B(b){3max{||1A (v − ṽ)||B(b),∞−2||(v − ṽ)1A ||B(b)\{xb },#,0}2 > u and event S is true}

≤P̂B(b){∃φ ∈ HL : ||1A (v −φ)||B(b),∞−2||(v −φ)1A ||B(b)\{xb },# >
p

u/3 and S is true}

≤P̂B(b){∃φ ∈ HL : ||1A (v −φ)||B(b),∞−2||(v −φ)1A ||B(b)\{xb },# >
p

u/3}

≤3ÊB(b)[N2(
p

2/3
p

u/24, HL,A ,Y 2(N−1)
B(b) )]exp

(
− (N −1)u

864L′

)
≤3ÊB(b)[N2(

p
L′/

p
N −1, HL,A ,Y 2(N−1)

B(b) )]exp

(
− (N −1)u

864L′

)
, (4.7)

where HL is the set of all functions in H whose coordinates with respect to the basis
(ηl )1≤l≤Q , have a Euclidean norm no greater than L and HL,A the set containing all func-
tions of the form 1A (φ− v), where φ belongs to HL . Again, since we condition only on
the partition, all samples within a bundle are i.i.d. and the condition for Theorem 11.2
in [10] is satisfied. In fact, this proof should work for all partitions for which the sam-
ples remain i.i.d. within a bundle. Note that the indicator for the event S is kept in the
first line to keep our regression function bounded, then we drop the indicator in the sec-
ond inequality to take advantage of the independent samples. Finally, YB(b) is a sample
following the conditional probability PB here.

Constant N2 in (4.7) is called the covering number and it is bounded by Lemma 9.2
and Theorem 9.4 of [10]:

N2(
p

L′/
p

N −1, HL,A ,Y 2(N−1))

≤3

(
2eL′

L′/(N −1)
log(

3eL′

L′/(N −1)
)

)VH+
L,A ≤ 3[3e(N −1)]

2VH+
L,A ,

where V denotes the Vapnik-Chervonenkis dimension, which represents the number of
elements in the largest set that can be shattered by a class of subsets in Rq . As the details
for the Vapnik-Chervonenkis dimension are beyond the scope of this thesis, here we
simply mention the results for its bound from [10] and show the necessary justification
for these results to be applied here. The reader is referred to section 9.4 of [10] for further
information on N2 and V , the meaning of shattering in this context and more.

Recalling the definition H+ from Section 4.1, we notice that VH+
L,A

≤ VH+
L

, which can

be shown by the following argument. Let (y, z) ∈ Rq ×R, if y 6∈ A and z ≥ 0, then (y, z) is
contained in none of the sets in H+

L,A and if y 6∈ A and z ≤ 0, then (y, z) is contained in

each set of H+
L,A . Hence, if H+

L,A shatters a set of points, then the x-coordinates of these

points must lie in A and H+
L also shatters this set of points.
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In addition, we have the fact that HL ⊂ H and observe that

H+ ⊆ {{(x, t ) :φ(x)+a0t ≥ 0} :φ ∈ H , a0 ∈R},

which is a linear vector space of dimension less than or equal to Q +1, thus Theorem 9.5
of [10] implies

VH+
L
≤Q +1.

It follows that, for any u > 864L′/(N −1), the probability under consideration is bounded

by 9[3e(N −1)]2(Q+1) exp
(
− (N−1)u

864L′
)

, and for any w > 864L′/(N −1),

Ê[T1,B(b)1S |σ(B),
M∑

m=1
1B(b)\{xb }(X m) = N −1]

≤w +9[3e(N −1)]2(Q+1)
∫ ∞

w
exp

(
− (N −1)t

864L′

)
d t

=w +9[3e(N −1)]2(Q+1) 864L′

N −1
exp

(
− (N −1)w

864L′

)
.

By setting,

w = 864L′

N −1
log

(
9[3e(N −1)]2(Q+1)) ,

and taking expectations with respect to σ(B), we find

ÊS

[
B∑

b=1

∫
B(b)

∫
ν(d x,d y)T1,B(b)

]

≤ϑ(L′)
Ê[1S ]

Ê

[
B∑

b=1

∫
B(b)

∫
ν(d x,d y)

(log(
∑M

m=1 1B(b)(X m)−1)+1)(Q +1)∑M
m=1 1B(b)(X m)−1

]
,

where one possible choice of ϑ is ϑ(L′) := 1728(log(27e)+1)L′. This can be checked by
simple algebra. Note that ϑ is independent of the number of samples in a bundle and
only depends on L′.

Finally, T2,B(b) is the technical term introduced by the definition of the partition B.
Consider any realization of the simulation cloud (X m ,Y m) and partition B, in particular,
there exist boundary defining samples (xb , yb) ∈ (X m ,Y m) for b = 1,2, · · · ,B − 1. Using
the inequality (

p
a −p

b)2 ≤ |a −b| and the definition of L′, we have

12(||(v − ṽ)1A ||B(b)\{xb },# −||(v − ṽ)1A ||B(b),#)2

≤12

∣∣∣∣∣
∑M

m=1 1B(b)\{xb }(X m)|(v(Y m)− ṽ(X m ,Y m)1A (Y m)|2∑M
m=1 1B(b)(X m)−1

−
∑M

m=1 1B(b)(X m)|(v(Y m)− ṽ(X m ,Y m)1A (Y m)|2∑M
m=1 1B(b)(X m)

∣∣∣∣∣
≤12×∣∣∣∣∣

∑M
m=1 1B(b)\{xb }(X m)(|(v(Y m)− ṽ(X m ,Y m)1A (Y m)|2 −|(v(ym)− ṽ(xm , ym)1A (ym)|2)

(
∑M

m=1 1B(b)(X m)−1)(
∑M

m=1 1B(b)(X m))

∣∣∣∣∣
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≤ 24L′

(
∑M

m=1 1B(b)(X m))
,

for b = 1,2, · · · ,B −1.
By substituting all the results above into Equation (4.4) we conclude the proof.

Remark 4.4. Implicitly, it is assumed in our proof that the sorting function used behaves
nicely such that there is no empty bundle or bundle with a few samples in our partition.
If this is not the case, these bundles need to be merged with other bundles in a consistent
way and the number of bundles needs to be adjusted accordingly. We omit this extra
complexity in favor of the presentation.

4.3.1. DISCUSSION ON THE ERROR BOUND
We shall discuss the meaning of all error terms in Theorem 4.4. Note that most discus-
sions here are in heuristic sense instead of rigorous analysis.

The last term in the sum ÊS
[Î |v(y)− ṽ(x, y)|2(1−1A (y))ν(d x,d y)

]
represents an

expectation with respect to an integration of the approximation error using the proba-
bility measure of (X ,Y ) outside a given compact set A for Y . In theory, for an increasing
series of compact sets A1 ⊂A2 ⊂ . . . ⊂AA ⊂Rq ,

lim
A→∞

Ï
|v(y)− ṽ(x, y)|2(1−1AA (y))ν(d x,d y) → 0,

since the original function and the approximant are both in L2(ν) and the dominating
convergent theorem. Again, the set A plays no role in the algorithm. This term is in-
troduced to reflect that only the area with high probability measure has strong impact
on a Monte Carlo approximation, thus, we can only consider the behavior of function v
in this area and do not impose strong conditions on v over the whole domain. In prac-
tice, we can find a big enough set A such that the last term is smaller than any preset
tolerated level. Otherwise, the probability distribution is too much spread out so that a
Monte-Carlo technique may not be a suitable approximation method.

The term 12
Ê[1S ]

Ê
[∑

B∈B
∫
B

∫
ν(d x,d y)(infφ∈H supx∈B E

[|v(Y )−φ(Y )|2|X = x
]∧L′)

]
can

be seen as the average of the best projection error among bundles and upper bounded by
L′. It concerns how close the original function and its projection onto the space spanned
by our basis are. This term should be controlled by increasing the number of bundles.
As the number of bundles increases, all the bundles converge to a point and the error
term becomes 12

Ê[1S ]
Ê
[
(infφ∈H E

[|v(Y )−φ(Y )|2|X ]∧L′)
]
, which is the average projection

error over the whole range of X . It is clear that Ê[1S ] might change when we increase
the number of bundles, thus the above analysis is by no mean rigorous. We will provide
comments on S at the end of this section.

The first error term is the bound for the estimation error based on the empirical norm
instead of the theoretical norm. This term can be controlled by simply increasing the
number of samples within each bundle such that this term is below a certain threshold.
Because low sample numbers imply high error bounds, if there are bundles in any parti-
tion which contain very few samples, they should be merged with other bundles or the
sorting function must be adapted.
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The second error term is just a technical term for constructing a measurable partition
and can be controlled by the number of samples in each bundle.

Therefore, the best way to set the parameters for the SGBM algorithm is to first fix the
number of samples in each bundle such that the first two terms in the error bound are
under a given threshold, then increase the number of bundles to control the projection
error. However, we cannot write a simple convergence rate for the combined error under
the current conditions.

4.3.2. DISCUSSION ON EVENT S
There is one final question remaining. The above argument heavily depends on L, which
is a user defined quantity, and the probability of S, the event that L2 norms of the regres-
sion coefficients are below threshold L. It is natural to ask if we can actually find a num-
ber L such that PS is bounded below, as our bound becomes trivial when 1

Ê[1S ]
tends to

infinity and it would be incredibly expensive to apply the algorithm if we reject most of
the simulations. In the following, we shall provide a heuristic argument for the conver-
gence of the regression coefficients within the bundle, therefore, there is a natural choice
of L depending on the target function itself and a hard cut off may be unnecessary. The
numerical experiments in the next section also back up this argument.

Once again, we consider Equation (4.3), where the regression coefficients within any
bundle B(b) satisfy

I>Iα(b) =I>v(Y b),

with

I>I =


∑#B(b)

i=1 (η1(Y b,i ))2 ∑#B(b)
i=1 η1(Y b,i )ηQ (Y b,i )

. . .∑#B(b)
i=1 ηQ (Y b,i )η1(Y b,i )

∑#B(b)
i=1 (ηQ (Y b,i ))2


and

I>v(Y b) =


∑#B(b)

i=1 η1(Y b,i )v(Y b,i )
...∑#B(b)

i=1 ηQ (Y b,i )v(Y b,i )

 .

When the number of samples within a bundle tends to infinity, it is easy to see that

1

#B(b)
I>I →

 E[η1(Y ))2|X ∈B(b)] E[η1(Y )ηQ (Y )|X ∈B(b)]
. . .

E[ηQ (Y )η1(Y )|X ∈B(b)] E[ηQ (Y ))2|X ∈B(b)]


and

1

#B(b)
I>v(Y b) →

 E[η1(Y )v(Y )|X ∈B(b)]
...

E[ηQ (Y )v(Y )|X ∈B(b)]

 .

So, the empirical system of equations "converges" to the system of equations of a pro-
jection. Therefore, as long as our basis is properly defined such that they remain linearly
independent for all bundles, this system of equations should be solvable with enough
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simulation paths. Moreover, since the regression coefficients should "converge" to the
theoretical projection coefficients, we could pick L depending on the L2 norm of v itself,
like, for example, two times its theoretical norm. Alternatively, when there are enough
samples within each bundle, we suspect that the regression coefficients simply "con-
verge" to the theoretical value and satisfy the bounded condition of regression in a nat-
ural way. Therefore, no actual rejection step in the algorithm is needed when there are
enough samples within the bundles. This proposition appears to be supported by our
numerical experiments.

However, there are multiple difficulties to incorporate the above argument into The-
orem 4.4. First, since equal partitioning is not a recursive partitioning scheme as de-
fined in [11], we cannot use a martingale argument on equal partitioning, limiting the
available tools. Secondly, as the partition changes when increasing the overall num-
ber of samples, the above "convergence" does not seem to be properly defined. Finally,
we would have to introduce a measure of convergence with respect to a matrix inverse,
which is beyond the scope of this work.

On the other hand, there is a possibility that when the number of samples within a
bundle is too small, the algorithm as a whole will fail to converge. Thus, it is beneficial
to remind a user of such possibility and put a safety check in place. Therefore, we keep
the derivation of Theorem 4.4 as a complete justification for SGBM. In practice, one can
either make sure that there are enough samples within each bundle and let L be infinity.
In this case, Theorem 4.4 no longer applies but we believe that the overall error will sat-
isfy a bound of similar form. Alternatively, one starts from a small L when running the
algorithm and increases L’s value until most tests are accepted. By these techniques, the
error bound from Theorem 4.4 remains valid.

4.4. ERROR ANALYSIS
A complete error description of the algorithm with respect to the application of SGBM
towards BSDEs will be derived in this section.

We wish to apply the theorem from the last section to establish an error bound for the
expectation of our approximation with respect to the selected simulation cloud. We need
to check that after rejecting the simulations that generate regression coefficients that are
"too large", our approximation functions are bounded in the recursion. We notice that
for any p ≤ P ,

|yR
p (x)| ≤ max{CM ,AL

√
2(1+C 2

π),Cg ,A } =: CY ,A

and

|zR
p (x)| ≤CM ,A L

√
2(1+C 2

π) =: CZ ,A

for all x in a compact set A . The constant Cπ is defined as maxk=0,...,N−1∆k . These
bounds can be proven by Assumption 4.1 and some simple inequalities. Furthermore,
we have ∀x ∈A ,

f R
p (x) := fp (yR

p (x), zR
p (x)) ≤C f +L f (CY ,A +CZ ,A ) =: C f ,A ,

which follows from the Lipschitz assumptions of f . Therefore, Theorem 4.4 applies.
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We denote by S the set of all simulation cloud values (X π,m
tp

)1≤m≤M
0≤p≤P

such that the Eu-

clidean norm of the regression coefficients at each time step in each bundle is bounded
by L, and the expectation is adjusted accordingly. With the application of Theorem 4.4,
we know that for any given compact set A ,

Êx
tp ,S

[
Ex

tp

[|yR
i+1(X π

ti+1
)− ỹR

i+1(X π
ti

, X π
ti+1

)|2]]
≤
ϑ(L′

y )

Êx
tp

[1S ]
Êx

tp

[
B∑

b=1

∫
B(b)

∫
ν(d x,d y)

(log(
∑M

m=1 1B(b)(X m)−1)+1)(Q +1)∑M
m=1 1B(b)(X m)−1

]

+ Êx
tp ,S

[
B−1∑
b=1

∫
B(b)

∫
ν(d x,d y)

24L′
y

(
∑M

m=1 1B(b)(X m))

]

+ 12

Êx
tp

[1S ]
Êx

tp

[ ∑
B∈B

∫
B

∫
ν(d x,d y)( inf

φ∈H
sup
θ∈B

Eθti

[|yR
ti+1

(X π
ti+1

)−φ(X π
ti+1

)|2]∧L′
y )

]

+ Êx
tp ,S

[
Ex

tp

[|yR
i+1(X π

ti+1
)− ỹR

i+1(X π
ti

, X π
ti+1

)|2(1−1A (X π
ti+1

))
]]=:Ξx

tp
(i , y).

and

Êx
tp ,S

[
Ex

tp

[| f R
i+1(X π

ti+1
)− f̃ R

i+1(X π
ti

, X π
ti+1

)|2]]
≤
ϑ(L′

f )

Êx
tp

[1S ]
Êx

tp

[
B∑

b=1

∫
B(b)

∫
ν(d x,d y)

(log(
∑M

m=1 1B(b)(X m)−1)+1)(Q +1)∑M
m=1 1B(b)(X m)−1

]

+ Êx
tp ,S

[
B−1∑
b=1

∫
B(b)

∫
ν(d x,d y)

24L′
f

(
∑M

m=1 1B(b)(X m))

]

+ 12

Êx
tp

[1S ]
Êx

tp

[ ∑
B∈B

∫
B

∫
ν(d x,d y)( inf

φ∈H
sup
θ∈B

Eθti

[| f R
ti+1

(X π
ti+1

)−φ(X π
ti+1

)|2]∧L′
f )

]

+ Êx
tp ,S

[
Ex

tp

[| f R
i+1(X π

ti+1
)− f̃ R

i+1(X π
ti

, X π
ti+1

)|2(1−1A (X π
ti+1

))
]]=:Ξx

tp
(i , f ),

where L′
y = 2LQC 2

η,A +2C 2
Y ,A and L′

f = 2LQC 2
η,A +2C 2

f ,A . Note that although the size of

Cπ := maxp=0,...,P−1∆p may affect multiple constants here, like CM ,A due to the probabil-
ity law, CY ,A and C f ,A by definition, however, Cπ → 0 would not make these constants
converge to 0. So it may be easier to replace the constant Cπ by T and consider these
constants independent of the discretization scheme. Therefore, we consider the refined
regression error to be independent of the discretization scheme.

The following proposition summarizes the error bound for our scheme:

∆zp (x) := zp (x)− zR
p (x); ∆yp (x) := yp (x)− yR

p (x).

Proposition 4.5. Given Assumption 4.1, and the time-grid π and an N -dimensional vec-
tor γ ∈ (0,+∞)N satisfying 12q(L2

f Rπ ∨ 1)(∆p + 1
γp

) ≤ 1, for all p ≤ P − 1, we have, for

0 ≤ p ≤ P,

Êx
tp ,S [|∆yp (x)|2]
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≤6qeT /4
P−2∑
i=p

(∆i +γ−1
i )Γi L2

f Ξ
x
tp

(i +1, y)+3eT /4
P−1∑
i=p

(∆i +γ−1
i )Γi

1

∆i
Ξx

tp
(i , y)

+3eT /4
P−1∑
i=p

(∆i +γ−1
i )Γi∆iΞ

x
tp

(i , f ), (4.8)

where Γi :=∏p−1
i=0 (1+γi∆i ), and

Êx
tp ,S

[
P−1∑
i=p

∆iE
x
tp

[|∆zi (X π
ti

)|2]Γi

]

≤(12q +3TeT /4)
P−1∑

i=p+1

(
∆i +γ−1

i

) 1

∆i
Ξx

tp
(i , y)Γi +6qTeT /4

P−2∑
i=p

(∆i +γ−1
i )Γi L2

f Ξ
x
tp

(i +1, y)

+ (12q +3TeT /4)
P−1∑

i=p+1

(
∆i +γ−1

i

)
∆iΞ

x
tp

(i , f )Γi +4
P−1∑
i=p

qΞx
tp

(i , y)Γi .

We will discuss the bound on ∆yk here only as the two bounds are quite similar in
structure. Note that the three terms within the sum at the right hand side of Equation
(4.8) are also of similar structure. They all sum up the refined regression error multi-
plied by some constant related to ∆i . The most problematic term is 3eT /4 ∑P−1

i=p (∆i +
γ−1

i )Γi
1
∆i
Ξx

tp
(i , y) as the coefficient is O (1). The value

∑P−1
i=p (∆i+γ−1

i )Γi
1
∆i

tends to infinity

as the number of time steps tends to infinity. Therefore, one must use the parameters M
and B to ensure the refined regression term is bounded by C∆1+ε

i for some constant C ,
such that the sum and the error are bounded by C C ε

π. This error plus the discretization
error between the continuous system and the discretized system would be the complete
error. So, in practice, one should ensure that P, M , M/B all tend together to infinity.

Proof. The proof is fairly similar to the one used in [9] with the necessary modifications
for our present algorithm.

We shall derive an a-priori estimate of the error propagation in the recursion steps
and we start with an estimate of ∆zp (x). Note that we add an extra term in the formula
which is equal to zero due to the expectation of the Brownian motion being equal to zero.
This term is added here to facilitate future steps of the proof. We have

|∆p∆zp (x)|2 =
(
Ex

tp

[(
∆yp+1(X π

tp+1
)−Ex

tp

[
∆yp+1(X π

tp+1
)
])
∆W >

p

]
+ Ex

tp

[(
yR

p+1(X π
tp+1

)− ỹR
p+1(X π

tp
, X π

tp+1
)
)
∆W >

p

])2

≤2
(
Ex

tp

[(
∆yp+1(X π

tp+1
)−Ex

tp

[
∆yp+1(X π

tp+1
)
])
∆W >

p

])2

+2
(
Ex

tp

[(
yR

p+1(X π
p+1)− ỹR

p+1(X π
tp

, X π
tp+1

)
)
∆W >

p

])2
.

The inequality follows from the inequality (
∑P

p=1 ap )2 ≤ ∑P
n=1 Pa2

p , which will be fre-
quently used in the proof and will not be specified again. By applying the Cauchy-
Schwarz inequality, we can derive bounds for the two terms separately, where∣∣∣Ex

tp

[(
∆yp+1(X π

tp+1
)−Ex

tp

[
∆yp+1(X π

tp+1
)
])
∆W >

p

]∣∣∣2
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≤q∆p

(
Ex

tp

[
(∆yp+1(X π

tp+1
))2

]
−

(
Ex

tp

[
∆yp+1(X π

tp+1
)
])2

)
,

and ∣∣∣Ex
tp

[(
yR

p+1(X π
tp+1

)− ỹR
p+1(X π

tp
, X π

tp+1
)
)
∆W >

p

]∣∣∣2

≤q∆pE
x
tp

[∣∣∣yR
p+1(X π

tp+1
)− ỹR

p+1(X π
tp

, X π
tp+1

)
∣∣∣2

]
.

Therefore,

∆p |∆zp (x)|2 ≤2q

(
Ex

tp

[
(∆yp+1(X π

tp+1
))2

]
−

(
Ex

tp

[
∆yp+1(X π

tp+1
)
])2

)
+2qEx

tp

[∣∣∣yR
p+1(X π

tp+1
)− ỹR

p+1(X π
tp

, X π
tp+1

)
∣∣∣2

]
. (4.9)

Combining the fact that (a+b)2 ≤ (1+γp∆p )a2+(1+γ−1
k ∆−1

p )b2 for (a,b) ∈R2, γp > 0,
and the Lipschitz property of f , one deduces with Equation (4.9) that, for 0 ≤ p ≤ P −2:

|∆yp (x)|2 ≤
(
Ex

tp

[
∆yp+1(X π

tp+1
)
]
+Ex

tp

[
yR

p+1(X π
tp+1

)− ỹR
p+1(X π

tp
, X π

tp+1
)
]

+Ex
tp

[
fp+1(yp+1(X π

tp+1
), zp+1(X π

tp+1
))− f R

p+1(X π
tp+1

)
]
∆p

+Ex
tp

[
f R

p+1(X π
tp+1

)− f̃ R
p+1(X π

tp
, X π

tp+1
)
]
∆p

)2

≤(1+γp∆p )
(
Ex

tp

[
∆yp+1(X π

tp+1
)
])2

+3
(
∆p +γ−1

p

)
∆p

[
L2

f E
x
tp

[
(∆yp+1(X π

tp+1
))2

]
+L2

f E
x
tp

[
(∆zp+1(X π

tp+1
))2

]
+ 1

∆2
p
Ex

tp

[
|yp+1(X π

tp+1
)− ỹp+1(X π

tp
, X π

tp+1
)|2

]
+Ex

tp

[
| f R

p+1(X π
tp+1

)− f̃ R
p+1(X π

tp
, X π

tp+1
)|2

]]
≤(1+γp∆p )

(
Ex

tp

[
∆yp+1(X π

tp+1
)
])2

+3(∆p +γ−1
p )∆p L2

f E
x
tp

[
(∆yp+1(X π

tp+1
))2

]
+6q(∆p +γ−1

p )L2
f Rπ

(
Ex

tp

[
(∆yp+2(X π

tp+2
))2

]
−Ex

tp

[(
Etp+1

[
∆yp+2(X π

tp+2
)
])2

])
+6q(∆p +γ−1

p )L2
f E

x
tp

[∣∣∣yR
p+2(X π

tp+2
)− ỹR

p+2(X π
tp+1

, X π
tp+2

)
∣∣∣2

]
+3(∆p +γ−1

p )∆p
1

∆2
k

Ex
tp

[
|yR

p+1(X π
tp+1

)− ỹR
p+1(X π

tp
, X π

tp+1
)|2

]
+3(∆p +γ−1

p )∆pE
x
tp

[
| f R

p+1(X π
tp+1

)− f̃ R
p+1(X π

tp
, X π

tp+1
)|2

]
, (4.10)

while

|∆yP−1(x)|2 ≤3
(
∆p +γ−1

p

)
∆p

[
1

∆2
p
Ex

tp

[
|yR

p+1(X π
tp+1

)− ỹR
p+1(X π

tp
, X π

tp+1
)|2

]



4.4. ERROR ANALYSIS

4

95

+Ex
tp

[
| f R

p+1(X π
tp+1

)− f̃ R
p+1(X π

tp
, X π

tp+1
)|2

]]
. (4.11)

Next, we define the following sequence

λp :=
[

1+
(
γp−1 + 1

4

)
∆p−1

]
λp−1, where λ0 := 1,

consider the sum of |∆yi (X π
ti

)|λi , from i = 1 to P −1, and take conditional expectations
with respect to Fp . Applying Equation (4.11) for the case p = P −1 and Equation (4.10)
otherwise, we have:

P−1∑
i=p

Ex
tp

[|∆yi (X π
ti

)|2λi
]≤P−2∑

i=p
λi+1E

x
tp

[(
∆yi+1(X π

ti+1
)
)2

]
+

P−2∑
i=p

6q(∆i +γ−1
i )L2

f λiE
x
tp

[∣∣yR
i+2(X π

i+2)− ỹR
i+2(X π

i+1, X π
i+2)

∣∣2
]

+
P−1∑
i=p

3(∆i +γ−1
i )∆i

1

∆2
i

λiE
x
tp

[|yR
i+1(X π

ti+1
)− ỹR

i+1(X π
ti

, X π
ti+1

)|2]
+

P−1∑
i=p

3(∆i +γ−1
i )∆iλiE

x
tp

[| f R
i+1(X π

ti+1
)− f̃ R

i+1(X π
ti

, X π
ti+1

)|2] .

By rearranging the terms, we have:

|∆yp (x)|2λp ≤
P−2∑
i=p

6q(∆i +γ−1
i )L2

f λiE
x
tp

[∣∣yR
i+2(X π

ti+2
)− ỹR

i+2(X π
ti+1

, X π
ti+2

)
∣∣2

]
+

P−1∑
i=p

3(∆i +γ−1
i )∆i

1

∆2
i

λiE
x
tp

[|yR
i+1(X π

ti+1
)− ỹR

i+1(X π
ti

, X π
ti+1

)|2]
+

P−1∑
i=p

3(∆i +γ−1
i )∆iλiE

x
tp

[| f R
i+1(X π

ti+1
)− f̃ R

i+1(X π
ti

, X π
ti+1

)|2] .

It follows from the simple inequality Γp ≤ λp = exp(
∑p

i=0 log(1+ (γi +0.25)∆i ) ≤ eT /4Γp

that, for all p ∈ {0, . . . ,P },

|∆yp (x)|2 ≤|∆yp (x)|2Γp

≤6qeT /4
P−2∑
i=p

(∆i +γ−1
i )Γi L2

f E
x
tp

[∣∣yR
i+2(X π

ti+2
)− ỹR

i+2(X π
ti+1

, X π
ti+2

)
∣∣2

]
+3eT /4

P−1∑
i=p

(∆i +γ−1
i )Γi

1

∆i
Ex

tp

[|yR
i+1(X π

ti+1
)− ỹR

i+1(X π
ti

, X π
ti+1

)|2]
+3eT /4

P−1∑
i=p

(∆i +γ−1
i )Γi∆iE

x
tp

[| f R
i+1(X π

ti+1
)− f̃ R

i+1(X π
ti

, X π
ti+1

)|2] . (4.12)

We can take expectations with respect to the simulation cloud and apply Theorem
4.4, which finishes the calculation for ∆y .
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Regarding the error term ∆z,
∑P−1

i=p ∆iE
x
tp

[
|∆zi (X π

ti
)|2

]
Γi is bounded from above by

P−1∑
i=p

∆iE
x
tp

[|∆zi (X π
ti

)|2]Γi

≤
P−1∑
i=p

2q
(
Ex

tp

[
(∆yi+1(X π

ti+1
))2]−Ex

tp

[(
Eti

[
∆yi+1(X π

ti+1
)
])2

])
Γi+1

+
P−1∑
i=p

2qEx
tp

[∣∣yR
i+1(X π

ti+1
)− ỹR

i+1(X π
ti

, X π
ti+1

)
∣∣2

]
Γi

≤2qΓPE
x
tp

[
(∆yP (X π

tP
))2]

+
P−1∑

i=p+1
2qΓi

(
Ex

tp

[
(∆yi (X π

ti
))2]− (1+γi∆i )Ex

tp
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Eti

[
∆yi+1(X π

ti+1
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+

P−1∑
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2qEx
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[∣∣yR
i+1(X π

ti+1
)− ỹR

i+1(X π
ti

, X π
ti+1

)
∣∣2

]
Γi ,

because of Equation (4.9), and from (4.10), we have

P−1∑
i=p

∆iE
x
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[|∆zi (X π
ti

)|2]Γi ≤6
P−1∑

i=p+1
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∆i +γ−1
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)
∆i L2

f E
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(∆yi+1(X π

ti+1
))2]Γi

+6
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Using the assumptions of the proposition statement, it follows that

P−1∑
i=p

∆iE
x
tp

[|∆zi (X π
ti

)|2]Γi

≤12
P−1∑

i=p+1
q

(
∆i +γ−1

i

) 1

∆i
Ex

tp

[|yR
i+1(X π

ti+1
)− ỹR
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Note that we may bound each individual term in the last sum with the estimate from
Equation (4.12) and by taking conditional expectations.
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This upper bound is independent of j . Summing up the remaining parts, the time incre-
ments, results in the full time length T . We have:
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Again, taking expectations with respect to the simulation cloud finishes the proof.

4.5. NUMERICAL EXPERIMENTS
In this section, numerical experiments are conducted for some selected examples. Be-
fore discussing these examples, we would specify the forward and backward discretiza-
tion scheme used in these experiments. In particular, we use a more general backward
scheme to show that our algorithm can be applied under general circumstances.
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4.5.1. FORWARD AND BACKWARD SCHEME
In this section, we conduct our numerical experiments with the Euler-Maruyama dis-
cretization scheme, which is a common standard in the literature.

Definition 4.6 (Euler-Maruyama scheme). The Euler-Maruyama scheme is defined by

X π
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= X π
tp
+µ(tp , X π

tp
)∆p +σ(tp , X π

tp
)∆Wp =: e(X π

tp
,∆Wp ).
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[
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)
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where σl is the l -th column of the matrix σ.

For example, for the one-dimensional monomial xr , r ∈ N and a forward process
discretized by the Euler-Maruyama scheme, we have
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[
∆Wp

∆p
(X π

tp+1
)r

]
=Ex
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[
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tp+1
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]
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The conditional expectations of polynomials are calculated directly by definition. We
have
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tp
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)0] =1;

Ex
tp
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and so on.
For the backward discretization, we apply the more general theta-scheme from Chap-

ter 1:
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where 0 ≤ θ1 ≤ 1 and 0 < θ2 ≤ 1.
Applying the SGBM algorithm to this general scheme, we have that the approximate

functions within the bundle at time p are defined by:

z(θ1,θ2),R
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2 (1−θ2)Ex
tp

[
η(X π

tp+1
)
]
βr,p+1(b)
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2 Ex
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]
(αp+1(b)+ (1−θ2)∆pγp+1(b)), r = 1, . . . ,d ;

y (θ1,θ2),R,0
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p(X π
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)
]
αk+1(b),

y (θ1,θ2),R,i
k (b, x) =∆kθ1 f (tk , x, y (θ1,θ2),R,i−1

k (x), z(θ1,θ2),R
k (x))+hk (b, x),

hk (b, x) = Ex
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[
p(X π

tk+1
)
]

(αk+1(b)+∆k (1−θ1)γk+1(b)), i = 1, . . . , I .

Note that a Picard iteration is performed at each time step for each bundle if the choice
of (θ1,θ2) results in an implicit scheme.

Different types of backward discretizations will be considered for Example 1.

4.5.2. EXAMPLE 1
This example is originally from [8] and has been used in Chapter 2. The considered FB-
SDE is given by{

d X t = dWt ,
dYt =−(Yt Zt −Zt +2.5Yt − sin(t +X t )cos(t +X t )−2sin(t +X t ))d t +Zt dWt .

We take the initial and terminal conditions x0 = 0 and YT = sin(XT +T ).
The exact solution is given by

(Yt , Zt ) = (sin(X t + t ),cos(X t + t )).

The terminal time is set to be T = 1 and (Y0, Z0) = (0,1). We use the set {1, x, x2} as the
regression base for this example. We apply equal partitioning bundling for all our tests
with the sample paths sorted by the value function x. As mentioned in Session 4.2.2, not
all assumptions set in this work are necessary for the basic SGBM algorithm to work. For
example, Assumption 4.1 is included to ensure the existence and uniqueness of the solu-
tion of the BSDE. In this example, even though the driver is not Lipschitz, one can check
that the above solution solves the BSDE with Itô’s formula, and the SGBM algorithm still
applies.

Table 4.1 shows the tests that we have run. Basically, our test cases can be placed into
two groups. Test cases 1a, 1b, 1c are tests for the explicit version of our algorithm, while
test cases 1d, 1e, 1f are for the Crank-Nicolson version. Within each group, the three tests
are run for identical test settings, except for the constant L, i.e., the pre-set limit for the
Euclidean norm so that we may check the influence of the factor L. Within each test, the
factors M , P and B are linked to a common factor J such that when J tends infinity, P , B
and M/B tend to infinity as well. This setting is inspired by our observation on the error
bound that all three factors should tend to infinity together to ensure the convergence
of the algorithm. However, the exact ratio between the three factors is from empirical
experience.
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Table 4.1: Test cases for Example 1

Test Case θ1 θ2 I M P B L
1a 0 1 - 22J 2J 2J 100
1b 0 1 - 22J 2J 2J 10000
1c 0 1 - 22J 2J 2J −
1d 0.5 0.5 4 22J 2J 2J 100
1e 0.5 0.5 4 22J 2J 2J 10000
1f 0.5 0.5 4 22J 2J 2J −

4.5.3. EXAMPLE 2: BLACK-SCHOLES EUROPEAN OPTION
The second example under consideration is the calculation of the price v(t ,St ) of a Eu-
ropean option under the d-dimensional Black-Scholes model by solving a FBSDE, which
has been a classical application of BSDEs. It has been introduced in classical papers, like
[12], and we have seen a one-dimensional Black-Scholes BSDE in Section 2.5.2. Here we
provide a brief review for the multidimensional Black-Scholes model with BSDEs.

We consider a market where the assets satisfy:

dSi ,t = µ̄i Si ,t d t + σ̄i Si ,t dωi ,t , 1 ≤ i ≤ d ,

where ωt is a correlated d-dimensional Wiener process, with

dωi ,t dω j ,t = ρi j d t .

The parameters ρi j form a symmetric matrix ρ,

ρ =


1 ρ12 ρ13 · · · ρ1q

ρ21 1 ρ23 · · · ρ2q
...

...
...

...
ρq1 ρq2 ρq3 · · · 1

 ,

and we assume it is invertible. By performing a Cholesky decomposition on ρ such that
CC> = ρ, where C is a lower triangular matrix with real and positive diagonal entries, we
may relate the correlated and standard Brownian motions, as follows,

ωt =CWt .

Along the line of reasoning in [13] and similar to Section 2.5.2, we assume the finan-
cial market is complete, there is no trading restriction and a derivative can be perfectly
hedged. To derive the corresponding pricing BSDE for a European option with termi-
nal payoff g (ST ), we construct a replicating portfolio Yt , containing mi ,t of asset Si ,t and
bonds with risk-free return rate r̄ . Applying the self-financing assumption, the portfolio
follows the SDE:

dYt =−(−r̄ Yt −
d∑

i=1
mi ,t (µ̄i − r̄ )Si ,t )d t +

d∑
i=1

mi .t σ̄i Si dωi ,t .
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If we set Zt = (m1,t σ̄1S1,t , . . . ,md ,tσd Sd ,t )C, then (Y , Z ) solves the BSDE,{
dYt =−

(
−r̄ Yt −ZtC

−1
(
µ̄−r̄
σ̄

))
d t +Zt dWt ;

YT = g (ST ),

where
(
µ̄−r̄
σ̄

)
=

(
µ̄1−r̄
σ̄1

, · · · ,
µ̄q−r̄
σ̄q

)>
.

We test our algorithm for the next two cases.

EXAMPLE 2.1: ARITHMETIC BASKET PUT OPTION

In this numerical test, we use the 5-dimensional example from [14], which is designed
as a tractable representation for the German stock index DAX at that time. All µ̄i are
assumed to be r̄ here. The volatilities are given by

(σ̄1, σ̄2, σ̄3, σ̄4, σ̄5) = (0.518,0.648,0.623,0.570,0.530),

while the correlations ρ are given by

ρ =


1.00 0.79 0.82 0.91 0.84
0.79 1.00 0.73 0.80 0.76
0.82 0.73 1.00 0.77 0.72
0.91 0.80 0.77 1.00 0.90
0.84 0.76 0.72 0.90 1.00

 .

We would consider a European weighted basket put option for T = 1 year, with the
payoff function g given by

g (S) =
(

1−
5∑

i=1
wi Si

)+
,

where (w1, w2, w3, w4, w5) = (38.1,6.5,5.7,27.0,22.7). The risk free interest rate is r̄ = 0.05
and all the stocks have starting value 0.01. The reference price is given as 0.175866 in [14].

We perform the equal-partitioning bundling technique and sort the paths in differ-
ent bundles according to the ordering of the value

∑5
i=1 wi Sm

i ,tp
. The regression basis is

chosen to be ηl (x) = (∑5
i=1 wi xi

)l−1
for l = 1, . . . ,Q.

Table 4.2 shows the tests that we have run. In these tests, we keep most of the param-
eters fixed but vary the number of bundles. We test our algorithm for the explicit scheme
with a second-order regression basis and the Crank-Nicolson scheme with a third-order
regression basis. The change of basis is made to test the impact of the regression basis
to our algorithm. We just keep these two sets of tests to demonstrate the impact of the
number of bundles.

Table 4.2: Test cases for Example 2.1

Test Case θ1 θ2 I M P B L Q
2.1a 0.5 0.5 4 212 10 22J - 3
2.1b 0 1 - 212 10 22J - 2
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EXAMPLE 2.2: GEOMETRIC BASKET PUT OPTION

Here we also consider the problem of pricing q-dimensional geometric basket options
with initial state S0 = (40, . . . ,40) ∈ Rq ; strike K = 40; risk-free interest rate r̄ = 0.06;
volatility σ̄i = 0.2, i = 1, . . . ,d ; correlation ρi j = 0.25, i , j = 1, . . . ,d , i 6= j ; and maturity
T = 1.0. The final payoff function is given by

g (S) =
K −

(
d∏

i=1
Si

) 1
d

+

.

This is the same setting as in [4] but for European options instead of Bermudan options.
We again use the equal-partitioning technique and sort the paths in different bundles

according to the ordering of the values
(∏d

i=1 Sm
i ,tp

) 1
d . The regression basis is chosen to

be ηl (x) = (∏d
i=1 xi

) l−1
d for l = 1,2,3.

Since the geometric product of a geometric Brownian motion remains a geometric
Brownian motion, the analytic solution can be found using Black-Scholes formula and
any other classical pricing method.

Table 4.3 shows the tests that we have run. In these sets of tests, we fixed all the
parameters but change the number of stocks in our test. This example is used to test the
scalability of our methodology. Tests are performed for both explicit and Crank-Nicolson
schemes.

Table 4.3: Test cases for Example 2.2

Test Case θ1 θ2 I M P B L
2.2a 0 1 - 212 20 16 -
2.2b 0.5 0.5 4 212 20 16 -

4.5.4. RESULTS
The results are given as the average values of 10 separated runs of the algorithm.

We first consider the results of the explicit version of our algorithm applied to Exam-
ple 1, namely test cases 1a, 1b and 1c, in Table 4.4. This test can be seen as a proof of
concept. As mentioned, we design the test in such a way that the number of steps P , the
number of bundles B and the ratio M/B all tend to infinity. As expected, our algorithm
converges under this setting. Moreover, the total variation of the absolute errors among
each successful run converges with respect to J too, as the reader can read from the sec-
ond part of Table 4.4. It is defined as the sum of the individual differences between the
Monte Carlo result of each run (which is not rejected) and the analytic solution, divided
by the total number of successful runs.

While we have not shown the proof of convergence for the Crank–Nicolson scheme,
where θ1 = θ2 = 0.5, our numerical tests for test cases 1d, 1e, 1f, in Table 4.5, suggest that
it works well in our framework.

A specific point of interest is the impact of factor L introduced in Section 4.3 for the
samples selection. It can be seen in Table 4.5 that when the number of paths or the
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Table 4.4: Test result for Example 1 with explicit scheme.

|Y0 − y (θ1,θ2),R
0 (x0)|

J 2 3 4 5 6 7 8
1a 0.0235 0.204 0.0469 0.0571 0.0266 0.0182 0.0162
1b 0.184 0.178 0.0988 0.0302 0.0288 0.0196 0.00576
1c 0.416 0.144 0.104 0.0466 0.0181 0.0192 0.00984

Total Variation/Successful Run
J 2 3 4 5 6 7 8

1a 0.282 0.204 0.0810 0.0571 0.0273 0.0182 0.0162
1b 0.310 0.178 0.0989 0.0446 0.0288 0.0204 0.00795
1c 0.601 0.157 0.104 0.0547 0.0194 0.0192 0.0118

Table 4.5: Test result for Example 1 with Crank–Nicolson scheme

|Y0 − y (θ1,θ2),R
0 (x0)|

J 2 3 4 5 6 7 8
1a 0.00534 0.0326 0.181 0.0258 0.00604 0.0206 NA
1b 3.68 0.246 0.349 0.0692 0.0129 0.00137 0.00241
1c 4.68×108 3.52×10137 1.08×1044 0.0511 0.00505 0.0117 0.00305

Total Variation/Successful Run
J 2 3 4 5 6 7 8

1a 0.235 0.0326 0.181 0.0258 0.0126 0.0206 NA
1b 4.57 0.376 0.349 0.0756 0.0146 0.0125 0.0109
1c 4.68×108 3.52×10137 1.08×1044 0.0583 0.0209 0.0143 0.00789

bundles are few, a smaller value of L preserves the stability of our algorithm. In test case
1d , where the factor L is relatively small, our algorithm rejected all tests for J = 8. One
of the explanations is that the regression coefficients converge to the analytic projection
coefficients on the basis space but the norm of these analytic coefficient is greater than
L. The effect of the factor L actually can be seen in Table 4.4 too. Some runs for test case
1a were rejected when J = 8 and the result for J = 8 is worse than either 1b or 1c. On
the contrary, if we remove the restriction on L altogether, the results are non-satisfactory
when the value of J is low but converge when the number of time steps and samples
are high enough. Heuristically, the regression coefficients should converge to the actual
projection coefficients on the basis space, which results in a function that is bounded
in a compact set. This in turns satisfies the conditions of the proof of convergence with
respect to the regression. Although it may look like we can adjust L in the same time as
other algorithm parameters in order to achieve the optimal result, we should still note
that L is model dependent and there is no clear way to figure out the best link of L with
the simulation parameters. It remains important to use L as a warning system.

Next, we shall move on to the result for the more practical and higher-dimensional
Example 2. The results for Example 2.1 in Table 4.6 show that our method can be easily
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applied to a practical problem.

Table 4.6: Test result for Example 2.1

|Y0 − y (θ1,θ2),R
0 (x0)|

J 0 1 2
2.1a 2.03×10−3 2.26×10−3 1.99×10−3

2.1b 2.93×10−3 1.89×10−3 2.22×10−4

With respect to the problem of dimensionality, we can check the results in Table 4.7.
Since the analytic solution is known to this problem, we compare our result to the actual
value. It can be seen that under our choice of bundling and regression basis, the accuracy
of our method is similar across all choices of problem dimensions. This suggested that
with appropriate setting, our algorithm can easily scale up to tackle high-dimensional
problems.

Table 4.7: Test result for Example 2.2

|Y0 − y (θ1,θ2),R
0 (x0)|

Stock dim. 1 2 3 4 5
2.2a 6.55×10−3 7.30×10−3 6.68×10−3 8.04×10−3 7.13×10−3

2.2b 5.19×10−3 6.95×10−3 6.40×10−3 6.95×10−3 7.49×10−3

Stock dim. 6 7 8 9 10
2.2a 6.99×10−3 7.51×10−3 6.93×10−3 7.00×10−3 7.57×10−3

2.2b 7.20×10−3 7.16×10−3 7.09×10−3 7.20×10−3 6.76×10−3

Stock dim. 11 12 13 14 15
2.2a 6.95×10−3 7.40×10−3 7.53×10−3 7.14×10−3 7.14×10−3

2.2b 8.46×10−3 7.14×10−3 7.63×10−3 7.90×10−3 7.25×10−3

More generally, all the results from Example 2 suggest that linking the bundling cri-
terion and the regression basis to the terminal condition can deliver an accurate algo-
rithm. Adapting our algorithm to a specific problem to improve the performance could
be a promising direction of further research. In fact, the choice of basis itself deserves
further study. Even in our localised setting, regression with respect to the linear basis
scheme fails to converge for Example 1. A more sophisticated way to pick the regression
basis may be important to put our algorithm into actual applications.

To sum up, we have developed a new algorithm for approximating BSDEs based on
SGBM and our numerical tests showed that this new algorithm can deliver accurate es-
timation results.

REFERENCES
[1] K. W. Chau and C. W. Oosterlee, Stochastic grid bundling method for backward

stochastic differential equations, International Journal of Computer Mathematics
96, 2272 (2019).

[2] S. Jain and C. W. Oosterlee, The stochastic grid bundling method: Efficient pricing

https://doi.org/10.1080/00207160.2019.1658868
https://doi.org/10.1080/00207160.2019.1658868


REFERENCES

4

105

of Bermudan options and their greeks, Applied Mathematics and Computation 269,
412 (2015).

[3] F. Cong and C. W. Oosterlee, Pricing Bermudan options under Merton jump-
diffusion asset dynamics, International Journal of Computer Mathematics 92, 2406
(2015).

[4] A. Leitao and C. W. Oosterlee, GPU acceleration of the stochastic grid bundling
method for early-exercise options, International Journal of Computer Mathematics
92, 2433 (2015).

[5] C. S. L. De Graaf, Q. Feng, D. Kandhai, and C. W. Oosterlee, Efficient computation
of exposure profiles for counterparty credit risk, International Journal of Theoretical
and Applied Finance 17, 1450024 (2014).

[6] P. Glasserman and B. Yu, Simulation for American options: Regression now or re-
gression later? in Monte Carlo and Quasi-Monte Carlo Methods 2002: Proceedings
of a Conference held at the National University of Singapore, Republic of Singa-
pore, November 25–28, 2002, edited by H. Niederreiter (Springer Berlin Heidelberg,
Berlin, Heidelberg, 2004) pp. 213–226.

[7] B. Bouchard and X. Warin, Monte-carlo valuation of american options: Facts and
new algorithms to improve existing methods, in Numerical Methods in Finance: Bor-
deaux, June 2010, edited by R. A. Carmona, P. Del Moral, P. Hu, and N. Oudjane
(Springer Berlin Heidelberg, Berlin, Heidelberg, 2012) pp. 215–255.

[8] W. Zhao, Y. Li, and G. Zhang, A generalized θ-scheme for solving backward stochastic
differential equations, Discrete and Continuous Dynamical Systems - Series B 17,
1585 (2012).

[9] E. Gobet and P. Turkedjiev, Linear regression MDP scheme for discrete backward
stochastic differential equations under general conditions, Mathematics of Compu-
tation 85 (2016).

[10] L. Györfi, M. Kohler, A. Krzyzak, and H. Walk, A Distribution-Free Theory of Non-
parametric Regression, Springer Series in Statistics (Springer, 2002).

[11] L. Gordon and R. A. Olshen, Almost surely consistent nonparametric regression from
recursive partitioning schemes, Journal of Multivariate Analysis 15, 147 (1984).

[12] N. El Karoui, S. G. Peng, and M. C. Quenez, Backward stochastic differential equa-
tions in finance, Mathematical Finance 7, 1 (1997).

[13] M. J. Ruijter and C. W. Oosterlee, A Fourier cosine method for an efficient computa-
tion of solutions to BSDEs, SIAM Journal on Scientific Computing 37, A859 (2015).

[14] C. Reisinger and G. Wittum, Efficient hierarchical approximation of high-
dimensional option pricing problems, SIAM Journal on Scientific Computing 29,
440 (2007).

http://doi.org/10.1016/j.amc.2015.07.085
http://doi.org/10.1016/j.amc.2015.07.085
http://dx.doi.org/10.1080/00207160.2015.1070838
http://dx.doi.org/10.1080/00207160.2015.1070838
http://dx.doi.org/10.1080/00207160.2015.1067689
http://dx.doi.org/10.1080/00207160.2015.1067689
http://www.worldscientific.com/doi/abs/10.1142/S0219024914500241
http://www.worldscientific.com/doi/abs/10.1142/S0219024914500241
http://dx.doi.org/ 10.1007/978-3-642-18743-8_12
http://dx.doi.org/ 10.1007/978-3-642-18743-8_12
http://dx.doi.org/ 10.1007/978-3-642-18743-8_12
http://dx.doi.org/10.1007/978-3-642-25746-9_7
http://dx.doi.org/10.1007/978-3-642-25746-9_7
http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=7216
http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=7216
https://doi.org/10.1090/mcom/3013
https://doi.org/10.1090/mcom/3013
https://www.springer.com/gp/book/9780387954417
https://www.springer.com/gp/book/9780387954417
https://doi.org/10.1016/0047-259X(84)90022-8
https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-9965.00022
http://dx.doi.org/10.1137/130913183
http://dx.doi.org/10.1137/060649616
http://dx.doi.org/10.1137/060649616




5
AN SGBM-XVA DEMONSTRATOR:

A SCALABLE PYTHON TOOL FOR

PRICING XVA

In this chapter, we develop a Python demonstrator for pricing total valuation adjustment
(XVA) based on the stochastic grid bundling method (SGBM) developed in Chapter 4.
The motivation for this work is basically two-fold. On the application side, by focusing
on a particular financial application of BSDEs, we can show the potential of using SGBM
on a real-world risk management problem. On the implementation side, we explore the
potential of developing a simple yet highly efficient code with SGBM by incorporating
CUDA Python into our program.

5.1. INTRODUCTION
This work can be seen as a follow-up of our theoretical research on the stochastic grid
bundling method (SGBM) for BSDEs in Chapter 4. Here, we will study the practical side
by developing a demonstrator in Python, where we shall also make use of computing on
a Graphics Processing Unit (GPU) in order to improve the scalability, and make use of the
CUDA Python package. CUDA Python is a recently open to public programming tool,
which was developed by Anaconda. It has become freely available at the end of 2017,
being previously a commercial software. This programming tool carries the promise of
combining fast development time for Python coding with the high efficiency of GPU
computing.

Another focus of this work is the application of BSDEs in financial risk management,
where we would like to demonstrate the practical opportunities for efficient BSDE solv-
ing software. We choose the modeling of the variation margin and the close-out value
within risk management, in the form of BSDEs, as the main test problem. In this work,

This chapter is based on the article ’An SGBM-XVA demonstrator: a scalable Python tool for pricing XVA’, to
appear in Journal of Mathematics in Industry.
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we work under a complete market assumption which includes counterparty risk and
margin requirements, and develop a numerical solver for XVA.

A Python demonstrator for solving XVA pricing problems with the SGBM algorithm
with GPU computing is the main result of this study. The strength of this package is its
scalability with respect to the dimensionality of the underlying stock price processes.
While the demonstrator is designed for a specific problem setting, because of the gen-
eral framework with BSDEs and SGBM, the package could easily be transformed into a
general solver for BSDEs and used for other financial problems.

This chapter is organized as follows. Section 5.2 describes the programming lan-
guage, the application of parallel computing with SGBM, the financial setting for our
SGBM-XVA demonstrator, and other technical details, while some numerical tests are
performed in Section 5.3. Concluding remarks, possible extensions and outlook are
given in Section 5.4.

5.2. THE SGBM-XVA DEMONSTRATOR
In order to test and analyze the applicability and practicality of the SGBM algorithm in
the BSDE-based financial model framework, we have created an SGBM-XVA demonstra-
tor which computes XVA, i.e. a value of great interest in modern risk management, with
the algorithm introduced in the previous chapter. We make use of the Python program-
ming language and the CUDA Python package for the development of this SGBM-XVA
demonstrator. In this section, we address the programming tools that we have used, the
basic financial setting for this problem and the design of our code.

5.2.1. GPU COMPUTATION: PARALLEL SGBM
In order to improve the efficiency of the SGBM for BSDEs algorithm, we would make use
of GPU acceleration in our demonstrator. This idea has been successfully implemented
for the SGBM algorithm for early-exercise options in [1]. The framework of parallel com-
putation from [1] can also be used here. In this framework, we divide the SGBM algo-
rithm in two stages, namely, the forward simulation stage and the backward recursion
approximation stage. In this subsection, we briefly describe how parallel GPU comput-
ing is used in each stage.

In the forward simulation stage, we simulate independent samples of the stock price
models 1 from the initial time t0 to the expiration date T as defined by the problem.
Moreover, we can already pre-compute all values of interest for the backward step that
are related to the stock prices and store them in the memory. These values of interest
include the sorting parameter used for bundling, the basis function values, the expecta-
tions of the basis functions and the terminal values. Since the generation of each sample
is independent of the other samples and a huge amount of samples may be needed for
an accurate Monte Carlo simulation, this stage is particularly suitable for parallel com-
puting. Also note that after the calculation of the values of interest, the actual stock paths
(Stπp )0≤p≤P can be discarded in the GPU, as they are not required anymore in the back-
ward step.

1These are the forward processes in the terminology of Chapter 4. They are denoted as S instead of X in this
chapter.
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Figure 5.1: Flowchart for the backward calculation within a time step.

The second stage is the backward approximation stage. From the discretization of
the BSDE, we notice that the calculation in time-wise direction should process sequen-
tially, i.e., starting from the terminal time and going backward along the time direction.
However, within each time step, there are many independent processes that are well suit-
able for parallel computing. Within each time step, the data (i.e. the values of interest) is
separated into different non-overlapping bundles and the computations in the different
bundles are independent of each other. Within a bundle, multiple regression steps on
different variables (Y , Z , f , . . .) need to be completed. For a graphical representation of
the computation within each time step, we refer to Figure 5.1. As each regression within
the time step is independent, we can also perform these computations simultaneously.
Finally, in order to reduce the overall volume of memory transfers, only the information
for the current time point is transferred to the GPU.

5.2.2. PROGRAMMING LANGUAGE

Python is the programming language of choice for this project as it is a popular tool
in the financial industry nowadays. Being a high-level programming language, Python
is easy to develop and particularly useful for scripting because of its easy to write syn-
tax and grammar. These properties are especially useful for the financial industry, as
practitioners need to constantly monitor and adapt their models to the changing mar-
kets. Moreover, Python has been one of the dominating programming languages in data
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science with its widely available packages. Therefore, we develop our algorithm under
the Python framework. However, Python is an interpreted programming language, so,
its performance is not as strong as a compiled language. One of our focusses of study is
therefore the balance between rapid development and actual computation performance
which can be achieved by Python.

One of the effective techniques for improving the computational efficiency of Python
is to pre-compile parts of the code, for example, with the help of the Numba package.
This technique has been adopted in our SGBM-XVA demonstrator. In order to further
improve the efficiency of our algorithm, we apply parallel GPU computing as stated in
the last subsection. The use of GPUs has been a major development in scientific com-
puting. Along with the computing platform CUDA, the GPU provides a high potential for
computational speed-up. With more than hundred threads (the basic operational units
within CUDA) in a typical GPU, repetitive function computations can be dedicated to
various treads to be run in parallel. It will greatly reduce the computational time.

In this work, we use the CUDA Python packages to incorporate GPU programming
into Python. CUDA Python is made out of Python packages from Continuum Analytics,
that allow a user to make use of CUDA within the native Python syntax. The tool consists
of two main parts: a Numba compiler and the pyculib library. The Numba compiler
transforms a native Python code with only supported features into a CUDA kernel or a
device function with only a function decorator. This feature enables GPU computing
in Python without the need for the programmer to learn a new language. The pyculib
library [2] is a collection of several numerical libraries, that provide functions for random
number generation, sorting, linear algebra operations and more. This set of tools has
been previously included in a commercial software, but it has become open source since
2017.

Another benefit of using CUDA Python is in terms of an automatic memory transfer.
In a GPU computing framework, it is often necessary to transfer data between the CPU
and GPU memory space. In this tool, a programmer can either manage the transfer of
memory for better control of GPU memory usage and the bandwidth of memory transfer
between CPU and GPU, or let the platform handle it automatically, again simplifying the
code development.

The main down-side of this tool is that so far it only supports certain functions from
the native Python and Numpy packages. Some of the well-optimized packages in linear
algebra are not available for the GPU, and some of the Python code has to be rewritten
into a supported version. However, using the package still requires less adaptation effort
as compared to the incorporation of other compiled programming languages, like C,
into a Python code. As we will discuss later, this tool delivers a great improvement in
efficiency in some areas.

5.2.3. FINANCIAL TEST CASE: TOTAL VALUATION ADJUSTMENT (XVA)
Next, we shall introduce the test problem for our SGBM-XVA demonstrator. The main
goal here is to show that BSDEs and SGBM can be used to solve financial total valuation
adjustment (XVA) problems in risk management.

In short, we consider a financial market where the bank is selling derivatives to a
counterparty, but either the bank or the counterparty may default before expiry. There-
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fore, a variation margin has to be posted as collateral which will be used to settle the ac-
count when one party defaults. In this market, the funding rate for each financial prod-
uct may be different, as well as the deposit rate for a risk-free account and the funding
rate through bonds. The goal of this model is to compare the price of a financial portfo-
lio with and without counterparty risk. The difference between these two prices is called
the total value adjustment.

We use the standard multi-dimensional Black-Scholes model introduced in Chapter
4 for the asset dynamics and we use a simplified version of the dynamics for our financial
market, as in [3]. Within this setting, we take into account the possibility that both par-
ties, in an over-the-counter financial contract, may default, also we include the exchange
of collateral, a close-out exchange in the case of a default and the usage of a repurchas-
ing agreement (repo) for position funding. While this model is definitely more realistic
than the classical financial derivative pricing theory (where one can borrow and lend
freely with negligible cost) by taking into account the counterparty risk, this model still
leaves out some parts of the financial deals, like regulatory capital or haircuts that apply
to collateral. We select this model as a balance between a relatively realistic model and
the tractability for the equations involved. The specific SGBM algorithm can be easily
generalized to other models, as described in the outlook section.

Next, we introduce the mathematical model for our asset prices and the default events,
as well as the notations that we use. Subsequently, we present the fundamental equa-
tions that we are solving in our demonstrator. Detailed financial interpretation as well
as the model derivation will be left out and readers are referred to [3] for the description
of this XVA model.

THE XVA MODEL

In this model, we take on a bank’s perspective onto risk management. This perspective
focuses on a non-centrally cleared financial derivative on underlying assets S, which are
traded between the bank and its client and both parties may default. However, the de-
fault will not affect the underlying assets S.

Before we proceed to the BSDE description, which we are going to compute in the
SGBM-XVA demonstrator, we introduce the meaning and financial background of the
different terms involved.

As in Chapter 4, Si denotes the underlying i -th asset, which follows the standard
Black-Scholes model under our assumptions. Its dynamics are defined by the SDE:

dSt ,i = µ̄i St ,i d t + σ̄i St ,i dωt ,i , 1 ≤ i ≤ d ,

where ωt is a correlated d-dimensional Wiener process, where

dωt ,i dωt , j = ρi j d t .

The constant vectors µ̄ = (µ̄1, . . . , µ̄d )> and (σ̄1, . . . , σ̄d )> represent respectively the drift
rate and the standard deviation of the financial assets. The parameters ρi j form a sym-
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metric correlation matrix ρ,

ρ =


1 ρ12 ρ13 · · · ρ1d

ρ21 1 ρ23 · · · ρ2d
...

...
...

...
ρd1 ρd2 ρd3 · · · 1

 ,

which is invertible under our assumptions. We can relate the correlated Brownian mo-
tion ω to a standard, independent d-dimensional Brownian motion W by performing a
Cholesky decomposition on ρ. They satisfy the equality

Bt =CWt ,

where C is a lower triangular matrix with real and positive diagonal entries, and CC> = ρ.
The processes J B and JC are used to model the events of default for each party in the

transaction. Mathematically, they are defined as counting processes,

J B
t = 1τB≤t ,

and
JC

t = 1τC≤t ,

where τB and τC are stopping times, denoting the random default times of the bank
and the counterparty, respectively. The processes are assumed to have stochastic, time-
dependent intensities, λB , λC , i.e.

λB
t d t = E[d J B

t |Ft−]

and
λC

t d t = E[d JC
t |Ft−].

Next, we discuss the financial derivatives traded within this model, where we use g to
denote the terminal payoff for the portfolio. To mitigate counterparty risk, the variation
margins, X , need to be computed for the two parties. As in [3], the values X are based
on the market value of the financial product, and they are computed and re-adjusted
frequently. When X > 0, the counterparty is posting collateral with the bank.

When one party in the financial contract defaults, the contract position needs to be
closed. We denote the portfolio value at default (at time τ= τB ∧τC ) by θτ, and it is given
by

θτ :=1τC<τB θC
τ +1τB<τC θB

τ

:=1τC<τB (Xτ+RC (Mτ−Xτ)++ (Mτ−Xτ)−)

+1τB<τC (Xτ+ (Mτ−Xτ)++RB (Mτ−Xτ)−),

where RC , RB ∈ [0,1] are the recovery rates in the case the counterparty or the bank
default, respectively. The variable M denotes the close-out value of the portfolio when
any party defaults. We will give more details regarding M in a later section.
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Next, we introduce the notation for the financial quantities in our model. The adapted
stochastic vector processes qS and γS are respectively the repo rate and the dividend
yield of the underlying assets. The process r is the stochastic risk-less interest rate. The
processes r B and r C are the yields of the risky zero coupon bonds of the bank and the
counterparty, respectively. The process qC is the repo rate for the bonds of the counter-
party. The interest rate for the variation margin is given by r X , and, finally, r F is the cost
of external funding. In order to simplify the expression of the demonstrator, we assume
all the above processes to be constant.

FUNDAMENTAL BSDE AND REDUCED BSDE
In [3], a fundamental BSDE is derived through a hedging argument based on a replicating
portfolio for the financial derivative. For the hedging portfolio Ŷ , including the counter-
party credit risk, the dynamics of posting collateral and holding counterparty bonds for
hedging, are given by,

−dŶt = f (t ,St , Ŷt , Ẑt ,U B
t ,UC

t )d t − Ẑt dWt −U B
t−d J B

t −UC
t d JC

t , t ∈ [0,τ∧T ],

Ŷτ∧T = 1τ>T g (ST )+1τ≤T θτ,
(5.1)

and the driver function is defined as

f (t , s, ŷ , ẑ,uB ,uC ) =− ẑ(diag(s)diag(σ̄)C)−1(diag(s)µ̄

+diag(s)(γS −qS ))+ (r B − r )uB + (r C −qC )uC

+ (r X + r )X t − r ŷ − (r F − r )(ŷ −X t +uB )−.

The notation diag(M) denotes a diagonal matrix with the terms of vector M on the main
diagonal. We compute the price of the derivative by approximating the values of the
stochastic processes (Ŷ , Ẑ ,U B ,UC ) that solve the above BSDE. The price of the contract
at time 0 is given by Ŷ0.

As stated in the introduction chapter, the above BSDE is derived from the replicating
portfolio argument. The main differences between the arguments in Section 1.2.3 and
the derivation in [3] are found in the final payoff function, which is simply g in the basic,
counterparty risk-free case but is θτ when considering the possibility of default and the
dynamics of the replicating portfolio are then given by

dŶt = δ>t +αB
t dPB

t +αC
t dPC

t +ϕ>
t dBt . (Equation (19) in [3])

These dynamics include the financing position of holding bonds of each party involved
to hedge against the events of default.

Using the above dynamics, in combination with the stochastic processes of the trad-
ing assets, bonds and financing positions (Equations (1-2, 11-18) in [3]) and the general
argument in Section 1.2.3, we can derive Equation (5.1). Again, readers may refer to Sec-
tion 2 of [3] for further datails.

The main difficulty when dealing with this BSDE is that the terminal time is random,
as it depends on the time of default. Therefore, this BSDE has to be transformed into a
standard BSDE, to reduce the computational complexity, following the techniques used
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in [4]. The authors in [4] showed that we may recover the solution of (5.1) by solving the
BSDE,

−dŶt = f (t ,St ,Ŷt ,Ẑt ,θB
t − Ŷt ,θC

t − Ŷt )d t − Ẑt dWt ,

ŶT = g (ST ), t ∈ [0,T ],
(5.2)

and using
Ŷt = Ŷt 1t<τ+θτ1t≥τ,
Ẑt = Ẑt 1t≤τ,

U B
t = (θB

t − Ŷt )1t≤τ,
UC

t = (θC
t − Ŷt )1t≤τ.

(5.3)

Proposition 5.1 (Theorem A.1 in [3]). If the pair of adapted stochastic processes (Ŷ ,Ẑ )
solves Equation (5.2), then the solution (Ŷ , Ẑ ,U B ,UC ) of Equation (5.1) is given by (5.3).

Idea of the proof. This technique considers the three possibilities of termination, i.e. no
default, the bank’s default and the counterparty default, and shows that the results in
(5.3) solve (5.1) under all three situations.

When we consider the total value adjustment to the financial option values, we com-
pute an alternative price for the same financial contracts, under the assumption of risk-
free dynamics (meaning no counterparty default). The value adjustment is defined as
the difference between the two portfolio values (risky minus risk-free option values).

The default-free portfolio dynamics, in a repo funding setting, can be expressed as

−dYt =(−Zt (diag(St )diag(σ̄)C))−1(diag(St )µ̄+diag(St )(γS
t −qS

t ))− rt Yt )d t −Zt dWt ,

and YT = g (ST ).

DISCRETE SYSTEM

Here, we explain the setting for the variation margins X and close-out value M . The
actual discrete system used in our demonstrator will be introduced as well.

In [5], the variation margin has been mandated to be "the full colleteralised mark-to-
market exposure of non-centrally cleared derivatives". Therefore, at any time t , either
the mark-to-market risk-free portfolio value Y or the counterparty risk adjusted value Ŷ
appear to be reasonable choices for the variation margin X . There are also two possible
conventions for the portfolio close-out value, namely M = Y and M = Ŷ . In this demon-
stration, the variation margin and the close-out value are assumed to be the mark-to-
market price Y . In this case, the valuation problem results in a linear BSDE that contains
an exogenous process Y . This means that both the variation margin and the close-out
value are marked to the market, and are thus not dictated by the bank’s internal model.
Therefore, there is an additional stochastic process Y in the driver for Ŷ . If the expres-
sion of Y is not readily available, the numerical simulation of the Ŷ system poses extra
challenges, because we have to simulate Y and Ŷ simultaneously.

The driver for the reduced BSDE with counterparty credit risk is now given by

f̄ (t , s, ŷ , ẑ, y) := f (t , s, ŷ , ẑ, y − ŷ , y − ŷ)
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=− ẑ(diag(s)diag(σ̄)C)−1(diag(s)µ̄+diag(s)(γS −qS ))

+ (r B + r C −qC + r X )y − (r B + r C −qC )ŷ ,

while the counterparty risk-free price Y can be expressed as

Yt (x) = Ex
t [e−r (T−t )Γt ,T g (ST )],

where

Γt ,T = exp

(
−

∫ T

t

1

2
ϕT

uϕudu −
∫ T

t
ϕT

u dWu

)
,

and
ϕt :=C−1diag(σ̄)−1(µ̄+γS

t −qS
t ).

Indeed, the elementary expression of Y may be available in closed-form for some basic
financial derivatives under the simple 1D Black-Scholes model. However, in order for
our demonstrator to cover a wide range of products, we solve Y by SGBM instead.

Recall the discretization scheme in Equation (1.4), we can approximate the reduced
BSDE with the following numerical scheme:

Ŷ π
tP

=g (SπtP
), Ẑ π

tN
=∇g (SπtP

)σ(tP ,SπtP
),

Ẑ π
tp
=−θ−1

2 (1−θ2)Etp

[
Ẑ π

tp+1

]
+ 1

∆t
θ−1

2 Etk

[
Ŷ π

tp+1
∆Wp

>
]

+θ−1
2 (1−θ2)Etp

[
f̄ (tp+1,Sπtp+1

,Ŷ π
tp+1

,Ẑ π
tp+1

,Ytp+1 )∆W >
p

]
, p = P −1, . . . ,0,

Ŷ π
tp
=Etp

[
Ŷ π

tp+1

]
+∆tθ1 f̄ (tp ,Sπtp

,Ŷ π
tp

,Ẑ π
tp

,Ytp )

+∆t (1−θ1)Etp

[
ḡ (tp+1,Sπtp+1

,Ŷ π
tp+1

,Ẑ π
tp+1

,Ytp+1 )
]

, p = P −1, . . . ,0,

where 0 ≤ θ1 ≤ 1 and 0 < θ2 ≤ 1 and assuming a fixed uniform time-step ∆t = tp+1 −
tp ,∀p.

Furthermore, if we include the simulation of Y and include explicitly the driver func-
tions, we have to solve the following system of discretized BSDEs:

vπP (s) =v̂πP (s) = g (s), zπP (s) = ẑπP (s) =∇g (s)σ(tP , s),

zπp,q (s) =− 1−θ2

θ2
Es

tp

[
zπp+1,q (Sπtp+1

)
]

+ 1

θ2
[1− (1−θ2)r∆t ]Es

tp

[
yπp+1(Sπtp+1

)
∆Wp,q

∆t

]

− 1−θ2

θ2
∆t

(
µ̄+γS −qS

σ̄

)>
(C−1)

>
Es

tp

[
zπp+1(Sπtp+1

)>
∆Wp,q

∆t

]
,

p = P −1, . . . ,0, q = 1, . . .d ,

yπp (s) =1− (1−θ1)r∆t

1+θ1r∆t
Es

tp

[
yπp+1(Sπtp+1

)
]

− θ1∆t

1+θ1r∆t

(
µ̄+γS −qS

σ̄

)>
(C−1)

>
(zπp (s))>
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− (1−θ1)∆t

1+θ1r∆t

(
µ̄+γS −qS

σ̄

)>
(C−1)

>
Es

tp

[
(zπp+1(Sπtp+1

))>
]

,

p = P −1, . . . ,0,

ẑπp,q (s) =− 1−θ2

θ2
Es

tp

[
ẑπp+1,q (Sπtp+1

)
]

+ 1

θ2

[
1− (1−θ2)∆t (r B + r C −qC )

]
Es

tp

[
ŷπp+1(Sπtp+1

)
∆Wp,q

∆t

]

− 1−θ2

θ2
∆t

(
µ̄+γS −qS

σ̄

)>
(C−1)

>
Es

tp

[
(ẑπp+1(Sπtp+1

))>
∆Wp,q

∆t

]
+ 1−θ2

θ2
∆t (r B + r C −qC + r X )Es

tp

[
yπp+1(Sπtp+1

)
∆Wp,q

∆t

]
,

p = P −1, . . . ,0, q = 1, . . . ,d ,

ŷπp (s) =1− (1−θ1)∆t (r B + r C −qC )

1+θ1∆t (r B + r C −qC )
Es

tp

[
ŷπp+1(Sπtp+1

)
]

− θ1∆t

1+θ1∆t (r B + r C −qC )

(
µ̄+γS −qS

σ̄

)>
(C−1)

>
(ẑπp (s))>

− (1−θ1)∆t

1+θ1∆t (r B + r C −qC )

(
µ̄+γS −qS

σ̄

)>
(C−1)

>
Es

tp

[
(ẑπp+1(Sπtp+1

))>
]

+ θ1∆t (r B + r C −qC + r X )

1+θ1∆t (r B + r C −qC )
yp (s)

+ (1−θ1)∆t (r B + r C −qC + r X )

1+θ1∆t (r B + r C −qC )
Es

tp

[
yπp+1(Sπtp+1

)
]

, p = P −1, . . . ,0. (5.4)

This system is the one that we have implemented in our demonstrator. Note that the

notation
(
µ̄+γS −qS

σ̄

)
is a shorthand for the vector

(
µ̄i+γS

i +qS
i

σ̄i

)
1≤i≤d

.

To close-out this section, we would like to mention that there is an analytic expres-
sion for the reference price under the current setting, which is given by

Ŷt =Et

[
e−

∫ T
t (r B+r C−qC )duΓt ,T g (ST )+

∫ T

t
e−

∫ s
t (r B+r C−qC )duΓt ,s (r X + r B + r C −qC )Ys d s

]
=e−(r B+r C−qC−r )(T−t )Yt + (r X + r B + r C −qC )Et

[∫ T

t
e−(r B+r C−qC )(s−t )Γt ,s Ys d s

]
There is however no elementary expression or simple way to evaluate this quantity.

5.2.4. FUNCTION DESCRIPTIONS
There are two parallel versions of our algorithm, both are written in Python. One of them
is based on generic Python code and the Numpy, Scipy and Numba packages for perfor-
mance and efficiency, which we would refer to as Version 1 from now on for simplicity.
The second one makes use of the CUDA toolkit, the CUDA Python portion of the Numba
package and the pyculib library and shall be referred to as Version 2. A numerical_test
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script has been provided for running basic comparison tests between the two versions
under a predefined test setting.

Next, we list the main functions within our implementation. Since the two versions
have similar architecture, we would only present Version 2. We have:

• the main function for the whole algorithm: cuda_sgbm_xva;

• the forward simulation function for the basis values and partition ordering:
cuda_jit_montecarlo

• the main function for the backward approximation stage: cuda_sgbminnerblock

• the parallel regression function: cuda_regression

• an example class to store all the information related to the test case, including
Equation (5.4): ArithmeticBasketPut

All of the above functions form the complete demonstrator but each individual com-
ponent can be used or replaced separately, which gives us flexibility for future develop-
ment.

Version 1 only depends on Python and the Numba library. In addition to that, Version
2 also requires the CUDA driver and the pyculib library.

The platform independent Python 3 code generated during the current study is avail-
able at https://github.com/kwchau/sgbm_xva under the MIT license.

5.3. NUMERICAL EXPERIMENTS
In this section, we present the tests we have implemented in our demonstrator. In these
tests we assume that the bank sells a portfolio consisting of an arithmetic put option,
whose payoff is given by

g (s) =−
(

K − 1

d

d∑
i=1

si

)+
,

where K is the strike price. The detailed setting for the numerical test is presented in
Table 5.1. This set of parameters is based on the one used in [1] and it has been adopted
here as an easy to scale up problem. The main purpose of the tests is to investigate
whether the code can be easily extended to solving high-dimensional problems, so we
choose a set of parameters whose properties do not change when we change the dimen-
sionality of the problem.

Note that here we have adopted a test case with the borrowing rate and lending rate
being equal for the purpose of comparing our default-free prices to a previously known
result. Additional tests have been performed to assure that the convergence behavior
will not be affected by different sets of parameters.

The numerical test has been conducted on a common desktop computer with an
Intel(R) Core(TM) i5-7400 processor and a GeForce GTX 1080 graphic card.
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Table 5.1: Model parameters

S0 qS γS µ̄ σ̄ ρ 40
...

40


 0.06

...
0.06


 0

...
0


 0.06

...
0.06


 0.2

...
0.2




1 0.25 . . . 0.25
0.25 1 0.25 . . . 0.25

...
. . .

...
0.25 . . . 1


r r B r C qC r X

0.06 0 0 0 0.1

K T (θ1,θ2)

40 1 (0,1)

Table 5.2: Testing parameters (paths, steps, bundles)

Parameters Low dimension (≤ 15) High dimension (> 15)

1 (2048,4,8) (16384,4,8)
2 (4096,8,16) (32768,8,16)
3 (8192,12,32) (65536,12,32)
4 (16384,16,64) (131072,16,64)
5 (32768,20,128) (262144,20,128)

5.3.1. PERFORMANCE OF GPU COMPUTING

The first set of tests is performed to check whether there is any benefit of GPU comput-
ing for our demonstrator. We perform the same test 10 times separately with the two
versions and take the averaged computing time over these 10 runs to compare the ef-
ficiency between them. Moreover, in accordance with the work in Chapter 4, we use 5
sets of parameters for testing the consistency of this SGBM algorithm. The parameters
are presented in Table 5.2. We have conducted tests with the stock price dimensionality
being 1, 5 and 10. The results are shown in the Tables 5.3, 5.4 and 5.5.

As we expected from the theoretical work, the approximate values converge with re-
spect to the progressively increasing grid sizes and the standard deviations decrease as
we progress through the parameters sets. More importantly, there is a clear speed-up of
Version 2 over Version 1. The biggest improvement comes from the forward simulation
stage where we run each independent sample in parallel, and greatly reduce the com-
putational time. There still seems to be room for improvement regarding the backward
simulation stage as even if we perform the regression in parallel on the GPU in Version 2
instead of sequentially in Version 1, the speed-up is not obvious. The main reason may
be that some part of the code is not performed on the GPU to keep some flexibility of our
demonstrator. Some optimization is only available for the basic Python code but not for
CUDA Python.

Nevertheless, our tests show that CUDA Python improves the efficiency and may pro-
vide a good balance between the speed of execution and the speed of development. In
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Table 5.3: Test result for dimension 1

Ver. Parameters Risk Free Price Risk Adjusted Price
(Std. Deviation) (Std. Deviation) Time (s) Speedup

1 Set 1 −2.060 (0.01) −2.402 (0.01) 0.42
2 −2.049 (0.007) −2.389 (0.008) 0.34 1.24

1 Set 2 −2.066 (0.003) −2.408 (0.003) 0.93
2 −2.063 (0.002) −2.405 (0.002) 0.24 3.88

1 Set 3 −2.065 (0.002) −2.406 (0.002) 2.58
2 −2.068 (0.003) −2.410 (0.004) 0.36 7.17

1 Set 4 −2.066 (0.002) -2.407 (0.002) 6.81
2 −2.066 (0.001) −2.407 (0.001) 0.66 10.32

1 Set 5 −2.066 (0.0006) −2.407 (0.0007) 16.69
2 −2.066 (0.0006) −2.407 (0.0007) 1.21 13.79

particular, as the workload increases due to using more time steps, samples and bundles,
the speed-up get higher due to GPU computing.

Finally, whereas the build-in floating point format of the GPU is 32 bits, 64 bits format
is needed for ensuring high accuracy with our result.

5.3.2. SCALABILITY
Next, we would like to check if our algorithm can be used for high-dimensional test cases.
The setting is the same as in the last section. However, Version 1 is too time-consuming
for a common desktop, so the focus is on Version 2. We perform tests up to 40 dimen-
sions, as shown in Table 5.6.

It can be seen that with the help of the GPU, our method can be generalized to higher
dimensions. The application of GPU computing definitely expands the applicability of
our method. However, we also notice that the time ratio increase is higher than the di-
mensional ratio. This is probably related to the architecture and the build-in hardware
of the GPU. It maybe worthwhile to tune the GPU setting within our demonstrator cor-
responding to the GPU at hand, but this is hardware-dependent.

To sum up, the application of GPU computing not only speeds up our algorithm, but
it also allows us to deal with more demanding problems with about the same hardware.

5.4. CONCLUSION AND OUTLOOK

5.4.1. CONCLUSION
Although we just developed a demonstrator, our study gives us interesting insight in
the performance of the SGBM algorithm for BSDEs. We have shown that we can apply
the SGBM algorithm to solve high-dimensional BSDEs with the help of GPU computing,
which is an important feature for using BSDEs in practice. With a suitable BSDE model,
we can deal with complicated financial risk management problems with our solver and
since our code is based on a general framework for BSDEs, our demonstrator can be
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Table 5.4: Test result for dimension 5

Ver. Parameters Risk Free Price Risk Adjusted Price
(Std. Deviation) (Std. Deviation) Time (s) Speedup

1 Set 1 −1.007 (0.006) −1.175 (0.007) 1.89
2 −1.001 (0.01) −1.167 (0.01) 0.53 3.57

1 Set 2 −1.011 (0.002) −1.178 (0.002) 6.99
2 −1.010 (0.002) −1.178 (0.002) 0.86 8.13

1 Set 3 −1.011 (0.001) −1.178 (0.001) 20.59
2 −1.011 (0.002) −1.178 (0.002) 2.20 9.36

1 Set 4 −1.012 (0.0008) −1.179 (0.0010) 54.24
2 −1.012 (0.0009) −1.180 (0.001) 5.34 10.16

1 Set 5 −1.013 (0.0005) −1.180 (0.0005) 134.61
2 −1.012 (0.0005) −1.180 (0.0006) 12.28 10.96

adopted to different pricing and valuation situations. We also demonstrated that we can
incorporate GPU computing into a native Python code. We believe that this work serves
as a basis for developing BSDE-based software for financial applications.

We encourage readers to download and test our demonstrator, which solves the prob-
lem which was stated in this work. The aim is to develop this tool further in terms of
financial applications and computational efficiency.

Next, we will mention some possible generalizations for our algorithm as a guideline
to future use. We will divide the outlook into two parts, a financial and a computational
part.

5.4.2. FINANCIAL OUTLOOK
In this work, we used the classical Black-Scholes model for the stock dynamics. It is of
interest to generalize the stock model by other diffusion SDEs, of the form:{

dSt =µ(t ,St )d t +σ(t ,St )dWt ,
S0 = s0.

This would already result in a different implementation regarding the SGBM regress-
later component.

We may also alter the model dynamics to better fit the market, for example, with
the inclusion of initial margins and capital requirement. Recall that in Section 5.2.3 we
have made some assumptions about the variation margin X and the close-out value M .
Simply by adjusting these assumptions, a completely different BSDE driver may result.
There are four possible combinations for the variation margin and the close-out value.
Each choice gives rise to a different BSDE driver, which can be seen in Table 5.7.

When X and M are the adjusted values Ŷ , it results in a linear BSDE for Ŷ . This means
that the variation margin and the close-out value are marked to the model. As all the
values are marked in Ŷ and both values match, the equation reduces to an option pricing
equation, with different interest rates. When both of them are the risk-free process Y , a
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Table 5.5: Test result for dimension 10

Ver. Parameters Risk Free Price Risk Adjusted Price
(Std. Deviation) (Std. Deviation) Time (s) Speedup

1 Set 1 −0.834 (0.005) −0.973 (0.006) 6.38
2 −0.838 (0.004) −0.978 (0.004) 1.15 5.55

1 Set 2 −0.839 (0.002) −0.977 (0.002) 24.74
2 −0.840 (0.002) −0.979 (0.002) 2.96 8.36

1 Set 3 −0.841 (0.001) −0.980 (0.002) 74.12
2 −0.840 (0.001) −0.979 (0.001) 8.64 8.58

1 Set 4 −0.841 (0.0008) −0.980 (0.0009) 198.08
2 −0.841 (0.0006) −0.979 (0.0007) 21.58 9.18

1 Set 5 −0.841 (0.0003) −0.980 (0.0003) 498.71
2 −0.841 (0.0007) −0.980 (0.0008) 53.51 9.32

linear BSDE that contains an exogenous process Y results. This means that both the
variation margin and the close-out value are marked to the market and are not dictated
by the internal model. Then there is an additional stochastic process Y in the driver for
Ŷ , which is the case we have used in this work.

Finally, when there is a mismatch between M and X , the resulting BSDE is no longer
linear. Take Case 4 as an example, it implies that the variation margin is collected accord-
ing to an internal model while the close-out value is given by the market. The mismatch
between the variation margin and the close-out value results in non-linear terms in the
driver. These non-linear terms come from the cash flow when one party defaults.

We should notice that since we have a general BSDE algorithm in the form of SGBM,
we may adapt our code to these new models by simply changing the model setting in
the example class without changing the actual function. This is one of the advantages of
using BSDEs in pricing and risk management.

5.4.3. COMPUTATIONAL OUTLOOK
As we have mentioned before, one possible way of improvement is to sacrifice some
flexibility and move the remaining solver parts of the code also to the GPU. Alternatively,
one may further optimize the code within the GPU as the GPU set of routines seems to
be still developing.

Furthermore, other features may be included in the software, for example, different
payoff functions or a different SGBM regression basis. Finally, to have a fully indepen-
dent software, a user interface and modular code are recommended.
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Table 5.6: Test result for high-dimensional cases with Version 2

Dim. Parameters Risk Free Price Risk Adjusted Price
(Std. Deviation) (Std. Deviation) Time (s)

15 Set 1 −0.777 (0.005) −0.906 (0.006) 2
Set 2 −0.780 (0.002) −0.909 (0.002) 8
Set 3 −0.779 (0.0008) −0.908 (0.0009) 22
Set 4 −0.781 (0.0006) −0.910 (0.0007) 60
Set 5 −0.781 (0.0004) −0.909 (0.0004) 144

20 Set 6 −0.746 (0.002) −0.870 (0.002) 29
Set 7 −0.748 (0.0007) −0.872 (0.0008) 116
Set 8 −0.749 (0.0004) −0.872 (0.0005) 345
Set 9 −0.749 (0.0002) −0.873 (0.0003) 911

Set 10 −0.749 (0.0001) −0.873 (0.0001) 2278

30 Set 6 −0.715 (0.002) −0.834 (0.002) 84
Set 7 −0.716 (0.0008) −0.835 (0.0009) 337
Set 8 −0.717 (0.0005) −0.836 (0.0006) 997
Set 9 −0.718 (0.0002) −0.836 (0.0002) 2675

Set 10 −0.718 (0.0001) −0.837 (0.0002) 6715

40 Set 6 −0.698 (0.001) −0.814 (0.002) 176
Set 7 −0.701 (0.0007) −0.817 (0.0009) 701
Set 8 −0.701 (0.0005) −0.817 (0.0006) 2086
Set 9 −0.702 (0.0002) −0.818 (0.0003) 5562

Set 10 -0.702 (0.0002) −0.818 (0.0002) 13893
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Table 5.7: Different BSDE drivers for various choices of X and M .

Case X M f (t ,St ,Ŷt ,Ẑt ,θB
t − Ŷt ,θC

t − Ŷt )

1 Ŷ Ŷ −Ẑtσ(t ,St )−1(µ(t ,St )+diag(γS
t −qS )St )+ r X

t Ŷt

2 Y Y −Ẑtσ(t ,St )−1(µ(t ,St )+diag(γS
t −qS )St )+(r B

t +r C
t −qC

t )(Yt −Ŷt )+
r X

t Yt

3 Y Ŷ −Ẑtσ(t ,St )−1(µ(t ,St )+diag(γS
t −qS )St )+(r B

t +r C
t −qC

t )(Yt−Ŷt )+
r X

t Yt + (r B
t + RC r C

t − rt − RC qC
t )(Ŷt − Yt )+ + [(r B

t − r F
t )RB + r C

t −
qC

t ](Ŷt −Yt )−

4 Ŷ Y −Ẑtσ(t ,St )−1(µ(t ,St ) + diag(γS
t − qS )St ) + r X

t Yt + [(r B
t − rt ) +

RC (r C
t −qC

t )](Yt − Ŷt )++ [(r B − r F
t )RB + r C

t −qC
t ](Yt − Ŷt )−





6
BRANCHING METHOD FOR THE

PRICING OF AMERICAN OPTIONS

In this chapter, we study the connection between BSDEs and partial differential equa-
tions (PDEs). We also introduce a numerical method for pricing American options based
on the above connection and branching processes. Moreover, based on our numerical
results, we show that only appropriately chosen algorithms can be used to approximate
the relevant BSDEs.

In particular, we extend the viscosity solution characterization proved in [2] for call/put
American option prices to the case of a general payoff function in a multi-dimensional
setting: the price satisfies a semilinear reaction/diffusion type equation. Based on this,
we propose two new numerical schemes inspired by the branching processes based al-
gorithm of [3]. Our numerical experiments show that approximating the discontinu-
ous driver of the associated reaction/diffusion PDE by local polynomials is not efficient,
while a simple randomization procedure provides very good results.

6.1. INTRODUCTION
An American option is a financial contract which can be exercised by its holder at any
time until a given future date, called maturity. When it is exercised, the holder receives a
payoff that depends on the value of the underlying assets.

Here we introduce some common mathematical tools that have been used to price
this kind of option. Let us first consider the case of a single stock (non-dividend pay-
ing) market under the famous Black Scholes setting from [4] and used throughout this
thesis. Namely, let (Ω,F, (Ft )t≥0,P) be a filtered probability space carrying a standard

This chapter is based on the article ’Monte-Carlo methods for the pricing of American options: a semilinear
BSDE point of view’, published in ESAIM: Proceedings and Surveys [1]. The majority of research is done during
the CEMRACS 2017 research school within a research team consists of me, Arij Manai and Ahmed Sid-Ali,
under the supervision of Prof. Bruno Bouchard. All involved parties agreed for the inclusion of this piece in
the thesis.
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one-dimensional Brownian motion W and let us model the stock price process X as

Xs = x exp
(
(r̄ − σ̄2

2
)(s − t )+ σ̄(Ws −Wt )

)
, s ≥ t ,

under the risk neutral probability. Here, x > 0 is the stock price at time t , r̄ > 0 is the
risk-free interest rate and σ̄> 0 is the volatility. Then, the arbitrage free value at time t of
an American option maturing at T ≥ t is given by

V (t , x) = sup
τ∈T[t ,T ]

E[e−r̄ (τ−t )g (Xτ)] (6.1)

where T[t ,T ] is the collection of [t ,T ]-valued stopping times, and g is the payoff function,
say continuous, see e.g. [5] and the references therein. Typical examples are

g (x ′) =
{

(x ′−K )+, for a call option;

(K −x ′)+, for a put option.

where K > 0 denotes the strike price.
By construction, V (·, X ) ≥ g (X ), and the option should be exercised only when V (·, X ) =

g (X ). This leads us to define the following two regions:

• the continuation region:

C = {(t , x) ∈ [0,T )×R+ : V (t , x) > g (x)}

• the stopping (or the exercise) region:

S = {(t , x) ∈ [0,T )×R+ : V (t , x) = g (x)}.

These are the basics of the common formulation of the American option price as a
free boundary problem, which already appears in McKean [6]: V solves a heat-equation
type linear parabolic problem on C and equals g on S, with the constraint of being al-
ways greater than g . Another formulation is based on the quasi-variational approach of
Bensoussan and Lions [7]: the price solves (at least in the viscosity solution sense) the
quasi-variational partial differential equation{

min
(
r̄ϕ−LBSϕ,ϕ− g

)= 0, on [0,T )×R+

ϕ(T, ·) = g , on R+

in which LBS is the Dynkin operator associated to X :

LBS = ∂t + r̄ xD + 1

2
σ̄2x2D2

where D and D2 are the Jacobian and Hessian operators.
In this chapter, we focus on another formulation that can be found in [2], see also [8]

and the references therein. We study how can we use a BSDE formation to approximate
this type of PDE.



6.2. NON-LINEAR PARABOLIC EQUATION REPRESENTATION

6

127

The American option valuation problem can be stated in terms of a semilinear Black
and Scholes partial differential equation set on a fixed domain, namely:{

r̄ϕ−LBSϕ= y(·,ϕ), on [0,T )×R+,

ϕ(T, ·) = g , on R+,
(6.2)

where y is a nonlinear reaction term defined as

y(x,ϕ(t , x)) = c(x)H(g (x)−ϕ(t , x)) =
{

0 if g (x) <ϕ(t , x)
c(x) if g (x) ≥ϕ(t , x),

in which c is a certain cash flow function, e.g. c = r̄ K for a put option, and H is the
Heaviside function.

Note that this semilinear Black and Scholes equation does not make sense if we con-
sider classical solutions because of the discontinuity of y → y(x, y). It has to be consid-
ered in the discontinuous viscosity solution sense, see e.g. Crandall, Ishii and Lions [9].
Namely, even if V is continuous, the supersolution property should be stated in terms
of the lower-semicontinuous envelope of y, the other way round for the subsolution
property. This means in particular that the super- and subsolution properties are not
defined with respect to the same operator. Still, thanks to the very specific monotonicity
of y → y(x, y), it is proved in [2] that, within the Black and Scholes model, the American
option price is the unique solution of (6.2) in the appropriate sense.

In this work, we first extend the characterization of [2] in terms of (6.2) to a general
payoff function and to a general market model, see Section 6.2. Then, we suggest two
numerical schemes based on this formulation. The general idea consists in (formally)
identifying the solution V of (6.2) to the solution (Y , Z ) of the backward stochastic dif-
ferential equation

Y = e−r̄ T g (XT )+
∫ T

·
e−r̄ sy(Xs ,e r̄ s Ys )d s −

∫ T

·
Zs dWs

by e−r̄ ·V (·, X ) = Y .
In the first algorithm, we follow the approach of Bouchard et al. [3] and approximate

the nonlinear driver y by local polynomials so as to be able to apply an extended version
of the pure forward branching processes based the Feynman-Kac representation of the
Kolmogorov-Petrovskii-Piskunov equation, see [10, 11]. Unfortunately, our numerical
experiments show that this algorithm is quite unstable, see Section 6.3.1.

In the second algorithm, we do not try to approximate y by local polynomials but in
place regularize it with a noise by replacing y(X ,e r̄ ·Y ) by c(X )1{g (X )+ε≥e r̄ ·Y }, in which ε is
an independent random variable. When the variance of ε vanishes, this provides a con-
verging estimator. For ε given, the corresponding Y is estimated by using the approach
of Bouchard et al. [3] with (random) polynomial (t , x, y, y ′) 7→ c(x)1{g (x)+ε≥e r̄ t y ′} and par-
ticles that can only die (without creating any children). This algorithm turns out to be
very precise, see Section 6.3.2.

6.2. NON-LINEAR PARABOLIC EQUATION REPRESENTATION

From now on, we takeΩ as the space of Rd -valued continuous maps on [0,T ] starting at
0, endowed with the Wiener measure P. We let W denote the canonical process and let
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(Ft )t≤T be its completed filtration. Given t ∈ [0,T ] and x ∈ (R+)d , we consider a financial
market with d stocks whose price process X t ,x evolves according to

X t ,x = x +
∫ ·

t
r̄ X t ,x

s d s +
∫ ·

t
σ(s, X t ,x

s )dWs (6.3)

in which r̄ ∈ R is a constant1, the risk free interest rate, and σ : [0,T ]× (R+)d 7→ Rd×d is a
matrix valued-function that is assumed to be continuous and uniformly Lipschitz in its
second component. We also assume that σ̂ : (t ′, x ′) ∈ [0,T ]× (R)d 7→ diag[x ′]−1σ(t ′, x ′) is
uniformly Lipschitz in its second component and bounded, where diag[x ′] stands for the
diagonal matrix with i -th diagonal entry equal to the i -th component of x ′. This implies
that X t ,x takes values in (R+)d whenever x ∈ (R+)d .

We also assume that P is the only (equivalent) probability measure under which
e−r̄ (·−t )X t ,x is a (local) martingale, for (t , x) ∈ [0,T ]× (R+)d . Then, given a continuous
payoff function g : (R+)d →R, with polynomial growth, the price of the American option
with payoff g is given by

V (t , x) = sup
τ∈T[t ,T ]

E[e−r̄ (τ−t )g (X t ,x
τ )], (6.4)

in which T[t ,T ] is the collection of [t ,T ]-valued stopping times. See [5].

Remark 6.1. Note that (t , x) ∈ [0,T ] × (R+)d 7→ V (t , x) is continuous with polynomial
growth follows from standard estimates under the above assumptions. In particular, the
set {(t , x) ∈ [0,T ]× (R+)d : V (t , x) = g (x)} is closed.

The aim of this section is to establish the relevant PDE representation for general
American option pricing. We prove that V is a viscosity solution of the non-linear parabolic
equation

r̄ϕ−Lϕ−y(·,ϕ) = 0 on [0,T )× (R+)d

ϕ(T, ·) = g on (R+)d ,
(6.5)

for a suitable reaction function y on (R+)d ×R. In the above, L denotes the Dynkin
operator associated to (6.3):

Lϕ(t ′, x ′) = ∂tϕ(t ′, x ′)+〈r̄ x ′,Dϕ(t ′, x ′)〉+ 1

2
Tr[σσ>D2ϕ](t ′, x ′),

for a smooth function ϕ. To be more precise, we define the function y by

y(x, y) =
{

0 if g (x) < y
c(x) if g (x) ≥ y

, (x, y) ∈ (R+)d ×R,

where c is a measurable map satisfying the following Assumption 6.1.

Assumption 6.1. The map c : (R+)d 7→R+ is continuous with polynomial growth. More-
over, g is a viscosity subsolution of r̄ϕ−Lϕ−c = 0 on {(t , x) ∈ [0,T )× (R+)d : V (t , x) = g (x)}.

1It should be clear that this assumption is only made for simplicity. Also note that a dividend rate could be
added at no cost.
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Before providing examples of such a function c, let us make some important obser-
vations.

Remark 6.2. First, {(t , x) ∈ [0,T )× (R+)d : V (t , x) = g (x)} ⊂ {x ∈ (R+)d : g (x) > 0} if V > 0
on [0,T )× (R+)d . This is typically the case in practice because g is non-negative and the
probability that g (X ) > 0 on [0,T ] is positive. In particular, if g is C 2 on {g > 0} then one
can choose c = [r g −L g ]+ on {g > 0}.

Second, if g is convex, then it can not be touched from above by a C 2 function at a
point at which it is not C 1, which implies that one can forget some singularity points in
the verification of Assumption 6.1 above.

In Section 6.3, we shall suggest Monte-Carlo based numerical methods for the com-
putation of V . One can then try to minimize the variance of the estimator over the choice
of c. However, it seems natural to choose the function c so that g is actually a viscosity
solution of r̄ϕ−Lϕ− c = 0 on {(t , x) ∈ [0,T )× (R+)d : V (t , x) = g (x)}. In the numerical
study of Section 6.3, this choice coincides with the c with the minimal absolute value,
which intuitively should correspond to the one minimizing the variance of the Monte-
Carlo estimator. We leave the theoretical study of this variance minimization problem to
future research.

Example 6.2. Let us consider the following examples in which σ̂ is a constant matrix
with i -th lines σ̂i . Fix K ,K1,K2 > 0 with K1 < K2.

• For d = 1 and a put g : x ∈ R+ 7→ (K − x)+, the function c is given by the constant
r̄ K . This is one of the cases treated in [2].

• For d = 1 and a strangle g : x ∈ R+ 7→ (K1 − x)++ (x −K2)+, the function c can be
any continuous function equal to r̄ K1 on (0,K1) and equal to −r̄ K2 on (K2,∞),
whenever V > 0.

• For d = 2 and a put on the arithmetic mean g : x ∈ (R+)2 7→ (K − 1
2

2∑
i=1

xi )+, we can

take c = r̄ K .

• For d = 2 and a put on the geometric mean g : x ∈ (R+)2 7→ (K −
p

x1x2)+, c can be
taken as

x ∈ (R+)2 7→ (r̄ K − 1

8
(‖σ̂1‖2 +‖σ̂2‖2 −2〈σ̂1, σ̂2〉)

√
x1x2)+.

Since y is discontinuous, we need to consider (6.5) in the sense of viscosity solu-
tions for discontinuous operators. More precisely, let y∗ and y∗ denote the lower- and
upper-semicontinuous envelopes of y. We say that a lower-semicontinuous function v
is a viscosity supersolution of (6.5) if it is a viscosity supersolution of

r̄ϕ−Lϕ−y∗(·,ϕ) = 0 on [0,T )× (R+)d

ϕ(T, ·) = g on (R+)d .

Similarly, we say that an upper-semicontinuous function v is a viscosity subsolution of
(6.5) if it is a viscosity subsolution of

r̄ϕ−Lϕ−y∗(·,ϕ) = 0 on [0,T )× (R+)d

ϕ(T, ·) = g on (R+)d .
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We say that a continuous function is a viscosity solution of (6.5) if it is both a viscosity
super- and subsolution.

Then, we have the following characterization of the American option price, which
extends the result of [2] to our context. Recall Remark 6.1.

Theorem 6.3. Let c be as in Assumption 6.1. Then, V is a viscosity solution of (6.5). It has
a polynomial growth.

Proof. This proof has the same line of arguments as in Section 5 of [2]. We begin with
proving that V is a supersolution of Equation (6.5). First note that V ≥ g , so that y∗(·,V ) =
02. Hence, the supersolution property is equivalent to being a supersolution of

r̄ϕ−Lϕ= 0 on [0,T )× (R+)d and ϕ(T, ·) = g on (R+)d ,

which is standard by the definition of supersolution, the application of Equation (6.4)
and Itô’s formula. In which we apply Itô’s formula to the function e−r̄ (θ−t )ϕ(θ, X (θ)),
where θ is the exit time for the process (s, X (s)) from a strictly positive radius ball cen-
tred at (t , x) and we take expectations on the both sides. The required inequality follows
accordingly.

For the subsolution part, we fix (t , x) ∈ [0,T ]× (R+)d and a smooth function ϕ such
that (t , x) achieves a maximum on [0,T ]× (0,∞)d of V −ϕ and (V −ϕ)(t , x) = 0. If t = T ,
then the required result holds by definition. We now assume that t < T . If (t , x) belongs
to the open set C := {V > g }, recall Remark 6.1, then one can find a [t ,T ]-valued stopping
time τ such that (·∧τ, X t ,x

·∧τ) ∈C , and it follows from the dynamic programming principle,
see e.g. [12], that

ϕ(t , x) ≤ E[
e−r̄ (τε−t )ϕ(τε, Xτε )

]
in which τε := τ∧(t+ε) for ε> 0. Then, applying Itô’s formula to the right hand side leads
to

0 ≥ r̄ϕ(t , x)−Lϕ(t , x) = r̄ϕ(t , x)−Lϕ(t , x)−y∗(x,ϕ(t , x)).

Let us now assume that (t , x) ∈ S := {V = g }. In particular, ϕ(t , x) = V (t , x) = g (x) and
therefore y∗(x,ϕ(t , x)) = y∗(x,V (t , x)) = c(x). Since V ≥ g , (t , x) is also a maximum of
g −ϕ and ϕ satisfies

0 ≥ r̄ϕ(t , x)−Lϕ(t , x)− c(x) = r̄ϕ(t , x)−Lϕ(t , x)−y∗(x,ϕ(t , x)),

by Assumption 6.1.

This viscosity solution property can be complemented with a comparison principle
as in [2]. Combined with Theorem 6.3, it shows that V is the unique viscosity solution of
(6.5) with polynomial growth.

Proposition 6.4. Let the conditions of Theorem 6.3 hold. Let v and w be respectively a
super- and a subsolution of (6.5), with polynomial growth. Then, v ≥ w on [0,T ]× (R+)d .

2Note that this is an important consequence of using y∗ instead of y.
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Proof. The proof is a simple adaptation of the arguments of [2] and [5, Proof of Theorem
4.5]. Therefore, we give a brief outline of the proof here while referring interested readers
to the above publications.

As usual, one can assume without loss of generality that r̄ > 0, upon replacing v by
(t , x) 7→ e−ρt v(t , x) and w by (t , x) 7→ e−ρt w(t , x) for someρ > |r |. Fix p ≥ 1 and C > 0 such
that |v(t , x)| + |w(t , x)| ≤ C (1+‖x‖p ) for all (t , x) ∈ [0,T ]× (R+)d . Set ψ(t , x) := e−κt (1+
‖x‖2p ) for (t , x) ∈ [0,T ]× (R+)d , for some κ large enough so that ψ is a supersolution of
−Lϕ= 0 on [0,T )× (R+)d , which is possible since σ̂ is bounded. Set

φεn(t , x, y) := w(t , y)− v(t , x)−n‖x − y‖2p −λψ(t , y)− ε∏d
i=1 xi

− ε∏d
i=1 y i

for n ≥ 1, ε> 0, (t , x, y) ∈ [0,T ]×(R+)2d , and a given λ> 0. Assume that sup[0,T ]×(R+)d (w −
v) > 0. Then one can find ε◦,λ> 0 and δ> 0 such that

sup
[0,T ]×(R+)2d

φεn ≥ δ, for ε ∈ (0,ε◦) and n ≥ 1. (6.6)

Clearly, φεn admits a maximum point (t εn , xεn , yεn) on [0,T ]× (0,∞)2d because of the semi-
continuity of w, v and ψ and the fact that φεn is −∞ at the origin and 0 at infinity. More-
over, it follows from standard arguments that (t εn , xεn , yεn) converges to some (tn , xn , yn) ∈
[0,T ]× (R+)d as ε→ 0, possibly along a subsequence, and that

lim
ε→0

(
ε∏d

i=1(xεn)i
+ ε∏d

i=1(yεn)i
) = 0 , lim

n→∞n‖xn − yn‖2p = 0, (6.7)

lim
ε→0

(w(t εn , yεn), v(t εn , xεn)) = (w(tn , yn), v(tn , xn)) (6.8)

lim
n→∞ yn = ŷ , for some ŷ ∈ (R+)d , (6.9)

possibly along subsequences, see e.g. [5, Proof of Theorem 4.5] and [9]. Combining Ishii’s
Lemma, see e.g. [9], with the super- and subsolution properties of v ,ψ and w , we obtain

0 ≥r̄ (w(t εn , yεn)− v(t εn , xεn))−y∗(yεn , w(t εn , yεn))+y∗(xεn , v(t εn , xεn))

−O(n‖xεn − yεn‖2p )−ηn
ε

in which, thanks to the left-hand side of (6.7), the last term ηn
ε → 0 as ε→ 0, for all n ≥ 1.

By the right-hand side of (6.7), the discussion just above it, and (6.8), sending ε→ 0 and
then n →∞ leads to

0 ≥ limsup
n→∞

{
r̄ (w(tn , yn)− v(tn , xn))−y∗(yn , w(tn , yn))+y∗(xn , v(tn , xn))

}
and therefore

liminf
n→∞ {y∗(yn , w(tn , yn))−y∗(xn , v(tn , xn))} ≥ rδ

by (6.6). Recall that c is non-negative and that w(tn , yn)−v(tn , xn) ≥ δ by (6.6). If, along a
subsequence, g (xn) > v(tn , xn) for all n, then y∗(yn , w(tn , yn))−y∗(xn , v(tn , xn)) ≤ c(yn)−
c(xn) for all n, leading to a contradiction since c(xn)− c(yn) → 0 as n →∞ (recall (6.7)
and (6.9)) and r > 0. If, along a subsequence, g (xn) ≤ v(tn , xn) for all n, then g (yn) ≤
v(tn , xn)+δ/2 ≤ w(tn , yn)−δ/2 for all n large enough and the above liminf is also non-
positive. A contradiction too.
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6.3. MONTE-CARLO ESTIMATION
In this section, we use the connection between PDEs and BSDEs to derives pricing schemes
for American options. This demonstrates another important application of BSDEs.

The solution of (6.5) is formally related to the solution (Y , Z ) ∈ S2×L2 of the backward
stochastic differential equation

Y = e−r̄ T g (XT )+
∫ T

·
e−r̄ sy(Xs ,e r̄ s Ys )d s −

∫ T

·
Zs dWs

by e−r̄ ·V (·, X ) = Y . In the above, S2 denotes the space of adapted processes ξ such
that E[sup[0,T ] ‖ξ‖2] <∞ and L2 denotes the space of predictable processes ξ such that

E[
∫ T

0 ‖ξt‖2d t ] <∞.

Remark 6.3. Note that, if (Y , Z ) satisfies the above BSDE, then

Y0 = E
[

e−r̄ T g (XT )+
∫ T

0
e−r̄ sy(Xs ,e r̄ s Ys )d s

]
.

In the case where c = r̄ g −L g , on {(t , x) ∈ [0,T )× (R+)d : V (t , x) = g (x)}, this corresponds
to the early-exercise premium formula. Recall Assumption 6.1 and see [2, Section 6].

In practice, the above BSDE is not well-posed because y is not continuous. However,
it can be smoothed out for the purpose of numerical approximations. In the following,
we write Es [·] to denote the expectation given Fs , s ≤ T .

Proposition 6.5. Let the condition of Theorem 6.3 hold. Let (yn)n≥1 be a sequence of
continuous functions on (R+)d×R that are Lipschitz in their last component3. Assume that
(yn)n≥1 is uniformly bounded by a function with polynomial growth in its first component
and linear growth in its last component. Assume further that

limsup
n →∞

(x′ , y ′) → (x, y)

yn(x ′, y ′)≤y∗(x, y) and liminf
n →∞

(x′ , y ′) → (x, y)

yn(x ′, y ′)≥y∗(x, y) (6.10)

for all (x, y) ∈ (R+)d ×R. For (t , x) ∈ [0,T ]× (R+)d , let (Y t ,x,n)n≥1 be such that

Y t ,x,n
s = Es

[
e−r̄ T g (X t ,x

T )+
∫ T

s
e−r̄ uyn(X t ,x

u ,e r̄ uY t ,x,n
u )du

]
,

for s ∈ [t ,T ], and set Vn(t , x) := e r̄ t Y t ,x,n
t . Then, (Vn)n≥1 converges pointwise to V as n →

∞.

Proof. Each BSDE associated to yn admits a unique solution (Y t ,x,n , Z t ,x,n) ∈ S2×L2, and
it is standard to show that Vn is a continuous viscosity solution of

r̄ϕ−Lϕ−yn(·,ϕ) = 0 on [0,T )× (R+)d and ϕ(T, ·) = g on (R+)d .

Moreover, (Vn)n≥1 has (uniformly) polynomial growth, thanks to the uniform polynomial
growth assumption on (yn)n≥1. See e.g. [13]. By stability and (6.10), see e.g. [14], it follows
that the relaxed limsup V ∗ and liminf V∗ of (Vn)n≥1 are respectively sub- and super-
solutions of (6.5). By Proposition 6.4, V ∗ ≤ V ≤ V∗ and therefore equality holds among
the three functions.
3See below for examples.
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Therefore, up to a smoothing procedure, we are back to essentially solving a BSDE. In
the next two subsections, we propose two approaches. The first one consists in smooth-
ing y into a a smooth function yn to which we apply the local polynomial approximation
procedure of [3]. This allows us to use a pure forward Monte-Carlo method for the es-
timation of Vn , based on branching processes. In the second approach, we only add an
independent noise in the definition of y, which also has the effect of smoothing it out,
and then use a very simple version of the algorithm in [3]. As our numerical experiments
show, the first approach is quite unstable while the second one is very efficient.

6.3.1. LOCAL POLYNOMIAL APPROXIMATION AND BRANCHING PROCESSES
Given Proposition 6.5, it is tempting to estimate the American option price by using a re-
cently developed Monte-Carlo method for BSDEs based solely on forward simulations,
see [15] and the references therein. Here, we propose to use the forward approach sug-
gested by [3], which is based on the use of branching processes coupled (in theory) with
Picard iterations.

The first step consists in approximating the Heaviside function H : z 7→ 1{z≥0} by a
sequence of Lipschitz functions (Hn)n≥1 and to define yn by

yn : (x, y) 7→ c(x)Hn(g (x)− y).

Then, yn is approximated by a map (x, y) 7→ ȳn(x, y, y) of local polynomial form:

ȳn : (x, y, y ′) →
j0∑

j=1

l0∑
l=0

a j ,l (x)y lφ j (y ′)

where (a j ,l ,φ j )l≤l0, j≤ j0 is a family of continuous and bounded maps satisfying

|a j ,l | ≤Cl0 , |φ j (y ′
1)−φ j (y ′

2)| ≤ Lφ|y ′
1 − y ′

2| and |φ j | ≤ 1,

for all y ′
1,y ′

2 ∈ R, j ≤ j0 and l ≤ l0, for some constants Cl0 , Lφ ≥ 0. The elements of
(a j ,l (x))l≤l0 should be interpreted as the coefficients of a polynomial approximation of
yn on a subset A j , in which (A j ) j≤ j◦ forms a partition ofR and theφ j ’s as smoothing ker-
nels that allow one to pass in a Lipschitz way from one part of the partition to another
one, see [3].

Then, one can consider the sequence of BSDEs

Ȳ t ,x,n,k+1
s =Es [e−r̄ T g (X t ,x

T )]

+E
[∫ T

s
e−r̄ u ȳn(X t ,x

u ,e r̄ u Ȳ t ,x,n,k+1
u ,e r̄ u Ȳ t ,x,n,k

u )du

]
, k ≥ 1,

with Ȳ t ,x,n,1 given as an initial prior (e.g. e r̄ ·g (X t ,x )). Given Ȳ t ,x,n,k , Ȳ t ,x,n,k+1 solves a
BSDE with polynomial driver that can be estimated by using branching processes as in
the Feynman-Kac representation of the Kolmogorov-Petrovskii-Piskunov equation, see
[10, 11]. We refer to [3] for more details.

In practice, we use the Method A of [3, Section 3]. We perform a numerical experi-
ment in dimension 1, with a time horizon of one year, and a risk-free interest rate set at
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6%. We consider the Black-Scholes model with one single stock whose volatility is 40%.
We price a put option whose strike is K := 40. At the money, the American option price
is around 5.30, while the European option is worth 5.05. In view of Example 6.2, we take
c = r̄ K 4.

We first smooth the driver with a centered Gaussian density with variance κ−2, so
as to replace it by 0.5r̄ K e−r̄ t erfc(κ∗ (y − e−r̄ t g (x))) with κ = 10, where erfc is the com-
plementary error function. See Figure 6.1. Then, we apply a quadratic spline approxi-
mation. In actual computation, as it is impossible to apply spline approximation on the
whole half real line, we limited the domain of y for the driver function to [0,40(1−e−0.06)].
We partition this bounded domain into 20 intervals with equal-distant points and define
a piecewise polynomial on this domain by assigning a quadric polynomial to each in-
terval. Finally, we match the values and derivatives of our piecewise polynomial at each
point of the grid to the original function (except at the right-end where the derivative is
assumed to be zero). The truncation of domain will not alter the computational result
as our limited domain includes the maximum payoff for the put option. The resulting
approximation is indistinguishable from the original function displayed on Figure 6.1.

We also partition [0,T ] in 10 periods. As for the grid in the x-component, we use a
25-point uniform space-grid on the interval [e−20,80].

We estimate the early exercise value by first using 1000 Monte-Carlo paths. As can
be seen on Figure 6.2, the results are not good and this does not improve much with
a higher number of simulations. The algorithm turns out to be quite unstable and not
accurate. It remains pretty unstable even for a large number of simulated paths. This is
not so surprising. Indeed, as explained in [3], their approach is dedicated to situations
where the driver functions are rather smooth, so that the local polynomial’s coefficients
(a j ,l ) j ,l are small, and the supports of the φ j ’s are large and do not intersect too much.
Since we are approximating the Heaviside function, none of these requirements is met.

6.3.2. DRIVER RANDOMIZATION
In this second approach, we enlarge the state space so as to introduce an independent
integrable random variable ε with density f such that z 7→ (1+|z|) f ′(z) is integrable. We
assume that the interior of the support of f is of the form (mε, Mε) with −∞≤ mε < Mε ≤
∞. Then, we define the sequence of random maps

ỹn(x, y) := c(x)1{g (x)+ ε
n ≥y}

as well as

yn(x, y) :=c(x)n
{
[g (x)+Mε/n − y]+ f (Mε)− [g (x)+mε/n − y]+ f (mε)

}
− c(x)n

∫
[g (x)+ z/n − y]+ f ′(z)d z

so that

yn(x, y) = E[ỹn(x, y)]

4Note that, for this payoff, the constant r̄ K is the function with the smallest absolute value among the functions
c satisfying the requirements of Assumption 6.1.
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Figure 6.1: Approximation of y 7→ 1{y≤0.5}.

Figure 6.2: Branching with local polynomial approximation. Upper graph: Early exercise premium (plain line
obtained by a pde solver, dashed line estimated). Lower graph: Error on the early exercise premium estimation.



6

136 6. BRANCHING METHOD FOR THE PRICING OF AMERICAN OPTIONS

for n ≥ 1. If c is non-negative, continuous and has polynomial growth, then the sequence
(yn)n≥1 matches the requirements of Proposition 6.5.

We now let τ be an independent exponentially distributed random variable with den-
sity ρ and cumulative distribution 1− F̄ . Then, Y t ,x,n defined as in Proposition 6.5 satis-
fies

Y t ,x,n
s =Es

[
e−r T g (X t ,x

T )

F̄ (T − t )
1{T−t≤τ} +1{T−t>τ}

e−rτỹn(X t ,x
t+τ,erτY t ,x,n

t+τ )

ρ(τ)

]
.

This can be viewed as a branching based representation in which particles die at an ex-
ponential time. If a particle dies before T , we give it the (random) mark ỹn(X t ,x

t+τ,erτY t ,x,n
t+τ ).

In terms of the representation of Section 6.3.1, this corresponds to j0 = 1, l0 = 0, to re-
placing a1,0(x)φ1(y ′) by ỹn(x, y ′), and to not using a Picard iteration scheme.

On a finite time grid π ⊂ [0,T ] containing {0,T }, it can be approximated by the se-
quence vπn defined by vπn (T, ·) = g and

vπn (t , x) =E
[

e−r T g (X t ,x
T )

F̄ (T − t )
1{T−t≤τ}

]

+E
1{T−t>τ}

e−rτỹn(X t ,x
φπt+τ

,erτvπn (φπt+τ, X t ,x
φπt+τ

))

ρ(τ)

 , (6.11)

where φπs := inf{s′ ≥ s : s′ ∈ π} for s ≤ T . Showing that vπn (φπt , x) converges point-wise
to Y t ,x,n

t as the modulus of π vanishes can be done by working along the lines of [16,
Section 4.3] or [17]. In view of Proposition 6.5, vπn converges point-wise to V as |π| → 0
and n → ∞. A similar analysis could be performed when considering a grid in space,
which will be necessary in practice.

Then, (6.11) provides a natural backward algorithm: given a space-time grid Π :=
(ti , x j )i , j , (6.11) can be used to compute vπn (ti , x j ) given the already computed values of
vπn at the later times in the grid, by replacing the expectation by a Monte-Carlo counter-
part.

NUMERICAL EXPERIMENTS

Let us now consider a put option pricing problem within the Black-Scholes model as
in the previous section. The interest rate is 6%, the volatility is 20% and the strike is
25. The partition π of [0,T ] is uniform with 100 time steps. However, we update vπn
only every 10 time steps (and consider that it is constant in time in between). The fine
grid π is therefore only used to approximate X t ,x

τ by X t ,x
φπτ

accurately. We use a 40-points

equidistant space-grid on the interval [5,50]. The random variable ε/n is exponentially
distributed, with mean equal to 10−100, while τ has mean 0.6.

In Figures 6.3, 6.4 and 6.5, we provide the estimated prices, the estimated early ex-
ercise premium as well as the corresponding relative errors with different numbers of
sample paths. The statistics are based on 50 independent trials. The reference values
are computed with an implicit scheme for the associated PDE, with regular grids of 500
points in space and 1.000 points in time (we also provide the European option price in
the top-left graph, for comparison). The relative errors are capped to 10% or 40% for
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ease of readability. These graphs show that the numerical method is very efficient. The
relative error for a stock price higher that 30/35 are not significant since it corresponds
to option prices very close to 0. For 10.000 simulated paths, it takes 12 secondes for one
estimation of the whole price curve with an R code running on a Macbook 2014, 2.5 GHz
Intel Core i7, with 4 physical cores.

The second example we considered is a strangle with strikes 25 and 27, see Example
6.2. The results obtained with 50000 sample paths are displayed in Figures 6.6. The
algorithm also performs well in this case with accurate result.

Finally, we state that we do not use any variance reduction technique in these exper-
iments.

6.4. CONCLUSION
In this chapter, we used the American option pricing problem as a case study for the
application of the PDE and BSDE’s connection. We extended the semilinear PDE for-
mulation for valuating American options in [2] with the Black-Scholes model and vanilla
option to more general models and payoff functions. In order to solve the more com-
plex PDEs from this generalization, we link the derived PDE with a BSDE and tested
two Monte-Carlo schemes to solve the pricing problem. While the driver randomization
scheme worked well, the branching process with local polynomial scheme was proven
to be unstable and failed to converge. Thus it shows the importance of picking an ap-
propriate numerical scheme.
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Figure 6.3: Branching with indicator driver. Put option, 1000 sample paths. Plain lines=true values,
crosses=estimations.
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Figure 6.4: Branching with indicator driver. Put option, 10000 sample paths. Plain lines=true values,
crosses=estimations.
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Figure 6.5: Branching with indicator driver. Put option, 50000 sample paths. Plain lines=true values,
crosses=estimations.



6

142 REFERENCES

Figure 6.6: Branching with indicator driver. Strangle option, 50000 sample paths. Plain lines=true values,
crosses=estimations.



7
CONCLUSION

In this thesis, we studied essentially three different numerical schemes to approximate
BSDE solutions. This work has covered the derivation and error bound of algorithms,
the implementation of numerical schemes in modern software infrastructure and the
application of BSDEs. But the main focus of this work remains understanding the core
properties of various numerical algorithms. Here is a brief review of our conclusions
from researching these algorithms.

7.1. GENERAL CONCLUSION

7.1.1. FOURIER EXPANSION METHOD

In order to overcome the difficulty of calculating cosine coefficients in the original COS
method, a localized variant of the Fourier expansion method was introduced in Chapter
2. We have shown that when the target function is continuous and the integration range
is sufficiently large, even if the localized SWIFT formula induces an extra error term in
the error bound, this error term decays quickly with respect to the truncation number
N . The localized/quick SWIFT method gave a similar approximation result to the full
Fourier series version but it could greatly reduce the required computational effort.

Combining the quick SWIFT formula with the classical time-discretization of BSDEs,
we proposed a new probabilistic method for solving FBSDEs numerically. The numeri-
cal result was satisfactory for one-dimensional BSDEs. The error of applying the SWIFT
method is relatively minor compared to the discretization error for the stochastic pro-
cess. One only has to note the possible discontinuities within the terminal conditions of
BSDEs and adjust the numerical scheme accordingly (the mixed SWIFT method).

We generalized the philosophy of localized Fourier expansion methods to higher-
dimensional space in Chapter 3. This was achieved by applying results from the lattice
literature in [1]. We also demonstrated the similarity between the periodic wavelet con-
struction and the reproducing kernel construction.
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7.1.2. STOCHASTIC GRID BUNDLING METHOD

Built on top of previous works on SGBM, we have developed a new error formulation for
it based on classic non-parametric regression. This has not been done in the literature
as far as we are aware of. We have explored the major difficulty in implementing SGBM,
where the classic truncation technique cannot be used and a new sample selection pro-
cedure had to be introduced. We had to deal with the troubles when establishing the
error bound for SGBM, where we have to properly define the equal partition technique.
We have shown that an intuitive numerical scheme does not always lead to an easy nu-
merical analysis.

We also combined SGBM with GPU computing, which had greatly improved the ef-
ficiency of our test code. Our numerical tests suggested that SGBM for BSDEs can be
applied to higher-dimensional problems with appropriate basis and bundling setting.

7.1.3. PDE AND BRANCHING METHOD

For the final part of this thesis, the Feynman-Kac type representation was extended to
a type of non-linear parabolic PDEs and we worked on approximating the resulting BS-
DEs. Although the local polynomial approximation based branching method seemed to
be a suitable advanced numerical scheme for this problem, this scheme was proven to
be unstable and failed to converge as the driver of the BSDEs fails to fulfil some basic
conditions. On the other hand, the redesigned numerical scheme with drivers random-
ization worked well. Thus, it is important to apply appropriate numerical schemes to
different kinds of BSDEs.

7.2. OUTLOOK

We have achieved many results in thesis, especially showing that BSDEs can be solved
effectively and therefore it is possible to include BSDEs in industrial applications. Nev-
ertheless, on top of our results in this thesis, many interesting aspects can be further
explored.

7.2.1. LOCALIZED FOURIER EXPANSION METHOD

The main remaining issue with the higher-dimensional expectation approximation is
that the computation effort required on the scaling function/reproducing kernel increases
with the problems’ dimension. However, there has been research on the construction
of an index set for truncated reproducing kernel such that it does not suffer from the
curse of dimensionality. Incorporating these results from Fourier analysis would pro-
vide a workable algorithm in higher dimensions.

We can also combine the cosine expansion lattice scheme with time discretization to
derive a numerical scheme for BSDEs.

Finally, we believe that our result in combining the Fourier expansion and lattice
sequences opens many research opportunities in extending the QMC results to general
measures. For example, we may consider developing an adaptive integration scheme
based on the half-cosine reproducing kernel.
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7.2.2. STOCHASTIC GRID BUNDLING METHOD
The numerical results in this work suggest that truncation maybe unnecessary for SGBM
when the number of simulation samples is high enough. This properties should be in-
cluded in the error bound of SGBM by applying convergence results for matrix equa-
tions.

A proof for non-refinement partitioning is still required too. One possibility is to
prove convergence with a refinement sub-partition and relate other partitionings to this
sequence.

Finally, our proof for the error bound is inspired by the classical result for non-parametric

least-squares regression. The resulting convergence rate is therefore in the order of N
1
2 .

We may consider including results from importance sampling to improve our error bound.

7.2.3. GENERAL OUTLOOK
In this thesis, we have mainly focused on classical decoupled FBSDEs. However, this
is not a fundamental requirement for the expectation algorithm. It would be of great
interest to test the above algorithms with BSDEs under various assumptions. Indeed,
the authors applied the COS method with coupled FBSDEs in [2]. A similar strategy will
also work for our localized Fourier expansion schemes, the SWIFT method and the lattice
expansion scheme, and they should be able to solve coupled systems.

There is also a practical reason to extend the applicability of our numerical algo-
rithms. For example, a McKean type BSDE is required to solve initial margin valuation
adjustment [3].

All in all, there are plenty of research questions remaining to be tackled. This thesis
provides a mathematical foundation for numerical integration schemes and probabilis-
tic schemes for BSDEs. Our results open doors for further basic numerical analysis re-
search, especially with the combination of Fourier and lattice schemes and the rigorious
analysis of SGBM. As we stated in the introduction chapter, we believe that numerical
analysis researches results from our work will pave the way for better industrial tools for
risk management.
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