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A B S T R A C T

This thesis concerns the application of different multi-objective optimization (MOO)
methods and strategies for finding the optimal envelope for a given building plot
and lighting performance indicators. More specifically, the PV potential and day-
lighting potential of the building are maximized using different optimization solvers.
Auxilliary objectives are introduced to constrain the model to a certain compactness
and size. The method utilises an existing data framework called TopoGenesis and
solves the problem using the PyGmo library.

A ray tracing is used to find all possible collisions between the objective test
points and the building mass and environment. The problem is first presented as a
standard integer programming problem, but solving this problem is not feasible if
complexity needs to be kept at a reasonable level. An alternative method of continu-
ous optimization is therefore proposed that uses (meta)heuristics to find an optimal
solution for maximizing the objective functions. The occupation status of the mass-
ing is used as inputs for the decision variables.

After the application of this method on small scale toy problems, a few of the
design options are selected and evaluated by their performance indicators, as well
as the measure with which the option makes sense from a more traditional design
perspective. The comparison of the performance and results of both methods give
insight into the recommended workflow, settings, and pitfalls for finding an opti-
mal solution to a multi-criteria design problem with visibility objectives. From the
initial results, the Non-Sorted Genetic Algorithm seems to be the best option for
solving these types of problems, and the PV potential objective is validated. The
Daylighting potential objective performs less satisfactory and suggestions are made
on alternative approaches for this metric.
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1 I N T R O D U C T I O N

Increases in labour, land, and development costs have decreased the attractiveness
of affordable housing projects in the Netherlands. In the past, government policies
were instituted to create new subsidized housing projects, but these have largely
been discontinued, decreased in scope or scale, or privatized. Combined with the
current general housing shortage, high quality but affordable housing has started
to become a scarcity [Nijskens and Lohuis, 2019; Boelhouwer, 2020].

Due to an increasing need to limit greenhouse gas emissions and the significant
share of almost 40% of the building industry in this aspect [IEA, 2016], making
the building industry more sustainable is a high priority for governments and cor-
porations alike. Both reducing emissions during construction and finding more
sustainable ways of providing energy for the operation of buildings are strategies
that can be employed to achieve these goals. One of the avenues for achieving these
goals is implementing smarter designs with regards to energy usage, in particular
the sun’s energy.

1.1 solar resources

Direct insolation can supply the building with energy from photovoltaics, as well
as heat up the building (thereby decreasing heating demand). At the same time,
daylight access has been proven to increase productivity in offices [MacNaughton
et al., 2021], increase the value of real estate [Turan et al., 2020], increase student
performance in schools [Elkington, 1999] and more generally provide an increase
in mood and health [Aries et al., 2015]. Regarding daylighting and insolation, the
Dutch Building Decree (Bouwbesluit) has determined that living spaces (verblijfs-
ruimten) receive an area of daylighting according to a minimal amount of m2, or a
percentage of that living spaces’ area. The way this is calculated is through calcu-
lating the area of all valid openings in the facade and reducing this area by factors
such as projection angle, shadings or obstructions, window frosting etc. The result
of this is the equivalent daylight area. The calculation of this equivalent daylight
area has certain disadvantages however.

Firstly, aspects that influence this value need to be known beforehand. This
means overhangs, shadings, window angles etc. all need to be known when es-
timating if the minimum demands can be met by the current design. In the earliest
design stages however, these factors may still be unknown or up for debate. Sec-
ondly and more importantly, these calculations only take factors into account that
are inside the building parcel and only estimate the daylighting for the proposed
building and not its effects on the surrounding area. This means that any shading
by surrounding buildings and the shading by the proposed building on surround-
ing areas might be neglected in this phase of the design. To remedy this problem,
municipalities usually employ their own norms for insolation and daylight access
on top of the equivalent daylight area method. Most municipalities use (a modified
version of) the TNO norms which state:
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2 introduction

• at least 2 possible hours of insolation per day in the period of 19th of february
– 21st of October (8 months) in the centre of the windowsill inside the window”
(lenient norm)

• at least 3 possible hours of insolation per day in the period of 21st of february
– 22nd of November (10 months) in the centre of the windowsill inside the
window (strict norm)

The The Hague municipality for example modifies the ‘lenient’ norm by adding
that only solar positions of 10

◦ or more may be taken into account, while the entire
facade may be taken into account, regardless of window position. [Zonneveldt; L,
2005]

Both passive heating and active energy generation by the sun are attractive op-
tions for designers, but balancing these factors with other design variables is a
complex task that has to be considered as early as possible in the design process,
since here the largest difference can be made on the eventual performance of the
building [Paulson, 1976]. Building envelopes represent the boundaries of the mass
that a building can potentially assume. They are tools used in the early design
stages to limit the maximum extents of a design and also to ensure certain design
objectives can still be achieved. Generally, the objectives that these envelopes are
created for pertain to solar access (solar envelopes). The goal of implementing a
solar envelope in the design phase of a project is to ensure the building and its
surroundings are exposed (or remain exposed) to the sun for a certain period of
the year. A building envelope applied in the early design stages plays an important
role regarding energy performance [Depecker et al., 2001].

1.2 making decisions

It can be recognized that the variables described in the previous section can be
interconnected, conflicting, or reinforcing towards each other. To make decisions on
multiple variables and diverging goals, several industries have successfully applied
operations research techniques such as Multi-Objective Optimization (MOO) and
Multi-Criteria Decision Analysis (MCDA) in the past. There is an increasing trend
to also apply these techniques to the built environment [Huang et al., 2011]. This
means there exists a gap between what is currently standard practice and what is
possible. This thesis is an attempt to research the nature of this gap, find a workable
methodology for a specific set of energetic, climatic, and solar design objectives, and
explore the merits of the different approaches to such problems as described in this
paragraph. In the next section, a brief overview of the proposed problem will be
given.

1.3 problem statement

In order to introduce the general problem, the following input, output, and objec-
tives of the to be developed method are identified. A solar envelope will be created
for to get an idea of the optimal massing of a building to make efficient use of the
sun’s energy. Two of the objectives relate to the solar performance of the building
massing and can be used to get a sense of the suitable solar envelope, while the
other objectives have an auxiliary function to better control the final shape of the
mass. These objectives as well as their objective functions and the reasoning behind
their inclusion are formalized in more detail later in the paper:
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Input Type Unit Description
x [xi]b× 1

xi ∈N

none Array of indices for all possible vox-
els in the configuration

F1 function kWh/year Objective function for the PV Per-
formance of the configuration

F2 function lux/year Objective function for the Daylight-
ing Performance of the configura-
tion

F3 function none Objective function for the Relative
Compactness of the configuration

F4 function none Objective function for the Urban
Density of the configuration

Output Type Unit Description
C [Ci]b× 1

[Ci] ∈ [0, 1]
none Configuration of the occupation sta-

tus of the massing, expressed as an
array of decision variables

Problem: Given an array x of b amount of voxels and the objective functions
F1, F2, F3 and F4, the method must produce a combination of decision
variables C that is not dominated by other configurations in regards to its
performance towards these objectives

Table 1.1: Overview of the multiple-objective problem statement

1.4 thesis structure
The rest of the thesis is organised as follows: Chapter 2 establishes the research
framework: Disciplinary approach and scope, current literature and methods, and
research questions are given. The objectives and objective functions as introduced
in table 1.1 are explored in more detail. Chapter 3 describes the developed method:
first by its constituent toy problems and then as a proposed complete method. Fi-
nally, an application of the method on the case study is provided. Chapter 4 con-
cerns the evaluation of the developed methods. Conclusions and further research
is presented here. Finally, Chapter 5 contains the personal and academic reflection.
At the back, Chapter 6, there is an appendix containing the results and flowcharts,
pseudocode, and visualisation of the developed algorithms.





2 R E S E A R C H F R A M E W O R K

This chapter presents the research framework within which the thesis takes place.
First, the approach and scope are given from a disciplinary perspective. Some
relevant literature for the development of the method is then explored. After this,
the general objectives, research questions, deliverables, and design objectives are
described and the final section of the chapter formalises these objectives into a
problem statement that can be used in the following chapter to devise the main
method.

2.1 disciplinary approach and scope
The context, objective, scope, research questions, and objective functions are identi-
fied in the following sections. Along with this, the relevant scientific background is
explored through the literature review. This includes topics such as the state of MOO

and MCDA (both general and more specifically in relation to the building industry),
solar simulations, and generative design in the building industry.

After this, the key design objectives are modified so they can be included in the
method. For each objective, a simulation or calculation is done to find the perfor-
mance of each voxel for the entire year towards this objective. These aggregated
scores are then compared using different MOO methods. Scoring is measured per
voxel so that the impact of the inclusion of a certain voxel in the mass can be ex-
timated. The resulting values for each variable are then used to generate different
massings (configurations) in the form of toy problems, and these massings can then
be evaluated on how well they perform per each different MOO method.

From this, the research will conclude with suggestions on what optimization
methods perform best for what purpose and in what context. The results are vali-
dated by comparing the relative performance of a sample of the optimal solutions
to a daylighting simulation using Radiance, a common tool used for lighting anal-
ysis. This should give an idea if the results are realistic. From there, a verdict can
be reached on whether the method works for only the objectives researched in the
paper or whether it is valid for different problems as well. The problem is explored
and described in detail from section 2.3 to 2.5 and is interdisciplinary in nature as
illustrated by the Euler diagram in figure 2.1.

2.1.1 scope

The research concerns the testing of different optimization strategies with a specific
set of criteria. It must describe a methodology for implementing MOO methods to
find (near) optimal massings at a building scale. This means that the scales above
this (neighbourhood, city, region) as well as below it (room, building detail, compo-
nent) are not included in the research. The results of the research should however
be suitable for use as a baseline to make informed design decisions. The focus and
purpose of the research is to aid in the earliest stages of the design process without
limiting the freedom of the designer too much. This means that the end result will
always concern a configuration of voxels and their performance towards the criteria
applied in the method, and will never represent an actual zoning of the rooms or
design of the building. The diagram below is used to illustrate the intended posi-

5



6 research framework

Figure 2.1: Euler diagram of the relevant disciplines and research areas

Figure 2.2: Positioning on design-planning axis (own image, emblematic)

tioning on an axis that represents planning or design intent.

For practical reasons, some simplifications and assumptions also have to be made
on the goals that are considered when applying the MOO. By limiting the number of
criteria we can keep the focus of the research on the performance and ease of use of
the MOO methods in the context of generative building design. The result is a voxel
cloud representing a mass that corresponds to the solar envelope. Specifically, the
considered objectives are as follows:

1. PV potential of the massing

2. Daylighting potential of the massing

3. Heat retention potential of the massing (constraint-like)

4. Floor Space Index of the massing (constraint-like)

In 2.4 and 3, how these criteria are calculated will be explained in further de-
tail. All aspects beyond this that might influence the building performance are not
to be taken into account during the research. Examples of this include but are
not limited to: Structural design, facade design, (functional) zoning, construction
techniques, shading strategies, alternative sustainable energy generation, artificial
lighting strategies, (end) users, cost analysis, rent estimation, proximity to ameni-
ties etc. Python will be the language used for programming the method in order to
ensure reproducibility and more convenient library integration.

Below is an overview of aspects included and excluded within the scope of the
research:

Within the scope
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• MOO strategy and methods in Python

• Daylight and sunlight simulation methods in Python

• Heat retention strategy through building compactness

• Generative design strategy

• Early design massing (conceptual stage and planning stage)

These matters relate to the subject but fall outside the scope of the research
project:

• Structural design

• Facade design

• Zoning and function assignment

• Construction techniques

• Material analysis

• Window shading strategy and glare analysis

• Artificial lighting strategy

• Energy generation strategy

• End user or actor research

• Cost and benefit analysis

• Accessibility analysis

• Anything below the building plot scale (room/detail/component)

• Anything above the building plot scale (neighbourhood/city/regional)

• Late design development (design development stage and construction design
stage)

• Occupancy stage building performance

• Post-Occupancy stage building performance evaluation

2.2 existing literature, methods, and libraries
In the next section, the most important conclusions of the literature study on day-
lighting simulations and MOO and MCDA methods have been collected to give an
overview of the topics and writers researched and the lessons learned from these
texts. Searches were conducted using Google Scholar. At the end of the section,
relevant libraries that apply these methods are listed.

2.2.1 daylighting simulations with Radiance

The research into simulation of daylighting is predominantly focused around offices,
schools and hospitals etcetera, i.e. non-domestic buildings. This is mainly because
the activities pursued in these types of buildings require more and higher quality
daylighting [Tavares and da Costa Silva, 2008]. The most commonly used tool for
these types of simulation is RADIANCE and trust in these types of tools is on the
rise [Reinhart and Walkenhorst, 2001]. However when analysing the accuracy of
different daylight simulation methods, Reinhart and Herkel find that the quality of
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a simulation is highly dependent on whether hourly illuminances are considered
in the estimations. This means it is important to simulate these hourly values and
include them in the decisionmaking in the design phase of a building project. The
Radiance method is put forward as a user-friendly approach to daylight simulation
for novice users and is becoming one of the standard methods taught in architec-
ture schools[Ward, 1995]. This is due to the method ”being a powerful ray tracing
program that enables accurate and physically valid lighting and daylighting simu-
lations” [Compagnon, 1997]. This method works by combining deterministic and
stochastic ray-tracing in order to achieve speed as well as accuracy [Ward, 1994].

The influence of daylighting on the thermal performance of a building is another
field of interest for researchers in daylighting. A study attempts to reduce energy de-
mands for heating and lighting finds that the correct design parameters can reduce
these demands significantly while increasing daylighting performance [Zhang et al.,
2017]. Daylighting simulation can accurately predict actual daylighting values ac-
cording to Reinhart and Walkenhorst and Labayrade et al., but is highly dependent
on finding the correct parameters for the simulations. One review of daylighting
metrics finds that in residential architecture, matters such as access to direct sun-
light over the year are often overlooked and argues for inclusion of direct sunlight
into existing daylighting metrics [Dogan and Park, 2019].

Another relevant piece of research in daylight simulations especially its applica-
tion for generative design and MCDA is that of Anastasia Florou which describes
a feed-forward optimization methodology for precomputing the rays that impact
daylighting and insolation in order to use these values for a space allocation prob-
lem. These rays are coupled with a discretized representation of a building massing
to create an ‘interdependency graph’ to find the relations between all possible rays
and voxels in the model. See figure 2.3 for reference towards how this is structured.
An array that contains, for each voxel V, towards every other voxel V, whether each
ray R is blocked or not by that voxel. This feed-forward approach is suitable for the
application of MCDA on space allocation problems. However the objective of this
research is to search a larger decision space and also to deal with objectives that
have physical properties and deal with units, and are not psychological factors. In
the next section, this distinction between MCDA and MOO that needs to be defined
for the project is explained in more detail.

2.2.2 multi-criteria decision analysis and multi-objective optimization

In urban planning, decisions are made during several planning phases that have im-
plications on various domains and scales for different actors. For an individual or
group of people, it is (practically) impossible to understand all interdependencies
within the decision space. Subjective or context-specific decisions cannot defini-
tively be taken beforehand, but these decisions can be analysed beforehand. By
anticipating how these decisions affect the performance of the building, they can be
altered beforehand to produce better results.

The first approach to such multi-objective problems as described in the introduc-
tion is the use of mathematical programming. These methods can be used when
the problem can be brought to a closed (mathematical) form and will yield fast
results with high accuracy. Mixed-Integer Linear Programming (MILP) is suitable
for problems as described in this thesis since it allows to quickly generate a multi-
tude of plans and include both continuous and discrete decision variables. Schüler
et al. successfully implement a MILP method on a neighbourhood (and lower) scale.
Specifics are provided on what aspects of the model are standard and which ones
are novel but no detailed guide on the implementation is provided. This method is a
form of Mathematical Programming (MP) and similar or analogous methods to this
include Linear Programming (LP), Constraint Programming (CP), Integer Program-
ming (IP), Quadratic Programming (QP), and Binary Integer Programming (BIP). A
drawback of using integer solvers as opposed to continuous solvers is that compu-
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Figure 2.3: The structure of the interdependency graphs used for a MCDA approach to the
problem: nested arrays of hits and misses.

tationally, they are much harder to solve. These difficulties originate in the larger
dimensions, multiextremeness, and inaccurate values of coefficients of these prob-
lems [Sergienko and Shylo, 2006].

Another key piece of literature reviews the use of MCDA in the context of archi-
tecture and urban planning with regards to energy efficient construction and con-
cludes that a modified Analytic Hierarchy Process (AHP) (fuzzy) is applied the most
in general, followed by Technique for Order of Preference by Similarity to Ideal
Solution (TOPSIS) and Complex Proportional Assesment (COPRAS). For the selected
methods, the authors examine the capability to decompose the decision problem,
improve the transparency of the decision processes, facilitate comparison of various
decision alternatives, and identify their strengths and weaknesses. Weaknesses in-
clude: For AHP/TOPSIS a lack of consideration of interactions between various design
criteria. Simple Additive Weighting (SAW) and ÉLimination et Choix Traduisant la
REalité (Elimination and Choice Translating Reality) (ELECTRE) were rated lower in
terms of ability in pair comparison or ability to manage low quality input data. A
hybrid approach is becoming increasingly popular. To make comprehensive assess-
ments, it is better to use two or three different types of MCDA or a combination of
the two [Ogrodnik, 2019].

In another inventory research, Multi-Attribute Utility Theory (MAUT), AHP, Preference
Ranking Organization Method for Enrichment Evaluation (PROMETHEE), ELECTRE

and Differential Evolution - Simulated Annealing (DRSA) are described by their per-
formance in respect to ten criteria that sustainability assessment tools should satisfy.
The review shows that MAUT and AHP are fairly simple to understand and have good
software support. Only MAUT achieves robust results, while ELECTRE, PROMETHEE

and DRSA are non-compensatory approaches, accept a variety of thresholds, but suf-
fer from rank reversals. DRSA is less demanding in terms of preference elicitation.
DRSA also emerges as the easiest method, followed by AHP, PROMETHEE, and MAUT,
while ELECTRE is regarded as fairly difficult to use and understand [Cinelli et al.,
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AHP MAUT DRSA PROMETHEE ELECTRE

ease of use - / + / -
compensation - - + - +

support + + / + /
thresholds - / + + +

Table 2.1: Overview the most popular of the examined MCDA methods. DRSA seems to be
the most promising option

Figure 2.4: The process of selecting a suitable technique for multi-objective problems.

2014]. A general grouping of MCDA approaches is proposed by Slowinski et al. who
distinguish the methods by three underlying psychological theories: utility func-
tion, outranking relation, and sets of decision rules. This also gives information
as to the kind of problems MCDA methods are suitable for: problems that have no
exact, measurable objectives but instead objectives that relate more to psychological
factors. These objectives generally are immeasurable and relate to a smaller deci-
sion space. The table 2.1 gives a comparison of some of the more relevant of the
methods researched in regards to criteria that we are interested in such as their ease
of use or intuitiveness, their ability to compensate or use trade-offs, the support and
documentation available, and the ability to use threshold values which can be used
to model conditionals (such as the blockage of a ray of light).

One approach to multi-objective problems is using a heuristic method as opposed
to an exact method such as a programming. Caldas applies a genetic algorithm and
simulated annealing for finding the best trade-offs between conflicting objectives
such as building costs, energy consumption, and embedded greenhouse gasses
and successfully generates building geometries. Nagy et al. argue that applying
such methods allow designers to explore a wider range of design options than
would be possible using traditional methods. They apply the Non-dominated Sort-
ing Genetic Algorithm (2) (NSGA-II) for generative design. This algorithm seems
to perform well when compared to other solvers [Deb et al., 2002]. Many other
heuristic global optimization methods exist and have successfully been applied for
solving multi-objective problems in the built environment such as Modified Ant
Colony Optimization (MACO) [Shea et al., 2006], Non-Sorted Particle Swarm Opti-
mization (NSPSO) [Liu, 2008], or DRSA [Buitrago et al., 2016].
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It can be concluded that there are a multitude of decision support methods avail-
able that can be applied to the problem as described in previous sections. The
main takeaway from the studied literature has to be that there is no definite answer
to which method is best, although for different problems, different techniques are
more suitable. Due to inaccuracies and uncertainties inherent in MCDA and heuris-
tic MOO, employing a hybrid method and testing and comparing multiple types of
methods generally seems to be the desirable strategy. An exact method is often de-
sirable but heuristic methods are generally easier to implement and utilise. Finally,
a recommendation for selecting a suitable approach to multi-objective problems can
now be made in figure 2.4.

2.2.3 python libraries for optimization

Several libraries were examined. Google’s OR tools offers extensive documentation
and tutorials and enables linear, integer, and constraint optimization. CVXOPT en-
ables quadratic optimization capabilities, while SciKit-Criteria offers many different
MCDA methods such as ELECTRE, Weighted Sum Method (WSM), and TOPSIS. Finally,
PyGmo offers many evolutionary algorithms for optimization such as NSGA-II and
MACO.

2.3 objectives
The objective of the research is to devise a general methodology or workflow for gen-
erating building massings of high-performing solar and climatic configurations in
dense urban contexts by using multi-objective optimization techniques. To achieve
this, the problem must first be formulated in such a way that it can be understood
on a mathematical level. If possible, these formulas are then used in a mathemati-
cal programming of the problem. Else, a heuristic method is applied to the problem.

This method is to be applied in an environment that can represent the context of
the Randstad area in the Netherlands; a highly developed, interconnected, dense
urban region. To do this, toy problems are used to research and illustrate the mech-
anisms at play on a small scale, and a test case in Rotterdam is then used to validate
the results on the major scale. A conclusion has to be drawn on what method(s) and
approaches of MOO are most useful for these specific objectives. Ideally, this conclu-
sion can be extended to a general recommendation on what method is most valid
and practical for the more general type of socio-spatial-climatic objectives that are
pursued in the early stages of building design and planning projects. A simplified
representation of the process can be seen in image 2.5.

2.4 research question
Taking into account the objectives of the research, we can formulate the following
main research question to be answered:

“How can we utilize Multi-objective optimization techniques to gen-
erate massings of high-performing solar-climatic configurations in a
dense urban context?”

Looking at this question and the research objectives in a more detailed manner
raises sub-questions and objectives. These pertain to the terms MCDA, high perfor-
mance, massing, and solar-climatic configurations.

1. What exactly are the (solar-climatic) objectives we are pursuing and what are
the objective functions of the objectives?
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Figure 2.5: The research goals simplified

2. What type of problem are we trying to solve (in a mathematical sense)?

3. Of the examined MOO methods, which ones are most suitable for our type of
problem?

4. How can we define the performance of our massing? In other words, how can
we validate whether the massing performs better than alternative configura-
tions?

5. Can we generalize the application of these techniques for other configura-
tional problems? In other words, can we apply the developed methodology
on problems with different objectives?

2.4.1 deliverables

At the end of the research process, the following products should exist:

1. An inventory of decision support strategies available to us. Of this inventory,
the most relevant methods for our problem need to be identified and tested.

2. A mathematical formulation of the design problem to be used as input for
the MOO solving methods when possible. Alternatively, if a mathematical
formulation of the problem as a whole can not feasibly be used to generate
the building massing, a mathematical formulation for finding the objective
functions that can be utilized to generate the building envelope should be
provided.

3. A methodology for applying MOO on the criteria of solar, daylighting, spatial,
and energetic performance. This will be created as a program that can be used
independently of any CAD software so as to ensure accessibility and repro-
ducibility. More concretely, this will be in the form of Jupyter notebooks. The
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input will consist of a planning area and its attributes represented mathemati-
cally as mentioned in the first point, while the output consists of the decision
variables and the performance of the configuration that can be generated with
these variables.

4. In the thesis’ conclusion, a judgment will be made on the examined MOO

methods and their usefulness for this particular set of decision criteria. Finally,
a general recommendation is made on the application of these techniques on
similar design problems.

2.4.2 design objectives

Traditionally, projects referred to a ‘bottom line’ (or financial feasibility) as the only
metric of success of a project. With the increasing concern about environmental and
social sustainability, Elkington and others advocate a more holistic perspective on
development and have defined a new ‘triple bottom line’. This is known as People,
Planet, Profit (or more recently, prosperity). These categories provide a framework
for sustainable development by creating a bottom line for the social, environmental,
and economical effects a project may have [Elkington, 1999]. By taking this approach
to the problem, we can define and group our own design objectives within this
framework to make an attempt to approach the design problem integrally.

Creating a massing that has a high solar performance clearly relates to the envi-
ronmental aspect of a project by enabling usage of the sun’s energy in the form of
passive heating and active (PV) energy generation, thereby saving on energy usage
during the building’s lifecycle. Researchers have argued that sustainable building
corporations are more profitable [Ansari et al., 2015], while other researchers find
that the link between the socio-environmental sustainability of the building itself
and its value is less pronounced but that there is an increase in premium price and
rate of absorption [Mangialardo et al., 2018] while others still have even found that
there is no evidence supporting any of these claims [Warren-Myers, 2012]. Never-
theless, from Mangialardo et al. it can be inferred that even if the value itself of the
building is not increased, the (economic) attractiveness of a project can be positively
influenced by a more sustainable design development, both economically and so-
cially.

From all of this, it can be learned that while the direct financial gain from adopt-
ing the three bottom lines may be difficult to prove or quantify, it still is in the
interest of the developer to invest in these aspects in order to increase the economic
feasibility. The characteristics of a building may influence multiple aspects of this
triple bottom line theory and the following objectives can be formulated to emulate
the approach a developer may have to such a project:

People:
Daylighting of the building & daylighting of the surroundings: As previously men-
tioned, daylight access increases student performance in school and generally in-
creases health and mood [Aries et al., 2015; Elkington, 1999]. It can be concluded
that it is important to maximize the daylight access of the buildings’ users as well
as the residents and pedestrians in the surroundings of the building.

Planet:
PV energy yield of the building: Recent PV developments ensure that net zero en-
ergy usage in urban contexts can be achieved under the right conditions [Li et al.,
2015]. Starting from the 1st of January 2021 (later delayed to 1st of July 2021), all
newly built buildings in the Netherlands must be Bijna Energie Neutraal Gebouw
(Near Energy Neutral Building) (BENG) (Near Energy Neutral Buildings in Dutch)
[Ollongren, 2019]. These demands mean that (1) the maximum energy demand in
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kWh/m2.year of usage space AND the ratio between area of the facade and the
heated area of the building, (2) the maximum amount of primary fossil fuel usage
in kWh/m2.year of usage space and (3) the share of renewable energy % are all set
at fixed values for each type of building. An example: for residential buildings with
a facade area/heated area of less than 1.5, the maximum energy demand cannot ex-
ceed 55 kWh/m2.year, primary fossil fuel usage must be under 30 kWh/m2.year,
and the share of renewable energy must be over 50% [Ollongren, 2019]. Practically,
this means for us that we now know that new building projects need to take into
account a multitude of demands that get stricter over time. For building planners
this means that these demands have to be ensured in the design phase.
Heat retention of the building: As we know from the BENG demands mentioned
above, the ratio between the area of the facade and the heated area of the building
influences the ability of a (planned) building to pass the minimum requirements to
be labeled (near) energy neutral. Another way to view this metric is the building’s
compactness. Compactness can mean multiple things: Catalina et al. handle it as
relative compactness by taking the volume to surface ratio and comparing it to the
most compact shape with the same volume, arguing that a more compact building
loses less heat through its exposed surfaces. Others have simply analysed the ratio
between facade area and volume and found a strong correlation between this value
and the building energy consumption (r=0.91) [Depecker et al., 2001]. This value
only seems to hold up in harsh climates and the relation is less pronounced in mod-
erate climates such as that of the Netherlands, meaning this metric is less accurate
for the test case.

Profit:
Floor Space Index of the building: The floor space index of a building plot is the
total floor area of the building over the plot area. It is a direct indicator of the den-
sity of the urban fabric. Density of the urban fabric and land/real estate value are
directly related according to [Ottensmann, 1977]. This means that we can assume
that it is in the interest of the developer to maximize this value in order to maximize
profits off the lands usage.

The five objectives outlined above all have an optimal massing that correspond
to the best performing building configuration. The exercise of the thesis is to find a
method to generate a massing that performs well in all five of these criteria without
compromising too much in any of the criteria. In the next section, each criterion as
well as the total problem will be presented in formal terms.

2.5 objective functions

Now that the categories of the objectives have been defined, the next step is to
formalize the design objectives and afterwards the totality of the problem in math-
ematical functions. Starting with the two main objectives that relate to the solar
performance of the configuration. These objectives are the potential to generate
Photovoltaic energy, and the potential for access to daylight.

2.5.1 functions

The PV potential (F1) of a building or massing can be calculated as follows:

F1 = ∑
i∈[0,n)

∑
j∈[0,m)

Vi,jWi A (2.1)
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Where:

i indicates the index of the test points in the solar positions (hours of the year)
n indicates the total number of test points in the solar positions (hours of the year)
j indicates the index of the test point on the roof of the building
m indicates the total number of test points on the roof area of the building
Vi,j indicates the visibility status of the ith solar position from the jth test point
Wi indicates the global horizontal radiation of the ith solar position in Wh/m2

A indicates the area of a voxel in m2

The resulting value F1 is a measure of the PV potential of the configuration. The
unit is Wh and gives an indication of the total expected solar radiation on the roof
of the configuration for the entire year. This value can be used to estimate the per-
formance of PV panels installed on the roof of the configuration.

The Daylighting potential (F2) of a building or massing can be calculated as fol-
lows:

F2 = ∑
i∈[0,n)

∑
k∈[0,p)

Vi,kLi A (2.2)

Where:

i indicates the index of the test points in the solar positions (hours of the year)
n indicates the total number of test points in the solar positions (hours of the year)
k indicates the index of the test point on the facade of the building
p indicates the total number of test points on the facade of the building
Vi,k indicates the visibility status of the ith solar position from the kth test point
Li indicates the direct normal illuminance of the ith solar position in hectolux (hec-
tolux since this is the unit used in the Radiance tool)
A indicates the area of a voxel in m2

The resulting value F2 is a measure of the Daylighting potential of the configu-
ration. The unit is (hecto)lux and gives an indication of the illuminance; luminous
flux received per unit of surface area for the entire year. This metric gives an in-
dication on the amount and intensity of the direct sunlight received by the facade;
relevant for window, balcony, and shading in the later design phases. Aggregation
of these values normally is not done over the entire year but in order to remain
consistent with the other objectives this is the case in this method. Furthermore,
in full simulations, the indirect component of the daylight also plays a major role
in the total illuminance. This is however discarded in the optimization since this
(a) complicates the objective function and (b) the direct component is an often over-
looked metric as proposed by Dogan and Park.

For the Heat retention potential of the building, the following two approaches can
be taken as previously identified: the simple method of floor area over surface area
(shape coefficient or building coefficient C f ) which works for harsh climates used
by Depecker et al. and the more advanced relative compactness Rc of the building
compared to the most compact shape with the same volume used by Catalina et al..

(1) C f = Se/Vb [Depecker et al., 2001]
and
(2) Rc = 6×V

2
3

b × S−1
c [Catalina et al., 2011]

The similarities between the two methods can be seen clearly. Method 2 (Rc) is
used in the remainder of the thesis to guarantee accuracy of results since within the
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context of a Dutch climate, method 1 (C f ) would not be as valid and also is not a
dimensionless measure of performance. The result is objective function F3:

F3 = 6×V
2
3

b × S−1
c (2.3)

Where:

Sc corresponds to the surface of the envelope
Vb corresponds to the inner volume of the building

The resulting value F3 is a measure of the relative compactness of the entire con-
figuration. It is a dimensionless value, where a value of F3 = 1 corresponds to a
perfectly cube-shaped configuration. A value lower than 1 approaches a spherical
shape and a value higher than 1 means the shape is less compact than a cube of the
same volume. The lower the value, the more the configuration will be able to retain
it’s heat and minimize losses through the exposed facade.

For the Urban Density of the configuration, the Floor Space Index is used as a
measure of performance. A target value is set beforehand as is usually the case in
urban development projects.

F4 =
2w

w + t
(2.4)

Where:

w corresponds to the Floor Space Index of the building
t corresponds to the target Floor Space Index of the building

This value F3 reaches 1 when the target compactness is reached, and after this
yields diminishing returns on extra added floor space. The previous two objective
functions are dimensionless and essentially function as (soft) constraints in order to
limit the amount of space that gets allocated in the final configuration and ensure
some measure of contiguity between the assigned voxels.

2.5.2 standard integer programming formulation

If we now want to optimize any configuration, it is desirable to bring it into a
standard form. For the entire configuration, if we want to define the problem as a
mathematical programming that we can quickly solve using for example the sim-
plex method, we need to bring it to this form [Murty, 1983]:

Maximize:
f (x1, x2, ..., xn) = c1x1 + c2x2 + . . . + cnxn

subject to:
a11x1 + a12x2 + ...a1nxn ≤ b1
a21x1 + a22x2 + ...a2nxn ≤ b2
...
am1x1 + am2x2 + ...amnxn ≤ bm

x1, x2, ..., xn ≥ 0
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Where:
f is the objective function
x is the decision variable
n is the total number decision of variables
c is the cost (or gain) value
a is the constraint value
m is the total number of constraints
b is the constraint boundary

In matrix form this becomes:
x = (x1, x2, ..., xn)T

c = (c1, c2, ..., cn)T

b = (b1, b2, ..., bm)T

A =


a11 a12 ... a1n
a21 a22 ... a2n
...

. . .
...

am1 am2 ... amn


This can then be written as:

Maximize: cTx

subject to:
{

Ax ≤ b
x ≥ 0

It is important to note that this notation corresponds to the standard notation of
a (integer) programming problem and represents the objective score for the entire
configuration and not its constituent parts. If the objective functions as described
in the previous section are added into this framework, it quickly appears how the
problem is not linear nor straightforward to solve.
Assuming that the totality of the potential building volume available is discretzsed
into n number of voxels that can represent the presence or absence of building mass
and define a variable x for each of these voxels. This gives the following decision
variables:

0 ≤ x1, x2, ..., xn ≤ 1

and

x ∈ Z

After all, a building either occupies a space or it does not occupy that space. The
problem is now a (binary) integer programming problem. If the potential building
volume can be discretized into sufficiently small parts, a suitable resolution for the
massing can be achieved. When this approach is now applied to the objective func-
tions, a problem arises: In equations 2.1 through 2.4, it is shown what the objective
functions should look like. When these are rewritten to include these binary deci-
sion variables as in the standard formulation, it is found that that the occupation
status of a voxel may influence the cost value of any of the other voxels in regards
to F1 and F2, see image 2.6, and that the performance does not change linearly with
the changing of the decision variables:

It is theoretically possible to overcome these problems. The nonlinearity prob-
lem can be solved by piecewise linearization. Theoretically, by adding auxilliary
constraints on the variables, it should be possible to set the cost values for the
daylighting performance and solar performance variables cn to 0 when one of the
variables that influences variable xn is in an active state (i.e. one of these variables
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Figure 2.6: The interdependency problem. If we want to determine the value of a voxel (in
red) we need to know how much sun it catches, as well as how much it blocks
other voxels. However, if a voxel does or does not exist(i.e. it’s occupation status
is 1 or 0), the voxels that influence it and are influenced by it need to have their
score updated as well. This in turn might again influence the value of the original
voxel.
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Figure 2.7: The chosen decision-support method: Multi-Objective Optimization. It is desired
to compare the performance of many configurations on quantifiable metrics, but
the problem is too complex to be reasonably be brought to a closed form

holds value 1) [AIMMS, 2016]. This requires an exponentially increasing number
of constraints when the resolution of the model is increased by adding variables
(voxels) that could all potentially block rays coming from the sky or sun towards
the target voxel. Furthermore, if this method successfully were to be applied, a
final problem arises. Lets define the objective function by simply adding the costs
together as follows:

f (x) = ∑n
i=0 xi(c1i + c2i + c3i + c4i + c5i)

Where:
c1 is the FSI cost
c2 is the building daylighting potential cost
c3 is the surroundings daylighting potential cost
c4 is the heat retention cost
c5 is the PV potential cost
n is the number of voxels

This would theoretically give us (when the nonlinearity and interdependency
problems are solved) a workable programming. However we are now comparing
‘apples to oranges’. For instance, an increase of 10% past the required value in FSI
is desirable but if the added square meterage also causes the other four criteria to
lose a 2% points, the new solution is formally speaking more optimal, but would
likely not be considered better in the eyes of an architect, client, or developer. More
possibilities for weighting and normalization are required and a closed-form math-
ematical programming is not an option for the problem.

It can be concluded from the previous section that the problem is not linear in
nature and is not straightforward to solve. An alternative method for generating a
solution to the problem will need to be found. Furthermore, the target values (goal)
and weight for each objective are not included in this formulation. A more nuanced
approach to the problem is desired that can find (near) optimal solutions, ensures
more control on the scalability and guarantees realistic computation times. Due to
the large solution space, implementation and solving difficulty has to be limited by
dealing with the interdependency problem without applying a prohibitive amount
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of constraints and a heuristic is looking to be a more attractive approach to solving
the problem. The next chapter (3), describes how the objectives are integrated into
the method in more detail.



3 M E T H O D

Now the implemented method is described that generates near-optimal configura-
tions. In order to explain the method design process best, the subproblems will be
solved before proposing the complete solution to the problem. To do this, the chap-
ter is structured as follows: First, toy problems are defined to illustrate how each de-
sign objective of the optimization is related to its spatial configuration. This is done
through the creation of several toy problems that will be solved on a smaller scale.
The final toy problem shows how we the objective functions can be utilized to feed
into a solver that outputs a ranking of many configurations. These configurations
are then brought simulated in chapter 4 to compare their (relative) performance. In
the final section of each toy problem, an overview is given of the computation and
simulation speeds along with a visualisation of the result.

3.1 terminology
Before we can move on to the core of the implementation details, it is important
to define some terms and make clarifications on what the words that often return
in the chapter mean. Certain definitions are vague and can be used interchange-
ably, while other specialized terms have no clear bounds. The following glossary
attempts to elucidate the meaning of all of these concepts to help understand what
is meant by them.

3.1.1 generative design

• Lattice: A scalar field within a discrete 2D or 3D space. Represented as an
array of values that can represent spatial qualities.

• Voxel: A portmanteau of volume and element, like a pixel in 3D. In this work:
a single value within the lattice array.

• Mass: A group (array) of voxels representing the (maximum) volume of the
building.

• Configuration: An ordering (in 2D or 3D space) of voxels

• Massing: The process of obtaining the mass from a given design space.

• Envelope: Boundary of the mass

• Stencil: The neighborhood definition in a discrete 2D or 3D space.

• Environment field: Scalar, simulated values on a 2D or 3D grid with the same
structure as the voxel lattice.

3.1.2 decisionmaking

• Objective: The goal of the decision-maker. The objective consists of at least
two design criteria.

• Decision variable: A quantity that the decision-maker controls.

21
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• Decision space: The range of values these variables can take on.

• Global decision variable: A decision variable that affects the performance of
the entire design space.

• Local decision variable: A decision variable that affects the performance of an
aspect of the design space.

• Design criteria: Physical attributes of the final design.

• Design variable: A decision variable specifically applied to one of the design
criteria.

• Design space: The range of values that these variables can take on.

• Performance indicator: An aggregated value that quantifies the performance
towards a design criterion.

• Performance estimator: An estimated value of the performance towards a
design criterion.

• Global performance indicator: A performance indicator that informs the state
of the configuration as a whole concerning a certain design criterion.

• Local performance indicator: A performance indicator that informs the state
of a segment of the configuration concerning a certain design criterion.

• MCDA: The evaluation of multiple conflicting criteria.

• MCDM: The decision-making on multiple conflicting criteria.

• Function: Mathematical function.

• Spatial function: Space usage or occupation type (in an architectural sense).

• Cost function: Mathematical function for calculating scalar values of a voxel
towards a design criterion. ‘Cost’ is used to calculate desirable (for exam-
ple sunlight received) as well as undesirable (for example sunlight blocked)
performance indicator values.

• Objective function: Mathematical function for calculating the performance of
a configuration towards the objective. This function combines at least two cost
functions.

• Heuristic: A method to find an approximate solution to a problem

• Metaheuristic: A procedure to find or create a heuristic to solve a problem

• Potentials: The ratio between the current performance of a configuration to-
wards a design criterion and the maximum performance towards that design
criterion

3.1.3 daylighting and solar

• Radiance: The density of radiant flux per unit of emmitting surface area and
unit of solid angle. W/sr/m2

• Irradiance: The density of radiant flux per unit of receiving surface area.
W/m2

• Luminance: The luminous intensity per unit of emitting surface area. Cande-
la/m2.

• Illuminance: Total luminous flux per unit of receiving surface area. Lux.
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• Visibility: The unobstructed view towards a target direction from a point of
interest.

• Closeness: The distance (euclidean) between two points in 2D or 3D space.

3.1.4 clarifications

Now that these definitions have been clarified it is important to note a few things.
While heuristics are generally specific to a certain problem, metaheuristics are more
general by nature and can be applied to a larger number of problems. Exploring
the subtle differences and similarities between the two definitions can be an entirely
separate subject of study. Therefore, from now on the term heuristics will be used
without diving into the details of correct terminology. When heuristic is used from
now on, it refers to a: Non problem-specific strategy that guides the search process
by efficiently exploring the decision space to find near-optimal solutions. [Blum
and Roli, 2003].

Regarding the definitions of design criteria and decision criteria, design variable
and decision variable, design space and decision space, cost function and perfor-
mance indicator/estimator, mass, envelope and configuration, multi-objective op-
timization and heuristics/metaheuristics, and design and decision space: These
many definitions with only subtle differences tend to be confusing. From the litera-
ture studies, it seems the terms are often used interchangeably as well, adding to the
muddle of words. It is therefore now important to refer back to the problem state-
ment and generally chapter 2 for clarification. To reiterate and simplify: the goal of
the research is to design a methodology for generating building configurations that
perform well in regards to certain design criteria, by employing multi-objective
optimization techniques. To do this, objective functions need to be defined that
can be fed into a solver that can use a heuristic method to generate outputs which
can finally be validated. The next section gives an illustration of this methodology
design by the usage of toy problems.

3.2 toy problems
All coding of the problems as well as the test case application has been done in Mi-
crosoft VSCode using Jupyter notebooks. To ensure open access and reproducibility,
the Thesis Repository is hosted on GitHub. This work builds on a structure called
TopoGenesis which is an open-source Python package that provides topological structures
and functions for Generative Systems and Sciences for various application areas such as:

• generative design in architecture and built environment

• generative spatial simulations

• 3D image processing

• topological data analysis

• machine learning

This framework allows for the quick and easy construction of lattices and enables
us to use efficient methods and libraries such as NumPy arrays for the preparation
and processing of our functions in 3D. [Azadi and Nourian, 2020]

The following flowchart 3.1 gives a simplified overview of the inputs and outputs
that will be needed to develop the method. Decision variables are generated by
an optimizer. These variables are used to construct a configuration (mesh) from
which the configurations’ PV potential, Daylighting potential, and Floor space index

https://github.com/Maxketelaar/thesis
https://topogenesis.readthedocs.io/
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are calculated. The optimizer will find several best configurations. Of these, a
sample will be taken to be examined by their relative performance: If the relative
performance is comparable, the approach was successful.

3.2.1 T.P.1 environment and voxelization

The first toy problem concerns the preparation of the environment and voxelization
of the maximum building volume. The user input is a mesh that represents the
planning area, the dimensions and location of the building’s maximum boundaries,
and the number of divisions for the voxelization (i.e. the resolution of the method
to be applied). In the example below (3.2a), this is set as a cube with dimensions of
75x75x75 m, a division of 5, creating as output 125 voxels of 5x5x5 m as can be seen
in figure 3.2a.

3.2.2 T.P.2 solar path

The next output that is needed is an array of vectors for the positions (directions)
of the sun throughout the year. The user inputs a .epw file as weather file for
the location. In this instance, a .epw file of Amsterdam is used, approximating
the local climate. A location longtitude (4.3571 E) and latitude (52.0116 N) is also
needed. Then, the Sunpath function from Ladybug, an environmental simulation
tool, is called to actually generate the hours of year that are needed. Each day, every
hour, for every sun position with a z-coordinate above 0, the current hour of the
day, along with the solar direction, Global Horizontal Irradiance (GHI) and Direct
Normal Illuminance (DNI) are outputted into arrays. For the settings mentioned
above, this yields a total of 4460 test solar positions (hours of the year where the
sun is above the horizon), see also figure 3.2b.

3.2.3 T.P.3 PV potential of the lattice

Now the objective functions are ready to be included. For the purpose of demon-
strating the objective functions through the next four subsections, a random config-
uration is created. Starting with the PV potential of the lattice, the PV potential of
the configuration is calculated by finding the roof voxels, adding test points on the
roof, raytracing with the environment and for all rays that did not hit; summing the
intensity values in wH on each voxel (as reference for later) and also summing all
the values for the entire configuration. For reference, see also figure 3.3. To achieve
this, the equation 2.1: F1 = ∑i∈[0,n) ∑j∈[0,m) Vi,jWi A can be included for usage within
the TopoGenesis framework with voxels. The highest values reached as can be seen
in image 3.4b occur at the top of the roof where there are no obstructions. At
110474089 Wh on a yearly basis for each mesh face, or 883.8 kWh/m2 yearly, these
values are in line with expectations for yearly averages in the Netherlands [Dupont
et al., 2020].

3.2.4 T.P.4 Daylighting potential of the lattice

Similar to the previous toy problem, by calculating the intersections between test
points on the facade faces of the lattice and the context, an estimation can also
be made on the yearly daylight potential. To achieve this, the equation 2.2: F2 =

∑i∈[0,n) ∑k∈[0,p) Vi,kLi A is included. The flowchart 3.5 gives insight to the needed
inputs and outputs. The yearly lux values give an indication of the amount of
(direct) sunlight the facade may receive in a year. Matters such as glare and heat
gain are ignored in this case since they are heavily influenced by design decisions
such as materiality and window, shading, and balcony dimensions. Furthermore,
a drawback of this approach is that it simply sums the values for each solar hour

https://github.com/ladybug-tools
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(a) (b)

Figure 3.2: (a) The result of the first toy problem: In red a simple 5x5x5 ‘rubik’s cube’ with
voxels of size 15m3 and in light gray the imported environment. (b) The result of
the sun pathing toy problem: the arrows are directed towards the centre of the
lattice.

without taking the indirect component into account, so accuracy and validation
may be an issue as also explored later in the next chapter. The maximum yearly
value received on one of the facade faces is 683 gigalux, amounting to around 6

gigalux/m2 on a yearly basis at maximum. For the daylighting and PV potential,
the Pyembree library is used to greatly reduce computation times.

3.2.5 T.P.5 Heat retention potential of the lattice

The objective implemented is the heat retention potential of the lattice. This objec-
tive is included to ensure the resulting configuration remains contiguous and as
compact as possible to ensure heat losses are limited by the buildings shape. The

formula 2.3 F3 = 6×V
2
3

b × S−1
c is used to minimize the surface area to volume ratio.

As mentioned in chapter 2, there are two methods for calculating the relative
compactness of a configuration that are both valid to some extent. For the purpose
of demonstrating the difference in results between the two methods, a random con-
figuration is generated and then analysed.

The first method according to Depecker et al.:

C f = Se/Vb

Where:

Se corresponds to the surface of the envelope
Vb corresponds to the inner volume of the building

The second method according to Catalina et al.:

Rc = 6×V
2
3

b × S−1
e

Where:

Se corresponds to the surface of the envelope
Vb corresponds to the inner volume of the building

When two configurations are generated to compare the results from these calcu-
lations, it is found that the output of both methods generally relate to each other
in a 1:10 ratio. When the configuration becomes more extreme however, the ratio



3.2 toy problems 27

Figure 3.3: The flowchart for the first objective: maximizing yearly solar irradiation on the
roof.
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(a) (b)

Figure 3.4: (a) The result of the daylight potential toy problem: red values indicate higher
yearly illuminance values. (b) The result of the PV potential toy problem: Red
values indicate higher solar irradiation values.

between the two methods for computing compactness is no longer 1:10 and the
relative compactness is a more reliable method for edge cases such as these.

3.2.6 T.P.6 Urban Density of the lattice

The final objective is in place to ensure there is a limit to the amount of voxels that
are selected by the optimization process. This is achieved by using the formula 2.4:
F4 = 2w

w+t . This constrains the amount of selected voxels by never growing past a
value of 2, no matter how many voxels are selected. At the same time, it ensures
approximately the correct amount of voxels are selected. The score of the selected
random configuration is 0.837, indicating that it is close to the target FSI but has not
reached this value yet.

3.2.7 T.P.5 optimization

For optimization, the PyGmo library is used. This library contains many algorithms,
but for demonstrative purposes the only algorithms shown in this chapter are the
NSGA-II, Improved Harmony Search (IHS), and NSPSO. For the dimension of the
decision variables x, n (the total number of voxels) is used. The bounds are set
between (0,1) and it is specified that there are 0 integer variables: optimization
occurs continuously to avoid the issues with integer optimization mentioned earlier.
Later on, the decision variables are rounded to be able to find the configuration. The
number of generations g is set at 100, while the starting population size p is set at
64 for one run and 128 for another run, meaning there will be 64 or 128 individuals
used for crossover and mutation. Pygmo can accept the cost functions that have
been defined earlier and now the next step is to simply run the optimization and
extract the results as can be seen in figure 3.10.

Optimization takes around 11 hours for the settings described above. The results
are interesting: it can immediately be seen that NSGA-II yields the best results. In
the left column of solutions, the initial (seed) population is also highlighted in grey,
while in the left column in dark grey, the solutions of the optimization with a smaller
population can also be seen. Interestingly, the results do not significantly improve
with a larger population size. The five best solutions are highlighted and examined
in more detail. These are solutions 0, 1, 3, 4, and 5. The target FSI was set at 3,
meaning the goal is to have around 75 voxels in the final configuration. The results
have been added in table 3.1. Upon inspection of the generated shapes in figure 3.11,
several things can be noted. The most optimal shape has several ’gorges’ running
along the edges where light can penetrate deep into the building. At the same
time, the roof area is maximized. The second-best solution is an almost completely
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Figure 3.5: The flowchart for the second objective: maximizing yearly illuminance on the
facade.
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Figure 3.6: The random configuration has a relative compactness of 2.02, indicating it is not
a compact configuration.

Figure 3.7: The flowchart for the third objective: maximizing the compactness of the config-
uration.
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(a) (b)

Figure 3.8: (a) This is another randomly generated configuration. The score according to
the simple method is: 0.197 while according to the advanced method the score
is: 1.956. (b) The score of this edge case configuration according to the simple
method would be 0.37, while according to the advanced method, the score is 4.39

F1 PV F2 Daylight F3 Compactness F4 FSI Voxels

3.11a -8.090 -4.616 1.880 -1.038 81

3.11b -5.696 -6.623 1.293 -1.211 115

3.11c -3.964 -8.110 1.693 -1.080 88

3.11d -7.376 -5.246 1.867 -0.951 68

3.11e -3.905 -8.091 1.667 -1.107 93

Table 3.1: The optimization results: The best five solutions and their objective values for PV
potential (F1) in gWh/year, daylighting potential in gLux*100/year (F2), relative
compactness (F3), and floor space index (F4)

filled configuration with a few voxels cut out of the centre. The third and fifth
configurations are very similar in score and appearance, with a hollowed out core.
Finally the fourth configuration has a hollow core as well as a large roof area, but
does not achieve the target FSI value. Due to the discretisation of the results after
the optimization, some detail may be lost in the final results.

From these toy problem optimizations, several things can be concluded. First, the
question that is asked of the solver informs the answer: it is important to take a criti-
cal look at the cost functions since these determine the outcome of the optimization
and they mostly perform well. When picking the algorithm, NSGA-II clearly outper-
forms the other methods as can be seen by figure 3.10. IHS and NSPSO do not reach
the pareto front that NSGA reaches, but do improve on the starting situation. In
the next chapter, some improvements to the method in regards to the objective func-
tions will be presented, as well as a validation of the estimated solar performance
of the envelope by pairwise comparison. The chapter will conclude with the most
important lessons learned and suggestions for further development of the model.

F1 PV F2 Daylight F3 Compactness F4 FSI Voxels

3.11a -7.977 -6.034 1.661 -0.998 319

3.11b -6.524 -7.343 1.380 -1.082 377

3.11c -7.974 -6.007 1.604 -1.012 328

3.11d -7.203 -6.772 1.380 -1.074 371

3.11e -4.726 -8.847 1.838 -0.966 299

Table 3.2: The optimization results: The best five solutions and their objective values for PV
potential (F1) in gWh/year, daylighting potential in gLux*100/year (F2), relative
compactness (F3), and floor space index (F4)
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Figure 3.9: The flowchart for the fourth objective: constraining the configuration at approxi-
mately the desired size.
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Figure 3.10: Output of the final toy problem: Pareto frontiers of non-dominated solutions
with regards to the main objectives F1 (PV potential) and F2 (Daylight potential).
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(a) (b)

(c) (d)

(e)

Figure 3.11: The five best performing configurations after applying the optimization.



4 E VA L U AT I O N

In the previous chapter, the method that can be used for calculating optimal mass-
ings in regards to certain objectives has been described. The toy problems give an
illustration of the techniques used, but the accuracy and validity of the results is dif-
ficult to assess at such a low resolution. For this reason, a more detailed simulation
of the methods as described in the previous section is presented. The environment
remains the same, but the simulation takes place inside Rhino, a 3D modelling soft-
ware. The simulations are run using Ladybug and Honeybee, two tools that utilize
the Radiance method for conducting solar analysis. This chapter describes the im-
plementation of the validation and the lessons learned from said implementation.

4.1 method validation
The process for validating the performance of the developed method is as follows:
First, a sample of 5 configurations is taken from the optimal solutions, the meshes
corresponding to these configurations are imported into Rhino and Grasshopper,
where they are used for a detailed simulation. The analysis uses Ladybug and
Ladybug-Honeybee, two tools developed for radiation analysis and daylight analy-
sis respectively. The resulting yearly values are compared to the estimated values,
and to the estimated values of the other configurations, to get a sense of the perfor-
mance of the developed method. This process can be seen in figure 4.1.
The validation of the yearly irradiation values is done using Ladybug, a plug-in for
Grasshopper in Rhino3D. The analysis period is set to the entire year for every hour,
creating a cumulative sky matrix. The offset is set at 1cm from the roof test points,
and for each mesh face, a test point is generated. The results can be viewed in table
4.1. The ranking in simulated values is consistent with the ranking of the estimated
values. The values themselves fall within a small margin of error (<5%) between
the simulated and achieved values, indicating that the applied method works as
expected for estimating PV potential of the final configuration. In figure 4.2, the
values are mapped on the corresponding voxels.

The validation of the yearly illuminance values is done using Honeybee, an exten-
sion of the Ladybug tool that offers more extensive daylighting simulation methods
using Radiance. Honeybee is used since this can give yearly values for the illumi-
nance of the test mesh. The simulation is set to ’annual daylight simulation’. The
offset is set at 1cm from the facade test points, with the ’grid’ parameter set at 7.5

Yearly solar irradiation (gWh/year)

configuration estimation simulation
4.2a 8.090 7.755

4.2b 5.696 5.643

4.2c 3.964 3.995

4.2d 7.376 7.116

4.2e 3.905 3.934

Table 4.1: Total global horizontal irradiation estimate in gWh/year (l) and total simulated
irradiation in gWh/year (r)

35
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Figure 4.1: The process for validating the estimated solar performance (PV and daylighting)
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(a) (b)

(c) (d)

(e)

Figure 4.2: The five best performing configurations after simulation using Ladybug. Red
indicates higher yearly cumulative irradiation values.
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Yearly illuminance (*100 gLux)

configuration estimation simulation
4.3a 4.616 4.995

4.3b 6.623 5.057

4.3c 8.110 5.656

4.3d 5.246 4.649

4.3e 8.091 5.635

Table 4.2: Total accumulated illuminance estimate in 100*gLux/year (l) and total simulated
illuminance in 100*gLux/year (r)

m due to simulation speed concerns, creating 4 test points for each voxel face (or 2

test points per mesh face). The results can be viewed in table 4.2. The ranking in
simulated values this time is inconsistent with the ranking of the estimated values,
furthermore the values themselves have a much greater margin of error (>20%) be-
tween the simulated and achieved values in both directions. The exact reason for
this remains unclear, but is likely influenced by several factors. First, the simulation
in Honeybee is more accurate because it deals with direct and indirect sunlight.
Honeybee uses Radiance for the modeling, while Ladybug uses a cumulative sky
and then computes the solar hits only. Furthermore, reflections off the context influ-
ence the total illuminance values calculated, while in the estimation, only the direct
values for direct normal illuminance are used. At the same time, the grid size is
such that the results are less accurate than desired and the angle of incidence is
not taken into account like in the simulation. Finally, due to the inputs required
by Honeybee, the context is represented as a BRep (boundary representation), a
geometry type in Rhino. The input content is a mesh however, and in the conver-
sion between mesh and BRep, some accuracy will be lost as well. The inconsistent
ranking indicates that as a measure of the relative performance of each alternative
configuration, the proposed method is unsuitable. The results are mapped on the
meshes in table 4.3.

4.2 conclusion

A method for finding optimal configurations in regards to multiple objectives has
been described. In the previous section, the results of the optimization were com-
pared with a simulation in order to validate the results and find a generalized
workflow for the application of the techniques studied. When comparing the objec-
tive scores from the output of the optimization and the simulated values after the
fact, the validity of the objective function for estimating the solar irradiation can
be confirmed. The values line up and the relative scores of the configurations are
identical. The validity of the proposed method for estimating daylighting potential
is put in question however because the final scores and estimated scores are dissim-
ilar. Three reasons for this have been proposed: Firstly, the simulation is expected
to be more accurate since it takes the reflected (indirect) values of illuminance into
account. Secondly, the grid size was set at a low resolution since computation
was prohibitively long. Finally due to the surrounding envirenment being changed,
some inconsistencies may arise. A different approach to the daylighting objective
function is recommended. The FSI and compactness objectives, being strictly speak-
ing ‘unitless’ ratios perform more consistently than the visibility objectives.

Besides the inconsistencies described above, the output of the model will always
be dependent on the exact question asked. Taking a different approach in regards
to the solvers, parameters, and objectives will always yield different results. Even if
all factors remain consistent, the results might still be different since heuristics are
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(a) (b)

(c) (d)

(e)

Figure 4.3: The five best performing configurations after simulation using Radiance in Hon-
eybee. Red indicates higher yearly cumulative illuminance values.
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used for solving the problem. The NSGA-II algorithm seems to perform with the best
results of all available solvers, although the reasons for this remain unclear.

At the same time, the framework itself is robust and allows quick simulation,
computation, and adaptation towards different objectives which enables fast testing
and exploration of design alternatives and design goals. Results are outputted at
a reasonable time even with 128 population. The strength of the method lies in
the fact that the decision variables directly correspond to the configuration mass,
allowing a one-on-one translation of the output to the actual objective.

4.3 further research recommendations
The implementation results raise questions that would be interesting for further
research but fall outside of the scope of the thesis. The framework for a successful
method is in place and overall it performs well and as expected. When given a more
detailed inspection however, there seem to be some inconsistencies in the expected
output and the actual results as mentioned in the previous section. Several reasons
for this have been mentioned and the following aspects can be identified as potential
further research:

• Verify if the daylighting objective function works as intended. To do this, it
first needs to be validated if no errors have been made in the implementation
of the objective function.

• If the inconsistencies persist: verify if the decision variables output and in-
put indexing is consistent. Implementing a morton-ordering to ensure this
consistency has been suggested for this in the past.

• Use another metric of performance for the daylighting aspect. Metrics that
are used in practice include estimating the total sunlight hours or calculating
the sky view factor, or using the equivalent daylight area. This last metric
however falls outside the scope of the research since it pertains to the design
of the openings as well.

If this has been achieved and it can be verified that the output matches the expected
values, several improvements can still be made to the model as well as some matters
can still be explored:

• Finding out why the NSGA-II method performs best of the three methods stud-
ied.

• Expanding the number of optimization methods examined by branching out
to another suite of solvers such as SKCriteria.

• Increasing the resolution at which the simulations and optimizations can be
ran by using better hardware or cloud-based methods.

• Expanding the number of objectives by adding more cost functions.

• Further research into the difference in result and performance of continuous
vs. discrete solvers.

Finally, to ensure the reproducibility of the method as well as encourage others at-
tempting to apply MCDA techniques in the field of generative design and space
allocation, it is desirable to produce a sort of ‘recipe’ or infographic. This would
describe exactly the steps to be taken and pitfalls to be evaded as explained in the
thesis in an intuitive manner that can be used as a sort of cheat-sheet by (other)
developers. As has been suggested by Ogrodnik and as mentioned earlier in the re-
search, it is desirable to employ a combination of optimization strategies for achiev-
ing multiple objectives in generative and energy optimization. A database of all
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possible strategies with their respective strengths and weaknesses, as well as a uni-
fied library that combines the different options available from which to use these
strategies would be a valuable addition to the field.





5 R E F L E C T I O N

Due to the increasing pressure on the housing market, finding livable shelter for
reasonable prices has started to become a major social, economical, political, and
technical issue. As a future member of not only the housing market but also a cit-
izen in the Netherlands and an employee in the field of architecture, this issue is
important to me. Additions to the building supply need to be made but the chal-
lenge is to do so in a sustainable manner. To solve this, building planners will need
to rely more and more on new techniques to build responsibly. The building indus-
try however is notoriously inert when innovation is concerned and it is therefore
essential to explore the potential of all aspects that can help with solving the crisis.

Within my studies at the faculty of architecture however, there seems to be a
stereotype that you either are an architect, the artist who designs the buildings, or
anyone else, who are concerned with the planning, technical details, financing, pol-
itics, simulations etc. of buildings and neighbourhoods. This black-white approach
is detrimental to the field and to me, the ultimate architect can take the most inte-
gral perspective and look at all diverging aspects of a plan in a holistic way. This is
where the field of computer science and mathematics can be a great boon, simply
as a tool to support one’s decision. However, there are not many courses that are
offered that teach ‘actual’ generative design with regard to the many aspects that
have to be considered when building, and beyond a few mandatory courses on 3D
modelling, might go under the radar of a student. Multi-criteria decision analysis
and multi-objective optimization has been widely applied to other industries, but
in construction (engineering) less so. The large number of diverging actors and
factors in construction design and engineering are fertile ground for research into
MCDA methods. With an increasing adoption of digital methods from the industry,
this topic within the field of Architecture and specifically Building technology is
increasingly relevant with regular new research and development into space alloca-
tion, building massings, and energy systems. The benefits of this to the industry
are promising but consistency, validation, and reproducibility remain issues. The
goal of the research was therefore to develop such a methodology to learn about the
benefits and difficulties of implementing such a method into an early design stage.

By education, I am not a mathematician or programmer. This has provided some
difficulties while developing the method. Conventions, notations, best practices
and even syntax, data structures, and general concepts that might seem trivial to
others were unknown at the beginning of the research project. The research I have
presented in the previous chapters is therefore first and foremost an exercise and
demonstration, and not a proposal for the very best method to solve these kinds of
problems. The lessons learned lie mostly in how I would approach a comparable
problem if starting over again. I have learned about the general concepts involved in
applying these methods as well as most importantly: the question you ask already
holds the answer to the problem: the phrasing of the objectives (and therefore also
the choosing of the objectives) is a critical aspect of finding a workable method.
If the objective and variables relate to each other in a more straightforward way,
modeling and therefore solving the problem becomes a much more straightforward
matter. Having to do it all over again, I would therefore be much more mindful
of what exactly it is I want to achieve by applying these methods. The research
method as described was a valid approach to the problem in my opinion. Never-
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theless, some issues were encountered and the graduation process was delayed. I
did not at all times take full advantage of my mentors and was overly hesitant to
ask for help or provide updates. The lighting especially is in my opinion an under-
developed aspect of the research. The CoVid pandemic certainly did not help in
this regard since a lot of the study was done at home, but in the future I should
commit myself to more readily ask for help or support when I need it. Also, simply
working in proximity to someone else has helped a great amount in regards to mo-
tivation. Another issue I ran into was that of having an overly ambitious scope at
the beginning of the research process. Limiting the number of aspects to research
was a good decision that could have been taken earlier in hindsight.

The results are quite satisfactory but some matters might still warrant further
exploration. Mainly finding alternative ways to define the daylighting potential
(aside from the yearly illuminance) of the configuration is of interest to me. I am
however content with the framework itself and all the new techniques and libraries
I have learned to use. Beyond that, I think the research is a valuable addition the
the field that can help planners and designers alike to make informed decisions
and I am excited to continue working on these kind of problems. When used
correctly, and with the increasing performance of computers, new techniques, and
new research, these methods can greatly improve the quality of the buildings we
live in in the future.



6 A P P E N D I X

Pseudocode and flowchart of the logic for the cost and objective functions can be
found below. Refer to my thesis repository where I will be uploading all relevant
code, images, and the paper.

System specs:
Processor Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz 2.21 GHz
Installed RAM 16,0 GB (15,9 GB usable)
System type 64-bit operating system, x64-based processor
Windows 10 Home Version 20H2

Input: Decision variables x, solar directions v, GHI g, environment e
Output: F1: the configuration’s PV potential

H,V← constructhorizontalmesh, constructverticalmesh : (x)
M← tm.concatenate : (H, V)

R: tile: daylighting ray v for each centroid c in x;
C: tile: centroid c for each ray v;
I: tile: irradiance m for each centroid c in x;
i← 0 to len(x) j← 0 to len(v) h← compute collisions of Ri j to Ci j
through M;
if h = 0 then

// the ray was unobstructed

F1 += Ii j ∗ (1− h);
end
return F1

Algorithm 1: F1 (x, v, g, e)

Input: Decision variables x, solar directions v, DNI n, environment e
Output: F2: the configuration’s daylighting potential

H,V← constructhorizontalmesh, constructverticalmesh : (x)
M← tm.concatenate : (H, V)

R: tile: daylighting ray v for each centroid c in x;
C: tile: centroid c for each ray v;
I: tile: illuminance m for each centroid c in x;
i← 0 to len(x) j← 0 to len(v) H ← compute collisions of Ri j to Ci j;
if H = 0 then

// the ray was unobstructed

F2 += Ii j ∗ (1− h);
end
return F2

Algorithm 2: F2 (x, v, n, e)
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Figure 6.1: Dataflow diagram showing the relation between the inputs, outputs, optimiza-
tion process and objective functions, and the final validation of the method (zoom
in).
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Input: Decision variables x, reference lattice l
Output: F3: the configuration’s compactness

L = l.unit[0] ;
Vb = L3 ∗ count.nonzero(x).round f← get exposed faces of x ∗ l ;
Ab = f ∗ L2 ;

F3 = 6*V(
b 2/3)/Ab ;

return F3
Algorithm 3: F3 (x, l)

Input: Decision variables x, target FSI T, reference lattice l
Output: F4: the configuration’s Urban Density potential

Aplot =l.unit[0]2 ∗ l.dim[0] ∗ l.dim[1] ;
configA = count.nonzero(x)*l.unit[0]2 ;
FSI = configA / Aplot F4 = 2*FSI/(FSI+T) ;
return F4

Algorithm 4: F4 (x, T, l)
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