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Abstract
In (open-source) development, developers rou-
tinely rely on other libraries to improve their coding
efficiency by reusing code. This reliance on other
packages could cause issues when critical depen-
dencies have suddenly have a vulnerability intro-
duced to them. This work analyzes the critical-
ity for NPM. To get an accurate picture of what
the most-critical and thus possibly most-vulnerable
packages are, the entirety of NPM must be ana-
lyzed. However, this proved too big to be able to
fit in 500GB of memory. This work therefore ex-
amines a small subset of 100 thousand packages.
To do the analysis, this paper proposes a novel ap-
proach of embedding a time dimension into the
package network to provide better accuracy. This
papers analysis show that both with and without
this time dimension, babel packages are by far the
most important in the package graph (as measured
by PageRank). We should, however, keep in mind
that this came from only analyzing 100 thousand
packages. Thus, further research is required to con-
firm this conclusion. In particular, other importance
measures should be used to find out the packages’
criticality.

1 Introduction
In open-source software development, developers routinely
use open-source packages or libraries as building blocks for
their own projects. According to Mohagheghi and Conradi
[1], such re-use of code can help developers considerably
speed up their work. Nevertheless, this introduction of other
packages inherently makes a project dependent on them [2].
This could make projects vulnerable to problems caused by
direct dependencies when said dependencies are not kept up-
to-date [3]. Examples of such a problem would be breaking
changes to a package, or its outright removal. In addition to
that, dependencies of dependencies (transitive dependencies)
could themselves introduce problems and cause incidents [4].

Over the years, many such incidents have illustrated that
blindly depending on third-party packages is not risk free
(e.g. left-pad, NotPetya, SolarWinds, and most recently
Log4Shell) [5]–[8]. The left-pad incident is a perfect example
of how one single package can cause disastrous consequences
for many other packages through transitive dependency [2],
[5].

Because of the disastrous effect a change in one critical
package can have on packages that (transitively) depend on
it, studies have addressed the need to analyse dependencies in
package managers [2], [9], [10]. This is commonly achieved
by analyzing package metadata available in package man-
agers such as NPM, Maven, and PyPI. Research often starts
with the inference of Package Dependency Networks (PDNs),
followed by analysis of said networks to determine the most-
critical packages [10]. What these PDN studies commonly
fail to consider, however, is how different versions of pack-
ages can have entirely different transitive dependencies in dif-
ferent time frames.

Because the time dimension is often missed in the graph
generation, the PDNs only show (transitive) dependencies
for the latest version of packages. As Kikas et al. [2] men-
tion, this approach might not be enough, and a more in-depth
analysis of network is needed to understand what impact a
critical package can have. This suggests that leaving out the
time dimension yields a mere subset of the information about
package dependencies. This research proposes a time-based
dependency network analysis, by incorporating a time de-
pendency in the dependency network. The incorporation of
the time dimension to PDNs will make sure the dependency
graph is complete for every version of every package. To gen-
erate a time-based PDN, this work will devise an algorithm
that resolves dependency graphs for every version of a pack-
age with the addition of time metadata. In the final step of the
algorithm, all dependency graphs are merged together. This
results in a more detailed dependency network that can spec-
ify which specific versions of packages are the most critical
packages. To demonstrate the feasibility of this approach, the
aforementioned algorithm will be implemented for NPM.

In short, this work contributes the following:

• An algorithm to create time-based package dependency
networks (tPDNs).

• An approach for generating a tPDN of NPM.

• A study comparing NPM network analysis using PDNs
with and without the time dimension.

• The generated NPM tPDN for replication.

Answering the first two sub questions will help answer the
implicit main research question (RQ3):

1. RQ1: ”What should a graph data structure modeling
package dependencies look like?”

2. RQ2: ”On average, does the introduction of the time di-
mension lead to a significant change in the number of
dependent packages per package?”

3. RQ3: ”What are the most-critical packages on NPM?”

Structure In section 2, important terms and background in-
formation are discussed. After that, section 3 provides an
overview of the work done to answer the research questions.
The following subsection provides a more detailed descrip-
tion of the experimental setup in section, after which the re-
sults are discussed in detail in section 4. Section 5.1 dis-
cusses the ethical concerns involved in this research, followed
by a justification of how reproducible this research is in 5.2.
The section after that (section 6) discusses these results and
their limitations, comparing them to contemporary research.
Lastly, section 7.1 answers the research questions and sum-
marizes the main contributions of this research, after which
7.2 summarizes open issues and new questions arising from
this work.

2 Background
The following subsections will help a reader inexperienced
with package managers and related terminology better under-
stand the main sections of the report. In the first section, the
most important terminology is defined. In the section after
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that, some related work is provided to illustrate what is still
missing in contemporary research.

2.1 Terminology
1. Transitive dependencies: The dependencies of a package

that are indirectly introduced through the inclusion of
other dependencies. In other words: the dependencies
of dependencies and their dependencies, and so on.

2. NPM: Node Package Manager1. The default package
manager for JavaScript packages.

3. Libraries.io2: A service indexing about twenty package
managers to provide all kinds of metadata on them. For
example, it provides popularity, the current number of
dependents, and the current number of dependencies per
package.

4. Package Dependency Network (PDN): A graph repre-
sentation modeling the interdependency between (a sub-
set of) a package manager’s packages. It has package
(optionally per version) as nodes, with a directed edge
between package A and B meaning that A depends on B.

5. Semantic versioning: A versioning system in the follow-
ing format: MAJOR.MINOR.PATCH. Changing the major
version (MAJOR) implies a breaking change. Changing
the minor version (MINOR) implies a minor (backwards-
compatible) change. Lastly, changing patch (PATCH)
version implies an even smaller change [11].

6. Time-Based Package Dependency Network (tPDN): A
package dependency network extended with the ability
to filter on some time frame. Using this filter, one can
see which exact versions of packages other packages de-
pend on during said time frame.

7. PageRank: One of the algorithms Google uses to rank
web pages based by calculating the number of links be-
tween web nodes to estimate their importance [12]. In
this research it will be used to estimate package impor-
tance in a similar fashion.

2.2 Related Work
As Kikas et al. [2], Vidoni [9], and Hejderup et al. [10]
all demonstrated, analyzing package repositories has be-
come crucial because of incidents such as the deletion of the
left-pad package from the NPM repository [5]. This inci-
dent in particular showed that a package containing very little
code could affect a large portion of the other packages not
even directly depending on it. According to Hejderup et al.
[10], a lot of packages depend on popular packages such as
babel, which themselves depend on smaller packages that
do relatively little work. However, as Kikas et al. [2, p. 110]
demonstrated, these so-called ”utility packages” can poten-
tially influence more than a third of all packages stored in the
NPM repository. In addition to that, the rapid growth of the
amount of packages in the NPM registry makes critical pack-
ages grow even more and more important [13]. The main
problem with this growth is the ever-increasing number of

1https://www.npmjs.com/
2https://libraries.io/

transitive dependencies. Moreover, Zimmermann et al. [14]
show that in 2019, 40% of NPM’s packages included at least
one known vulnerability. In combination with Decan et al.
[13]’s work, this suggests that a lot of NPM might still be
quite vulnerable to malicious actors influencing utility pack-
ages.

Researchers often make use of network analysis with
a PDN generated from metadata available package man-
agers[10]. What these studies often fail to consider, is how a
package’s transitive dependencies can potentially drastically
change over time. Because this time dimension is often over-
looked, analyses often only show the transitive dependencies
for the latest versions of all packages at some specific time.
Kikas et al. [2] suggest that contemporary PDN analysis is
potentially too shallow. In fact, Wang et al. [15]’s work sug-
gest that in general, time-dependent networks can provide
critical insight into a network’s evolution. Combining both
suggests that including the time dimension could be crucial
to having a more complete picture of how packages transi-
tively influence one another. This work proposes the addition
of a time filter to a package dependency network. This will
provide a more complete picture of package interdependency
throughout time. To generate such a graph, this work pro-
poses an algorithm that incorporates Wang et al. [15]’s work
to create a time-dependent graph from a static PDN generated
from NPM metadata.

3 Finding the Most-Critical Packages on
NPM

To find out what incorporating a time dimension in the NPM
dependency graph should look like, a short literature review
of related work was performed. In addition to that, a small
sample of Libraries.io data was used to get insight into what
Libraries.io deems the most important packages. After that,
the answers to the sub-questions can be used to answer the
main research question (question 3.3).

3.1 RQ1: ”What should a graph data structure
modeling package dependencies look like?”

Three main steps were required to answer the first research
question. First, the required data for all packages 3 had to
be collected from NPM. After that, the requirements for the
graph and the graph generation process were formalized. Af-
ter implementing the graph generation algorithm, some au-
tomated tests were run on a small test set to verify that the
node generation and edge building process worked. Follow-
ing that, manual correctness tests were run on a small subset
of actual data. This entailed picking 10 random packages 4,
and setting the time range such that it spans the entire time

3names, versions, version release timestamp, and dependencies
per version

4@angular/animation@4.0.0-beta.8,
@angular/cli@14.0.2, @angular/pwa@14.0.2,
@babel/core@7.18.5, @babel/cli@7.17.10,
@babel/generator@7.18.2, @bazel/angular@4.6.2,
@cocreate/cli@1.12.48,
@codaco/eslint-plugin-spellcheck@0.0.14,
@commitlint/cli@2.0.0 (See Section 6.2)

https://www.npmjs.com/
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range of packages in the input file. After that, the latest ver-
sion and dependencies that the graph and NPM reported were
compared using the formula in Figure 1. This made sure the
tPDN could at least show the same data NPM reports by it-
self.

Let:
• A be the set of transitive dependencies resolved by

NPM
• B be the set of transitive dependencies resolved using

the implemented algorithm
• E be the number of dependencies that have a correct

name but incorrect version
We calculate the accuracy of the algorithm by this formula:

Acc =

{
1− |A|−|(B∩A)|+0.5∗E

|A| , if A ̸= ∅
1, otherwise

(1)

Figure 1: Accuracy equation. Heavily inspired by [16]

3.2 RQ2: ”On average, does the introduction of
the time dimension lead to a significant change
in the number of dependent packages per
package?”

Answering the second research question required two main
steps. In the first step, a random sample of 10 packages4 were
ranked on number of transitive dependents using NPM’s own
data using npm-remote-ls. After that, for the same sample
of packages, the PageRank was measured using the tPDN for
two different time frames 5. After measuring what both the
tPDN and NPM itself reported, the Pearson correlation co-
efficient was calculated to see if the PageRank for the time
frames had any relation with the amount NPM reports.

3.3 RQ3: ”What are the most-critical packages on
NPM?”

To find out the most-critical packages on NPM, the three
main steps were generation of the tPDN for NPM, followed
by the calculation of criticality measures, and investigating
the correlation between criticality and download count. In
the first step, a data dump of the top 100000 packages6 of
the NPM repository was processed and converted to a graph
data structure. After that, the criticality of packages was
measured using PageRank[12] and node betweenness cen-
trality[17] for two different time frames5. Lastly, the Pear-
son correlation [18] between these measures and the pack-
age download count was computed for the first 25 packages
and last 5 packages from the top 100 by PageRank. to see
whether the most-downloaded packages are actually also the
most-critical packages. Provided that this correlation coeffi-
cient would be highly positive (between 0.7 and 1.0), package
rank could actually be correlated with download count.

5the year 2019, and the year 2021
6In lexicographic order. (See Section 6.2)

3.4 Experimental Setup
Tools used The following tools were used to analyse the
NPM package dependency network:

• The Go programming language 7 and the Gonum graph
library 8

• The NPM database 9

• Custom code to interactively create and explore graphs
10

• Libraries.io to get an idea of what the NPM data looked
like

• Graphia 11 to visualize graphs to provide an intuitive
view of what the tPDNs look like 12

Gathering the required data To generate the time-based
dependency graph, package metadata, had to be collected.
This was first tried through the official NPM API, which un-
fortunately implements rate-limiting. Data collection using
NPM’s undocumented database endpoint9 resulted in a big
data dump that had to be pre-processed first. This data dump
can be found at Zenodo [19].
Preprocessing the data The large amount of data gathered
in the data acquisition step was distilled into useful data3 us-
ing custom code that can be found in Appendix B. This led
to an intermediate file format that could be used for graph
generation (See Figure 6). This intermediate file can also be
found at Zenodo [19]
Graph Design After gathering and preprocessing the data,
the team debated on what useful time-based dependency
graph representation was. This resulted in a graph structure
where nodes store the required information 3, and a directed
edge from node A to node B signifies that A depends on B.
This is quite similar to what Kikas et al. [2] proposed. Where
the proposed tPDN differs is that it also stores release time
stamps for packages. This will enable time-dependent query-
ing of the graph. (See section 4.1 for more details)
Generating the graph To generate the described graph
data structure, the algorithm roughly works as follows:

1. Using the file created in the preproccessing step, create
nodes per package version

2. Generate indices for quick node lookup
3. Again using the input file, determine which nodes should

be connected because they have a dependency relation-
ship

For a more detailed look, Appendix B describes where to find
the source code.
Calculating metrics After all the steps above, the interac-
tive graph explorer that can be found in the source code was
used to calculate a ranking for packages using the PageRank.
The graph was also filtered as described in Section 3.2.

7https://go.dev/solutions/#case-studies
8https://pkg.go.dev/gonum.org/v1/gonum/graph
9https://replicate.npmjs.com/ all docs?include docs=true

10See Appendix B
11https://graphia.app/
12See appendix C

https://go.dev/solutions/#case-studies
https://pkg.go.dev/gonum.org/v1/gonum/graph
https://replicate.npmjs.com/_all_docs?include_docs=true
https://graphia.app/


4 Results
In the subsections below, the results of the three research
questions will be presented.

4.1 RQ1: ”What should a graph data structure
modeling package dependencies look like?”

Graph structure After thorough discussion, the graph data
structure had all packages connected to all possible versions
of their dependencies (see Figure 2 for an example). After
filtering by time stamp, the graph only connects packages to
the latest possible version allowed by the semantic versioning
constraint (see Figure 3 for an abstract example).

Figure 2: Dependency graph without filtering applied

Automated testing The small set of automated tests all
passed, indicating that for small datasets, the node and edge
generation was as expected 13 (see Appendix B for details
about the code).
Manual accuracy testing Ten packages were picked for
accuracy testing 4. The ground truth about these packages
was established using the command npx npm-remote-ls
package for every package. After that, the graph was queried
for the latest dependencies. The accuracy scores calculated
by the formula in Figure 1 can be found in Table 1 below.
Clearly, the accuracy scores are quite low because of the small
amount of data used. Section 6 goes into more detail about
why this is the case.

4.2 RQ2: ”On average, does the introduction of
the time dimension lead to a significant change
in the number of dependent packages per
package?”

For the year 2019, we can see that all of the sample packages
had a negligible PageRank (Table 2). This led to an unde-

13i.e. as described in section 3.4

Figure 3: Timed dependency graph. (Abstract example for clarity)

Package name Accuracy score
@angular/animation 1.000
@angular/cli 0,014
@angular/pwa 0.047
@babel/core 0.039
@babel/cli 0.080
@babel/generator 0.188
@bazel/angular 0.150
@cocreate/cli 0.102
@codaco/eslint-plugin-spellcheck 0.005
@codaco/shared-consts 0

Table 1: Package resolution accuracy scores (rounded to 3 decimals)

fined Pearson coefficient, which means nothing of note can
be said about the correlation between the PageRank and the
number of transitive dependencies NPM reports. The same
unfortunately holds for the year 2021.

Package 2019 2021 #trans. deps
@angular/animation 0 0 1
@angular/cli 0 0 383
@angular/pwa 0 0 60
@babel/core 0 0 129
@babel/generator 0 0 16
@bazel/angular 0 0 20
@cocreate/cli 0 0 891
@codaco/eslint-plugin-spellcheck 0 0 980
@codaco/shared-consts 0 0 870

Table 2: PageRank versus number of transitive dependencies for 10
random packages. The first column specifies the rank for 2019, and
the specifies the rank for 2021. The third column is the number of
transitive dependencies



Figure 4: Package normalized PageRank vs Download count. The
horizontal axis is the ranking and the vertical axis signifies the down-
load count.

4.3 RQ3: ”What are the most-critical packages on
NPM?”

Most-critical packages by PageRank The PageRank
score indicates that @babel packages are really heavily de-
pended upon, since they fill up more than 50 percent of the
top-100 most-critical packages (See Figure 8). Purcaru [16]
provides a more detailed look into what packages can do over
time (keeping in mind that this research is for PyPI).
Correlation between most-critical and most-downloaded
packages Due to time constraints, a relatively small sample
was used to calculate the correlation. As we can see below,
there does not seem to be much correlation between the vari-
ables (Figure 4). In fact, the Pearson correlation coefficient
for this sample is approximately −0.245.

5 Responsible Research and Reproducibility
To make sure the research in this report was conducted re-
sponsibly, the two subsections below outline the ethical as-
pects and the reproducibility of this work.

5.1 Ethics
The main ethical concern of this research is that it could po-
tentially have a major influence on how the development com-
munity sees NPM and how they choose to use it. First of
all, it may cause a large-scale deprecation of many so-called
”utility packages” [2, p. 110] containing a significantly small
amount of code. However, as they report, this may be mostly
positive, as this would decrease the number of transitive de-
pendencies per package. In addition to that, Decan et al.
[13] and Zimmermann et al. [14] demonstrated that transitive
dependencies were increasing despite incidents and research
warning about the side-effects of using utility packages. As-
suming that still holds today, one more research paper is not
likely to change this growth. Other than the possibly influ-
ence this work can have on the JavaScript developing commu-
nity, there are not many ethical concerns because no human
research is involved. In addition to that, all data used is pub-
licly available, thus not causing more privacy violation than
NPM does on its own. Moreover, the data processing pipeline
discards personal information and only keeps package names,
versions, and their release timestamps.

5.2 Reproducibility
Since the first research question requires requirements analy-
sis, it is inherently open to interpretation. Therefore, another
researcher answering this question might not get the same re-
sult. Future researchers should get the same conclusion about
the correctness of the graph (source code linked in Appendix
B).

In contrast, the second research question is quite repro-
ducible, provided that the description of the methodology,
and the experimental setup and results in sections 3 and 4 is
detailed enough. When computing the statistics, this should
yield the same results within a margin of error.

The third and main research question requires both the al-
gorithm used to process data and generate a graph from it, and
the actual input data. Since the experimental setup mentions
where to find the input data and all the source code with the
help of appendix A and B, this part is quite reproducible. In
addition to that, section 4 should be detailed enough to verify
the results.

An additional point not related to any specific research
question is that the unofficial way to query the NPM
database9, might stop existing at any time. This might
threaten the reproducibility of the research, since the data at
Zenodo [19] is only valid for the specific point in time that
the download was completed.

Lastly, the fact that the code is hardly documented and not
cleaned-up should be considered. The only clear documenta-
tion it has is the README file. Future researchers wishing to
extend or modify the code will likely have a hard time under-
standing what every part does.

6 Discussion
In the following subsections, the results are discussed. The
first subsection argues for the significance of the result, while
the subsection after that discusses limiting factors in this re-
search.

6.1 Significance of the results
In the results for RQ1, we can see that the graph achieved
a very poor accuracy score for the random sample of pack-
ages. This is mainly because the memory constraints dis-
cussed in the next section. Given a combination of more
memory-efficient code and more RAM, the graph would have
fit more package dependencies. This would most likely have
led to a higher accuracy score as shown by Purcaru [16]. Fur-
thermore, the results for RQ2 for the years 2019 and 2021 are
inconclusive because all the sampled packages had a negligi-
ble PageRank. This could signify a possible bug in the code
or a lack of input data.

Lastly, the limited sample of packages in RQ3 results in
a seemingly negative correlation between package PageRank
and number of downloads. To confirm this unlikely result, an
investigation with a much larger sample size and more input
data is possibly required.

6.2 Limitations
It should be noted that the results mentioned in section 4 have
some limitations, however. In addition to the fact that the



research questions could have been clearer, the research had
some other limitations.

Graph memory footprint On of the most important limita-
tions is the fact that not all NPM packages fit into a reasonable
amount of memory using Gonum’s default graph implemen-
tation, as it would require upwards of 500GB of memory 14.
With some experimentation, this memory footprint was po-
tentially reduced by half. Nevertheless, only the graph repre-
sentation of about 100000 packages could fit into memory15

with the approximately 2 million unique versions and 270
million edges it creates. Because of this, only this amount
of packages could be used for sampling, which unfortunately
led to an incomplete graph and thus incomplete and inaccu-
rate results.

Limitations in input data The next limitation in the re-
sults is the fact that the input data has some limitations. First
of all, some dependencies do not follow the format specified
by the semantic versioning specification [11]. This leads to
guesswork about which dependency version a package ac-
tually requires, possibly resulting in an inaccurate package
dependency graph. In addition to that, some packages do
not specify versions at all, which lead to the preprocessing
pipeline possibly erroneously excluding it from the interme-
diate file. Lastly, NPM has a lot of garbage packages pollut-
ing it, taking needless memory space and possibly corrupting
other package’s records in said intermediate format.

Limitations in metrics Another important limitation to
consider is the fact that the metric used to calculate package
importance might not be entirely accurate. First of all, the
fact that PageRank [12] is probabilistic must be considered.
Given a low enough tolerance, it might appear determinis-
tic, but could still lead to slightly different results. The sec-
ond problem with PageRank is that in its gonum implementa-
tion16, it takes an extraordinarily large amount of memory 17.
Luckily, it also provides a memory-friendlier implementation
that assumes a sparse graph. The problem with this is that,
without further analysis, this assumption cannot be blindly
assumed to be correct. This may therefore lead to inaccurate
results. Another metric used that has some limitations is node
betweenness centrality. The way it is calculated in gonum re-
quires a lot of cpu time 18, which led to a lack of results for
this metric. A last point of the metrics gathering is that part
of it relied on manual comparison, which is prone to human
error.

Code limitations Lastly, the code likely has some limita-
tions. Despite manual and automated testing, the existence of
bugs is very likely. Before continuing research with the code
in this paper, these errors will probably need to be corrected.

14Estimation based on some experimentation
15This takes about 40GB of RAM
16https://pkg.go.dev/gonum.org/v1/gonum/graph/network#

PageRank
17For 100 thousand packages, it wanted to reserve approx. 1TB

of memory
18https://pkg.go.dev/gonum.org/v1/gonum/graph/network#

Betweenness

7 Conclusions and Future Work
7.1 Conclusions
This work’s most important contribution is the time-based
graph approach to exploring package dependency networks.
That is, exploring the package dependency networks using
the tPDN theorized and implemented in this paper. In addi-
tion to that, this paper provides a starting point for insight
in the most-critical packages hosted on NPM. To provide an
accurate view about what packages are actually the most-
critical, there are some future improvements the next sub-
section mebntions. The most-critical packages, as this work
re-iterates, might be the most vulnerable to threats as well.

7.2 Future work
Graph generation efficiency The most important limita-
tion of this work is the memory requirements for graph gen-
eration. Therefore, to get more accurate results, it is imper-
ative that research extending this work implement a more
memory-efficient graph generation algorithm. One sugges-
tion is to build a graph library from the ground up in a more
memory-efficient language, therefore only using the absolute
minimum amount of memory. If the memory footprint is min-
imized, the graph generation can potentially be concurrent,
speeding up the process. Another suggestion is to only store
the absolutely required part of the graph in memory and then
storing the rest on disk. To evaluate the validity of these sug-
gestions, further research is needed.
Potential of tPDNs Furthermore, as mentioned in Section
6.2, the accuracy of the tPDN was not fully verified because
of the limited amount of samples. Therefore, future research
must more thoroughly assess its validity. After tPDN is more
thoroughly validated, though, it could probably be used to
compare different criticality measures as well. In addition
to that it should probably be used to research other pack-
age managers than Maven, NPM, PyPI, and the Debian pack-
age manager. They could potentially benefit from time-based
analysis as well. Lastly, the correlation between most-critical
packages and package vulnerability should be examined to
understand what can be done to repair vulnerable packages.
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A Sample of input data
The full input data can be found at Zenodo [19]. Figure 5
shows an overview of what this input data looks like.

Figure 5: A sample of what the input data [19] looks like
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B Data Processing and Graph generation
code

The graph generation and analysis code can be found at https:
//github.com/AJMBrands/SoftwareThatMatters-NPM in the
main branch. On the same github repository, the code to pre-
process the data can be found and the preprocessed data can
be found at Zenodo [19]. This data looks like a list of records
that resemble figure 6. Both the data processing code and the
graph generation code include a README file explaining how
to use them.

Figure 6: Example record for processed data

C Resulting Graphs
In figure 7, we can see what kind of sub networks the package
dependency network for the first 10000 packages creates.

Figure 7: Package graph for 10000 packages (approx. 10 thousand
unique package versions and 2 million edges). The blobs represent
groups of packages that all transitively depend on the same depen-
dency. The nodes outside the main blobs are disconnected.

Figure 8: Babel entries in top-100 PageRank from 01-01-2019 to
01-01-2023
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