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A B S T R A C T

An increasing number of photovoltaic (PV) systems are being installed worldwide
and residential sector is responsible for a large part of this growth. Small scale
PV systems do not have complex measuring devices and their breakdowns are not
spotted immediately by the system owners. This might lead to prolonged time
without generating power and creating both financial loss and environmental dam-
age. This thesis presents a method of PV yield nowcasting laying foundations for
remote monitoring. Early detection of faults is the first step towards eliminating
the described issues. In this project four machine learning models for predicting so-
lar yield were developed: ElasticNet, Polynomial Regression, Random Forest, and
Extreme Gradient Boosting (XGBoost). The models were created both for daily and
hourly data sets, as some inverters can log daily yields only. In both cases, the
utilized data set consisted of data for the time between July 1st, 2018 and June
30th, 2019 and corresponding to 1,102 PV systems which is five times more than
the largest data set studied in the found literature. The average PV system size in
the data set is 4.44 kWp. Utilized inputs next to weather data and previous yields
included shading factor describing fraction of direct light unable to reach PV sys-
tem due to surrounding obstacles. Calculation of shading facor was based on 360

◦

pictures taken at the site. XGBoost algorithm turned out to be the most suitable for
the task of PV yield nowcasting obtaining Root Mean Squared Error (RMSE) of 1.48

kWh and Mean Absolute Error (MAE) of 0.877 kWh for hourly data aggregated to
daily values and evaluated on future time steps. Currently used commercial soft-
ware of Solar Monkey has RMSE equal 2.237 kWh and MAE equal 1.5 kWh. XGBoost
model trained on daily data obtained RMSE 1.185 kWh and MAE 0.698 kWh outper-
forming hourly model most likely due to utilization of Hidden Markov Model for
data cleaning. Next to overall performance, per system metrics were calculated for
the hourly XGBoost. Mean individual RMSE for previously seen systems is 1.656

kWh while for unseen systems it equals 1.666 kWh. This means the model scales
well to previously unseen systems and implies that its parallelized version is not
necessary. Also, the model’s learning saturates after seeing data corresponding to
one year and 278 PV systems. Precalculation of GPOA worsened performance with
respect to the model utilizing GHI. Hourly XGBoost has hourly RMSE of 0.281 kWh
under clear sky and 0.377 kWh under partly cloudy sky which indicates it is more
mistaken for cloudy conditions. This could be caused by low quality of cloud cover-
age data. The model also has large relative errors for small irradiance values which
occur mostly in January and December, as well as just after sunrise and just before
sunset. This issue is caused by using squared error as loss function during model
training. Despite these shortcomings, the conclusive results recommend industrial
implementation of the developed model.

Keywords: AI, artificial intelligence, forecasting, machine learning, nowcasting, pho-
tovoltaics, PV monitoring, renewable energy, solar yield prediction, yield nowcast-
ing, XGBoost
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1 I N T R O D U C T I O N

Since the industrial revolution in the XVIII-th century global population, knowledge
and economy have not grown linearly anymore, but have changed exponentially.
The expected human lifetime in the Netherlands has changed from 48.5 years in
1900 to 81.8 years in 2019 according to [Gapminder Foundation, 2020]. In the same
period the percentage of global population living in extreme poverty shrinked from
72% to 9% [Rosling et al., 2018]. Availability of cheap and abundant energy brought
unprecedented era of prosperity and welfare. Even though they were not available
to all, vast majority benefited from their presence. Cheap energy largely contributed
to the interconnected World we know today, with fast and affordable transportation
and powerful computers that are able to both boost scientific developments and
provide entertainment.

However, spectacular developments came at high cost. Emissions caused by trans-
portation and industry owe increasing the average air temperature, leading to melt-
ing of the ice caps and rise of the sea level. Due to climate change multiple habitats
were irreversibly destroyed. The amount of litter produced worldwide is so large
that even if humanity disappears from Earth, signs of its presence will be still visi-
ble in soil. According to [The Economist, 2014] another mass extinction has already
started and a new geological era, the antropocen, has already began. Despite the
efforts of European Union, most of the world is still focusing on economic growth
and sustaining its basic needs, unable or unwilling to tackle the climate change on
global scale. Paris agreement ratified in 2015 and signed by 176 countries aims to
keep the global temperature rise below 2

◦C and shows that politicians have increas-
ing awareness of the issue. However, soon after signing it one of the world’s largest
economies, the United States, has withdrew from the pact. It seems that media
attention and political actions are disproportionate to the taken measures.

Luckily, new and promising technologies might come for rescue. Between 2010

and 2019 the market of photovoltaic modules raised by 32 % annually [Fraunhofer
Institute for Solar Energy Systems, 2020] being the largest hope to tackle climate
change. With monetary impact being the crucial factor shaping human actions
and policies, solar energy can have a profound impact worldwide. Solar power is
abundant, affordable, easily scalable and does not emit CO2 during its operation.
However, mass utilization of solar modules has a major challenge of intermittency
of supply, which makes it difficult to maintain power balance, to plan reserve ca-
pacity and complicates market bidding. Therefore, Photovoltaic (PV) module yield
forecasting is an important factor facilitating the energy transition and supporting
investment in solar energy. Accurate forecasts decrease energy yield uncertainty,
therefore reducing generation-load mismatch in the power grid and decreasing in-
vestment risk. Yield nowcasting (monitoring) ensures early anomaly detection pre-
venting economic losses and contributing to financial security of PV system owners.
Until recently the described tasks were difficult due to lack of suitable models. An-
alytical equations hold in laboratory environment, but often fail to predict yield in
the field, with insufficient information or with large data resolution. Taking con-
tinuous measurements of all required parameters in situ is not a common practice
due to high associated costs. With insufficient data it is the emergence of Machine
Learning (ML) and deep learning techniques which allowed the creation of more
accurate and precise models.

3
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1.1 literature study

This section provides brief description of possible approaches to PV yield nowcast-
ing and forecasting along with references to corresponding literature. Although the
focus of this Master thesis is photovoltaic yield nowcasting, many scientific publica-
tions described in this chapter refer to yield forecasting. The reason is the similarity
between these two problems. However, some differences exist and are stated explic-
itly whenever that is the case. The task of yield prediction depends on the provided
inputs. In this thesis nowcasting is defined as predicting the present or very near
past. It helps to determine what is the solar yield a PV system should produce at
the given time and weather conditions. Nowcasting is used for early anomaly de-
tection. If expected weather parameters are provided instead of historical values,
the described models will predict future yield (forecast). An overview of analyzed
papers in these fields was presented in appendix A. The presented review refers
to research performed in multiple countries and in variety of climates, but due to
great abundance of related work, by no means is exhaustive. Scientific publications
regarding the topic of interest can be divided into the following categories: studies
comparing several forecasting techniques and striving to pick the best one of them,
studies focusing on PV systems anomaly detection, studies providing overview of
related subjects such as feature engineering and finally comparative studies writ-
ten to keep track of the progress in the field. Several other types of articles such
as machine learning theory and irradiance or cloud coverage forecasting are also
relevant for solar yield monitoring. Machine learning and solar yield forecasting
are subject to quick changes. Therefore, this report usually refers to the most recent
publications in these fields.

Comparative studies and their influence on this work The single most important
comparative study is the one by [Yang, 2019] who presented analysis of 79 scientific
papers related to solar yield forecasting. The publication contains valid criticism of
current solar forecasting research. The author claims it is difficult to compare re-
sults due to lack of standard benchmark, lack of open-source access to the utilized
data, evaluation on small data sets, intentional hiding of the shortcomings, and
overwhelming abundance of the related literature. The article provides a set of re-
porting rules called ROPES which is proposed ”to assist researchers in preliminary
assessment of a publication, and to set guidelines for future research” [Yang, 2019].
R stands for reproducible and reminds that the used data base should be freely pub-
lished, so other researchers can pursue a different approach and be able to directly
compare the results. O stands for operational and implies that motivation of research
should be clear, so the grid operator could easily understand its relevance for grid
management and generators dispatch. P stands for probabilistic and implies that
probabilistic methods are more desirable and should be promoted. E is herein used
to denote ensemble NWP (physical ensemble), ensemble learning (machine learning
ensemble) or forecast combination (statistical ensemble). Finally, S stresses the im-
portance of skill score which shows relative improvement with respect to persistence
method. It underlines also the importance of common benchmark for all results.
Previously to [Yang, 2019], International Energy Agency issued an article structur-
ing the research on solar yield forecasting [Pelland et al., 2013]. Also [Antonanzas
et al., 2016] and [Sobri et al., 2018] compared multiple articles related to solar yield
forecasting including comparison of the used data time resolutions, input variables,
locations, and methods.

Described guidelines were adjusted to the case study of PV yield monitoring and im-
plemented to provide transparency and maximize the scientific value of this study.
Unfortunately, the work presented in this thesis cannot be freely reproduced, as
performed study laid foundations for a launch of a commercial product. Therefore,
easy reproducibility is not aligned with the best interest of Solar Monkey. Nev-
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ertheless, a detailed description of inputs, their resolution and units are provided.
Process of feature engineering, the exact used libraries, hardware specifications and
model computational times are also described. Feature importance for different
models is presented. Described work is focused on yield monitoring, rather than
forecasting, hence it is of no use for the power system operator. However, to pro-
vide an overview, different forecast horizons together with their applications are
presented in table 1.1. Unfortunately, none of the methods described in this work

Table 1.1: Overview of different temporal variability and forecast horizon scales and the
associated purposes (target) [Elsinga and van Sark, 2017]

Time horizon <15 min 15 min-h h-day >day
Target
Power balance/quality x
Reserve capacity planning x x
Load following x x
Market bidding x x x
Base-load planning x x

calculates probabilities. That is desirable for facilitating anomaly detection, but was
not investigated due to time limitations of the project. This research is ensemble-
oriented, as it focuses on XGBoost algorithm taking advantage of gradient boosting
(appendix E) and random forest (appendix E). Skill score values with respect to
simple persistence method are provided for easy comparison with other nowcast-
ing and forecasting research. According to [Yang, 2019]: ”based on what has been
published by the field leaders, it should be noted that a forecast skill of 0.3–0.5 is
the usual improvement that one should expect. Occasionally, due to an extremely
effective predictor, e.g. data from a station in the upwind direction to the focal
station, higher skills such as 0.5–0.7 can be achieved. Any outrageous forecast skill
reported, such as >0.7 for the entire year, is most likely due to some computational
or algorithm-design error”. Mentioned values refer to forecasting which uses uncer-
tain inputs and therefore has lower skill scores than monitoring. [Sanfilippo et al.,
2016] reported 44.92% skill score improvement over the persistence model, for solar
nowcasting.

Possible approaches towards forecasting Studies such as [Antonanzas et al.,
2016], [Sobri et al., 2018] and [Raza et al., 2016] provide an overview of all the meth-
ods applicable to solar yield monitoring. Three main approaches emerge from these
works: analytical (called also physical), statistical, and Artificial Intelligence (AI) ap-
proach. The latter splits into deep learning and ensemble learning. Analytical mod-
els were explored by the author of this thesis during a summer internship. Most of
the analytical models described in [Smets et al., 2016] were implemented together
with irradiance decomposition model BRL [Ridley et al., 2010], inverter efficiency
model SNL [King et al., 2007] and complex shading, but failed to provide accurate
daily predictions using hourly data resolution. Utilization of per minute or per
second data is not feasible, as most of the analysed systems are small-scale residen-
tial installations which lack complex measuring devices. Additionally, processing
e.g. per second data would require around 3600 more computational power than
in case of hourly data. This would either significantly increase computational time
or drastically increase hardware requirements. Physical (analytical) models require
information about electrical configurations, and therefore are prone to errors. PV

systems often consist of more than one type of modules which is difficult to track
in large data sets. As a result of these findings, the analytical approach towards
PV monitoring was abandoned. Nevertheless, the analytical models should not be
treated as incorrect. They have proven their value for high granularity data and are
the method of choice when there is little uncertainty regarding inputs.

Second possible approach is utilization of statistical methods such as Autoregressive
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Moving Average (ARMA), Autoregressive Integrated Moving Average (ARIMA), and
Nonlinear Autoregressive Exogenous (NARX). They focus on measuring correla-
tions between dependent and independent parameters and can be split into station-
ary and non-stationary or linear and non-linear. Stationary time-series fluctuates
around its mean [Sobri et al., 2018]. According to [Sharadga et al., 2020] this ap-
proach provides worse results than the AI approach. ARIMA is not considered to be
a method of choice in unstable climate, as proven by [Isaksson and Conde, 2018].
[Raza et al., 2016] value these methods more, as they claim that ”ARMA and/or
ARIMA can be used where fewer meteorological parameters are available as model
input for accurate forecasting PV output power”. According to [Massaoudi et al.,
2019] ARMA and NARX have proven their utility for short term forecasting and are
known for their simplicity. They do not require large database for training and have
low hardware requirements. Due to varying opinions about the suitability of these
methods, ARMA, ARIMA and NARX were not developed in this project. Additional
reason is that time series methods require different data pre-processing than most
of the ML methods. Working principles of ARMA and ARIMA can be found in [Raza
et al., 2016] and [Sobri et al., 2018].

Finally, there is AI approach which is the subject of this research. According to
[Antonanzas et al., 2016] it ”proved superior when compared to the parametric ap-
proach. Most recent papers used machine learning techniques, due to the ease of
modeling without the need of knowing PV plant characteristics”. All the described
models except for benchmark persistence model and current Solar Monkey’s model,
follow this path. The best performing ML methods split into deep learning which is
based on neural networks and ensemble learning which combines many weak learn-
ers (predictors) into one strong learner. According to [Maitanova et al., 2020] 24%
of researchers uses Neural Network(s) (NN) for predicting PV power. Dominant
methods are Convolutional Neural Networks (CNN), Multilayer Perceptron (MLP)
and LSTM neural networks. Especially the latter was reported to have supreme per-
formance over other algorithms according to [Abdel-Nasser and Karar, 2017] and
[Gensler et al., 2016] who suggested combining LSTM and CNN neural networks for
further improvement in performance. Attempts to build LSTM neural network by the
author of this thesis were described in appendix E. According to [Sobri et al., 2018]
”in comparison with other approaches i.e., one-diode, analytical, polynomial regres-
sion and multiple linear regression methods, artificial neural networks demonstrate
the lowest mean relative error”. They concluded that ”the metrics assessment shows
that AI models could decrease the error compared to other statistical approaches”.
Usage of neural networks is also recommended by [Tai, 2019] over linear regression,
decision trees, Gaussian process and computation of point resemblance. Based on
the described findings deep learning and machine learning were chosen as meth-
ods of choice. ML models were developed first due to lower complexity and shorter
development time. Simple models of LSTM neural networks were built, but were
abandoned due to time constraints of this project.

Next to the introduced three main approaches, hybrid methods exist, e.g. [Durrani
et al., 2018] combined data pre-processing using sophisticated analytical models
with artificial neural networks reporting MAPE of 3.4 % for sunny days and 23 %
for cloud days. Similar approach was pursued by [Ogliari et al., 2018] who used PV

module equivalent circuit and artificial neural networks for yield forecasting and re-
ported skill score equal 47%. An overview of available methods prepared by [Raza
et al., 2016] can be seen in figure 1.1.

Gradient Boosting for Solar Yield Nowcasting Among many researchers dealing
with gradient boosting are [Nikolaou et al., 2017], [Massaoudi et al., 2019] and
[Visser, 2018]. [Nikolaou et al., 2017] also utilized shading calculations, as he as-
sumed that each string consists of 12 modules and passed a fraction of shaded



1.1 literature study 7

Figure 1.1: Classification of forecasting techniques [Raza et al., 2016]

modules as input to XGBoost model. E.g. if 2 out of 12 modules are shaded, shading
factor equals 2/12 = 0.17 pu and is provided as an input. Interestingly, he found
out that large data set is not required for XGBoost to obtain good performance. It
is important to mention that [Nikolaou et al., 2017] utilized equivalent circuit and
focused on Maximum Power Point (MPP) tracking under partial shading conditions.
[Massaoudi et al., 2019] built blended models combining Local Interpretable Model-
agnostic Explanations (LIME), ElasticNet and XGBoost to obtain feature importance.

Lack of Large Database Analysis Attempts to structure the research on solar yield
forecasting are very relevant, as despite overwhelming abundance of literature little
progress is being done. For example, only [Elsinga and van Sark, 2017] provided
analysis for 202 rooftop PV systems while no other studies utilized data for more
than 21 systems. Issue of small data sets was noticed also by [Theocharides et al.,
2018] who wrote that ”most approaches are not fully tested and verified on large
amount of field data and different technologies, there is yet no complete universal
forecasting model and methodology to ensure accurate forecasts according to the
technology and location”. Most of the researchers motivate their study by contribut-
ing to improved generator dispatch, power quality effects mitigation, and reducing
secondary reserve capacity [Theocharides et al., 2018], but if their results are not
validated for multiple systems, they are not reliable enough for upscaling. Large
scale data acquisition is costly and might be difficult for universities and research
institutions. Lack of coordination between researchers and the industry might re-
sult in unnecessarily long search for optimal solutions and little implementation.
This study aims to fill this literature gap by providing analysis of one year data for
1102 PV systems.

Choice of inputs Next to investigating comparative studies described before, an
independent literature study was performed. It focused on determining which al-
gorithms are used the most often for PV yield forecasting, what kind of inputs
are utilized, what is their time resolution and which metrics are used for evalu-
ation. Many researchers utilized values of voltage and current as inputs to their
models [Sharma et al., 2020], but these information were not available during this
project. Other researchers used past solar radiation as a feature [Massaoudi et al.,
2019], [Maitanova et al., 2020]. There is variety of approaches and choosing the
right one depends on the forecast horizon and type of available data. According
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to [Maitanova et al., 2020] it is possible to generate predictions without PV system
information, basing mostly on weather data and values of the historical generated
power. Utilized inputs had 5 minute resolution and consisted of historical weather
measurements and maximal measured PV power in the previous five days, consider-
ing only the time for which the predictions are made. It is worth noticing that this
approach does not require information about solar radiation. Further comparison of
used algorithms and input features can be found in appendix A. Many researchers
included air humidity and pressure which are less relevant from solar engineering
perspective. The most typical features are: GHI, GPOA, module temperature, wind
speed and cloud coverage. Less typical features are maximal yield in the preceding
five days, PV power from the same time instant a year before, electrical character-
istics such as MPP voltage and current. In the analyzed literature no study utilizes
obstacle views nor calculates albedo.

Cloud coverage information According to [Anagnostos et al., 2019] ”predicting
PV output under clear sky conditions is a trivial task”. Rapidly changing cloud cov-
erage has significant influence on PV modules output and is the biggest challenge
of solar yield forecasting. An extensive overview of physical methods for cloud
coverage analysis was provided by [Sobri et al., 2018] who described usage of sky
imagery and satellite imaging. They distinguished four elements of sky imagery
analysis: obtaining sky images, analyzing them to recognize clouds, estimating
cloud motion vector using consecutive images and utilizing obtained location and
motion vector data for making irradiance, cloud coverage and power predictions.
Other researchers use different techniques and inputs to incorporate cloud coverage
information in their models. An interesting approach was proposed by [Gandoman
et al., 2016] who calculated seasonal variation in oktas independent of geographical
location and used them to calculate probability of power variations. The model was
trained on 20 years of cloud coverage data which increased reliability of this study.
[Zhang et al., 2018] also sees the importance of cloud analysis from sky images, as
he states that ”constantly changing clouds are still quite hard to model and create
inaccurate future power output predictions”. Lack of sky images and high resolu-
tion cloud coverage information was a major concern in this project.

Anomaly Detection Nowcasting tool developed in this project will be used by So-
lar Monkey for anomaly detection. Therefore, a description of monitoring related
literature is presented. A review of solar plant monitoring techniques was created
by [Ejgar and Momin, 2017] who described how yield data from different strings
are gathered and compared to calculate correlations and detect anomalies. Other
described approaches include Markovian models, Gecko clustering algorithm or
anomaly detection libraries such as EGADS in Java or luminol in Python [Ejgar et al.,
2016]. Several researchers described possible approaches towards anomaly detec-
tion. [Aziz et al., 2020] investigated CNN for this task and categorised faults into
line-to-line, line-to-ground, open-circuit, hot spots, and environmental effects. He
concluded that fault classification significantly increases when MPP tracking data is
used. A recent study by [Taghezouit et al., 2020] describes a superior method of
anomaly detection in PV systems using Principal Component Analysis (PCA) and
Kernel Density Estimation. Unfortunately, requirement for obtaining electrical data
limited the application of this study. Different path towards anomaly detection
was pursued by [Branco et al., 2020] who utilized only yield values and identified
five kinds of faults: daytime zero production, low maximum production, daytime
shading, sunrise/sunset shading and sub-optimal orientation. His method utilizing
yield time series data and was not chosen due to low reported detection rate and
large number of false positives. The latter means that correct values were treated
as anomalies and removed leading to loss of high quality data and causing discon-
tinuity. Finally [Rivai et al., 2020] suggested usage of low-cost sensors for anomaly
detection. This path is currently explored by Solar Monkey.
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One might wonder why this study focuses on regression if its main objective is
anomaly detection. There are several reasons for that. Firstly, using regression
makes it is easy to measure how large model errors are. Secondly, regression mod-
els can be used for yield forecasting if predicted weather data is provided. This
means the same model can be used for two different tasks. In this work a simple
approach of comparing predictions with observed values was pursued. A more
interesting approach would be using probabilistic supervised learning. Differences
between it and regular regression are described by [Schuler, 2019]. Classification
algorithms could also be utilized for this task.

Solar Monkey’s internal research The most relevant studies to the research de-
scribed in this report were performed by interns at Solar Monkey, Eefje Visser and
Yves van Montfort who focused on yield forecasting and data cleaning, respectively.
Significant overlap exists between this work and the work by [Visser, 2018] who de-
veloped the similar models as in this project and additionally investigated SVR and
MLP. Similar features including past yields, shading calculations, and weather pa-
rameters were used. The approach described by [Visser, 2018] focuses on creating
separate models for each system and allows to learn their individual parameters
such as ageing and changing obstacle views (e.g. growing trees). E. Visser assumes
usage of general model when no data for a particular system is available and replac-
ing it with a system-specific model after 6 months. That is fundamentally different
than this project, as it is assumed that general model is able to learn cross-system pa-
rameters such as inverter efficiency, module decay per year, system latitude and lon-
gitude, module type and efficiency. Usage of inverter efficiency was recommended
by [Visser, 2018] and implemented in this project. She argued also that PV systems
generate large amounts of data throughout their lifetimes and suggested usage of
incremental learning: ”we wish to update the model with incoming data, without
having to construct the model from the ground up each time it is updated”. That
is arguable, as this way models would not be able to see yearly patterns in the data.
E. Visser acknowledged also that ”due to its very short training time, performing
updates by calculating the complete model from the ground up is a feasible option
for the XGBoost algorithm”. Moreover, large data sets tend to favor neural networks
which are known to maintain steep learning curves longer than machine learning
models. Large data set is one of the most important assets of Solar Monkey and
distinguishes its models from other developments. These fundamental differences
in approach resulted in many decisions taken in this work. It is believed that train-
ing separated models for each system is cumbersome, as of April 24th 2020, total
number of systems monitored by Solar Monkey has exceeded 10,000. In this study
1,102 systems were investigated, contrary to 81 systems analyzed by Eefje. Another
large difference is the calculation of model metrics which is more complex in the
case of one multi-system model. In order to provide a cross research comparison,
next to Skill Score (SS) E-metrics developed by [Visser, 2018] were calculated. An
obstacle of direct comparison is that models described in that work utilized 15-min
data resolution which gives them significant advantage.

Other Solar Monkey intern, Yves van Montfort performed very relevant study re-
garding data cleaning. He used the same data set as utilized in this project and
discovered five different data quality issues: missing data, low outliers, high out-
liers, constant and lagging yield. Hidden Markov Model (HMM) was utilized to
detect all mentioned kinds of corrupt data and reached 99.6% accuracy and 95.4%
precision for this task [Solar Monkey, 2020]. These results are the very reason for
applying the developed HMM in this study. Further information on data quality
issues can be found in section 2.1.
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1.2 research objectives
The aim of this report is to present a method to create a very accurate and precise
PV yield nowcasting model. It is intended to confirm that AI is a suitable tool
for this task and outperforms the currently used analytical model. It was also
investigated whether the presented methods are cost efficient and can fulfill time
and cost requirements of the industry. Detailed research questions can be found
below:

• RQ1: Which machine learning algorithm provides the best performance for the task of
PV yield monitoring?

• RQ2: What are the common variables chosen by all models and what is the best set of
inputs?

• RQ3: Should machine learning methods replace the analytical approach?

• RQ4: Is developing a single general model better than developing models for all sys-
tems individually?

• RQ5: Is GPOA precalculation beneficial for ML models? Would using its raw compo-
nents provide better results?

The goal of this thesis is to utilize and verify the existing knowledge and provide
description of cutting-edge commercial product development, as well as to identify
core physical parameters influencing photovoltaic yield.

1.3 solar monkey
The research was founded by Solar Monkey company backed up with PVMD group.
Its mission is to provide financial security to the owners of PV systems and to de-
crease carbon dioxide emissions through preventing PV systems’ downtime. Solar
Monkey offers software allowing system design and providing year-ahead yield
predictions. It sells also monitoring service for the existing installations and yield
guarantees (a form of insurance). The company grows rapidly and so far operates
in the Netherlands, Belgium and Spain. In 2019 Solar Monkey left startup incu-
bator YES! Delft and moved to The Hague Tech where it currently employs more
than 20 people. It was also recently nominated for Rising Star category of Deloitte
Technology Fast 50 [Solar Magazine, 2019].

1.4 outline
This document will be presented in the following structure. After presenting the
related work in chapter 1, description of model inputs and feature engineering is
provided in chapter 2. Theoretical background related to machine learning theory
together with discussion about metrics can be found in chapter 3. Comparison of
results for all three analyzed data sets is presented in chapter 4. More detailed anal-
ysis of the best model selected based on results comparison can be found in chapter
5. Chapter 6 contains project conclusions. Finally, chapter 7 gives recommenda-
tions for further product development in Solar Monkey and for further academic
research.

Information complementary to this study can be found in appendices. Appendix
A contains a review of selected scientific articles including utilized models, metrics
and novel aspects. Appendix B presents feature importance graphs, appendix C
contains hyperaparameter configurations for each model and data set. Appendix D
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provides learning curves corresponding to all analyzed algorithms and data sets to-
gether with their descriptions. Appendix E provides insight into selected ML models
working principles and appendix F provides information about hardware utilized
in this project together with versions of the utilized libraries. Finally, appendix G
contains the first draft of a scientific publication based on this project.





2 DATA

In this chapter a description of inputs to machine learning models is provided. This
project utilizes two main data resolutions, daily and hourly, and three separate data
sets. It is intuitive that finer data resolution can provide higher quality results.
However, hourly data are available within Solar Monkey only for systems with So-
lar Edge inverters. Remaining systems utilizing Goodwee, Solcast and other inverter
brands can log only daily system yield. First of the three mentioned data sets has
daily resolution, second contains hourly data with features used for GPOA calcula-
tion and is often referred to as hourly rough data set. That is different than the last,
hourly detailed, data set which instead of raw components contains pre-calculated
GPOA values. Each data set has a different purpose. First, daily data set, was used
to prove that AI is a better approach than current Solar Monkey’s method. Second,
hourly rough, was used to show the increase in performance due to improved data
resolution. Finally, hourly detailed, was used to verify whether solar engineering
theory used for data pre-processing can boost performance of ML models. The main
objective of the project was to create as good monitoring service as possible and it
was assumed that it can be obtained using data containing GPOA values. In order to
provide valid comparison, all three data sets contain data for the same PV systems.

Yield forecasting is a supervised machine learning problem which means it utilizes
a set of correct answers, called labels, for model training. This is contrary to unsu-
pervised learning which focuses on finding unknown patterns in the data. Because
this project utilizes supervised learning, two matrices are required for training pur-
poses: feature matrix X containing weather and system parameters together with
historical yields and target matrix Y containing corresponding yields. Description
of their pre-processing is the main objective of this chapter.

2.1 data quality

In order to ensure that model performance is maximized only clean data should be
used for training and testing which is a major challenge. Data used in this project
comes from three different sources. Weather data were obtained from KNMI, sys-
tem data were provided by the installers and yield data were sent by the inverters.
Data from each source suffer from different quality issues. The most important er-
rors are related to system data such as number of modules, their orientation and
tilt, type of inverter, string configurations and other information provided by the
system installers. It is not verified and customers put little attention to filling in
those values. Therefore, several systems have wrong string configurations. That is
a very serious data quality issue, as no algorithm can perform well using incorrect
inputs. Detection of these kind of errors before creating a working model is diffi-
cult, if not impossible. Next, KNMI data often contains missing values for cloud
coverage which is an important parameter influencing solar yield. Apart from that,
no other data quality issues in those inputs were detected. Finally, yield data are
gathered by measurement devices which are not reliable for 100% of time, there-
fore, it might happen that measurements are skewed or missing. PV modules can
be shaded or damaged which significantly decreases their yield, despite favourable
environmental conditions. The same applies to PV systems down for maintenance.

13
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Even if yield during fault or partial shading is correctly measured, it should not
be used for ML models training. Training set should consist of samples correspond-
ing to uninterrupted operation, so predictions corresponding to malfunctions have
large error. In other words, a perfect nowcasting model should be mistaken in
case of partial shading or system malfunction. Training examples containing cor-
rupt data decrease overall performance of machine learning algorithms. Insightful
research on this issue was performed by [Solar Monkey, 2020] who classified five
types of corrupt data: low outliers, high outliers, missing data, constant yield and
time shifted data. These issues are tackled using two methods depending on data
resolution.

2.1.1 Daily Inputs

Low and high outliers occur when the resulted and expected yields significantly
differ. In this case current Solar Monkey’s predictions are used as reference. Miss-
ing data is caused by poor inverter wi-fi connection and yield values occur as zero
during non-zero GHI above 10 W/m2. Based on applying SNL model [King et al.,
2007] on several PV inverters, that threshold is considered to allow PV modules to
produce power exceeding inverter startup power. Constant yield corruption occurs
when yield values are equal and non-zero for several consecutive time steps. Likeli-
hood of such event in reality is extremely low, as weather keeps changing and yield
values are measured with mWh precision. Examples of corrupt data can be seen
in figure 2.1. HMM was able to detect and label corrupt information with estimated

Figure 2.1: Types of data corruption [Solar Monkey, 2020]

sensitivity of 99.9%. This algorithm returned probabilities of data being clean. Only
labels with likelihood above 99% were kept in the data set. Even though this value
is very conservative, only 1.11% of all yield values (labels) had lower probabilities
and were removed. Due to time constraints no sensitivity analysis was conducted,
but due to HMM usage XGBoost’s RMSE dropped from around 1.45 to around 1.25

kWh/system/day. Low and high outliers were not removed, because HMM can de-
tect them with low precision equal to 34.9%. That might be caused by relying on
current Solar Monkey’s model for outlier detection. Its low performance seems to
harm HMM’s precision. Data cleaning tool was developed and validated by [Solar
Monkey, 2020] and it was merely plugged-in to ML models by the author of this
thesis.
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2.1.2 Hourly Inputs

In the hourly data set a simpler approach was pursued. Labels were filtered assum-
ing that if three consecutive non-zero labels are equal, they are corrupt (constant
yield). If there are three consecutive zero yields, they all are assumed to be missing.
If non-zero yield is exactly the same as 24 hours ago it is lagging. This assumption is
safe only because yields are given with accuracy up to mWh. Therefore, likelihood
of two identical yields on consecutive days is very low. To identify high outliers,
yield values higher than three standard deviations of all yield values for a particular
system were detected [Ilyas and Chu, 2019]. From those only morning and evening
cold months outliers (before 11 AM or after 5 PM, in months October - March) were
included. No method of low outliers identification was developed. The results of
data filtering can be seen in figure 2.2. According to the described filters 4.16% of all
hourly yield data is corrupt. Unfortunately, after data cleaning performed using the

Figure 2.2: Fraction of corrupt data

described filters, models tend to perform worse. Therefore, corrupt yield examples
were counted, but were not removed. Without sensitivity analysis it is impossible
to determine whether these assumptions actually hold. The following graphs were
presented for overview and are intended to provide insight into hourly data quality
issues which should be tackled in the future. Implementation of the HMM to hourly
data was not possible due to project time constraints and because the model was
not available at the beginning of the project. Moreover, Solar Monkey has recently
released a device1 which logs yield data not suffering from the described issues (J.
Donker, personal communication, May 20th, 2020). Therefore, hourly data cleaning
was not investigated in detail.

Figure 2.3 depicts the issue of constant yield. It might seem that its value is equal
to zero, but that is not the case. Until 2019-12-21 yield oscillates between 0 Wh and
15 Wh. It is possible to see that the same system was able to produce much more
energy e.g. on 2018-12-25 when illuminated by similar irradiance as on 2018-12-19.
Taking into account long period of close-to-zero yield it is reasonable to assume
that this yield data is corrupt. The issue of missing yield was presented in figure
2.4 where yield is zero for nearly all day, despite favourable irradiance conditions.
GHI is above 10 W/m2, hence zero yield cannot be justified by not exceeding in-
verter self-consumption. Next, the issue of lagging yield was discovered. However,
it was caused my the fact that KNMI data used UTC time while yield data logged
by inverters used Dutch local time. After fixing this issue, despite careful manual
investigation, no examples of lagging yield were found. Finally, high outliers were
identified and depicted in figure 2.5. Despite significantly higher irradiance on Jan-

1 The device is produced by Xemex and utilizes GPRS communication
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Figure 2.3: Example of constant yield

Figure 2.4: Example of missing yield

uary 21st, than on January 20th, the analyzed system harvests similar energy yield.
This is suspicious, but insufficient to fully remove these samples from the data set.

Figure 2.5: Example of high yield outliers
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Described data filter makes detailed data quality analysis of all individual sys-
tems possible. This concept can be used for detecting data quality issues and is
elaborated on in chapter 7.

2.2 feature engineering

All variables influencing the outcomes of ML models are called features and the
process of their pre-calculation performed after data cleaning is called feature engi-
neering. In this section all operations performed both on daily and hourly inputs
are described. List of all available features promising for the task of solar yield pre-
diction together with their corresponding units can be found in table 2.1. However,
not all of them were utilized in the final model, as some turned out to be correlated
and therefore were removed. Correlations between features in table 2.1 are inves-
tigated in figures 2.6 and 2.7. The remaining features are uncorrelated which is
desirable for machine learning models. According to [Alzahrani et al., 2017] night
hours should be removed, as they do not have positive contribution to algorithms’
performance. This was implemented, as it allows also to save memory and reduce
computational time.

Table 2.1: All available features

Weather Features /
Unit

Sun zenith ◦

Sun azmiuth ◦

Sun altitude ◦

precipitation mm/h1

ambient temperature ◦C
ground temperature ◦C
wind speed m/s
Global Horizontal Irradiance (GHI) W/m2

Global Plane of Array (GPOA)2 W/m2

obstacle factor3 %
cloud coverage okta

System Features /
Unit

Nominal Operating Cell Temperature ◦C
system inclination ◦

system orientation ◦

system latitude ◦

system longitude ◦

total watt peak W
module decay per year -
inverter efficiency -
parallel T/F
system age days
type mono T/F
type poly T/F
type thin film T/F

Other Features /
Unit

day of year -
yield 1 day before kWh
yield 2 days before kWh
yield 3 days before kWh
yield 4 days before kWh
yield 5 days before kWh

1 or mm/day, depending on data resolution
2 only in hourly detailed data set
3 only in hourly detailed data set
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Models accept only numerical features, hence categorical features such as module
type had to be transformed by getting dummies. This function converts one column
containing string values (in this case mono, poly or thin-film) into three columns,
one for each unique string. Each of the newly created columns contains zeros and
ones. For each row in the X matrix only one of the three columns contains one and
the remaining two columns contain zeros. This includes hidden assumption that all
modules in a system are of the same type. System age in days was calculated using
system start date and time indices. Time series features of yields from previous
five days were added. Variables parallel and bifacial were transformed to zeros and
ones instead of booleans (True or False) and removed soon after, as it is highly
unlikely that one out of four systems contains bifacial modules. Missing cloud
coverage values were substituted with mean which did not include NaNs in the
sample count. Training examples containing zero GHIs were removed.

2.2.1 Daily Inputs

Correlations between features in the daily data can be seen in figure 2.6 where black
rectangles correspond to strong negative correlations and white rectangles corre-
spond to strong positive correlations. Upper and bottom parts of the heatmap, split
by the diagonal, are symmetrical to each other and analysing just one of them is suf-
ficient. The data used for plotting figure 2.6 was extracted several times throughout
the project and the presented figure contains only features kept for feature selec-
tion. However, in prior versions of the heatmap it was discovered that number of
PV modules and module nominal power were strongly correlated with power of
the entire system, hence were removed. Ground temperature was correlated with
ambient temperature and was removed as well.

Figure 2.6: Heatmap showing correlations between all features - daily data set

In figure 2.6 it can be seen that GHI is positively correlated with sun altitude and
negatively correlated with cloud coverage. That is intuitive, as clouds cause shading
and reduce irradiance incident on flat surface on the ground. Sun zenith has strong
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negative correlation with ambient and ground temperature, as well as with GHI and
sun altitude. That is understandable, as the higher Sun zenith, the more irradiance
reaches Earth’s surface and the hotter it becomes. Because of these strong negative
correlations solar zenith should have been removed. However, due to an oversight
it was left for feature selection.

Even though day of the year might seem to encompass yield seasonal variations,
initially it was not used as a feature. It was believed that predictions should be gen-
erated based on weather conditions and system parameters, not on time of the year.
Rationale behind was that PV yield should be of particular value because of some
specific weather conditions, rather than because it is July. If the same conditions
occurred in February, yield forecast should be identical. However, this contradicted
[Massaoudi et al., 2019] who claims there is a strong relation between generation on
the same day of the year during different years (e.g. yield on April 4th in 2018 and
2019 is likely to be strongly correlated). Even though the analyzed data set contains
values only for one year and could not benefit from yearly patterns, day of the year
feature was assumed to provide a link between data for different systems and train-
ing examples. If on July 1st many systems had high yield, it is more likely that the
analyzed system might have high yield as well. Therefore, the feature was left in the
data set and significantly contributed to algorithms’ performance (vide appendix B).

It is important to notice that only features used by analytical models were taken
into account. Other parameters, such as air pressure, were neglected despite being
utilized by other researchers such as [Kuzmiakova et al., 2017]. It should be also
noticed that voltages and currents are not inputs to the described algorithms, as
obtaining these measurements was not feasible for all 1,102 systems.

2.2.2 Hourly Rough Inputs

Daily and hourly rough data sets utilize the same set of features with the data
resolution being the only difference. Correlations in this data set are presented in
figure 2.7. This data set was subject to similar processing techniques as previously
described for the daily data.

2.2.3 Hourly Detailed Inputs

The last data set contains GPOA pre-calculated for each module and averaged to
obtain per system values. For each module its inclination, orientation, latitude and
longitude together with GHI and solar position are used to calculate GPOA. Solar
position is calculated based on solar azimuth and altitude. All mentioned values
are used to calculate direct, diffuse and reflected components of light reaching each
module. Obstacle factor, which is calculated using 360

◦ maps of the surroundings,
was utilized to correct the direct component of light as can be seen in figure 2.8.
Two versions of GPOA calculation, with and without obstacle factor, were tested. It
was discovered that using GPOA, which already included shading, worsened per-
formance of all models. Flowchart of the obstacle factor calculation can be seen in
figure 2.9. Due to a glitch in Solar Monkey’s database extraction of all inputs neces-
sary for individual albedo calculation was not possible. Therefore, an assumption
of constant albedo of 0.2 was used (dr H. Ziar, personal communication, December
6th, 2019). Next, mean values for all modules were calculated. Performing calcula-
tions per module could provide better performance than per-system approach, but
was not feasible due to lack of per-module yield data.
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Figure 2.7: Heatmap showing correlations between all features - hourly data set

Figure 2.8: Flowchart of GPOA calculation - hourly detailed data set
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It is important to stress that the code used to generate this results was not created
entirely in this project, but is based on the work of Alba Alcaniz Moya and Annanta
Kaul, Solar Monkey interns in 2019 [Solar Monkey, 2019a], [Solar Monkey, 2019b].
Detailed description of utilized equations can be found in summer internship re-
ports and [Smets et al., 2016]. Remaining features were pre-processed as described
before.

Figure 2.9: Flowchart of obstacle factor calculation - hourly detailed data set

Heatmap created for the data set containing GPOA calculations did not differ sig-
nificantly from figure 2.7.

2.3 exploratory data analysis

Exploratory Data Analysis (EDA) is an important step during which the data set is
examined to identify potential data quality issues, calculate variance and create vi-
sualizations. It was performed separately for daily and hourly data, however large
overlap exists. Therefore, common description is provided first and then differences
are addressed in subsections. Interesting guidelines for EDA can be found in [Shin,
2020].

During EDA several interesting discoveries were made. Feature parallel turned out to
have zero variance and was removed. According to another feature, 22.37 % of all
modules were bifacial. That seemed suspicious, as bifacial technology is relatively
new and did not have the time to disseminate in one quarter of the market. Based
on (J. Donker, personal communication, January 5th, 2020) it was determined that
this feature has misleading name in Solar Monkey database and in reality corre-
sponds to type of PV power optimizer. Therefore it was removed as well. All data
sets contain the same system ids, hence distribution of module types is similar in
all cases which can be found in figure 2.10. No correlation between the systems
age and their size was observed. Systems have sizes varying between 1.59 kWp
and 17.7 kWp. Their distribution can be seen in figure 2.11. This indicates that this
research focuses on small-scale residential systems. Due to the chosen loss function
models tend to focus on large systems. In order to prevent low quality predictions
for small systems, data for installations with total installed power above 17.7 kWp
were removed. Distribution of the systems age and a scatter plot with respect to
their size can be found in figures 2.12 and 2.13, respectively. Clearly, no correlation
between systems size and their age exists.
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Figure 2.10: Module type histogram

Figure 2.11: System size histogram

Figure 2.12: System age histogram

For all the data sets the histogram of wind speeds, visible in figure 2.14, resem-
bles Weibull distribution [Bowden et al., 98], therefore it is assumed to be reliable.
Distribution of ambient temperature for both daily and hourly data is similar and
can be seen in figure 2.15.
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Figure 2.13: System age vs. system size

Figure 2.14: Wind speed histogram - daily data set

Figure 2.15: Ambient temperature histogram for hourly data

Analyzed systems are younger than three years, usually do not have size ex-
ceeding 7.5 kWp and consist mostly of mono-crystalline modules. Weather data
regarding wind speeds and ambient temperature do not present any aberrations.
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Discrepancy between cloud and irradiance data exists and is described in the next
section.

2.3.1 Daily Inputs

Before irradiance and cloud distributions are presented, short numerical overview
of daily weather data is provided. Ambient temperatures remain between 268.3 K
(-4.85

◦C) and 305.9 K (32.7 ◦C) which is reasonable. Rainfall is present in 13.4% of
all training examples and its maximal value equals 2.9 mm per day. GHI in figure
2.16 is relatively evenly distributed except the peak around 50 W/m2. None of the
values exceeds 500 W/m2 which could seem suspicious if it was not a daily mean.

Figure 2.16: GHI histogram - daily data set

The histogram of cloud coverage data (figure 2.17) revealed that a vast majority of
training examples have values corresponding to completely overcast sky. In Dutch
climate that is not very reliable. However, other source of cloud coverage data was
not available.

Figure 2.17: Cloud coverage histogram - daily data

2.3.2 Hourly Inputs

The most explicit difference between EDA performed for the two data resolutions
is visible when figures 2.16 and 2.18 are compared. Although hourly GHI never
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exceeds 965 W/m2 which is typical in the Dutch climate, its most frequent values are
in the smallest range. The reason for that might be that GHI is often decreased due
to clouds and, therefore, its values rarely are close to Standard Test Conditions (STC).
Small yields occur twice more often than large ones, as usually there is only one
irradiance peak around midday and two moments of low irradiance, after sunrise
and before sunset. This justifies the shape visible in figure 2.18.

Figure 2.18: GHI histogram - hourly data set

Distribution of hourly cloud coverage data raises similar concerns as its daily
counterpart. Distribution in figure 2.19 is even more explicitly skewed towards ex-
tremes - completely clear and completely overcast skies. That again raises suspicion
regarding cloud coverage data quality. In hourly data set ambient temperature re-

Figure 2.19: Cloud coverage histogram - hourly data

mains between 264.2 K (-9 ◦C) and 310.2 K (37.05
◦C) which is reasonable. Rainfall

is present in 13.4% of all training examples and its maximal value equals 21.6 mm
per hour or 37.14 mm per day. The latter is significantly different than for hourly
data and can be justified by daily data set using mean daily precipitation values.

2.3.3 Future Time Steps

In order to evaluate the best model performance for individual systems and deter-
mine whether it scales well to previously unseen systems, data for 1,102 PV systems
for time steps between July 1st, 2019 and May 30th, 2020 were extracted. It was
performed only for the hourly rough data set.
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2.4 data scaling
Another step of data preprocessing is standarization used to obtain similar magni-
tudes of all features. This is required by ML algorithms to provide optimal perfor-
mance. Equation 2.1 presents the working principle of standarization where µ is
the mean of all instances of particular training feature, σ is their standard deviation,
and z is the standarized value of the given sample x [Raschka, 2014].

z =
x− µ

σ
(2.1)

Instead of the simplified version (equation 2.1), each of the data sets was standarized
using sklearn MinMaxScaler described by equation 2.2, where x is a sample vector,
xmin and xmax respectively correspond to the vector minimum and maximum, max
and min correspond to feature range. Finally, xnorm is the outcome, a single stan-
darized value.

xnorm =
x− xmin

xmax − xmin
(max−min) + min (2.2)

Min-max scaler preserves the original shape of the data distribution and is a stan-
dard choice. Use of Robust Scaler is recommended if it is required to reduce the
influence of outliers [Pedregosa et al., 2011]. This is not the case, as all outliers were
removed. There is no need to obtain normally distributed outputs, hence Standard
Scaler neither was used. Another alternative to Min-Max scaler is row-wise nor-
malization, contrary to column-wise standarization. Normalization re-scales values
into range [0,1] and is particularly useful when all parameters need to have posi-
tive scale. However, the outliers of the data set are lost and for most applications
standarization is recommended. A common mistake is to standarize data before
splitting them into training, validation, and test sets which means that the mean
and the standard deviation are calculated on all samples. This leads to data leak-
age, as the test set is no longer a left-out set. More information about rationale
behind choosing the right scaler can be found in [Hale, 2019] and [Dorpe, 2018].
Detailed and relevant information about the process can be found also in sklearn
documentation [Pedregosa et al., 2011].

2.5 dimensionality reduction
Each feature of a data set adds to its dimension. In order to represent them graph-
ically or to decrease computational time of the models, PCA can be used. It is an
unsupervised machine learning technique which allows to decrease data set size at
the expense of its variance [Bishop, 2006]. It is reasonable to ensure that at least 99%
of variance is maintained, otherwise useful information contributing to the model
performance can be lost. Several experiments utilizing PCA were performed, but
loss of variance significantly harmed the performance of developed models while
the computational time remained high (threshold of 99% of variance was used). For
this reason PCA usage was neglected, but might be worth investigating in the future.
PCA is used after data scaling and before feature selection. Its working principle
and underlying theory can be found in [Bishop, 2006].

2.6 feature selection
Feature selection is a process of eliminating features which do not contribute to
increasing algorithm’s performance. It is one of the most important steps and has
paramount importance on model outcomes. In this section a variety of feature
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selection methods are presented. However, the list of techniques is by no means
exhaustive. More information can be found in [Li et al., 2020] and [Agarwal, 2019].

Default sklearn feature selection functions are: K-Best, Variance Threshold, Select From
Model, and Recursive Feature Elimination (RFE) with or without cross-validation. The
aim of this process was to find the optimal configuration both in terms of perfor-
mance and computational time. K-Best allows selection of an arbitrary number
of features and removes the rest. Similarly, Variance Threshold method eliminates
features having variance below a selected value. Next, Select From Model allows to
choose a number of features with the highest weights calculated by a machine learn-
ing model. All of these methods except RFE require providing an arbitrary number
as input and can find optimal feature configuration only by trial end error. Tak-
ing into account the number of data sets and models it is inefficient to repeat this
process for all of them. Therefore, K-Best, Variance Threshold and Select From Model
techniques were neglected. The main objective of feature selection in this project
was specifying the number of features worth retaining, rather than setting it blindly.
Additionally, the obtained result should be independent of shuffling. The technique
meeting these requirements is RFE with 3-fold cross validation.

RFE calculates the chosen metric for algorithm trained on all features. Next, it drops
feature with the lowest importance and recalculates the metric. This process is re-
peated until discovering the optimum. Based on the metric values, features are
sorted from the most to the least influential and split into categories. Parameters
detrimental for overall performance are removed from the input matrix. Before
dropping a feature, training process is repeated for 3-times and the mean metric of
all runs is calculated. This way it is ensured that picking different data for training
and evaluation would provide similar outcome. It is important to notice that results
highly depend on the model used as input to RFE function. Using the same model
for feature selection, as for making predictions does not always lead to the optimal
solution. For example, in case of polynomial regression, using it for recursive fea-
ture elimination provided much worse predictions than the use of random forest.
That is a frequent situation in the machine learning which is a highly empirical
field and in some cases trial and error is inevitable. It is worth noticing that random
forest is often used for feature selection because of its unique working principle.

Additional benefit from feature selection is shortening the computational time and
making the implementation easier. When using fewer features, less data has to be
extracted from Solar Monkey’s data base and plugged-in to the models. Feature
selection is performed only once during research and does not have to be repeated
after model implementation.

Several algorithms including XGBoost and random forest can also be used to sort
out the features from the most to the least useful. An approach based on com-
bining weights discovered by several algorithms was pursued by [Massaoudi et al.,
2019] who created partition vector importance. They used three different algorithms
which assigned different weights to the analyzed features. Then, another weight
was assigned to each algorithm and several arbitrary scenarios were analyzed. This
approach was not pursued here to prevent excessive model complexity and high
computational burden.
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This chapter aims to provide the ML background for the readers with no prior ex-
perience in this field. All described procedures assume that data has been already
cleaned and is provided in two aligned matrices, as described in chapter 2. Theory
provided in this chapter is of paramount importance for making an educated deci-
sion about the next algorithm to try. Understanding these concepts is also necessary
for the analysis of the best model in chapter 5.

3.1 data splitting
In order to obtain reliable results, models have to be evaluated on previously unseen
data, so called left out set. Therefore, all available data set is split into training,
validation and test sets. Training set is used for model fitting, validation set is used
for adjusting its parameters (tuning) and the test set is used for model evaluation
only. Utilization of the validation set is necessary, as tuning algorithm parameters
on the test set would optimize the model towards it and lead to over-optimistic
results, so called data leakage. Usual train-validation-test ratio is 3:1:1, but with large
data sets 98:1:1 can be used [Ng, 2020]. That is because as much data as possible
is used for the training purposes and 1% of large data set still provides sufficient
number of samples for the model evaluation. However, according to the learning
curves which can be found in chapter 4 and appendix D none of the models would
significantly increase its performance when trained on more data. Other reasons to
stick with the old fashioned 3:1:1 split are shorter computational times and higher
validation confidence.

3.2 cross-validation
Train-validation-test split is dependent on the picked samples. It might happen
that one of the subsets contains ”easier” or ”harder” configuration of samples to
predict, therefore skewing the obtained results. In order to prevent this situation
cross-validation is used and its working principle is depicted in figure 3.1. Blue
squares represent parts of the data set used for model testing while grey rectan-
gles represent the training set. 10-fold cross validation splits the entire data set
into 10 pieces meaning that always 90% of it is used for training and 10% of it is
used for testing. At each iteration model is evaluated on the left-out fold and after
this process is done for all folds, the mean of all results is calculated. The main
advantage of this method is its independence of shuffling. In this project 3-fold
cross-validation was utilized. Default cross-validation used to extract results de-
scribed in chapter 4 splits training set randomly. It treats all samples independently
and shuffles them in a random manner focusing only on maintaining the specified
ratio between the training and testing data. This way data sets have uneven num-
ber of training examples corresponding to each PV system. In case of the daily
data, it might happen that for one system e.g. 200 out of 365 samples are in the
test set. For another system this could be fewer samples, hence daily metrics for
both systems could not be compared. Moreover, larger number of training exam-
ples used for testing implies that fewer examples are used for training which could

29
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Figure 3.1: Working principle of 10-fold cross validation

result in worse model performance for under-represented systems. A solution to
this problem is splitting data for each system with a constant ratio among training
and testing folds and maintaining it during cross-validation. Instead of treating all
inputs as uniform, samples for each PV system would be extracted and split into
five folds. This way all systems would have sufficient number of training examples
and the test set metric calculations would remain reliable. This method is called Pre-
definedSplit and is depicted in figure 3.2. Pink rectangles correspond to the testing
folds and the white rectangles correspond to the training folds. Each fold is used
for testing once. Similar is true for figure 3.3. Alternatively, data set splitting can be

Figure 3.2: Predefined split cross-validation

performed with respect to system ids. All data for some PV systems might be used
for training while other systems are used entirely for validation or testing. This way
a situation when model was trained on existing systems and is used to make pre-
dictions for new (previously unseen) systems can be examined. This split is called
GroupShuffleSplit and its graphical representation can be seen in figure 3.3. During
every split different combinations of systems are used for training and testing. The
relevance and implications of GroupShuffleSplit are explained in chapter 5. In this
section the working principle of cross-validation was presented. It was explained
that its main purpose is making results independent of shuffling. More advanced
methods of cross-validation, such as GroupShuffleSplit and PredefinedSplit were pre-
sented and the specific issues tackled by each of them were described. Thorough
understanding of these techniques is necessary for preventing data leakage.
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Figure 3.3: Unseen systems split cross-validation

3.3 cost functions and learning rates
The process of algorithm training is based on minimizing the equation called cost
function which calculates error between predictions and observations. The method
of performing minimization depends on the chosen optimization algorithm, a pop-
ular choice is gradient descent described by formula 3.1.

θj := θj − α
∂

∂θj
J(θ) (3.1)

Gradient descent is used to iteratively update model parameters and the size of its
steps is called learning rate. Choosing the optimal value of this hyperparameter is a
tradeoff between the computational time and the overshooting the global minimum.
The smaller the learning rate the higher model performance and the longer compu-
tational time. On the other hand, too large values of the learning rate can cause
convergence failure, as the algorithm would keep overshooting the optimum. Cost
functions differ depending on the kind of utilized algorithms. One of the simplest
possible choices is the squared error loss described by equation 3.2

n

∑
i=1

(yi − ŷi)
2 =

n

∑
i=1

(yi −
p

∑
j=0

wj ∗ xij)
2 (3.2)

3.4 bias vs. variance trade-off
Machine learning algorithms suffer from two main sources of error, namely high
bias and high variance. If a model has high error on the training set, it suffers from
high bias. That means its complexity is insufficient to capture the pattern in the
input data. This problem is usually solved by reducing regularization, decreasing
learning rate or utilization of a more complex non-linear algorithm. Regularization
reduces the magnitude of weights found by a machine learning algorithm. Its main
goal is to help the algorithm focus on the pattern while ignoring the noise.

Model having low error on the training set, but suffering from high error on vali-
dation set has high variance. In other words it overfits. That means algorithm fits
too closely to the training data instead of following the general pattern and fails to
generalize to new examples. Ways of fixing overfitting are reducing regularization
and reducing number of features. Both high bias and high variance situations can
be seen in figure 3.4. High bias (underfit) can be seen on the left, correct model
is in the middle and high variance (overfit) is on the right. Ideally, models should
have low bias and low variance meaning they have low error on the training set and
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generalize well to previously unseen data. An important tool which helps to choose

Figure 3.4: Bias vs. variance trade-off

sensible next step is the learning curve depicting the model train and validation er-
rors as a function of data set size. Determining whether created model suffers from
high bias or high variance is crucial for its tuning. Separate parameters influence
bias and separate parameters influence variance. In case of high bias acquiring
larger amount of data will not improve the model performance. Bias vs. variance
trade-off is also of paramount importance for determining which algorithm should
be tried next. In order to understand it figure 3.5 can be analyzed. In figure 3.5

Figure 3.5: Bias vs. variance - learning curves

blue lines correspond to the training errors and red lines correspond to the test er-
rors. With increasing training set size training error increases, as it becomes harder
to fit regression line to all samples. At the same time testing error decreases, as a
model trained on larger number of samples performs better. High bias means that
a model has high error. Bias is expressed as vertical distance between x axis and
the error line. Variance is expressed as vertical distance between the training and
testing curves. Models with high variance fit closely to the training data, but fail
to generalize to new examples. Therefore, for models suffering from high variance,
the vertical distance between training and testing error curves is large.

One more important aspect of bias vs. variance trade-off is it is used for determin-
ing model accuracy and precision. In ML there is no single metric corresponding
to these metrics. In case of classification accuracy and precision are very popu-
lar, as they quickly provide intuitive insight into a model’s performance. Accuracy
corresponds to how often predictions match the reality and precision defines the
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spread of error. Learning curves allow to determine whether model is accurate and
precise, as depicted in figure 3.6 complementary to figure 3.5.

Figure 3.6: Accuracy and precision for regression

As described before, models with high bias are not complex enough to capture
pattern in the data, hence they are unable to make predictions close to observations
(low accuracy). Models with high variance fit to closely to the training set, but fail
to generalize to new examples. They suffer from low precision. An ideal ML model
should have low bias and low variance which means it should be both accurate and
precise.

3.5 hyperparameter tuning
Hyperparameter tuning is an iterative process of finding the optimal configuration
of algorithm settings and can be performed either manually or automatically. Hy-
perparameters differ among models, but despite their huge variety, most of them in
different ways address bias vs. variance trade-off described in the previous section.
The higher the model complexity, the larger the number of adjustable hyperparam-
eters.

Tuning can be performed manually by calculating the chosen metric on training and
validation sets. By determining whether the analyzed model suffers from high bias
or high variance, a better configuration can be found and tested. However, this pro-
cess is tedious and time consuming. Alternative method would be GridSearch which
tries all configurations for the given hyperparameter lists. A matrix containing the
calculated metric for each possible configuration of the given hyperparameters is
created. This method guarantees finding the optimal solution, but can be very time
consuming for complex algorithms and large data sets. Additionally, it might re-
main in sub-optimal region for a very long time. Its most popular alternative is the
RandomizedSearch which tests only an arbitrary number of hyperparameter config-
urations within specified ranges. If the number of samples is sufficient, a solution
close to the optimum can be found in relatively short time. It is important to no-
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tice that both GridSearch and RandomizedSearch should be cross-validated in order to
provide results independent of shuffling.

3.6 metrics
Model validation is a crucial step in the entire modeling process. It is based on met-
ric calculation which allows comparison of different models. Not only is it used at
the last stage of modeling, but also for algorithm training. After each training itera-
tion the chosen metric is calculated and compared with the previous result. Based
on the comparison algorithm can tell whether last change of hyperparameters was
beneficial or not and make new changes accordingly. In this section formulas and
descriptions of all utilized metrics are provided. Metrics discussion is crucial for so-
lar yield nowcasting real-life applications. Creating one model for multiple systems
requires a metric which combines small absolute error with treating all systems
equally. As discovered in literature study, the most commonly used metrics are
MAE, RMSE and MAPE. An overview of metrics used in the selected studies can be
found in appendix A.

Mean Bias Error Mean Bias Error (MBE) is described by equation 3.3 and expressed
in kWh. It is not a good candidate for the metric, as it allows positive and negative
errors to cancel out. Please note that in all equations in this section ŷ corresponds
to the prediction vector, y corresponds to the observation vector and n corresponds
to the total number of observations.

MBE =
1
n

n

∑
i=1

yi − ŷi (3.3)

R2 called adjusted coefficient of determination can be calculated using equation 3.4
where y is the mean of all predictions. It is one of the most popular metrics for
regression models. Its maximal value is one, corresponding to a perfect model, and
it has no minimum, as a model can be infinitely wrong. R2 can be also interpreted as
a probability that the next prediction point will occur directly on the regression line.
This metric is very useful in the initial research phase when models are relatively
bad and tend to have metric values far from 1. As R2 tends to be too high, when the
models improve, it does not alter enough to depict relevant changes. Additionally,
it does not capture overfitting and tends to be exaggerated when calculated on time
series data.

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (3.4)

Mean Absolute Error (MAE) is expressed in kWh and calculated using equation 3.5.
MAE does not include system size, therefore tends to be large for large systems. Also,
it does not penalize extreme errors additionally, contrary e.g. to Mean Squared
Error (MSE).

MAE =
n

∑
i=1

|yi − ŷi|
n

(3.5)

Mean Absolute Percentage Error (MAPE) seemed to be perfect for the assessment of
PV yield monitoring quality, as it is relative to system size. However, percentage
errors might take high values for low absolute yield mismatch which takes MAPE

far from the desired range of 0 to 100%. For example measurement of 0.5 kWh and
prediction of 0.1 kWh would generate percentage error equal to 400%. This would
skew MAPE which is mean of all percentage errors, as can be seen in equation 3.6.
Such high value indicates large error, but does not inform it is of little importance.
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This situation is particularly noticeable for XGBoost algorithm which often has high
percentage error for small values of yield.

MAPE =
1
n

n

∑
i=1
|yi − ŷi

yi
| (3.6)

Mean Squared Error (MSE) is expressed in kWh2 and calculated using equation 3.7. It
focuses on large systems with large error, therefore models which use it for training
tend to have smaller percentage error for large systems.

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (3.7)

RMSE is described by equation 3.8. Similarly to MSE it penalizes large errors more,
therefore preferring multiple small mistakes over few large ones. That is essential, if
the model is to be trusted. Root ensures that metric values are relatively small and
easily comparable. RMSE has a drawback of being large for large systems. However,
due to its extreme error handling and relatively small magnitude it is one of the
most important validation tools in this project.

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (3.8)

Normalized Root Mean Squared Error (NRMSE) is the most suitable metric for the an-
alyzed problem and can be calculated using equation 3.9. As few researchers ana-
lyzed data from large number of PV systems, they did not face the issue of model
fitting focusing on the large systems. NRMSE provides scaling with system size and
ensures that percentage errors for systems of all sizes remain unbiased.

NRMSE =

√
1
n ∑n

i=1(yi − ŷi)2

max(ŷ)−min(ŷ)
(3.9)

Metric allowing comparison with other research is skill score described by equation
3.10 and expressed in %. It provides relative comparison with persistence model.

SS = (1−
RMSEproposed

RMSEre f erence
) ∗ 100 (3.10)

Furthermore, metrics E10, E50, E100 and E500 providing results in % and expressed
by equations 3.12 and 3.11 were used. In equation 3.12 p can be either 10, 50,
100 or 500, stands for power and sets the threshold of absolute error. Metric E10
gives a percentage of predictions with absolute error below 10 Wh. Similarly E50
gives a percentage of predictions with absolute error below 50 Wh and so on. This
metric was calculated for easy comparison of the created models with the research
conducted by [Visser, 2018].

f (ŷi, yi) =

{
1 if ŷi − yi >= p
0 if ŷi − yi < p

(3.11)

Ep = 100% ∗ 1
n

n

∑
i=1

f (ŷi, yi) (3.12)

Lastly, custom metric created for Solar Monkey’s internal use is financial compen-
sation C expressed in e. Intuitively, a better algorithm is the one which requires
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lower payments to the customers. However, monitoring software is not used for
paying out guarantees and for this reason results of this metric were not presented
in chapter 4. Compensation formula can be seen in equation 3.14. Both compen-
sation quota and threshold are user-determined. It is important to notice that this
metric should not be used for algorithm training or models comparison, but was
created only to present the costs associated with model implementation. In equa-
tion 3.14 value of 0.21 corresponds to price of one kWh of energy and is expressed
in eand the value of -7 % represents current compensation threshold. Solar Mon-
key pays to the customers only when the error of its predictions is larger than 7 %.
Both electricity price and error threshold are parameters which can be optimized to
simulate different business scenarios.

PEi = 100% ∗ yi − ŷi
yi

(3.13)

C(ŷi, yi) =

{
|yi − ŷi| ∗ 0.21 if PEi <= −7%
0 if PEi > −7%

(3.14)

Compensation metric is highly dependent on the assumed settlement period
which can be either daily, monthly or yearly. Although daily payouts are not con-
venient neither for the company, nor for its clients, it might be insightful to see
differences among different time horizons.

All formulas described so far can be calculated either on the entire prediction ma-
trix, or for each system individually. General calculation might hide cases for which
the model performs badly and does not include the fact that each system belongs
(usually) to a different entity.Measuring overall model performance is informa-
tive, but insufficient to determine whether all customers receive predictions of
high quality. Therefore, each metric should be calculated per system and stored in
an array. Next, minimum, maximum, mean and standard deviation of each array
should be calculated. This approach allows also to identify the worst performing
systems and narrows the scope of error analysis. However, performing individual
system calculations requires splitting data according to system ids and utilization
of scikit.learn train test split function would not provide reliable results. A suitable
splitting method was described in section 3.1.

To sum up, multiple evaluation metrics relevant for PV yield monitoring and fore-
casting were presented. In the initial research phase coefficient of determination R2

was often used. Other supplementary metric is MAE which is easily interpretable,
as it expresses by how many kWh the algorithm is usually mistaken per prediction.
NRMSE seems to be the most relevant of all described methods, but for simplic-
ity RMSE was used for most of the time. Only after finding the most promising
model, complex analysis including calculation of NRMSE, E10, E50, E100 and E500 was
performed. Compensation metric was created due to misunderstanding of Solar
Monkey’s business model and is not informative at the moment. Nevertheless, it
was added to the created library for future use. Other metrics than the described
can also be utilized to evaluate regression models, but they rarely occur in context
of PV yield monitoring and forecasting.

In this chapter the key concepts of machine learning were introduced. Detailed
knowledge about the working principles of all utilized ML algorithms is not re-
quired to fully understand the findings of this research. Insight into mathematics
underlying ML was provided in appendix E. To summarize, it is very important to
evaluate models on previously unseen data, so their performance in real life can
be tested. Cross-validation is a technique making results independent of data set
shuffling. Models are trained and evaluated using the given metric and its choice
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is of paramount importance for the outcome of any ML related research. ML models
dealing with regression do not have single metrics corresponding to accuracy and
precision. Metrics have to be calculated for training and validation sets and based
on comparison of these results, model ”accuracy” and ”precision” can be estimated.
Being equipped with this knowledge, it should be possible to interpret the results
in the following chapters.





4 R E S U LT S

In this chapter results of six different models for three data sets are presented. The
described models are: ElasticNet, Polynomial Regression, Random Forest, Extreme
Gradient Boosting, Solar Monkey analytical model and simple persistence model.
The last two are not ML models and are provided as a benchmark. Comparative
evaluation of all models was performed for each data set. This chapter provides
justification for the selection of the best algorithm for further analysis in chapter 5.
As discussed in chapter 3.6, RMSE is the single most informative metric. E10, E50, E100
and E500 were calculated for hourly data sets only to provide comparison with work
performed by [Visser, 2018]. Other metrics such as MAPE were calculated to provide
additional insight. For each model and data set RMSE in kWh/day was calculated,
regardless of the input data resolution, to ensure that cross-data set comparison is
possible. In this chapter dissemination of such practice is put forward, to facilitate
comparison across different studies. It is also proven that skill score is an insufficient
benchmark.

4.1 daily data set

In table 4.1 comparison of all used models can be seen. Two models, Random Forest
and XGBoost, have RMSE lower than currently used monitoring software. Therefore,
implementation of any of these models would improve monitoring quality lead-
ing to fewer wrong predictions and decreasing errors magnitude. The latter is
measured by maximal error metric which is the smallest for Random Forest. It is
preferred that models make many small mistakes over few large ones. ElasticNet is
a linear method and was not expected to outperform any other technique and the
persistence model was used merely as a benchmark. Polynomial Regression did im-
prove predictions with respect to ElasticNet, but did not manage to surpass Solar
Monkey software. Despite having higher maximal error than Random Forest, it is
the XGBoost which turned out to be the best of all models compared for daily data.
It has the highest SS and R2 and the lowest MAE, RMSE and MAPE which indicate it is
much better than the persistence model, has small relative errors and rarely is very
mistaken. It is important to notice that XGBoost RMSE is almost two times lower
than for current Solar Monkey monitoring software. sklearn and xgboost libraries
sometimes provide different metric results for the same hyperparameters. The dif-
ferences are not large and are likely to come from different number of boosting
rounds (vide appendix E). Table 4.1 cannot be compared directly with results for
the two remaining data sets, as the same metrics have different units. For exam-
ple, MAE calculated on daily data is expressed in kWh/day while MAE calculated
on hourly data is expressed in kWh/hour. The only metric which uses the same
unit in all three data sets is SS expressed in %. However, its calculation is based on
persistence model RMSE which in turn does depend on data resolution. These issues
make it difficult to directly compare the results across data sets. To resolve them
RMSE and MAE were calculated for hourly predictions aggregated per day and their
values can be found in table 4.6. E-metrics for daily data were not calculated, as
thresholds of 10, 50, 100 and 500 Watts are too small for this data resolution. Calcu-
lating E-metrics with different thresholds would not provide comparison with other
data sets and work by [Visser, 2018], hence for the daily data was neglected.

39
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Table 4.1: Results comparison for all models for daily data set
R2 MAE Max Error RMSE MAPE SS

Solar Monkey 0.95 1.5 30.24 2.237 26.44 64.98

Persistence Method 0.62 4.157 83.47 6.389 75.77 N/A
ElasticNet 0.89 2.352 45.09 3.382 75.4 47.46

Polynomial Regression 0.93 1.896 27.52 2.753 31.98 57.23

Random Forest 0.98 0.775 20.34 1.325 9.88 79.41

Extreme Gradient Boosting 0.99 0.698
1

23.89 1.185
2

9.37 81.59
3

1 value obtained using xgboost library, sklearn value is: 0.704

2 value obtained using xgboost library, sklearn value is: 1.186

3 value obtained using xgboost library, sklearn value is: 81.57

4.2 hourly rough data set

The results for all models and data set containing hourly rough features can be seen
in table 4.2. Random Forest and XGBoost achieved similar performance. That is not
surprising, as both methods include some form of decision trees. Random Forest
has lower maximal error and MAPE while XGBoost has lower R2, RMSE and higher SS.
MAE in both cases is the same. Analysis of table 4.3 revealed that Random Forest
has more predictions very close to the observed values and only above 500 Wh er-
ror XGBoost starts to prevail. That justifies lower XGBoost RMSE value which rapidly
increases with large errors. It can be concluded that both algorithms are compa-
rable and can be used for developing commercial monitoring software. However,
due to its supreme ability to avoid large errors, XGBoost was chosen for the further
analysis. Metrics for Solar Monkey analytical model were not provided, as its cur-
rent version does not support hourly data resolution. Large values of MAPE in table
4.2, far exceeding 100%, do not imply that the developed models are insufficient to
predict hourly yield. As will be presented in chapter 5 large MAPE is a consequence
of using squared error as loss function and is skewed by large percentage errors
corresponding to small measured yields. It is important to notice that the persis-
tence model described in table 4.2 uses values from previous hour, not previous day,
hence providing much better results and leading to lower skill scores. This exposes
weakness of using SS to compare findings with other researchers. Table 4.3 presents

Table 4.2: Results comparison for all models for the hourly rough data set
R2 MAE Max Error RMSE MAPE SS

Persistence Method 0.8 0.346 8.27 0.531 70.75 N/A
ElasticNet 0.83 0.299 32.22 0.469 11176 10.88

Polynomial Regression 0.9 0.236 30.1 0.372 10504 29.33

Random Forest 0.96 0.102 28.82 0.216 417.76 59.04

Extreme Gradient Boosting 0.97 0.102 28.9 0.206 478.01 60.9

E-metrics describing fraction of all predictions with absolute error smaller than 10,
50, 100 and 500 Wh. Only for E500 XGBoost is better than Random Forest, by 0.31%.
This means that usually Random Forest is more precise than XGBoost, but when it
is mistaken the errors are of larger magnitude, worsening the metrics calculated in
table 4.2.
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Table 4.3: E-metrics for hourly rough data set
E10 E50 E100 E500

Persistence Model 10.99% 22.12% 32.85% 75.16%
ElasticNet 3.2% 15.93% 30.51% 82.1%
Polynomial Regression 4.18% 20.47% 38.18% 87.84%
Random Forest 27.43% 57.38% 72.53% 96.35%
Extreme Gradient Boosting 23.55% 54.66% 71.35% 96.66%

4.3 hourly detailed data set

In table 4.4 results for the last data set are presented. Solar Monkey does not have
hourly model, hence it is not included in the table. Due to the same data reso-
lution, tables 4.2 and 4.4 can be directly compared. Surprisingly, pre-calculating
GPOA worsened most metrics, except MAPE, which has improved for ElasticNet and
Polynomial Regression. Trends described in the previous section remain valid, as
XGBoost still has lower RMSE. Surprisingly XGBoost surpasses Random Forest in met-
rics it did not dominate before, that is E50 and E100 in table 4.5. Detrimental impact
of GPOA calculation is discussed in chapter 6.

Table 4.4: Results comparison for all models for the hourly detailed data set
R2 MAE Max Error RMSE MAPE SS

ElasticNet 0.79 0.347 9.42 0.533 9506 -0.95

Polynomial Regression 0.86 0.278 7.19 0.434 4076 17.69

Random Forest 0.95 0.141 5.73 0.269 624 49.11

Extreme Gradient Boosting 0.95 0.129 5.96 0.244 540 53.71

Table 4.5: E-metrics for the hourly detailed data set
E10 E50 E100 E500

ElasticNet 2.7% 13.5% 26.61% 77.26%
Polynomial Regression 4.36% 20.99% 37.5% 82.87%
Random Forest 21.17% 46.81% 62.61% 93.83%
Extreme Gradient Boosting 19.56% 47.25% 64.27% 94.96%

4.4 cross data set analysis

So far the results for three separate data sets were presented and a question arises:
which model is the best of all? In order to answer it, common metrics for the se-
lected models from each data set were calculated. In table 4.6 can be seen that using
data with finer resolution caused more than twofold decrease in MAE and RMSE. Pre-
calculating GPOA has worsened model performance, but results of a model using it
are still much better than results of the daily model. It is surprising to notice that
hourly persistence model outperforms both Solar Monkey model and XGBoost us-
ing daily resolutions. That means the monitoring service can be improved three
times just by improving the data resolution, even if no complex model is created.
Based on the results presented so far it can be noticed that the best nowcasting
model is XGBoost for hourly rough data set. Therefore, all further analysis is focused
on it.
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Table 4.6: Comparison of XGBoost metrics for daily aggregated results
Resolution RMSE [kWh] MAE [kWh]

Solar Monkey 2.237 1.5
Persistence hourly 0.742 0.475

XGBoost daily 1.185 0.698

XGBoost hourly (rough) 0.352 0.18

XGBoost hourly (detailed) 0.435 0.235

4.5 feature importance

In this section feature importance assigned to the selected variables for the best
model is presented. Weights assigned to different features by the hourly XGBoost

model utilizing GHI can be seen in figure 4.1. Feature weights for version with
GPOA can be seen in figure 4.2. Graphs for all other models developed in this
project can be found in appendix B. The only variables directly influencing PV yield

Figure 4.1: XGBoost feature importance for hourly rough data

are irradiance and module temperature. Therefore, they were expected to have
the largest weights. Analyzing figure 4.1 it can be seen that GHI indeed is the
single most influential feature. Total system power and cloud coverage also play
an important role which is not surprising. However, it can be seen that the past
yields have surprisingly high importance. This implies that the time component is
very significant for the task of PV yield nowcasting. It can be also noticed that the
ML models value features which have no significance for the analytical methods or
assign nearly zero weights for parameters of high analytical impact. The latter is
true for ambient temperature, wind speed and precipitation. Therefore, ML models
cannot be used to verify existing solar engineering theory. Figure 4.2 represents
XGBoost feature importance for the data set containing GPOA. It can be seen that
trends described in the previous paragraph still hold with GHI replaced by GPOA as
the most influencial feature.
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Figure 4.2: XGBoost feature importance for hourly detailed data

4.6 learning curves

Next to the XGBoost metrics and feature importance, the selected learning curves
are presented to depict bias vs. variance trade-off and learning saturation. For
each algorithm there is a different training set size above which the model does
not improve anymore. In this study, large data set containing more than 4,000,000

samples for 1,102 PV systems was investigated. Learning curves were obtained us-
ing 3-fold cross-validation and allow to determine whether full data set potential
was utilized. Semi-transparent areas around the lines correspond to standard devi-
ations of the results corresponding to all cross-validation folds. It can be noticed
that they are large for small data sets and decrease with increasing training set
size. That is particularly explicit when comparing figures 4.4 and 4.3 and is reason-
able, as for large data sets it is less likely that particular shuffling would skew the
results. Therefore, cross-validation should be neglected for the data sets larger than
0.15 % of the training set size, that is 60,000 samples (vide figure 4.4), as it signifi-
cantly increases the computational cost and has no significant impact on the results.

Learning curve in figure 4.5 was plotted for custom training set sizes, which means
its step value was not constant, but was adjusted manually. This approach requires
repetitive plotting and adjustments, hence was pursued only for the best model.
The advantage of such plotting is both initial and final stages of the model learning
can be captured. Until seeing 0.15 % of the training set size XGBoost validation error
decreases exponentially and it seems to stabilize later on. However, after plotting
learning curve for 10 % to 80 % of training set size it can be seen that learning
does not saturate and the validation error continues to decrease. However, drop in
validation RMSE is only around 0.02 kWh for the training set size between 40 %
and 80 %. This supports the assumption that learning saturates. Further increase
in the training set size is likely to decrease error, but it is not justified considering
surge in required computational power and the associated financial cost. Other op-
eration, e.g. data cleaning, is likely to provide larger gain in performance at the
lower expense. Next to the custom learning curve, curves depicting initial XGBoost

training phase and final XGBoost training phase were depicted in figures 4.3 and 4.4.
In figure 4.3 XGBoost performance converges so quickly that figure 4.4 with smaller
range of x axis had to be plotted. Based on figure 4.3 it can be concluded that
XGBoost has relatively low bias and variance, hence it is both accurate and precise.
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Figure 4.3: XGBoost learning curve at the beginning of the learning process - hourly rough
data set

Figure 4.4: XGBoost learning curve - hourly rough data set

Figure 4.5: XGBoost learning curve
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4.7 identification of incorrect string configu-
rations

A comparison of the top ten systems with the worst predictions for XGBoost and the
analytical model was presented in tables 4.7 and 4.8. Seven IDs in bold correspond
to systems which occurred in both tables and MAPE was chosen as the selection
criterion. Large overlap between tables is surprising, as the analytical model and
the XGBoost have completely different prediction-making process and should not be
mistaken at the same time. Therefore, bad predictions are not caused by the model
shortcomings, but by low quality of the input data for these systems. Comparing
predictions from both models can help to identify systems with wrong string con-
figurations (e.g. number of modules). Analyzing tables 4.7 and 4.8 it can be seen
that ten the worst performing systems are of all sizes.

Table 4.7: Top 10 systems with the worst predictions by Solar Monkey

System ID
MAPE

[%]
System Power

[kWp]
843 1993.31 4.86

4449 1862.69 9.45

4322 1800.77 2.97

5513 1629.99 13.25

112265 1456.57 6.27

35788 1404.85 4.72

93815 626.58 3.42

39794 573.92 5.5
134296 567.26 4.72

50987 500.17 3.3
Average 1241.61

Table 4.8: Top 10 systems with the worst predictions by the best XGBoost model

System ID
MAPE

[%]
System Power

[kWp]
4449 755.97 9.45

5513 659.12 13.25

112265 324.93 6.27

134296 310.84 4.72

35788 296.01 4.72

106172 153.13 3

101857 148.40 2.475

93815 141.90 3.42

39794 134.59 5.5
121519 133.65 2.32

Average 305.85
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In the previous chapter the choice between using GHI and GPOA and the rationale
behind choosing the most suitable algorithm were described. Some of the assump-
tions made while developing models described in chapter 4 were acceptable for
selecting the most promising algorithm, but are unacceptable in commercial appli-
cations. Making these simplified assumptions prevented development of custom
solutions for low-performing models. The models presented so far were trained on
randomly shuffled data with systems having uneven number of samples in the test
set. As a result, the quality of predictions for individual PV systems could not be
determined and the comparison of individual system metrics was impossible. Solar
Monkey customers are not interested in the general model performance, but expect
that their own predictions are of high quality. Therefore, in this chapter methods
of measuring individual system performance are presented. Detailed analysis of
several models utilizing the best performing algorithm, XGBoost, for hourly data set
with GHI, is presented. An attempt to ensure that yield predictions for all PV sys-
tems are of similarly high quality is described. It is also explained under what
weather conditions and for which PV systems the XGBoost is mistaken the most. This
chapter focuses on the XGBoost hourly model, although most of the described issues
are related to the daily XGBoost model as well.

5.1 previous model
Firstly, the evaluation of the best model described in chapter 4 was performed on
the data corresponding to future time steps to simulate its real life behavior and
measure its performance for individual systems. Comparison of performance of
XGBoost and the current Solar Monkey analytical model is provided in table 5.1.

Table 5.1: Individual system metrics comparison for Solar Monkey and XGBoost trained on
randomly split data

Individual
system
metrics

Units
Solar

Monkey
XGBoost

min RMSE

kWh

0.371 0.398

max RMSE 9.435 4.618

mean RMSE 1.824 1.355

mean MAE 1.303 0.886

mean MAPE % 43.62 23.02

mean NRMSE kWh / kWp 0.425 0.313

As expected, due to lack of system size normalization and choice of RMSE as
the evaluation metric, results for individual systems have large variance. It can
be observed that XGBoost has individual system RMSE oscillating between around
0.4 kWh and 4.6 kWh. The minimal RMSE of XGBoost is similar to the one of the
analytical model while the maximal RMSE of XGBoost is around two times lower.
Also, the mean RMSE decreased by around one third. The usage of ML model caused
a drop in relative error (mean MAPE) from around 44 % to 23 % which is almost
twofold improvement. It is important to notice that measuring performance on
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future time steps gives the closest possible test to the real life conditions. Therefore,
after model implementation the resulted metrics are very likely to be close to those
reported in table 5.1. Distributions of MAPE and RMSE for individual systems can
be found in figures 5.1 and 5.2 respectively. It should be noticed that daily results

Figure 5.1: MAPE distribution calculated for each system individually

Figure 5.2: RMSE distribution calculated for each system individually

reported for this XGBoost model in table 4.6 were not confirmed and that RMSE and
MAE calculated for all predictions are 1.484 kWh and 0.877 kWh respectively. This
leads to a surprising observation that hourly predictions aggregated to daily values
are worse than those made by the daily XGBoost model. Most likely, that is caused
by the utilization of HMM for daily data cleaning, described in chapter 2.

5.2 group shuffle split
In this approach all samples corresponding to 650 PV systems were assigned to the
training set while all samples corresponding the remaining systems were assigned
to the test set. The model was trained on full year of data and time steps between
July 1st, 2018 and June 30th, 2019. In this section its evaluation on past and future
time steps is described. Past time steps imply the model is tested on previously
unseen systems, but corresponding to the same time as the training samples. The
analysis of the second case was performed for the same model, but evaluated on
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time steps between July 1st, 2019 and May 30th, 2020, hence future with respect
to the training set. Therefore, all 1,102 systems were split into seen and unseen
and evaluated separately. This way it can be determined whether the model makes
better predictions for the systems it has previously seen. It is important, as train-
ing on full data base consisting of more than 10,000 PV systems is infeasible using
the developed code. XGBoost training on the entire data base requires utilization
of parallel computing or incremental learning which are beyond the scope of this
project. However, this section provides evidence that pursuing such approach is
not necessary, as the created XGBoost model scales well to the previously unseen
systems.

5.2.1 Past time steps

A comparison of this model with the current Solar Monkey model can be seen in
table 5.2. The mean per-system RMSE is the most important metric and based on its
value it can be concluded that the model utilizing XGBoost algorithm is around two
times better than the commercially used analytical model. The remaining metrics
are better in case of XGBoost as well. Percentage error distribution of predictions

Table 5.2: Comparison of individual system metrics for Solar Monkey and daily aggregated
XGBoost model for previously unseen systems and identical time steps in training
and testing data

Individual
system
metrics

Units
Solar
Monkey

XGBoost
Unseen
Systems

min RMSE

kWh

0.809 0.307

max RMSE 10.262 5.737

mean RMSE 2.074 1.025

mean MAE 1.536 0.714

mean MAPE % 118.9 24.23

mean NRMSE kWh / kWp 0.469 0.22

made by XGBoost was plotted in figure 5.3. Clearly, it is narrower and has a sharper
peak around zero than similar distribution corresponding to the analytical model.
Comparison of individual RMSE and MAPE for each system can be seen in figures

Figure 5.3: Comparison of percentage error distributions

5.4 and 5.5 respectively. It can be noticed that even for previously unseen systems
XGBoost outperforms the current analytical model. The distributions of individual
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RMSE and MAPE are shifted towards the left with respect to the Solar Monkey model.
This implies less severe outliers and smaller relative errors.

Figure 5.4: RMSE distribution calculated for each system individually

Figure 5.5: MAPE distribution calculated for each system individually

It was assumed that using the same time steps for training and evaluation allows
the model to learn and apply the pattern corresponding to a particular time period.
The analysis of future time steps described next, in theory, should provide worse
results, as the model has never seen the test time steps before. However, the model
described in the following subsection should be better than the one described in
section 5.1, as it is trained on full year of data and therefore should be able to learn
the seasonal pattern.

5.2.2 Future Time steps

Using 650 systems for training and all available systems for evaluation allowed the
comparison of XGBoost performance on previously seen and unseen systems. The
model created using GroupShuffleSplit was evaluated on future time steps and the
results of this evaluation together with comparison with the analytical model can be
seen in tables 5.3 and 5.4. Once these tables are compared it can be seen that there is
almost no difference between the metrics for seen and unseen systems. XGBoost does
not learn individual system properties, as type of modules, their decay per year
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and other system parameters were rejected during feature selection. The model
managed to learn a general pattern and use it to make predictions for system it has
never seen before. However, it can be seen that the model trained using GroupShuf-

Table 5.3: Comparison of individual system metrics for the Solar Monkey model and XGBoost

trained using GroupShuffleSplit and evaluated on future time steps and seen sys-
tems

Individual
system
metrics

Units
Solar

Monkey
XGBoost

min RMSE

kWh

0.506 0.502

max RMSE 6.494 6.098

mean RMSE 1.83 1.656

mean MAE 1.316 1.203

mean MAPE % 39.26 35.43

mean NRMSE kWh / kWp 0.432 0.382

Table 5.4: Comparison of individual system metrics for the Solar Monkey model and XGBoost

trained using GroupShuffleSplit and evaluated on future time steps and unseen
systems

Individual
system
metrics

Units
Solar

Monkey
XGBoost

min RMSE

kWh

0.563 0.644

max RMSE 9.435 5.449

mean RMSE 1.818 1.666

mean MAE 1.275 1.204

mean MAPE % 43.84 39.04

mean NRMSE kWh / kWp 0.408 0.377

fleSplit did not perform well on future time steps. It still outperforms the analytical
model in all metrics except the minimal RMSE, but its results are significantly worse
than those presented in table 5.2. The decrease in performance was expected, but
its magnitude is much higher than assumed. Clearly, the presented results are not
realistic and do not match with the previous findings. A possible explanation of
this disappointing outcome is the systems selected for training were of different
sizes than the systems in the test set. Therefore, the distribution of training data
did not resemble the distribution of the test data. For these reasons it is assumed
that the results presented in this section are significantly lower than would be if the
training systems were more carefully selected. Therefore, the distributions of MAPE

and RMSE are not presented. Due to time constraints this issue was not investigated
further and is left for future analysis. More attention should be given to selection
of the training systems and it should be noticed that the comparison of seen and
unseen systems is inherently biased, as its outcomes are system size dependent.

5.3 weather analysis
In order to capture seasonality, for weather analysis the model trained using all year
of data was utilized (vide section 5.2.1). It was investigated whether XGBoost has er-
ror dependent on the weather parameters. In case of analytical models errors are
often associated with particular time of year or ambient conditions. It was initially
assumed that it is not the case for machine learning models which are based on
statistics. Graphs depicting Absolute Percentage Error (APE) vs. GHI, cloud cover-
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age, wind speed and ambient temperature can be found in figure 5.6. Next to the

Figure 5.6: Comparison of different weather factors with respect to residual error

histograms of error, sample distributions were plotted to indicate the importance
for quality of predictions. For example, if in a certain range a weather parame-
ter occurs more frequently, high APE in that range would be particularly worrying.
This is the case for GHI values below 50 W/m2 for which APE reaches 60 % (vide
5.6). Cloud coverage, wind speed and ambient temperature have the largest values
of APE which are not associated with the most frequent values. In case of cloud
coverage large APE corresponds to values above 8.5 okta which are very rare. It can
be seen that each range of cloud coverage below eight okta has similar APE, but
the relative error rapidly increases above that threshold. This implies the XGBoost

model performs worse in case of completely overcast sky than could be concluded
from table 5.5. Large APE exceeding 25 % occurs for wind speeds between 22 m/s
and 23 m/s and between 17 m/s and 18 m/s which are relatively rare. Ambient
temperature has the highest APE between -5 ◦C and -2.5 ◦C which also occur very
rarely. Additionally, both ambient temperature and wind speed have very low fea-
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ture importance which can be seen in figure 4.1. It should be kept in mind that
solar yield is highly non-linear and links between APE and parameters in figure 5.6
do not provide full overview. It is true that APE has the largest values for certain
negative ambient temperatures, but does not mean it is caused by them. For exam-
ple low ambient temperature can be correlated with the small values of GHI which
in turn is of high importance for the model. Keeping in mind that GHI is the single
most influential feature for XGBoost based model, the alignment of its large APE and
occurrence histogram is the most worrying.

Next, in order to confirm that predicting solar yield under cloudy conditions is
much more difficult than under clear sky, an analysis similar to the one conducted
by [Durrani et al., 2018] was performed. Its results can be seen in table 5.5 where
the performance of the XGBoost and the persistence model was compared under
clear, partially cloudy and completely overcast sky. It can be seen that the persis-
tence model performance is irrespective of cloud coverage and its MAE, RMSE and
MAPE remain similar for all analyzed conditions. R2 worsens by around 0.1 which
implies insignificant decrease in the quality of predictions. These results are not sur-
prising, as the persistence model simply assumes that yield will persist for another
hour and is not influenced by cloud coverage. However, XGBoost clearly provides
better results under clear sky than for partially cloudy or completely overcast sky.
Its MAE increased from 0.149 for clear sky to 0.236 for partly cloudy sky. Similar is
the case for RMSE and MAPE which also worsened by around half. R2 dropped from
0.95 under clear sky conditions to 0.87 under completely overcast sky which further
confirms that XGBoost performance worsens with increasing cloud coverage.

Table 5.5: Comparison of performance for XGBoost and persistence model - hourly XGBoost

model with unseen systems in the test set

Nowcasting
model

Weather condition
Clear sky (<1 okta) Partly cloudy (1 - 7 okta) Cloudy day (>7 okta)
MAE RMSE MAPE Rˆ2 MAE RMSE MAPE Rˆ2 MAE RMSE MAPE Rˆ2

XGBoost 0.149 0.281 6.44 0.95 0.236 0.377 10.73 0.9 0.233 0.374 11.88 0.87

Persistence Model 0.553 0.73 27.34 0.69 0.577 0.768 28.64 0.6 0.567 0.76 31.73 0.46

Next to the hourly model, weather analysis for the hourly results aggregated to
daily values was performed in order to provide valid comparison with the current
Solar Monkey software. Results of such comparison can be seen in table 5.6 where
the clear trend described previously is no longer present. RMSE and MAE for samples
corresponding to completely overcast sky are significantly lower than for clear sky
conditions. The only metric constantly worsening with increasing cloud coverage
is MAPE. The reason for the lack of visible correlation in absolute metrics is the
daily aggregation of data, as for obtaining the results in table 5.6 daily medians of
cloud coverage were used. From tables and distributions of residuals presented in

Table 5.6: Comparison of performance of XGBoost and Solar Monkey model - configuration
with unseen systems in the test set

Nowcasting
model

Weather condition
Clear sky (<1 okta) Partly cloudy (1 - 7 okta) Cloudy day (>7 okta)
MAE RMSE MAPE Rˆ2 MAE RMSE MAPE Rˆ2 MAE RMSE MAPE Rˆ2

XGBoost daily
aggregated

0.733 1.267 6.04 0.99 0.956 1.544 6.93 0.98 0.613 1.136 33.99 0.98

Solar Monkey 2.15 3.076 15.02 0.94 2.009 2.825 13.88 0.93 1.26 2.016 177.42 0.95

this section it can be concluded that XGBoost performance is independent of wind
speed and ambient temperature, but depends heavily on GHI and to some extent on
cloud coverage. Based on the results of the hourly metrics, the analyzed model per-
forms around 50 % better in case of clear sky conditions than under partly overcast
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sky. Results presented in table 5.5 confirm that the utilized cloud coverage data is
insufficient to precisely capture real life changes.

5.4 error analysis
Similarly to the weather analysis, error analysis was performed for the model de-
scribed in section 5.2.1 which includes seasonality. It was already described that
utilization of the squared error loss function favours large yields, that is large PV

systems and sunny hours. To further verify this hypothesis, observed yields vs.
their corresponding APE were plotted in figure 5.7. It can be clearly seen that APE

Figure 5.7: Observed yield vs. absolute percentage error

has values far exceeding 100 % for yield values below 2 kWh which confirms the
initial assumption. In order to investigate it further APE with respect to hour of
a day and month was plotted in figures 5.8 and 5.9 respectively. It can be seen

Figure 5.8: Error analysis with respect to time of the day

that the model has the largest relative error for December followed by January. The
reason for that might be these two months have the least irradiance in the whole
year and therefore correspond to the smallest yields. Analysis of APE with respect
to hours has shown that the relative error is the largest for hours just after sunrise
and just before sunset. Final consequence of using squared error loss function can
be seen in figure 5.10 where residuals follow clear, quadratic increase with respect
to system size.
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Figure 5.9: Error analysis with respect to months

Figure 5.10: Residuals vs. system size

5.5 weight normalization

In order to prevent the XGBoost model from favoring large systems, normalization
was used. In figures 5.11 and 5.12 it can be seen that PV systems of smaller size have
higher relative errors while larger systems have higher absolute errors. The cause
of this problems is the loss function utilized for models training, squared error, being
system size dependent. Large systems naturally have large errors which are addi-
tionally squared making the algorithm focus on them. This causes smaller systems
to have higher relative (percentage) errors. This issue was attempted to solve by as-
signing weights to all training examples. The weights were inversely proportional
to system size following the equation: weight = 1

system size . Next, training evaluation
metric was changed to MAPE which ensured that relative, rather than absolute error
is minimized. E.g. 5 % error over 5 kWh error for all systems is preferred, as abso-
lute error of 5 kWh for small systems would significantly harm the quality of their
predictions. Change in results due to introduction of weights and MAPE as boosting
evaluation metric can be seen in figure 5.13.
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Figure 5.11: System size vs. MAPE

Figure 5.12: System size vs. RMSE

Figure 5.13: Percentage error distributions before and after adding MAPE and weight-based
normalization to the XGBoost training process
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After using weights to correct training, percentage error distribution has flattened
having more large errors. It was observed that XGBoost used 1,000 boosting rounds
to optimize RMSE, but only 23 rounds to optimize MAPE, as early stopping was trig-
gered. This means MAPE did not improve for 5 rounds and the model fitting was
interrupted. Clearly, assigning weights did not solve the problem of large relative
errors for small systems. Even though it was known from the beginning that us-
ing weights is theoretically incorrect, as all predictions are equally important, this
approach was expected to provide improved practical results. Surprisingly, even af-
ter removing weight normalization and using MAPE as stopping metric, the results
were worse than those obtained for the initial model using the squared error loss.
Therefore, question regarding system size normalization remains open.

One might wonder why MAPE was not used from the beginning and the initial
focus was on RMSE. It might also seem unclear why a different loss function, uti-
lizing system size, was not pursued. Firstly, MAPE is sensitive to outliers and can
have very large values for small absolute errors. E.g. 0.5 kWh prediction for 0.1
kWh observation corresponds to 400% error while impact of such event on overall
model performance is negligible. sklearn library allows to use two evaluation met-
rics [Pedregosa et al., 2011], but only for tuning purposes, not for training. Secondly,
MAPE cannot be used as loss function which has to comply with strict mathematical
requirements, e.g. it has to be twice differentiable. After researching available loss
functions [Grover, 2018] it was concluded that none of the common solutions is suit-
able for the task of large scale solar yield monitoring. Several attempts to develop
custom loss function for this project were made, but all of them failed. For these
reasons regular squared error loss was utilized.

In this chapter two separate models utilizing XGBoost algorithm and developed for
hourly data containing GHI were described. First one was created on randomly
picked 80 % of the training set and the other utilized full year of data correspond-
ing to 650 PV systems. Both of them were evaluated on future time steps, but only
the first one provided promising results which are on average two times better than
those of the analytical model. Failure of the GroupShuffleSplit for future time steps
is assigned to mismatch between training and testing data distributions. Neverthe-
less, its evaluation on past time steps revealed that XGBoost algorithm is scalable
to unseen systems and therefore developing its paralellized version is not neces-
sary. Performing analysis on data with future time steps made it possible to assess
individual systems predictions. It was discovered that models based on XGBoost al-
gorithm are mistaken the most for small observed yields and therefore for small
irradiance and large cloud coverage values. There is also clear, negative correla-
tion between relative error and system size caused by using squared error as the
loss function. Unfortunately, the presented normalization method failed to achieve
similar quality of predictions for all systems. Despite careful investigation of sev-
eral loss functions none of them was identified as suitable for the task of PV yield
nowcasting for multiple systems. All attempts of developing a custom loss function
combining absolute and relative error have failed.
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The principal objective of this study was to provide high quality photovoltaic
yield predictions for the purpose of system monitoring. Predictions are made for
the presence, not for the future, hence it is the task of solar yield nowcasting. Five
different methods ranging in complexity were presented and compared with the
commercially available software. Among them, industrial implementation of Ran-
dom Forest and XGBoost models is justified, as they both outperform current Solar
Monkey software. However, in order to prevent large errors as much as possible,
XGBoost is preferred. Additional argument supporting this choice is short training
time. Two versions of XGBoost model were created, one for hourly and one for daily
data resolution. Daily model is used only when no hourly data is available. The
best hourly model is mistaken by 0.877 kWh per prediction on average, while cur-
rently used commercial software is mistaken by around 1.5 kWh per prediction
being around two times worse. Despite superior performance, the best developed
model suffers from large relative errors for small measured yields. After this brief
summary, answers to the research questions are provided below.

RQ1: Which machine learning algorithm provides the best performance for the
task of PV yield prediction?

It is the Extreme Gradient Boosting which turned out to be the most suitable al-
gorithm for the task of PV yield nowcasting. It obtained the lowest RMSE in all three
analyzed data sets. Moreover, it scales well to previously unseen systems which
allows to avoid development of its parallelized version and makes it particularly
suitable for commercial applications. It has to be noticed however, that Random
Forest has results very close to XGBoost. The reason for that can be similar working
principle, as both algorithms utilize decision trees. Random Forest seems to have
more frequent high quality predictions, but once significant errors happen they are
of higher magnitude. The reason for choosing XGBoost is the desire to avoid such
large errors as much as possible. It is better to obtain predictions further from ideal
on average if that allows to prevent large errors from happening. Two other de-
veloped ML models, ElasticNet and Polynomial Regression, turned out to be worse
than the current commercially used software. They have large MAPE which is unac-
ceptable for solar yield nowcasting.

RQ2: Should machine learning methods replace the analytical approach?

As proven in this study, machine learning models have several advantages: superior
performance, short prediction time and the ability to improve with experience. At
the same time several factors limit their application. ML models have relatively high
computational requirements, long development time and are of high complexity
which makes them harder to debug. Sometimes it is not possible to understand
why a model is mistaken for a particular case. Additionally, upscaling for large
data sets is problematic and distribution of the training data limits the application
of ML. The latter means that model trained on data from the Netherlands might not
perform well in countries with different climate, e.g. Spain. Therefore, it is difficult
to apply ML models in new markets where no large data base for multiple systems
is available.

59
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Analytical models are easy to debug, immediately applicable in new markets, do
not require large data set and in theory should provide nearly ideal predictions for
per-second data resolution. Their drawbacks are longer time required to make pre-
dictions, lower prediction quality and inability to learn. Even though in this report
it is often stressed that ML models outperform the analytical model, the latter will
continue to play an important role in Solar Monkey operations. It is indispensable
in new geographical locations where large, clean data base is not available. Also,
the analytical predictions can be compared with XGBoost predictions to identify PV

systems with incorrect system parameters such as string configuration, number of
modules etc.

RQ3: What are the common variables chosen by all models and what is the best
set of inputs?

Values of previous yields together with irradiance and total installed power have
dominated feature importance graphs with cloud coverage following them. Solar
position including azimuth, altitude and zenith and day of year have much lower
relevance. It is assumed that when using data for longer time span than a year, day
of year feature would be assigned larger weight, as it would incorporate seasonal-
ity. Type of solar modules, system age and ambient conditions such as wind speed,
precipitation and ambient temperature were assigned surprisingly small weights.
System specific parameters such as Nominal Operating Cell Temperature (NOCT),
system latitude and longitude have almost negligible importance as well. Also
shading, expressed by the obstacle factor and based on horizon maps, had far lower
impact than expected. Possible reasons could be averaging module shading values
for each system or obsolete 360

◦ maps of surroundings. The optimal set of inputs
together with their weights assigned by the best developed model is depicted in
table 6.1. Analyzing the impact of time series features and understanding ML work-

Table 6.1: The best model set of features with their corresponding weights
Feature Importance [%]

GHI 38.8
yield 1d 26.48

yield 2d 10.59

total watt peak 9.55

yield 5d 3.65

yield 3d 3.23

cloud coverage 2.77

yield 4d 1.58

sun altitude 1.18

day of year 0.75

ambient temperature 0.38

sun azimuth 0.35

module orientation 0.33

wind speed 0.19

precipitation 0.15

ing principles it can be concluded that the developed models should not be utilized
to verify the existing solar engineering theory. In analytical models PV yield yester-
day has no influence on PV yield today. However, for ML models time component
is of paramount importance. Apparently, they notice that weather changes usually
are not abrupt, but occur gradually. Therefore, they can use historical yield and
irradiance values to learn the pattern in solar data. Some ML models, e.g. Ridge re-
gression (vide appendix E), might reduce importance of all but one most influential
parameter close to zero. This does not mean however, that other variables have no
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physical impact on solar yield and is just a result of purely statistical operation.

RQ4: Is developing a single general model better than developing models for
all systems individually?

In order to answer this question a comparison between this study and the one by
[Visser, 2018] should be made. Even though E. Visser focused on yield forecasting,
rather than nowcasting and utilized 15 min data resolution, her study touches upon
multiple issues relevant for both projects. Similar conclusions are choice of XGBoost

algorithm as the best for predicting photovoltaic yield and discovery of correlation
between relative error and system size. However, E. Visser recommended usage of
XGBoost models built for each PV system individually. That conclusion is challenged
here, as individual models are unable to learn the influence of module and inverter
types and other cross-system parameters. Also, training individual models for each
out of 10,000 systems is cumbersome and sub-optimal in production environment.
Detailed E-metrics for hourly resolution reported in both studies were compared
in table 6.2. Results for forecasting and nowcasting models can be compared only
because E. Visser discovered that usage of forecasted and historical weather data
provides similar results. It can be seen that the general model has worse results

Table 6.2: Performance comparison of one XGBoost model for multiple systems and XGBoost

model built for each system individually [Visser, 2018]
Data

Resolution
Forecast
Horizon

Model
Type

E 10 E 50 E 100 E 500

Nowcasting 1 h 0 h (now) General 23.55% 54.66% 71.35 % 96.66%
Forecasting 15 min 2 h Individual 38.6% 55.4% 67.6% 95.6%

for E10 and E50 metrics, but outperforms the individual model in E100 and E500. It
should be stressed that the forecasting model utilizes four times better data resolu-
tion which gives it significant advantage. Nevertheless, the results are very similar
which indicates that developing one model for all systems does not provide sig-
nificant difference while it saves time and effort. Also, general model can make
predictions for new systems immediately without the delay for individual system
data gathering. Therefore, it can be concluded that developing a general model is
the approach of choice.

Before the last research question is answered the reasoning behind applying do-
main knowledge for ML inputs preprocessing is provided. The entire idea of ma-
chine learning is to let it discover the equation linking various parameters with
PV yield on its own. One might wonder whether preprocessing of inputs using
domain knowledge contradicts this idea. Feature engineering aims to increase the
amount of information available in the data set. GPOA contains more information
than GHI, as modules are usually tilted and irradiance on horizontal surface does
not correspond to the real irradiance received by solar modules. GPOA calculation
was utilized, because it is purely trigonometrical and does not contain much un-
certainty. Other parameter which could increase the amount of information in the
data set is the instantaneous inverter efficiency provided by the SNL model [King
et al., 2007]. It would be an improvement, as models developed in this project are
aware only of the maximal inverter efficiency, but do not acknowledge that inverter
efficiency changes over time. Domain knowledge can be useful also during data
filtering, e.g. for GHI larger than 10 W/m2 yield is supposed to be zero, as gen-
erated power is usually below the inverter startup power. Non-zero yield values
corresponding to GHI below 10 W/m2 should be removed. Similarly, samples with
zero yield for high values of irradiance should be removed as well.

In some cases applying solar theory for preprocessing of ML inputs does not seem
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justified. Soiling equations described by [Nepal et al., 2019], [Maghami et al., 2016]
and [Lindig et al., 2018] depend on empirical, location-dependent soiling coeffi-
cient which could harm model performance. Ageing equations described by [Man-
ganiello et al., 2015] and [Quansah and Adaramola, 2018] cannot incorporate indi-
vidual defects in silicon material and the pace of ageing highly dependent on ambi-
ent conditions. The usage of Fluid Dynamic model does not seem justified neither,
as it assumes uniform temperature distribution inside a semiconductor material.
That is not true due to non-uniform material structure and temperature differences
caused by partial shading. All models mentioned in this paragraph have analytical
value, but are not a good fit for ML techniques due to the included assumptions.

RQ5: Is GPOA precalculation beneficial for ML models? Would using its raw
components provide better results?

Before the project started data set containing GPOA had been assumed to be the
most promising. According to [Massaoudi et al., 2019] ”relying on domain knowl-
edge contributes significantly to the prediction accuracy”. This was not confirmed,
as contrary to the initial belief, pre-calculating GPOA did not improve model perfor-
mance. GPOA was calculated using two configurations - with and without shading.
Surprisingly, including shading factor further decreased model performance. It is
assumed that disappointing results of GPOA and shading calculations were caused
by lack of data cleaning and large data resolution. GPOA calculation is analytical,
as features follow strictly formulated mathematical formula with hidden assump-
tion of continuous data. It could work also if average hourly values of continuous
data were given. However, that is not the case. For large data resolutions input
values were observed at a given moment and the measured parameter could have
arbitrarily large fluctuations between the measurements. ML utilizing raw features
is not constraint by the analytical GPOA equation and therefore discovers its own
empirical formula better fitting the pattern. For this reason ML models utilizing raw
components of GPOA perform better than those utilizing GPOA itself. Following this
reasoning, the finer the data granularity the more beneficial it is to pre-calculate
GPOA. The reason for harmful influence of shading calculations might be obsolete
horizon views and calculating average shading for all PV modules. Next to the re-
search questions, several other topics related to the advanced analysis should be
covered. The following questions were formulated during research and are related
to advanced properties of the XGBoost algorithm and learning principles of ML mod-
els.

When should a system be added to the training set? For all ML models train-
ing and testing data should come from the same distribution. If small systems
dominate in the training set the algorithm might treat large systems as noise. This
could result in significantly worse predictions for under-represented systems and is
the case also for system age, irradiance and all other features. The larger the feature
weight, the more important it is to ensure its large variance in the training set. A
system should be added to the training set only if it corresponds to a case which is
poorly represented or not represented at all.

Did the model learn individual system parameters? It was discovered that cre-
ated models scale well to previously unseen systems and that one general model
is as good as the individual models for each system. Therefore, it might seem like
XGBoost is unable to learn individual system properties. However, that is not the
case, as these parameters are already incorporated in the historical yields.

Does the model provide better predictions for systems with larger number of
samples in the training set? Feature system age already describes number of sam-
ples corresponding to a particular system. The older the system is the larger is its
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age in days and the more samples it has. In figures 4.1 and 4.2 it can be seen that
this feature was not selected for the XGBoost algorithm which implies the quality of
predictions is independent of the number of samples corresponding to each system.
Therefore, assigning weights to under-represented systems is not required.

Can fewer systems with data corresponding to longer time range be used for
model training? In this project data for around 1,000 systems for one year was uti-
lized. Using data for two years and 500 systems is likely to provide similar results,
as long as the training set is possibly diverse. Obviously, a threshold exists and
using data for one system and 1,000 years would provide disappointing results, as
the training distribution would not resemble the distribution of the test set.

How many systems and with how long time range are required for the model
learning to saturate? XGBoost learning saturates around 40 % of the training set,
that is around 1.28 mln samples. In the analyzed data set each system has 4,609

samples corresponding to non-zero irradiance in a year. Dividing the total number
of required samples by samples per system it can be concluded that data for around
278 PV systems for an entire year is required for the XGBoost algorithm to reach the
quality of predictions reported in this thesis.

Finally, it is concluded that the best performing model developed in this project
was described in section 5.1 and can provide approximately two times better predic-
tions than the current commercially available software. However, despite promising
results the model can be further improved.





7 R E C O M M E N DAT I O N S

In this chapter recommendations both for academic research and further develop-
ment of the commercial monitoring service are provided. Improvements in the
method, data quality and best practices are described.

7.1 solar monkey

This section focuses on recommendations for the company. Changes in the input
data, hints on preserving the developed code and remarks on deep learning and
anomaly detection are provided.

5 min resolution Power production by solar modules is a phenomenon dependent
on multiple rapidly changing parameters. Hourly data resolution is insufficient to
precisely model cloud coverage and module temperature. Cloud coverage changes
are much more frequent than once per hour, as they are highly dependent on wind
speed which is significant in the analyzed region (the Netherlands and Belgium).
As presented in chapter 5, the created model performs worse for overcast sky than
for clear sky which implies cloud data is of low quality. Taking into account the
trade-off between hardware and physical requirements, 5 minute data resolution
is recommended. According to [Smets et al., 2016] PV module thermal inertia is 7

minutes, hence 5 min data resolution should be sufficient to accurately model it.

Solar engineering for ML inputs pre-processing As a result of the drawn conclu-
sions, GPOA calculation should be repeated for finer data resolution. Also, for data
granularity in the order of minutes inverter efficiencies calculated using SNL model
[King et al., 2007] should be utilized. Blending analytical assumptions with ML tech-
niques is a recommended path for further research. For fine data resolution inverter
clipping implementation is worth investigating. Also, domain knowledge should
be used both for data filtering and correction of predictions. For example the latter
could be limited to the inverter maximal power.

Better cloud data It was realised that KNMI cloud coverage data utilized in this
project imply that the sky is completely overcast for vast majority of time. That
seems unrealistic and therefore different cloud coverage data source, such as Me-
teonorm, could be utilized. It is recommended to investigate the usage of sky
images or peer-to-peer cloud coverage information based on surrounding systems
yields. Solar Monkey monitors multiple systems in the geographical region of in-
terest which makes utilization of peer-to-peer techniques possible. New cloud cov-
erage data do not have to be numerical and can consist of sky images which can be
processed by CNN or other deep learning techniques.

Data quality issues Due to the broad scope of this project it was impossible to ad-
dress all issues in detail. Especially, hourly data filtering could be improved. Three
data configurations: without timeseries features, with timeseries features and with
timeseries features and data filtering, were tested. Rough analysis revealed that
the usage of data filters worsened performance of the ML models. More attention
should be given to this issue in the future, as it is the quality of inputs rather than
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hyperparameter tuning which influences models performance the most. No sen-
sitivity analysis of the data filters was performed and the optimal choice was identi-
fied by trial and error, without cross-validation. Sensitivity analysis should be done
for each type of corruption detection separately. Data cleaning is of paramount im-
portance, as no model can provide high quality predictions using incorrect inputs.
It is non-trivial, time-consuming issue often requiring usage of complex statistics.
Therefore, it is recommended to prevent data corruption from happening. Sys-
tems often delivering corrupt yields should be identified using the HMM, filters
described in chapter 2 or through comparison of predictions from the analytical
and ML models. System owners should be reminded about guarantee loss due to
the poor wi-fi connection, as large, clean database is a foundation for development
of new products such as PV yield forecasts. Although not informing about connec-
tion malfunctions provides short-term benefits (prevents guarantee payments), it
should be avoided to benefit in long-term, by saving time and money on data clean-
ing and building high-performing AI models. Using clean data provides additional
advantage of releasing the burden from employees responsible for system monitor-
ing and resolving issues, thus making their work easier. A system of incentives and
penalties should be provided for the installers to motivate them to provide reliable
string configurations.

Preserving project code Code developed in this project should be preserved in-
cluding file paths and versions of used libraries. This would help to resolve doubts
and facilitate quick model testing by using pre-made functions from the created
library. BRL model [Ridley et al., 2010] should be added to the library in the future,
as several different versions of it exist within the company and some of them pro-
vide different results for the same inputs.

New markets According to [Lorenz et al., 2009] ”solar forecast accuracy depends
on the region of evaluation: for instance, RMSE ranged from about 20% to 35% in
Spain, reaching 40% to 60% in Central Europe”. This implies that some climates
are easier to predict than others. Performance of each PV technology with respect
to different climates was analyzed by [Quansah et al., 2017]. Models developed
in this project for optimal performance have to be trained on data from the same
geographical region as data used for making predictions. In other words, both train-
ing and testing data should come from the same distribution. When entering new
markets it might not be possible to immediately utilize AI approach which requires
large, clean data set to make high quality predictions. In such cases the analytical
model used by the company so far should be utilized. When using the AI models in
large countries with diverse climates, it is reasonable to split data into regions with
similar climate and to develop models for each of them separately. Similarly, when
entering a country similar to the one where Solar Monkey already operates one of
the existing models could be utilized. It was discovered that gathering data for 278

PV systems for one year is sufficient to reach the optimal quality.

Code implementation Both hourly and daily XGBoost models outperform the com-
mercially available software and should be implemented. For the daily data existing
HMM should be utilized and developing its new version for the hourly data is rec-
ommended. In both cases HMM should be adapted to use predictions made by the
XGBoost as inputs. Implementation of these models is important, as the predictions in
the production environment should be evaluated on clean data only. Next, XGBoost

files developed in this project can be directly loaded and data pipeline providing
continuous inputs should be developed. Created code library might facilitate im-
plementation.

Forecasting This work laid foundations for PV yield forecasting product develop-
ment in Solar Monkey. Work done by [Antonanzas et al., 2016] might be a good
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starting point for further research in this area. Despite data availability and com-
pany experience, developing a forecasting algorithm would require substantial ef-
fort. Economic aspects of forecasting and grid operator requirements should be
studied in detail before a model is built. Forecasting often utilizes deep learning
techniques of complexity higher than machine learning and taking more time to
develop. Also, Solar Monkey has little experience in developing neural networks,
hence additional time for the initial mistakes is required. Forecasting model should
be created on a customer request and customized to his/her needs. Developing a
general forecasting tool might result in difficulties with its commercialization. It
is recommended to obtain a list of desired conditions a forecasting model must meet
before development is started. That includes the desired forecast horizon, available
inputs and their resolution. Still several questions arise:

• Who would be willing to pay for the PV yield forecasts?

• What is the market value of PV yield forecasts?

• Is Solar Monkey able to challenge the status quo and make forecasting useful
for the residential PV system owners?

• Will the developed forecasts be good enough to safely make transactions on
the balancing market?

Forecasting might bring a new stream of revenue, but is associated with high pro-
duction and marketing costs. Selling a new product would require new channels
and most likely utility-scale customers. Moreover, transactions at the balancing mar-
ket are risky, as they involve large cashflows. To answer all the described questions
it is recommended to address them in a separate project.

Retraining In order for ML models to learn, they have to be frequently retrained
on new data. The ability to learn, that is to improve performance with experience,
is a major advantage of ML over other techniques. However, due to learning satura-
tion described previously, potential for improvement of the created models is very
limited. Initially it is reasonable to retrain the model once per week, mainly to make
sure it incorporates system ageing and changing pattern in solar radiation. There
is no need to perform feature selection after research process is finished. Model
might require repeating hyperparameter tuning if the data set increases or changes
significantly, but that is unlikely on weekly basis. Performing monthly verification
seems reasonable. Finally, XGBoost training is very quick and should not take longer
than 10 minutes.

7.2 further research
In this section recommendations for further academic research are given. They are
related to utilization of a different loss function, performing sensitivity analysis for
created data filters and alternative approaches towards anomaly detection among
others.

Metrics It is of paramount importance to develop a loss function able to minimize
both absolute and relative errors at the same time. Created loss function should be
compatible with xgboost native library. Model training using NRMSE as evaluation
function or using both MAPE and RMSE for model training are also worth further
investigation. It is also highly recommended to validate the best model created in
this project against smart persistence which is a benchmark for the task of PV yield
prediction. This would allow to better position the presented findings in literature.
Currently, it is difficult to estimate whether the created model is better or worse
than the models developed by other researchers.
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Open source data set It is worth considering to publish a data set containing
weather, system and yield information for 2 years and 50 systems to facilitate re-
search and allow direct results comparison. Significant effort to create standards of
PV yield forecasting and nowcasting is put worldwide, but little progress is done.
Partnership between Solar Monkey and Delft University of Technology could com-
bine real-life challenge with academic institution credibility and recognition, draw-
ing attention of large group of researchers. A prize for the best performing model
could be established and the participants should be obliged to publish their code.
This way TU Delft would contribute to solving the issue of solar yield monitoring
and Solar Monkey would obtain multiple models at low cost. Publishing data for
50 systems only would prevent direct utilization of the findings by other companies.
Obviously, confidentiality issues and ensuring that market competitors would not
benefit from the project should be addressed.

Sensitivity analysis and error estimations Detailed sensitivity analysis of differ-
ent parts of the monitoring service should be performed. What is the gain in final
metric due to data cleaning? What improvement can be obtained when using better
weather data? There are numerous sources of uncertainty: averaging of weather
data and weighting distance between sensors and PV systems, data cleaning for
daily and hourly data sets and shading calculations. Estimating sources of error is
an important component of decision making process regarding the next program-
ming steps. It facilitates optimal allocation of resources and is essential both for ML

and analytical models.

Deep learning This project did not manage to fully utilize the entire data set po-
tential, as all presented models stop improving their performance by the time they
see half of the training set. In order to tackle this issue, next developed algorithms
should focus on deep learning and neural networks. Linear regressors should be
completely skipped, as the persistence model already provides benchmark and they
have zero chance to learn non-linear pattern in the data. LSTM neural networks seem
to be the most suitable algorithm for this task and developing them is a rational next
step. A few simple LSTMs were developed in this project and the associated find-
ings can be found in appendix E. Future attempts should be made using exactly
the same data set to directly compare the results, adjusting it only where necessary.
Also a CNN could be built if there is need to process sky images and incorporate
cloud coverage data.

Anomaly detection This project focused on developing regression models to en-
sure easy error quantifying. However, the ultimate goal of the monitoring ser-
vice is anomaly detection which can utilize classification, probabilistic regression
or yield-based statistical methods. Classification labels each yield as corresponding
to normally operating system (one), or malfunctioning system (zero). Probabilis-
tic regression provides probability that yield is within certain range. Dealing with
probabilities is particularly appealing in monitoring, as it provides level of confi-
dence regarding the detected anomalies. These techniques, together with statistical
methods, are worth investigating in the future. It is important to notice that Solar
Monkey is not informed about the system breakdowns or maintenance, therefore
no labels for these events exist in the database. This, together with lack of precise
cloud coverage data, significantly limits the development of high quality anomaly
detection service.

Timeseries analysis During analysis of feature importance graphs it was discov-
ered that the historical yields were assigned the highest weights. It is a strong
indicator that time component has high importance in solar yield nowcasting and
forecasting. Therefore, the historical values of yield and irradiance for more than
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five past days should be added to verify their influence on the quality of predic-
tions. Initially, values for 14 days could be added and the feature importance graph
could be plotted. Usually the further the features are from the presence, the lower
importance they have. At certain moment their weights would decrease close to
zero and this way the optimal horizon threshold could be determined. Also, high
importance of time series features is a strong incentive to focus on methods such as
ARIMA and LSTM neural networks.

Parallel computing / incremental learning Based on the metrics calculation for un-
seen systems, it is not recommended to develop a parallelized version of the XGBoost

model in the nearest future. Developing such software in production environment
is time consuming and associated with large financial cost. It was not confirmed
that XGBoost provides better predictions for the systems it has already seen. Per-
formed analysis for seen and unseen systems revealed similar scores for both data
sets. However, direct comparison is difficult in this case, as the outcomes are sys-
tem size dependent and for this reason it should not be treated as final. Parallelized
model requires very similar data pipeline as the regular one and therefore, after
implementation, the quality of predictions for seen and unseen systems should be
re-evaluated to confirm the findings. It is strongly believed that even if a difference
exists it is small and the gain in model performance does not justify significant de-
velopment effort put into parallelized version of the XGBoost model.

Final model Even though the best model created in this project outperforms the
commercial software by a factor of two, it should not be treated as final. It should
be clear by now that preparation of inputs is crucial for the task of solar yield now-
casting using ML. Final model should be trained on clean data corresponding to a
variety of systems diverse in size, age and weather conditions. The most important
features which should be focused on, are irradiance and system size. High variance
of these should be ensured to obtain a robust model. Samples in the training set
should correspond to the entire year with possibly even number of samples for each
month. Final model should utilize also a custom loss function able to address both
absolute and relative errors.

In this chapter recommendations for the industry and academia were presented.
Future work in Solar Monkey should focus on obtaining higher granularity data,
better cloud coverage information and addressing data quality issues. It was con-
cluded that in further horizon developing forecasting service is possible, but will
require significant resources. Recommendations for academia focus on using so-
lar engineering theory to preprocess inputs for ML models, sensitivity analysis and
most importantly, on developing custom loss function which combines relative and
absolute metrics. Deep learning could be studied to develop a better understanding
of solar yield forecasting. Investigation of anomaly detection techniques other than
regression is also worth pursuing.
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B F E AT U R E I M P O R TA N C E

In this appendix feature importance graphs for ElasticNet, Random Forest and
XGBoost are presented. Feature selection of the latter for hourly models was de-
scribed in chapter 4, hence here only the daily graph is presented. Please note that
feature importance of Polynomial Regression was not plotted, as its features do not
have any physical meaning. Also, after creating polynomials the model utilized
more than 400 features which is difficult to present in a readable manner. Weights
corresponding to each feature are visible on the right of each bar. ElasticNet and
Polynomial Regression have built-in feature selection and absence of a particular
feature in an importance graph means it was not selected by the models. Random
Forest and XGBoost assigned weights only to the features chosen for them by the
3-fold RFE.

b.1 daily data set

Figure B.1: ElasticNet feature importance for daily data
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82 feature importance

Figure B.2: Random Forest feature importance for daily data

Figure B.3: XGBoost feature importance for daily data

b.2 hourly rough data set

Figure B.5: Random Forest feature importance for hourly rough data set

b.3 hourly detailed data set
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Figure B.4: ElasticNet feature importance for hourly rough data set

Figure B.6: ElasticNet feature importance for hourly detailed data set

Figure B.7: Random Forest feature importance for hourly detailed data set





C O P T I M A L H Y P E R PA R A M E T E R
C O N F I G U R AT I O N S

In this section the results of hyperparameter tuning for ElasticNet, Random Forest
and XGBoost are presented. Tuning was performed using RandomizedSearchCV with
three fold cross-validation and 20 rounds. Better results could be obtained using
manual tuning, but this path was not pursued due to large number of models and
data sets. Nevertheless, the presented configurations correspond to local optima
which are assumed to be close to the global optimum. It can be seen that each
algorithm has different hyperparameters, but each of them corresponds either to re-
ducing bias or to reducing variance. Their meaning is directly related to algorithms
working principles described in appendix E.

c.1 daily data set

Table C.1: Optimal configuration of ElasticNet hyperparameters - daily data
Hyperparameters Values

l1 ratio 1.0
alpha 0.002016490888846379

n iter 191

Table C.2: Optimal configuration of Random Forest hyperparameters - daily data
Hyperparameters Values

n estimators 40

min samples split 3

min samples leaf 1

max depth 35

Table C.3: Optimal configuration of XGBoost hyperparameters - daily data
Hyperparameters Values
objective function reg:squarederror
colsample bytree 1

colsample bynode 1

colsample bylevel 0.8
learning rate 0.2
max depth 40

alpha 20

lambda 10

n estimators 50

gamma 1
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c.2 hourly rough data set

Table C.4: Optimal configuration of ElasticNet hyperparameters - hourly rough data
Hyperparameters Values

l1 ratio 1.0
alpha 0.00021539756327209055

n iter 163

Table C.5: Optimal configuration of Random Forest hyperparameters - hourly rough data
Hyperparameters Values

n estimators 45

min samples split 5

min samples leaf 2

max depth 35

Table C.6: Optimal configuration of XGBoost hyperparameters - hourly rough data
Hyperparameters Values
objective function reg:squarederror
colsample bytree 1

colsample bynode 1

colsample bylevel 0.8
learning rate 0.2
max depth 60

alpha 10

lambda 30

n estimators 40

gamma 0

c.3 hourly detailed data set

Table C.7: Optimal configuration of ElasticNet hyperparameters - hourly detailed data
Hyperparameters Values

l1 ratio 1.0
alpha 0.00019772186613440802

n iter 36

Table C.8: Optimal configuration of Random Forest hyperparameters - hourly detailed data
Hyperparameters Values

n estimators 60

min samples split 5

min samples leaf 2

max depth 40
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Table C.9: Optimal configuration of XGBoost hyperparameters - hourly detailed data
Hyperparameters Values
objective function reg:squarederror
colsample bytree 1

colsample bynode 1

colsample bylevel 0.8
learning rate 0.2
max depth 60

alpha 10

lambda 30

n estimators 40

gamma 0





D L E A R N I N G C U R V E S

In this section learning curves for models other than XGBoost using hourly rough
features are presented. Also, the descriptions of the learning process and reasoning
behind selecting algorithms are provided.

d.1 daily data
Learning curves for ElasticNet can be seen in figures D.1 and D.2. Figure D.1 de-
picts the initial training phase when the model has seen relatively few training
examples. At first, the validation error rapidly decreases and the training error
rapidly increases, as described in chapter 3. Both curves seem to stabilize around
RMSE of 4 kWh. However, in figure D.2 it can be seen that further training takes
RMSE down to around 3.325 for the validation set. That is aligned with RMSE for
the ElasticNet in table 4.1. Based on figure D.2 it can be concluded that ElasticNet
saturates after seeing around 30% of the data set and further training does not bring
any substantial improvement in its predictions. This algorithm has low variance, as
training and validation errors are close to each other. At the same time it suffers
from high bias, as RMSE of 3.325 kWh is significantly higher than RMSE of Solar
Monkey software. This was expected, as ElasticNet is a simple algorithm unable
to learn non-linear patterns. Therefore, Polynomial Regression model was created
next. Polynomial Regression learning curves can be seen in figure D.3 which re-

Figure D.1: ElasticNet learning curve - daily data set

veals that this model saturates after seeing around 0.5 % of the training set. When
plotted for full range, the learning curves of Polynomial Regression are two constant
parallel lines which imply there is no improvement with the increased training set
size. The learning curves plotted for Random Forest algorithm can be seen in fig-
ures D.4 and D.5. Again, improvement in performance becomes slower with the
increase in the training set size. In that sense machine learning is similar to human
learning, as humans learn quickly when they know little, and when proficient in a
certain domain it is difficult for us to improve further. In figure D.4 Random Forest
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Figure D.2: ElasticNet learning curve - daily data set

Figure D.3: Polynomial Regression learning curve - daily data set

suffers both from high bias and high variance, but it improves its performance with
further training. From figure D.5 it can be concluded that its learning process sat-
urates around 50% of the entire data set. Similarly as in chapter 4, it is merely an
assumption and further training would cause decrease in error. This gain however
comes at disproportionately high cost. Despite decreasing bias, at the end of the
training process, the model still suffers from high variance, as validation RMSE is
around 1.5 kWh and the training RMSE is around 0.6 kWh. That means Random
Forest overfits to the training data and does not generalize well. Therefore, manual
tuning focusing on techniques lowering variance should be performed. However,
due to limited amount of time and focus on models utilizing hourly data, manual
tuning was not performed. Promising results of Random Forest caused another ML

ensemble model, XGBoost, to be developed.

The learning curves of XGBoost are presented in figures D.6 and D.7. Similarly to
Random Forest XGBoost for daily data has relatively low bias and it can be seen that
XGBoost also suffers from high variance. Several attempts of reducing it were made,
but none of them lead to lower validation error. At certain point decreasing variance
lead to higher bias, therefore making it impossible to improve model performance
further.
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Figure D.4: Random Forest learning curve - daily data set

Figure D.5: Random Forest learning curve - daily data set

Figure D.6: XGBoost learning curve - daily data set
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Figure D.7: XGBoost learning curve - daily data set

d.2 hourly data
Only the learning curves for the data set without GPOA pre-calculation are pre-
sented, as they are similar to those created for data including GPOA. In this case
change in the learning curves is mostly caused by higher data granularity, rather
than the change in feature configuration. Before the hourly graphs are analyzed
it should be noticed that increased data resolution means increased data set size.
Lower fraction of data set which causes learning saturation is usually caused by
increased number of samples. Moreover, it should be noticed that RMSE for daily
and hourly graphs should not be compared, as hourly yield values are by default
lower than daily yields.

Learning curves for ElasticNet trained on hourly data can be seen in figure D.8.
It can be seen that hourly ElasticNet saturates after seeing around 0.1 % of the train-
ing set. This can be explained by much larger size of the hourly data set which
contains more than 4 mln samples. Therefore, seeing only around 4,000 samples
is sufficient for ElasticNet to learn the pattern in the data. Training and validation
error curves for full data set are two parallel lines and were not presented. Clearly
this algorithm cannot benefit from larger data set. Learning curves for Polynomial

Figure D.8: ElasticNet learning curve - hourly rough data set

Regression algorithm can be seen in figure D.9. This algorithm suffers from high
bias, but has low variance. Both its training and validation errors remain constant
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after model being trained on 0.08 % of data. Hourly Random Forest presents similar

Figure D.9: Polynomial Regression learning curve - hourly rough data set

behavior to its daily counterpart. Model has low bias, but suffers from high vari-
ance. It is difficult to estimate when it saturates, as learning curve for the entire data
set was not plotted due to memory issues. Nevertheless, it is expected to resemble
the one plotted for the hourly XGBoost. In this section learning curves for all four de-

Figure D.10: Random Forest learning curve - hourly rough data set

veloped machine learning models were presented. They justify model development
process, as first simple models were developed and when they did not perform
well, more complex approaches were pursued. It can be also concluded that large
data set available in this project was not fully utilized, as many algorithms would
perform nearly as good with much smaller training set size. This has important
implications for models ability to learn and was described in chapter 6.





E W O R K I N G P R I N C I P L E S O F S E L E C T E D
M A C H I N E L E A R N I N G M O D E L S

This appendix provides deeper insight into the working principles of ML algorithms
utilized in this project, SVR and LSTM. It focuses on qualitative description, but
provides also some information about the underlying mathematics.

e.1 persistence method
Before ML-based models are described, simple baseline persistence model is presented.
It is not a machine learning technique, therefore it does not require any of the oper-
ations described in chapter 3. Persistence method assumes that the same conditions
(yield) observed at time t− 1 persist at time t. The model is described by equation
E.1.

Pp,t+∆t = Pm,t (E.1)

where Pm,t is power corresponding to time sample t and Pp,t+∆t is a power forecast
at the moment t within time range ∆t. For hourly data it is assumed that at certain
time instance yield is exactly the same as it was one hour before. In case of daily
data 24 hours are assumed. This model is called simple persistence or naive persistence
because of its simplicity. Several other persistence models exist, some of them uti-
lizing clear sky index. Their thorough description can be found in [Antonanzas et al.,
2016] and [Baharin et al., 2016].

e.2 elastic net
ElasticNet is a form of linear regression, the simplest model which from the be-
ginning was not likely to fulfill the requirements of this project. According to
[Al-Messabi et al., 2012] ”linear time-series forecasting methods will not suit PV
systems as the output is changing rapidly in non-linear manner”. However, it was
built to get acquainted with scikit learn library, because it is easy to develop, fast in
training and provides a benchmark for the more complicated algorithms. Elastic-
Net differs from classical Linear Regression by containing Lasso Regression (L1) and
Ridge Regression (L2) regularization components. Linear regression always aims to
minimize the cost function represented by formula 3.2. This equation can be modi-
fied to prevent overfitting by adding one of the two regularization terms, L1 (Lasso)
or L2 (Ridge).

e.2.1 Ridge Regression

Ridge regression is represented by formula E.2 where the main difference with
respect to equation 3.2 is the penalty term added at the end. Due to its presence L2

regularization influences the magnitude of coefficients, penalizing them when their
magnitudes are high.
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e.2.2 Lasso Regression

Lasso Regression is described by equation E.3. Its only difference with respect to
Ridge is that magnitudes of coefficients instead of their squares are taken into account.
L1 regularization often decreases weights of some features nearly to zero.
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e.3 polynomial regression
Polynomial regression is not a separate algorithm itself, but a transformation of
the input X matrix. sklearn.preprocessing.PolynomialFeatures function ”generates a
new matrix consisting of all polynomial combinations of the features with degree
less than or equal to the specified degree” [Pedregosa et al., 2011]. For example
generating polynomial features of some a and b would create features: 1, a, b, a2,
ab and b2. In this case the specified degree was 2, as obtaining results for higher
degrees was impossible due to hardware constraints. Different models can be fit
to such transformed data set, but in this study ElasticNet was chosen. The main
reason for that is model complexity would increase drastically if other, non-linear
model was trained on polynomial features.

e.4 support vector regression
A model based on SVR was developed, but was not validated. The reason for that
was its very long computational time. Training on 1,000 out of all 400,000 training
examples from the daily data set was performed and algorithms convergence took
around 12 minutes. This time could be significantly decreased by utilization of un-
supervised learning algorithms such as PCA. However, considering the size of the
entire database available in Solar Monkey, this would still be insufficient. Long
computational time issue was encountered also by [Visser, 2018], therefore this
model was abandoned before its validation was performed. Nevertheless, many
researchers use SVR and its working principle is provided in this section.

SVR operation is based on fitting a line to a given data set in a way minimizing
the distance between training points and the line. Fitting is performed based on an
arbitrary tolerance called margin and expressed as ε. All points lying within ε from
the fitted line are called support vectors and help in determining the closest match
between the data points and the function used to represent them. However, not
all data points lie within ε range from the fitted line. In order to account for them
slack variables ξ and ξ̂ are introduced. They are a part of the minimization problem
formulated in equation E.4, as occurring outliers should be possibly small. Impor-
tance of outliers can be incorporated by cost parameter C (C > 0) which determines
sensitivity to noise in the data. Optimization problem solved by SVR is described
by equations E.4, E.5 and E.6 where ξ and ξ̂i are greater or equal zero. Constraints
limit the amount of SVR absolute error to an arbitrary number which distinguishes
this algorithm from others. Note that in case of solar yield nowcasting for multiple
systems, setting relative rather than absolute error would be more beneficial.

min(C
n

∑
i=1

(ξi + ξ̂i) +
1
2
||w||2) (E.4)

ε + ξ̂i >= yi − f (xi) (E.5)
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ε + ξi >= f (xi)− yi (E.6)

Figure E.1: SVR working principle [Bishop, 2006]

Figure E.1 represents a two-dimensional problem, so it can be visualised. How-
ever, SVR can solve also non-linear problems and its ability to do so is determined
by kernel. Kernels are functions used to map low-dimensional data to higher dimen-
sions and are another optimization parameter, as kernel choice is data set specific
[Sharp, 2020].

e.5 random forest
Random Forest is built of Decision Trees which are supervised learning algorithms
used both for classification and regression. They are based on splitting observations
into possibly homogeneous subsets. Random Forest operation is well described by
the below quote:

The possible solutions to a given problem emerge as the leaves of a tree, each node
representing a point of deliberation and decision - Niklaus Wirth [Esposito
and Esposito, 2020]

Random Forest is an ensemble method which means it uses multiple models with
high bias or high variance, so called week learners to obtain the final model with
low bias and low variance, a strong learner. The results from weak learners are av-
eraged to create a single, final prediction. In order to do that fitted models should
be independent which is not possible when using just one data set. Therefore, n
samples are randomly drawn with replacement. Underlying assumption is the sam-
ples are representative, as the original data set is large enough to capture pattern
and to ensure that samples are not too correlated. Please note that samples inde-
pendence is an approximation and the drawn examples are ”almost-independent”
and ”almost-representative”. In other words, multiple small, artificial data sets are
prepared based on the original data set. Then multiple decision trees are fit to them
and their results are averaged. Usage of multiple data sets favors parallel comput-
ing making this method computationally efficient.

Weak learners used by Random Forest are Decision Trees. They split training data
sequentially into unique regions. At every node a decision is made which splits the
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training data into smaller subsets. When data at certain node cannot be split any-
more, that point is called a leaf. In order to reduce overfitting pruning can be used.
This technique reduces size of the trees by removing sections which provide little
gain in the predictive power. The same effect can be obtained using early stopping
which is a condition that interrupts model fitting. Random forest decisions are
interpretable and help to develop understanding of the analyzed data set [Rocca,
2019], contrary e.g. to neural networks.

e.6 extreme gradient boosting
Similarly to Random Forest, Gradient Boosting is an ensemble method based on
decision trees. At every iteration another decision tree is created and added to the
model. However, contrary to Random Forest, in Gradient Boosting individual mod-
els do not use random subsets of data, but are built sequentially by increasing the
weight of data points with wrong predictions in the previous rounds. This way
algorithm gives more attention to predictions which had the largest error in the pre-
vious round. Every iteration benefits from the previous one through boosting, that
is through changing the approach based on the results of the previous fit. New pre-
dictors learn from mistakes committed by the previous predictors which shortens
the training process. Fitting is performed in a way minimizing the value of objective
function and utilizing gradient descent. It can be stopped either after an arbitrary
number of iterations (boosting rounds) or when the result of a given metric stops im-
proving. Gradient Boosting focuses on minimizing gradient which is a first order
derivative of the loss function described by equation E.7. Formula E.8 describes
how predictions are updated where α is the learning rate and determines how big
is the change in gradient at every iteration. ∑i=1(yi − ŷi) depicts sum of residuals
- ”We are updating the predictions such that the sum of our residuals is close to
zero (or minimum) and predicted values are sufficiently close to the actual values”
[Grover, 2017]. Trees complexity, depth, observations per leaf and proportion of
features to train on are further parameters subject to tuning.

Loss = ∑
i=1

(yi − ŷi)
2 (E.7)

ŷi = ŷi − α ∗ 2 ∗∑
i=1

(yi − ŷi) (E.8)

Extreme Gradient Boosting is an improved version of this algorithm and calculates
second order, instead of the first order, gradient and uses more advanced regulariza-
tion. Other differences are mostly related to better utilization of available hardware
and were described by [Morde and Setty, 2019]. XGBoost was first described by [Chen
and Guestrin, 2016] who utilized their knowledge in mathematics and computer sci-
ence to develop software which can fully utilize the available hardware.

e.7 gradient boosting with quantile loss func-
tion

Gradient Boosting with quantile loss function was developed to explore the op-
portunity of decreasing paid compensations to zero. Pursuing this goal, initially
appealing, turned out not to match the needs of Solar Monkey, as the monitoring
software is not used for guaranteed yield predictions. The model was created
only for the daily data set without complex hyperparameter tuning and validation.
Its interesting property is providing an easy tool to manipulate the peak of error
distribution visible in figure E.2.



e.8 long short-term memory neural network 99

Figure E.2: Distribution of percentage error of Gradient Boosting with quantile loss function
trained on data with daily resolution

An arbitrary number, called quantile, is an input used by Gradient Boosting with
quantile loss function. The larger the quantile value, the more peak of error dis-
tribution shifts towards positive values. According to the current business model,
only negative errors below -7% are compensated. The threshold is represented
by the red line in figure E.2. It was assumed that having fewer negative errors
would generate savings for the company. However, that is not the case, as year-
ahead predictions and monitoring are performed by two separate models. In this
particular case, predictions become more conservative, hence the model tends to
under-predict. Lowering the risk of negative errors comes at a price, as the chosen
metric and absolute percentage error are bound to worsen. It is important to notice
that Gradient Boosting described here and XGBoost described before are two versions
of the same algorithm with the latter being more computationally efficient. They
utilize two different libraries, where xgboost library does not have built-in quantile
loss function. Therefore, Gradient Boosting in scikit.learn was utilized.

e.8 long short-term memory neural network
All models described in chapter 4 utilize machine learning algorithms. There is
another branch of artificial intelligence called deep learning and focusing on appli-
cations of neural networks. These techniques significantly differ from the ones
described previously, both in terms of their working principle and implementation.
Most of the researchers dealing with PV yield forecasting who reported promising
results utilize some kind of neural networks. These algorithms interesting property
is maintaining linear learning curve even for large data sets. That is particularly
relevant for this project, since it utilizes exceptionally large data set. Learning curve
of the most promising machine learning technique, XGBoost, converges before reach-
ing even 40 % of data set size (vide chapter 4) which means that Extreme Gradient
Boosting would perform almost as good as reported, even on much smaller data
set. Therefore, a different algorithm should be applied to fully utilize the available
information and to create market advantage for the company. In this section an
overview of one deep learning technique, namely Long Short Term Memory, includ-
ing its implementation, working principle and characteristics is presented.

The mathematical theory underlying the LSTM neural networks was first described
by [Hochreiter and Schmidhuber, 1997]. In order to understand LSTM working prin-
ciple, a general overview of neural networks should be given. Analogies between
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them and the human brain are perceived as misleading by the author of this thesis
and were omitted. Neural networks consist of layers, first one containing inputs,
last one containing outputs (usually one value) and an arbitrary number of hidden
layers, as depicted in figure E.3. Each layer consists of nodes and both the num-

Figure E.3: Topology of a neural network

ber of layers and the number nodes are subject to optimization. Larger number of
layers and nodes increases model complexity and might cause overfitting while too
few of them can result in underfitting. These issues are similar to ML described
in chapter 3. Firstly, neural network is initialized by an arbitrary configuration of
weights and uses them to make its first prediction. Zero weights cannot be used
for initialization, as this would cause gradient to remain constant and disable learn-
ing. Next, each neuron in the first hidden layer calculates the value of an activation
function based on the provided features and weights. Calculated result is passed to
the second layer and together with another weight is used by a node in the second
hidden layer to calculate the value of an activation function. The process is repeated
until the outcome reaches the output layer where it is usually combined into a sin-
gle prediction. After each forward pass, the cost associated to all predictions is
calculated. In the next iteration the neural network assigns weights in a way which
decreases the cost. This can be performed using backpropagation which calculates
partial derivatives of the cost function with respect to each weight, to determine
which one of them increased cost the most. Such weight is changed according to
the pre-determined learning rate and all process is repeated [Tóth, 2018].

How is that related to LSTM? LSTM neural networks have some additions with
respect to the simple topology described in the previous paragraph. Schematic of
a single node of LSTM neural network can be seen in figure E.4. Each LSTM cell has
three gates: forget gate, the input gate and the output gate. Inputs come from left

Figure E.4: LSTM cell and its operations [Phi, 2018]
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bottom corner and move towards the right and upwards, going through the path
indicated by the first vertical line from the left, called the forget gate. Inside it there
is a sigmoid function, marked by the red circle, which can take values only between
zero and one. Values close to zero correspond to ”forget” and values close to one
correspond to ”remember”. Next, the previous cell state and output of preceding
LSTM cell are split and processed by two activation functions: sigmoid and hyperbolic
tangent. Sigmoid decides which values will be updated while hyperbolic tangent
helps to regulate the network. Next, the outcomes are point wise multiplied. Fi-
nally, the output gate updates cell state with the relevant values only [Phi, 2018].

Once the basic working principle of neural networks and the specific case of LSTM

were described, the relevance of this algorithm for PV yield prediction can be ex-
plained. LSTMs are particularly useful for identifying patterns in PV yield data due
to their memory unit. As previously described time component has paramount im-
portance in predicting solar yield. LSTMs have the ability to remember the previous
samples which can be demonstrated with a simple example of Natural Language
Processing (NLP). In a sentence:

“The cat, which already ate, was full.”

it is clear that “was” is dependent on whether “cat” is singular or plural. If it
was plural the sentence would be:

”The cats, which already ate, were full”.

LSTM can remember person of the subject used several steps (words) ago and pre-
dict the correct form of ”to be” based on it [Ng, 2020]. Similarly it can memorize
patterns of solar radiation and other parameters relevant for PV yield forecasting.
It might be counter-intuitive that previous yields have impact on solar yield today,
but feature weights assigned by all models clearly favor them. Including the time
component increases predictive power of the model, but makes this approach prone
to missing values.

Finally, a few practical remarks should be made, as it was attempted to build an
LSTM during this project. LSTM is a time series method which makes predictions
based on a window. If the window consists of 20 time steps, that means 20 mea-
surements are required before a prediction can be made. Predictions can either
refer to a single time step or multiple time steps into the future. That is a very
important feature which distinguishes LSTM from other methods. It is worth notic-
ing that monitoring is nowcasting (single step) problem, while LSTMs are suited
for forecasting (multi-step) problems. However, time is relative and this constraint
can be bypassed by treating present time instance as t+1 and the previous one as
t. Moreover, either one (univariate) or multiple (multivariate) time series can be
provided as input. Monitoring task requires single-step, multi-variate and multi-
system approach which means that only one step in the future is predicted and that
multiple weather and system parameters are utilized. Tensorflow LSTM model does
not support a separate dimension of input data which could support plug-in of
multiple systems. Therefore, time series for each feature and all systems have to be
standarized and aggregated. This includes also constant system parameters such as
total watt peak which after appending at the end of each other would create a curve
similar to a step function. Aggregation can be performed using the Flatten layer in
tensorflow. After providing these programming hints it should be mentioned that
creating a LSTM neural network for 1,102 PV systems utilized in this study would
require running calculations on GPUs rather than CPUs which in turn requires a
different environment than Jupyter Notebooks. Google Colab which allows switch-
ing between CPU and GPU might be an interesting alternative.
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To summarize, this chapter provided overview of the working principles of all ML

models developed in this study extended to SVR and LSTM neural networks. While
the first seven sections are significant for this project the last one provides informa-
tion valuable for future researchers who would like to continue this research from
the most recent point.



F E X P E R I M E N TA L S E T U P

In order to ensure reproducibility of the results, the most often hardware config-
uration used in this project is presented in table F.1 together with versions of the
utilized libraries in table F.2. Table F.1 refers to Google cloud’s n1-standard-4 ma-
chine while n1-standard-16 machine was used as well, for hourly calculations. The
main improvements in the latter are 60GB of RAM and 16 virtual CPUs compared
to 15GB and 4 virtual CPUs in n1-standard-4 machine.

Table F.1: Used hardware configuration
CPU Intel(R) Xenon(R) 2 GHz
CPU cores 2

capche size 39424 KB
RAM 15 GB

Table F.2: Versions of the utilized libraries
Library Version

pandas 0.24.2
numpy 1.17.0
scikit-learn 0.21.3
xgboost 1.0.2
pvlib 0.6.3
matplotlib 3.1.1
seaborn 0.9.0
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Abstract—Four machine learning models for solar yield
nowcasting were developed: ElasticNet, Polynomial Re-
gression, Random Forest and Extreme Gradient Boosting
(XGBoost). Utilized hourly data set consisted of data for
time between July 1st, 2018 and June 30th, 2019 and corre-
sponding to 1102 PV systems. That is five times more than
the largest data set studied in the found literature. XGBoost
algorithm turned out to be the most suitable for the task of
PV yield nowcasting obtaining Mean Absolute Error (MAE)
0.877 kWh and Mean Absolute Percentage Error (MAPE)
... % for hourly data aggregated to daily values. Its skill
score is 60.9 % with respect to simple persistence model.
Metrics calculated XGBoost predictions for individual PV
systems are on average two times better than for currently
used commercial software. This paper exposes lack of
loss function combining absolute and relative error and
explains its importance for residential PV yield nowcasting
and forecasting.

Index Terms—forecasting, gradient boosting, loss func-
tion, machine learning, nowcasting, photovoltaics, photo-
voltaic monitoring, PV, solar yield prediction, quadratic
loss, renewable energy, XGBoost

I. INTRODUCTION

S INCE the industrial revolution in the XVIII-th century
global population, knowledge and economy have not

grown linearly anymore, but have changed exponentially.
The expected human lifetime in the Netherlands has changed
from 48.5 years in 1900 to 81.8 years in 2019 according to
Gapminder Foundation [1]. In the same period the percentage
of global population living in extreme poverty shrinked from
72% to 9% [2]. Availability of cheap and abundant energy
brought unprecedented era of prosperity and welfare. Even
though they were not available to all, vast majority benefited
from their presence. Cheap energy largely contributed to the
interconnected World we know today, with fast and affordable
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transportation and powerful computers that are able to both
boost scientific developments and provide entertainment.

However, spectacular developments came at high cost.
Emissions caused by transportation and industry owe
increasing the average air temperature, leading to melting of
the ice caps and rise of the sea level. Due to climate change
multiple habitats were irreversibly destroyed. The amount of
litter produced worldwide is so large that even if humanity
disappears from Earth, signs of its presence will be still
visible in soil. According to [3] another mass extinction has
already started and a new geological era, the antropocen,
has already began. Despite the efforts of European Union,
most of the world is still focusing on economic growth and
sustaining its basic needs, unable or unwilling to tackle the
climate change on global scale. Paris agreement ratified in
2015 and signed by 176 countries aims to keep the global
temperature rise below 2◦C and shows that politicians have
increasing awareness of the issue. However, soon after signing
it one of the world’s largest economies, the United States,
has withdrew from the pact. It seems that media attention and
political actions are disproportionate to the taken measures.

Luckily, new and promising technologies might come for
rescue. Between 2010 and 2019 the market of photovoltaic
modules raised by 32 % annually [4] being the largest hope to
tackle climate change. With monetary impact being the crucial
factor shaping human actions and policies, solar energy can
have a profound impact worldwide. Solar power is abundant,
affordable, easily scalable and has small CO2 emissions,
associated with manufacturing. However, mass utilization
of solar modules has a major challenge of intermittency of
supply, which makes it difficult to maintain power balance,
to plan reserve capacity and complicates market bidding.
Therefore, photovoltaic (PV) yield forecasting is an important
factor facilitating energy transition and supporting investment
in solar energy. Accurate forecasts decrease energy yield
uncertainty, therefore reducing generation-load mismatch
in the power grid and decreasing investment risk. Yield
nowcasting (monitoring) ensures early anomaly detection
preventing financial losses and contributing to security of
PV system owners. Until recently the described tasks were
difficult due to lack of suitable models. Analytical equations
hold in laboratory environment, but often fail to predict yield
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in the field, with insufficient information or with large data
resolution. Taking continuous measurements of all required
parameters in situ is not a common practice due to high
associated costs. With insufficient data it is the emergence of
machine learning (ML) techniques which allowed the creation
of more accurate and precise models.

Despite overwhelming abundance of literature on solar
yield nowcasting and forecasting, little progress is being
done. According to [5] it is difficult to compare results due
to lack of standard benchmark, lack of open-source access to
the utilized data, evaluation on small data sets and intentional
hiding of the shortcomings. There is no consensus regarding
methodology and data resolution. Available research rarely
covers multiple PV systems and in the analyzed articles only
[6] provided analysis for 202 rooftop PV systems while no
other studies utilized data for more than 21 PV systems.
Issue of small data sets was noticed also by [7]. Most of the
researchers motivate their study by contributing to improved
generator dispatch, power quality effects mitigation, and
reducing secondary reserve capacity [7], but if their results
are not validated for multiple systems, they are not reliable
enough to upscale them. This study aims to fill this literature
gap by providing analysis of one year data for 1102 PV
systems obtained from Solar Monkey startup. Also, multiple
hints for developing a standard metric are given.

II. DATA

In this section, origin, main characteristics and quality of
input data are explained. Inputs are divided into weather and
system features and descriptive parameters. Not all features
were used to make predictions, as some were rejected during
feature selection. The best configuration was used for predic-
tion of PV power output, defined as a target value. All features
are available in the period of time from July 1st 2018 until June
30th 2019 for 1102 PV systems located in the Netherlands and
Belgium. This data set is explored extensively to determine
main data quality issues.

A. System Parameters

System parameters include: total system size and age, type
of panels (mono, poly or thin film), latitude, longitude, panel
inclination, orientation and decay per year, maximal inverter
efficiency and nominal operating cell temperature. It was
discovered that nearly 79 % of systems consist of mono-
crystalline, 18 % of poly-crystalline and around 3 % of thin
film panels. Systems of size between 2.5 kWp and 7.5 kWp
dominate, but larger systems, up to 17.7 kWp occur in the
data set. None of the analyzed systems was older than four
years.

B. Weather Parameters

Weather parameters include: global horizontal irradiance
(GHI), cloud coverage, wind speed, precipitation, ambient
temperature and ground temperature. GHI is dominated by
small values below 50 W/m2 and its maximal values do not

exceed 950 W/m2. Visualization of GHI vs. day of year and
hour can be seen in figure 1. According to cloud coverage data
sky is almost completely overcast for vast majority of time.
This is unrealistic in the Dutch climate characterized by large
wind speeds. Ambient temperatures remain between 264.2 K
(-9◦C) and 310.2 K (37.05 ◦C) which is reasonable. Rainfall is
present in 13.4 % of all samples and its maximal value equals
21.6 mm per hour or 37.14 mm per day.

Fig. 1. Irradiance vs. day of year and hour of a day

C. Descriptive Features
Descriptive parameters consist of day of year and historical

yield from 24, 48, 72, 96 and 120 hours before. Decision to
use only five past days was based on [8], but a longer horizon
could be utilized as well.

D. Further Data Exploration
Samples corresponding to night values (zero GHI) were

removed from the data set. Missing cloud coverage values
were replaced with mean cloud coverage equal to 5.83 okta.
Solar Monkey conducted internal study related to the quality
of yield data obtained from inverters and several issues were
detected. Inverters log hourly yields via wi-fi which might be
discontinuous. In case of prolonged disconnection the amount
of data stored in an inverter might exceed its memory capacity
and some information is lost leading to missing yield values.
Other cases refer to constant or lagged yields. Constant yields
might be caused by unreported disconnection of part of a PV
system or prolonged partial shading. Examples of these data
quality issues can be seen in figure 2. It is possible to filter out
corrupt data using Hidden Markov Model (HMM), but due to
time constraints existing HMM was not adjusted to hourly data
resolution. Therefore, no yield data cleaning was performed.

E. Correlation Analysis
Features used as inputs to ML models should not be

correlated and should have possibly large variance. These can
be measured by plotting a heatmap of all input features visible
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Fig. 2. Yield data quality issues CITE YVES?

Fig. 3. Correlation heatmap

in figure 3. It can be seen that GHI is positively correlated with
sun altitude and negatively correlated with cloud coverage.
That is intuitive, as clouds cause shading and reduce irradiance
incident on flat surface on the ground. Sun zenith has strong
negative correlation with ambient temperature, as well as with
GHI and sun altitude. That is understandable, as the higher
the Sun zenith, the more irradiance reaches Earth surface and
the hotter the air becomes. Because of these strong negative
correlations solar zenith should have been removed. However,
it was accidentally omitted. Ambient temperature is correlated
with day of year which incorporates weather seasonality. Type
poly and type mono have strong negative correlation, but it is
not surprising, as particular solar panel can be of one type only.
In this case however, correlation was created purposefully and
does indicate these features should be removed. Also other
variable not visible in figure 3, bifacial, was removed as it is
unlikely that one out of four systems contains bifacial panels.

III. METHODOLOGY

Presented inputs had night samples removed, were
processed to contain only numerical features and then
standarized before being used for model training. Feature
selection was performed using Recursive Feature Elimination
(RFE) which determined the optimal feature configuration
for the XGBoost algorithm. Next, the model was tuned for
20 rounds using RandomizedSearchCV with 3-fold cross
validation available in sklearn Python library. The best

configuration was trained on 80 % of randomly split data
samples. Squared error loss function together with RMSE
as evaluation metric were used for model training. Outcome
predictions were filtered to make all negative values equal to
zero.

From the beginning choice of squared error for loss
function seemed to be sub-optimal. Contrary to utility scale
PV forecasting, residential nowcasting requires high quality
predictions for all individual systems. Squared error loss by
default focuses on the largest PV systems which have the
largest absolute errors. It should be noticed that developing
individual models for all systems would not solve this issue,
as the models would perform better in summer (higher
yields) and worse in winter. Despite thorough search, none of
the available libraries contains suitable loss function. MAE
was rejected, because it suffers from the same issue and
does not additionally penalize large errors. It is important
to stress that XGBoost requires loss function which is twice
differentiable. For this reason MAPE was also rejected. Huber
loss becomes quadratic for small errors which makes it less
sensitive to outliers and does not solve the problem neither.
Log-cosh loss also allows presence of large outliers. Finally,
quantile loss is used when either positive or negative errors
are preferred which is not the case CITE LOSS. Several
attempts to develop a custom loss function allowing to
combine absolute and relative error were made, but none of
them succeeded. Dividing hessian by constant system size to
normalize predictions, provided disappointing results. Other
approach, based on assigning weights inversely proportional
to the system size to all samples failed as well. Similar is the
case for model utilizing MAPE as training evaluation metric.

IV. METRICS

Extensive overview of available metrics was provided by
[9] and [10] who pursued both statistical and economic ap-
proaches. They described interesting metrics such as skew,
curtosis, Renyi entropy and Kolmogorov−Smirnov Integral
among others. However, the most popular metrics for solar
yield nowcasting and forecasting still are mean absolute error
(MAE), root mean squared error (RMSE) and mean absolute
percentage error (MAPE). MAE is the most intuitive, as it
informs by how many kWh are the predictions off on average.
That is similar to MAPE which informs about average relative
(%) error. RMSE is used to penalize large errors more. It
should be noticed that MAE and RMSE are absolute metrics
which both increase with system size while MAPE is a relative
metric. It might seem that MAPE should be the metric of
choice, but it in this project it takes high values for small
values of yield. An alternative can be normalized root mean
squared error (NRMSE) represented by equation 1 and used
also by [11]. Pnominal corresponds to nominal PV system
power while ŷ and y correspond to prediction and observation
vectors respectively and n corresponds to the number of
samples.

NRMSE =

√
1
n

∑n
i=1(yi − ŷi)2

Pnominal
(1)
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Other metrics used for this task are mean bias error
(MBE), maximal error and skill score. Usage of neither of
them is sufficient, as MBE allows negative and positive errors
to cancel out, maximal error provides no information about
error distribution while skill score is RMSE dependent and
therefore influenced by the system size. Also, skill score
informs about relative improvement with respect to persistence
model which performance highly depends on data resolution.
E.g. model developed in this study has skill score equal
60.9 % with respect to hourly simple persistence. If other
researchers report different skill score for per minute data
resolution it is likely their model is better, even if reported
skill score is lower. That is because per minute persistence
method is much better than the hourly one. Moreover,
multiple versions of persistence model exist: simple (naive)
persistence, smart persistence and persistence of cloudiness
approach based on solar power index among others [9]. This
makes the usage of skill score insufficient, even though it
is promoted as a metric which allows comparison across
projects [5]. This paper aims to expose all metric-related
issues and present their impact on the quality of predictions,
rather than to present the final solution of this problem.

An interesting approach was presented by [12] who
managed to combine absolute and relative error in one
E-metric described by equations 2 and 3.

f(ŷi, yi) =

{
1 if ŷi − yi >= p

0 if ŷi − yi < p
(2)

Ep =
1

n

n∑

i=1

f(ŷi, yi) ∗ 100% (3)

In equation 3 p stands for power and sets the threshold of
absolute error. Metric E10 gives a percentage of predictions
with absolute error below 10 Wh. Similarly E50 gives a
percentage of predictions with absolute error below 50 Wh
and so on. Its drawback is it requires different thresholds
for different data resolutions. E.g. daily yields are naturally
larger and if a threshold as little as 50 Wh is set, very
few predictions will manage to have smaller residual error.
That does not mean however that created model is low quality.

Another problem is that the majority of models is assessed on
the entire test set without investigating results for individual
systems. That is acceptable in case of forecasting performed
for utility scale companies which operate the grid and do
not need to know individual PV systems behavior. However,
solar yield forecasting is becoming increasingly important
for residential PV owners who would like to use it for
optimizing their own production and consumption. E.g. they
could store solar energy and sell it to the grid during peak
hours to maximize their profits. Also, early anomaly detection
requires precise and accurate yield nowcasting for individual
PV systems. General metric calculation might hide cases for
which the model performs badly and does not include the fact

that each system usually belongs to a different entity. In case
of Solar Monkey measuring overall model performance
is informative, but insufficient to determine whether all
customers receive predictions of high quality. Therefore,
each metric was calculated per system and stored in an array.
Next, minimum, maximum, mean and standard deviation of
each array were calculated. This approach allows also to
identify the worst performing systems and narrows the scope
of error analysis.

V. RESULTS

In this section values of calculated metrics for all predictions
and for individual systems together with learning curves of the
created model are presented. Learning saturation and critical
mass of data are described.

A. Feature Selection

Features selected by RFE with their corresponding weights
assigned by the XGBoost algorithm can be seen in table 4.
Single most influential feature is GHI followed by historical
yields. Among descriptive features these are total watt peak
and cloud coverage which play a major role. Ambient temper-
ature, wind speed and precipitation together with day of year
and panel orientation have surprisingly small impact.

Fig. 4. Feature importance

B. Metrics Results

After performing feature selection and hyperparameter tun-
ing for the XGBoost algorithm, its performance against the
persistence method is presented in tables I and II. Next
to XGBoost, performance of models based on ElasticNet,
Polynomial Regression and Random Forest algorithms was
presented for comparison.

TABLE I
COMPARISON OF RESULTS CALCULATED FOR ALL PREDICTIONS

TOGETHER

R2 MAE Max Error RMSE MAPE SS
Persistence Method 0.8 0.346 8.27 0.531 70.75 N/A
ElasticNet 0.83 0.299 32.22 0.469 11176 10.88
Polynomial Regression 0.9 0.236 30.1 0.372 10504 29.33
Random Forest 0.96 0.102 28.82 0.216 417.76 59.04
XGBoost 0.97 0.102 28.9 0.206 478.01 60.9
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Clearly, XGBoost provides superior results with respect to
all other analyzed models. Random Forest has similar perfor-
mance, but once mistaken its error is of higher magnitude, as
indicated by higher RMSE and confirmed by the E-metrics in
table II.

TABLE II
E-METRICS FOR HOURLY ROUGH DATA SET

E10 E50 E100 E500
Persistence Model 10.99% 22.12% 32.85% 75.16%
ElasticNet 3.2% 15.93% 30.51% 82.1%
Polynomial Regression 4.18% 20.47% 38.18% 87.84%
Random Forest 27.43% 57.38% 72.53% 96.35%
XGBoost 23.55% 54.66% 71.35% 96.66%

Table III contains metrics calculated for individual PV
systems. It can be observed that XGBoost has individual
system RMSE oscillating between 0.4 kWh and 4.6 kWh.
The minimal RMSE of XGBoost is similar to the one of
the analytical model while the maximal RMSE for XGBoost
is around two times lower. Also, mean per-system RMSE
decreased by around one third. Usage of the ML model caused
a drop in relative error (mean MAPE) from around 44 % to 23
% which is almost two-fold improvement. Distributions of per-

TABLE III
COMPARISON OF METRICS FOR XGBOOST VS. COMMERCIAL

SOFTWARE

Individual
system
metrics

Units Solar
Monkey XGBoost

min RMSE

kWh

0.371 0.398
max RMSE 9.435 4.618
mean RMSE 1.824 1.355
mean MAE 1.303 0.886
mean MAPE % 43.62 23.02
mean NRMSE kWh / kWp 0.425 0.313

system RMSE and per-system MAPE can be seen in figures 5
and 6 respectively. In both figures distributions corresponding
to XGBoost model are shifted to the left with respect to the
analytical model which indicates their higher quality.

Fig. 5. Distribution of RMSE for individual systems

C. Learning curves

Next to XGBoost metrics, learning curves are presented
to depict bias vs. variance trade-off and training saturation.

Fig. 6. Distribution of MAPE for individual systems

In this study, large data set containing more than 4,000,000
data points for 1102 PV systems was investigated. Learning
curves were obtained using 3-fold cross-validation and
allow to determine whether full data set potential was
utilized. Semi-transparent areas around the lines correspond
to standard deviations of results for all three folds. It can
be noticed that standard deviations are large for small
data sets and decrease with increasing training set size.
That is particularly explicit when investigating figure 7
and is reasonable, as for large data sets it is less likely
that particular shuffling would skew the result. Therefore,
cross-validation can be neglected for data sets larger than
0.15 % of the training set, that is exceeding 60,000 samples,
as it significantly increases computational cost and has almost
no impact on the results.

Learning curve in figure 9 was plotted for custom training
set sizes, which means step value was not constant, but was
adjusted manually. The advantage of such plotting is both
initial and final stages of model learning can be captured.
Until seeing 0.15 % of the training set size XGBoost
validation error decreases exponentially and it seems to
stabilize later on. However, after plotting learning curve for
10 % to 80 % of the training set size it can be seen that
learning does not saturate and validation error continues
to decrease. However, drop in validation RMSE is only
around 0.02 kWh for training set size between 40 % and
80 %. Therefore, it can be assumed that XGBoost learning
saturates around 40 % of the training set, that is around
1.28 mln samples. In the analyzed data set each system has
4,609 samples corresponding to non-zero irradiance in a year.
Dividing critical number of samples by samples per system
it can be concluded that data for around 278 PV systems
for an entire year is required for the XGBoost algorithm to
reach sufficient quality. Further increase in training set size is
likely to decrease error, but this small gain it is not justified
considering surge in required computational power and the
associated financial cost. Other operations, e.g. data cleaning,
are likely to provide larger gain in performance at lower
expense Usage of fewer number of systems with larger time
horizon is likely to provide similar results, as long as the
systems selected for training are representative to the test set.
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Fig. 7. XGBoost learning curve - hourly rough data set

Fig. 8. XGBoost learning curve at the beginning of the learning process
- hourly rough data set

VI. ERROR ANALYSIS

Model performance under different weather conditions can
be seen in figure 10. It can be seen it is independent of wind
speed and ambient temperature, but depends heavily on GHI
and to some extent on cloud coverage. Model performance
under different weather conditions is presented in table IV. It
can be seen that analyzed model performs around 50 % better
in case of clear sky conditions which indicates that modeling
clouds influence on PV behavior is challenging. It indicates
also that utilized cloud coverage data is insufficient to pre-
cisely capture real life changes. Next to the weather analysis,

TABLE IV
XGBOOST MODEL PERFORMANCE WITH RESPECT TO CLOUD

COVERAGE

Units Persistence
Method XGBoost

Clear sky
(<1 okta)

MAE kWh 0.553 0.149
RMSE kWh 0.73 0.281
MAPE % 27.34 6.44
Rˆ2 - 0.69 0.95

Partly cloudy
(1-7 okta)

MAE kWh 0.577 0.236
RMSE kWh 0.768 0.377
MAPE % 28.64 10.73
Rˆ2 - 0.6 0.9

Completely
overcast
(>7 okta)

MAE kWh 0.567 0.233
RMSE kWh 0.76 0.374
MAPE % 31.73 11.88
Rˆ2 - 0.46 0.87

error analysis was performed. It was already described that
utilization of squared error loss function favours large yields,
that is large PV systems and sunny hours. To further verify this

Fig. 9. XGBoost learning curve

Fig. 10. Weather vs. APE analysis

hypothesis observed yields vs. their corresponding APE were
plotted in figure 11. It can be seen that absolute percentage

Fig. 11. Observed yield vs. absolute percentage error

error (APE) has values far exceeding 100 % for yield values
below 2 kWh which confirms the initial assumption. APE
with respect to hour of day and with respect to month were
plotted in figures 12 and 13. It can be seen that model has
the largest relative error for December followed by January.
The reason for that might be that these two months have the
least irradiance in the whole year and therefore the smallest
yields. Analysis of APE with respect to hours has shown that
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Fig. 12. Error analysis with respect to time of the day

Fig. 13. Error analysis with respect to months

relative error is the largest for hours just after sunrise and just
before sunset.

VII. CONCLUSIONS AND DISCUSSION

XGBoost algorithm turned out to be the method of choice
for the task of solar yield nowcasting surpassing ElasticNet,
Polynomial Regression, Random Forest and commercially
available analytical model. This work proves that currently
used metrics are insufficient for evaluation of solar now-
casting and forecasting models. Next to metrics, available
loss functions fail to combine relative and absolute error
which is necessary for high quality residential scale solar
yield forecasting and nowcasting. Usage of squared error
loss function caused the model to be drastically mistaken for
small absolute values of yield occurring in winter, close to
sunrise and sunset and for small PV systems. Attempt to tackle
this issue through sample normalization and using MAPE as
training evaluation metric have failed. Further research should
focus on developing new loss function and evaluation metrics.
However, despite presented issues XGBoost still provides
two fold improvement with respect to commercially available
analytical model.
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