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1
Introduction

1.1. Background
The ability of robots to effectively navigate unstructured environments, populated by other robots and

human agents, without relying on explicit communication or centralized control, represents a significant

technological advancement with far-reaching applications and societal impact [1]. In pedestrian navigation,

for instance, autonomous agents could improve the safety and efficiency of urban mobility, enabling

robots to assist in crowded spaces like shopping malls, airports, or public squares [2]. In the domain

of autonomous vehicles, these systems have the potential to revolutionize transportation by reducing

human error, optimizing traffic flow, and improving road safety. From a logistics point of view, especially

autonomous trucking, could lead to significant cost savings and increased productivity across the sec-

tor. Furthermore, in warehouses and industrial settings, robots that navigate and coordinate with other

autonomous systems and human workers could streamline logistics, increase productivity, and reduce

operational costs. However, for autonomous agents to realize this potential, they must be highly reliable,

which presents a substantial challenge. By introducing communication or a form of centralized control, it is

possible to reduce the complexity of the task by minimizing uncertainty about other agents’ behaviors and

intentions. For instance, systems that rely on central coordination or communication protocols have seen

successful applications in warehouses. However, the infrastructure required to support communication or

centralized control is not always reliable, readily available or affordable making it difficult to implement

such solutions on a large scale. Scaling requires decentralized autonomous agents capable of reasoning

about their environment, other agents and the uncertainty inherent in multi-agent interaction.

While humans navigate complex environments seemingly effortlessly, we often underestimate the intricacies

involved. These scenarios often combine structured rules with a layer of unpredictability, driven by the

stochastic nature of agents and the interactions between them. Many modern decentralized systems

achieve safe and efficient navigation in a majority of scenarios encountered during operation. However,

there exists a small set of edge cases that are inherently unpredictable and challenging to account for

during system design. Developing systems that are robust to these edge cases and ensure consistently

flawless performance is an exceedingly difficult task[3].

1.2. Current Practical Applications
Although there are many challenges to overcome, some practical applications in controlled environments

as well as some more experimental applications in general environments are in use today. In this section,

we will explore the current applications of autonomous navigation in three key multi-agent environments:

autonomous vehicles, pedestrian environments, and industrial settings.

Autonomous Road Vehicles

Autonomous Road vehicles (AVs) are one of the most promising applications, ranging from private

personal transportation to delivery trucks and public transport. These vehicles are classified in a spectrum

of autonomy, as defined by the SAE International classification[4], from Level 0 (no automation) to Level

5 (full automation). Most consumer available vehicles, as of today, fall within Level 2 and Level 3. They

can perform certain tasks like lane-keeping or adaptive cruise control but still require human intervention

in complex scenarios (Often auto-pilot is only available for structured and predictable highway scenarios

2
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Figure 1.1: Waymo autonomous

vehicle

Figure 1.2: SoftBank Pepper

airport guide robot

Figure 1.3: Amazon Kiva

warehouse automation robot

Figure 1.4: Overall caption for the three figures

or sub-urban neighborhoods). Examples of this type of autonomy include Tesla’s Autopilot and General

Motors Super Cruise systems. More advanced, Level 4 AVs are being tested in controlled environments,

such as urban centers constrained by geo-fenced areas, with companies like Waymo in the US and WeRide

in China offering autonomous taxi services in some cities. While these vehicles can operate without human

input in complex urban environments and interact with human drivers, they still need human intervention

when encountering edge cases. The ultimate goal is Level 5 autonomy, where vehicles can fully navigate

any environment without human assistance, though this remains in the research and testing phase, and

requires autonomy stacks capable of reasoning beyond replicating learned behavior. Autonomous delivery

robots and long-haul trucks are also advancing, with companies like Nuro and TuSimple deploying Level 4

already performing preliminary experiments. While full autonomy still faces a plethora of regulatory and

technical challenges, the steady deployment of Level 4 AVs is a promising step forward that can facilitate

level 5 in the long run.

Navigating among Pedestrians

Autonomous ground robots can be increasingly found in pedestrian environments such as shopping

malls, airports, or hospitals for example. SoftBank’s Pepper and Nao serve as guides and assistants,

providing customer service and navigating through crowds without relying on explicit communication or

coordination from pedestrians. These robots have been used in places like airports to guide tourists in need

of assistance ( link). Autonomous security robots, such as Knightscope K5, patrol public spaces, using

sensors to avoid obstacles while monitoring for security threats. Delivery robots, such as those developed

by Starship Technologies and Amazon Scout, operate on sidewalks to deliver goods, navigating through

urban environments filled with pedestrians. In healthcare settings, Aethon’s TUG robots autonomously

deliver medications and supplies through hospital hallways, avoiding patients and staff. Although they

have found some success in practice, it can be argued that their navigation approach is not interactive

with pedestrians, but merely reactive and treat pedestrians as dynamic obstacles rather than interactive

agents, in occasion leading to clumsy coordination, inefficient paths or safety risks. Although there is still

much progress to be made, these applications are a promising step and lay the groundwork and practical

experience for more advanced future applications.

An aspect that is often overlooked, is that humans also need to get used to having robots in their environment,

as otherwise humans will be curious or surprised and might react differently than expected (for example,

stopping to look or following the robot [5]). This is very challenging to account for when designing autonomy

stacks for these agents[2].

Industrial Applications

In industrial environments, autonomous robots already play a key role in streamlining operations. These

environments, by virtue of being more controlled, offer improved predictability, making it easier to design

autonomous agents to operate in them. Amazon’s fulfillment centers utilize Kiva robots, which autonomously

organize goods across the warehouse while coordinating with human workers. Similarly, Ocado’s (Online

supermarket in the UK) automated warehouses use hundreds of robots to pick and pack groceries for

delivery, with each robot locally sensing its environment and reasoning to avoid collisions and efficiently

complete its tasks. Such autonomous systems enhance productivity and scalability for warehouse logistics,
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however this is only made possible due to the low-uncertainty environment they operate in, which allows for

the development of a highly fine-tuned autonomy stack. In fact it is not uncommon to redesign a warehouse

to accommodate such decentralized autonomous robots. While productive already, in the future it would

be beneficial to design systems that can generalize better to different operational conditions.

1.3. Overview of Challenges
As discussed previously, it is becoming increasingly common for autonomous agents to navigate multi-agent

environments where they are required to interact with both humans and other robots without full knowledge

or extensive communication capabilities, which presents significant challenges. Such environments

are complex systems characterized by numerous interacting entities, each with distinct and sometimes

conflicting objectives, and often influenced by stochastic or unpredictable internal and external influences.

This complexity makes it difficult for autonomous agents to gather the necessary information for effective

coordination, as agents may have limited access to others’ objectives, intentions, or even the full range of

their possible behaviors. With this limited information and the inherent uncertainty an agent must reason

about others to navigate. While this comes second nature to humans, in the form of Theory of Mind [3],

designing an autonomy stack capable of replicating this reasoning is a formidable technical challenge.

Additionally, this resulting uncertainty induced by partial observability and the agents’ varying levels of

rationality, makes it challenging for any single agent to accurately anticipate how others might respond to

its actions. The key characteristic of multi-agent systems is the fact that agents’ trajectories are highly

interdependent; the movement or decision of one agent can directly influence others, creating a web

of dependencies that grows exponentially with the number of agents. Consequently, planning optimal

trajectories in such an environment becomes computationally expensive, as each agent must consider

not only its own goals but also reason about the potential actions and reactions of all others with the

complexity being further exacerbated by the large uncertainty. This need for extensive reasoning over

multiple potential uncertain future scenarios makes real-time, efficient planning a formidable modeling and

computational task.

Challenges not addressed in this survey:

Autonomous agents encounter additional operational challenges critical for reliable deployment, but not

specific to multi-agent interactions. One such area is perception, since a robust perception forms the

foundation for understanding the environment and gathering information on surrounding agents. Accurate

and real-time perception is essential to allow agents to observe and assess the actions of others. This

area has made significant progress in recent years and often relies on a mix of LIDAR and cameras.

With LIDAR becoming more affordable it has become an increasingly popular choice. Often perception

data generated by these sensors is returned as a point-cloud. Neural networks are commonly used to

generate representations that can be useful for prediction and planning. It is not uncommon for these

representations to include uncertainty, however for the remainder of this survey, the works discussed

assume a ’perfect’ perception system, a common assumption in many of the publications discussed [6].

Another important challenge is System Identification and Control: successfully executing planned trajec-

tories requires an accurate model of the robot and environment and precise control, yet uncertainties in

environment dynamics can complicate robustly tracking the planned trajectory. Often, simplified dynamic

models are used to compute feasible paths in the planning stage, but real-world dynamics are far more

complex. This gap between model assumptions and real behavior can hinder precise trajectory tracking,

making robust control another key area for reliable autonomous operation. Similar to the above assumption,

the rest of the works in the survey assume a perfect control system. These assumptions are made to allow

focusing on the prediction and planning challenges discussed above.

1.4. Autonomy Stack Architecture Overview
For autonomous driving systems, End-to-End (E2E) architectures rely on a single neural network for

processing raw perception inputs to directly generate driving commands [7]. This architecture minimizes

data loss across stages and can learn complex abstracted representations that account for many envi-

ronmental factors that would be impossible to explicitly account for otherwise. Potentially, this approach

could mimic human driver data perfectly given enough training data and a good enough network design

[6]. By avoiding hand-crafted intermediate representations and introducing very minimal prior knowledge,
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Figure 1.5: Figure from [6] illustrating a modular architecture, an End-To-End (E2E) and End-To-End

Planning System (E2E-PS).

it makes no assumptions about how the available information is weighted in planning. For example, it

has been reported that systems training this way are able to make use of reflections on mirrors of other

vehicles or on the road to anticipate pedestrians or other vehicles not in line of sight [7]. While holding great

potential, this approach also presents significant challenges in interpretability and sample efficiency. The

lack of clear, interpretable intermediate stages makes it difficult to understand or control specific behaviors,

limiting insight into the network’s decision-making processes making the system hard to verify for safety in

practical applications. Additionally training the system this way is extremely data intensive and requires

vast datasets for effective training, thus limiting what applications such an approach can be leveraged for

(Currently only Autonomous Road Vehicles, as it is the only application for which there is remotely enough

training data). Some works have also investigated a simpler E2E planning system E2E-PS, that only

combines prediction and planning into one layer. These approaches are significantly less data intensive

while still allowing for flexible interaction modeling without assumptions, however similarly they still face

challenges in interpretability, making their application in practical scenarios impractical as they cannot be

explicitly verified for the required robustness.

Interpretable End-to-End models aim to bridge the gap between direct E2E approaches and traditional

modular systems by including intermediate, interpretable representations within the network. These models

allow developers to analyze internal decision points, improving both training stability and generalization.

While these representations are not used by subsequent network layers, they act as auxiliary tasks,

providing additional structure to stabilize training (the extra losses at the intermediate stages help in

stabilizing training and converging faster) and insight into the model’s functionality. However, these

intermediate outputs introduce complexity in balancing performance and interpretability, as the network

must trade off between preserving information for deeper learning layers and maintaining transparency at

each step.

In contrast, Modular architectures separate prediction and planning into sequential tasks, where predictions

about surrounding agents are computed first and then used to inform the ego-vehicle’s trajectory planning.

This architecture is intuitive and straightforward to implement, as it allows for development of the modules

in parallel and simplifies the decision-making process by treating the surrounding agents’ actions as fixed

inputs for planning. However, it results in a reactive system that does not account for how the ego-vehicle’s

actions may influence others. The most significant difference with E2E approaches is that the behavior of

the agent is usually the product of an optimization, with the desired behavior expressed through a cost

function. This means the agent is less adaptive and cannot reason about the environment as flexibly. As

a result, these systems may exhibit overly cautious or uncoordinated behaviors, especially in dynamic

multi-agent environments where modeling mutual influence is essential.

Figure 1.6: Sequential Architecture with integrated prediction and planning

To address this issue, modular architectures with integrated prediction and planning combine these stages

into a mutually informed process, allowing the two stages to influence each other, as seen in figure 1.6. This

approach allows the system to model interdependencies between agents, capturing how the ego-vehicle’s
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actions can influence, and be influenced by other agents. In this case, some form of behavioral model is

used for other agents, and the ego-agent solves a coupled optimization problem over a dynamical system

of interacting agents to plan its trajectory. A drawback of this approach however is that it is very sensitive to

the agent models used as well as having exponential computational complexity with the number of agents.

The choice of architecture is a trade-off where choosing the most suitable architecture depends on the

application’s requirements: balancing for real-time performance, interpretability. safety and the degree of

complexity of interactions with surrounding agents. In structured and predictable environments, a sequential

modular approach is suitable. The challenge however, comes when aiming to navigate unstructured,

unpredictable and densely populated environments, where it is necessary to directly account for interactions

among agents. In this case it is necessary to resort to E2E and integrated architectures and address the

challenges in safety and computational complexity that come with these approaches.

1.5. Scope and Structure of the Survey:
The sections above gave an overview of the current state and a diversity of approaches relating to au-

tonomous navigation in multi-agent environments. Several architectural approaches have been presented,

ranging from full E2E to modular architectures where each sub-task is treated as a separate module. Within

modular architectures, an open challenge remains: effectively modeling interactions between agents during

planning. The sequential predict-and-plan approach separates these two tasks, with agents planning under

the assumption that their predictions about other agents remain fixed. In contrast, integrated approaches

merge prediction and planning into a joint task, allowing for the direct modeling of agent interactions.

However, as discussed, this comes with challenges related to scalability and accurately modeling the

behaviors of other agents in response to the ego.

This survey will focus on modular approaches, discussing the state-of-the-art methods for both sequential

predict-and-plan and joint prediction and planning, exploring their advantages and disadvantages, and the

scenarios for which they are most suitable. Additionally, it will cover related topics such as observer-aware

planning, with considerations for the legibility and predictability of an agent’s trajectories and prediction

models used to model surrounding agent’s behaviors. The following bullet-point list provides a brief

summary describing what topics are covered in each section of the survey:

• Chapter 2: Receding Horizon Trajectory Optimization for Mobile Robots, This chapter introduces

Receding Horizon Trajectory Optimization (RHTO) as one of the most popular planning paradigms

used in the planning module of autonomy stacks. Trajectories are generated in a Model Predictive

manner, optimizing a sequence of actions up to a defined horizon and executing the first action in a

repeated manner. The chapter identifies Gradient-Based Methods and Sampling-Based Methods as

a core taxonomic distinction and discusses relevant literature and the advantages and disadvantages

of each approach.

• Chapter 3: Interactive Planning, This chapter discusses several methodologies presented in

literature to account for multi-agent interaction in planning. The section is structured around the

taxonomic division between joint methods and sequential predict+plan methods. Joint methods solve

a multi-agent problem in which other agents are explicitly modeled, whereas sequential predict+plan

solve a single agent problem and implicitly account for interaction. The state of the art literature for

both approaches is discussed together with their advantages and disadvantages.

• Chapter 4: Legibility and Predictability of Robot Motion, The chapter discusses works in observer-

aware planning particularly focusing on the concepts of legibility and predictability introduced by

[8]. The original definitions provided have been seminal in this field and have become the standard

terminology used. These definitions are discussed in detail together with their advantages and

disadvantages. Extensions of these concepts for interactive and receding horizon approaches are

additionally discussed.

• Chapter 5: Multi-Agent Trajectory Prediction, Vast amounts of literature on multi-agent motion

prediction have been published in recent years. Following the taxonomy presented by [9] the section

discusses the different approaches and advances in the field in recent years as well as the advantages

and disadvantages of each approach.

• Chapter 6: Research Objective, The report concludes by giving motivation for the research project

this survey is a part of as well as identifying the key research questions this project aims to address.



2
Receding Horizon Trajectory Optimization

for Mobile Robots

2.1. Background and Problem Definition
Model Predictive Control(MPC) is a widely-used control framework for mobile robots. It can handle complex

dynamics, uncertainty and respect explicitly defined constraints. At each time step, the control actions

are computed by solving an optimization problem over a prediction horizon N . The state of the system is

propagated with a dynamics model of the robot, and the optimal control inputs are selected to minimize

a cost function subject to constraints. The first control action is applied, and the optimization process is

repeated at the next time-step. This allows for flexible trajectories even in complex environments[10].

The core components of the framework are a dynamics model, a cost-function J and a set of constraints.

The objective is to minimize the cost function J over the prediction horizon N . In general the cost function

is a function of both states and actions. A common cost function definition can be seen in equation 2.1:

J(x(t), u(t)) =

N−1∑
k=0

JS(xk, uk) + JN (xN ) (2.1)

In this equation, xk and uk are the predicted state of the system and control action at horizon timestep k.

JS(xk, uk) is a stage cost that defines control objectives and penalizes excessive control effort. JN (xN ) is
the terminal cost d to avoid undesirable end states. For example, in the context of navigation, this could

be used to penalize high velocities toward the end of the plan, to avoid the robot not having time to break if

a wall is encountered at the next time-step.

The states visited by the robot are predicted with a dynamics model, which describes how the state evolves

given the control inputs. The dynamics are usually expressed in shorthand by a function f(x, u) as seen in

equation 2.2:

xk+1 = f(xk, uk) (2.2)

These dynamics are often non-linear for mobile robots [11]. Common examples include the popular

”bicycle model” and ”unicycle model” used to approximate the behavior of ground vehicles. This introduces

additional complexities into the optimization problem.

A necessary part of the framework is to introduce a set of constraints in the optimization that represent the

physical limitations of the system and collision avoidance.

In summary, each time step the following optimization is solved:

7
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min
u0,...,uN−1

J(x(t), u(t)) =
N−1∑
k=0

JS(xk, uk) + JN (xN )

subject to xk+1 = f(xk, uk), k = 0, . . . , N − 1

x0 = xinit

xk ∈ X , k = 0, . . . , N

uk ∈ U , k = 0, . . . , N − 1

g(xk, uk) ≤ 0, k = 0, . . . , N − 1

h(xk, uk) = 0, k = 0, . . . , N − 1

(2.3)

The initial condition ensures that the problem starts from the initial state x0 = xinit. All states must belong

to the feasible set of states xk ∈ X . All control actions must belong to the available set of control actions

uk ∈ U . Inequality constraints g(xk, uk) ≤ 0, k = 0, . . . , N − 1, represent constraints such as obstacle

avoidance, input bounds, or state limits. In the definition constraints are often grouped into equality and

inequality constraints. Equality constraints, h(xk, uk) = 0, k = 0, . . . , N − 1 are also commonly used

to represent the state-transitions and conditions such as path requirements or other problem-specific

requirements.

2.1.1. Common Challenges in MPC for Mobile Robots
MPC provides a flexible and robust framework for mobile robot control, however several challenges are

commonly encountered its application to mobile robots. This section provides a high-level overview of the

most relevant challenges in applications specifically for mobile robots. These are non-linear dynamics and

a rapidly changing possibly unpredictable environment.

Nonlinear Dynamics

Many mobile robots have non-holonomic an non-linear dynamics. As a result, solving the optimization

problem becomes more computationally expensive, and approximations or linearization techniques may

be required to operate in real-time. For example, in a robot described by the bicycle model, the robot’s

dynamics are governed by equation 2.4:

ẋ = v cos(θ),

ẏ = v sin(θ),

θ̇ =
v

L
tan(δ),

(2.4)

(x, y) is the position of the robot, θ is the orientation, v is the velocity, δ is the steering angle, and L is

the distance between wheels. It is possible to linearize the dynamics, however, this may not always be

possible, as it can severely deteriorate performance in some applications.

Instead of linearizing the dynamics, Non-Linear MPC (NMPC) directly handles the non-linearities in the

system. Although it is computationally more intensive, advances in optimization methods and hardware

allow for real-time NMPC in many applications [12]. For example, Sequential Quadratic Programming

(SQP) can handle non-linear dynamics and constraints efficiently. NMPC is a very common approach for

mobile robots.

Uncertainty in the Environment

Mobile robots often navigate an unpredictable and rapidly changing environment. For example, when

navigating a corridor with pedestrians the robot faces a rapidly changing environment with significant

uncertainty about the future states of surrounding agents. Accounting for uncertainty introduces new

challenges for the optimization. The two main approaches to handle uncertainty in MPC are Robust MPC

and Stochastic MPC, both of which offer distinct advantages and trade-offs:

Robust MPC is designed to ensure that the system operates safely by assuming worst-case scenario

outcomes of the uncertainty. It aims to find a solution where the system is still guaranteed to perform

safely even when the most disadvantageous uncertainty outcomes . It is essentially entirely risk averse.
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By preparing for the most adverse situations, the Robust MPC approach guarantees constraint satisfaction

and safety, however, fully risk averse strategies come at the cost of performance, as the robot may

be overly cautious, leading to suboptimal trajectories when the worst-case scenario does not occur. A

common problem highlighted in literature with this approach is the freezing robot problem [13]. Due to

large uncertainties, the robot deems all possible actions as unsafe an is unable to make progress toward

its goal.

Stochastic MPC takes a probabilistic approach to uncertainty, allowing the robot to optimize given a

distribution of future scenarios. This approach results in a more flexible and less conservative controller

compared to Robust MPC as it allows for modelling how much risk the robot will take. For example for

collision avoidance with dynamic agents in the environment, introducing chance-constraints in a common

approach [11], however, it introduces additional complexity in the optimization, and often requires the

uncertainty distribution to be Gaussian. Stochastic MPC does not provide strict guarantees of safety,

instead the level of risk is a designer parameter. Modelling this risk and appropriate probability thresholds

is an active research field.

Both approaches offer tools for handling uncertainties in dynamic environments, but the choice between

them depends on the specific application requirements. In highly safety-critical systems, where failures

are catastrophic, Robust MPC may be preferred. On the other hand, Stochastic MPC can provide better

performance in environments where probabilistic outcomes are acceptable, offering a balance between

performance and risk. In practice, hybrid methods that combine elements of both Robust and Stochastic

MPC can be used to strike a balance between safety and efficiency. Using adaptive risk metrics such as

CVaR is also a possibility.

2.2. Sampling vs Gradient Based MPC For Mobile Robot Trajectories

Figure 2.1: Illustration of the different optimization approaches for MPC. The choice between them

depends on the specifics of the control problem being considered. (Credit: Petar Velchev TU Delft MSc

LinkedIn Post)

In mobile robot navigation, modern optimization methods can broadly be classified into sampling-based

and gradient-based approaches, each offering distinct advantages depending on the task at hand. In

recent years, sampling based approaches have gained a lot of popularity due to advancements in parallel

computing and GPU capabilities. This allows for parallel processing of samples, enabling real-time

applications of sampling based optimization for more complex tasks.

Gradient-based methods continuously compute gradients to optimize control inputs, making them highly

efficient for smooth, differentiable cost functions and environments with known dynamics. Gradient-based

approaches are typically faster for real-time tasks, but they may struggle in non-smooth or obstacle-

dense environments. As many works discuss [14], free-space in pedestrian dense environments is highly
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non-convex, making it likely for the robot to become stuck in local minima with gradient based methods.

On the other hand, Sampling-based methods optimize by randomly sampling possible trajectories or

control inputs, thus they are better able to explore the solution space. This makes them particularly

effective in complex, high-dimensional environments where gradients may be difficult to compute or non-

differentiable. These methods excel at finding feasible paths in highly cluttered dynamic environments but

can be computationally expensive due to the need for extensive exploration and sample evaluation [15].

Both methods offer good solutions each with unique advantages. Gradient-based optimization has better

convergence properties and better constraint satisfaction. Sampling-based optimization is able to find

better local minima and even find global optima. Practically, sampling-based is easier to implement and

can seamlessly handle with discontinuous dynamics. A comparison is provided in table 2.1. There is no

silver bullet, and often the choice between both is application dependent. In the following subsections

relevant works on gradient and sampling based MPC for mobile robots are discussed.

Aspect Sampling-Based MPC Approaches Gradient-Based MPC Approaches

Solution

Methodol-

ogy

Samples a wide range of feasible states/ac-

tions and constructs trajectories through

simulation. Each sample is evaluated with

a cost function and the best sample se-

lected.

Utilizes gradient information for iterative re-

finement of trajectories, minimizing a cost

function. Suitable for differentiable environ-

ments with well-defined dynamics.

Convergence Can guarantee a feasible path if enough

samples are used but might not always pro-

duce feasible or locally optimal solutions.

Relies on sampling density for better con-

vergence to optima.

Converges to a local minimum defined by

the initial conditions. Ensures smoother

and optimal solutions but risks being

trapped in local optima, especially in non-

convex spaces such as pedestrian environ-

ments.

Handling

Non-Convex

Constraints

Robust to non-convex constraints as the

optimization procedure does not depend on

convexity or differentiability of the dynamics

or cost function

Struggles with highly non-convex con-

straints. Efficiency drops, taking longer to

converge to optimal solutions. Requires dif-

ferentiability of system dynamics and con-

vexity of cost function.

Computational

Efficiency

Computationally intensive, especially in

high-dimensional spaces. Struggles with

real-time constraints due to the need for nu-

merous samples. Efficiency can improve

with parallel processing.

More computationally efficient under struc-

tured, differentiable environments. The

complexity rises with non-linear or dynamic

interactions but generally faster for smooth,

real-time applications.

Exploration vs.

Exploitation

Good for exploring a broad state space to

find potential global optima but at the cost

of higher computation. Can achieve better

exploration outcomes.

Tends to exploit known paths for local op-

timization, which may lead to suboptimal

global solutions. Efficient for fine-tuning

existing paths rather than exploring new

ones.

Use Cases Ideal for dynamic, high-density environ-

ments like busy public spaces where agent

interactions are highly varied and unpre-

dictable.

Best suited for structured environments

such as indoor navigation or road-following

with moderate complexity and predictable

pedestrian flow.

Table 2.1: Comparison of Sampling-Based and Gradient-Based MPC Methods for Mobile Robot Planning

2.3. Gradient-Based Methods
The work of [12] is widely cited and provides an illustrative outline of how gradient based methods

can be efficiently used in mobile robots in dynamic uncertain environments. Their method is based on

Model Predictive Contouring Control (MPCC) and extension of MPC for path following tasks. Their main

contribution is to approach the problem as a reference tracking task, as opposed to finding a path towards the

goal, the robot is tasked with following a pre-computed trajectory generated by a global planner beforehand,
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while locally optimizing the trajectory to minimize tracking error while avoiding obstacles. A illustration of

this process can be found in figure 2.2. The reference contains both position and time information, giving

the robot a better understanding on whether it should wait behind or overtake a pedestrian depending on its

velocity for example. It models static obstacles with convex polyhedra and other agents in the environment

as ellipsoids, making the system differentiable and suitable for gradient-based optimization. Other agents

future trajectories are predicted with a Constant Velocity (CV) Model. It was tested in both simulation

and real environments, with results showing it outperforms other planners like classical MPC in handling

complex, dynamic scenarios, demonstrating efficient, real-time performance while avoiding the ”freezing

robot problem” discussed by [13].

Figure 2.2: Illustration of MPCC reference tracking methodology. The green line represents the reference

trajectory. In order to avoid a pedestrian it deviated from the reference but returns as soon as the

pedestrian has been overtaken. This behavior is illustrated by the purple line representing the planned

trajectory.

A novel approach by [14] introduces Topology-MPC (T-MPC) a framework designed to improve the

exploration capabilities of gradient based planners. Their motivation is that current Non-Convex optimizers

used in NMPC methods often converge to locally optimal solutions and frequently switch between different

local minima, leading to inefficient and unsafe robot motion. To address this they propose a novel topology-

driven trajectory optimization that plans multiple distinct evasive trajectories. A global planner iteratively

generates trajectories in distinct homotopy classes. Different homotopy classes are illustrated in figure

3.10. These trajectories are then optimized by local planners working in parallel. An illustration of this

process can be found in figure 2.3. While each planner shares the same navigation objectives, they are

locally constrained to a specific homotopy class, meaning each local planner attempts a different evasive

maneuver. The robot then executes the feasible trajectory with the lowest cost in a receding horizon

manner. Results demonstrated that for a mobile robot navigating among pedestrians, this our approach

leads to faster and safer trajectories than other state-of-the-art gradient based planners.

2.4. Sampling-Based Methods
There exists a diverse set of sampling-based optimization approaches for RHTO. A core distinction with the

methods however has to do with whether they sample in the state-space or in action space. For methods

that generate trajectories in state-space, they are usually combined with a lower-level planner tasked with

generating an action sequence to track the trajectory (A gradient based MPC may be employed to track

this trajectory, however this is not considered planning with a gradient based method as above, since the

trajectory is already fixed, its not a planning task but rather a tracking task). Another important distinction

has to do with how the samples are constructed. Some methods rely on a fixed set of samples or fixed

methodology to generate the samples, such as a set of motion primitives for example. Other approaches

follow a more reactive methodology where the geometries of the generated samples are not pre-defined,

allowing for more flexible trajectories that react to the environment, such as Model Predictive Path Integral

for example.

In [16], the authors propose a semi-reactive approach to sample generation. The proposed method
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Figure 2.3: In T-MPC, a global planner finds

topologically distinct global trajectories. A set of

local planners then optimize the trajectories for

kinematic feasibility while being constrained to

different homotopy classes. This results in a set

of diverse potential plans leading to better

exploration of the possible solution space.

Figure 2.4: Trajectory 1 and 2 are in the same

homotopy class. Trajectories 1 and 3 are in

different homotopy classes.

operates in Frenet frame, a moving reference frame that follows the curvature of the global reference path.

Taking inputs from the global reference path such as target velocity, over-taking decisions and the global

path to follow. By operating in Frenet-frame it is possible to then separate between lateral and longitudinal

motion, which allows to sample a set of desired longitudinal points and lateral points separately and then

combined using a quintic polynomial to fit the end point while assuring the smoothest trajectory possible.

The key benefit of this method, is that by sampling trajectories in Frenet frame and assuring smoothness,

it is possible to make efficient use of the samples to explore the solution space, resulting in a reliable and

lightweight method.

Another common semi-reactive state-based sampling planner is sometimes referred to as a fan planner.

This style of planner has been used for planning in differentiable End-to-end sequential autonomous vehicle

(AV) stacks [17] [18]. It samples a set of lane centric candidate states and fits a cubic spline. Once a set of

candidate trajectories is generated they are fitted with a cubic spline. Dynamically unfeasible trajectories

are then discarded. The difference with the previous method is that this approach operates in cartesian

space, and has the benefit of being end-to-end differentiable. They make the planner differentiable by

relaxing selecting the best sample into sampling from a categorical distribution effectively treating the

planner as a classifier during training.

Monte Carlo Tree Search (MCTS) can be used for vehicle trajectory planning by exploring action sequences

(e.g., steering, acceleration) in a tree structure, simulating the outcomes of each action through random

sampling, and selecting the most promising trajectory based on a cost function and environment simulation

[19]. However they require the environment and robot dynamics to be discretized. This approach is

particularly well suited for planning while considering the responses of other agents during the forward

simulation step. However a disadvantage is that MCTS can become computationally expensive if the action

space is very large or the horizon is long. However, with the advancement of parallel GPU computing

these limitations become less constraining to the application.

In [20] while employing an approach similar to MCTS the authors deviate from the tree-based sampling

approach by using an Exhaustive search methodology instead. They simplify the robot’s action space

by discretizing and combining several time-steps into each action. They use 8 primitives the robot can

craft its trajectories from, picking one at each sampling stage. The response of surrounding drivers is also

computed for each selected primitive sequentially. While being constrained to more structured highway

scenarios, where the types of trajectories the robot might pursue are less diverse, this allows them to
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consider all possible responses, and thereby are able to find the global optimal trajectory in a sampling

based manner that considers the responses of other agents.

A very popular sampling based approach is Model Predictive Path Integral Control (MPPI) [21] [15]. With

the development of parallel GPU computing MPPI has become a very popular approach with many works

developing this approach in recent years. Since MPPI is central to the development of this project the

methodology will be explained in more detail as well as relevant works extending the methodology.

Figure 2.5: MPPI generates samples by applying Gaussian noise to a nominal control sequence. Usually

the previously computed control sequence is used as nominal trajectory. The samples are then combined

via importance sampling and a weighted average. Figure credit [22]

MPPI generates a set of control trajectories by applying small perturbations to a nominal control input,

usually it is bootstrapped, and the previously found optimal sequence of inputs is sampled around to

generate new samples. These perturbations are sampled from a Gaussian distribution. In essence

the algorithm explores a distribution of control actions around the current best guess. An illustration

of this process can be found in figure 2.5. As opposed to simply selecting the best sample like other

sampling based methods, the core component of MPPI is the importance sampling step, which allows it

to approximate the optimal at each step from a distribution by using a weighted average of the sampled

trajectories. For each sample ui, the corresponding cost Ji is calculated( samples that violate constraints

are discarded) to find its weight ωi as per equation 2.5:

ωi = e−
1
λ (Ji−Jmin) (2.5)

Where Jmin is the lowest cost trajectory. The way the weights are crafted resembles a soft-max or

Boltzmann distribution, with parameter λ as a temperature parameter. This parameter controls the width of

the weight distribution. For lower temperature the distribution of weights becomes more uneven, with the

weight less cocnentrated around the lowest cost trajectory. The next control sequence u is then computed

by taking a weighted average of the sampled trajectories. This is computed as per equation 2.6:

u =

N∑
i=1

ωiui (2.6)

When updating this way, the best-performing trajectories dominate the update, leading to an improved

control action. This iterative refinement process accumulates information over successive timesteps, thus

adapts to new conditions robustly by iteratively improving the trajectory with each new iteration while slowly

converging closer to the optimal.
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The key advantage of MPPI over other sampling based approaches is that the introduction of random noise

in the control around the previous best control input makes MPPI highly flexible wile remaining efficient to

compute [21]. This randomness allows it to explore a wide range of possible control actions while also

focusing on refining the best options. This is a designer selected trade-off, with the level of exploration

versus refinement controlled by the variance of the Gaussian noise and the scaling parameter λ, however
usually MPPI can balance exploration and exploitation. Due to these advantages, it is widely used for

dynamic uncertain environments, where the best control strategy shifts over time and is dependent on

uncertainty distributions.

Several recent works have focused on extensions to the MPPI framework. Some works investigated how to

make MPPI more robust to modelling errors in the robot model and the environment, to increase robustness

in highly uncertain environments. Other extensions focused on improving the sampling distribution to

generate more efficient sampling and better exploration.

Tube-MPPI [23] extends standard MPPI by allowing to define a safe corridor, referred to as a ’tube’ the

robot will not deviate from. The ’tube’ accounts for model uncertainties and disturbances. The method

ensures that the system remains within this tube robustly under external perturbations. It combines MPPI’s

sampling-based optimization with feedback control to keep the system within safe bounds during execution.

The feedback controller acts as a corrective layer that pushes the robot back when it begins to drift.

Covariance Steering MPPI [24] extends MPPI to control both the trajectory and the state covariance. It

optimizes control inputs to not only minimize trajectory costs but also shape the uncertainty distribution of

the system over time.

A problem with MPPI is that it is more prone to get stuck in local optima than other sampling based

controllers that maintain a constant sample diversity. The better optima found by MPPI come at this

cost as per the exploration-exploitation tradeoff when choosing λ. To address this shortcoming [25]

proposes Biased-MPPI, where instead of constructing a sampling distribution from only the nominal control

distribution like regular MPPI, inputs from ancilliary controllers (e.g., classical, learning-based, or task-

specific controllers)are also added to the distribution. In practice, this results in faster convergence to

optima and better reactivity to the environment. To illustrate these benefits figure 2.6 is provided. The

ancilliary controllers included react faster than regular MPPI in this case and provide samples that avoid

the collision. These samples are weighted much heavier in the importance sampling step, pushing the

overall distribution in that direction. This manages to react in time and avoid collision with the box being

pushed in front of the robot. Regular MPPI cannot react fast enough and thus crashes into the box.

Figure 2.6: Biased-MPPI includes the input from ancilliary controllers to the sampling distribution of

regular MPPI. This results in faster convergence to optima allowing for better reaction to the environment.

Visualized are the top 50 sampled trajectories, color-graded by their cost. (a) Classic MPPI is about to

crash. (b) Biased-MPPI avoids collision. Figure credit from [25]

Another common problem with MPPI based approaches is sample efficiency. MPPI can be quite compute

intensive, especially if the robot model is complex or the cost function is expensive to evaluate. Often

many of the samples generated are ’wasted’ by being uninformative when very closely clustered togetehr,

resulting in collisions or other inefficiencies. To address this shortcoming, [22] propose Model Predictive

Optimized Path Integral strategies (MPOPI). In MPOPI , the entire control sequence is modeled as a

single joint distribution U = [u0, u1, ..., uT−1]. The covariance matrix Σ represents both the variance of

each individual time step and the covariances between control inputs across different time steps. This
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allows for considering the correlations between different horizon time steps. The noise used in this case is

a multi-variate Gaussian distribution:U ∼ N (µ,Σ). µ is the nominal input and Σ is the covariance matrix

over the entire time horizon. The covariance matrix Σ is structured as a block matrix of size mT ×mT ,
where m is the dimension of the control action and T is the horizon. This matrix is given by equation 2.7:

Σ =


Σ0 0 · · · 0

0 Σ1 · · · 0
...

...
. . .

...

0 0 · · · ΣT−1

 (2.7)

In this matrix each element in the diagonal: Σt is the covariance for time step t, while the off-diagonal

entries model the correlation between actions at different time steps. MPOPI uses Adaptive Importance

Sampling (AIS). At each iteration, the distribution is updated to refine both the mean µ and the covariance

Σ using the feedback from previous samples. In this manner the more frequently successful samples are

generated, the narrower the variance becomes at those time steps, directing the algorithm toward more

optimal regions of the control space. This results in fewer samples needed to converge to an optimum,

However, it is worth pointing out that this comes at a cost. MPOPI is more likely to get stuck in local optima

because it adapts the sampling to focus on regions that have previously yielded good results.

2.5. Handling Risk
When navigating a dynamic environment there will often be some uncertainty about the future states of the

system. For example when navigating around pedestrians or other robots there will be uncertainty about

their future positions that needs to be accounted for to maintain safety in planning. As previously discussed

there are two approaches to handle this with an MPC trajectory planner, Robust MPC and Stochastic MPC.

Robust MPC provides a safety guarantee in planning by entirely avoiding any potentially dangerous future

states. For example, given a distribution about the potential future states of a pedestrian, the entire portion

of the state-space covered by this uncertainty distribution would be constrained. Usually the shape of

these distributions is approximated with convex polyhedra to assure the constraints remain differentiable,

such as in the previously discussed MPCC based planner [12]. While assuring safety is beneficial, Robust

MPC based planners tend to be over-conservative and are more susceptible to the ’freezing robot problem’,

where the robot’s trajectory is severely inefficient as large portions of the state-space are constrained.

Additionally, it is common to use unbounded distributions such as eg, Gaussians to represent uncertainty,

in this case the ’worst case scenario’ would be considered to approximate a ’bounded distribution’, however

this will often lead to avoiding unncessarily large areas [26].

On the other hand, stochastic MPC is better suited for these types of environments. Instead of considering

worst case scenarios, it manages uncertainty by setting probabilistic guarantees via Chance Constraints.

Instead of ensuring that the system satisfies a strict deterministic constraint at every time step (as in Robust

MPC), chance constraints ensure that the constraint is satisfied with a specified probability. Equation 2.8

shows a formulation of a chance constraint:

P(xt ∈ X ) ≥ 1− ε (2.8)

Where xt is the state of the robot, X is the feasible set of states that don’t violate the constraint and

ε is the probability threshold or risk tolerance, which represents the probability the constraint is being

violated. However, the introduction of stochastic constraints introduces complications in the optimization.

Chance constraints cannot be optimized directly because they involve probabilistic conditions which are

often non-convex and hard to handle in optimization problems. To address this, chance constraints are

often approximated by converting them into representative deterministic constraints using techniques like

Gaussian approximations. For example, in [11] the authors follow the Gaussian approximation approach.

The constraint is linearized and an error function to bound the probability of constraint satisfaction with

a margin based on the mean and covariance of the uncertainty. This linearization makes the problem

tractable for real-time applications, even with low-compute such as on-board a Quad-rotor as the authors

demonstrate. An illustration of the linearization can be found in figure 2.7.
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Figure 2.7: Linearization of a multivariate Gaussian distribution. The blue sphere represents the

robot-obstacle collision avoidance distance around the position of the robot. The red distribution

represents uncertainty about the position of the obstacle before and after linearizartion. The linearized

constraint makes the problem tractable for real-time applications. Figure from [11]

Another method is to use scenario-based optimization [27], where multiple possible realizations of the

uncertainties are sampled. The probabilistic constraints are then cast as a finite set of deterministic

constraints based on the sampled scenarios. Usually several of the scenarios are redundant. These

scenarios are pruned with the constraints being crafted using only the most relevant samples. An illustration

of this process can be found in figure 2.8 comparing linearizing against a scenario-based approach. This

can approximate the chance constraints without relying on assumptions about the uncertainty distribution.

This has the advantage of not requiring to make assumptions about the shape of the uncertainty distribution.

The authors of [27] apply this methodology for mobile robots in an environment with other agents. They do

this with the motivation that the uncertainty distributions representing the motions of agents in a dynamic

environment are difficult to capture with a Gaussian approximation as they are often multi-modal for

example.

Figure 2.8: Figure comparing linearizing the uncertainty (left) against a scenario-based approach with

scenario pruning (right). A shows the 1 σ to 3 σ interval of the uncertainty in red shades. B shows the

probabilistic collision region when linearized from the robot disc at the front. C shows the sampled

locations in red and boundaries of the constraints in black. D shows the resulting minimal polytope in blue

after pruning. Figure from [27]

The work of [26] improves on traditional scenario-based approaches. In this approaches the risk level

selected is manifested by the number of samples used to craft the constraints. This may cause an overly

conservative constraint to be built if a lower probability scenario is samples, thus the actual risk may be

lower than the target risk. To address this, the authors propose generating several trajectories in parallel,

each with a different risk threshold. After generating these trajectories, an a posteriori risk assessment is

performed to compute the actual risk, allowing the selection of the least conservative yet still compliant

trajectory. This approach ensures that safety is maintained without unnecessary conservatism, improving

performance in congested environments.

Another popular stochastic approach to handle risk in MPC planning is to use constraints on the Conditional
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Value at Risk (CVaR). CVaR optimization minimizes the risk of catastrophic outcomes, such as collisions

that result in significant damage or mission failure. For example, while a chance constraint ensures that

the collision probability is low, CVaR would ensure that if a collision does occur, the expected severity

(e.g., damage, cost) is minimized. Chance constraints handle risk in a binary way, CVaR handles it on a

spectrum, assessing the expected damage when the worst happens. In this way the collision avoidance

constraints are more adaptive, leaving larger margins at high speeds for example. However, CVaR

additionally requires the use of a model to assess the severity of a particular outcome. Aside from the

difficulty of designing such a model, it also makes the optimization more challenging to solve. The authors

of [28] adapted CVaR for decision making robots in uncertain dynamic environments. Other authors have

explored integrating CVaR with an MPPI planner[29].

2.6. Conclusion
Model Predictive Control (MPC) has proven to be a robust and adaptable framework for mobile robot

trajectory planning. It is capable of handling complex dynamics and environmental constraints, however

despite its advantages, MPC implementation presents several challenges, notably in addressing non-linear

dynamics and environmental uncertainty. Gradient-based methods offer efficient real-time optimization

and better convergence properties but can struggle in non-convex, cluttered environments. Conversely,

sampling-based approaches, like MPPI, excel in complex, dynamic spaces and can achieve global optima,

though at a higher computational cost. Recent advancements have leveraged parallel computing and

hybrid methods to enhance these approaches, making them more applicable for real-time applications

with complex dynamics in rapidly changing dynamic environments.

Risk management is another critical aspect of MPC, particularly for navigating unpredictable environments.

Robust MPC provides safety guarantees but is often overly conservative, whereas Stochastic MPC,

with methods like chance constraints and CVaR, enables more flexible and adaptive reasoning about

environmental uncertainty and risk. The development of hybrid approaches, such as scenario-based

risk assessments and adaptive sampling strategies such as MPPI has further pushed the boundaries of

MPC based planning capabilities in balancing safety and performance. The choice between various MPC

methods ultimately depends on the specific application needs.



3
Interactive Planning

3.1. Background and Problem Definition
3.1.1. Background
Multi-agent environments present significantly more complex planning challenges when compared to single-

agent environments. In cases where communication or full information about other agents is available,

planning can be simplified, as agents can coordinate with less uncertainty. However, such ideal conditions

cannot always be assumed. In many real-world scenarios, agents do not have access to full information or

direct communication, which leads to significant uncertainty about the trajectories and intentions of others.

Moreover, agent trajectories are very often interdependent; the actions of one agent will influence the

behavior of surrounding agents, creating a dynamic coupling between their paths. This phenomenon is

especially pronounced in crowded environments, often encountered in urban navigation as illustrated in

figure 3.1. Interactive planning is often compared to a form of negotiation, where agents must implicitly or

explicitly agree on coordination strategies, such as determining who yields the right of way [3]. Therefore,

successful path planning in these environments requires methods that handle both uncertainty and the

interaction between agents [13].

Figure 3.1: In crowded multi-agent environments, agent’s trajectories are coupled. When planning it is

essential to model how surrounding agents will respond to the ego-trajectory.

3.1.2. Problem Formulation
This challenging task can be cast as a receding horizon trajectory optimization problem. In this approach,

the multi-agent planning problem is modeled as a coupled dynamical system, where each agent interacts

not only with the environment but also with other agents. This representation as a coupled dynamical

system allows an agent to plan its trajectory while explicitly accounting for other agents responses by

solving a joint trajectory optimization over all agents [3]. In this case other agents behaviors can be

approximated via a cost function or a prediction model. In its most general formulation, this optimization

18
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can be mathematically expressed as seen in equation 3.1:

u∗ = min
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(3.1)

The objective is to minimize the combined cost for all agents, where each agent i has a stage cost

Li(xit,u
i
t, x

−i
t ,u−i

t ) over time steps t, and a terminal cost F i(xiT , x
−i
T ) at the final time step T . The system is

subject to state dynamics xit+1 = f i(xit,u
i
t, x
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t ), which capture the coupling between agents. Inequality

constraints g(xit, x
j
t ,Σ

i
t,Σ

j
t , ε) ≤ 0 can be used to ensure safety (e.g., collision avoidance), while state and

control constraints xit ∈ X i, ui
t ∈ U i enforce kinematic feasibility.

While this general formulation provides a framework for modeling interactions in multi-agent systems, it

faces significant challenges on two key fronts. First, accurately modeling or estimating the behaviors and

intentions of other agents is critical and can be approached in two primary ways: by estimating the cost

functions governing other agents’ decision-making, or by using prediction models to forecast their future

trajectories. Estimating cost functions assumes that agents act rationally according to an internal objective,

but inferring these objectives from observable actions is often complex and may require extensive prior

knowledge and inference during the interaction[30]. Small errors in estimating these cost functions can lead

to incorrect predictions about agent behavior, additionally, the rationality assumption may be invalidated

when interacting with non-robotic agents, since a relatively simple cost function is unable to capture the

complexities of human behavior. On the other hand, prediction models can be used to approximate other

agents’ trajectories with fewer assumptions about the structure of their reasoning. However, these models

also present significant challenges: data-driven models may suffer from generalization issues, while purely

physics-based models fail to capture the strategic interactions between agents [30]. Additionally, both

prediction methods often introduce significant uncertainty as predictions are often distributional estimates,

which complicates the optimization problem.

Second, the computational complexity of the problem increases exponentially with the number of agents.

As the number of interacting agents grows, the joint state and action spaces become increasingly large,

making real-time trajectory optimization computationally prohibitive [1]. This combinatorial explosion, often

called ’curse of dimensionality’, requires efficient algorithms and often approximations or assumptions to

maintain scalability in practical applications. The following subsection provides a taxonomy of methods in

literature for addressing this challenging task.

3.2. Taxonomy
Given the inherent complexity of interactive multi-agent planning, there is no silver-bullet apprproach that

can generalize to all instances of the problem. Solutions presented in the literature are often highly tailored

to specific applications, leading to a wide array of frameworks, each with different assumptions about the

environment and varying strengths. This has given rise to a substantial body of research. Consequently, a

wealth of survey papers has emerged, presenting taxonomies that classify methods according to distinct

aspects. For example, [3] categorizes approaches based on the agent models used to predict the behavior

of other agents, while [1] [6] classify methods according to how the underlying optimization problem is

structured.

In this review, we focus on the challenge of scalability in multi-agent planning. To this end, we classify

methods based on whether they solve the problem using a joint optimization approach, where the behaviors

of all agents are optimized together, or a sequential approach, where prediction and planning are decoupled.

In the sequential approach, a critical assumption is made [1]: the future trajectories of other agents

can be predicted independently, without direct feedback from the ego-agent’s planned actions. This

simplifies the problem by first predicting the movements of other agents and then planning the ego-agent’s
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trajectory based on these fixed or semi-fixed predictions, reducing planning to a single agent problem,

thus has invariant computational complexity with the number of agents in the environment. However,

this framework relies modeling interactions implicitly, which often leads to poor performance in highly

interactive environments. A diagram of the proposed taxonomy is presented in figure 5.3.

Figure 3.2: Proposed taxonomy for interaction-aware planning methods used in this chapter. Given this

review is focused on scalability, the methods are broadly classified based on the complexity of the

optimization task solved. With the two root categories being joint-optimization, explicitly considering

interaction and sequential predict+plan approaches which remain scalable by opting to solve a single

agent problem instead, while implicitly accounting for interactions.

The main divide in the taxonomy distinguishes between joint and sequential approaches. The following

sections explore each branch in more detail by discussing relevant literature. Literature in joint approaches

is selected to focus on how interaction is modelled and what optimization techniques and assumptions are

introduced to make the problem tractable, whereas works on sequential methods are selected to focus

implicitly accounting for interactions.

3.3. Joint Optimization Methods
3.3.1. Game-Theoretic Methods
From an interaction perspective, one of the most comprehensive approaches is found in game-theoretic

methods [3]. These methods frame the planning problem as a trajectory game, where a constrained

dynamic game is solved at each time-step. Instead of simply minimizing a cost function, the objective is

to find an equilibrium solution. This is desirable because it leads to better stability: the goal is to find a

strategy for all agents where no one has an incentive to deviate, resulting in safer and more coordinated

interactions. Earlier approaches often focused on Stackelberg equilibrium solutions, where one agent (the

leader) optimizes its strategy first, and the other agents (the followers) respond optimally to the leader’s

choice. However, more modern approaches have evolved to incorporate Nash equilibrium, where all

agents optimize their strategies simultaneously, with each agent considering the others’ strategies. Both

approaches have different applications: Stackelberg equilibria are useful in hierarchical systems with one

of the agents in a clear leadership role (Can be often found for autonomous vehicles for example). In

contrast, Nash equilibria are well-suited for a wider variety of environments encompassing a wider variety

of multi-agent coordination environments.

The largest challenge game theoretic formulations of this problem face is tractability, as often these methods

are too compute intensive for real time deployment, even for problems with only two agents [31]. However

recently there has been a lot of reasearch in the development of more efficient solvers. For example

[32], uses a quasi-Newton root-finding algorithm to satisfy the first-order optimality conditions for Nash

equilibrium, and handles constraints with an augmented Lagrangian formulation. The solver is designed to

handle nonlinear state and input constraints, which are common for tasks like collision avoidance. Their

method ALGAMES outperforms older solvers like iLQGames by finding equilibrium strategies three times

faster in some cases. A shortcoming is that it requires good initial guesses, and is likely to fail with poor

guesses. On the other hand [31] proposes a faster approach by casting the problem as a constrained
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dynamic potential game and exploiting symmetries in the cost structure of the agents. In this manner it is

possible to simplify the problem into a single-agent optimization. This is achieved under the assumption

that agents have decoupled costs but share common constraints (like collision avoidance) and are rational,

cooperative actors aware of each other’s constraints. The method, ALTRO is up to 20 times faster than

ALGAMES due to this simplification, but it applies primarily to scenarios where agent interactions can be

framed as potential games with homogeneous constraints. While highly efficient, its applicability is limited

to cooperative, structured settings with smooth dynamics and constraints, and it may not generalize well to

environments populated with human agents.

Figure 3.3: Illustration of

Swapping Task solved for

this experiment

Figure 3.4: Compute times for ALTRO in yellow and ALGAMES in

blue for a different set of initial conditions.

Figure 3.5: Modern Game Theoretic solvers are becoming increasingly faster. Both solvers here are

SOTA solvers, however it can be observed that by making additional assumptions about the structure of

the game ALTRO is able to achieve significantly faster performance. These assumptions are often needed

to make the problems tractable, and a lot of the research on these problems deals with what would be the

right assumptions to make and under which conditions they hold best. Figures from [31].

So far, the planning aspect of game-theoretic approaches has been discussed, however another fundamen-

tal challenge these methods face is estimating the cost function of other agents, as the solvers described

above assume full rationality of the agents and full information about their intentions and constraints.

Accurately estimating these is crucial because they directly influence the equilibrium solutions found. If the

parameters or intentions of other agents are inaccurate, the resulting strategies can lead to suboptimal or

unsafe interactions. Without perfect knowledge, it is possible to solve inverse games using estimation

techniques like Bayesian inference or use inverse reinforcement learning (IRL). This allows for estimating

other agents’ objectives based on observed behaviors. These approaches aim to approximate the unknown

parameters and update strategies dynamically, but they add complexity and can introduce uncertainty,

making real-time decision-making more challenging. Reliable estimation thus remains a fundamental

challenge for deploying game-theoretic methods in dynamic, real-world environments. The work of [33]

addresses this challenge by employing a variational autoencoder (VAE) with an embedded differentiable

game solver, constructing posterior distributions over unknown game parameters. This allows agents

to reason about uncertainty in others’ objectives. Instead of traditional Bayesian Maximum Likelihood

Estimates (MLE), this approach is able to capture multi-modal distributions and efficiently sample from

posteriors without needing to solve additional games at runtime. An illustration of their method can be

found in figure 3.6. This is significant as usually inverse games are solved by iterating forward games with

different parameters, which can be very computationally expensive. This leads to safer and more robust

decision-making and is a notable step forward.
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Figure 3.6: As opposed to using MLE estimates, the work of [33] explores introducing a differentiable

game solver in a structured variational autoencoder to infer a distribution (possibly multi-modal as seen in

the figure) of the other agent’s objectives based on prior observation. This allows efficient sampling from

the inferred posteriors without the iterative computing of game solutions to estimate the parameters of

traditional methods.

3.3.2. Tree-Search Methods
Tree-based approaches usually discretize the actions available to the agent at each time-step and use

the finite choices to build a Markov Decision Chain or a similar structure. To find an optimal sequence of

decision methods like Monte Carlo Tree Search (MCTS) [20] and Tree Policy Planning (TPP) [34] construct

a tree of possible future trajectories for the ego agent and other agents in the environment, allowing the

system to explore different interaction scenarios and evaluate their outcomes. This allows for a ’multi-stage’

planning process where the agent can explore how other agents will react to the different decisions it

makes. Each branch of the tree is evaluated to compute a reward, and eventually the root of the branch

with the best reward is executed. While the optimization process is standard and is used in many other

MDP problems, it is often difficult to achieve performance in real time as this requires repeated predictions

for other agents, thus querying a model a large amount of times. Training a model that remains accurate

for later stages of the tree is also challenging [30].

The approach presented by [20] combines a Conditional Variational Autoencoder (CVAE) with an Exhaus-

tive tree search planner. By discretizing the action space further into both discrete actions and longer

timesteps (several timesteps grouped into a single action) it is possible to explore all branches of the tree

simultaneously by leveraging modern GPU parallel implementations. This massive parallelism allows for

excellent search capbilities over the entire state-space and is especially useful for multi-modal scenarios

to avoid local minima. For each candidate action sequence, the CVAE predicts a distribution over the

human’s likely responses, conditioned on both the past interaction history and the robot’s planned actions.

By sampling from this distribution, the robot evaluates all possible action sequences and selects the one

that minimizes an expected cost,. For promising branches more exhaustive sampling of the CVAE is

employed. In this manner, they are able to plan highly interactive trajectories with pro-active behaviors

from the agent. As their approach is especially suited for highly multi-modal scenarios, they test it on a

traffic-weaving environment.

Similarly, [34] presents Differentiable Conditional Prediction and Cost evaluation for Tree Policy Planning

(DTPP), a novel approach for both motion prediction and cost evaluation integrated with tree-based

policy planning. DTPP integrates both motion prediction and cost evaluation into a single, jointly-trained

framework, allowing for more efficient planning and accurate predictions conditioned by the planned

trajectory. An illustration of the framework can be found in figure 3.7. In the tree-structured policy planning

framework, a ”trajectory tree” is built for the ego vehicle, representing potential future paths, while a
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Figure 3.7: An illustration of (Top) ego-conditioned trajectory predictions for surrounding agents. (Bottom)

Training pipeline for DTPP model [34], which combines prediction and planning learning to predict both the

actions of surrrounding agents conditioned on the ego policy as well as learned cost functions for the ego

agent, allowing it to more accurately evaluate its trajectories. This results in more adaptive behavior from

the agent.

”scenario tree” is constructed to predict the responses of other agents to these potential ego trajectories.

A query-centric Transformer model is used for ego-conditioned predictions based on the ego vehicle’s

potential trajectories. Additionally, a learned context-aware cost function evaluates each tree branch,

combining learned interaction features and handcrafted components, allowing for flexible and adaptive

decision-making. In terms of efficiency, Compared to MCTS and other tree-based methods, DTPP is

more efficient because it uses differentiable joint training, allowing the cost model to guide the expansion

of the tree. This makes it possible to prune unpromising branches early and thereby reduce the overall

computational load while maintaining excellent planning performance.

3.3.3. Sampling Based Methods
Sampling based methods solve the joint optimization problem by generating full trajectory samples for

all agents, a ’joint trajectory’, in the interaction and selecting the ego trajectory from the best performing

joint trajectory. This is an intuitive process to solve the optimization problem that’s capable of effectively

exploring the trajectory space. However it faces challenges with modelling potential trajectories for other

agents and keeping the optimization tractable for real time performance.

In [35], MPPI is applied for joint optimization using a two-stage sampling process. In the first stage, control

inputs are sampled and evaluated independently for each agent. Each agent’s trajectory is simulated, and

any trajectory that results in a collision or violates constraints is discarded early, using an agent-centric

cost function that includes penalties for static collisions, deviations from tracking goals, excessive rotation,

and speed violations. As for other agents cost function, a constant velocity model is assumed (The agent

is modeled as aiming to maintain its current velocity). In the second stage, valid agent-level samples

are combined to form system-wide trajectories. These trajectories are evaluated based on interaction

costs, which account for dynamic collisions and regulation compliance (e.g., navigation rules). The two-

stage process increases sampling efficiency by discarding some invalid samples early, ensuring that

computational resources are focused on valid potential interaction-aware trajectories, however the number

system level samples to evaluate still grows exponentially with the number of agents. An advantage

however, is that samples are straightforward to parallelize, allowing for real-time performance with a

moderate amount of agents. The largest advantage of this method is the simplified implementation as well

as minimal modeling challenges for other agents. An extension to this model is provided by [36], where a

learning based prediction model is incorporated to model other agents desired goal locations.

In [37] the authors present a multi-policy sampling-based framework. Each vehicle, including the ego

vehicle, is modeled as executing one of several predefined high-level policies (e.g., lane-following, lane-

changing, or turning). Behavioral prediction is achieved using Bayesian change-point detection, which

segments the observed trajectories of other vehicles to infer the probability distribution over the potential
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policies they might be executing, resulting in a distribution over the policy set. The system samples these

policies with the number of policies for each sample determined by the belief for that policy. In this manner

a set of samples is constructed for each agent including the ego, and the interactions between different

samples can be evaluated, an illustration of this process can be found in figure 3.8. The samples are

then forward simulated together in a closed-loop simulation to capture interaction, so that they represent

high likelihood joint interactions. They are evaluated using a reward function that accounts for safety,

rule compliance, comfort, and progress towards the goal. The ego vehicle then selects the policy that

maximizes the expected reward.

Figure 3.8: Illustration of sampling-based methodologies from [37]. A set of potential sample trajectories

is generated for each agent, the interactions between the samples for different agents can then be

examined to find the most suitable ego response.

The work of [38] presents a novel approach to sampling based joint optimization, where they use a sampling

optimization methodology to find game-theoretic equilibrium solutions, effectively combining the benefits of

both approaches. The authors design a model-based imitation learning policy (IMAP), that can learn to

predict the behaviors of surrounding agents in reaction to other agents trajectories. In this manner the

predictions can be conditioned on potential trajectories of surrounding agents. A novel approach they

employ in training the policy, is that it is trained in closed loop, meaning it learns to predict actions one at a

time, essentially learning to ’drive’ as opposed to learning to predict. However with iterative evaluation it

can be used to craft predictions up to a given horizon that remain dynamically feasible and better linked to

the environment geometry and collision avoidance. This is a novel approach that blurs the lines between

motion prediction and end-to-end driving. In their approach, this novel prediction methodology is then

coupled with a derivative free motion planner for the ego agent, in their case, a Cross-Entropy optimization

is used to solve the MPC problem for the ego agent. They then point out this policy can be used to solve

for game theoretic solutions without the need for modeling other agents rewards or even best responses,

and instead sampling from this policy, essentially ’playing a game with a motion prediction model’, as this

information about the players is already embedded in the model. They use this approach to find iterative

equilibrium solutions, with both Stackelberg and Nash equilibrium solutions possible. The first method

they propose is an iterative leader-folower MPC solution (ILF-MPC), with the ego-agent as the leader. The

ego agent computes a set of candidate trajectories and for each trajectory, the IMAP policy computes

a best response to each. The best trajectories are used to initialize the next iteration. This approach

however, while converging faster and having less computational load might lead to overconfident ego

behavior. The other approach is inspired by Nash equilibrium and computes an Iterative Best Response

(IBR-MPC) which gives less influence to the ego agent. While slightly more computationally expensive this

approach results in more balanced solutions. An overview of this framework is presented in figure 3.9.

The integrated approach outperforms existing methods in environments like lane changes and adversarial
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driving where agent interactions play a large role.

Figure 3.9: IMAP policy presented by [38] can be used to solve game-theoretic interactions via sampling

from a learned policy for other agents. This eliminates the need for using simple models for other agents

to make the problem tractable, which is one of the main limitations of traditional game theoretic methods.

3.3.4. Gradient-Based Methods
Other approaches instead solve the joint optimization of the coupled dynamical system directly using

gradient based methods, similar to single agent MPC approach. This is often a complex optimization

that can become intractable and is very prone to converging to local minima. To handle this challenging

problem the approaches often explore finding good initial guesses or solve the optimization in parallel with

several guesses to better explore the state-space. Often the policies of other agents are simplified to make

the problem tractable.

The work of [39] introduces a novel approach they call Interactive Joint Planning (IJP) using gradient

based methods for a joint multi-agent optimization. To make the complex problem tractable, IJP uses a

data driven model from previous work (an advantage of the method is it is compatible with any available

pre-trained model) to initialize the agents’ trajectories. This gives a good initial guess for the problem,

making it tractable. They model other agents behavior through a cost function penalizing significant

deviations from these predicted behaviors. This ensures the agents’ actions remain realistic while still

allowing for interaction. To explore a diverse range of possible solutions, IJP introduces homotopy classes,

which categorize trajectories based on how they navigate obstacles and interact with other agents. An

illustration of homotopy classes for this problem can be found in figure 3.10. The planner runs multiple

optimization iterations for each homotopy class, ensuring it finds the best solution for each distinct class.

It then picks the best available solution from all homotopy classes. This is an effective method as it is

able to take advantage of the exceptional predictive properties of model for high level objectives, but also

exploiting the advantages of optimization at a local level to capture interaction and converge to optima.

Combining the best of both worlds this way and doing so in a tractable manner.

Figure 3.10: Caption

The work of [40] optimizes a coupled dynamical system from the perspective of the ego-agent, modeling

how its behavior affects surrounding agents, allowing the planner to leverage its effect on their behavior.
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Instead of passively avoiding human-driven vehicles, the method actively anticipates and can achieve

more efficient and cooperative interactions. Using Inverse Reinforcement Learning (IRL), the system

models human drivers as optimal planners and learns a reward function that represents their behavior. The

ego-agent then uses Model Predictive Control (MPC) to plan actions that not only achieve its goals but also

influence human drivers, such as encouraging them to slow down, change lanes, or go first at intersections.

The optimization uses a gradient based approach with the best response of the human computed as a best

response to the action of the robot. In general this is similar to the first step of an IBR appraoch, however

by only performing one iteration the system avoids the complexity of a fully simultaneous game-theoretic

interaction while retaining some of the interactive properties. User studies confirm that the approach

effectively anticipates and influences human behavior as seen in figure 3.11. In this way the approach

offers interactive planning properties with low complexity, however this approach is prone to over-confident

behaviors.

Figure 3.11: The approach [40] achieves interactive behaviors while keeping computational complexity

low. They model the human as an optimal planner and for each robot action they model the human as

performing its best response to that action. This is similar to the first step of a game theoretic iterative

Leader Follower approach. Even with this simplifying assumption, some interactive behaviors are retained.

A very similar approach is presented by [41], however instead of using a cost function learned via IRL and

assuming rational behavior, they employ a learned model, namely a Socially-Aware Generative-Adversarial

Network (SGAN) that iteratively predicts the behaviors of the agents one time-step at a time in reaction to

the ego’s planed trajectory.

3.4. Sequential Methods
Sequential methods offer a more scalable alternative to joint optimization for multi-agent planning by

decoupling the prediction and planning tasks. In contrast to joint approaches, where agents plan their

trajectories simultaneously while explicitly modeling the responses triggered in surrounding agents, se-

quential methods first predict the future trajectories of other agents and then plan the ego agent’s path

based on these fixed predictions. This reduces the problem to a single-agent optimization task, drastically

lowering the computational complexity. However, the critical assumption that results in this benefit is that

the trajectories of other agents can be predicted independently of the ego agent’s planned actions. In

environments with low interaction, this approach performs well. However, in highly interactive or densely

populated settings, such assumptions can lead to poor coordination, as these models do not account for

the coupled dynamics of agent interactions. To overcome these limitations, various strategies have been

proposed to implicitly account for interactions in the prediction phase. The following sections explore key

methodologies within the sequential approach to implicitly model or account for interaction.

3.4.1. Sub-Task Based Methods
Thework of [42] proposes a framework that allows sequential planning robots to navigate complex interactive

environment by learning to modify their path to reach their goal while avoiding complex interactive situations.
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The core idea is to learn a policy that recommends sub-goals to guide a robot through interactive and

dynamic environments. The policy is trained using deep reinforcement learning and is designed to suggest

intermediate sub-goals that help the robot avoid dangerous situations, such as clusters of pedestrians or

other obstacles. By doing so, the robot can navigate safely without directly following a fixed reference path

that could lead to unsafe interactions. Instead, the sub-goal recommendations allow the robot to adapt its

trajectory in real-time, ensuring safe and efficient movement toward the final destination. A new sub-goal

is computed at each iteration, and serves as an effective surrogate for handling interactions implicitly. The

framework is illustrated in figure 3.12. This approach improves collision avoidance and ensures the robot

can handle complex scenarios it might otherwise struggle with. Although this might result in more costly

trajectories, introducing this flexibility in the reference path it is an effective way to achieve safe navigation

in complex environments while keeping the planner simple.

Figure 3.12: The approach presented by [42] learns to predict intermediate goal locations as an auxiliary

task. These goal locations allow the robot to navigate toward the goal in a more flexible manner by

learning to predict intermediate goals that allow the robot to avoid complex interactions, or guiding the

robot through interactions. This serves as an effective way to implicitly handle interaction.

Similarly, in a second work [43], the same authors tackle the issue of navigating dense traffic via an

auxiliary task. This time, a DRL policy recommends velocity references that take into account the behavior

of surrounding vehicles, enabling the autonomous vehicle (AV) to negotiate complex interactions, such

as merging into traffic or handling uncooperative drivers. By learning to adjust the AV’s behavior based

on the anticipated cooperation of other vehicles, this method can implicitly account for interaction and is

shown to improve the vehicle’s ability to navigate dense traffic safely and efficiently. The framework stays

the same, but they substitute the MPC module for the one presented in figure 3.13.

Figure 3.13: Velocity references are learned via DRL as an auxiliary task. This can serve as an effective

method to handle interaction implicitly in dense traffic situations.

In both works, the key idea is to handle interactions implicitly through learned auxiliary tasks that guide the

primary planning process. In the first paper, sub-goal recommendations guide navigation by suggesting

safer paths, while in the second, velocity references guide the AV’s motion planner to better handle
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interactions. Integrating auxiliary tasks into sequential planning allows the robot or AV to show interactive

behavior while avoiding the computational complexity and modeling challenges associated with joint

optimization.

3.4.2. Interaction-Aware Predictions
An alternative to joint optimization is to account for interaction through a prediction model capable of of

anticipating interaction and making predictions for other agents behavior in reaction to the trajectory planned

by the ego agent upstream. However, training such a model to generalize across different environments is

challenging. The accuracy of the predictions heavily depends on the planner being used during deployment

matching the behavior seen during training. If a different planner is used, the prediction model may go

out of distribution, as it would struggle to anticipate the ego agent’s upstream decisions correctly, leading

to inaccurate predictions of how other agents will react. This misalignment can significantly degrade the

performance of the model [6], highlighting the importance of coupling the prediction model with a planner

that replicates the behavior observed in the expert demonstrations used during training.

The work of [44] presents an interaction-aware prediction model based on recurrent neural networks

(RNN) trained on data generated from a centralized motion planning system finding optimal solutions

in a variety of scenarios. By learning from these demonstrated trajectories, the RNN model is able to

capture the interaction dynamics between multiple robots and obstacles, predicting how the robots will

move in response to one another. This prediction model is incorporated into an (MPC) framework. Each

robot uses the predicted trajectories of its neighbors to plan its own motion. In this manner the robots are

able to successfully coordinate around the learned optimal coordination strategies encoded in the model

without having to solve a joint optimization. This allows scaling to a large number of robots, however it is

constrained to a specific type of planner and cost function structures, such that the upstream ego plan

does not invalidate the predictions.

3.4.3. Differentiable E2E Stack Methods
Similar to the section above Differentiable E2E Stack methods account for interactions implicitly via the

prediction model, however a key difference with the above methods is that the prediction model is trained

in closed loop with a planner. In this case, the planner can also have trainable parameters. These methods

work by training both prediction and planner together via imitation learning or reinforcement learning to

learn to replicate the expert behaviors in the training data. In this manner, both modules couple well

together, and compliment each other to learn to interact like the experts n the training data.

Figure 3.14: The authors of [17] present DiffStack a differentiable end to end modular architecture. By

learning both a prediction model and planner parameters together, this leads to tight integration between

both modules. This addresses problems often encountered when using learned prediction models with

planners. In this manner the vehicle is capable of interactive behaviors while maintaining a sequential

planning approach.

The work of [17] presents a control stack that includes differentiable modules for prediction, planning, and

control. The prediction module employs a neural network, specifically Trajectron++, to predict multi-modal

trajectories of other agents, allowing it to capture interactions between agents. The planning module uses

a sampling-based approach to generate dynamically-feasible candidate trajectories, and it selects the

best trajectory based on a cost function. This cost function penalizes collisions, distance to the goal, lane

deviation, and control effort. Both planner and control module have learnable parameters. The planner

is made differentiable by relaxing the argmin operator, treating trajectory selection as a classification

task and thus enabling back-propagation of gradients to the prediction model through the planner. An

overview of the resulting stack is presented in figure 3.14. The control module applies an MPC approach,
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using differentiable Linear Quadratic Regulator (LQR) to optimize the control sequence iteratively to track

the planned trajectory. The differentiable stack allows for optimization of upstream prediction models

with respect to the final control objectives, this influences predictions to be more relevant to the planning

task. Traditional AV stacks, though modular and interpretable, face integration challenges, while DiffStack

maintains modularity and interpretability with improved performance through end-to-end training that

integrates the different modules more effectively.

Another very prominent work in this space explores Planning Oriented autonomous driving, where the

entire stack is designed again to be differentiable, and tailored to aid the prediction task downstream [18].

Their critical insight is that by assigning a higher loss to the planning task downstream than the prediction

loss upstream, this frees up some of the representational power of the prediction model to make predictions

that not necessarily represent the ground truth extremely accurately, but instead guide the agent to behave

pro-socially and plan efficiently. The framework uses query-based designs for communication between

tasks, leveraging transformer-based architectures to capture both agent-agent and agent-environment

interactions. The intermediate representations are not as hand crafted, which results in some better learned

representations that convey information more effectively. However this results in lower interpetability.

Traditional approaches to the task, where each module is trained separately often lead to error accumulation

through the stack, whereas training the modules together with high focus placed on the final planning task

results in a more robust pipeline. An overview of their framework is presented in figure 3.15

Figure 3.15: This figure illustrates the stack architecture proposed in [18], with an entirely differentiable

stack optimized with a higher loss for the final planning task, allowing the prediction module to focus on

guiding efficient, pro-social agent behavior rather than strict accuracy, and leveraging query-based,

transformer-driven representations for seamless task communication.

Figure 3.16: Architecture of DIPP by [45]. A transformer network is used to model joint futures for the

agents, thus effectively capturing the most likely interactions. However, the prediction for the ego is sent to

an action decoder. The decoded action sequence is used to warm-start an MPC planner. In this manner

the planner can converge to better local minima.

Another similar approach, ’Deep interactive prediction and planning’ (DIPP) a is presented by [45], however

the difference is how interactions among the agents are modeled. This approach employs a transformer

network that makes scene centric predictions for all agents conditioned on past interaction history and
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map geometry. The interaction is computed in latent space, and the latent space representation is sent to

a trajectory decoder for surrounding agents, whereas the the representation for the ego-agent is sent to an

action decoder. The decoded action sequence is then used to warm-start an MPC planner with learned

parameters. The pipeline is trained with a prediction error loss for other agents and a tracking loss for

the ego agent with respect to the expert trajectory in the data. Approaching interaction this way results in

more flexible trajectories for the ego agent as the planner is more expressive and can converge to better

local minima, however this minimum is dictated by the outputs of the model, and thus the trajectory will still

be interaction aware while maintaining a sequential approach. An overview of this architecture is shown in

figure 3.16.

While these approaches offer strong integration between the planner and prediction model, they often

lack flexibility and are not suitable for all environments. The planner and prediction model function well

together, but they are tightly coupled, making it difficult to swap out one component without affecting the

other. Another critique is the lack of explainability for the learned planner parameters, which is a safety

concern since understanding these parameters is crucial in preventing malfunctions, the functioning of the

network that generates them dynamically is often a black box. Additionally, coupling the layers in this way

is highly data-intensive, and while it performs well in data-rich applications like autonomous vehicles with

abundant datasets, it becomes impractical for more niche multi-agent scenarios where large datasets are

unavailable.

3.5. Conclusion
In this chapter, various approaches to solving multi-agent path planning problems are discussed, focusing

on the comparison between joint optimization methods and sequential methods. Both categories have

their strengths and weaknesses, and their applicability depends heavily on the specific requirements of the

task at hand.

Joint optimization methods, particularly game-theoretic approaches, offer comprehensive models that

explicitly account for the interaction between agents, leading to more coordinated and stable behaviors.

However, they face significant challenges related to scalability and computational complexity, making

real-time deployment difficult in many applications. Modern methods attempt to mitigate these by making

application specific trade-offs in terms of performance or assumptions about the environment or agent

behavior. Although computationally expensive, thesemethods are often the best choice for highly interactive

environments.

On the other hand, sequential methods, which decouple the prediction and planning processes, offer

scalability by making assumptions that reduce the problem to a single-agent task. These methods perform

well in low-interaction or structured environments. However, they often struggle in highly interactive

scenarios, as they do not fully capture the interdependent dynamics of agents and instead rely on implicitly

accounting for these couplings, which can lead to suboptimal coordination. Recent advances in interaction-

aware prediction models and differentiable end-to-end architectures overcome these limitations by coupling

the prediction and planning processes more tightly via joint learning of prediction models and planner

parameters.

The choice of method depends on the environment requirements and available computational resources.

While joint methods provide rich interaction modeling, sequential methods remain the preferred choice for

scalability and real-time applications in most practical applications.



4
Legibility and Predictability of Robot

Motion

4.1. Background
In multi-agent environments, agents often influence each others actions. This dynamic is particularly crucial

in cooperative settings to achieve a desired shared objective such as collision avoidance for example.

Humans effortlessly display cues such as gaze angle, body orientation or hand movements. While subtle,

these signals provide essential information about a person’s upcoming actions or goals, which greatly

facilitate social interactions and cooperative behaviors. For example, a human agent may turn their body

towards an object before reaching for it, or tilt their gaze to a particular location before moving in that

direction[46]. This gives others the ability to predict their next move with relative ease. In contrast, robots

often lack these cues, making it more challenging for other agents to understand their intentions. As a

result, robots may fail to communicate their goals and plans effectively, which can compromise interactions

in shared environments.

To this end, the field of legibility and predictability in robot motion focuses on how a robot can plan trajectories

to implicitly communicate its intentions to observers, thereby facilitating smoother interactions[46][47].

The robot not only conveys its goal but also acts in a manner that continually reinforces the observer’s

confidence in their inference of the robot’s objectives. By planning movements that are more predictable and

easier to interpret, robots can enhance the overall efficiency and effectiveness of cooperative interactions

with other agents. Research in this domain has traditionally focused on human-robot interaction (HRI) for

finite tasks in a static environment where the human is not part of the environment, but only an observer.

Recent works have explored the adaptation to multi-agent dynamic environments and receding horizon

tasks. The section begins with introducing the definitions of legibility and predictability and the problem

definition. In the next sub-section recent works adapting these concepts to dynamic environments and

receding horizon applications are discussed.

4.2. Problem Definition
Earlier works in the field explored related concepts and defined various heuristics for intent communication

and predictability of robot motion[46]. However, the most influential and cited approach in later works

builds on the formalization by [48][8]. Their work provided precise definitions for legibility and predictability

based in psychology. A frequently cited example in their research involves robotic arm clearing a table

and a human observer attempting to infer its intention, about which objects it is most likely reaching for.

In informal language legibility and predictability are often used synonymously, however one of the core

insights of [48] is that these are fundamentally different properties of motion stemming from inferences

in opposing directions. The differences between the properties and how this relates to mot ion is clearly

illustrated by figure 4.1. The formal definitions for Legibility and Predictability are summarized in the

following bullet points:

• Legibility: The degree to which an observer can quickly and confidently infer the correct end-goal G
of the robot’s trajectory.

• Predictability: The extent to which the robot’s trajectory matches an observer’s expectations, given

a known end-goal G.

31
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Figure 4.1: Top: Predictable, day-to-day, expected handwriting vs. legible handwriting. Center: A

predictable and a legible trajectory of a robot’s hand for the same task of grasping the green object.

Bottom: Predictability and legibility stem from inferences in opposing directions.

Although these concepts are often correlated—for instance, a direct path toward a goal tends to be both

legible and predictable—they can diverge under certain conditions. In environments with complex or

ambiguous goal configurations, a highly legible trajectory may not be the most predictable one, and

vice versa. This is especially true for environments where progress toward a possible goal is very highly

correlated with progress toward another possible goal[49]. This will become clearer when the mathematical

formulations for optimizing preidctability and legibility are discussed. Both properties are essential in

designing motion planners for social and interactive tasks, balancing legibility and predictability requires

careful consideration of the specific task and environment.

Mathematically, optimizing a trajectory ξ for predictability given a goal G ∈ G can be expressed by the

following objective:

ξ∗S→G = arg min
ξ∈ΞS→G

C(ξ) (4.1a)

predictability(ξ) = exp (−C(ξ)) (4.1b)

The observer is modelled as expecting the robot to be rational. It can be expressed as the optimization of

a cost function C(ξ) that the observer uses to estimate efficient and smooth motion 4.1a. Predictability

is measured by how closely the actual trajectory matches this optimal inference 4.1b. On the other

hand, legibility is concerned with how fast an observer can infer the correct goal G from an incomplete

trajectoryξS→Q (From start S to mid-point Q). Legibility can be formalized through an inference function

IL(ξ), which maps a trajectory (or a snippet of it) to the most probable goal as seen in equation 4.2a.

P (G | ξS→Q) is computed using Bayesian inference, with the likelihood of the trajectory given one of the

possible goals. A legible trajectory is one where the correct goal G∗ becomes apparent early. The legibility

score is defined by equation 4.2b. Here f(t) is a decreasing function used to assign more importance to

early time-steps.

IL(ξS→Q) = argmax G ∈ GP (G | ξS→Q) (4.2a)

legibility(ξ) =

∫
P (G∗ | ξS→ξ(t))f(t) dt (4.2b)

As mentioned above, a predictable trajectory follows the most efficient path toward the goal from the

observers perspective, but this path may not make the goal immediately obvious (thus reducing legibility)
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if the observer has uncertainty about the goal. In the opposite case, an overly legible trajectory could

involve exaggerated motions that make the goal clear but deviate from the expected optimal path, reducing

predictability and resulting in overly costly trajectories unnecessarily. To balance these two objectives a

trade-off can be defined. This is done by combining both objectives in one equation and introducing a

weight λ to control the emphasis on legibility versus predictability as seen in equation 4.3:

L(ξ) = legibility(ξ)− λC(ξ) (4.3)

The λC(ξ) term pushes the trajectory to not deviate too far from what is expected, while still aiming to

be legible. Higher values of λ prioritize predictable, efficient motion, and lower values favor more legible,

intent-expressive trajectories.

Shortcomings of original formulation

Traditional formulations of this problem are not well suited for receding horizon applications as they

optimize over complete trajectories and rely on utility-based analytical models of observer expectations

[49]. Additionally, the observer is modeled as inactive, thus having no influence on the planning agent. This

assumption breaks down in multi-agent navigation where the observer and the agent share the workspace

and influence each other. Furthermore, the traditional formulation becomes intractable for non-holonomic

dynamics such as Unicycle or Bicycle model’s commonly used for mobile robots.

4.3. Adaptation of Legibility and Predictability to Receding Horizon

Applications
The concepts of legibility and predictability were initially formalized in the context of finite horizon tasks,

however recent works have explored how they can be effectively adapted to dynamic, receding horizon

control scenarios. In receding horizon control, a robot continuously re-plans its trajectory over a short,

moving time horizon as it navigates its environment. This dynamic process introduces a need to balance

legibility and predictability throughout the evolving motion plan.

In [49], the authors address this challenge, particularly focusing on improving the traditional legibility

optimization to allow it to be used in receding-horizon in an environment with other agents even if the ego

agent has non-holonomic dynamics. They propose a re-formulation that simplifies the legibility objective to

Linear-Quadratic Regulator(LQR) form, allowing real-time deployment in dynamic systems. They do this

by optimizing for a surrogate objective minimizing the difference between the costs associated with two

hypotheses—one representing the null (uninformed) hypothesis and the other representing the intended

task as per equation 4.4. This formulation assumes an environment with a discrete set of possible agent

objectives, and that the observer has access to the set of respective cost functions for each objective.

L(u(·)) = α(t) ·HJ1(u(·))− (1− α(t)) ·HJ0(u(·)) (4.4)

In this equation α(t) is a decreasing function that prioritizes legibility at the earlier horizon timesteps. This

objective allows robots to optimize their trajectories for both efficiency and communication of intent in a

tractable manner in receding-horizon in an environment where they interact with the observers however it

assumes observers with only two possible hypotheses (2 goals) and a utility-based observer expectation

model. Additionally the trade-off depends on α(t) which has to be set before-hand making it less flexible to

unpredictable environments.

A related approach by [50] proposes a navigation framework that adapts legibility and predictability to

multi-agent contexts, focusing on the challenge of enhancing the communication of a robot’s intended

passing side during dynamic interactions. As opposed to optimizing for a global goal this approach

accounts for dynamic goal regions, which represent potential passing and collision strategies in multi-agent

environments, as illustrated in figure 4.2.

By optimizing for legibility in ambiguous scenarios and predictability in unambiguous ones, the framework

ensures both safe and efficient collision avoidance during interactions. The cost function representing

this objective takes a very similar structure to the objective developed by [49], optimizing to minimize the

difference between the costs for both regions.
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Figure 4.2: [50] focuses on optimizing for legibility and predictability with respect to passing side as

opposed to a global goal in the environment. This simplifies the process of collision avoidance for

interacting agents.

A similar results is achieved by [51]. Their method improves coordination in collision avoidance by allowing

other agents to more quickly infer the ego-agent’s intended avoidance strategy. The key contribution is the

use of a markup factor µt, which heavily weights control costs later in the planning horizon, incentivizing the

robot to react faster and thus make its intent more legible to observers. The improved proactive behavior

enhances both safety and cooperation in shared environments. This promotes prosocial interaction where

the responsibility for collision avoidance is shared equitably between agents by giving other agents more

time to react and adapt their strategy. The performance of this method (figure 4.4) interacting with a human

in an experiment (figure 4.5) is shown compared to a social forces model (figure 4.3). A constant velocity

prediction was used by the robot.

Figure 4.3: Social Forces

Avoidance

Figure 4.4: Legible

method presented by

[51]

Figure 4.5: Experimental

Setup

An alternative approach is to design a hand-crafted heuristic for legibility in a specific environment that

can be used as an additional cost in planning. [52] propose a Legible Model Predictive Control (MPC)

method for autonomous driving, specifically for lane changes in highway environments where safety and

efficiency depend on the ability of surrounding vehicles to correctly anticipate the planned maneuver. The

cost function is composed of a general term Jgen for objectives like energy efficiency and comfort, and

a legibility term JM
leg that optimizes for maneuver inference by other vehicles for a given maneuver M in

trajectory ξ.

J = Jgen + wlegJ
M
leg (4.5)

JM
leg =

N∑
j=0

1

c+ P (M | ξk+j)
(4.6)

In this equation, P (M | ξk+j) represents the probability that the the observer infers the ego vehicle’s

planned maneuver M at each time step k+ j, with N is the horizon length. The constant c is introduced to

prevent division by zero and avoid explosion of the term for P → 0. By penalizing low values of P (M | ξk+j),
the cost function encourages the ego vehicle to choose trajectories that increase the likelihood of correct

maneuver inference. This approach has the advantage that is integrates easily with a pre-existing planner,

however it requires explicitly designing a function P to model observer’s expectation. Additionally by being
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maneuver specific it requires doing so for every possible maneuver where the agent interacts with other

agents, making it very work intensive to design a general planner.

A variety of other approaches that achieve similar results can be found in literature [53][47], however while

inspired by legibility and predictability their approaches differ more significantly from the original definitions

presented. For example, [54] explores the problem of intent demonstration in general-sum dynamic games

where a player with full information attempts to minimize the uncertainty about its utility function to players

with partial information. The agent with full information does this by trading off its own task performance

with the difference between the uncertain agents’ estimates of its intent and the true intent. The work of [55]

presents a novel framework for communicating intention that focuses on collision avoidance behavior. The

framework uses a topological method based on ”braid groups” to evaluate the complexity of multi-agent

trajectories, aiming to minimize trajectory entanglement. By estimating others agents’ avoidance behavior

and reducing the complexity of interactions with the ego, the system achieves similar results to legibility

and predictability. Another novel approach developed by [5] presents a data-driven approach for legible

and predictable robot navigation in dynamic environments by learning from human pedestrian data. The

approach uses maximum-entropy models to predict the behaviors of other agents and jointly plan the

robot’s actions in a way that is both interaction-aware and socially compliant. An illustration of this method

from the robot’s point of view (POV) can be found in figure 4.6.

Figure 4.6: POV of the robot jointly

predicting others and planning its

own trajectory by learning from

human expert demonstrations.

Figure from [5]

Figure 4.7: Since the robot is not

human other agents react differently

to it, pushing the learned model to

face out of distribution cases

By learning from human data, the robot can plan its trajectories so that it mimics human behaviors and

thereby complies with the observers expectation avoiding surprising behavior. The key innovation of this

method with respect to previous legibility and predictability work is that it implicitly uses an observer expec-

tation model learned from data. This model can more accurately capture the observers true expectation

model, as opposed to hand-crafted heuristics used in the works discusses above. However, this method

encountered significant challenges in test time with humans as the humans reacted to the robot differently

than to other humans due to the ’novelty factor’ of seeing a robot navigating among humans. They often

stopped to look at it, thereby throwing the model out-of-distribution as seen in figure 4.7.

4.4. Conclusion
The adaptation of legibility and predictability concepts to receding horizon control in dynamic multi-agent

environments can offer valuable insights for improving coordination during interactions between the agents.

Early works took inspiration from human psychology to define mathematical formulations to capture

these properties of motion. Recent innovations have refined these definitions and integrated them into

more practical, real-time frameworks suitable for interactive receding horizon applications, enabling better

coordination and safer interactions for autonomous agents. Approaches have evolved and range from

from heruristic driven analytical observer models to data-driven methods that learn expectations directly

from human demonstrations. Despite these advances, challenges remain, where unpredictable robot or

human actions can push robots into unfamiliar, out-of-distribution scenarios.



5
Multi-Agent Trajectory Prediction

5.1. Background
As robots enter society, scenarios in which robotic agents interact with humans will become widespread. To

ensure smooth and safe interactions, reasoning about the future is a crucial capability for agents. Humans

can easily make decisions by implicitly reasoning about the future of interactions with other human agents.

They do this using a mental model of others, often referred to as Theory of Mind in psychology [56]. On

the other hand, prediction models capable of multi-agent trajectory forecasting need to be developed to

endow robots with such capabilities. The development of such models has attracted increasing attention

in recent years across several communities, as evidenced by figure 5.1:

Figure 5.1: Publication trends in trajectory prediction from 1991-2019. Image from [57]

It is extremely challenging to develop a prediction model capable of accurately generalizing in practice.

The distribution of multi-agent futures is often highly complex and can be influenced a range of both

internal and external stimuli [57]. Aside from its goal intention, an agents future behavior can be influenced

by interactions with surrounding agents, social rules or norms and the geometry and semantics of the

environment. Some of these factors are not directly observable, thus goal inference and interaction

modeling are necessary intermediate steps for trajectory prediction. Additionally, prediction models are

required to operate in real-time.

5.2. Problem Formulation
Trajectory prediction tries to solve the problem of mapping from historical state observations to an estimate

of future states(or distribution thereof). Aside from state observations, predictions are often conditioned on

other context information such as environment geometry and the state histories of surrounding agents.

Following the breakdown presented in [6], the actors in the environment are partitioned into the ego agent

(EA) and surrounding agents (SA). The state history of an agent i is defined over a time interval t− tobs, ..., t
as:

36
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Xi = {xt−tobs , . . . , xt} (5.1)

Each state x may contain positional information, heading angle, velocity and further optional information

such as goal information or other static attributes. The state history for the ego agent can be represented

by XEA as per 5.1. The state histories of surrounding vehicles can be concatenated and represented by:

XSA = {Xt−tobs . . . , Xn} (5.2)

Analogously, the future states predicted by an agent i over a horizon tpred can be written as:

Yi = {yt+1, yt+2, . . . , yt+tpred} (5.3)

The concatenation of all surrounding agents predictions can be written as YSA. Additional context informa-

tion is represented by C. The task of trajectory prediction is to construct a model P that maps from state

histories X and context information C to a probability distribution Ppred over future trajectories Y:

Ppred = P (Y|X, C) (5.4)

The distribution accounts for the inherent uncertainties in the prediction task. It is common to represent this

distribution with multiple samples with associated probabilities (e.g., a multi-modal prediction). Usually, the

input X to the model contains the state histories of all agents in the scene. There exist several possibilities

for model output, as seen in Table 5.1. The simplest task to learn is to estimate the future trajectory of

each agent individually YSA; however, this approach often fails to predict the interactive behaviors of the

agents. Predicting joint distributions for multiple agents can better capture interactive behavior and make

consistent predictions. Although more accurate, the joint prediction task is difficult to learn, as the number

of possibilities grows exponentially with the number of agents [30]. For this reason, some literature has

explored predicting joint distributions for highly interactive cliques of agents YCA [58] as opposed to all

agents in the scene Y.

Y X Task

YSA XSA, XEA Single-Agent Prediction

YCA XSA, XEA Clique Prediction

YSA XSA, XEA Joint Prediction

Table 5.1: Different variants on the prediction task

An additional distinction in the prediction task has to do with how information is fed into the model with

two main types of input representation, namely rasterized and sparse as seen in figure 5.2. Rasterized

approaches rely on dense, fixed resolution grids with often multiple channels each representing different

information. These approaches provide the model with all available information about the scene, making

no assumptions about what input is relevant or how different parts of the input relate to each other. Much

of the input is oftentimes redundant, as the future decisions of the agents in the scene are only dependent

of a few key pieces of information. The idea of sparse input representation is to introduce some prior

knowledge into the learning process to help discriminate what parts of the input are more important, as well

as how different parts of the input relate to each other. Graphs are commonly used for this representation.

The graphs are crafted from a set of vectors, polylines and polygons approximating the different features in

the scene. These can then easily be encoded into fixed sized latent features. This approach has become

increasingly popular in recent years as it can easily integrate with Transformer Networks which have

become the state of the art for sequence modeling [59].

5.3. Taxonomy
The field has evolved significantly since its inception, and a variety of approaches have emerged. These

range from early hand-crafted deterministic approaches such as Social Forces [60] or RVO model [61] to

modern data-driven approaches. A variety of survey papers present different taxonomies of the field. A
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Figure 5.2: Rasterized and Sparse input representations. Figure from [6]

very clear taxonomy is presented by [9] which first groups methods by the assumptions they make about

agents followed by the technical approaches they employ. An illustration of this taxonomy can be seen in

figure 5.3.

Figure 5.3: Multi-Agent Trajectory Prediction Taxonomy presented by [9]

The first distinction in the taxonomy distinguishes methods by the assumptions about the structure of the

problem. Ontological approaches assume an underlying logic or model of the agents, whether that be a

set of rules, dynamics model or cost function an agent is trying to minimize. In other taxonomies these

approaches are referred to as physics and planning based approaches. On the other hand, phenomeno-

logical approaches make no assumptions about the structure of the problem an instead learn to forecast

trajectories from large amounts of demonstration data. In other taxonomies these approaches are referred

to as pattern based and deep-learning based approaches.

5.4. Ontological Methods
5.4.1. State-Space Models
A simple and often effective method for prediction is based on assuming a physics model describing the

kinematic behavior of an agent. Common methods include Constant Velocity, Constant Acceleration,

Constant Steering... Despite its simplicity, this approach can be remarkably effective, at times surpassing

state-of-the-art models in pedestrian trajectory prediction for example [62]. However, using only kinematics

does not account for critical factors such as obstacles in the environment and interactions between agents.

To address these limitations, numerous heuristic models have been developed to approximate agent

interactions. For example, a common method for traffic prediction is the Intelligent Driver Model (IDM) [63].

It is designed to describe how a driver adjusts its acceleration based on the behavior of the car ahead,
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maintaining safe distances while attempting to remain at desired speeds. While IDM is mainly suited for

longitudinal driving, MOBIL (Minimizing Overall Braking Induced by Lane changes) extends the method by

additionally modeling lateral behaviors [63]. The Social Forces Model can be used to model pedestrian

interactions [60]. In this model pedestrians are treated as a system of particles governed by attractive

and repulsive forces. These represent social behaviors, such as the desire to reach a destination, avoid

collisions, and maintain personal space. AN illustration of the basic principle of this method can be seen in

in Figure 5.4:

Figure 5.4: Illustration of basic Social Forces Model from [60]. An agent is influenced by an attractive

force toward its goal while being pushed by repulsive forces from other agents and obstacles in the

environment.

Another popular method is the Reciprocal Velocity Obstacle (RVO) [61]. This method is useful in dense

dynamic environments. RVOmakes predictions by assuming that all agents cooperate by making reciprocal

adjustments to their velocity to avoid collision. Optimal Reciprocal Collision Avoidance (ORCA) [64] extends

RVO by solving a constrained optimization problem where each agent computes the best possible velocity

that avoids collisions while minimizing unnecessary changes in direction or speed, resulting in smoother

more desirable trajectories. Reciprocal approaches such as RVO and ORCA are especially popular for

modeling robot-robot interactions. They are efficient and can scale to dense scenes for many agents,

however by assuming reciprocity they may not generalize well to agents that don’t follow the same ’rules’

such as human agents.

5.4.2. Internal Cost Functions
More recently, Inverse Reinforcement Learning (IRL) has become a popular ontological approach for

trajectory prediction [3]. Given a dataset of agent trajectories ξ, this approach assumes that agents are

rational actors trying to maximize some reward function, thus the goal in training is to find an approximate

of that cost function. Then in test time, predictions are formed by crafting a distribution over trajectories

based on the reward. The cost function is usually structured as seen in equation 5.5:

R(s) = wTφ(s), (5.5)

R(s) represents the reward at state s, w denotes the weights to be learned, and φ(s) is a function that

extracts the relevant features from the state. The goal is to find the set of weights w that maximizes the

rewards of the the observed trajectories ξ. However, a common issue is that there may be multiple reward

functions that maximize the reward for ξ . To resolve this ambiguity, the principle of maximum entropy is

often employed, selecting the reward function that maximizes entropy, thus reducing overfitting to ξ. This
approach, known as Maximum Entropy (MaxEnt) IRL, is widely used in modeling real-world navigation and

driving behaviors. In MaxEnt IRL prediction distributions, trajectories with higher reward are exponentially

more likely, leading to the formulation in Equation 5.6. This probabilistic framework makes sampling from

the policy a simple and efficient method to craft the distribution.

p(ξ|w) ∝ exp

∑
s∈ξ

R(s)

 =
∑
s∈ξ

wTφ(s) (5.6)
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Using learned or inferred in real-time cost functions for prediction couples very well with interactive decision-

making processes, such as the joint planning approaches found in game theoretic planning. This is

especially useful for applications in robot-robot interactions. In these scenarios, the rational decision-

making assumption predictions depend on holds strongly [3].

In conclusion, ontological approaches allow for the incorporation of prior knowledge to provide a struc-

tured and sample-efficient framework for modeling decision-making agents. However, the assumptions

introduced by the prior knowledge also impose limitations, particularly when the true reward function is

non-linear, non-Markovian, or differs significantly from the assumed model [30]. As the availability of

training data continues to grow, the exploration of alternative methodologies, such as phenomenological

approaches, becomes increasingly more relevant.

5.5. Phenomenological Methods
Phenomenological approaches for trajectory forecasting focus on minimizing assumptions about the

internal decision-making processes of agents. Also referred to as pattern based methods, they leverage

the universal representational power of Deep Neural Networks (DNNs) to capture the complexity of

environments involving multiple decision-making agents. As the availability of larger datasets continues to

grow these methods have become increasingly popular [57].

5.5.1. Deterministic Regressors
Methods based on regression models such as Gaussian Process Regression (GPR) [65] and deep learning

architectures like Recurrent Neural Networks (RNNs), Long Short-Term Memory (LSTM) networks and

Convolutional Neural Networks (CNNs), have been widely employed for trajectory forecasting. Among

these, LSTMs often outperform other architectures and are computationally efficient for online evaluations.

Consequently, LSTMs have become a core component of many trajectory models, given their suitability

for modeling temporal sequences. Trajectory forecasting is typically framed as a time series prediction

problem, making LSTMs a natural choice for this task [66]. Despite their successes, a limitation of these

methods arises in safety-critical contexts, such as autonomous road vehicles, where given the inherent

multi-modality of trajectory predictions makes single deterministic predictions insufficient to account for

risk at the required level. In such scenarios, it is essential to consider multiple possible future outcomes

and their associated likelihoods. Recent advancements in deep generative models have shifted focus

from predicting a single trajectory to producing distributions of potential future trajectories [67]. This shift is

particularly advantageous for downstream tasks such as motion planning, where knowledge of distributional

properties, including variance, can inform safer decision-making.

Figure 5.5: Figure from Social-LSTM publication comparing model outputs of CV, Social Forces and

Social-LSTM [66]. The figure illustrates how the models can capture increasingly complex trajectory

features respectively. Additionally note how the outputs are uni-modal.

5.5.2. Generative Approaches
Generative models utilizing deep recurrent architectures like Conditional Variational Autoencoders (CVAEs)

or Generative Adversarial Networks (GANs), emerged as effective multi-modal predictors. These models

can explicitly or implicitly encode multi-modality, producing position distributions that reflect the inherent

uncertainty in future agent behavior. GAN-based models generate trajectory distributions directly, while

CVAE-based approaches often rely on a bivariate Gaussian or Gaussian Mixture Model (GMM) to model
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output distributions [30]. The main difference between GAN and CVAE based methods lies in their output

distributions. GANs are designed to learn a mapping from samples drawn from a known distribution p(x)
to samples from an unknown target distribution p(y) approximated from the training data. Effectively what

this allows is to sample from a known distribution (x typically represents the agent’s trajectory history

and context), to an unknown ’predicted’ distribution (y represents the predicted future trajectory). In this

manner, GANs directly produce predicted trajectory samples. Crafting a distribution required repeated

sampling which could become inefficient for real-time prediction. Instead, CVAEs represent p(y | x) by
decomposing it into components dependent on a latent variable z, as follows:

p(y | x) =
∑
z

p(y | x, z)p(z | x),

where z is typically discrete. This decomposition allows for the generation of an analytic output distribution,

similar to Gaussian Mixtures. Discrete latent spaces have been shown to provide superior performance for

trajectory forecasting tasks especially when coupled with a planning task downstream that accounts for

safety [58].

Figure 5.6: Figure from Social-VRNN publication [68], showcasing the multi-modal outputs of a variational

approach. In this case a Vartiational Recurrent Neural Network (VRNN). The VRNN offers a variational

approach to modelling time-series data, allowing for multi-modal outputs.

Finally, for environments where a wealth of training data is available, such as autonomous driving, Trans-

former based architectures have dominated the state-of-the-art in recent years [69] [70]. In the same way

Transformers supplanted RNNs and LSTMs for Natural Language Processing (NLP), their exceptional

sequence modeling capabilities extend to behavior prediction. Transformers excel at scalability, capacity,

and parallelism. Training them is data intensive as they often contain many learnable parameters, however

these architectures are very general and can very effectively leverage their parameters. Often times the

performance of these networks keeps increasing with more training data. It is for these reasons they

excel at complex temporal sequence modeling tasks and dominate multi-agent prediction for interactive

traffic scenarios where a wealth of data is available. A popular benchmark in which this trend becomes

apparent is the annual Waymo Prediction Challenge, where applicants compete to develop SOTA models.

The leader-board for the 2023 edition is presented in figure 5.7. This figure is provided to illustrate the

dominance of the transformer architecture in SOTA models. All entries with ’Tr’ in the name explicitly hint

at the use of this architecture, however for all entries the transformer is at the heart of the model and often

takes the role of capturing the interactions of agents with the environment and each other. In figure 5.8

the architecture diagram for the Wayformer model is presented as an illustration of a transformer based

network [71]. Usually the networks have several input modalities including state histories, road graphs,

and other optional context information. Each input type often has its own encoder block. The encoded

inputs are fused in a transformer block which serves as the core of the network, computing the interactions

of agents with each other and the map in latent space. To obtain trajectories the decoder can be a second

transformer as seen in Wayformer, however, it is also possible to use a feedforward block. The decoders

are often designed to decode multi-modal predictions.

5.6. Conclusion
Multi-agent trajectory prediction is a crucial capability for autonomous agents navigating among humans

and other robots, where understanding the future behaviors of surrounding agents is necessary for safe and

efficient interaction. The field has evolved significantly, transitioning from deterministic, heuristic models to

data-driven approaches. Ontological methods, integrate domain knowledge to create structured predictions

but face limitations when true agent behaviors deviate from assumed models. Phenomenological methods,

empowered by the increasing availability of large datasets, have demonstrated superior predictive power
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Figure 5.7: Due to the availability of a wealth of training data, the popular Waymo motion prediction

benchmark has become dominated by transformer based architectures.

Figure 5.8: Architecture diagram of Wayformer model as an illustration of a typical transformer based

architecture [71]. In this case two transformers are used. In the first encoder block the different input

modalities are initially encoded by separate encoder blocks and then fused in a transformer block

capturing the interactions in latent space. The output from this block is further decoded by a transformer

decoder block.

and make no assumptions on the internal reasoning of surrounding agents. however they face challenges

generalizing to scenarios not seen in the training data.

Despite the large advancements advances, challenges remain in crafting prediction models that are both

computationally efficient for real-time applications and capable of generalizing effectively across diverse

environments. Although transformer-based models excel due to their scalability and capacity, their reliance

on extensive training data can limit applicability in data-scarce domains. [3] points out diminishing returns

from higher accuracy prediction models, and instead proposes that further improvements in downstream

performance will instead come from better integration of the prediction models developed with the planning

task downstream.



6
Conclusions and Research Objective

This chapter builds on the discussions of previous chapters to outline the research objective and its

motivations. The relevant takeaways from the previous sections are summarized in a conclusions section.

Next, the motivation section discusses why integrating prediction models with sequential planning remains

challenging and identifies opportunities for improvement. A Proposed Approach section outlines a prelimi-

nary methodology to achieve this objective. Finally, the chapter closes by providing Research Questions

including the main research objective and supporting questions to guide the investigation.

6.1. Conclusions
Significant advances have been made in recent years in the literature on autonomous navigation of ground

robots in multi-agent environments. These environments are notably characterized by being dynamic

with high levels of uncertainty, introducing considerable challenges in prediction of the environment and

planning of safe and efficient trajectories. A range of architectural approaches and planning methodologies

have been proposed, spanning from fully end-to-end systems that use neural networks to map sensor

inputs directly to control commands, to modular architectures where individual tasks are addressed by

separate modules. Currently, most practical applications rely on sequential architectures, as end-to-end

methods remain experimental. Within the planning module of sequential architectures, receding horizon

trajectory optimization has emerged as a widely adopted paradigm.

Given agents that plan trajectories in a receding horizon manner, this raises the question of how to account

for interaction in the planning stage. Research approaches in the literature can be broadly divided into

two main methodologies as discussed in chapter 3: joint optimization and sequential predict-and-plan.

Joint optimization methods explicitly model interactions between agents by solving a coupled optimization

problem that considers all agents paths simultaneously. This approach allows for strong performance in

environments where interactions are critical and decisions need to be coordinated. However, a notable

challenge is that these methods tend to scale poorly as the number of agents increases, having exponential

computational complexity with the number of interacting agents. This makes real-time performance in

dense environments intractable.

On the other hand, sequential predict-and-plan methods address the issue by decoupling the prediction

of other agents’ trajectories from the ego agent’s plan. This approach instead implicitly accounts for

interactions while solving a single agent problem. The benefit is that it scales well with the number of

agents, making real-time performance in dense complex environments tractable. However, sequential

methods often struggle in highly interactive uncertain settings. The degree to which agents can interact

and coordinate with others is often determined by the prediction model used. Thus, accurate prediction

models are essential, however such models can be challenging to develop due to the complexity and

inherent uncertainty of multi-agent interactions.

6.2. Motivation
Given the tremendous advancements in multi-agent trajectory forecasting provided by advancements in

sequence modeling, predictions are able to account for interaction and provide consistent predictions at a

scene level. This presents a good opportunity for the improvement of sequential predict+plan approaches,

as the extent to which they are able to coordinate and interact with others is determined in large part by
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the prediction model. Thus leveraging the improved ability of state-of-the-art prediction models to forecast

interactive trajectories these methods could be improved to achieve similar performance to joint methods

in highly interactive environments, while avoiding the exploding computational complexity.

However, despite the advancements in prediction models, integrating these models with planners has

yielded mixed results. This is often due to the tendency for algorithmic planners to induce distribution shift

on the model outputs (often trained on expert data collected from human drivers or pedestrians, as this is

the richest data-source and they types of environment that result in most complexity) unless the models

are trained or fine-tuned using data generated by the planner itself. This dependency limits the practical

applicability of prediction models in autonomous navigation, particularly in highly dynamic and interactive

environments where agents trajectories are heavily coupled.

For this reason it is interesting to investigate in what manner prediction models could be used in sequential

planning more effectively. To this end, it is possible to identify that the main factor causing this shortcoming

in the first place is that in the planning stage no constraints or conditions are placed on the plan being

computed other than to avoid collision with others given their foretasted trajectory. However, since the

trajectories of agents in this context are heavily coupled, any prediction about surrounding agents also

implicitly places an expectation on the ego-agent’s plan. If the agent’s plan significantly deviates from

this expectation, it can negatively influence the accuracy of the predictions. Additionally, since modern

prediction models consider all information in the scene when making trajectory forecasts, if the ego agent’s

behavior significantly deviates from any expert demonstrations used in training, the model with result in

low quality predictions for other agents induced by the ego behavior. Given these two considerations, this

research proposes to investigate how some form of feedback from the prediction model can be used in

planning to improve the quality of predictions about others and enable smoother interaction.

6.3. Proposed Approach
Drawing from the literature on observer-aware planning discussed in Chapter 4, we can explore how these

properties of motion can be adapted to sequential predict-and-plan frameworks. In this context, agents do

not reason about these properties in relation to potential end goals but instead utilize a prediction model to

represent the observer’s expectations. When employing a prediction model, an agent exhibits predictable

behavior if it follows the most probable trajectory as output by the model. On the other hand, an agent

optimizes its trajectory for legibility by planning in a way that minimizes the complexity of the prediction

distribution and pushes it to align with its own goal.

By assuming surrounding agents perform planning in a sequential predict+plan manner and use a prediction

model to approximate the ego-behavior, this prediction model queried on the ego agent can be used to

approximate the expectations of these surrounding agents. This approach provides the ego agent with

insight into what neighboring agents anticipate it will do and the future scenarios they are considering.

Significant deviations from this predicted distribution would be surprising to other agents, potentially

prompting them to re-plan their own trajectories. This could invalidate the predictions of the ego-agent,

potentially leading to a clumsy and uncoordinated interaction. By querying a prediction model using the

ego-state history, an agent can gain valuable insight into what other agents expect its future behavior

to be. To act predictably, it should aim to stay as close as possible to these expectations and thereby

avoid surprising others, making them easier to predict. However, this model might not always accurately

represent the intentions of the ego agent. Thus, the agent must trade off predictability with legibility. To

achieve legibility, the agent should strive to influence the prediction distribution to align with its optimal

path and reduce the complexity of the prediction distribution.

The project aims to investigate how to utilize a prediction model in this manner and how to balance this

trade-off between legibility and predictability. It is hypothesized that this would enable agents to act in an

interactive and socially compliant manner while adhering to a sequential predict-and-plan approach by

indirectly boosting the effectiveness of the prediction model used to coordinate with others. Essentially,

this would involve adding a ’predictability’ term to the cost function, to bound the plans of the agent to

regions of the state-space that don’t invalidate the prediction distribution used in planning.
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6.4. Research Questions
In this subsection the research objective of the thesis is provided, followed by a supporting set of sub-

questions to serve as stepping stones in answering the main research objective:

To what extent can feedback from a prediction model, queried on the ego state-history, be lever-

aged to enhance coordination during interactions in sequential predict-and-plan architectures

within multi-agent environments?

Research Objective

Drawing from the literature on observer-aware planning, how can a trade-off between legibility

and predictability, relative to the output of a prediction model, be incorporated as a term in an

agent’s navigation cost function?

Research Question 1

What types of prediction models are most suitable for this approach? Can the method general-

ize across various prediction models, including discrete and continuous distributions? How does

it perform when applied to agent-centric versus scene-centric prediction models?

Research Question 2

How does the method perform when there is no access to the exact prediction model utilized

by other agents? How robust is the approach under conditions where an approximate or de-

graded version of the model is used? What are the implications for interactions involving human

agents?

Research Question 3

What are the effects of tuning the cost function parameters? How do variations in the weight

allocation impact performance, and is there an optimal configuration? Can adaptive weight

adjustments based on context improve outcomes?

Research Question 4

What benchmarks and test scenarios should be selected to effectively evaluate this method?

How should it be compared to existing approaches, and what representative scenarios would

best highlight the distinct effects of the proposed method?

Research Question 5
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ABSTRACT
To safely and efficiently solve motion planning problems in multi-
agent settings, most approaches attempt to solve a joint optimiza-
tion that explicitly accounts for the responses triggered in other
agents. This often results in solutions with an exponential compu-
tational complexity, making these methods intractable for complex
scenarios with many agents. While sequential predict-and-plan ap-
proaches are more scalable, they tend to perform poorly in highly
interactive environments. This paper proposes a method to improve
the interactive capabilities of sequential predict-and-plan methods
in multi-agent navigation problems by introducing predictability
as an optimization objective. We interpret predictability through
the use of general prediction models, by allowing agents to pre-
dict themselves and estimate how they align with these external
predictions. We formally introduce this behavior through the free-
energy of the system, which reduces (under appropriate bounds)
to the Kullback-Leibler divergence between plan and prediction,
and use this as a penalty for unpredictable trajectories. The pro-
posed interpretation of predictability allows agents to more robustly
leverage prediction models, and fosters a ‘soft social convention’
that accelerates agreement on coordination strategies without the
need of explicit high level control or communication. We show
how this predictability-aware planning leads to lower-cost trajecto-
ries and reduces planning effort in a set of multi-robot problems,
including autonomous driving experiments with human driver
data, where we show that the benefits of considering predictabil-
ity apply even when only the ego-agent uses this strategy. The
code and experiment videos can be found in the following page:
https://romanchiva.github.io/PAProjectPage/

KEYWORDS
Multi-Agent Systems, Motion Planning, Autonomous Navigation,
Coordination, Prediction Models

1 INTRODUCTION
Many modern robotics applications involve autonomous agents
navigating multi-agent environments where they will be required
to interact with humans and other robots without full knowledge or
∗Indicates equal contribution, This research is supported by funding from the Dutch
Research Council NWO-NWA, within the “Acting under Uncertainty” (ACT) project (Grant
No.NWA.1292.19.298), †Work done partially while at Delft University of Technology.
Author acknowledges partial support from UKRI grant EP/W002949/1. .

extensive communication capabilities [39]. This involves planning
trajectories in a complex system governed by a mix of rational
and non-rational, stochastic and possibly game theoretic behaviors.
To achieve safe and efficient interactions, agents need to reason
about each other and coordinate. However, this poses critical chal-
lenges due to the high uncertainty associated with estimating other
agent’s objectives [16] and a computational complexity that renders
problems intractable for more than a handful of agents.

RecedingHorizon TrajectoryOptimization allows for flexible and
anticipative planning while ensuring compliance with e.g. safety
constraints in multi-agent navigation problems. However, plan-
ning a trajectory that explicitly accounts for interactions among
agents generally requires solving a joint optimization problem. A
variety of joint planning methods can be found in literature, e.g.
[10, 22], of which game theoretic approaches best capturing agent
interaction complexities [39]. By modelling other agents as rational
actors, game theoretic approaches cast the joint optimization as a
constrained dynamic game and seek to find equilibrium solutions.
Although this often results in stable and coordinated interactions
[11, 16], game theoretic approaches suffer from the curse of dimen-
sionality, as the planning complexity grows exponentially with
the number of agents [34]. Additionally, modelling other agents
as rational is a strong assumption which will not hold in practice,
especially when interacting with human agents [4, 12].

Alternatively, predict-and-plan approaches scale well with num-
ber of agents, however they tend to perform poorly in interactive
environments. By separating prediction and planning, the problem
simplifies to a single-agent collision avoidance problem with dy-
namic obstacles [5, 13]. The accuracy of the prediction model limits
how well agents can coordinate. A system of interacting agents
is highly complex, making it difficult to predict the diversity of
possible futures, especially when considering interactions. This can
lead to ambiguous predictions, making agents unable to anticipate
their environment, and thus have to re-plan more often or engage
in riskier behaviors [39].

Ideally, every agent in the environment would be able to accu-
rately anticipate surrounding agents’ future trajectories allowing
for efficient and safe interaction. Sequential planning agents use
prediction models to avoid collisions with others, however, this
fails to acknowledge that surrounding agents also hold predictions
about the ego-agent, and plan their trajectory based on these pre-
dictions. Unless the optimal avoidance strategy falls within the



range of predicted behaviors, other agents will react to the unex-
pected avoidance strategy by modifying their own trajectory. To
mitigate this issue, we propose the following: in the same way a
prediction model is used to predict other agents, the ego-agent
can use it to approximate how other agents expect it to behave.
This information can be used in planning to introduce a penalty
for trajectories other agents will find surprising, bringing the opti-
mal trajectory closer to the expectation surrounding agents hold.
Accounting for predictability in this way mirrors the principle of
free-energy minimization in active inference [33] (and control sys-
tems [36]), where an agent not only seeks to maximize reward but
also aims to minimize the discrepancy between some prediction
model and observations. In multi-agent interactions [24], agents
hold probabilistic beliefs about the behavior of others, and the ac-
curacy of these beliefs is directly influenced by the agent’s own
actions. By minimizing free energy, the agent balances actions that
reduce uncertainty and confirm its internal model of the world
with those that maximize reward. This approach ensures that the
agent’s behavior is not only goal-directed but also aligned with
maintaining coherent and accurate beliefs about the surrounding
agents.

1.1 Contribution
We explore how sequential planning agents can improve their co-
ordination capabilities by accounting for the predictability of their
planned trajectories. When a group agents accounts for predictabil-
ity, they are able to foster a ‘soft social convention’ dictated by the
prediction model which results in a decrease of uncertainty about
the environment for all agents in the group. This helps agents re-
solve coordination problems without having to explicitly model
interactions. Formally, the contribution of this paper is threefold:

(1) We exploit ideas on free-energy to formulate a cost function
that uses feedback from a prediction model to include pre-
dictability as an objective and analyze how this cost function
can be integrated with a planner.

(2) We provide results showing how our predictability aware-
ness mechanism leads to ‘soft social conventions’ forming-
based interaction strategies encoded in prediction models
for multi-robot navigation problems. This allows agents to
achieve smoother coordination by improving the effective-
ness of prediction models in interactive environments.

(3) Accounting for predictability causes agents to adopt social
norms and pro-social behaviors encoded in learned predic-
tion models, allowing to more closely mimic experts’ be-
haviors without needing cost function learning. We provide
evidence for these behaviors in an experiment where an
agent interacts with human drivers in scenarios from the
Waymo Open Motion Dataset.

2 RELATEDWORK
Integration of Prediction Models and Planners. Trajectory

prediction has significantly advanced in recent years, particularly
with the development of transformer-based generative models ca-
pable of producing interaction-aware joint trajectory predictions,
e.g. [8, 9, 21]. While these models show impressive performance in
open-loop evaluations, integrating them with planners in highly

interactive settings remains challenging [20]. Effective interactive
planning often necessitates joint prediction and planning. Addition-
ally, the planner often requires some form of learned cost function
[23]. Otherwise, if the behavior of the expert significantly differs
from the expert in the training data, this will throw the model out
of distribution yielding low quality predictions.

Many studies have focused on developing ego-conditioned pre-
diction models [30]; however, their integration with planners faces
obstacles primarily due to computational complexity. For instance,
in [22] Tree Policy Planning (TPP) has been employed to generate
an initial set of partial trajectories, which condition the prediction
model and create a scenario tree. This tree is evaluated using a
cost function combining designed and learned features to identify
and expand promising scenarios, efficiently allocating computa-
tional resources. A novel approach by [10] leverages unconditioned
prediction models to provide initial estimates of other agents’ tra-
jectories, capitalizing on the models’ ability to predict general inten-
tions accurately while acknowledging their limitations in capturing
short-term interaction details. This approach optimizes the ego and
agent trajectories together, minimizing disturbances from the ini-
tial agent paths and utilizing homotopy classes to ensure diversity
and avoid local minima. Instead of conditional prediction models,
some methods develop fully differentiable stacks [23, 26] enabling
gradient backpropagation through the planner, which allows for
combined prediction model fine-tuning and cost function learning
aligned with expert behavior in the training data. While avoiding
the joint optimization, our approach links prediction and planning
without the need for retraining or fine-tuning by including a term
in the cost function that helps guide the agent’s behavior to not
compromise its predictions. This allows for maintaining flexibility
in selecting prediction models and planner combinations while
being compute-efficient.

Predictability and Legibility of Motion. In the field of Human-
Robot Interaction, legibility and predictability of motion have been
studied to improve coordination by designing agent behaviors that
clearly communicate intention and avoid surprising observers [15].
Often both objectives overlap [3]. Traditional formulations of this
problem are not well suited for receding horizon applications as
they optimize over complete trajectories and rely on utility-based
analytical models of observer expectations [14]. Additionally, the
observer is modeled as inactive, thus having no influence on the
planning agent. This assumption breaks down in multi-agent navi-
gation where the observer and the agent share the workspace and
influence each other. Several works have explored the adaptation
of these concepts to an interactive multi-agent context. [2] define
dynamic goal regions around neighboring agents and optimize for
reduced uncertainty about the collision avoidance strategy. [19]
show how increasing action penalties at later horizon steps causes
agents to more rapidly demonstrate their avoidance strategy. This
accelerates intent inference giving agents better anticipation. [6]
defines hand-crafted legibility costs for planning in highway driv-
ing. These methods are often designed to target a specific type of
observer model. In contrast, our approach minimizes a predictabil-
ity surrogate that allows modeling the observers with an arbitrary
prediction model choice.



3 TRAJECTORY PLANNING
The general optimization problem for a single-agent in stochastic
motion planning can be formulated as follows:

min
𝒖∈U,𝒙∈X

𝐾−1∑︁
𝑘=0

𝐽𝑘 (𝒙𝑘 , 𝒖𝑘 ) + 𝐽𝐾 (𝒙𝐾 ) (1a)

s.t. 𝒙0 = 𝒙 init, (1b)
𝒙𝑘+1 = 𝑓 (𝒙𝑘 , 𝒖𝑘 ), 𝑘 = 0, ..., 𝐾 − 1 (1c)
P
[
𝐶 (𝒙𝑘 , 𝜹𝑜𝑘 ),∀𝑜

]
≥ 1 − 𝜖𝑘 ,∀𝑘, (1d)

where 𝒖 = {𝒖0, ..., 𝒖𝐾 } ∈ U are the system inputs subject to input
constraints, 𝒙𝑘 ∈ X denotes the states of the robot, 𝑓 (·) corre-
sponds to the nonlinear system’s dynamics, 𝐽𝑘 (𝒙𝑘 , 𝒖𝑘 ) ≥ 0 is the
cost function specifying performance metrics, and 𝐾 is the length
of the planning horizon. In this formulation, 𝐶 (·) is the collision
avoidance constraint, and 𝜹𝑜

𝑘
is the uncertain position of obstacle

𝑜 at stage 𝑘 obtained through a prediction model P(X) that takes
into account the concatenated states of all agents in the scene. The
chance constraint in Eq. (1d), guarantees that the probability that
the robot collides with the dynamic obstacle is below a specified
threshold 𝜖𝑘 .

In a game theoretic setting where all agents are controlled by
a centralized planner, the problem reduces to solving a joint opti-
mization program over all agents and all possible trajectories, such
that from the set of joint trajectories that satisfy the constraints,
the agents execute the optimal ones. This naturally carries high
computational complexity, access to some centralized controller,
and full information assumptions. Consider instead the case where
𝑁 (interactive) agents solve the optimization problem (1) indepen-
dently and use modelP (X) to predict each other (and thus estimate
the probabilities of constraint satisfaction). Agents can then query
the prediction model to observe the predictions others have about
them. Our method reduces to the following intuition: Agents can
use this information to shift their behaviors towards the distribu-
tion coming out of the prediction model. This ‘closes the loop’ on
prediction errors, intuitively improving the planning problem in
two ways. First, inducing implicit decentralized coordination: an
ideal situation is one where all agents act following the model-
predicted distribution, and this distribution perfectly optimizes the
cost of each agent. Second, it ‘robustifies’ the prediction model a
posteriori: once the model has been trained on offline data, agents
actively shift their plans towards the predicted distributions, collec-
tively reducing prediction errors and widening the space of suitable
prediction models for a given problem.

4 PROPOSED METHOD: FREE ENERGY AS A
PREDICTABILITY SURROGATE

4.1 Derivation of a predictability aware cost
function

Our objective is to design a framework that allows agents to trade off
predictability with progress toward the goal. If we define an agent’s
optimal trajectory distribution as Q∗, in the best-case scenario, an
agent’s optimal trajectory distribution aligns with the predictions
held by other agents. This alignment allows the agent to minimize

its own cost while avoiding any disruption or interference with the
trajectories of surrounding agents. In this case, no trade-off needs
to be performed, however, deviations from this ideal scenario are
to be expected. To formalize this as a planning objective, agents
should seek to minimize the cost of trajectories sampled from their
corresponding prediction in P (X). Drawing inspiration from the
path integral control derivation in [42], we begin by defining the
free energy of a trajectory distribution:

F (𝑆,P, 𝜆) = −𝜆 log(E𝒙∼P [exp(− 1
𝜆
𝑆 (𝒙))]),

where 𝑆 is a state cost function that represents some (trajectory
planning) objective, P denotes a prediction distribution, 𝑥 is a tra-
jectory sampled from P, and 𝜆 represents the inverse temperature
controlling the strictness of the efficiency criterion. This control
theoretic free energy can be interpreted as a measure of how ef-
ficient a prediction distribution is at minimizing cost 𝑆 . The free
energy is minimized by pushing P as close as possible to Q∗.

The free energy as defined so far is a function of prediction
distribution P, however, agents won’t plan trajectories by sampling
from P. Instead, we define 𝑄 as a trajectory distribution an agent
has control over. Let the states 𝒙 = {𝒙0, ..., 𝒙𝐾 }, which the ego-
agent occupies along its planned trajectory 𝜏0,𝐾 , be represented as
narrow Gaussians 𝑞(𝒙𝑘 ) with mean 𝒙𝑘 covariance Σ𝑘 :

𝜏0:𝐾 = {𝑞(𝒙𝑘 )}𝐾𝑘=0,
𝑞(𝒙𝑘 ) = N(𝒙𝑘 , Σ𝑘 ).

(2)

By applying an expectation switch, these distributions can be
incorporated into the free energy definition, making it a function
of the agent’s plan,

F (𝑆,P, 𝜆) = −𝜆 log(E𝒙∼Q [exp(− 1
𝜆
𝑆 (𝒙)) 𝑝 (𝒙)

𝑞(𝒙) ]), (3)

where 𝑝 is the density function of the prediction. By concavity of
the logarithm and Jensen’s inequality,

F (𝑆,P, 𝜆) ≤ −𝜆E𝒙∼Q [log(exp(− 1
𝜆
𝑆 (𝒙))) + log( 𝑝 (𝒙)

𝑞(𝒙) )] .

Finally, using the definition of Kullback-Leibler Divergence and
simplifying,

F (𝑆,P, 𝜆) ≤ E𝒙∼Q [𝑆 (𝒙)] + 𝜆KL(𝑞(𝒙) | |𝑝 (𝒙)), (4)

where KL denotes the KL-Divergence. The right-hand side pro-
vides an upper bound on the free energy, and one can minimise
this instead of the free energy. It resembles a standard control ob-
jective, and the terms allow for good conceptual understanding
of the effect they have: A Performance Cost and Predictability
Cost respectively, which penalizes agents for acting unpredictably.
Using this newly found expression as a stage cost, we can craft the
following cost function as a stage cost for a planning problem:

𝐽 (𝜏0:𝐾 ) =
𝐾∑︁
𝑘=0

𝐽𝑘 (𝒙𝑘 , 𝒖𝑘 ) + 𝜆KL(𝑞(𝒙𝑘 ) | |𝑝 (𝒙𝑘 )),

where we implicitly assume 𝐽𝑘 to be composed by some state
cost 𝑆 and some control action cost. Minimizing this cost function
allows agents to trade off predictability and progress toward the



goal by means of the free energy, and 𝜆 can be selected to control
how much weight is assigned to predictability during planning.

Remark 1. We can emphasize now the intuition behind using
the free energy as a way of incorporating predictability into optimal
control. Eq. (4) is minimised precisely when Q = Q∗ = P. That is, the
trajectory distribution executed is exactly the optimal cost trajectory
distribution, and this matches the predicted distribution. Under this
condition, the agent is behaving without surprising external observers
and simultaneously obtaining optimal cost in its objective.

Further insights on the interpretation of free energy in this con-
text and the derivation of the free energy term are provided in
Appendix A.

4.2 Integration with a Planner and Practicalities
The KL-Divergence expression only has closed form solutions for a
restricted set of distributions, thus to accommodate arbitrary dis-
tributions, the KL divergence term will often need to be evaluated
through sampling with Q the candidate trajectory distribution and
𝑃 the prediction distribution from KL(P∥𝑄) = E𝒙∼𝑃

[
log P(𝒙 )

𝑄 (𝒙 )

]
.

Since sampling is required to evaluate the cost function, this could
render the use of gradient based MPC unfeasible for real time plan-
ning, additionally prediction distributions 𝑄 (𝒙) may not always
be differentiable. We find it is more practical to rely on sampling
based MPC approaches, as they don’t require a differentiable cost
function and computations can be easily parallelized to handle large
numbers of samples even when it is computationally expensive to
evaluate the cost function. In our experiments, Section 5, we rely
on an Model Predictive Path Integral (MPPI) control method [42].

Another consideration is that predictions about an agent’s future
are updated as new observations are received. For this reason, it is
most effective to focus on early horizon time-steps when evaluating
a plan’s predictability. Thus we propose to discount the predictabil-
ity cost along the horizon with factor 𝛾 to account for uncertainty
about future predictions:

𝐽 (𝜏0:𝐾 ) =
𝐾∑︁
𝑘=0

𝐽𝑘 (𝒙𝑘 , 𝒖𝑘 ) + 𝛾𝑡𝜆KL(𝑞(𝒙𝑘 ) | |𝑝 (𝒙𝑘 )) . (5)

5 EXPERIMENTS
We present here the experiments carried out to validate our method.
The first experiment investigates how accounting for predictabil-
ity affects an individual agent’s behavior, comparing the results
with other observer-aware planning approaches. The second ex-
periment examines the impact of predictability within a group of
agents, focusing on swapping tasks in an open environment to
give insight without external environmental influences. In the third
experiment, we explore a practical driving scenario, demonstrating
how predictability-aware agents can better coordinate and utilize
prediction models. We also observe that agents indirectly exhibit
expert-like behaviors, such as following social norms, without ex-
plicitly encoding them in the planner. Finally, the fourth experiment
explores this direction further by testing interactions with recorded
human driver data using a state-of-the-art prediction model, show-
ing that predictability-aware agents achieve safer trajectories as a
result of more closely mimicking human behavior.

5.1 Planner
For all experiments in this section, we use a sampling-based planner,
namely Model Predictive Path Integral (MPPI) control, based on
the methodology presented in [42]. MPPI places no restrictions on
dynamics model or cost function and converges well toward optima
with a moderate amount of samples [41]. Given a nominal control
sequence as an initial guess, MPPI applies Gaussian noise at each
step to generate a set of𝑀 control sequence samples. It then uses
a state transition function 𝑓 (·) to simulate their corresponding𝑀
state trajectories. Each of the resulting state trajectories is evaluated
based on the cost defined in (23), resulting in a total sample cost
𝐽𝑚 . Once 𝐽𝑚 , ∀𝑚 ∈ [1, ..., 𝑀] is computed, importance sampling
weights,𝑤𝑚 , can be calculated as:

𝑤𝑚 =
1
𝜂
exp

(
− 1
𝜆
(𝐽𝑚 − 𝐽min)

)
,

𝑀∑︁
𝑚=1

𝑤𝑚 = 1,

where 𝐽min is the minimum sampled cost, 𝜂 is a normalization
factor and 𝜆 is a controlling parameter that controls the width of the
weight distribution. These weights prioritize lower-cost trajectories.
The optimal control sequence𝑈 ∗ is then calculated as the weighted
sum of all sampled control sequences:

𝑈 ∗ =
𝑀∑︁
𝑚=1

𝑤𝑚𝑈𝑚,

where we use 𝑈𝑚 = {𝒖0, 𝒖1, ..., 𝒖𝐾 } to denote the 𝑚-th sampled
control sequence. It is common to use a time-shifted version of𝑈 ∗

to warm-start the sampling strategy at the next time-step. Further
details on the planner and cost functions used in the experiments
can be found in Appendix C.

5.2 Metrics
As a proxy to measure coordination, we propose the use of planning
effort. Planning effort is a metric taken from [7] to quantify how
much trajectories deviate from an initial estimate. The authors
point out this serves as a proxy for how well the agent is able to
anticipate the evolution of its surroundings. We adapt planning
effort for receding horizon tasks with the following formulation:

𝑃𝐸 (𝜉0:𝑇 ) =
1

𝑇 − 1

𝑇−1∑︁
𝑡=0

𝑀𝑆𝐸 (𝜏𝑡 , 𝜏𝑡+1), with

𝑀𝑆𝐸 (𝜏𝑡 , 𝜏𝑡+1) =
𝐾∑︁
𝑘=0

∥𝒙𝑡
𝑘
− 𝒙𝑡+1

𝑘
∥,

(6)

where 𝑇 and 𝐾 denote the total time duration of the simulation
and planning horizon length respectively. 𝜉0:𝑇 denotes the set of
all the plans along a trajectory 𝜉0:𝑇 = {𝜏0, 𝜏1, . . . , 𝜏𝑇−1}: with 𝜏𝑡 the
plan at time-step 𝑡 . 𝒙𝑡

𝑘
represents the state at horizon step 𝑘 for the

plan 𝜏𝑡 . In this context, planning effort measures, on average, the
magnitude of an agent’s plan update per time-step. Generally, for
a given task, a more accurate prediction model corresponds to a
lower planning effort.

5.3 Single Agent Experiments
Experiment Objective. In this experiment, we present a sin-

gle agent interacting with a hand-crafted multi-modal prediction



model, serving as a model of an observer’s expectation. This is
a benchmark task used by previous works on legibility and pre-
dictability [14], [29] to provide clear insight into the relationship
between predictability and the agent’s intrinsic motivation.

Setup. Consider an environment with two possible goals: G =

{𝐴 : [20, 10], 𝐵 : [20,−10]}. The robot starts at position 𝒙0 =

[0, 0] and is tasked with reaching goal 𝐵. The predictions model
an uncertain observer that holds mistaken initial beliefs B about
the agents goals: 𝑏𝐴0 = 0.7 and 𝑏𝐵0 = 0.3. Based on these beliefs a
Gaussian Mixture 𝑝𝑡 (𝒙) is used as a prediction, with each mode
assuming a Constant Velocity (CV) trajectory towards its respective
goal. For timestep 𝑡 at each horizon step 𝑘 :

𝑝𝑡,𝑘 (𝒙) =
∑︁
𝑔∈G

𝑏
𝑔
𝑡 𝑝𝑡,𝑘 (𝒙), (7)

where 𝑝𝑡,𝑘 (𝒙) = N(𝜇𝑔𝑡 , Σ) with 𝜇
𝑔

𝑡,𝑘
is the CV prediction for goal

𝑔 ∈ G at horizon step 𝑘 , Σ is a fixed covariance and 𝒙 is a state. We
model the observer’s changing beliefs B via Bayesian inference.
With every new observation, beliefs are updated using the mode
predictions 𝑝𝑡,𝑘 (𝒙) as likelihood functions:

𝑏
𝑔
𝑡 =

𝑝𝑡−1,0 (𝒙𝑡 )𝑏𝑔𝑡−1∑
𝑔∈G 𝑝𝑡−1,0 (𝒙𝑡 )𝑏

𝑔

𝑡−1
. (8)

Keeping a fixed discount 𝛾 = 0.6 in Eq. (23), we vary the magnitude
of 𝜆 to generate results shown in Figure 1.

Results Discussion. We use this example to study how 𝜆 should
be tuned to control the trade-off. If predictability dominates (e.g.,
𝜆 = 20 or 𝜆 = 40), this results in observations that further reinforce
the observer’s mistaken belief. It becomes more costly for the robot
to pursue its intrinsic motivation with each time-step, thus it fails
to complete the task. Conversely, if 𝜆 is too low, the robot may still
behave unpredictably1. For reference, the resulting behavior of an

(a) Belief updates over trajectories. (b) Trajectories for different 𝜆.

Figure 1: Figure 1a shows that increasing 𝜆 effectively decrease the belief
update rate for the observer. In Figure 1b, the nominal trajectory is rendered
in red. Given the observer holds mistaken initial beliefs about the robot’s goal,
we observe that increasing the predictability score 𝜆 results in trajectories that
are more compliant with the observer’s expectation.

agent optimizing for legibility as per the method of [29] is shown
as the black line in Figures 1b and 1a. From the perspective of coor-
dination, [29] can be understood as an anticipatory mechanism: By
conveying intention in advance, other agents anticipate better in
their planning. Our approach similarly mitigates sudden environ-
mental changes, however instead of aiming to directly influence
1In practice, the influence seems to be very dependent on the structure of the main
objective cost function, so we recommend tuning 𝜆 empirically based on the specific
planner and prediction model used.

the other agents’ beliefs, we rely on a prediction model to avoid
the surprising observations throughout the interaction. While this
can occasionally result in slightly more costly trajectories for the
agent, we achieve similar results without requiring explicit mod-
eling of the other agent, making it more computationally efficient
and robust to situations where the agent may not be able to suc-
cessfully convey its intention. As demonstrated in Figure 1, when
the observer’s beliefs are misaligned, the agent adopts a pro-social
behavior, gently guiding the observer toward the correct belief.

5.4 Robot-Robot Interactions
5.4.1 Swapping Tasks.

Experiment Objective. These experiments explore the benefits
of accounting for predictability in robot-robot interactions through
swapping-tasks, a common benchmark for robot coordination [3],
[44]. By performing tests in an open environment these tests avoid
interference of external environmental influences.

Setup. In the experiments, agents are initially positioned on
the vertices of a square and tasked with swapping positions with
the agent on the opposite vertex (Figure 2a). The optimal solution
requires all agents to coordinate by selecting the same collision
avoidance strategy, either passing left or right. Additionally, two
more scenarios were tested: an asymmetrical swapping task and
a double-crossing task, to explore different geometries and inter-
actions. The experiments use a game-theoretic prediction model
based on the ALGAMES framework [11], which solves constrained
dynamic games to find an optimal joint strategy over a 20-step
horizon. Further explanation on Game Theoretic Planning and de-
tails on the ALGAMES solver can be found in Appendix B. The
model generates prediction distributions for each horizon step as a
Gaussian with user-specified covariance Σ. By testing three values
of the predictability parameter 𝜆 {0.0, 2.5, 5.0}, we investigate how
accounting for predictability impacts agent coordination. Each task
was run 50 times, and the results for all three tasks are reported
in Table 1 2. An illustration comparing the trajectories for all 3
scenarios can be found in Figure 2.

Table 1: Table summarizing results for the 3 swapping tasks: Symmetrical,
Unsymmetrical, and Double-Crossing

Exp. Metric 𝜆 = 0.0 𝜆 = 2.5 𝜆 = 5.0

Sym
PE (m2) 2.116 ±1.000 0.516 ±0.161 0.501 ± 0.145
Acc (m/s2) 0.209 ±0.101 0.038 ± 0.008 0.043 ±0.009
Ang (rad/s) 0.283 ±0.041 0.225 ±0.026 0.219 ± 0.026

Unsym
PE (m2) 0.877 ±0.489 0.291 ±0.178 0.187 ± 0.162
Acc (m/s2) 0.196 ±0.114 0.138 ±0.090 0.112 ± 0.080
Ang (rad/s) 0.363 ±0.112 0.221 ±0.095 0.177 ± 0.071

D-Cross
PE (m2) 0.969 ±0.416 0.388 ±0.124 0.311 ± 0.116
Acc (m/s2) 0.249 ±0.124 0.123 ± 0.080 0.125 ±0.070
Ang (rad/s) 0.434 ±0.128 0.283 ±0.096 0.252 ± 0.078

2For 𝜆 = 0 safety constraint violations are low at 1-2 for all the tasks. For higher 𝜆 it
was 0 for all tasks. As this is not a very informative result it was not included in the
tables



(a) Symmetrical swapping (b) Unsymmetrical swapping (c) Double crossing

(d) Symmetrical swapping (e) Unsymmetrical swapping (f) Double crossing

Figure 2: The first row shows the results with 𝜆 = 0 whereas the second row shows the results for 𝜆 = 5.0. When agents account for predictability, aside from faster
convergence to a coordination strategy, this also results in smoother trajectories as a consequence of better anticipation of the environment.

Results Discussion. As seen in Table 1, increasing the pre-
dictability parameter 𝜆 consistently led to improved performance
across all metrics: planning effort (PE), acceleration (Acc), and an-
gular velocity (Ang). Notably, even selecting a small 𝜆 causes a
pronounced decrease in planning effort, with further increases in 𝜆
yielding diminishing returns. This phenomenon can be attributed to
the coordination challenge agents face in this environment, which
primarily involves equilibrium selection. In situations where agents
must choose between two equally viable strategies, such as passing
left or passing right, our method addresses this challenge by relying
on a prediction model to establish a ‘soft social convention’. This
introduces a subtle bias towards one of the strategies, improving
implicit coordination. This mechanism is particularly relevant, as
prediction models often excel at capturing an agent’s overarching
intent and high-level strategy. However, equilibrium selection sce-
narios are inherently stochastic and unpredictable, making them
challenging to model accurately [39]. Thus, our method enhances
robustness in such situations by guiding agents towards a coordi-
nated strategy selected by the prediction model. In general, agents
need a precise and accurate prediction model for efficient coordi-
nation. However, due to the inherent uncertainty of interactions,
this is often very hard to achieve. By accounting for predictability,
a group of agents is able to establish a ‘soft social convention’ to
mitigate some of this uncertainty. From the perspective of an agent,
this results in more accurate predictions, allowing for smoother
and more efficient coordination. This mechanism is especially ef-
fective for interactions where the main coordination challenge lies
in equilibrium selection.

5.4.2 Robot-Robot Traffic Scenario.

Experiment Objective. In this experiment, we focus on robot-
robot coordination in driving scenarios, where the environment
has a stronger influence on agent’s behavior. This time, we use a
data-driven prediction model to explore how predictability impacts
coordination in more complex environments. To test the robust-
ness of our method when combined with a different planner we
additionally performed an experiment using a Frenet frame planner.
This experiment used the same environment and cost function. The
results and discussion for this additional experiment can be found
in Appendix D.

Setup. We use CommonRoad [1] as a simulator, which includes
the Wale-Net [17] prediction model, a learning-based model that
outputs predictions as Gaussians, accounting for uncertainty, road
geometry, and the interaction with surrounding agents. Consistent
with previous experiments, we employ an MPPI based planner. To
account for safety in planning, we implement the constraints intro-
duced by [18], building upon and extending the code from this prior
work. We perform tests in two scenarios: A T-Junction and a Lane-
Merge. For both scenarios, we perform tests with 𝜆 = {0.0, 2.5, 5.0}
for 30 iterations applying small changes in the initial positions
and velocities. An illustration of the lane merge environment is
presented in Figure 3. The results for T-Junction and lane-merge
are presented in Table 2.

Results Discussion. When agents fail to coordinate in road
scenarios, they often experience deadlocks or, in the worst case,



(a) Lane merge 𝜆 = 0 (b) Lane Merge 𝜆 = 5 (c) T-Junction 𝜆 = 0 (d) T-Junction 𝜆 = 5

Figure 3: a) Illustration of a deadlock With 𝜆 = 0, where a sequence of faulty predictions reinforces both agent’s hesitation. b) For 𝜆 = 5, the agents can leverage the
prediction model to coordinate which agent gives way and which passes first.

Table 2: Results for T-Junction and Lane Merge Scenarios (Dlk indicates Dead-
locks)

Exp Metric 𝜆 = 0.0 𝜆 = 2.5 𝜆 = 5.0

T-J

Dlk (%) 30.0 0.0 0.0
Dist (m) 30.172 51.248 47.000
PE (m2) 1.366 ±1.126 2.318 ±0.313 2.507 ±0.759
Acc (m/s2) -0.142 ±0.238 0.293 ±0.045 0.287 ±0.233
Ang (rad/s) 0.0037 ±0.0028 0.0005 ±0.0002 0.0028 ±0.0026

LM

Dlk (%) 73.3 0.0 0.0
Dist (m) 46.878 75.800 69.909
PE (m2) 2.079 ±0.785 3.513 ±0.564 3.315 ±0.760
Acc (m/s2) 0.111 ±0.092 0.337 ±0.054 0.317 ±0.087
Ang (rad/s) 0.0032 ±0.0032 0.0009 ±0.0006 0.0001 ±0.0001

collisions. In Figure 8a, an example of a deadlock is illustrated. Dead-
locks are common in limited space environments such as intersec-
tions or narrow passages. Initially, the model may predict one agent
will yield while the other advances. However, as deviations occur
and both agents hesitate, their predictions begin to reinforce each
other’s hesitation, creating the deadlock. The model may then be
unable to introduce asymmetry to prioritize one of the agents in am-
biguous situations, preventing the agents from breaking away from
the deadlock. Results show that agents incorporating predictability
into their models achieve better coordination, as indicated by less
pronounced slowdowns resulting in higher travelled distance and
the disappearance of deadlocks as seen in Table 2. When examining
other metrics, the benefits of incorporating predictability are not
as pronounced, especially for higher 𝜆. This occurs because the
prediction model is not explicitly conditioned to align with the road
geometry (Figures 8c,8d). Since the planner is required to track a
reference path, deviations between the predictions and the refer-
ence path can push the agent to deviate from the path, requiring
small adjustments more frequently for higher higher 𝜆. Although
this problem has marginal impact on the overall performance of
the agent, the reduction in planning effort may be mitigated.

Similar to the Swapping Task tests, we see that agents are able
to use the prediction model to coordinate by reducing uncertainty
on equilibrium selection, namely, which agent gives way. However,
a noteworthy observation is that, beyond reducing uncertainty,
agents enhance their performance by adopting pro-social behaviors

embedded in the model’s latent space. These behaviors include
adherence to social norms and subtle cues learned from training
data, mirroring the behavior of experts used to train the model.
This behavior resembles imitation learning, where agents learn
cooperative strategies directly from expert demonstrations embed-
ded in the prediction model. As seen in Figure 8b, although both
outcomes are equally plausible from the raw planning problem,
agents consistently converge on the solution where the merging
agent yields, which aligns with typical human driving patterns.

5.5 Experiments with human-driver data
Experiment Objective. The goal of this experiment is to evalu-

ate whether predictability can bridge the gap between algorithmic
planning and the natural driving patterns observed in humans,
facilitating smoother and more adaptive interactions in complex
driving environments. We test this by incorporating predictability
with simple MPPI-based reference-tracking planner using a SOTA
data-driven prediction model.

Setup. We utilize a state-of-the-art (SOTA) prediction model
introduced by [23], a multi-modal, transformer-based architecture
trained on the Waymo Open Motion Dataset. The model gener-
ates scene-centric predictions with three modes, representing the
most likely joint trajectories of up to 11 agents, including the ego
agent. An MPPI planner is used for reference tracking, incorporat-
ing collision avoidance as outlined in [23]. For this experiment, we
replay recorded scenes from the Waymo dataset’s test set, meaning
agents in the environment follow pre-recorded, non-interactive
trajectories. The goal is for the ego agent to replicate expert behav-
ior observed during training. We perform tests for 𝜆 = 0, 75, 1203,
over 30 iterations in selected scenarios that require human-like
interactions, similar to the approach of [23]. A screenshot of the
crossing scenario is shown in Figure 4, and results are reported in
Table 3.

Results Discussion. From Table 3, it is evident that increasing
the weight of the predictability objective results in fewer collisions
and smoother control inputs. Interestingly, however, this does not
necessarily correlate with improved progress along the reference
3The large 𝜆 values here respond to the particular magnitude of the planning cost
function and the prediction model used. We found that values of a higher order of
magnitude were needed to obtain predictable behavior shifts.



Figure 4: Illustration of the navigation problem in
Crossing1. The reference global path is rendered
as a smooth yellow line. TheAV’s plan is rendered
in red. Predictions for other agents are rendered
in purple, showing only the most likely mode for
clarity. The ego-prediction is multi-modal with 3
modes represented by the yellow, green, and blue
trajectories.

Table 3: Results comparing the performance of an MPPI-based planner on Waymo Open Motion Dataset
scenarios for different 𝜆 values. For 30 iterations we present the number of collisions and the mean value
of other performance metrics

Scenario 𝜆 Col (%) Dist (m) Acc (m/s2) Lat_Acc (m/s2) L2 (m)

Crossing1
0 43.3 74.540 ±1.928 1.085 ±0.121 1.615 ±0.578 4.101 ±0.532
75 0 68.353 ±0.982 0.681 ±0.025 0.412 ±0.044 3.358 ±0.221
120 0 55.796 ±1.321 0.472 ±0.035 0.149 ±0.025 2.554 ±0.053

Crossing2
0 86.6 75.843 ±4.803 1.418 ±0.099 2.121 ±0.295 12.707 ±1.112
75 0 55.353 ±1.403 0.957 ±0.091 0.314 ±0.036 4.603 ±1.246
120 23.3 37.518 ±12.954 1.534 ±0.736 0.227 ±0.084 2.947 ±3.206

Intersection
0 26.6 69.747 ±4.794 1.450 ±0.153 1.817 ±0.782 24.808 ±3.632
75 0 72.700 ±0.115 0.709 ±0.029 0.493 ±0.075 24.618 ±1.036
120 0 71.885 ±0.227 0.613 ±0.043 0.304 ±0.026 19.900 ±0.733

Emergency
0 53.3 61.377 ±20.244 1.258 ±0.175 0.882 ±0.141 8.631 ±5.877
75 0 68.883 ±0.525 0.763 ±0.010 0.365 ±0.031 1.961 ±0.069
120 0 60.058 ±0.797 0.581 ±0.019 0.184 ±0.016 1.515 ±0.091

path. This can be attributed to the planner inducing less distribu-
tional shift in the prediction model. The model, trained on scenes
where all agents exhibit expert behaviors, struggles when the plan-
ner deviates significantly from these patterns, as it encounters
situations outside its training distribution. In such cases, the model
attempts to extrapolate and produces sub-optimal predictions, such
as incorrectly anticipating that an agent may yield or maneuver
differently than it actually does based on the recorded data. This
misalignment leads to overconfident behavior in some instances,
which, while promoting progress along the reference path, increases
the risk of collisions. Evidence supporting this hypothesis is found
in the Human L2 loss metric, which measures the L2 loss between
the agent’s trajectory and the corresponding human trajectory that
the planner aims to replicate. For 𝜆 = 0, the higher L2 loss indi-
cates significant deviation from human behavior, suggesting that
the agent diverges more from the expert’s trajectory. In contrast,
when predictability is considered, the L2 loss decreases, indicating
that the agent’s behavior aligns more closely with the human data.
This results in reduced distributional shift and, consequently, more
accurate predictions and smoother trajectories.

6 DISCUSSION
Discussion. The method assumes that agents can approximate

each other’s expectations, often implying a shared prediction model.
Although this might seem impractical, certain decentralized settings
could accommodate shared models. For instance, in a warehouse
environment where multiple Autonomous Ground Vehicles (AGVs)
transport valuable goods, a shared prediction model could be fea-
sibly developed and implemented [44]. When integrated with our
methodology, such a model could establish ’operational norms’, en-
abling agents to coordinate efficiently and robustly without the need
for centralized control, thus reducing computational and infrastruc-
ture demands. A comparable scenario is anticipated in future mar-
kets where autonomous vehicles (AVs) from different manufacturers

must interact. Recent studies pointed at the importance of estab-
lishing a unified driving convention [43], as the absence of such
a standard could lead to exploitative strategies from different AV
companies pursuing competitive advantage, and thereby compro-
mise safety. Different companies can cooperate to develop a shared
prediction model to serve as an industry standard. Given a model all
AVs in traffic share, our method would enable AVs to anticipate each
other’s actions and more effectively settle on coordination, thereby
providing enhanced road safety without explicit coordination or
reliance on infrastructure for centralized coordination.

Future Work. Balancing predictability and performance cost,
determined by 𝜆, is complex and context-dependent. Dynamically
adjusting 𝜆 as agents interact could improve performance, increas-
ingly prioritizing predictability in safety-critical moments. Develop-
ing adaptive heuristics for this adjustment, as suggested by previous
work [2, 14], would be a valuable research direction. The free en-
ergy framework in Section 4 could be extended to dynamically
adjust prediction distributions over time in reaction to the sam-
ples, enhancing anticipation and balancing. However, continuous
updates bring computational challenges, especially in multi-agent
systems, making scalability difficult. Simplifications or assumptions
may help overcome these challenges, merging predictability and
legibility to boost performance. A more detailed discussion of this
future work direction as well as preliminary experimental results
can be found in Appendix E.

Conclusion. We present a novel approach to enhance multi-
agent interaction capabilities for sequential predict-and-plan frame-
works by introducing predictability as a key optimization objective.
Accounting for predictability in this manner can be understood as
an implicit cooperation mechanism whereby agents use a predic-
tion model to actively reduce uncertainty about the environment
for other agents. This not only improves the robustness of coordi-
nation strategies but also reduces planning effort without requiring



explicit communication or high-level control, and does so indepen-
dently of the number of interacting agents. Through experiments,
including robot-robot interactions and human-interaction scenar-
ios, our method improved agent coordination, reduced collisions,
and led to smoother, more efficient trajectories (particularly in com-
plex coordination environments). We also demonstrated that the
benefits extend to interactions with human drivers by allowing the
agent to more reliably use its prediction model.
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APPENDIX A: BACKGROUND ON FREE ENERGY
AND LINK TO ACTIVE INFERENCE
Background on Free-Energy
In thermodynamics and statistical physics, the concept of free energy
embodies a balance between a system’s internal energy and entropy,
with temperature acting as a regulator of this balance. The evolution
of a system can then be modeled as balancing energy and entropy
so as to minimize free energy. Depending on the system’s properties
different formulations of the free energy are used. For systems at a
constant termperature and volume the Helmholtz free energy 𝐹 is
used as a potential function to quantify free energy:

𝐹 = 𝑈 −𝑇𝑆, (9)

where𝑈 is the internal energy, 𝑇 is the temperature, and 𝑆 is the
entropy of the system. This equation formulates how systems nat-
urally evolve toward states that minimize free energy to reach
equilibrium. The internal energy𝑈 tends to be minimized, while
the entropy 𝑆 (the number of accessible system states), tends to be
maximized. Temperature 𝑇 modulates the relative importance of
energy and entropy. For example, at higher temperatures, maximiz-
ing the entropy term 𝑇𝑆 becomes a more prominent behavior. An
alternative formulation of the Helmholtz free energy can be written
in terms of a partition function 𝑍 :

𝐹 = −𝑘𝑇 ln𝑍 (10)

where 𝑘 is the Boltzmann constant. The partition function 𝑍 is
defined as:

𝑍 =

∫
𝑒−𝐸 (𝑥 )/𝑘𝑇 𝑑𝑥 (11)

where 𝐸 (𝑥) represents the energy of state 𝑥 . The partition function
integrates over all possible states, weighing each with the Boltz-
mann factor 𝑒−𝐸/𝑘𝑇 , which favors lower-energy states but allows
for higher-energy states at higher temperatures, acting similar to
a soft-max (random fluctuations to higher energy states become
more likely at higher temperatures).

The ideas encapsulated by free energy minimization are popular
in optimizing trade-offs beyond physical systems. This framework
allows for principled decision-making in applications where com-
peting factors must be balanced optimally and has been applied
across various domains. In stochastic control for instance, it is com-
mon to design controllers that balance performance and robustness
by minimizing a cost function analogous to free energy [37]. In
machine learning, especially for variational inference, models are
often trained to minimize a free energy-like objective that balances
model accuracy with model complexity [28]. In neuroscience, the
free energy principle provides a framework for understanding a
wide range of cognitive and neural processes, highlighting how
the brain optimizes behavior by balancing the trade-off between
exploring new information and exploiting existing knowledge [31].

Derivation of Free Energy as a Stage Cost for
Stochastic Optimal Control
In stochastic optimal control, the objective is to find a control
policy that minimizes the expected cost 𝑆 (𝑥) in the presence of
stochastic dynamics. Analogies can be drawn with the free energy
minimization framework introduced previously. Namely:

• Energy vs. Cost: The energy 𝐸 (𝑥) function is analogous to
the cost 𝑆 (𝑥) in the context of control.

• Temperature vs. Noise Level: The temperature 𝑇 can be
compared to the noise level 𝜆 in control, representing the
uncertainty in the state transitions.

• Partition Function vs. Path Integral: The partition func-
tion 𝑍 captures a sum over all possible states of the system.
For control, this quantity would be analogous to a path inte-
gral, integrating over all possible states or control inputs.

Starting from the partition function in statistical mechanics, it
is possible to derive an analogous expression for control systems
inspired by [37][38][36][32], where we derive the free energy ex-
pression as a stage cost for a planning problem:

𝑍 =

∫
𝑒−𝐸 (𝑥 )/𝑘𝑇 , 𝑑𝑥 . (12)

Assuming 𝑃 (𝑥) is a probability distribution over states 𝑥 (or
trajectories), it can represent the stochastic dynamics of the system
or a sampling distribution over possible control inputs. In turn,
the partition function can be re-formulated as an expectation over
𝑃 (𝑥):

𝑍 =

∫
𝑒−𝐸 (𝑥 )/𝑘𝑇 , 𝑑𝑥 =

∫
𝑒−𝐸 (𝑥 )/𝑘𝑇

𝑃 (𝑥) 𝑃 (𝑥), 𝑑𝑥 = E𝑥∼𝑃

[
𝑒−𝐸 (𝑥 )/𝑘𝑇

𝑃 (𝑥)

]
.

(13)
In the expectation formulation of the partition-function, replac-

ing the energy 𝐸 (𝑥) with the cost function of the control problem
𝑆 (𝑥) and 𝑘𝑇 with 𝜆, representing the noise level or control temper-
ature, we arrive at a control theoretic formulation of the partition
function, namely a path integral:

𝑍 = E𝑥∼𝑃
[
𝑒−𝑆 (𝑥 )/𝜆

]
. (14)

This expression computes the expected value of the exponenti-
ated negative scaled cost over trajectories 𝑥 drawn from 𝑃 . Anal-
ogous to the Helmholtz free energy in physics: 𝐹 = −𝑘𝑇 ln𝑍 , it is
possible to define the free energy for the control theoretic context
as:

F (𝑆, 𝑃, 𝜆) = −𝜆 ln
(
E𝑥∼𝑃

[
𝑒−𝑆 (𝑥 )/𝜆

] )
(15)

We can identify this expression as the free energy introduced in
the methodology. By minimizing this control-theoretic free energy
F (𝑆, 𝑃, 𝜆), we effectively balance performance (through the cost
𝑆 (𝑥)) and robustness (through the noise level 𝜆 and distribution
𝑃 ). A lower 𝜆 places more emphasis on cost minimization, favoring
trajectories with lower cost but potentially less robustness to un-
certainty. A higher 𝜆 increases the weight of the entropy-like term,
promoting exploration and robustness by considering a broader
range of trajectories.

As a practical example, consider an environment where an agent
is tasked with navigating from a start to a goal location with an
obstacle in the path. Due to stochastic transition dynamics, the
agent estimates a distribution of possible trajectories as a result of
its nominal trajectory. An illustration of this scenario is provided
in Figure 5. Colliding with the obstacle results in a high cost for the
agent. Trajectories corresponding to different values of 𝜆 are shown
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Figure 5: An agent minimizing a free energy cost function is tasked with
navigating from a start to a goal location while avoiding an obstacle. The
transition dynamics for the environment are stochastic, and thus an agent’s
plan results in a distribution around the nominal trajectory. Increasing 𝜆
results in increasingly risk-averse behaviors, pushing the plan further from
the obstacle to minimize the probabilities of collision.

in green, orange, and red, representing 𝜆 = 0 and increasing values
of 𝜆, respectively. By minimizing the free energy in this manner,
the agent evaluates a nominal path based on the exponentially
weighted cost of sampled trajectories, with lower cost trajectories
more heavily weighted.

The parameter 𝜆 regulates the strictness of this trade-off: for
𝜆 = 0, the agent assigns all weight to the lowest cost trajectory,
prioritizing cost minimization over robustness. As 𝜆 increases, the
agent assigns weight to a a broader range of trajectories, enhancing
robustness by preferring distributions that better avoid the proba-
bility of high-cost collisions. This demonstrates how adjusting 𝜆
allows the agent to balance between cost minimization and robust
performance under stochastic dynamics.

Incorporation of a Prior Distribution
In equation 15, 𝑃 (𝑋 ) is treated as the state distribution the agent
has control over. However, in certain scenarios, there may be prior
information about this state distribution, such as a reference path,
the agent is expected to follow. Using expectation switch, we can
rewrite the expectation over 𝑃 (𝑥) as an expectation over a distribu-
tion 𝑄 (𝑋 ), which the agent has control over:

𝐹 (𝑆, 𝑃, 𝜆) = −𝜆 log
(
E𝑥∼𝑄

[
exp

(
− 1
𝜆
𝑆 (𝑥)

)
𝑝 (𝑥)
𝑞(𝑥)

] )
, (16)

where 𝑝 (𝑥) and 𝑞(𝑥) are the probability densities under 𝑃 and𝑄 ,
respectively. This formulation allows for minimizing the free energy
while balancing two competing objectives: minimizing the expected
cost and staying close to the prior. For example, in [42], they use
the uncontrolled path distribution as a prior, which represents
the trajectory of the agent when no control input is applied (i.e.,
minimal control effort is expected). By minimizing this free energy
term, the agent optimizes its trajectory to align with the prior 𝑃 ,
effectively placing itself in a position where it would be acting
optimally by following the prior, in this case by applying minimal
control inputs. In this manner introducing the prior is the equivalent
of introducing a control cost.

The desired effect of this formulation can be viewed more clearly
if we apply some transformations to the function. Applying Jensen’s
inequality to the concave logarithm function and using the defini-
tion of the Kullback-Leibler divergence yields the following upper
bound for the free energy term:

−𝜆𝐹 (𝑆, 𝑃, 𝜆) ≤ E𝑥∼𝑄 [𝑆 (𝑥)] + 𝜆𝐷KL (𝑞(𝑥) ∥ 𝑝 (𝑥)) (17)

This upper bound can then be used as an intuitive cost function
in planning. The term E𝑥∼𝑄 [𝑆 (𝑥)] represents the expected cost
under the controlled distribution, reflecting the agent’s intrinsic
motivation. The KL divergence term 𝜆𝐷KL (𝑞(𝑥) ∥ 𝑝 (𝑥)) penalizes
deviations from the prior distribution. This formulation allows for
a comprehensive understanding of how this formulation allows for
a principled trade-off between performance and adherence to prior
beliefs about the system’s behavior, regulated by 𝜆.

For our case, we propose to use the outputs from a prediction
model, queried on the ego agent’s state history, as a prior. Similar
to how the prior used in [42] , serves as a control cost, we propose
that using the output from a prediction model as a prior can serve
as a predictability cost. A justification for this choice is presented
in the following subsection.

Prediction Models as Priors
Let us assume an environment with several interacting agents using
a shared prediction model 𝑃 (𝑥) to predict each other’s trajectories
in order to coordinate during interactions. Under our assumption,
we treat other agents as sequential planning agents. By querying
the model, an agent can gain access to the expectations others have
about it. In this way, the prediction model serves to capture the
natural or expected unfolding of an interaction, representing what
everyone is anticipating. It functions as a ’social convention’ or a
manual that an agent can query to understand how it is supposed
to behave or how it has led others to believe it will behave.

Deviating from this shared prediction incurs a social cost, as it
results in surprising trajectories that could potentially force other
agents to re-plan their own trajectories. Therefore, an agent should
aim to align its actions as closely as possible with its own best
interests while not surprising others. By avoiding unexpected be-
haviors, it is more likely that others will also act in ways that are
predictable and align with the agent’s expectations, and thereby
facilitating coordination for both parties. Thus, a socially aware
agent should plan to influence the predictions of the model about
itself to match its optimal trajectory as closely as possible. In this
manner, it can pursue its intrinsic motivation without incurring
a social cost. Mathematically, we can formalize this objective by
interpreting the output from the prediction model as the prior (as
discussed in the previous section), which introduces a predictabil-
ity cost. Minimizing this cost compels an agent to balance cost
minimization with remaining predictable by adjusting the prior to
align with its optimal trajectory. By employing the free energy cost
formulation to achieve this, the lowest free energy state for the
system corresponds to all agents following their desired optimal
trajectories, as captured by the shared prediction model.

This approach offers two primary benefits: improved coordina-
tion among agents due to the ’social convention’ induced by the
shared prediction model accessible to all agents, and enhanced ac-
curacy of the prediction model itself, as agents align their behaviors
with predictable trajectories.



Link to Active Inference
Link to Active Inference. Active Inference, originating from

research on cognition and neuroscience, is a theoretical framework
proposing that agents perceive and act in their environment by
continuously minimizing the variational free energy of their inter-
nal world model. This framework aligns closely with our approach
to multi-agent coordination, where the objective is to balance the
minimization of expected costs with adherence to prior distribu-
tions. Prior beliefs are specified by the internal world model, or by
the shared prediction model in our approach.

In Active Inference, agents update their internal model based on
sensory input to minimize the discrepancies between predictions
and observations. The key idea is that this goal can be achieved
via two complimentary mechanisms: perception, where the agent
refines its beliefs to better account for incoming data, and action,
where the agent interacts with the environment to fulfill its predic-
tions. Mathematically, this objective is formalized via minimizing
variational free energy, which serves as an upper bound on the sur-
prise of observations (the negative log probability of observations).
This objective effectively balances perception and action by natu-
rally trading them off. Consequently, Active Inference addresses a
fundamental trade-off similar to the exploration-exploitation trade-
off commonly encountered in reinforcement learning.

To further reinforce these points we can take a look at the math-
ematical formulation of variational free energy provided by [31]:

𝐹 [𝑄,𝑦] = −E𝑄 (𝑥 ) [ln 𝑃 (𝑦, 𝑥)]︸                ︷︷                ︸
Energy

−𝐻 [𝑄 (𝑥)]︸    ︷︷    ︸
Entropy

= 𝐷𝐾𝐿 [𝑄 (𝑥)∥𝑃 (𝑥)]︸                ︷︷                ︸
Complexity

−E𝑄 (𝑥 ) [ln 𝑃 (𝑦 | 𝑥)]︸                  ︷︷                  ︸
Accuracy

= 𝐷𝐾𝐿 [𝑄 (𝑥)∥𝑃 (𝑥 | 𝑦)]︸                     ︷︷                     ︸
Divergence

− ln 𝑃 (𝑦)︸  ︷︷  ︸
Evidence

𝑄 (𝑥) represents the approximate posterior distribution over hid-
den states 𝑥 , which the agent uses to estimate the hidden causes
of the observed data. It is a variational approximation of the true
posterior 𝑃 (𝑥 | 𝑦) because the true posterior is often intractable
to work with (The environment or model is often highly complex).
𝑃 (𝑦, 𝑥), often referred to as the generative model, is the joint prob-
ability distribution that combines the prior beliefs (𝑃 (𝑥)) about the
hidden states and the likelihood (𝑃 (𝑦 | 𝑥)) of observations 𝑦 given
those states. Finally, 𝑦 denotes the observations. It can be seen that
the variational free energy objective can be formulated in 3 possible
ways, each offering a unique perspective:

• Energy and Entropy Minimizing free energy requires con-
sistency between the approximate posterior 𝑄 (𝑥) and the
generative model 𝑃 (𝑦, 𝑥) (energy term), while maintaining
high posterior entropy. High entropy ensures maximal un-
certainty in the absence of data, aligning with the maximum
entropy principle by adopting the least committed belief.

• Complexity and Accuracy: Free energy minimization bal-
ances reducing complexity (KL divergence between 𝑄 (𝑥)
and 𝑃 (𝑥)) and maximizing accuracy (howwell𝑄 (𝑥) explains

𝑃 (𝑦 | 𝑥)). This trade-off captures Occam’s razor principle,
favoring explanations that are both simple and effective.

• Divergence and Evidence: This formulation is the most
relevant to our discussion. It shows that free energy can be
reduced either by improving the model 𝑄 (𝑋 ) or by chang-
ing future observations 𝑦 to align better with the agent’s
expectations. Crucially, this means that free energy can be
minimized through planning, where the agent actively se-
lects behaviors that lead to observations consistent with its
generative model. This is important because it highlights
how in this case minimizing free energy integrates planning
and learning into a single task. Instead of passively updat-
ing beliefs about the world, the agent can actively shape its
environment to confirm its beliefs.

The third formulation, expressed in terms of Divergence and
Evidence, provides a crucial realization: rather than solely focusing
on developing increasingly accurate predictive models, the actions
of the agent itself play a large role in determining how successful
the model can be in practice. In the context of sequential planning
in multi-agent environments, this becomes particularly relevant.
When an agent is equipped with a pre-trained prediction model,
further minimization of the Divergence term is no longer feasible.
However, this opens up the possibility of improving performance
in the environment by leveraging a sub-optimal model more effec-
tively. Through principled action selection, the agent can influence
the environment in a manner that enhances the alignment between
predictions and actual outcomes, thereby achieving greater accu-
racy despite the limitations of the model. In particular, principled
action selection would involve behaving predictably for others so
they remain predictable for the ego as discussed in the section
above.

Relevance for the use of Prediction Models. This argument
links nicely with some remarks provided in the survey by [39]
on social interactions for autonomous vehicles. The survey high-
lights that while trajectory forecasting has been an indispensable
part of safety-critical interactive system design, the focus on ever-
increasing accuracy is yielding diminishing returns. Early improve-
ments in trajectory prediction (e.g., from 40% to 80%) required
relatively low effort, but further gains (e.g., less than 3%) now de-
mand extensive fine-tuning and optimization [25]. Furthermore,
pursuing model accuracy alone does not necessarily improve over-
all interaction performance. Instead, successful interaction often
hinges on understanding key aspects of cognition and behavior,
such as goals, objectives, and social compatibility [27]. For exam-
ple, humans, despite their less precise predictive abilities, achieve
efficient interactions through goal-based reasoning and most im-
portantly social alignment. Thus, rather than striving for maximal
accuracy, it is often more effective to focus on understanding and
incorporating socially compatible behaviors. Thus we motivate our
approach based on this perspective, highlighting the importance of
principled action selection in achieving successful interactions in
multi-agent environments. We propose that predictability-aware
action is a key aspect of achieving socially compatible behaviors.



APPENDIX B: GAME-THEORETIC PLANNING
AND THE ALGAMES SOLVER
Background on Receding Horizon Game
Theoretic Planning
Game theory provides a powerful framework for modeling and
solving interactive multi-agent decision-making problems. In these
problems, agents aim to optimize their own objectives while ex-
plicitly accounting for the interdependence of decisions among the
agents. For interactive path planning applications, the problem is
cast as a trajectory game, a subset of dynamic games where agents
strategies are represented as trajectories over time, and are coupled
by being subject to collision avoidance and kinematic feasibility
constraints. One of the central solution concepts in game theory is
the Nash equilibrium. At a Nash equilibrium, no player can improve
their outcome by unilaterally changing their strategy, assuming
other players maintain theirs.

ALGAMES
The ALGAMES (Augmented Lagrangian GAME-theoretic Solver)
algorithm is a specialized approach for solving trajectory games
developed by [11]. It relies on an augmented Lagrangian formula-
tion of the optimization problem aiming to account for non-linear
state and action constraints commonly encountered in trajectory
games. These constraints introduce a coupling between the opti-
mization problems of different players, and their inclusion changes
the solution concept from a standard Nash equilibrium to a Gen-
eralized Nash Equilibrium (GNE), where the strategies of players
must satisfy shared constraints in addition to individual optimal-
ity. Traditional game-theoretic optimizations often do not account
for constraints, and their inclusion significantly complicates the
optimization process. However, by using Lagrangian multipliers,
ALGAMES reformulates the problem by transforming it into an
unconstrained optimization again. This allows the algorithm to
efficiently find Generalized Nash Equilibria while enforcing the
shared constraints.

Each player 𝜈 aims to minimize a cost function 𝐽 𝜈 (𝑋,𝑈 𝜈 ) subject
to shared dynamics and constraints:

min
𝑋,𝑈 𝜈

𝐽 𝜈 (𝑋,𝑈 𝜈 ), (18)

s.t. 𝐷 (𝑋,𝑈 ) = 0, (19)
𝐶 (𝑋,𝑈 ) ≤ 0. (20)

Where 𝑋 represents the state trajectory of the system, 𝑈 𝜈 de-
notes the control inputs of player 𝜈 , 𝐷 (𝑋,𝑈 ) = 0 defines the system
dynamics (Equality Constraints) and 𝐶 (𝑋,𝑈 ) ≤ 0 enforces colli-
sion avoidance constraints (inequality constraints). The solver then
defines the augmented Lagrangian for player 𝜈 as:

𝐿𝜈 (𝑋,𝑈 , 𝜇𝜈 , 𝜆) = 𝐽 𝜈+𝜇𝜈⊤𝐷 (𝑋,𝑈 )+𝜆⊤𝐶 (𝑋,𝑈 )+12𝐶 (𝑋,𝑈 )⊤𝐼𝜌𝐶 (𝑋,𝑈 ),
(21)

Where 𝜇𝜈 and 𝜆 are the Lagrange multipliers, and 𝐼𝜌 is a penalty
matrix. The optimality conditions for a Nash equilibrium are then
defined as follows:

∇𝑋,𝑈 𝜈𝐿𝜈 (𝑋,𝑈 , 𝜇𝜈 , 𝜆) = 0, ∀𝜈, (22)

The problem is solved iteratively using a quasi-Newton method,
ensuring that both constraints and equilibrium conditions are sat-
isfied. Intuitively, it can be seen that when the gradient of the
Lagrangian is zero for all agents simultaneously, this represents an
equilibrium point where all agents reach a local minimum they are
not incentivized to deviate from.

Although the Lagrangian approach improves computational effi-
ciency, the method still faces challenges with scalability and real-
time performance in dense multi-agent interactions. The time taken
to find a solution heavily depends on how close the initial guess
used to warm-start the optimization is to a feasible Nash equilib-
rium. Even with only 4 agents, in the experiments this method was
used in, it failed to reliably perform in real time with an average
solution time of 0.25 ± 0.2𝑠 .

APPENDIX C: EXPERIMENT DETAILS
For all experiments, the cost function introduced in the methodol-
ogy section is used. For clarity, this equation is included again in
this section:

𝐽 (𝜏0:𝐾 ) =
𝐾∑︁
𝑘=0

𝐽𝑘 (𝒙𝑘 , 𝒖𝑘 ) + 𝛾𝑡𝜆KL(𝑞(𝒙𝑘 ) | |𝑝 (𝒙𝑘 )) . (23)

Here, 𝐽𝑘 (𝒙𝑘 , 𝒖𝑘 ) concisely represents the intrinsic objectives of
the agent, such as reaching the goal, along with the control costs,
while the KL-divergence term KL(𝑞(𝒙𝑘 ) | |𝑝 (𝒙𝑘 )) accounts for the
predictability cost.

Unstructured Tasks
For open navigation tasks in unstructured environments, including
single agent experiments and swapping tasks, the term 𝐽𝑘 (𝒙𝑘 , 𝒖𝑘 )
is defined as follows:

𝐽𝑘 (𝒙𝑘 , 𝒖𝑘 ) = 𝑤goal · ∥𝑥𝑘 − 𝑥goal∥2 +𝑤control · ∥𝑢𝑘 ∥2 (24)
The first term penalizes the distance between the state 𝑥𝑘 of the sys-
tem at timestep 𝑘 and the desired goal state 𝑥goal, pushing the sys-
tem to move towards the goal. The second term𝑤control · ∥𝑢𝑘 ∥2 pe-
nalizes the magnitude of the control input 𝑢𝑡 , encouraging smooth-
ness in the trajectories and minimal control effort. The weights
𝑤goal and 𝑤control can be used to balance the trade-off between
reaching the goal efficiently and minimizing control effort.

Structured Tasks
Robot-Robot Traffic Tasks. In this experiment, the agent is tasked
with navigating a traffic environment while interacting with other
dynamic agents. The experiments use the simulator developed by
[18], however it was adapted to integrate an MPPI planner. The sim-
ulator out of the box incorporates a sampling-based Frenet planner
as proposed by [40], which was employed in an additional experi-
ment to evaluate the compatibility of the proposed methodology
with alternative planning frameworks. Detailed descriptions of this
planner and the cost function are provided in Appendix D. For this
experiment, the cost function outlined in Appendix D was imple-
mented as the 𝐽𝑘 (𝒙𝑘 , 𝒖𝑘 ) term within the MPPI planner. Sampling
for the MPPI planner is done in the Cartesian frame and then trans-
formed into the Frenet frame for evaluation. This approach ensured



compatibility with the Frenet-based cost function and facilitated
integration with the experimental simulator, as designing another
cost function would have been time consuming and out of the scope
of the study.

Human-Driver Data Experiment. In these experiments the agent is
tasked with navigating in an environment populated by human
agents replaying recorded trajectories from the Waymo Open Mo-
tion Dataset. The simulator used in this work was developed by
[23] to accommodate their research needs. The environments in the
waymo dataset are highly interactive and have many traffic rules.
For their work [23] developed a structured cost function that ac-
counts for travel efficiency, ride comfort, traffic rule adherence, and
safety. For our work we take this cost function and accommodate it
to work with an MPPI planner. The overall stage cost is formulated
as:

𝐽𝑘 (𝒙𝑘 , 𝒖𝑘 ) =
∑︁
𝑖

∥𝜔𝑖𝑐𝑖 (𝒙𝑘 , 𝒖𝑘 )∥ (25)

where 𝑐𝑖 are the different cost terms, 𝜔𝑖 are their respective
weights. The components of the cost function are defined below.

To encourage efficient driving, the speed cost penalizes devia-
tions from the speed limit:

𝑐speed = 𝑣𝑘 − 𝑣limit,

where 𝑣𝑘 is the vehicle’s speed at timestep 𝑘 , and 𝑣limit is the speed
limit. Ride comfort is ensured through penalties for abrupt vehicle
maneuvers by penalizing large control inputs:

𝑐acc = 𝑎𝑘 , 𝑐jerk = ¤𝑎𝑘 , 𝑐steer = 𝛿𝑘 , 𝑐rate = ¤𝛿𝑘 , (26)

where 𝑎𝑘 and ¤𝑎𝑘 are acceleration and jerk, and 𝛿𝑘 and ¤𝛿𝑘 are the
steering angle and its rate of change. The framework enforces adher-
ence to traffic rules by encouraging lane following and alignment of
the heading angle as well as stopping at red lights. Lane following
and heading alignment are enforced with the following term:

𝑐pos = 𝑝𝑘 − 𝑝l,⊥, 𝑐head = 𝜃𝑘 − 𝜃l,⊥, (27)
where 𝑝𝑘 and 𝜃𝑘 are the cartesian position and heading of the

vehicle, and 𝑝l,⊥ and 𝜃l,⊥ are the position and heading of the closest
lane centerline point. Stopping at red lights is enforced with the
following term:

𝑐traffic,𝑡 =

{
𝑠𝑡 − 𝑠stop, if 𝑠𝑡 ≥ 𝑠stop,
0, otherwise,

(28)

where 𝑠𝑘 is the vehicle’s running distance, and 𝑠stop is the position
of the red light. 𝑠 distance is measured along the lane centerline
relative to the positon of the vehicle at 𝑘 = 0. Finally, safety is
enforced by maintaining a minimum distance 𝜖 from other traffic
participants. The safe distance cost is computed in Frenet frame:

𝑑safe = min
𝑖

∥𝑝𝑘 − 𝑝𝑖𝑘 ∥2, (29)

where 𝑝𝑘 and 𝑝𝑖
𝑘
are the positions of the ego vehicle and the 𝑖-th

agent, respectively. A hinge function is used to compute the cost:

𝑐safety,𝑡 =

{
𝜖 − 𝑑safe, if 𝑑safe ≤ 𝜖,
0, otherwise.

(30)

This term measures distance to other agents in the frenet frame
along the vehicles reference trajectory and is used to focus attention

Figure 6: Illustration of the safety distance calculation. Other agents are first
projected to the Frenet frame to find the interacting agents. and the calculation
of distances is in the Cartesian frame

solely on those agents whose predicted positions are within the
reference path’s conflict area. The authors of [23] designed this
term to improve efficiency by only accounting for interactive agents.
To further clarify the functioning of this term an illustration of its
functioning is provided in figure 6

APPENDIX D: ADDITIONAL EXPERIMENT
WITH FRENET PLANNER

Experiment Objective: This experiment was conducted with
the objective of demonstrating the compatibility of the method
with different planners. The motivation for this experiment was to
showcase that this method is agnostic to the planner being used
and can improve performance in general.

Setup: The setup for these experiments is identical to the one
presented in the previously introduced robot-robot traffic scenario
experiment, with the only difference being that a different trajec-
tory planner is employed. The trajectory planner used follows the
methodology of [40] and is designed to generate trajectories in
Frenét Frame. The Frenét Frame is a moving reference frame de-
fined along a given curve, in this case the center-line of the road,
and decouples lateral and longitudinal motions along the road. This
reference frame consists of an axis defined by the tangential vector
t𝑟 in the direction along the curve and another axis defined by the
normal vector n𝑟 in the direction perpendicular to the curve. The
vehicle’s position x(𝑠, 𝑑) in Cartesian coordinates is expressed in
terms of arc length 𝑠 and lateral offset 𝑑 as per equation 31:

x(𝑠 (𝑡), 𝑑 (𝑡)) = r(𝑠 (𝑡)) + 𝑑 (𝑡)n𝑟 (𝑠 (𝑡)) (31)
With r(𝑠 (𝑡)) the position of the reference curve parameterized

by the arc length 𝑠 , 𝑑 (𝑡) the lateral deviation from the reference
curve and n𝑟 (𝑠 (𝑡)) is the normal vector at position 𝑠 along the
curve. A set of candidate trajectories is generated for both lateral
and longitudinal directions by uniformly sampling end conditions
within feasible ranges (lateral position and longitudinal velocity
in this case). Often an evenly spaced distribution of values is used
giving rise to a grid like array of end conditions. Trajectories are



Figure 7: Illustration of transformation from Cartesian to Frenét frame [35]

then combined and evaluated based on a cost function and checked
for collision avoidance and kinematic constraints. An example of
the resulting sample trajectory distribution can be seen as the green
trajectories in figure 8

For lateral motions, trajectories 𝑑 (𝑡) are modeled using quintic
polynomials:

𝑑 (𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡2 + 𝑎3𝑡3 + 𝑎4𝑡4 + 𝑎5𝑡5, (32)
where coefficients 𝑎𝑖 are determined based on the sampled end con-
ditions 𝑑1, 𝑇 (time duration), and the initial conditions [𝑑0, ¤𝑑0, ¥𝑑0].

For longitudinal motion, trajectories 𝑠 (𝑡) are also modeled using
quintic polynomials:

𝑠 (𝑡) = 𝑏0 + 𝑏1𝑡 + 𝑏2𝑡2 + 𝑏3𝑡3 + 𝑏4𝑡4 + 𝑏5𝑡5, (33)
where the end conditions 𝑠1, ¤𝑠1, 𝑇 , and the initial state [𝑠0, ¤𝑠0, ¥𝑠0]
are sampled.

Each trajectory is checked for kinematic feasibility and collision
avoidance, and invalid trajectories are discarded. In [40], a cost
function is defined directly in Frenet frame as seen in equation 34

𝐶tot = 𝑘lat𝐶lat + 𝑘lon𝐶lon (34)
where𝐶lat penalizes lateral deviations and𝐶lon accounts for lon-

gitudinal metrics such as acceleration, travel time, and matching
a target velocity. For the implementation used in our work, the
trajectories are further converted back to Cartesian frame as per
equation 31. In this manner, they can be compared to predictions
from the Wale-Net prediction model which are outputted in Carte-
sian frame, which is necessary for computing the predictability
cost. This cost is added to the previous cost computed in Frenét
frame. Among all valid trajectories, the one with the lowest cost is
selected as the optimal solution. Finally, the generated trajectories
represent desired state transitions. A feedback controller is used to
translate these trajectories into action sequences.

Results Discussion: The results for varying values of 𝜆 =

0, 2.5, 5 are presented in Table 4. Similar to the findings from the
previous experiment, the inclusion of predictability as an optimiza-
tion objective significantly reduces the likelihood of deadlock. This
reduction in the deadlock probability directly influences the perfor-
mance in the distance traveled metric, as fewer deadlocks correlate
to smoother and more efficient trajectories. These results align with
those obtained using theMPPI planner discussed earlier, reinforcing

Table 4: Results for T-Junction and Lane Merge Scenarios using Frenét Planner

Exp Metric 𝜆 = 0.0 𝜆 = 2.5 𝜆 = 5.0

T-J

Dlk (%) 63.3 10.0 0.0
Dist (m) 22.942 59.369 65.093
PE (m2) 1.125 ±0.931 12.462 ±7.093 13.899 ±5.448
Acc (m/s2) -0.431 ±0.151 0.216 ±0.309 0.460 ±0.344
Ang (rad/s) 0.0043 ±0.0015 0.0034 ±0.0014 0.0047 ±0.0032

LM

Dlk (%) 86.6 0.0 0.0
Dist (m) 36.226 107.239 103.353
MSE 4.768 ±1.680 21.586 ±6.550 21.145 ±6.97
Acc (m/s2) -0.194 ±0.098 1.674 ±0.388 1.314 ±0.643
Ang (rad/s) 0.0024 ±0.0011 0.0058 ±0.0027 0.0134 ±0.0093

the consistency of the observed trends. The observed differences
in performance metrics primarily arise from the use of distinct
planners, however they follow the same trends and the benefits can
be tracked to the predictability term.

From these observations, it can be concluded that incorporating
predictability as an optimization objective provides a scalable and
generalizable approach for improving multi-agent coordination.
Importantly, this approach is not limited to a specific planner but
can be seamlessly integrated into a broad range of planners via
the cost function. Furthermore, it can again be seen that the dead-
lock resolution strategies adopted by the agents resemble social
norms observable in human behavior on which , as observed in the
previous experiment. Figure 8 provides a visual representation of
the two scenarios with agents employing a Frenet planner, further
illustrating these findings.

APPENDIX E: DIRECT MINIMIZATION OF FREE
ENERGY AS A COST FUNCTION
In the methodology, the free energy term is expressed as a function
of the prediction distribution, P(𝑋 ), which is outside the agent’s
direct control in our planning problem formulation. To address this,
we apply an expectation switch to introduce a plan distribution,
Q(𝑋 ), which is controllable by the agent. Using Jensen’s inequality,
we derive an upper bound on the free energy that the agent mini-
mizes as its planning objective. Thus, the agent minimizes not the
free energy itself but its upper bound.

During the planning phase, the prediction model remains static,
with P(𝑋 ) formally defined as P(X) = P𝑘 (𝑥 | X−𝐻 :0) for all
𝑘 ∈ {1, 2, . . . , 𝐾}, where 𝐻 is the historical context length and 𝐾
is the planning horizon. While this approach provides valuable
planning insights, it is passive in the sense that it does not consider
how the agent’s actions influence the predictions of surrounding
agents, thereby limiting its ability to adaptively interact with these
expectations and instead only align with the predictions.

To address this limitation, we explore using the free energy
term directly as an optimization objective. This requires granting
the agent control over the prediction distribution by dynamically
updating the prediction model during planning. The updated model,
P𝑘 (𝑥 | X−𝐻+𝑘 :𝑘−1), conditions predictions on the evolving state
history throughout the planning horizon. This dynamic adaptation
allows the agent to anticipate the effects of its actions on future
predictions, enabling behaviors such as legibility and reducing



(a) Lane merge 𝜆 = 0 (b) Lane Merge 𝜆 = 5 (c) T-Junction 𝜆 = 0 (d) T-Junction 𝜆 = 5

Figure 8: a) Illustration of a deadlock With 𝜆 = 0, where a sequence of faulty predictions reinforces both agent’s hesitation. b) For 𝜆 = 5, the agents can leverage the
prediction model to coordinate which agent gives way and which passes first.

uncertainty for surrounding agents by minimizing the complexity
of the prediction distribution. Under this new approach the cost
function used can remain unchanged:

𝐽 (𝜏0:𝐾 ) =
𝐾∑︁
𝑘=0

𝐽𝑘 (𝒙𝑘 , 𝒖𝑘 ) + 𝛾𝑡𝜆KL
(
𝑞(𝒙𝑘 ) ∥ 𝑝 (𝒙𝑘 )

)
.

However, incorporating the dynamically updated prediction
model requires continuous updates during the optimization. For
sampling-based planners likeModel Predictive Path Integral (MPPI),
this approach requires reevaluating the prediction model for each
sample at every time step. For a planning horizon 𝐾 = 20 and 800
samples, this translates to 16,000 evaluations per cycle, making real-
time application computationally intractable in practical use cases,
where a more sophisticated prediction model could me more expen-
sive to evaluate. Thus, adopting a more sampling-efficient planner
is critical to address these computational challenges. However, in
this section we use a simple prediction model an explore some of
the behavioral properties that can be induced when minimizing the
free energy term directly.

6.1 Unifying Predictability and Legibility
Given the iterative updates of the prediction model, the agent now
has feedback on how its planned actions will affect the prediction
distribution in future time steps. The agent can then minimize the
KL term in its cost function by both aligning its plan with the
prediction distribution and by selecting actions that push the dis-
tribution to better align with its objective or reduce its complexity.
These are both desirable traits for social navigation and represent
equivalents to predictability and legibility respectively for receding
horizon planning. The main advantage of approaching the opti-
mization in this manner, through minimizing free energy, is that
it automatically handles the trade-off between both of these prop-
erties in a principled manner, thereby automatically addressing a
trade-off akin to the common exploration-exploitation trade-off.
Furthermore, framing social navigation objectives in this manner
serves as a generalization, as it not only automatically balances the
trade-off in a principled way but is also compatible with any form
of prediction distribution.

6.2 Practicalities
Remark 2. The KL divergence between two distributions is non-

symmetric and depends on the respective shapes of the distributions. To
illustrate how the shapes of the distributions affect the KL-divergence
term, we can examine a simple illustrative example with two uni-
variate Gaussian distributions: 𝑃 representing the plan and 𝑄 the
prediction distributions. The analytical expression can be found in
equation 35:

𝐷KL (𝑃 ∥ 𝑄) = ln
(
𝜎𝑞

𝜎𝑝

)
+
𝜎2𝑝 + (𝜇𝑝 − 𝜇𝑞)2

2𝜎2𝑞
− 1
2 (35)

With 𝜇 representing the mean of a distribution and 𝜎 its stan-
dard deviation, the Kullback-Leibler (KL) divergence quantitatively
measures how one probability distribution diverges from a second.
Conceptually, the KL divergence measures how much information is
lost when approximating 𝑃 with 𝑄 . Thus, if samples drawn from 𝑃

have a low probability under𝑄 compared to their respective probabil-
ity under 𝑃 , this will result in a large KL divergence.

By examining the KL divergence equation, we observe distinct
behaviors in response to differences in means and variances. The dis-
tance between the means is penalized quadratically, as evidenced by
the term (𝜇𝑝 − 𝜇𝑞)2. This quadratic penalization results in a rapid
increase in divergence when there are large discrepancies between
the means. On the other hand, the difference in variances is penal-

ized logarithmically, as seen in the term ln
(
𝜎𝑞
𝜎𝑝

)
. For Gaussians, this

logarithmic penalization results in a slower increase in divergence.

When minimizing free energy through the minimization of the
KL term, the influence of predictability is stronger than legibility.
When planning, this occurs because differences in the means of
distributions exert a significantly greater impact on the KL term
than differences in their variances, as pointed out in remark 2. Con-
sequently, the agent is driven to plan trajectories that closely align
with the most probable outcomes of the prediction distribution,
as the penalty for deviations grows quadratically. This tendency
hinders the optimization of legibility in ambiguous settings, which
may necessitate several unpredictable actions in the early time steps
to achieve benefits in later stages. Under the current formulation,
such benefits are unattainable, as the advantages of reducing distri-
bution variance are outweighed by the substantial cost associated
with early deviations. This issue can be mitigated in two ways.



First, extending the planning horizon would allow the legibility
benefits to haver a greater weight on the overall cost, however, this
approach may render the optimization process computationally
intractable. Second, modifying the discount factor offers a viable
solution. While a discount factor 𝛾 < 1 previously emphasized
predictability in early time steps, increasing the discount factor
to 𝛾 > 1 would prioritize legibility gains at later time steps. This
adjustment outweighs the penalties for early unpredictability with
the benefits of a better aligned and narrower prediction distribution
at later horizon steps, thereby enabling the robot to better reason
on how to optimize for long-term gains.

Although setting 𝛾 > 1 allows the agent to better reason about
future gains, acting in benefit of future gains might not be desirable
in all settings, as it might induce unpredictable behavior in situa-
tions where remaining predictable is critical. For this reason, we
suggest it would instead be better to modulate the value of lambda
with some hand-crafted heuristic in reaction to the incoming obser-
vations: 𝛾 (O), where O is an observation about the environment.
This heuristic should emphasize that while in crowded interacting
environments it is more important to prioritize remaining pre-
dictable for others, whereas on the lead-up to an interaction or
in less crowded environments it is more beneficial to prioritize
legibility.

If an adaptive 𝛾 (O) is used, it is also important to consider that
changing the discount also has an effect on the overall weight of the
KL-Divergence term in the cost function, with the magnitude being
reduced for 𝛾 < 1 and increased for 𝛾 > 1. This can in turn have
adverse effects when combined with 𝜆. Thus, to simply achieve
a redistribution of the weight as opposed to changing the overall
weight, we propose to normalize the discount. A visualization of the
normalized weight distributions for different 𝛾 can be seen in figure
9 The resulting cost function we propose can be seen in equation
36:

𝐽 (𝜏0:𝐾 ) =
𝐾∑︁
𝑘=0

𝐽𝑘 (𝒙𝑘 , 𝒖𝑘 ) +
𝛾 (O)𝑘∑𝐾
𝑡=0 𝛾 (O)𝑡

𝜆KL
(
𝑞(𝒙𝑘 ) ∥ 𝑝 (𝒙𝑘 )

)
. (36)
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Figure 9: Different levels of discount over a 20 time-step horizon, normalized
to keep a constant area under the curve. The normalization on the discount is
introduced to keep similar magnitude for the predictability cost in the cost
function, with regard to the cost function.

6.3 Iterative Prediction Updates Experiment
Experiment Objective: Pro-social behavior from an agent re-

quires trading off legible and predictable behavior. If the predictions

an agent holds about itself are misaligned with its goal, optimiz-
ing for legibility can serve as a quick way of rapidly re-aligning
them with its objective by acting unpredictably in the near-term to
achieve greater gains in the long term. However, the KL Divergence
objective weighs predictability more heavily than legibility, thus
from the perspective of the agent, the long term gains are often not
enough to offset the short term cost of unpredictable actions. This
severely limits the extent to which an agent can pursue legibility
objectives. Motivated by the fact that displaying legible behaviors
in an important aspect of pro-social behavior, in this experiment
we show how varying 𝛾 can control wether the agent prioritizes
legible or predictable behavior.

Setup: We recreate the single agent experiment introduced above
with a multi-modal prediction and observer with mistaken ini-
tial beliefs. The difference is that the prediction model is now
updated in reaction to the planned trajectory along the horizon:
P𝑘 (𝑥 | X−𝐻+𝑘 :𝑘−1) for all 𝑘 ∈ {1, 2, . . . , 𝐾}. Since the model used
is analytical, the operation can be vectorized for all MPPI samples,
keeping the optimization tractable. Cost function 36 was used for
planning, with the discounts being normalized. To illustrate the
impact of setting 𝛾 > 1 two sets of experiments for 𝛾 = 0.7, 1.3
shown in blue and green respectively in figure 10. Each value of 𝛾
is tested for 𝜆 = 20, 40, 60.
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Figure 10: Results of planning with dynamic updates to the prediction model
and using cost function 36. It can be observed that setting 𝛾 < 1 results in
behaviors that prioritize legibility, whereas setting 𝛾 > 1 results in behaviors
that prioritize legibility. Modulation of 𝛾 can then be used to adapt the agents
behavior in response to the environment.

Results Discussion: Upon examining the observed values for
𝜆, it is clear that they are significantly higher than those in the
previous experiment. This increase is attributable to the dynamic
updating of the prediction model in response to the agent’s tra-
jectory. As a result, the agent’s planned trajectory remains closely
aligned with the updated prediction distribution, consistently yield-
ing lower Kullback–Leibler (KL) divergence between the prediction
and the plan. Consequently, the influence of the KL term is reduced,
allowing the agent to more readily pursue its objective, which ne-
cessitates a higher value of 𝜆 to maintain the trade-off.

Furthermore, the impact of the discount factor 𝛾 reveals that
when𝛾 > 1, the resulting trajectories align with the legibility bench-
marks observed in previous single-agent experiments. A discount
factor greater than one mitigates the higher penalties associated



with unpredictability, enabling the agent to optimize for long-term
gains. Specifically, initial unpredictable actions encourage the pre-
diction model to rapidly align with the agent’s intentions, resulting
in benefits in subsequent time-steps.

This experiment demonstrates that the trade-off between legi-
bility and predictability can be effectively managed using a single
parameter that can be automatically adapted based on environmen-
tal conditions. Designing a heuristic to modulate this parameter is
straightforward, and enables the agent to exhibit more pro-social
and adaptive behaviors.

6.4 Limitations
Although the results presented offer a promising approach to pro-
social and adaptive planning, the predictionmodel and environment
considered are relatively simplistic and do not fully represent more
complex, multi-agent settings. In real-world scenarios, the agent
operates within environments populated by other agents and typi-
cally relies on more sophisticated prediction models that are not
easily vectorized for numerous samples. Adapting the proposed
method to these conditions poses significant challenges:

• In multi-agent environments, the behaviors of other agents
significantly influence the prediction outcomes. Consequently,
when updating the planning trajectory, it is necessary to
propagate the expected behaviors of all surrounding agents.
This process is complex and can introduce substantial uncer-
tainty.

• Utilizing more computationally intensive prediction models
renders sampling-based planners like Model Predictive Path
Integral (MPPI) infeasible for real-time applications due to
the excessive number of model evaluations required. Ad-
dressing this limitation necessitates the adoption of more
sample-efficient planners. One potential solution is employ-
ing tree-based planners, as demonstrated in existing litera-
ture where Tree Policy Planning has been successfully ap-
plied to similar problems involving numerous model eval-
uations [22]. However, adapting tree-based methods to our
framework may be challenging, as the policy tree construc-
tion could inadvertently exclude optimal trajectories that
enhance legibility. Alternatively, a hierarchical planning ap-
proach could be utilized, where a high-level planner initially
generates a rough trajectory using the complex cost function,
which is subsequently refined through a simpler gradient-
based method [10].

Addressing these challenges presents valuable opportunities for
future research.
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