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Intracellular metabolites were evaluated during the continuous growth of Trichoderma harzianum P49P11
under carbon-limited conditions. Four different conditions in duplicate were investigated (10 and 20 g/L
of glucose, 5.26/5.26 g/L of fructose/glucose and 10 g/L of sucrose in the feed). Differences in the values of
some specific concentrations of intracellular metabolites were observed at steady-state for the dupli-
cates. The presence of extracellular polysaccharide was confirmed in the supernatant of all conditions

based on FT-IR and proton NMR. Fragments of polysaccharides from the cell wall could be released due to
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the shear stress and since the cells can consume them under carbon-limited conditions, this could create

an unpredictable carbon flow rate into the cells. According to the values of the metabolite concentrations,

it was considered that the consumption of those fragments was interfering with the analysis.

© 2020 The Author(s). Published by Elsevier Ltd on behalf of British Mycological Society. This is an open
access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The quantitative analysis of metabolites is a prerequisite for
metabolic engineering (Buchholz et al., 2001), which can be applied
to create an optimal strain to produce desired products.
T. harzianum P49P11 has been applied to produce enzymes that can
convert lignocellulosic polymers into their monomers (Delabona
et al., 2013; Gelain et al., 2015) and to date, no analysis of intra-
cellular metabolites has been described in the literature for this
wild strain. Thus, studies to evaluate the quantitative analysis of
metabolites employing T. harzianum P49P11 is the first step for the
development of an optimal strain through metabolic engineering.

The analysis of the intracellular metabolites of a microorganism
involves the following steps: the cell growth under specific con-
ditions; sampling and quenching of the cells; extraction and
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analysis of the metabolites (Pinu et al., 2017). Quenching methods
are used to stop the cell metabolism, which is required to evaluate
the metabolic behaviour of the cells under a specific condition.
According to Pinu et al. (2017), the majority of the quenching
methods were developed for bacteria and/or yeast, and a few
quenching methods have been reported for filamentous fungi.
Jonge et al. (2012) evaluated and optimized a sampling procedure
for quantitative metabolomics based on cold aqueous methanol
quenching using Penicillium chrysogenum DS17690, glucose as the
limiting substrate and the dilution rate of 0.05 h~.. They optimized
the method to reduce leakage and found that metabolite leakage
was minimal for a methanol content of the quenching solution of
40% (v/v) at —25 °C. Lameiras et al. (2015) described a quenching
method for quantitative metabolomics aiming to avoid metabolite
leakage during sample processing employing Aspergillus niger
NW185 on glucose-limited conditions with dilution rates of 0.043
and 0.089 h~ . They found that the leakage was absent at —20 °C for
40% (v/v) methanol solution. The method described in Lameiras
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Intracellular metabolites of glycolysis and extracellular glucose (m, umol/g), experimental errors (e, %) and the difference in the specific concentration of the metabolite
regarding the average of the group (Dy,, %), metabolites with significantly different levels for the duplicates are indicated in blue (Tukey test with 95% confidence interval).

Conditions Extracellular glucose Glucose Glucose-6-phosphate
m e D, m e D, m e D
G101 1.220 +19.3 9.6 2.029 214 12.8 1.737 153 1.4
G102 2392 174 29.2 5.018 199 419 1.737 +12.9 1.4
G201 1.742  +15.7 7.7 1.184 +31.7 28.3 1.393 1.7 8.8
G202 0.683 +3.8 274  2.689 1545 0.8 1.895 5.4 6.0
FG1 0.790 +31.8 26 1.655 4229 312 1100 5.1 20.2
FG2 0.583 +41.3 32.3 9.460 +64.3 57.5 1.820 +10.9 0.7
S1 1.469 17.0 5.4 4.030 +28.3 4.2 1.753 0.3 2.6
S2 3.746 +21.5 63.7 2.456 5.9 22.1 2.716 8.1 23.5
. Fructose-1,6- Glyceraldehyde-3-
Conditions Fructose-6-phosphate bisphosphate phosphate
m e Dy m e Dy, m e Dy,
G101 0.323 155 2.4 0.351 7.7 0.9 0.017 +19.9 4.5
G102 0.388  +12.9 7.1 0.407 +26.2 6.9 0.024 +19.8 14.7
G201 0.279 £7.0 8.9 0.403 1.9 6.3 0.024 8.5 15.1
G202 0.368 +2.0 4.2 0.269 +164 124 0.009 4.3 25.3
FG1 0.265 +2.8 19.2 0.338 6.4 145 0.017 4.0 7.8
FG2 0.511 +11.6 9.5 0.343 433 140 0.014 7.5 15.2
S1 0.310 +16.0 139 0416 *17.0 6.3 0.016 355 9.4
S2 0.633 6.6 23.6 0.807 4.1 348 0.033 184 324
Conditions Dlhidhr::::;te:one 3-Phosphoglycerate 2-Phosphoglycerate
m e D m e D, m e Dy,
G101 0.123 %59 6.3 0.449 +18.1 5.1 0.041 +18.8 7.2
G102 0.184 +16.0 15.1  0.442 437 5.8 0.044 4.5 4.9
G201 0.139 +10.4 0.8 0.476 4.2 2.3 0.050 8.3 1.9
G202 0.119 #1.5 8.0 0.632 +17.9 13.2 0.058 +17.5 10.1
FG1 0.132 +4.0 12.1 0.487 6.5 12.5 0.044 8.5 15.0
FG2 0.160 1.1 4.0 0.477 8.2 132 0.050 7.1 9.8
S1 0.121 169 15.2 0.938 +31.1 22.3 0.086 $32.6 18.3
S2 0.283 +12.2 313 0.692 +7.9 3.4 0.071 9.1 6.6
Conditions Phosphoenolpyruvate
m e D,
G101 0.030 +$20.1 10.5
G102 0.011 6.2 27.9
G201 0.017 0.8 16.2
G202 0.042 +68.9 33.6
FG1 0.043 +25.0 11.3
FG2 0.030 *30.6 23.3
S1 0.078 +41.2 19.8
S2 0.073 6.9 14.8

et al. (2015) was used in this work for the first evaluation of
intracellular metabolites from T. harzianum P49P11.

Extracellular polysaccharides have several applications in in-
dustries, in different product areas such as pharmaceuticals, med-
icine and foods. Despite their importance, information about fungal
polysaccharide synthesis is scarce and an extensive search for new
fungal species that can produce novel extracellular polysaccharides
is still needed (Mahapatra and Banerjee, 2013). According to
Gientka et al. (2015), some extracellular polysaccharides of yeasts
show antitumor, immunostimulatory and antioxidant activity.

Trichoderma species are recognized for their high extracellular
enzyme production but there are limited reports on the production
of polysaccharides (Li et al., 2017). Li et al. (2017) evaluated in vitro
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the antitumor properties of an extracellular polysaccharide from
Trichoderma sp. KK19L1 on human cervical carcinoma cells and
human breast carcinoma cells. They have shown the potential of
extracellular polysaccharides from Trichoderma sp to inhibit cancer
cells.

The work aims to evaluate the specific concentrations of intra-
cellular metabolites under carbon-limited conditions. The produc-
tion of extracellular polysaccharides by T. harzianum P49P11 was
discovered in this work and their presence in the growth medium
could be interfering with the analysis. A method to evaluate the
metabolic profiles optimized for a different microorganism
(Aspergillus niger NW185, Lameiras et al., 2015) was used as the first
step for the optimization of the analysis employing T. harzianum.
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Table 2
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Nucleotides (m, umol/g), experimental errors (e, %) and the difference in the specific concentration of the nucleotide regarding the average of the group (D, %), nucleotides
with significantly different levels for the duplicates are indicated in blue (Tukey test with 95% confidence interval).

Conditions Adenosine Adenosine Adenosine
monophosphate diphosphate triphosphate

m e Dy, m e D, m e Dy,
G101 0.163 +10.1 25.7 0.980 5.2 6.3 3.386 15.6 9.8
G102 0.294 244 6.1 0.879 1.1 10.8 2.737 159 1.7
G201 0.411 $20.2 11.4 0.879 8.7 10.8 2.642 +14.0 34
G202 0.470 119 20.3 1.745 184 27.8 2.560 +15.6 4.8
FG1 0.160 +43.6 26.3 0.825 +7.8 12.8 2573 1938 8.5
FG2 0.361 9.6 3.5 1.345 8.8 10.6  3.353 0.1 8.4
S1 0.355 +3.9 2.6 1.225 5.1 5.2 2925 4.0 1.5
S2 0.473 6.2 20.1 1.044 +10.9 3.0 3.539 0.9 11.4
Conditions Uridine monophosphate Uridine diphosphate Uridine triphosphate
m e D m e Dy, m e Dy,
G101 0.058 +11.3 8.5 0.146 4.3 10.8 0.658 3.5 11.0
G102 0.065 +14.6 3.4 0.097 6.2 9.6 0.440 +12.7 9.3
G201 0.069 7.1 0.6 0.099 6.0 9.0 0.464 +16.0 7.0
G202 0.087 $26.2 12.5 0.139 *16.0 7.7 0.596 +24.4 5.3
FG1 0.117 1654 19.7 0.126 8.7 4.1 0.520 5.0 11.8
FG2 0.105 415 12.9 0.144 457 2.5 0.965 304 210
S1 0.083 +26.1 0.4 0.148 +12.8 4.0 0.601 +11.6 5.8
S2 0.030 $49.6 32.2 0.130 7.6 2.4 0.632 2.9 3.5

Conditions Guanosine Guanosine Guanosine

monophosphate diphosphate triphosphate

m e Dy m e Dy, m e Dy,
G101 0.152 9.7 0.4 0.233 7.3 7.2 0.872 7.7 9.4
G102 0.094 $30.8 19.5 0.221 5.2 4.2 0.679 7.0 3.8
G201 0.111  £25.9 13.7 0.191 10.6 31 0.607 8.9 8.7
G202 0.257 $34.2 33.6 0.170 +19.9 8.2 0.780 +26.7 3.1
FG1 0.336 174.1 22.7 0.207 6.6 0.4 0.689 t1.9 11.6
FG2 0.140 136.6 19.8  0.183 *40.5 6.1 1.248 +27.0 19.6
S1 0.314 1643 17.9 0.218 +13.7 2.1 0.800 3.4 5.4
S2 0.135 +13.5 20.8 0.227 4.1 4.3 0.847 #5.5 2.7

This method was used to verify the challenges imposed by the cell
growth cultures using T. harzianum P49P11 on the analysis of
intracellular metabolites under carbon-limited conditions.

2. Materials and methods
2.1. Culture conditions

Trichoderma harzianum P49P11 was isolated from the Amazon
forest (Delabona et al., 2012). It was grown on potato dextrose agar
at 29 °C and the spores were harvested after 5—7 days with ster-
ilized water. The spore solutions were kept in stock at —80 °C.
Culture conditions are also described in Gelain (2020). Spores from
T. harzianum were used to inoculate 500 mL shake flasks containing
250 mL of the medium: 10 g/L of glucose (carbon source), 2 g/L of
KH,PO4, 5 g/L of (NH4),SO4, 0.3 g/L of MgS04.7H,0, 0.3 g/L of
CaCl.2H,0, 1 mL/L of trace elements solution, and 1 g/L of peptone.
Trace elements solution: 15 g/L of NapEDTA.2H,0, 4.5 g/L of
ZnS04.7H,0, 1 g/L of MnCl,.4H,0, 0.3 g/L of CoCl,.6H;0, 0.3 g/L of
CuS04.5H,0, 0.4 g/L of NaM004.2H,0, 4.5 g/L of CaCl,.2H,0, 3 g/L
of FeS04.7H,0, 1 g/L of H3BOs3, 0.1 g/L of KI. The medium was
sterilized at 121 °C for 20 min. The shake flasks were incubated in
an orbital shaker for 24—48 h at 29 °C and 200 rpm before inocu-
lating the bioreactor (10% v/v).
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Different conditions were applied in carbon-limited chemostat
cultures: 10 g/L of glucose (G101 and G102), 10 g/L of sucrose (S1
and S2), 5.26 and 5.26 g/L of fructose and glucose (FG1 and FG2).
The medium composition was the same as described for shake
flasks, only peptone was not added to the feed medium. Addi-
tionally, 20 g/L of glucose was also tested in the feed (G201 and
G202) with the following modifications to the medium composi-
tion: 3 g/L of KH,PO4; and 6 g/L of (NH4),SO4. These alterations
were made to maintain the same residual concentrations of these
compounds in the effluent as for the condition using 10 g/L of
glucose. The chemostat cultivations were performed in duplicate.
The medium was sterilized by filtration using a filter 0.2 um. The
medium composition used for the batch stage was the same as used
for the shake flask cultivation, except for the first batch experiment
in which 20 g/L of sucrose was used as the carbon source. The
medium for the batch stage was sterilized by filtration using a filter
0.2 um.

A 7 L bioreactor (Applikon, Delft, the Netherlands) was used for
the experiments with a constant broth mass of 4 kg. The temper-
ature was controlled by a water bath at 29 °C, and pH 5 was
controlled by the addition of 2 M KOH and 2 M H3SOy. Sterile air
was supplied via a mass flow controller (Brooks 58505, calibration
at 0 °C and 1 bar). The volume fraction of oxygen and carbon di-
oxide were measured by the NGA 2000 off-gas analyser.
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Table 3
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Intracellular metabolites of pentose phosphate pathway and citric acid cycle (m, pmol/g), experimental errors (e, %) and the difference in the specific concentration of the
metabolite regarding the average of the group (D, %), metabolites with significantly different levels for the duplicates are indicated in blue (Tukey test with 95% confidence

interval).

Conditions 6-Phosphogluconate Ribulose-5-phosphate Ribose-5-phosphate
m e D, m e D, m e D,
G101 1.053 +29.9 19.8 0.080 +188 15.7 0.323 483 1.2
G102 0.680 +11.3 4.9 0.164 *37.6 20.5 0.378 +21.6 10.0
G201 0.662 16.6 6.1 0.183 1209 28.6 0.356 18.4 6.5
G202 0.622 +18.4 8.8 0.038 +159  33.5 0.204 £1.3 17.7
FG1 1.075 8.3 9.4 0.079 £213 19.6 0.246 0.8 133
FG2 1325 134 0.1 0.123  +7.7 2.8 0.339 #4.7 0.6
s1 0.820 14.8 19.0 0.096 +£38.7 13.0 0.331  #31.7 0.6
S2 2.075 2.4 284 0.222 173 354 0.423  $12.7 13.2
Conditions Xylulose-5-phosphate Sed::zg;:l:;ieﬂ- Erythrose-4-phosphate
m e Dy, m e D m e D
G101 0.154 +17.0 13.0 0.467 120.6 1.1 0.0037 9.2 1.9
G102 0.297 47.0 213 0.536 t17.6 6.2 0.0045 +23.5 12.5
G201 0.300 18.9 22.1 0418 6.0 6.2 0.0045 8.8 12.8
G202 0.081 0.5 30.5 0.488 6.9 1.1 0.0016 #¥24.7  27.2
FG1 0.138 16.6 19.5 0.358 5.6 18.6  0.0028 +10.5 16.8
FG2 0.229 9.8 0.7 0.580 5.8 0.9 0.0036 +2.3 7.2
S1 0.172 $12.3 11.8 0.579 6.3 0.8 0.0046 +34.7 4.5
S2 0.364 +12.3 30.6 0.763 49 16.9 0.0059 4.4 19.5
Conditions Citrate Isocitrate a-Ketoglutarate
m e Dy, m e D, m e Dy,
G101 1249 116.6 5.2 0.237 134.0 2.1 0.424 +214 123
G102 14.41 +7.4 1.7 0.201 8.2 5.7 0.514 +11.0 4.2
G201 12.08 8.3 6.7 0.265 5.1 8.3 0.606  *7.2 3.9
G202 16.79 $3.4 10.2 0.205 +21.6 4.8 0.703 +18.2 12.6
FG1 18.75 $3.0 17.5 0.355 3.0 38.8 0.523 +1.6 11.0
FG2 10.31 16.6 12.9 0.158 6.7 10.3 0.920 +10.7 18.7
S1 15.24 134 4.9 0.119 +35.7 20.3 0.443 6.5 17.0
S2 11.26  $11.2 9.5 0.167 2.8 8.2 0.793 6.9 9.2
Conditions Succinate Fumarate Malate
m e Dy, m e D, m e Dy,
G101 1.804 +9.6 34.6 1.021 94 4.0 1.810 +15.1 13.4
G102 0.845 425 10.4 1.110 +12.3 8.7 2.339 +16.5 2.7
G201 0.901 +26.9 7.7 0.877 +10.6 3.6 2.811 +7.9 6.8
G202 0.714  +18.8 16.5 0.771 7.6 9.2 2.937 +13.3 9.4
FG1 2408 9.0 26.1 0.950 1.5 6.7 2.578 4.6 8.1
FG2 0.586 +19.1 31.5 0.984 5.2 5.2 3.014 +2.5 1.0
S1 2.647 +22.4 33.7 1.053 8.0 2.0 2.938 +13.6 2.3
S2 0.687 19.2 28.3 1.402 +16.5 13.9 3.782 +7.6 114

A dilution rate of 0.05 h™! +0.003 h™! was used. For the batch
stage, the stirring speed was kept between 200 and 400 rpm and
for the continuous culture, it was changed to a constant stirring
speed of 600 rpm. The airflow of 1 L/min was used, and only for the
condition using 20 g/L of glucose, the airflow was 1.5 L/min. A
constant antifoam addition (Basildon BC antifoam 86/013) of
approximately 7 pL/min was used. The achievement of the steady-
state was assumed when the CO, production and mycelium con-
centration were constant for at least 6 residence times.

2.2. Qualitative analysis of polysaccharides

Culture supernatant was obtained by filtration of the chemostat
culture broth through 0.45 pm pore size filters (Millex-HV durapore
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PVDF membrane). Ethanol precipitation was performed by mixing
1 mL of the sample with 3 mL of pure ethanol. After centrifugation
at 2000x g for 5 min, the precipitate was solubilized with 1 mL of
water and precipitated again with 3 mL of pure ethanol. After a
second centrifugation, the precipitate (approximately 2 mg) was
freeze-dried and subsequently, enzymatic hydrolysis was per-
formed. The precipitate (2—3 mg) was hydrolysed with beta-
glucanase (2 mg) from Trichoderma longibrachiatum (Sigma-
—Aldrich) in 1 mL of 50 mM citrate buffer (pH 4.8) for 1 hat 37 °Cin
a water bath. The sugars released were analysed using high-
performance anion-exchange chromatography (HPAE). Fourier-
transform infrared spectroscopy (FT-IR) was performed placing
2—5 mg of polysaccharides on a universal attenuated total reflec-
tance accessory (Perkin Elmer spectrum 100).
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Table 4
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Intracellular metabolites for trehalose synthesis, glycerol-3-phosphate and mannose-6-phosphate (m, pmol/g), experimental errors (e, %) and the difference in the specific
concentration of the metabolite regarding the average of the group (D, %), metabolites with significantly different levels for the duplicates are indicated in blue (Tukey test

with 95% confidence interval).

- Uridine-5-
Conditions Glycerol-3-phosphate Glucose-1-phosphate diphosphoglucose
m e Dy, m e Dy, m e Dy,
G101 1.985 +28.7 10.9 0.079 +15.7 7.3 1.774 179 5.6
G102 2400 #36.0 23.6 0.085 6.2 11.6  1.481 3.9 3.6
G201 1.671 16.7 1.3 0.052 +20.6 12.0 1.227 103 11.6
G202 0.463 £154 35.8 0.059 24 6.9 1.905 4.3 9.6
FG1 1.516 #45.8 3.9 0.060 +15.3 8.3 1.366 $3.3 10.2
FG2 0.720 +30.5 24.4 0.058 +15.3 9.6 1.607 12.8 3.1
S1 1.452 +62.3 1.6 0.061 +20.5 7.4 2.098 +18.3 11.2
S2 1937 2.1 18.9 0.107 9.6 253 1784 135 2.1
Conditions Trehalose-6-phosphate Trehalose Mannose-6-phosphate
m e D, m e D, m e Dy
G101 0.096 *19.3 7.3 79.97 183 7.8 0.561 16.1 4.1
G102 0.063 +18.3 12.1 7438 tl4.4 10.7 0.495 +18.1 2.2
G201 0.044 £15.8 235 4472 +¥11.1 264 0.458 44 5.9
G202 0.131 +23 28.3 179.58 0.9 449 0.561 3.0 4.1
FG1 0.033 £1.6 19.9 29.02 1.7 2.8 0.417 6.1 16.1
FG2 0.027 +12.7 25.5 35.06 34 7.0 0.585 8.1 2.4
S1 0.101 £19.8 41.7 3582 15 8.3 0.542 33 5.9
S2 0.059 9.3 3.8 23.08 $27.1 12.5 0.913 55 24.3

Samples for proton NMR analysis were prepared by using 0.2 g
of LiCl in 1.0 mL D0, followed by 9 mL of DMSO and a few grains of
deuterated (3-(trimethylsilyl)-2,2,3,3-tetradeutero propionic acid
or TMSP-d4) were added. 0.5 mL of this solution was transferred to
the vials containing the samples (5—15 mg). Then, they were heated
in a thermo-shaker at 100 °C for 12 h. The cooled solutions were
then transferred to an NMR tube and all measurements were car-
ried out at 25 °C using an Agilent 400-MR DD2 equipped with a
5 mm OneNMR probe. The data for proton NMR spectra were
collected with 1024 scans, d1 = 1s (399.7 MHz).

2.3. Extracellular glucose analysis

For the analysis of extracellular glucose, the samples were
diluted with 1 M NaOH to precipitate proteins that could interfere
with the analysis. Precipitated proteins were removed by centri-
fugation (2000x g, 10 min). The samples were analysed using high-
performance anion-exchange chromatography (HPAE), Dionex ICS-
5000 with PAD detector (Rohrer et al., 2013). The analysis was
performed in triplicate.

2.4. Analysis of intracellular metabolites

The samples for the analysis of the intracellular metabolites of
each condition came from 3 different days during the steady-state.
The cells on the walls of the bioreactor were not considered
influencing the specific concentrations of the metabolites since the
system was very stable during the steady-state. Intracellular me-
tabolites were extracted and analysed according to Lameiras et al.
(2015). Broth (approx. 1.3 mL) was rapidly withdrawn into 10 mL
of pre-cooled 40% (v/v) aqueous methanol solution (—20 °C) and
after, the samples were weighted for estimation of the cell mass
and kept at —20 °C until extraction of the metabolites. Methanol
was removed by filtration and the samples were washed thrice
with a cold methanol solution (—20 °C). Then, boiling ethanol
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extraction was performed to disrupt the cells and inactivate the
enzymes. To this end, 25 mL of ethanol solution (75% v/v) was first
pre-heated at 75 °C, whereafter the quenched and washed cell
samples were added to the ethanol solution together with 100 pL of
U-13C-labeled cell extract of S. cerevisiae as the internal standard
and incubated in a water bath at 95 °C for 3 min. After the
extraction, the samples were first placed on ice and then stored
at —80 °C.

Before the quantification of the metabolites, ethanol was
evaporated until almost dryness in a Rapid-Vap under vacuum for
240 min. After evaporation, the residues were suspended in 500 puL
of Milli-Q water and centrifuged at 1000x g for 5 min in a tube
coupled with a filter (0.22 um) to remove cell debris. The super-
natants were stored at —80 °C until analysis. The concentrations of
the intracellular metabolites were measured by isotope dilution
mass spectrometry (LC-IDMS/MS and GC-IDMS) according to the
protocols of Dam et al. (2002), Jonge et al. (2011) and Cipollina et al.
(2009). More details of the method for the analysis of intracellular
metabolites are described in Lameiras et al. (2015).

Experimental errors displayed in Tables 1—4 correspond to the
standard deviation, and for Tables 5 and 6, they correspond to the
standard deviation of the mean (sx = s/v/n) (Wellmer, 1998).
Where s is the sample standard deviation and n is the number of
the means of samples. Tables 5 and 6 show the arithmetic means
(average values) of the means of samples and their corresponding
standard deviation of the means.

3. Results and discussion
3.1. Analysis of intracellular metabolites
Intracellular metabolites from the tricarboxylic acid cycle,

glycolysis and pentose phosphate pathway, as well as nucleotides,
were quantified. Tables 1—4 show the specific concentrations of the
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Table 5
Average of the concentrations of intracellular metabolites (umol/g).

Metabolites This work (average values) Lameiras et al. (2015)

Glucose 3.565 + 0.952

Glucose-6-phosphate 1.769 + 0.164 3.482 + 0.131

Fructose-6-phosphate 0.385 + 0.045 0.843 + 0.04

Fructose-1,6-bisphosphate  0.417 + 0.058 0.212 + 0.023

Glyceraldehyde-3- 0.019 + 0.003 0.018 + 0.003
phosphate

Dihydroxyacetone 0.158 + 0.020 0.238 + 0.025
phosphate

3-phosphoglycerate 0.574 + 0.061 0.542 + 0.043

2-phosphoglycerate 0.056 + 0.005 0.049 + 0.003

Phosphoenolpyruvate 0.041 + 0.009 0.054 + 0.007

6-phosphogluconate 1.039 + 0.172 0.283 + 0.015

Ribulose-5-phosphate 0.123 + 0.022 0.144 + 0.003

Ribose-5-phosphate 0.325 + 0.025 0.329 + 0.01

Xylulose-5-phosphate 0.217 + 0.034 0.252 + 0.009

Sedoheptulose-7-phosphate 0.524 + 0.044 1.102 + 0.041

Erythrose-4-phosphate 0.004 + 0.0005 0.008 + 0

Citrate 13.915 + 1.027 15.982 + 0.723

Isocitrate 0.213 + 0.026 0.215 + 0.01

a-Ketoglutarate 0.616 + 0.062 0.906 + 0.087

Succinate 1.324 + 0.295 0.649 + 0.025

Fumarate 1.021 + 0.066 0.844 + 0.034

Malate 2.776 + 0.202 3.203 £ 0.131

Trehalose 62.703 + 18.229 66.73 + 3.377

Trehalose-6-phosphate 0.069 + 0.013 0.061 + 0.007

Glucose-1-phosphate 0.07 + 0.007 0.07 + 0.004

Glycerol-3-phosphate 1.518 + 0.229 0.147 + 0.005

Mannose-6-phosphate 0.566 + 0.054

Uridine-5-diphosphoglucose 1.655 + 0.103

Adenosine monophosphate 0.336 + 0.044

Adenosine diphosphate 1.115 £ 0.110

Adenosine triphosphate 2.964 + 0.142

Uridine monophosphate 0.077 = 0.010

Uridine diphosphate 0.128 + 0.007

Uridine triphosphate 0.609 + 0.058

Guanosine monophosphate 0.192 + 0.034

Guanosine diphosphate 0.206 + 0.008

Guanosine triphosphate 0.815 + 0.070

intracellular metabolites and the concentrations of extracellular
glucose at the steady-state for all the conditions. It was assumed
that the chemostat experiments would result in similar intracel-
lular metabolite levels during steady-state. First of all, because the
sugars used as substrates were highly similar (glucose, fructose and
sucrose) and all enter the central metabolism via glycolysis. Second,
because the cell growth rate was the same in all experiments
(Gelain, 2020). The Tukey test with 95% confidence interval (Ori-
ginPro 8 software) was applied to analyse the average values for the
replicates. The test was applied between the conditions G101 and
G102, G201 and G202, FG1 and FG2, S1 and S2. Statistically sig-
nificant differences in concentrations of metabolites are high-
lighted in blue (Tables 1—4).

The conditions evaluated were divided into two groups, first
group composed of the conditions using glucose as the sole carbon
source (G101, G102, G201 and G202) and the second group
composed of the conditions using fructose/glucose and sucrose
(FG1, FG2, S1 and S2). To verify the similarity of the values of the
intracellular metabolites for each group, it was calculated how far
each specific concentration of the metabolite analysed for each
condition was from the average of all the conditions (Equation (1)).
If all the metabolite concentrations from each group are close to the
average, which would be expected, the D;; value is close to zero
percent.
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(m=%)*+(Av—x)°
Dm(%) = 2 100 1
m(%) - (M
Where Dy, is the difference in the specific concentration of the
metabolite analysed regarding the average of the conditions for
each group, m is the value of the specific concentration of the
metabolite analysed (Tables 1—4), Av is the average of all the spe-
cific concentrations of the metabolite analysed for each group, X is
the average between m and Av. The values of D, are presented in

Tables 1-4.

3.2. Presence of extracellular polysaccharides

The presence of polysaccharides in the culture supernatant
during the steady-state was confirmed through ethanol precipita-
tion, followed by enzymatic hydrolysis for the experiments with
glucose at 10 g/L (G101), sucrose (S1) and fructose/glucose (FG1).
Ethanol precipitation provided a white coloured substance that was
hydrolysed by beta-glucanase only generating glucose for all the
samples at retention times close to 7.9 min. The release of glucose
after hydrolysis of the polysaccharides suggests the presence of
beta-glucans.

FT-IR analysis of the precipitates from all the conditions (Fig. 1)
shows a clear peak in the region of polysaccharides (1200-
900 cm~ 1) (Thumanu et al., 2015). Proton NMR analysis was applied
to obtain more information about the properties of the extracellular
polysaccharides. The samples analysed were the conditions with
glucose at 10 (G101) and 20 g/L (G201), fructose/glucose (FG1) and
sucrose (S1). The samples presented similar profiles. Fig. 2 shows
the results for the condition at 20 g/L of glucose (G201). The proton
NMR spectrum of polysaccharides is mainly composed of three
regions: the ring proton region (3.1—4.5 ppm); the anomeric proton
region (4.5—5.5 ppm); and the alkyl region (1.2—2.3 ppm) (Ismail
and Nampoothiri, 2010). The region between approximately 7
and 8 ppm could indicate the presence of aromatic compounds
(Kuplich et al., 2012). Peaks corresponding to the ring proton region
and one peak close to the anomeric proton region can be observed
in Fig. 2.

All chemostat experiments started when the carbon source from
the batch stage was depleted. For G202 condition, for example, the
batch stage started with 10 g/L of glucose and, after 23 h, it was
switched to continuous culture using 20 g/L of glucose in the feed.
Before reaching the steady-state, a transition stage was observed
(stage preceding the steady-state of CO; and cells). This behaviour
was observed in all experiments after the batch stage. Different
colours of the cells were observed for the different stages. Fig. 3
shows that the colour changed from brown-yellow to white-
yellow. Although viscosity was not measured, the observed vis-
cosity of the medium also changed, it was higher during the steady-
state (C) than during the batch (A) and transition stage (B). How-
ever, the supernatant was not viscous, only with the presence of the
cells the medium appeared to be more viscous.

The main reason for these alterations is probably related to the
increase in the stirring speed from 200-400 rpm (batch culture) to a
constant speed of 600 rpm (continuous culture). Extracellular
polysaccharides were observed from the batch cultures until the
steady-state of the continuous cultures. Therefore, the increase in
the stirring speed did not induce the production of poly-
saccharides; however, this change probably influenced the colour
of the pigments secreted and the structure of the polysaccharides
(apparent increase in broth viscosity). The microorganism could
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Table 6
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Average of mass-action ratios considering all the conditions for some intracellular metabolites: 2-phosphoglycerate (2PG), 3-phosphoglycerate (3PG), Adenosine diphosphate
(ADP), Adenosine monophosphate (AMP), Adenosine triphosphate (ATP), Citrate (Cit), Fructose-6-phosphate (F6P), Fumarate (Fum), Glucose-1-phosphate (G1P), Glucose-6-
phosphate (G6P), Glucose (Gluc), Isocitrate (iCit), Mannose-6-phosphate (M6P), Malate (Mal), Phosphoenolpyruvate (PEP), Ribose-5-phosphate (Rib5P), Ribulose-5-phosphate

(Ribu5P), Xylulose-5-phosphate (XyI5P)

[G6P][ADP]/[Gluc][ATP] 2.7.1.1 Hexokinase 0.25 + 0.05 4.7 £0.8x10°
[F6P]/[G6P] 5.3.19 Phosphohexose isomerase 0.22 + 0.01 0.32 +0.08
[G1P]/[G6P] 54.2.2 Phosphoglucomutase 0.04 + 0.003 0.058 + 0.003
[2PG]/[3PG] 54.2.1 Phosphoglycerate mutase 0.09 + 0.01 0.092 + 0.004
[PEP]/[2PG] 4.2.1.11 Enolase 0.72 + 0.09 41+07
[Rib5P]/[Ribu5P] 5.3.1.6 Ribose-5-phosphate isomerase 3.11 £ 042 3x1
[Mal]/[Fum] 4212 Fumarate hydratase 2.77 £ 0.22 43 +0.7
[XylI5P]/[Ribu5P] 5.1.3.1 Ribulose-phosphate 3-epimerase 1.82 + 0.06 1.7+ 08
[M6P]/[F6P] 5.3.1.8 Phosphomannose isomerase 1.51 + 0.08 0.8 + 0.2
[iCit]/[Cit] 4213 Aconitate hydratase 0.02 + 0.002 0.06 + 0.02
[ATP][AMP]/[ADP]? 2743 Adenylate kinase 0.86 + 0.15 1.2+03
[ATP]/[ADP] 2.80 +0.23 ~10°
([ATP]+0.5[ADP])/([ATP]+[AMP]+[ADP]) 0.80 +0.01 0.7 - 0.95

a — Equilibrium constants (Keq) reported by Canelas et al. (2011), [ATP]/[ADP] reported by Meyrat and Ballmoos (2019), and [G6P][ADP]/[Gluc][ATP] reported by Kubota and

Ashihara (1990). b — Energy charge range reported by De la Fuente et al. (2014).

have changed the structure of the polysaccharides to protect the
hyphae from the higher shear stress.

3.3. Evaluation of the concentrations of intracellular metabolites

The high experimental errors observed for some specific con-
centrations of the metabolites (Tables 1—4) can be attributed to a
possible heterogeneity of cells inside the bioreactor caused by the
consumption of fragments from polysaccharides, which can be
released from the cell wall due to the shear stress (Rau, 1999). The
bioreactor present regions with different shear levels and conse-
quently, could also present regions with different concentrations of
fragments. Thus, the cells would be in the presence of a concen-
tration gradient of these fragments. Gentiobiose was suggested by
HPAE analysis at retention times close to 32.7 min, principally for
the conditions using glucose as the carbon source (Gelain, 2020).
This disaccharide is probably a fragment from extracellular
polysaccharides.

All the conditions were at steady-state of cell concentration and
CO,, and differences observed in Tables 1—4 can be due to the
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Fig. 1. FT-IR analysis of the precipitates from all the conditions (G101, G102, G201,
G202, FG1, FG2, S1 and S2).
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consumption of fragments from extracellular polysaccharides and
the products from their hydrolysis. The changes highlighted in
Tables 1-4 were not considered as resulting from sample pro-
cessing and/or analytical errors due to the low experimental errors.

The possible influence of the consumption of fragments from
extracellular polysaccharides on metabolite concentrations can be
similar to what is observed in studies evaluating disturbances in
the intracellular metabolism provoked by different pulses of sub-
strates. For example, Wang et al. (2019) reported a study about the
response of A. niger grown under glucose-limited chemostat con-
ditions to extracellular glucose stimuli. They observed a quick
response of the central carbon metabolism intermediates to both
levels of glucose pulse evaluated.

A possible proof that the microorganism consumed fragments
from polysaccharides is the secretion of extracellular enzymes
identified by a shotgun proteomics analysis and the estimation of
enzymatic activity (Gelain et al., 2020). The presence of several
extracellular enzymes indicates that fragments were being
consumed and they acted as inducer substrates (Gelain et al., 2020).

The microorganism consumed the carbon from the feed at a
constant rate and used this carbon to synthesize components such
as extracellular polysaccharides. Fragments from these poly-
saccharides probably started being released due to the shear stress
and consumed due to the carbon-limited condition, thus creating a
second carbon flow rate. Therefore, there was a possible carbon
recirculation and based on the different concentrations of extra-
cellular and intracellular glucose even for the duplicates (Table 1),
the concentration of carbon was not completely stable at steady-
state. This instability of carbon outside the cells could conse-
quently have influenced the carbon flow rate into the cells.

The high values of D, observed for several metabolites analysed
including glycerol-3-phosphate, trehalose-6-phosphate, ribulose-
5-phosphate and succinate indicate instability of their concentra-
tions between the conditions of each group. Assuming that the
fragments of polysaccharides contributed to increasing the exper-
imental errors, they could also have contributed to the instability
observed for the concentrations of some metabolites.

The average of the intracellular metabolites was compared with
the results presented by Lameiras et al. (2015) in Table 5. These
authors optimized the method used in this project for quantitative
analysis of metabolites from continuous culture. Lameiras et al.
(2015) presented continuous cultures using Aspergillus niger
NW185, glucose as the carbon source and dilution rate close to the
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Fig. 2. Proton NMR, glucose at 20 g/L condition (G201).

Fig. 3. Different colours between the batch (A), transition stage (B), and steady-state of cells and CO, (C) for G202 experiment. (For interpretation of the references to colour in this

figure legend, the reader is referred to the Web version of this article.)

one used here, 0.043 h™". Interestingly, the concentrations of the
majority of the metabolites (Table 5) are similar to those obtained
by Lameiras et al. (2015).

To evaluate the results of the intracellular metabolites presented
in Tables 1—4, it was performed analysis of the mass-action ratios
for some reactions considering the average ratios of all the condi-
tions (G101, G102, G201, G202, FG1, FG2, S1 and S2). Table 6 pre-
sents the results of mass-action ratios and indicates that the
majority of the reactions analysed was close to the equilibrium,
except for the [PEP]/[2PG] ratio, which was almost 6 times lower
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than the equilibrium. [ATP]/[ADP] ratio provides a value much far
from the equilibrium due to the cell growth reactions and [G6P]
[ADP]/[Gluc][ATP] ratio is also far from the equilibrium providing
the driving force that moves the metabolites through the glycolytic
pathway (Karp, 2009). The average energy charge calculated was
0.80 + 0.01, which is considered normal for many organisms
growing under optimal conditions (De la Fuente et al., 2014).
Fragments from extracellular polysaccharides could have
created an unpredictable carbon flow rate into the cells and this
possible heterogeneity provided by the presence of fragments was
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reflected in the different concentrations of metabolites presented
in Tables 1-4 even for the duplicates (highlighted in blue in
Tables 1—4). Metabolic profiles generated were influenced by a
complex extracellular environment possibly containing different
fragments at different concentrations; this complexity imposes
difficulties to propose correlations between the metabolic profiles
and the conditions.

Average values of the intracellular metabolites employing all
conditions (Table 5) seem more suitable for representing the
intracellular behaviour of T. harzianum, assuming that the con-
centrations of the metabolites remain within a range based on the
stability provided by the steady-state (at least 6 residence times).
To improve the quantification of intracellular metabolites when
there is an influence of fragments from extracellular poly-
saccharides, more samples at different times should be taken for
each sampling day during a few days, and then an average of the
averages from each sampling day could be used. In this work, it was
taken only one sample per sampling day for 3 days, and then it was
calculated an average.

Since the presence of extracellular polysaccharides in the
growth culture was never reported for the strain used, this work
provides interesting data about their influence on the intracellular
metabolite concentrations under carbon-limited conditions and
this behaviour must be considered for the optimization of the
method in future works. Additionally, an optimized method must
be used to guarantee the absolute quantification of the concen-
trations of the metabolites employing T. harzianum and this will be
addressed in future works.

4. Conclusions

Intracellular metabolites were analysed during the cell growth
of T. harzianum P49P11 using different limiting carbon sources. The
production of extracellular polysaccharides by T. harzianum P49P11
was discovered in this work. Some specific concentrations of the
intracellular metabolites analysed were different regarding their
duplicates and the analysis provided high experimental errors. The
possible consumption of fragments from extracellular poly-
saccharides by the cells under carbon-limited conditions might
have influenced the estimation of intracellular concentrations of
the metabolites due to a possible heterogeneity of the cells inside
the bioreactor. The averages of the metabolite concentrations based
on the similar conditions used in this work seem more suitable for
representing the metabolic profile of T. harzianum grown with the
dilution rate of 0.05 h~. This study has provided information about
the intracellular behaviour of the wild type strain T. harzianum and
challenges of the analysis imposed by using carbon-limited con-
ditions during the production of extracellular polysaccharides.
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