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Abstract

Indoor localisation is a well-researched topic and it is a challenge to improve the
accuracy of existing techniques. In recent years, edge computing and federated
learning have opened up new possibilities and challenges for indoor localisa-
tion. This thesis presents a federated implementation for spatial mapping of
the network based on the RSSI signal between nodes. The proposed approach
decentralises indoor localisation and produces multiple coordinate maps of the
nodes in a network. The coordinate maps and edge data are from multiple node
perspectives, which can improve the aggregation of the coordinates into a single
map. The algorithm is tested in a BLE network and is compared with other cur-
rent methods. In addition, a simulator is built that serves as a proof of concept
for the actual implementation of the algorithm. The results of the simulator
prove that the mathematical aspects are correct and that the algorithm consist-
ently reproduces the same structure with a stable signal. Time-series analysis
of RSSI measurements along with environmental factors unveils periodic noise
components such as humidity and human presence, along with the notable in-
fluence of node placement and ambient noise. Consequently, the conventional
RSSI-to-distance model proves inadequate in adapting to such noise sources.
The spatial mapping algorithm helps in creating a 3D structure in a federated
manner and provides a framework and location reference for future research that
employs adaptable machine learning models. However, its localisation accuracy
is still limited in comparison to other preexisting techniques.
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”Indoor localisation has the potential to revolutionise the way we navigate and
interact with indoor spaces. However, it is important to consider the privacy

implications and ensure that technologies like this are used ethically and
responsibly.” – ChatGPT

“Be careful BLE is watching you!” – Crownstone
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Chapter 1

Introduction

The practice of outdoor localisation of individuals is a well-established field,
with numerous reliable techniques and technologies in place. However, when it
comes to indoor settings, there is a distinct set of challenges that conventional
methods such as GPS struggle to address. This situation has led to the need
for the development of innovative techniques specifically tailored to indoor loc-
alisation. Extensive research efforts have been dedicated to indoor localisation
methods over the years, resulting in significant progress. These methods of-
ten rely on wireless technologies or movement sensors. Despite these advances,
the field of indoor localisation faces continuous challenges due to the unique
characteristics of indoor environments, including multipath propagation, sig-
nal interference, and variable structures. In recent years, edge computing and
federated learning have opened up new possibilities and challenges for indoor
localisation. However, its application in indoor localisation remains relatively
unexplored and under-researched.

The thesis begins with the background and problem statement of indoor local-
isation, which will give a comprehensive overview of indoor localisation techno-
logies. It introduces the concept of federated algorithms and spatial mapping.
Following the literature review, which summarises the existing indoor position-
ing systems (IPS) in use and presents additional perspectives, the problem state-
ment, contributions and challenges will be outlined. This will be followed by a
discussion of the methodology used in creating the simulator and algorithms,
along with details on network specifications and initial assumptions. In the
forthcoming chapter, the implementation of the simulator and the federated
spatial mapping algorithm will be described, providing important code con-
cepts and code illustrations. In addition, the test setup will also be discussed.
Subsequently, the results of both systems will be evaluated and the federated
spatial network mapping algorithm will be compared with other current meth-
ods. Finally, the thesis concludes by outlining limitations, presenting final re-
marks, and suggesting avenues for future work, accompanied by an appendix
with additional information.
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Chapter 2

Background and Problem
Statement

The demand for accurate indoor location services has experienced rapid growth
across diverse industries, such as healthcare and smart homes. This surge is
attributed to the limitations of GPS and outdoor positioning technologies when
applied in indoor environments. Achieving indoor localisation is possible with
different levels of accuracy. It can range from room-level (2D) to more precise
measurements in square meters or even a few centimetres. However, when
aiming for 3D positioning, the approach becomes more complex but provides
even more realistic localisation.

This chapter will provide supplementary details about indoor localisation
technologies, federated algorithms, and the ongoing research concerning cur-
rent BLE Indoor Positioning Systems. Furthermore, the chapter will offer addi-
tional insights from related work, outline the problem statement, and highlight
its contributions.

2.1 Indoor Localisation Technologies

Various technologies can be used for indoor localisation, each with its advantages
and disadvantages, as outlined in Hayward et al. [20]. GNSS, commonly used
for outdoor localisation, suffers from low indoor accuracy and requires expensive
large antennas, rendering it unusable indoors. Line-of-sight-dependent techno-
logies like vision, visible light, or acoustic (ultrasound) are not very useful in
offices or homes where items could easily block the sensors. Instead, a low-power
MEMS sensor can be installed on people or assets to track their movements.
However, this method provides only movement and direction. Combining it
with other techniques can solve this issue and improve the accuracy of these
technologies. Wireless technologies like WiFi, UHF, and Ultra Wideband are
expensive to deploy and consume a lot of power, making them unsuitable for
low-power applications. However, Zigbee or Bluetooth Low Energy (BLE) offer
low power consumption, small size, low cost deployment, and high scalability,
and are often used for home automation. Using these popular home automation
technologies, it is possible to measure distances and track assets with existing
systems.
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Edge CloudLocal

Low-power BLE edge devices BLE/WiFi powerfull devices Servers

Figure 2.1: Hierarchy of computing devices: Edge, Local and Cloud.

BLE technology stands out due to these advantages and the fact that most
people have a BLE-enabled phone that can be tracked. Moving forward, the
thesis will concentrate on BLE indoor localisation. There are two distinct
categories of BLE techniques in use: range-techniques or signal properties,
and range-combining or positioning algorithms. Ranging techniques include
Angle of Arrival (AoA), Time of Arrival (ToA), Time Difference of Arrival
(TDoA), Channel State Information (CSI) and Received Signal Strength Indic-
ation (RSSI). On the other hand, range-combining or positioning algorithms
consist of triangulation, trilateration [15], proximity, fingerprinting, particle fil-
ters, anomaly detection, and machine learning. Fingerprinting and the com-
bination with machine learning are widely used by other researchers and in
publications [25] [34] [32] [2] [6] [21] [29] [23]. Section 2.3 provides a more com-
prehensive overview of relevant BLE indoor localisation methods from the past
decade.

2.2 Federated Algorithms at The Edge

’Federated algorithms’ is a topic that has gained significant attention from re-
searchers in recent years. They offer a solution to distributed computing prob-
lems where data is spread across multiple nodes or devices. Federated algorithms
are not limited to machine learning and can be applied to localisation, optimisa-
tion problems, data synchronisation methods, distributed databases, and other
scenarios that require decentralised processing. One exciting application of fed-
erated learning is its combination with a BLE mesh indoor localisation sensor
node network, which allows for a decentralised approach to localisation, machine
learning and other algorithms. Each node runs the algorithm with its local data
at the Edge. At ”The Edge” refers to computing infrastructure that is closer
to the source of data generation or consumption. In Figure 2.1, the device
hierarchy is illustrated, representing devices on the edge, local, or in the cloud.
Every edge device is capable of communicating with its immediate neighbouring
edge nodes but is kept to a minimum. The Edge nodes share only its outcome
with a local hub, which in turn may transmit the data to the cloud server. This
enables collaboration on global problems without the need to know the whole
network. The cloud can be used for larger operations which demand more power
like large AI models. More power-demanding applications or processes can also
be offloaded to other local devices like a hub.

There are several key concepts related to federated algorithms, each with its
challenges, which will be discussed in Section 2.6.

1. Decentralisation: distributed data computation across multiple nodes or
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devices leads to parallelisation and easy scaling.

2. Data privacy-preserving techniques: location data for example is very
privacy-sensitive and should be kept private between the nodes by gener-
alising the shared results and by keeping it local.

3. Aggregation and fusion: the results of multiple nodes will be combined
to form a larger linked result or model. In our situation, this task will
be delegated to a nearby hub that is capable of handling larger workloads
and computations.

4. Convergence: ensuring that the algorithm converges to meaningful results
and meets the specified criteria so that it can be deployed and used.

2.2.1 Federated Spatial Mapping

The concept of federated localisation involves multiple nodes in a BLE network,
each determining the locations of the other surrounding nodes, tags, or objects
with minimal communication. The results will be sent to a central point for
aggregating to a final location. Federated localisation can be divided into two
steps: the mapping of the spatial network and the localisation within this spatial
map.

Federated spatial mapping is a process in which multiple nodes construct
a three-dimensional spatial structure of the best-connected surrounding BLE
nodes. This process is based on the neighbour’s received signal strength indic-
ator (RSSI). This is the only information that a node can gather or request. The
results are then aggregated into a comprehensive map of the entire BLE net-
work at a central location, improving the locations and reducing noise through
multiperspective analysis for improved structural integrity.

After a successful run of the spatial network mapping algorithm, the 3D
spatial structure with coordinates can be used for localisation. The structure
information can also be used in combination with other localisation techniques
to enhance the accuracy.

2.2.2 Federated Learning

Federated learning is probably the most well-known federated algorithm and
is a machine learning technique that allows multiple devices to work together
to improve the accuracy of a global model without compromising the privacy
of their data. Rather than sending data to a central server for processing,
federated learning allows devices to learn from each other’s experiences by ex-
changing only the necessary information, such as the model parameters. This
decentralised approach to machine learning is particularly useful in situations
where data privacy is a concern and enables devices to continuously improve
their performance over time.

2.3 Related Work

This section focuses on providing insight into the latest techniques for indoor
location. Various new techniques have been implemented that have led to signi-
ficant advancements in this field. To recap, this research will focus only on BLE
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Table 2.1: Overview of relevant BLE indoor localisation techniques
with criteria ratings

Techniques/Methods Accuracy Devices Bluetooth Energy Supply Usage1 Data flow2

Fingerprinting (FP.)(RSSI) 1.42m [9] [3] nodes3, sniffer, phone/tags BLE v4+ Battery/USB High centralised
Multi/Trilateration 0.45-1.85 m [33] nodes, tags, phone BLE v4+ Battery/USB High centralised
Angle of Arrival 0.36m [8] nodes, phone, tags BLE v4+ Battery/USB Low centralised
BLE landmark: DTW 0.42-0.75m [40] nodes, phone BLE v4+ Battery/USB Low centralised
Time of Arrival + RSSI 2.0–2.7m [13] nodes, sniffer BLE v4+ Battery/USB Low centralised
Bloc: (CSI) 0.86m [7] nodes, master, tags BLE v4+ Battery/USB Low centralised
ML (Classification, FP.) 0.3-2.5m nodes, sniffer, phone/tags BLE v4+ Battery/USB Med centralised
Xgboost: CWT, RSSI 1.5m [25] ” ” ” ” ”
KNN (RSSI) 1m [29] ” ” ” ” ”
LSTM 2.44m [36] ” ” ” ” ”
SVM RMSE, DNN 0.5-1m [35][34][2] ” ” ” ” ”
RF classification 0.3m [21] ” ” ” ” ”
Linear Regression 0.9m [34] ” ” ” ” ”
FPFE (Encoders) 0.68-1.43m [23] ” ” ” ” ”

1 The application of this technique in commercial products can be categorised as high, medium, or low.
2 Computation tasks are delegated to the cloud (centralised) or executed locally or at the Edge (federated).
3 Nodes are the same as anchors.

technology for indoor localisation 2.1. Section 2.3.1 provides a comprehensive
overview of relevant BLE indoor localisation techniques. Section 2.3.2 discusses
other insights and techniques that have been used in this field.

2.3.1 Current BLE Indoor Positioning Systems

Indoor Positioning Systems (IPS) aim to solve the challenging task of locating
objects or people indoors. IPS can utilise different techniques or a combination
of them, each with its advantages and disadvantages. To gain a better under-
standing of the differences between them, extensive research has been conducted
on BLE localisation techniques. The findings have been summarised in a table
for ease of reference. Method-specific articles and surveys of indoor localisation
techniques [20] [16] have been used.

Table 2.1 presents the most relevant indoor localisation methods and rates
each method according to various criteria. It includes the accuracy of localisa-
tion in meters, the devices needed for deployment, and the data flow. This table
will give valuable insight to identify key areas for improvement. The inclusion of
BLE guarantees that the methods mentioned in the table are extremely scalable
in terms of the number of devices, which is why they are not included in the
table.

2.3.2 Additional Insights

This section offers additional insights derived from the related literature. Cer-
tain indoor localisation techniques exhibit promise when integrated with ma-
chine learning, as previously discussed. The convergence of machine learning
with BLE microcontrollers presents an intriguing avenue due to their low energy
consumption and adaptability to local contexts, a concept often referred to as
Edge AI [28], extensively explored in the literature. For further exploration,
interested readers can refer to my preliminary survey report [37].

Moreover, the potential of indoor localisation methods in conjunction with
machine learning extends to federated learning approaches. In such schemes,
training or inference tasks can be distributed across nodes, which collectively
contribute to decision-making or update a global model. Federated learning, a
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growing area of research [17, 27, 22, 1], holds promise for applications such as
fingerprinting methods [10]. Notably, Alsmadi et al. [4] propose employing a
Filtered RSSI and Beacon Weights approach, advocating the initial filtering of
RSSI data with a Kalman filter, while Wang et al. [38] advocate for Gaussian
and Bootstrap filters on the RSSI. Additional techniques such as Gaussian and
Gray filters are also explored. Astafiev et al. [5] demonstrate the superior
performance of a feedforward neural network over an exponential approximation
function with a coefficient for RSSI to distance conversion.

Innovatively, Naghdi et al. [31] augment RSSI fingerprinting with addi-
tional features extracted from vision devices, suggesting that integrating diverse
data sources can enhance accuracy. Similarly, researchers like Guidara et al.
[18, 39, 19] incorporate environmental data such as humidity and temperature
to augment their models. Various feature extraction methods including FFT and
Recursive CWT are also explored. Jianyong et al. [24] propose a weighted slid-
ing window approach for RSSI values and advocate for offline training coupled
with periodic online learning, particularly effective with Taylor series expansion-
based cooperative localisation, a finding with potential implications for machine
learning models.

In addition, strategies such as interpolating RSSI data during training and
employing rolling windows to extract additional features from time-series data
are suggested in the literature. Additionally, the utilisation of multichannel
RSSI for noise reduction represents another avenue for exploration in enhancing
localisation techniques.

2.4 Problem Statement

As discussed in Section 2.3, significant progress has been made in achieving
high accuracy with indoor localisation. However, certain regions can still be
improved, such as the current centralised techniques, the use of batteries, and
techniques that do not take local environmental influences, like humidity, tem-
perature and reflections, into account.

To address the first limitation, this research will focus on decentralising the
localisation of nodes in a network. A new indoor localisation technique will
be developed, the results of which can later be used by other techniques or
combined in a federated way. The accuracy of this spatial mapping model will
be compared with existing methods. The primary research objective of this
thesis is to investigate whether Bluetooth-based indoor localisation models can
be improved using federated algorithms.

Consequently, the primary research question is:

Can a federated approach improve Bluetooth-based indoor localisation models
at The Edge?

Additionally, this research aims to evaluate whether this federated approach
can be improved by using machine learning at the Edge and incorporating local
environment data.

7



2.5 Contributions

This work represents an advancement in indoor localisation and federated learn-
ing by introducing a new federated localisation technique that runs on battery-
free devices. The contributions of this work are as follows:

• A new federated spatial mapping model: This algorithm can be
deployed on BLE edge devices within a network. It overcomes the lim-
itations of traditional centralised localisation methods by allowing edge
devices to collectively contribute and refine their spatial map while main-
taining privacy and minimising data transfer.

• A new localisation framework on the Edge: The model/algorithm
serves as a framework for other localisation or machine learning models.
The Edge framework can provide low latency as a result of edge computing,
making it ideal for applications that require local inference and machine
learning. The coordinate map can be used as a location reference for other
localisation methods.

2.6 Challenges

The following challenges will be expected when developing the federated local-
isation algorithm:

• Ensuring a Stable RSSI-to-Distance Model: The entire algorithm
relies on maintaining a stable relationship between the Received Signal
Strength Indicator (RSSI) and distance. Fluctuations in signal strength
due to noise can lead to cumulative errors, emphasising the need for a
robust model.

• Handling Asynchronous Communication: The potential for dead-
locks arises from asynchronous communication between nodes. Informa-
tion dependencies for further calculations may create challenges, necessit-
ating careful consideration of communication protocols and state machine
logic to avoid bottlenecks.

• Addressing 3D Spatial Mapping: The structure’s orientation is in-
trinsically tied to the perspective of itself towards another node on the
x-axis. The lack of predefined alignment poses a challenge. A mechan-
ism must be devised to aggregate spatial structures into a global reference
frame.

• Neural network for the RSSI-to-Distance Model: Implementing a
neural network for the RSSI-to-distance model requires careful considera-
tion of memory constraints on the BLE test hardware platform, ensuring
that the model fits within the available resources.

• Filtering of Triangle and Tetrahedron structures: It may be essen-
tial to implement effective filtering mechanisms to ensure optimal network
coverage during the construction of triangles and tetrahedrons.

8



Chapter 3

Federated Localisation
Approach

This chapter will outline the proposed method for addressing the research ques-
tion. Initially, the assumptions and specifications of the network structure will
be examined and summarised. Next, the development of the mapping algorithm
will be described, which will incorporate the same principles as the simulator,
with an additional emphasis on node communication. Finally, the approach to
implementing the simulator will be discussed, serving as a proof-of-concept for
implementing the actual algorithm.

3.1 Network Specifications and Assumptions

For this research, a BLE network will be analysed and used to implement the
federated mapping algorithm. This section will describe this network’s assump-
tions and specifications in more detail. Table 3.1 provides a quick reference to
the assumptions and specifications.

The network structures that will be examined consist of 3 to 12 nodes at
different heights. The minimum requirement of three nodes is due to the al-
gorithm’s aim of creating triangle structures. Each node is equipped with an
nRF52832 SoC, which has sufficient computational power to execute complex
sensor algorithms in parallel with low latency Bluetooth Low Energy. The
distance between nodes will range from 1 to 15 meters, but each node will pri-
oritise establishing connections with its best neighbours to form a structure. As
a result, the average distance between the nodes will be approximately 4 m.
While some internode links may have a line-of-sight (LOS), the majority will
be non-line-of-sight (NLoS) due to the surrounding environment. The network
environment will be an office space with desks and plants scattered between
the nodes. However, the simulation will assume an ideal environment with LoS
connections and no noise to easily verify the algorithms’ calculations.

9



Table 3.1: Network assumptions and model specifications

# (static) Nodes 3 - 12 SoC nRF52832
Max RSSI -95 dBm Micro Controller 64MHz Cortex-M4
Links LoS, NLoS Bluetooth v5.4
Distance 1-15 M Protocol BLE, mesh
Environment Office, Simulation Flash/RAM 512 KB, 64 KB
Tx power 4 dBm Antenna Single

3.2 Spatial Network Mapping

When locating a person, node or tag within a network, a map is often used
to represent the estimated location of the node. The objective of the spatial
network mapping algorithm is to create a three-dimensional reference coordinate
map or structure of its surrounding nodes. The only data source that can be
used on a node in a BLE network is the RSSI, which the algorithm relies solely
on. By communicating with neighbouring nodes, RSSI values can be retrieved
for the algorithm.

The spatial mapping algorithm is derived from trilateration, where three an-
chor points determine the position of the fourth node. However, this approach
adds a twist by using combinations of triangle nodes which consist of the best-
connected surrounding nodes. Valuable information can be gathered by also
using triangulation and considering various characteristics of these triangles,
such as angles, altitude, altitude x position, and area. This information is
used to map the triangle structures in a 3D space, allowing for accurate spatial
representation. Other methods can later use this spatial representation as a
location reference in a federated way. The structure will always be built from
a self-perspective over the x-axis. As a result of the use of both trilateration
and triangulation, the structure becomes overdetermined. Each node should
ideally see its neighbour with the same RSSI as the neighbour sees him; this
will be checked. Additionally, the longest side of the triangle formed by the
nodes should always be longer than the sum of the other two sides, as per the
Pythagorean theorem.

Phase 1:
Scan Surroundings

Phase 2:
Triangle Procedure

Phase 3:
Make Spatial Structure

Result:
Create Tetrahedons and

coordinates map

Result:
Create Edges, Opposite Edges

and form Triangles

Phase 4:
Send Spatial Structure to Hub

Result:
Creates List of neighbouring

nodes with RSSI

Figure 3.1: High-level overview of the spatial network mapping al-
gorithm’s four phases that each node will walk through.

The spatial network mapping algorithm deployed on a node performs four
phases, each with its procedures. The four phases and the outcomes of each
phase are illustrated in Figure 3.1. The four phases of each node are:
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1. Scanning its surroundings, creating a list of neighbouring nodes and their
RSSI values.

2. Form edges with its neighbouring nodes, creating opposite edges between
its edges and ultimately forming the triangles themselves.

3. Creating a spatial structure by mapping the triangles around a specific
base edge and forming tetrahedrons. Additionally, it generates a coordin-
ate map of all the nodes with which edges are formed.

4. The coordinate maps are transmitted to the Hub for additional processing.

More details on the implementation of the spatial network mapping algorithm
can be found in Chapter 4 Section 4.2.

3.3 Simulator Approach

The spatial mapping algorithm will be initially developed in Python for ease
of development due to the absence of memory constraints. A simulator will be
designed to simulate multiple parallel nodes in an ideal environment with LoS
and a noise-free RSSI. The simulator will have a predefined network that will
serve as a reference for the signal strength between the nodes. Each node in
the simulation will have access to this information, making them all knowledge-
able. As a result, there is no requirement for communication logic within the
simulator, as it is primarily intended to demonstrate the mapping method.

The objective of the simulator is to determine whether a simulated node
can reconstruct the predefined networks’ spatial structure solely based on the
received signal strength indicator (RSSI) of its surrounding nodes. The output
of each simulated node will be a coordinate map of all nodes in the predefined
network. The simulator will be evaluated with multiple tests that check the
implemented maths functions. The predefined network will also be evaluated
by comparing the coordinates with the output coordinate map. Further details
about the implementation of the simulator can be found in Chapter 4 Section
4.1.

The code of the simulator will later be converted into the spatial network
mapping algorithm written in C++. This conversion aims to make the algorithm
compatible to run on the designated BLE hardware platform named Crownstone
[12]. This hardware platform includes an nRF52 series BLE chipset, a switch
and some additional sensors. The reason for using this platform is the open-
source nature of its firmware, named BlueNet [11], which can be modified to
our needs.
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Chapter 4

Implementation

This chapter presents the implementation of the federated algorithm for spatial
network mapping as detailed in Chapter 3. The execution will be segmented
into the algorithm simulation tool in Section 4.1, and the federated spatial
mapping algorithm that functions on the nodes in Section 4.2. These sections
will include detailed explanations of the algorithms, pseudocode, and flowcharts.
In addition, the chapter will outline the test configuration and the steps involved
in validating the algorithm.

4.1 Simulator

This section presents the simulator designed for the algorithm implemented in
Python within a Jupyter Notebook. The purpose of this simulator is to facilitate
the testing, debugging, and validation of the algorithm’s mathematical aspects,
as well as to provide visualisation capabilities. The simulator is intended to
replicate a network of BLE nodes, using a predefined network to establish RSSI
strength relationships between nodes. Consequently, each node can ascertain the
signal strengths between the other nodes and itself. The simulation of the nodes
will occur concurrently through the use of multithreading. The simulator’s
code closely resembles the actual implementation, hence certain fundamental
concepts will not be elaborated on here but in Section 4.2. This section will
commence with a segment detailing the setup and execution, followed by a broad
overview of the main routine of the simulator’s algorithm. This section concludes
with a discussion of the key distinctions between simulation and implementation
of the real algorithm.

4.1.1 Setup and Run

The simulator consists of two steps: the setup and the run, Figure 4.1. The
objective of the setup is to establish a reference network that all simulated nodes
can utilise to obtain RSSI values. The configuration will receive a predefined
list of coordinates embedded in the code. These coordinates will be associated
with a node ID and transformed into a reference list (RefNodeCoords) with
Node() pointers. The result is a list of Node objects with a specific node ID
and coordinates. Using this list, the configuration will determine network con-
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nections by computing the Euclidean distance between nodes and translating
it into RSSI values. The result of the configuration will be a dictionary called
NetworkEdges, which will include all edges for each Node object sorted accord-
ing to RSSI. This dictionary will be utilised in the multi-threading run step,
where each thread can access this object reference list of network edges. In
this way, each Node object running in a thread will be all-knowing and easily
get information from other Node objects. Utilising multi-threading allows the
simulator to run the algorithm concurrently on multiple nodes. Each thread
will go through the steps and stages of the algorithm, saving the information in
its Node object for further analysis and debugging purposes.

Phase 1:
Scan Surroundings

Phase 2:
Triangle Procedure

Phase 3:
Adjacent Triangle Procedure

Result:
Create and pre-map Adjacent

Triangles per Edge 

Result:
Create Edges, Opposite

Edges and form Triangles

Phase 4:
Make Spatial Structure

Result:
Creates List of neighbouring

nodes with RSSI

Result:
Create coordinate map

per Edge

Run (Multi-threading; each thread is 1 node)

Create Reference Network

Result:
Reference list with Node objects,

Edges + RSSI

Setup
Threads

Figure 4.1: High-level overview of the simulator’s setup and four main
phases that each node-thread will walk through.

4.1.2 Main Loop

The main routine of a simulated node, which will be threaded, has three out
of four phases as mentioned in the high-level overview in Section 3.2. The
other phase differs because there will be no sending to the Hub. The Make

Spatial Structure phase is moved to phase four. The third phase will be the
new additional phase Adjacent Procedure; see Figure 4.1. Upon execution,
the main function of each node object begins by retrieving the neighbouring
nodes from the NetworkEdges and storing them into a list of surrounding nodes
(surNodes). It then proceeds to the triangleProcedure, where it will iterate
over all surrounding node combinations, creating edges, opposite edges and
triangles for the adjEdgeList, oppEdgeList and triangleList respectively.

Subsequently, the recently introduced Adjacent Procedure first establishes a
dictionary that links edges to a set of adjacent triangles through the createAdj

Triangles function. This is achieved by iterating over both edges and triangles
to identify common edges. Upon finding a match, an ”Adjacent” object is gen-
erated and included in the dictionary associated with the corresponding edge.
Following this, the mapAdjacent function sequentially processes the dictionary
of adjacent triangles for each edge. The initial adjacent triangle serves as the
reference triangle, and its ”third node” position is calculated with the altitude
and its x-axis position. Subsequently, the remaining adjacent triangles for the
same edge are handled. Their altitude, x position, and the angle between the
reference triangle (base triangle) and themselves are computed using the relev-
ant functions. These results are then used to calculate the mapped coordinate.
All the computed values are stored within the respective Adjacent objects. The
final stage involves creating a coherent spatial map of the previously computed
adjacent triangles. The makeMap function is similar to the createCoordMap
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function, which will be elaborated on in Section 4.2.7. The makeMap function
utilises the precalculated mapping details from the Adjacent objects for map-
ping.

4.1.3 Differences

This section focuses on highlighting the distinctions between the simulator and
the actual implementation. As previously explained, the primary divergence
lies in the phases and procedural logic within the simulator’s main loop. This
disparity arises from the omniscient nature of the simulated nodes, eliminating
the necessity for communication between node threads. Moreover, as previously
stated, the lack of a central Hub for data transmission also impacts the design
of the simulator. Throughout the development of the real implementation, nu-
merous adjustments and optimisations have been incorporated into the logic
and data flow.

Some of the notable changes are summarised below. For a more in-depth
understanding and additional details, please refer to Section 4.2 in the docu-
mentation:

• Main routine: The procedural nature of the simulator’s main routine
has been transformed into a state machine. This modification enhances
flow control and aligns with the firmware’s built-in coroutine throttling
mechanism.

• Non-ideal: The actual implementation does not rely on an ideal environ-
ment; therefore, margins were introduced to enable continued progress in
subsequent calculations. In addition, numerous edge cases have been ad-
dressed. For instance, when creating a spatial map, the algorithm checks
for distance, considering scenarios where the node might lack a specific
edge or its opposite. In such cases, the node cannot map the triangle and
needs to skip it.

• Communication: addressing the asynchronous nature of the algorithm
communication, a specialised logic approach has been adopted. This in-
volves integrating a state machine into the triangle procedures to handle
the transmission, waiting, and processing of messages.

• Hub synchronisation: This additional phase was introduced to trans-
mit all data collected and generated from the algorithm to the hub for
aggregation and subsequent processing.

• Computation resources: Due to the substantial difference in computing
power and memory between the simulator and the actual test hardware,
the simulator is tasked with calculating and generating a spatial map for
every edge. However, in the real implementation, this process is adjusted
so that it only constructs a spatial map for the most optimal connected
edge.

4.2 Federated Spatial Mapping Algorithm

This section delves into the operational aspects of the federated spatial mapping
algorithm. It discusses key elements such as the Log-distance path loss model,
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Table 4.1: Spatial network mapping algorithm specifications

Max Surrounding nodes 15 Sample duration 10s
Max Edges 7 Algorithm interval 20 min.
Max Opposite Edges 13 RSSI deviation 20%
Max Triangle 13 Heartbeat timeout 5s
Max Tetrahedrons 5 Request timeout 10s

the primary state machine, inter-node communication protocols, and functions
associated with triangles. Furthermore, it explains the procedural steps for
triangle construction, dihedral angle calculations, and the establishment of to-
pology. Specific details regarding variable specifications for the algorithm’s fun-
damental procedures are presented in Table 4.1.

4.2.1 Log-distance path loss model

The function rssiToDistance algorithm currently employs the log-distance
path loss model to convert RSSI to distance. Although this model 4.1 is widely
used, it faces certain limitations when implemented in a dynamic environment.
The parameter values of this model are based on the NIST PAP02-Task 6 office
model [30], but are fine-tuned to fit our test environment. The reason for using
this model presently is that the neural network is too large to fit the memory
on a BLE node. Nevertheless, a neural network could have been established,
as mentioned in Appendix D, and trained with mean RSSI, variance, standard
deviation, temperature, and humidity being utilised as input.

The Log-Distance Path Loss Model is given by:

PLd = PL0 + 10(n0) log10

(
d

d0

)
+ X (4.1)

where:

PLd is the path loss at distanced,

PL0 is the path loss (at ref. distance of 1m), which is tuned to 45.8 dBm

n0 is the path loss exponent, which is tuned to 4.5

X is a normal random variable representing the shadowing effect.

The RSSI to distance function will be calculated with (4.2) and a plot can be
seen in Figure 4.2.

Distance = 10

−PLd − PL0

10 · n0


(4.2)
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Figure 4.2: Plot of RSSI to distance, calibrated for an RSSI 45.8 dBm
at 1 meter.

4.2.2 Main State Machine

The algorithm operates through a state machine that comprises six distinct
states, as illustrated in Figure 4.3. Within each state, the state machine can
be reset or restarted using the RESET TOPOLOGY and RESTART TOPOLOGY flags,
respectively. The reset flag is triggered by a special node message ID designed
for debugging purposes, while the restart flag is activated by an internal timer
that runs every 20 minutes to ensure that all nodes are synchronised and to
obtain new results.

RESTART_INIT SCAN_FOR_NEIGHBORS BUILD_TRIANGLES
SCAN_FOR_NEIGHBORS_FINISHED

BUILD_TOPOLOGYSEND_TOPOLOGYTOPOLOGY_DONE

_triangleCount
==

MAX_TRIANGLES
or

buildTriangleState
==

BuildTrianglesState::FINISHED

RESET_TOPOLOGY || RESTART_TOPOLOGY

START_TOPOLOGY

_state == SyncerState::Done

Figure 4.3: Main state machine diagram of the spatial network mapping
algorithm.

The entire process begins anew from the RESTART INIT state when the state
machine is reset. Once the START TOPOLOGY flag is set, which is also a special
node message ID for debugging purposes, each node enters the SCAN FOR NEIGH

BOURS state. During this phase, the node listens to BLE beacons and mesh
messages to search for neighbouring nodes. Each neighbour message received
adds a new entry or updates the entry’s values in the surrounding node list,
as explained in more detail in Section 4.2.3. The scanning phase lasts only
10 seconds to capture enough messages for an RSSI with less periodic noise.
Once the timer runs out, the process of building edges, opposite edges, and
triangles begins in the BUILD TRIANGLE state. This is a separate state machine
that is discussed in more detail in Section 4.2.5. The BUILD TRIANGLE state is
deemed complete when the number of built triangles ( triangleCount) reaches
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the maximum number of triangles (MAX TRIANGLES) or when the triangle pro-
cedure state machine reaches its finished state.

In the BUILD TOPOLOGY state, the formed triangles are mapped into a spa-
tial structure around the best edge, and the resulting three-dimensional co-
ordinates are stored in a coordinate map. Finally, all the resulting coordinates
and network information are transmitted and synced to the local hub in the
SEND TOPOLOGY state. The state machine enters its rest state (TOPOLOGY DONE)
when it reaches the end of the coordinate map.

4.2.3 Inter-Node Communication

The algorithm incorporates mesh communication between the nodes to compare
the stored measured RSSI values, enabling the creation of edges and opposite
edges. Additionally, the algorithm sends the coordinate map and other network
data, such as the build edges, opposite edges, and triangles, to a local hub for
further processing. To facilitate this, the algorithm introduces two new message
types: node request, which is a BLE mesh message, and topology map, which
is a direct BLE message. Each message type requires specific protocols for
transmission and reception. This section will delve into the procedures for
sending and receiving these messages, along with the mechanism employed by
the algorithm to acquire neighbouring nodes’ measured RSSI values.

BLE Beacon and mesh messages

On the left side of Figure 4.4, there is a high-level communication diagram il-
lustrating the beacon and mesh messages. The diagram also indicates that the
list of neighbouring nodes will be sorted according to the RSSI value. When a
BLE message is received, it undergoes internal processing within the firmware.
Subsequently, it is treated as an event by the algorithm. The algorithm then
utilises the handleEvent function to determine the event type. If it is a device-
scanned event, it signifies the reception of a beacon from a neighbouring node.
The handleScannedDevice function is responsible for identifying the node and
adding it to the list of neighbouring nodes. This list retains all neighbouring
nodes as long as a heartbeat message is received on time for each entry; other-
wise, the entry is removed from the list. If the event is identified as a received
mesh message, it is forwarded to the onMeshMsg function. This function exam-
ines the packet type and selects the appropriate function to parse the packet
accordingly. Additionally, any mesh message that is received, not relayed, and
possesses a valid MAC address will also be included in the list of neighbouring
nodes. The function addSurNode is responsible for adding nodes to the list.
When a node is added, its ID and the RSSI of the last hop are included in the
list, provided that the node does not already exist in the list. In case the node
is already present in the list, the RSSI value gets updated by computing the
average RSSI of all the previously received messages along with the new RSSI
value. To achieve this, an aggregator class is employed, which computes not
only the mean RSSI but also the variance and standard deviation.
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BLE node (Self) BLE node (others)

Beacons / MESH message

Scan surroundings

Add to List:
surNode(node_ID, RSSI)

Sort at the end

" "
Beacons / MESH message

BLE node (Self) Target
BLE node 

MESH_NODE_REQUEST

MESH_REPLY_RSSI

Triangle Procedure

Add to List:
addEdge(node_ID, mean RSSI) or
addOppositeEdge(node_ID, RSSI)

Node
search

Figure 4.4: Communication flow of Beacons and mesh messages (left)
and edge forming negotiation (right).

Node Request Messages

The node request message is processed by the onNodeRequest function. The
function first checks whether the message is an incoming request or a reply. This
is necessary because the node request type is used for both purposes. If the
message is an incoming request, it will be handled by creating and sending a
reply message of the same type. This reply message will contain the targetId

and the corresponding RSSI value obtained from the surrounding node list.
On the right side of Figure 4.4, the received incoming reply message can be
processed in two different ways. The processing depends on the value of the
packet’s targetId parameter. An edge will be created if the targetId is the
same as its node ID. In this case, the message is parsed and an edge is added
to a list. On the other hand, if the targetId is different from its node ID, it
indicates that an opposite edge is being formed. Again, the message is parsed
and an opposite edge is added to the list.

For both types of edges, there is an additional step before adding them to
the list. For a normal edge, the received RSSI value will be compared to the
surrounding list value; if the deviation is good, it will be added to the edge
list. If the edge already exists in the list, the RSSI value will be updated by
taking the mean of the old and new RSSI values. The node request and its
corresponding RSSI comparison will serve together as an extra validation for
measured RSSI. For the opposite edges, the first reply will add a new list entry
if there is no RSSI error value. The second reply will update this same entry
value by taking the mean of the RSSI and the distance. The RSSI values from
both directions are not compared, due to the issue that sometimes only one side
replies, but both should see each other. If the second responded RSSI is equal
to RSSI ERROR, this indicates that the requested node does not have this target
node and the possible specific entry will not be updated.

Each time a new opposite or normal edge is added to the list, it will increment
its specific list counter. This counter keeps track of the number of edges in that
particular list. The opposite list counter will be updated only when there is a
new entry. In addition, the specific request counter associated with the edge
will be decreased. The request counters are used to monitor the success of the
creation and request processes.
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Topology Messages

Following the completion of topology data gathering and calculation, the in-
formation is transmitted to the Hub. This process is facilitated by the sendNext
function within the MeshTopologySyncer class. The sendNext utilises a state
machine to iterate through four distinct payload transmission phases. Each time
the SEND TOPOLOGY state is reached, a new payload is generated and sent, and
the state transitions to the next. The four packet categories and sending stages
entail:

1. Edges: This packet includes details regarding all established edges, in-
cluding the total number of edges and, for each edge, the target node ID
and a compressed distance value.

2. Opposites: This packet contains information about the opposite edges
created. It specifies the total number of opposite edges and for each one,
its edge ID, which is a compression of the opposites’ edge source and target
ID, and a compressed distance value.

3. Geometry: This packet delves into the geometric structure of the mesh,
specifically triangles and tetrahedrons. It includes the total count of both
shapes and for each triangle, the compressed ID of its opposite edge. Ad-
ditionally, a lookup table is created to efficiently reference triangles during
tetrahedron data encoding. The information of each tetrahedron consists
of two bytes, where the first combines the compressed IDs of its first two
triangles, and the second holds the compressed ID of the third triangle.

4. Coordmap: This packet is responsible for conveying the coordinates of
nodes in the mesh. It starts with the total number of coordinates and
then iterates through pairs of consecutive coordinates, combining their
compressed node IDs into a single byte. If there is an odd number of
coordinates, the last node’s ID is included separately. Finally, for each
valid coordinate, its compressed x, y, and z distance values are added.

Moreover, the sendNext function encompasses two primary: packet creation
(createPacket) and sending. The first step generates the message payload
based on the current state. The aforementioned data are compressed and in-
corporated into the payload of the packet. The fabricated packet serves as the
payload and is transmitted directly to the hub (not through other mesh nodes).
This approach facilitates the transmission of a larger volume of data per mes-
sage. Following each transmission, the state is updated for the subsequent
topology message, and a random delay of approximately 10 seconds precedes
the next transmission. Once all payload types have been sent, the topology data
synchronisation with the hub is complete. All nodes will send their data to the
same single hub, the hub’s ID is defined in the MeshTopologySyncer class with
the constant HUB ID.

The receiving part of the topology messages, the onTopologyMap function,
is responsible for handling the receiving end of topology messages. Incoming
TOPOLOGY MAP messages are converted to the appropriate payload message type
based on their TopologyMapType. Subsequently, the message is forwarded over
the UART to the Hub’s Python parser code, which writes the received data into
a database.
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Figure 4.5: Node triangle ABC, blue dots being nodes, with con-
cerned altitude lines Altitude A, Altitude B, Altitude C. The red dot
being the intersection point of the altitude C with the edge ab called
basePositionX.

4.2.4 Triangle Functions

By examining the distances between the three nodes of a triangle, a signific-
ant amount of information can be obtained, such as the area, altitude, and x-
coordinate of the altitude. In the firmware, a Triangle class is implemented
with various functions that include formulas for calculating the semiperimeter,
area, altitude, and position of a triangle ABC with edges ab, ac, and bc, as
shown in equations (4.3), (4.4), (4.5), and (4.6), respectively. A visual repres-
entation of the triangle can be seen in Figure 4.5. The algorithm that runs on
each node assumes that the base edge of the triangle always lies on the x-axis and
its node lies at the origin. In addition to the triangle math functions, there are
also functions such as getEdge, hasEdge, getOtherBase, and getThirdNode.

Semiperimeter (s) =
ab + ac + bc

2
(4.3)

The semiperimeter is used to calculate the area in 4.4.

Area =
√
s · (s− ab) · (s− ac) · (s− bc) (4.4)

Altitude =
2.0 ·Area

ab || ac || bc
(4.5)

One remark for equation (4.6), depending on the angle ∠BAC of the ABC tri-
angle, if it is greater than 90.0 degrees, the basePositionX should be interpreted
as negative on the x-axis.

basePositionX =

√
otherBaseEdge.distance2 − Altitude2 (4.6)

4.2.5 Build Triangles Procedure

The triangle-building procedure aims to maximise the formation of triangles
with their surrounding nodes. This process follows the state machine illustrated
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Figure 4.6: State machine diagram of the build triangle procedure of
forming edges, opposite edges and triangles.

in Figure 4.6. The state machine initiates after the scan of the surrounding nodes
is complete.

In the initial state, CREATE EDGE, an edge-forming request is sent to the next
entry in the surrounding node list each time this state is entered. The surIndex

keeps track of the next entry. After sending the request, a timer starts and the
edgeRequests counter is incremented. The state machine transitions to the
WAIT EDGE state, waiting for the reply. If an edge request fails, the request timer
redirects the state machine to the creation state when it times out and raises the
TIMEOUT REQUESTS flag. The request counter ( edgeRequests) is decremented
and the retry counter ( edgeRetry) is incremented. After three retries, the
current target node is skipped by incrementing the sent index ( surIndex). If
a reply has been handled successfully, the request counter ( edgeRequests) is
zero. If there are at least two edges, it becomes possible to create an opposite
edge.

The CREATE OPPOSITE state will try to make opposite edges between all pos-
sible combinations of the already-made edges. New edge combinations will be
initialised in the INIT state each time a new edge is created. The algorithm will
globally keep track of already handled edge combinations so that no unneces-
sary opposite edge requests will be sent. When entering the CREATE OPPOSITE

state, the algorithm attempts to create opposite edges for the current combin-
ation of edges. It first checks whether the maximum limit of opposite edges
(MAX TRIANGLES) has been reached. If this limit is exceeded, the state machine
transitions to the FINISHED state, concluding the triangle construction process.
Otherwise, the state enters a loop to iteratively generate new combinations until
a valid one is found or all combinations are exhausted. If no new combination is
discovered, the algorithm checks whether the maximum edge limit (MAX EDGES)
has been reached. If not, it transitions back to the CREATE EDGE state; other-
wise, it transitions to the FINISHED state, marking the completion of the overall
triangle construction. If a valid combination is identified, opposite edge requests
are dispatched based on the selected edges. The state machine transitions to
the WAIT OPPOSITE state, initiating a timer ( requestTimer) to handle timeouts
during the opposite edge creation process. Sending the two requests will also
increment the oppositeRequests by two.

In the WAIT OPPOSITE state, the algorithm oversees the waiting period for
opposite edge request fulfilment and the re-sending. Upon successful receipt
of both opposite edge requests, it resets the retry counter and transitions to
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CREATE TRIANGLE if all possible triangles are made; otherwise, it returns to
CREATE OPPOSITE. In case of no timeout, it continues waiting for replies. During
a timeout, if the retry counter ( oppositeRetry) is less than two, the algorithm
increments the retry counter. If two opposite requests fail, it decrements the
request count ( oppositeRequests) and re-sends the requests. For a single
failed request, it checks which one failed and compensates accordingly. After
each resend the timer is re-initiated and the TIMEOUT REQUESTS flag is reset. In
case of two time-outs in a row, indicating excessive failures, it resets the retry
and opposite request counters. It also compensates the oppositeEdgeCount

by the number of failures and returns to CREATE OPPOSITE state.
In the CREATE TRIANGLE state a triangle will be created using the newly

formed opposite edge and its combination of edges. Each new triangle will
increment the triangle counter ( triangleCount) only when the area is larger
than 0.2, otherwise it will be discarded. If the triangleCount reaches its max-
imum, then the state machine will transition to its final state FINISHED. If not,
the state machine transitions back to the CREATE OPPOSITE state to process the
next edge combination.

4.2.6 Dihedral Angle

To determine the angle of the mapping or the angle between two triangular
planes that share a common base edge, one must have the altitude heights, the
difference in the x positions of the altitude lines and the distance between the
third nodes. While the first two quantities can be computed using the methods
outlined in Section 4.2.4, the distance must be obtained by inspecting the list of
opposing edges. Consequently, the angle can only be computed when a triangle
is established with the two third nodes of the input triangles. For example, the
angle between the triangles ABC and ABD can be calculated as follows.

First, the delta x between the two altitude base positions will be calculated
with (4.7).

DeltaX = abs(altitudeBasePostion ABC − altitudeBasePostion ABD)
(4.7)

With the delta X position and the distance between the two third nodes C
and D, the projection distance perpendicular to the x-axis can be calculated
with (4.8).

Projection =
√
distance CD2 − deltaX2 (4.8)

Next, the angle ratio of the newly formed triangle ACD can be calculated
with (4.9). The visualisation of the projection and the triangle formed can be
seen in Figure 4.7.

Ratio [-1,1] =
altitude ABC2 + altitude ABD2 − projection2

2 · altitude ABC · altitude ABD
(4.9)

At last, the triangle edge distances ratio is converted into degrees with (4.10).

Dihedral angle = arccos (Ratio) ∗ 180

π
(4.10)

23



Figure 4.7: Visualisation of dihedral angle calculation,
∠C, basePosABC,E, between two triangles planes (ABC and ABD)
with the same base edge ab; Green lines are the altitude lines or
its projection; Red lines are delta X between basePosABD and
basePosABC or its projection; The black line dist CD is a requested
distance and the other is the translation of this distance called the
Projection.

4.2.7 Build Topology Procedure

The createCoordMap function is designed to establish a coordinate map (co-
ordmap) for a mesh topology based on a specified base edge. The primary ob-
jective is to iteratively map triangles around a chosen base triangle (base edge)
positioned along the x-axis. The mapping involves utilising calculated angles to
establish their spatial relationships and applying transformations to align the
triangles appropriately. The primary goal is to form tetrahedrons around the
base triangle. A high-level flow diagram can be seen in Figure 4.8.

The function commences by initialising the relevant variables, the first-match
indicator, and the last node ID. A special case is handled if the list of edges
comprises only one edge. The function adds coordinates for the base edge and
terminates. Subsequently, the function iterates through all triangles in the tri-
angle list. For each triangle, it checks whether the specified base edge is present.
If not, the triangle is skipped. Upon identifying the first triangle that matches
the base edge, it is designated as the base triangle, and its coordinates are placed
on the x-axis (baseEdge.distance, 0, 0). The third node of this base triangle is
located on the xy-plane (altitudeBasePositon, altitude, 0). The coordinates are
added to the coordmap with the addCoord function. The base triangle index,
a pointer to the other base edge and the last mapped node values will also be
updated.

For subsequent triangles, the calculateMapAngle function calculates the
angle between the base triangle and the current triangle. The current triangle
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Figure 4.8: High-level Flow diagram of making a coordinate map of
the spatial structure.

is then positioned on the xy plane and rotated accordingly onto the z-axis. The
function then checks whether the mapped coordinates match the coordinates of
a triangle connected to another base edge for verification. Various transforma-
tions and validity checks are performed on the mapped coordinates. Initially, it
checks if the mapped coordinates already match those of the connected triangle.
If a match is found, then it calculates the distance between the third node and
the last node. The distance check will give valuable information about the ori-
entation of the newly formed tetrahedron. If this distance is within an acceptable
deviation, the coordinates are added, and a tetrahedron is formed. If no match
is found in the initial orientation, then it explores possible alternative orienta-
tions by rotations and mirroring operations in Z and Y . The following rotations
are used: yaw, yaw + mirrorZ, mirrorY + yaw, mirrorY + yaw + mirrorZ.
The yaw rotation is the angle between the base edge and the other base edge,
this will align the other base edge onto the x-axis. The mirror in Y compensates
for the right-hand rotation direction when looking from the other perspective of
the base edge. The mirror in Z is to compensate for the orientation in Z that
was checked with the distance check.

If a match is identified after a rotation or combination, the corresponding
coordinates are added. In addition, the last node is also updated and a tet-
rahedron is formed. A tetrahedron consists of three triangle pointers, four
stone ids and six edge pointers. The stone ids and edge pointers are de-
rived from the triangles and are used for the identification of the tetrahedron.
The tetrahedron is included in a collection (tetrahedronList) and the counter
( tetrahedronCount) is increased. A criterion for determining when to include
a tetrahedron may be incorporated at a later stage. Presently, all conceivable
tetrahedrons are included.

The aforementioned process is carried out for every triangle in the list. If no
appropriate match is found, the triangle will be disregarded and not included
in the mapping.
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Figure 4.9: The network test environment office contains nine normal
BLE nodes (blue) from which two are placed in the ceiling to account
for height differences. A single BLE hub (green) is positioned cent-
rally to both transmit data to the database and function as a BLE
node itself. Additionally, two BLE nodes (red) are modified to meas-
ure local data such as humidity. The number represents the node ID.

Figure 4.10: Visualisation of the nodes in the test environment in 3D,
see Table 4.2 for reference.

4.3 Test Setup and Algorithm Verification

After developing the algorithm within the Python simulator, it will be tested
on the Crownstone hardware platform. A test environment is built to evaluate
the algorithm’s operation in a real network of BLE nodes and to determine the
accuracy.

The test setting depicted in Figure 4.9 illustrates an office layout featuring
numerous cabinets positioned along the walls, with desks arranged in the central
horizontal area. Within this office configuration, several BLE nodes are placed
at predetermined coordinates, establishing a BLE-mesh network. The specific
spatial positions of the nodes in the test configuration are identified by their
corresponding coordinates as listed in Table 4.2. The 3D representation is visu-
alised in Figure 4.10. The distances between the nodes are also calculated and
can be seen in the distance matrix Figure 4.11

The algorithm has already been verified through the development of a simu-
lator, which has shown that it works effectively. The spatial mapping algorithm
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Table 4.2: The coordinates of the twelve nodes in the test setup

Node ID Coordinate Node ID Coordinate

1 / A (3.4, 3.55, 0.8) 11 / G (6.45, 4.75, 1.55)
6 / B (1.5, 14.85, 0.05) 12 / H (0.5, 7.5, 0.05)
7 / C (0.5, 0,2, 0.4) 14 / I (6.2, 2.3, 2.85)
8 / D (5.7, 0.7, 0.05) 15 / J (0.9, 8.1, 2.85)
9 / E (3.3, 10.5, 0.8) 17 / K (3.4, 3.15, 0.75)
10 / F (4.2, 14.7, 0.3) 22 / L (3.3, 7.2, 1.45)

⇄ 1 6 7 8 9 10 11 12 14 15 17 22
1 0 11.48 4.45 3.74 6.95 11.19 3.36 4.96 3.69 5.58 0.4 3.71
6 11.48 0 14.69 14.76 4.77 2.72 11.35 7.42 13.69 7.33 11.87 7.98
7 4.45 14.69 0 5.24 10.68 14.96 7.58 7.31 6.55 8.28 4.15 7.61
8 3.74 14.76 5.24 0 10.12 14.08 4.38 8.56 3.26 9.25 3.43 7.07
9 6.95 4.77 10.68 10.12 0 4.32 6.6 4.17 8.94 3.97 7.35 3.36
10 11.19 2.72 14.96 14.08 4.32 0 10.28 8.1 12.82 7.81 11.59 7.64
11 3.36 11.35 7.58 4.38 6.6 10.28 0 6.72 2.78 6.61 3.54 3.99
12 4.96 7.42 7.31 8.56 4.17 8.1 6.72 0 8.21 2.89 5.27 3.14
14 3.69 13.69 6.55 3.26 8.94 12.82 2.78 8.21 0 7.86 3.6 5.86
15 5.58 7.33 8.28 9.25 3.97 7.81 6.61 2.89 7.86 0 5.93 2.92
17 0.4 11.87 4.15 3.43 7.35 11.59 3.54 5.27 3.6 5.93 0 4.11
22 3.71 7.98 7.61 7.07 3.36 7.64 3.99 3.14 5.86 2.92 4.11 0


Figure 4.11: Distance matrix of all the nodes of the test environment

will undergo further testing by deploying it on each node in the test environ-
ment. To initiate the spatial mapping procedure, a start signal will be sent
via Bluetooth mesh to all nodes in the BLE network, synchronising the start
of the algorithm at each node. At the end of every iteration of the algorithm,
all nodes will send the created coordinate map and other information about the
structure of their surrounding nodes to the local hub. This entire process will be
repeated every fifteen minutes. The results will then be stored in a database at
the hub for data analysis and visualisation. The coordinate maps obtained will
be compared to the built test environment coordinate map of the BLE nodes,
and the accuracy or error will be calculated based on this comparison.
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Chapter 5

Evaluation

This chapter will discuss the evaluation of the federated indoor localisation al-
gorithm. After development, the algorithm is tested in our controlled test envir-
onment in Section 4.3. After that, the resulting data with the node localisation
estimates were processed. The results of the simulation and the federated map-
ping algorithm can be found in Sections 5.1 and 5.2. Finally, the obtained results
are compared with the related work in Section 5.3 to assess if any improvements
in accuracy are made.

5.1 Simulation Results

As mentioned previously, the purpose of this simulator is to aid in testing, debug-
ging, and validating the algorithm’s mathematical aspects while also providing
visualisation capabilities. A predefined network is used as input to test the sim-
ulator, which can be seen on the left side of Figure 5.1. The simulator generates
a set of coordinates mapped around a specific base edge. The output coordin-
ates are collected and used as a metric to compare with the input coordinates.
Due to the ideal test environment in the simulation, there is no difference in
results after each run.

Figure 5.1: Double tetrahedron input reference network for the simu-
lator (left) and the output result (right).

The simulator output is shown on the right side of Figure 5.1 and the collec-
ted coordinates can be seen in Table 5.1. It is obvious that only the base edge
AD matches because the coordinates of node D are on the x-axis. The other
coordinates of the other base edge represent the same network structure but
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under a different angle. When rotating the configuration to align with the base
edge AD, it becomes apparent that the spatial arrangement closely corresponds
to its original configuration. The structure is indeed overdetermined from mul-
tiple perspectives in this simulator. The necessary rotations can be determined
using the singular value decomposition method (SVD) in conjunction with the
covariance matrix, see Appendix E.

Table 5.1: Output of the simulator showing reference input and the
output coordinates of the mapped nodes plotted around a specific
base edge

Nodes Input coordinates Output coordinates per base edge
ID Reference AB AC AD AE

A (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)
B (1.5, 3.5, 0) (3.808, 0, 0) (3.287, -1.417, 1.300) (1.5, 3.5, 0) (2.117, 3.165, 0)
C (3, 2.5, 1) (3.480, 1.956, -0.562) (4.031, 0, 0) (3, 2.5, 1) (3.560, 1.805, 0.562)
D (3.5, 0, 0) (1.379, 3.130, 0.745) (2.605, 2.338, 0) (3.5, 0, 0) (3.368, -0.594, -0.745)
E (5, 1, 1) (2.889, 4.319, 0) (4.589, 2.372, -0.557) (5, 1, 1) (5.196, 0, 0)

5.2 Spatial Mapping Algorithm Results

During development, the debug output was printed to the UART. The results
logs of the coordinate map procedure can be seen in Appendix F, these logs show
two successful creations of one or multiple tetrahedrons and their coordinate
map. This result initiated the real tests with the test setup. The algorithm’s
results are collected via the hub and stored in an Influx database. The gathered
federated output coordinates are used to visualise the structure. Figure 5.2
shows two structures built in two different intervals of node 1. Due to the
different node perspectives of build structures (rotations), the varying usage of
node IDs in the structure and the noise, the coordinate data can not easily
be compared with the input or aggregated into one structure. Therefore, the
edge distance, RSSI, mean and standard deviation values will be used to make
this method comparable and determine accuracy. The edge distances are also
compared with the distances between the test setup coordinates to calculate the
error.
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Figure 5.2: Comparison of two coordinate map plots of node 1 on two
different intervals. (Interval 0: node ID 1,11,15,17,22; Interval 1:
1,12,15,22)

The coordinate maps of nodes 1, 11 and 12 can be seen in Figure 5.3. These
nodes show the most consistency in their point clouds and show the best cluster-
ing of nodes after filtering. The algorithm demonstrates the ability to reproduce
the same structure with a stable signal consistently. The consistency is probably
due to the low variation in edge distances and the log-distance model, which
allows the algorithm to match and make more triangles and tetrahedrons.

Figure 5.3: Point clouds representing nodes 1, 11 and 12, showcasing
their respective calculated coordinates across all intervals and filtered
point clouds illustrating the consistency in coordinates for nodes 1,
11, and 12 across multiple intervals.

RSSI values are extracted from the edge data and plotted in Figure 5.4 to see
the behaviour of the signal over time. The RSSI values for each node show a
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lot of variation. Therefore the signal is smoothed with a window of 20 intervals.
The figure shows that almost all RSSI trends are around -55/60 dBm, except
for node 1. A horizontal line means that no edge has been made with this node
during this interval. Another thing that can be seen is that the RSSI values show
sinusoidal movement over time, indicating periodic influences such as humidity
or the presence of people.

Figure 5.4: Time series plot displaying RSSI values for each node. On
the left, the unfiltered data is depicted, while on the right, the filtered
data is presented.

After statistically processing the data, the distribution of the edge data of
each node is visualised with box plots for each sourceID, see Appendix G. The
left figures show the distance distribution and the RSSI’s right. In both figures
the median is highlighted with the orange line and the green dotted line indicates
the mean. For each sourceID the nodes are sorted according to the distance
from left to right, the left being the closest to the specific sourceID. Figure
5.5 shows the most interesting results.

At sourceID 1, node 17 should be the closest in distance, but this is not
the case. Possible explanations for this are that the antennas are not aimed
well or that there are too many blockages between the nodes, which can lead to
higher RSSI values. Nevertheless, checking its distribution does not show many
outliers, and thus a fairly stable RSSI. Checking the distribution of sourceID 7
also shows a similar bad connection to node 1. sourceID 6, 7 and 10 have a lot
of outliers visualised by the circles in their distributions. Probably because it is
located further away from the other nodes. It can also be seen that sourceID

22, the hub, has a very narrow distribution for its nearby nodes. The nodes
further away show much more variation. The exceptions are nodes 1 and 7
which suffer from ambient noise and blockages because it is in the corner and
therefore show more variation.
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Figure 5.5: Box-plots of edge statistics for distance and RSSI, nodes
sorted on RSSI.

The means and standard deviation of the distance and RSSI have also been
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calculated for each edge target of a node. This statistical data can be seen in
Table H.1 till H.6 in Appendix H. It can be seen that the mean RSSI values
are all very close to each other, with an overall minimum of −70dBm and a
maximum of −47.9dBm. The small standard deviations for the distance are
linked to a not adequately fine-tuned RSSI to distance formula. Small changes
in RSSI should result in greater changes in distance when at a certain distance,
because of the logarithmic function.

Figure 5.6: 2D map depicting the noise level at each node location
within the test setup, showcasing the RSSI standard deviation in
colour.

The noise of each node is also calculated to show which node locations have
more noise than others, Figure 5.6. The noise is indicated by the mean standard
deviation of the RSSI and visualised with a colour scheme. It can be seen that
nodes 1 and 7 have the most noise and nodes 12 and 15 are the best. When
comparing these results with the environment or location of the node it can be
noted that node 1 has too much ambient noise from its neighbour 17. Node 7
is in the corner of a kitchen that blocks or reflects too many signals. Node 8
lies on the ground, resulting in more blockages for the signal that needs to pass
through more office furniture.

The edge distances obtained from the tests are compared with the official
distance computed from the test setup coordinates. For each interval, the RMSE
(root mean squared error) and the MAE (mean absolute error) are computed
for each node across all its edges. The results are shown at the top of Figure I.1
in Appendix I. The largest difference between the lowest and highest RMSE and
MAE values is 10.7 meters. Due to an unstable RSSI, the RMSE and MAE are
also unstable. The flat lines in the figures are due to the interpolation of missing
points. These results show that the RSSI to distance function is not accurate
enough and that other variables are needed to compensate for the environment.

34



Figure 5.7: Comparison of RMSE variations across intervals for differ-
ent Node IDs, illustrating both the original and smoothed versions
filtered with a 35-interval window. The left figure depicts the normal
data, while the right shows the smoothed versions.

From the results, two nodes are picked and smoothed with a 35-interval win-
dow and visualised at the right of Figures 5.7 and 5.8. It can be seen that a
lot of the nodes’ RMSE and MAE values reduce over time. Some plotted lines
also show sinusoidal movement, which can be explained by the people working
during the day causing more reflections and noise. The periodicness of the error
could also be related to the variation in humidity over the day which is already
mentioned in Appendix C. The other nodes are placed further away from the
floor and roof probably resulting in less reflections and noise.

Figure 5.8: Comparison of MAE variations across intervals for differ-
ent Node IDs, illustrating both the original and smoothed versions
filtered with a 35-interval window. The left figure depicts the normal
data, while the right shows the smoothed versions.

5.3 Comparison

Table 5.2 shows an overview of the current accuracies of various localisation
techniques. It can be seen that the developed method does not have the same
accuracy as the trilateration and triangulation techniques, due to noise and
the lack of a noise estimate filter. Because of this, some of the nodes show
better accuracy than others. Therefore, the federated spatial algorithm does not
outperform the current best techniques, as some of the nodes have a significant
difference in accuracy. However, it is important to note that the other methods
are also not tested in our test setup, which can show a different comparison
outcome.
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Table 5.2: Overview of relevant BLE indoor localisation techniques
with accuracy

Techniques/Methods Accuracy Techniques/Methods Accuracy
Fingerprinting (FP.)(RSSI) 1.42m [9] [3] Time-of Arrival + RSSI 2.0–2.7m [13]
Multi/Trilateration 0.45-1.85 m [33] Bloc: (CSI) 0.86m [7]
Angle of Arrival 0.36m [8] ML (Classification, FP.) 0.3-2.5m [21][36]
BLE landmark: DTW 0.42-0.75m [40] (New) Fed. Spatial Mapping 4.62m
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Chapter 6

Conclusions

Indoor localisation is a well-researched topic and it is challenging to improve
the accuracy of existing techniques. However, utilising the federated approach
in combination with local environment data and machine learning models has
shown promising improvements in related studies. This thesis has focused spe-
cifically on a federated implementation for spatially mapping a network. The
developed localisation algorithm allows for the creation of a 3D spatial recon-
struction of the network in a federated way. This new approach decentralises
indoor localisation and produces data from multiple perspectives, which can im-
prove the aggregation of the spatial network structure. The structure coordinate
map can be used as a reference for other localisation methods. The gathered
data is also used to identify local noise factors.

The spatial mapping algorithm has first been tested with a simulator. Its
results indicate that the maths behind the algorithm is correct for generating a
perfect 3D structure in an ideal situation. However, the results of the real test
show the real importance of a good RSSI to distance model and filter method.
The outcome of the spatial mapping algorithm method indicates a significant
variation in noise levels between nodes. During the investigation, it was dis-
covered that factors like blockages and ambient noise contribute majorly to this
variation. In addition, humidity was identified as another significant factor that
affects noise levels. The results from the time series plot of RSSI measurement
and other environmental data revealed that conducting measurements over mul-
tiple periods could provide new insights into noise levels. Although an RMSE
ranging from 1 to 10.7 metres indicates high accuracy in some nodes. With an
accuracy of 4.62 meters, it cannot be concluded that the method has a higher
overall accuracy.

To conclude, the spatial mapping algorithm can create a 3D structure in a
federated way and can serve as a localisation framework and location reference
for further research with machine learning models. The developed framework
also paves the way for running improved RSSI to distance conversion models at
the Edge. Combining this method with other existing methods in a federated
way could potentially improve accuracy by knowing the direction and relative
locations of the nodes and other environmental factors. To address the research
question, the federated approach can potentially enhance Bluetooth-based in-
door localisation models. However, the spatial network mapping algorithm can-
not exceed the localisation accuracy of current localisation techniques.
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6.1 Limitations and Final Remarks

In this research, an algorithm was developed, but it has certain limitations.
This section will discuss those limitations and provide some final remarks.

• As mentioned before, the federated spatial mapping Python simulator as-
sumes all nodes are visible with fixed signal strength and no noise. How-
ever, the simulator may not account for certain edge cases, which can
result in errors or unexpected behaviour. There is also no communication
between the node threads.

• The federated spatial mapping implementation in C++ runs on designated
BLE nodes and is integrated into the BlueNet firmware. It is currently
limited to storing 15 surrounding nodes, 13 opposite edges and triangles,
seven adjacent edges and five tetrahedrons. The number of triangles is
fixed to 13 because this amount still fits in one hub sync message.

• As mentioned earlier, the noise level of the RSSI value is crucial for the
success of the federated localisation algorithm. This means that the en-
tire algorithm depends on a denoised RSSI value. If there is noise, the
algorithms’ accuracy will be affected and the usage of the system will be
limited. A shorter sampling period, implementing new filter methods or
using ML could improve the RSSI.

• Local environment data is also researched in this thesis. Some BLE nodes
were equipped with sensors that measure humidity, temperature and pres-
sure. This information can be shared across the network in a federated
manner. Sensor data could have been used to improve the RSSI to distance
model. However, due to memory constraints due to the usage of machine
learning, this improvement has not been implemented in the firmware.
The local environment data and machine learning research documenta-
tion can be found in Appendices C and D.
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6.2 Future Work

The thesis presents a new approach to indoor localisation, which involves a fed-
erated framework for deploying models in a BLE mesh network. The algorithm
and localisation techniques have been tested and the results were evaluated.
However, the evaluation has revealed the potential for improvements and other
future work, which will be addressed in this section.

• For this research, the BLE nodes used the SoC NRF52832. Upgrading the
hardware of the BLE nodes would allow more resource-intensive machine-
learning models to be run at the Edge. The new nRF series is a suitable
option, based on its higher memory capacity and multicore.

• Additional information can be gathered to counteract external factors that
may affect the accuracy of the localisation algorithm. Such data can be
used as new features in ML models to improve their accuracy and robust-
ness. Real-time data can be particularly useful in measuring factors such
as humidity and temperature, which can influence the RSSI and create
bias throughout the area. Other factors, such as walls and reflections, can
be investigated more to improve accuracy.

• To improve the accuracy of indoor localisation, other localisation tech-
niques could be combined with the spatial mapping algorithm. Inform-
ation about the structure can be used to determine and adapt to noisy
areas.

• Once the spatial network mapping algorithm has successfully run on a
node, it has generated triangle and tetrahedron node structures, along
with a coordinate map of the nodes from these structures for localisation
purposes. For future work, a multilayer localisation mechanism can be
developed. The first layer involves the node itself attempting to obtain
a location estimate of the tracked unit per tetrahedron. The node can
use trilateration, multilateration or a small neural net to localise the tag
based on RSSI values between them and the tag. The second layer of the
system combines the location predictions of each tetrahedron. This layer
creates a final location prediction based on the output of the first layer and
sends it to the local hub. To combine the nodes’ results, an aggregation
algorithm can be run on the hub.
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Appendix A

Algorithm UML

MeshTopologyResearch

sur_node_t* surNodeList

Edge* edgeList

Edge* oppositeEdgeList

Triangle* triangleList

Tetrahedron* tetrahedronList

Store<sur_coord_t, MAX_EDGES> _coordmap

cs_ret_code_t init()

void reset()

int stateFunc()

void handleEvent()

void onMeshMsg()

void onTickSecond()

void handleScannedDevice()

void buildTriangleStateFunc()

cs_ret_code_t onNodeRequest()

cs_ret_code_t createEdgeRequest()

cs_ret_code_t createOppositeRequest()

void createTriangleWith()

void createCoordMap()

float calculateMapAngle()

cs_ret_code_t onTopologyMap()

Edge

stone_id_t source

stone_id_t target

int8_t rssi

float distance

bool compare()

Triangle

Edge* base_edge[2]

Edge* opposite_edge

float getArea()

float getAngle()

float getAltitude()

float getAltitudeBasePosition()

stone_id_t getThirdNode()

Edge* getOtherBase()

Edge* getEdge()

bool hasEdge()

Tetrahedon

Triangle* triangles[3]

Edge* edges[6]

stone_id_t nodes[4]

void getEdges()

void getNodes()

bool compare()

MeshTopologyResearch - Helper functions

uint8_t findSurNode()

uint8_t findEdge()

uint8_t findOppositeEdge()

uint8_t findTriangle()

void clearSurNodeRSSIinfo()

void addSurNode()

void updateSurNode()

void sortSurNodeList()

Edge* addEdge()

Edge* addOppositeEdge()

Triangle* addTriangle()

Tetrahedron* addTetrahedron()

void onNeighbourRssi()

cs_ret_code_t onStoneMacMsg()

cs_ret_code_t getMacAddres()

void sendNextSurNode()

void onNeighbourRssi()

cs_ret_code_t requestNodeSearch()

void addCoord()

float calc_distance()

bool checkDeviation()

bool isWithinMaxDeviation()

MeshTopologySyncer

uint8_t enum SyncerState

stone_id_t HUB_ID = 22

bool isDone()

void sendNext()

void sendTopologyToUart()

3..*

3..*

5..*

13..*

7..*

Figure A.1: UML of the spatial network mapping algorithm (C++)
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Appendix B

Database
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Figure B.1: Representation of the database with all the sent topology
data
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Appendix C

Local Environment Data

In this research, the potential of using humidity, temperature, and pressure
as additional features in machine learning models is being explored. To test
this, the RSSI between multiple nodes is being measured and stored along with
measurements of humidity, temperature, and pressure, see Figure C.1. It can
be seen that the humidity shows sinusoidal behaviour.

Figure C.1: Time series plot of the humidity, pressure and temperature.

An ML model has been trained and the feature importance result indicates
that humidity has the greatest effect on the RSSI. Refer to Figure C.2. It would
be beneficial to incorporate this feature into an RSSI to distance model for
future work.
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Figure C.2: Feature importance output.
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Appendix D

Machine Learning Models

There are two topics of interest for this research where an ML model can
be applied: RSSI to distance conversion and RSSI-based localisation. These
small neural networks can be developed on a local machine with Python using
Keras[26] sequential model. In this sequential model, multiple different layers
can be added and the input features and output can be defined. Two distinct
datasets can be created which will be utilised for training the models. The
first dataset will contain RSSI readings at multiple distances. In combination
with environmental variables like temperature, humidity and pressure. The
other dataset should also contain the previous variables, but now from multiple
nodes. Before training, the datasets will be preprocessed to obtain the mean,
variance and standard deviation of a specified time window. This will give extra
features that can increase accuracy. The goal of these models is to achieve high
accuracy with a minimally sized neural network that accommodates memory
constraints on the hardware platform. The Python-generated model will be
converted to C++ and optimised for microcontrollers to achieve this.

1. RSSI-to-distance conversion model: takes as input the current RSSI, the
mean, the variance and standard deviation of RSSI, and the temperature,
humidity and pressure over a to-be specified window.

2. RSSI-based Localisation model: takes as input the 7 previously mentioned
variables multiplied by n the number of used nodes. The environmental
data will probably be the same for groups of nodes, so this will later change
the amount of inputs.

model = keras.Sequential([

keras.layers.Dense(64, activation=’relu’, input_shape=(7 or 7*n,)),

keras.layers.Dense(32, activation=’relu’),

keras.layers.Dense(3)

])

The Keras models can be converted to ONNX models after training and ap-
proval of accuracy. The ONNX models can be further compressed with the
Eclipse Aidge platform [14] so it can run on a microcontroller. Aidge is particu-
larly useful for neural network design and exploration, allowing simple and fast
prototyping of neural networks with different topologies.

51



52



Appendix E

Determination of the
rotation matrices with SVD

The SVD calculation uses two sets of points: base edge (source) and other edge
(target) coordinates. The target coordinates, represented as matrix AD in Fig-
ure E.1, are used as the target coordinates, while the other original coordinates
are used as the source coordinates. The method aims to determine the rotation
matrix needed to align the source coordinates with the target coordinates. In
short, the method centres both sets of points around their mean values and then
computes the covariance matrix between the centred points. Subsequently, the
function employs Singular Value Decomposition (SVD) on the covariance mat-
rix to derive the rotation matrix that minimises the squared distance between
the rotated source points and the target points. The results of the simulator and
the proof that a rotation matrix can be found for each coordinate map output
show that the mathematics is indeed correct and that a matching 3D spatial
map can be created for each edge.

53



Figure E.1: Validation of the output at node A involves aligning the
original coordinates (A (top)- E (Bottom) with those of AD. The ob-
tained matrix represents the rotation needed to transform the input
coordinates into the coordinate space of AD.
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Appendix F

Coordmap Debug Logs

F.1 Single Tetrahedron

A log of the UART debug output of a successful coordmap procedure creating
a single tetrahedron can be seen below.

Listing F.1: UART debug log

LOG: [2024 -02 -14 15:51:23.602676] I Max triangles reached -> Finished
LOG: [2024 -02 -14 15:51:25.665059] I Edges of [23]::(6):
LOG: [2024 -02 -14 15:51:25.671227] I o--o : target =22, rssi=-46, distance =1.049
LOG: [2024 -02 -14 15:51:25.676189] I o--o : target=8, rssi=-53, distance =1.504
LOG: [2024 -02 -14 15:51:25.679433] I o--o : target =21, rssi=-52, distance =1.383
LOG: [2024 -02 -14 15:51:25.681444] I o--o : target =15, rssi=-54, distance =1.460
LOG: [2024 -02 -14 15:51:25.683445] I o--o : target =12, rssi=-56, distance =1.642
LOG: [2024 -02 -14 15:51:25.685445] I o--o : target=9, rssi=-57, distance =1.847
LOG: [2024 -02 -14 15:51:25.687444] I Opposite edges of [23]::(10):
LOG: [2024 -02 -14 15:51:25.688674] I o==o : source =22, target=8, rssi=-55, distance =1.799
LOG: [2024 -02 -14 15:51:25.690673] I o==o : source =22, target =21, rssi=-55, distance =1.752
LOG: [2024 -02 -14 15:51:25.691672] I o==o : source =22, target =15, rssi=-52, distance =1.526
LOG: [2024 -02 -14 15:51:25.693679] I o==o : source =15, target =21, rssi=-54, distance =1.658
LOG: [2024 -02 -14 15:51:25.695747] I o==o : source =22, target =12, rssi=-53, distance =1.568
LOG: [2024 -02 -14 15:51:25.697193] I o==o : source=8, target =12, rssi=-60, distance =2.301
LOG: [2024 -02 -14 15:51:25.698193] I o==o : source =21, target =12, rssi=-56, distance =1.900
LOG: [2024 -02 -14 15:51:25.700334] I o==o : source=8, target=9, rssi=-61, distance =2.431
LOG: [2024 -02 -14 15:51:25.701334] I o==o : source =21, target=9, rssi=-58, distance =2.120
LOG: [2024 -02 -14 15:51:25.703338] I o==o : source =15, target=9, rssi=-57, distance =2.007
LOG: [2024 -02 -14 15:51:25.704338] I Triangles: (10)
LOG: [2024 -02 -14 15:51:25.706339] I o=o=o : id=0, (23:22:8): area =0.788 , angle =87.709 , altitude base1

=1.503 , altitude base2 =1.048 , altitude opposite =0.876
LOG: [2024 -02 -14 15:51:25.707338] I o=o=o : id=1, (23:22:21): area =0.725 , angle =91.133 , altitude base1

=1.383 , altitude base2 =1.048 , altitude opposite =0.828
LOG: [2024 -02 -14 15:51:25.709559] I o=o=o : id=2, (23:22:15): area =0.732 , angle =72.829 , altitude base1

=1.395 , altitude base2 =1.002 , altitude opposite =0.959
LOG: [2024 -02 -14 15:51:25.711562] I o=o=o : id=3, (23:15:21): area =0.956 , angle =71.308 , altitude base1

=1.310 , altitude base2 =1.383 , altitude opposite =1.153
LOG: [2024 -02 -14 15:51:25.713592] I o=o=o : id=4, (23:22:12): area =0.793 , angle =67.144 , altitude base1

=1.513 , altitude base2 =0.966 , altitude opposite =1.012
LOG: [2024 -02 -14 15:51:25.714597] I o=o=o : id=5, (23:8:12): area =1.231 , angle =93.924 , altitude base1

=1.638 , altitude base2 =1.500 , altitude opposite =1.070
LOG: [2024 -02 -14 15:51:25.715600] I o=o=o : id=6, (23:21:12): area =1.107 , angle =77.307 , altitude base1

=1.602 , altitude base2 =1.349 , altitude opposite =1.166
LOG: [2024 -02 -14 15:51:25.717604] I o=o=o : id=7, (23:8:9): area =1.388 , angle =92.415 , altitude base1

=1.846 , altitude base2 =1.502 , altitude opposite =1.142
LOG: [2024 -02 -14 15:51:25.718934] I o=o=o : id=8, (23:21:9): area =1.260 , angle =80.652 , altitude base1

=1.823 , altitude base2 =1.364 , altitude opposite =1.189
LOG: [2024 -02 -14 15:51:25.720921] I o=o=o : id=9, (23:15:9): area =1.294 , angle =73.669 , altitude base1

=1.773 , altitude base2 =1.401 , altitude opposite =1.290
LOG: [2024 -02 -14 15:51:25.721920] I Coord (23) (0.000 , 0.000 , 0.000) added to Map
LOG: [2024 -02 -14 15:51:25.723934] I CoordMap Base edge = 23:22
LOG: [2024 -02 -14 15:51:25.724922] I Coord (22) (1.049 , 0.000 , 0.000) added to Map
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LOG: [2024 -02 -14 15:51:25.726935] I Coord (8) (0.060 , 1.503, 0.000) added to Map
LOG: [2024 -02 -14 15:51:25.727920] I Base Triangle 23:22:8
LOG: [2024 -02 -14 15:51:25.729824] I CoordMap:
LOG: [2024 -02 -14 15:51:25.730835] I Node 23: x = 0.000, y = 0.000, z = 0.000
LOG: [2024 -02 -14 15:51:25.732270] I Node 22: x = 1.049, y = 0.000, z = 0.000
LOG: [2024 -02 -14 15:51:25.733278] I Node 8: x = 0.060, y = 1.503, z = 0.000
LOG: [2024 -02 -14 15:51:25.734280] I Init Coord: -0.027, 1.383, 0.000
LOG: [2024 -02 -14 15:51:25.736281] I Find angle between 8 and 21
LOG: [2024 -02 -14 15:51:25.737281] I No opposite edge found
LOG: [2024 -02 -14 15:51:25.738414] I MapAngle: -1.000
LOG: [2024 -02 -14 15:51:25.739417] I Init Coord (rotated): -0.027, 1.382 , -0.024
LOG: [2024 -02 -14 15:51:25.740416] I No triangle found with thirdNode 21 and other_base 8
LOG: [2024 -02 -14 15:51:25.741416] I o Node 21 will not be mapped with triangle 1
LOG: [2024 -02 -14 15:51:25.742416] I CoordMap:
LOG: [2024 -02 -14 15:51:25.742416] I Node 23: x = 0.000, y = 0.000, z = 0.000
LOG: [2024 -02 -14 15:51:25.743416] I Node 22: x = 1.049, y = 0.000, z = 0.000
LOG: [2024 -02 -14 15:51:25.744417] I Node 8: x = 0.060, y = 1.503, z = 0.000
LOG: [2024 -02 -14 15:51:25.745416] I Init Coord: 0.431, 1.395, 0.000
LOG: [2024 -02 -14 15:51:25.746416] I Find angle between 8 and 15
LOG: [2024 -02 -14 15:51:25.747416] I No opposite edge found
LOG: [2024 -02 -14 15:51:25.748473] I MapAngle: -1.000
LOG: [2024 -02 -14 15:51:25.748473] I Init Coord (rotated): 0.431 , 1.395 , -0.024
LOG: [2024 -02 -14 15:51:25.749509] I No triangle found with thirdNode 15 and other_base 8
LOG: [2024 -02 -14 15:51:25.750498] I o Node 15 will not be mapped with triangle 2
LOG: [2024 -02 -14 15:51:25.751499] I Triangle 3 (23:15:21) has no baseEdge 23:22
LOG: [2024 -02 -14 15:51:25.752145] I CoordMap:
LOG: [2024 -02 -14 15:51:25.753156] I Node 23: x = 0.000, y = 0.000, z = 0.000
LOG: [2024 -02 -14 15:51:25.755504] I Node 22: x = 1.049, y = 0.000, z = 0.000
LOG: [2024 -02 -14 15:51:25.756501] I Node 8: x = 0.060, y = 1.503, z = 0.000
LOG: [2024 -02 -14 15:51:25.758597] I Init Coord: 0.638, 1.513, 0.000
LOG: [2024 -02 -14 15:51:25.759603] I Find angle between 8 and 12
LOG: [2024 -02 -14 15:51:25.761165] I base posX A = 0.060, base posX B = 0.638
LOG: [2024 -02 -14 15:51:25.762811] I nodeDist = 2.301 -> deltaX = 0.578 -> TranslatedNodeDist = 2.227
LOG: [2024 -02 -14 15:51:25.763821] I AltitudeH A = 1.503, AltitudeH B = 1.513
LOG: [2024 -02 -14 15:51:25.764822] I MapAngle: 95.232
LOG: [2024 -02 -14 15:51:25.766823] I Init Coord (rotated): 0.638 , -0.138, 1.506
LOG: [2024 -02 -14 15:51:25.767822] I Check Coord: -0.112, 1.638 , 0.000
LOG: [2024 -02 -14 15:51:25.769975] I Find angle between 22 and 12
LOG: [2024 -02 -14 15:51:25.770976] I base posX A = 0.042, base posX B = -0.112
LOG: [2024 -02 -14 15:51:25.771975] I nodeDist = 1.568 -> deltaX = 0.154 -> TranslatedNodeDist = 1.560
LOG: [2024 -02 -14 15:51:25.773981] I AltitudeH A = 1.048, AltitudeH B = 1.638
LOG: [2024 -02 -14 15:51:25.774980] I MapAngle: 66.897
LOG: [2024 -02 -14 15:51:25.775981] I CheckCoord: -0.112, 0.643, 1.506
LOG: [2024 -02 -14 15:51:25.777011] I Distance between 8 and 12 is 2.301
LOG: [2024 -02 -14 15:51:25.779071] I compare -0.112, 0.643, 1.506 with 0.638, -0.138, 1.506
LOG: [2024 -02 -14 15:51:25.780979] I (YAW) checkCoord: -0.647, -0.087, 1.506
LOG: [2024 -02 -14 15:51:25.783005] I compare -0.647, -0.087, 1.506 with 0.638, -0.138, 1.506
LOG: [2024 -02 -14 15:51:25.785004] I (-YAW) checkCoord: -0.112, 0.643, 1.506
LOG: [2024 -02 -14 15:51:25.786006] I (Y) checkCoord: -0.112, -0.643, 1.506
LOG: [2024 -02 -14 15:51:25.787004] I (Y+YAW) checkCoord: 0.638, -0.138, 1.506
LOG: [2024 -02 -14 15:51:25.789587] I compare 0.638, -0.138, 1.506 with 0.638, -0.138, 1.506
LOG: [2024 -02 -14 15:51:25.791588] I Check deviation between 2.301 and 2.301
LOG: [2024 -02 -14 15:51:25.792592] I Coord (12) (0.638 , -0.138, 1.506) added to Map
LOG: [2024 -02 -14 15:51:25.794588] I Triangle 5 (23:8:12) has no baseEdge 23:22
LOG: [2024 -02 -14 15:51:25.795588] I Triangle 6 (23:21:12) has no baseEdge 23:22
LOG: [2024 -02 -14 15:51:25.796589] I Triangle 7 (23:8:9) has no baseEdge 23:22
LOG: [2024 -02 -14 15:51:25.798749] I Triangle 8 (23:21:9) has no baseEdge 23:22
LOG: [2024 -02 -14 15:51:25.799390] I Triangle 9 (23:15:9) has no baseEdge 23:22
LOG: [2024 -02 -14 15:51:26.827665] I CoordMap:
LOG: [2024 -02 -14 15:51:26.835985] I Node 23: x = 0.000, y = 0.000, z = 0.000
LOG: [2024 -02 -14 15:51:26.842396] I Node 22: x = 1.049, y = 0.000, z = 0.000
LOG: [2024 -02 -14 15:51:26.849071] I Node 8: x = 0.060, y = 1.503, z = 0.000
LOG: [2024 -02 -14 15:51:26.855804] I Node 12: x = 0.638, y = -0.138, z = 1.506
LOG: [2024 -02 -14 15:51:26.865581] I Tetrahedrons: (1)
LOG: [2024 -02 -14 15:51:26.869285] I o=o=o=o : id=0, triangles =0,4,5
LOG: [2024 -02 -14 15:51:26.874335] I isvalid? 1
LOG: [2024 -02 -14 15:51:26.877356] I --> Send coord: id=23, x=0.000 , y=0.000 , z=0.000
LOG: [2024 -02 -14 15:51:26.924428] I reliable msg success
LOG: [2024 -02 -14 15:51:29.405133] [rce/src/ble/cs_ServiceData.cpp: 533] I sendMeshState
LOG: [2024 -02 -14 15:51:36.384043] I CoordMap:
LOG: [2024 -02 -14 15:51:36.389597] I Node 23: x = 0.000, y = 0.000, z = 0.000
LOG: [2024 -02 -14 15:51:36.395815] I Node 22: x = 1.049, y = 0.000, z = 0.000
LOG: [2024 -02 -14 15:51:36.401534] I Node 8: x = 0.060, y = 1.503, z = 0.000
LOG: [2024 -02 -14 15:51:36.407615] I Node 12: x = 0.638, y = -0.138, z = 1.506
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LOG: [2024 -02 -14 15:51:36.413795] I isvalid? 1
LOG: [2024 -02 -14 15:51:36.419126] I --> Send coord: id=22, x=1.049 , y=0.000 , z=0.000
LOG: [2024 -02 -14 15:51:37.134787] I reliable msg success
LOG: [2024 -02 -14 15:51:44.451231] I CoordMap:
LOG: [2024 -02 -14 15:51:44.457336] I Node 23: x = 0.000, y = 0.000, z = 0.000
LOG: [2024 -02 -14 15:51:44.464114] I Node 22: x = 1.049, y = 0.000, z = 0.000
LOG: [2024 -02 -14 15:51:44.469496] I Node 8: x = 0.060, y = 1.503, z = 0.000
LOG: [2024 -02 -14 15:51:44.475502] I Node 12: x = 0.638, y = -0.138, z = 1.506
LOG: [2024 -02 -14 15:51:44.481722] I isvalid? 1
LOG: [2024 -02 -14 15:51:44.488726] I --> Send coord: id=8, x=0.060 , y=1.503 , z=0.000
LOG: [2024 -02 -14 15:51:44.543945] I reliable msg success
LOG: [2024 -02 -14 15:51:53.100590] I CoordMap:
LOG: [2024 -02 -14 15:51:53.102600] I Node 23: x = 0.000, y = 0.000, z = 0.000
LOG: [2024 -02 -14 15:51:53.105115] I Node 22: x = 1.049, y = 0.000, z = 0.000
LOG: [2024 -02 -14 15:51:53.106109] I Node 8: x = 0.060, y = 1.503, z = 0.000
LOG: [2024 -02 -14 15:51:53.108108] I Node 12: x = 0.638, y = -0.138, z = 1.506
LOG: [2024 -02 -14 15:51:53.109236] I isvalid? 1
LOG: [2024 -02 -14 15:51:53.110277] I --> Send coord: id=12, x=0.638 , y=-0.138, z=1.506
LOG: [2024 -02 -14 15:51:53.791547] I reliable msg success
LOG: [2024 -02 -14 15:52:02.014158] I <- Incomming Node request received from 21
LOG: [2024 -02 -14 15:52:02.017158] I -> sent reply to 21: target 10, rssi -128
LOG: [2024 -02 -14 15:52:02.197094] I <- Incomming Node request received from 21
LOG: [2024 -02 -14 15:52:02.208280] I -> sent reply to 21: target 10, rssi -128
LOG: [2024 -02 -14 15:52:02.717449] I CoordMap:
LOG: [2024 -02 -14 15:52:02.721812] I Node 23: x = 0.000, y = 0.000, z = 0.000
LOG: [2024 -02 -14 15:52:02.725811] I Node 22: x = 1.049, y = 0.000, z = 0.000
LOG: [2024 -02 -14 15:52:02.730193] I Node 8: x = 0.060, y = 1.503, z = 0.000
LOG: [2024 -02 -14 15:52:02.733538] I Node 12: x = 0.638, y = -0.138, z = 1.506
LOG: [2024 -02 -14 15:52:02.737553] I Finished sending topology
LOG: [2024 -02 -14 15:52:02.740797] I TOPOLOGY RESEARCH DONE!

F.2 Multiple Tetrahedron

A log of the UART debug output of a successful coordmap procedure creating
multiple tetrahedrons can be seen below.

Listing F.2: Coordmap Procedure Debug Log

LOG: [2024 -02 -15 16:39:15.770069] I Max triangles reached -> Finished
LOG: [2024 -02 -15 16:39:17.846295] I Edges of [23]::(6):
LOG: [2024 -02 -15 16:39:17.848315] I o--o : target =21, rssi=-45, distance =0.935
LOG: [2024 -02 -15 16:39:17.849295] I o--o : target =12, rssi=-54, distance =1.560
LOG: [2024 -02 -15 16:39:17.851295] I o--o : target =15, rssi=-55, distance =1.572
LOG: [2024 -02 -15 16:39:17.852294] I o--o : target =11, rssi=-57, distance =1.824
LOG: [2024 -02 -15 16:39:17.854294] I o--o : target=8, rssi=-56, distance =1.670
LOG: [2024 -02 -15 16:39:17.855297] I o--o : target =14, rssi=-57, distance =1.866
LOG: [2024 -02 -15 16:39:17.856297] I Opposite edges of [23]::(12):
LOG: [2024 -02 -15 16:39:17.857297] I o==o : source =12, target =21, rssi=-59, distance =2.181
LOG: [2024 -02 -15 16:39:17.859297] I o==o : source =21, target =15, rssi=-53, distance =1.570
LOG: [2024 -02 -15 16:39:17.860514] I o==o : source =12, target =15, rssi=-56, distance =1.848
LOG: [2024 -02 -15 16:39:17.861525] I o==o : source =21, target =11, rssi=-63, distance =2.712
LOG: [2024 -02 -15 16:39:17.862524] I o==o : source =12, target =11, rssi=-49, distance =1.261
LOG: [2024 -02 -15 16:39:17.863524] I o==o : source =11, target =15, rssi=-58, distance =2.065
LOG: [2024 -02 -15 16:39:17.864525] I o==o : source =21, target=8, rssi=-59, distance =2.178
LOG: [2024 -02 -15 16:39:17.866524] I o==o : source=8, target =15, rssi=-58, distance =2.062
LOG: [2024 -02 -15 16:39:17.867524] I o==o : source =21, target =14, rssi=-63, distance =2.712
LOG: [2024 -02 -15 16:39:17.868523] I o==o : source =14, target =12, rssi=-59, distance =2.178
LOG: [2024 -02 -15 16:39:17.870759] I o==o : source =11, target =14, rssi=-48, distance =1.194
LOG: [2024 -02 -15 16:39:17.872162] I o==o : source=8, target =14, rssi=-57, distance =1.952
LOG: [2024 -02 -15 16:39:17.872162] I Triangles: (12)
LOG: [2024 -02 -15 16:39:17.872162] I o=o=o : id=0, (23:12:21): area =0.633 , angle =119.811 , altitude

base1 =0.811 , altitude base2 =1.354 , altitude opposite =0.580
LOG: [2024 -02 -15 16:39:17.872162] I o=o=o : id=1, (23:21:15): area =0.701 , angle =72.589 , altitude base1

=1.500 , altitude base2 =0.892 , altitude opposite =0.893
LOG: [2024 -02 -15 16:39:17.872162] I o=o=o : id=2, (23:12:15): area =1.168 , angle =72.325 , altitude base1

=1.497 , altitude base2 =1.486 , altitude opposite =1.264
LOG: [2024 -02 -15 16:39:17.872162] I o=o=o : id=3, (23:21:11): area =0.323 , angle =157.711 , altitude

base1 =0.692 , altitude base2 =0.355 , altitude opposite =0.238
LOG: [2024 -02 -15 16:39:17.872162] I o=o=o : id=4, (23:12:11): area =0.968 , angle =42.877 , altitude base1

=1.241 , altitude base2 =1.061 , altitude opposite =1.535
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LOG: [2024 -02 -15 16:39:17.872162] I o=o=o : id=5, (23:11:15): area =1.381 , angle =74.510 , altitude base1
=1.514 , altitude base2 =1.757 , altitude opposite =1.337

LOG: [2024 -02 -15 16:39:17.887787] I o=o=o : id=6, (23:21:8): area =0.732 , angle =110.269 , altitude base1
=1.566 , altitude base2 =0.877 , altitude opposite =0.673

LOG: [2024 -02 -15 16:39:17.887787] I o=o=o : id=7, (23:8:15): area =1.288 , angle =78.950 , altitude base1
=1.542 , altitude base2 =1.639 , altitude opposite =1.249

LOG: [2024 -02 -15 16:39:17.887787] I o=o=o : id=8, (23:21:14): area =0.447 , angle =149.205 , altitude
base1 =0.955 , altitude base2 =0.479 , altitude opposite =0.329

LOG: [2024 -02 -15 16:39:17.887787] I o=o=o : id=9, (23:14:12): area =1.426 , angle =78.387 , altitude base1
=1.528 , altitude base2 =1.828 , altitude opposite =1.309

LOG: [2024 -02 -15 16:39:17.887787] I o=o=o : id=10, (23:11:14): area =1.041 , angle =37.723 , altitude
base1 =1.142 , altitude base2 =1.116 , altitude opposite =1.745

LOG: [2024 -02 -15 16:39:17.899293] I o=o=o : id=11, (23:8:14): area =1.431 , angle =66.744 , altitude base1
=1.715 , altitude base2 =1.534 , altitude opposite =1.467

LOG: [2024 -02 -15 16:39:17.899293] I Coord (23) (0.000 , 0.000 , 0.000) added to Map
LOG: [2024 -02 -15 16:39:17.903801] I CoordMap Base edge = 23:21
LOG: [2024 -02 -15 16:39:17.903801] I Coord (21) (0.935 , 0.000 , 0.000) added to Map
LOG: [2024 -02 -15 16:39:17.903801] I Coord (12) (-0.776, 1.354 , 0.000) added to Map
LOG: [2024 -02 -15 16:39:17.903801] I Base Triangle 23:12:21
LOG: [2024 -02 -15 16:39:17.903801] I CoordMap:
LOG: [2024 -02 -15 16:39:17.903801] I Node 23: x = 0.000, y = 0.000, z = 0.000
LOG: [2024 -02 -15 16:39:17.903801] I Node 21: x = 0.935, y = 0.000, z = 0.000
LOG: [2024 -02 -15 16:39:17.903801] I Node 12: x = -0.776, y = 1.354 , z = 0.000
LOG: [2024 -02 -15 16:39:17.903801] I Try Triangle 23:21:15
LOG: [2024 -02 -15 16:39:17.903801] I Init Coord: 0.470, 1.500, 0.000
LOG: [2024 -02 -15 16:39:17.903801] I Find angle between 12 and 15
LOG: [2024 -02 -15 16:39:17.919432] I base posX A = -0.776, base posX B = 0.470
LOG: [2024 -02 -15 16:39:17.919432] I nodeDist = 1.848 -> deltaX = 1.246 -> TranslatedNodeDist = 1.365
LOG: [2024 -02 -15 16:39:17.919432] I AltitudeH A = 1.354, AltitudeH B = 1.500
LOG: [2024 -02 -15 16:39:17.919432] I MapAngle: 56.879
LOG: [2024 -02 -15 16:39:17.919432] I Init Coord (rotated): 0.470 , 0.819 , 1.256
LOG: [2024 -02 -15 16:39:17.919432] I Check Coord: 0.477, 1.497, 0.000
LOG: [2024 -02 -15 16:39:17.919432] I Find angle between 21 and 15
LOG: [2024 -02 -15 16:39:17.919432] I base posX A = -0.465, base posX B = 0.477
LOG: [2024 -02 -15 16:39:17.935095] I nodeDist = 1.570 -> deltaX = 0.942 -> TranslatedNodeDist = 1.256
LOG: [2024 -02 -15 16:39:17.935095] I AltitudeH A = 0.811, AltitudeH B = 1.497
LOG: [2024 -02 -15 16:39:17.935095] I MapAngle: 57.007
LOG: [2024 -02 -15 16:39:17.935095] I CheckCoord (rotated): 0.477, 0.815, 1.256
LOG: [2024 -02 -15 16:39:17.950682] I Distance between 12 and 15 is 1.848
LOG: [2024 -02 -15 16:39:17.950682] I compare 0.477, 0.815, 1.256 with 0.470 , 0.819 , 1.256
LOG: [2024 -02 -15 16:39:17.950682] I Check deviation between 1.848 and 1.854: 0.003
LOG: [2024 -02 -15 16:39:17.950682] I Coord (15) (0.477 , 0.815 , 1.256) added to Map
LOG: [2024 -02 -15 16:39:17.950682] I Triangle 2 (23:12:15) has no baseEdge 23:21
LOG: [2024 -02 -15 16:39:17.950682] I CoordMap:
LOG: [2024 -02 -15 16:39:17.950682] I Node 23: x = 0.000, y = 0.000, z = 0.000
LOG: [2024 -02 -15 16:39:17.950682] I Node 21: x = 0.935, y = 0.000, z = 0.000
LOG: [2024 -02 -15 16:39:17.950682] I Node 12: x = -0.776, y = 1.354 , z = 0.000
LOG: [2024 -02 -15 16:39:17.950682] I Node 15: x = 0.477, y = 0.815, z = 1.256
LOG: [2024 -02 -15 16:39:17.950682] I Try Triangle 23:21:11
LOG: [2024 -02 -15 16:39:17.966309] I Init Coord: -1.687, 0.692, 0.000
LOG: [2024 -02 -15 16:39:17.966309] I Find angle between 12 and 11
LOG: [2024 -02 -15 16:39:17.966309] I base posX A = -0.776, base posX B = -1.687
LOG: [2024 -02 -15 16:39:17.966309] I nodeDist = 1.261 -> deltaX = 0.912 -> TranslatedNodeDist = 0.871
LOG: [2024 -02 -15 16:39:17.966309] I AltitudeH A = 1.354, AltitudeH B = 0.692
LOG: [2024 -02 -15 16:39:17.966309] I MapAngle: 33.999
LOG: [2024 -02 -15 16:39:17.966309] I Init Coord (rotated): -1.687, 0.573 , 0.387
LOG: [2024 -02 -15 16:39:17.966309] I Check Coord: 1.336, 1.241, 0.000
LOG: [2024 -02 -15 16:39:17.966309] I Find angle between 21 and 11
LOG: [2024 -02 -15 16:39:17.966309] I base posX A = -0.465, base posX B = 1.336
LOG: [2024 -02 -15 16:39:17.966309] I nodeDist = 2.712 -> deltaX = 1.801 -> TranslatedNodeDist = 2.028
LOG: [2024 -02 -15 16:39:17.966309] I AltitudeH A = 0.811, AltitudeH B = 1.241
LOG: [2024 -02 -15 16:39:17.981932] I MapAngle: 161.839
LOG: [2024 -02 -15 16:39:17.981932] I CheckCoord (rotated): 1.336, -1.179, 0.387
LOG: [2024 -02 -15 16:39:17.981932] I Distance between 15 and 11 is 2.065
LOG: [2024 -02 -15 16:39:17.981932] I compare 1.336, -1.179, 0.387 with -1.687, 0.573, 0.387
LOG: [2024 -02 -15 16:39:17.981932] I (YAW) checkCoord: 0.359 , 1.746, 0.387
LOG: [2024 -02 -15 16:39:17.981932] I compare 0.359, 1.746, 0.387 with -1.687, 0.573 , 0.387
LOG: [2024 -02 -15 16:39:17.981932] I (-YAW) checkCoord: 1.336 , -1.179, 0.387
LOG: [2024 -02 -15 16:39:17.981932] I (Y) checkCoord: 1.336, 1.179, 0.387
LOG: [2024 -02 -15 16:39:17.981932] I (Y+YAW) checkCoord: -1.687, 0.573, 0.387
LOG: [2024 -02 -15 16:39:17.997561] I compare -1.687, 0.573, 0.387 with -1.687, 0.573, 0.387
LOG: [2024 -02 -15 16:39:17.997561] I Check deviation between 2.065 and 2.345: 0.136
LOG: [2024 -02 -15 16:39:17.999566] I Coord (11) (-1.687, 0.573 , 0.387) added to Map
LOG: [2024 -02 -15 16:39:17.999566] I Triangle 4 (23:12:11) has no baseEdge 23:21
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LOG: [2024 -02 -15 16:39:17.999566] I Triangle 5 (23:11:15) has no baseEdge 23:21
LOG: [2024 -02 -15 16:39:17.999566] I CoordMap:
LOG: [2024 -02 -15 16:39:17.999566] I Node 23: x = 0.000, y = 0.000, z = 0.000
LOG: [2024 -02 -15 16:39:17.999566] I Node 21: x = 0.935, y = 0.000, z = 0.000
LOG: [2024 -02 -15 16:39:17.999566] I Node 12: x = -0.776, y = 1.354 , z = 0.000
LOG: [2024 -02 -15 16:39:17.999566] I Node 15: x = 0.477, y = 0.815, z = 1.256
LOG: [2024 -02 -15 16:39:17.999566] I Node 11: x = -1.687, y = 0.573 , z = 0.387
LOG: [2024 -02 -15 16:39:18.013572] I Try Triangle 23:21:8
LOG: [2024 -02 -15 16:39:18.013572] I Init Coord: -0.578, 1.566, 0.000
LOG: [2024 -02 -15 16:39:18.013572] I Find angle between 12 and 8
LOG: [2024 -02 -15 16:39:18.013572] I No opposite edge found
LOG: [2024 -02 -15 16:39:18.013572] I MapAngle: -1.000
LOG: [2024 -02 -15 16:39:18.013572] I MapAngle initCoord failed
LOG: [2024 -02 -15 16:39:18.013572] I Triangle 7 (23:8:15) has no baseEdge 23:21
LOG: [2024 -02 -15 16:39:18.013572] I CoordMap:
LOG: [2024 -02 -15 16:39:18.013572] I Node 23: x = 0.000, y = 0.000, z = 0.000
LOG: [2024 -02 -15 16:39:18.013572] I Node 21: x = 0.935, y = 0.000, z = 0.000
LOG: [2024 -02 -15 16:39:18.013572] I Node 12: x = -0.776, y = 1.354 , z = 0.000
LOG: [2024 -02 -15 16:39:18.013572] I Node 15: x = 0.477, y = 0.815, z = 1.256
LOG: [2024 -02 -15 16:39:18.029205] I Node 11: x = -1.687, y = 0.573 , z = 0.387
LOG: [2024 -02 -15 16:39:18.029205] I Try Triangle 23:21:14
LOG: [2024 -02 -15 16:39:18.029205] I Init Coord: -1.603, 0.955, 0.000
LOG: [2024 -02 -15 16:39:18.029205] I Find angle between 12 and 14
LOG: [2024 -02 -15 16:39:18.029205] I base posX A = -0.776, base posX B = -1.603
LOG: [2024 -02 -15 16:39:18.029205] I nodeDist = 2.178 -> deltaX = 0.828 -> TranslatedNodeDist = 2.015
LOG: [2024 -02 -15 16:39:18.029205] I AltitudeH A = 1.354, AltitudeH B = 0.955
LOG: [2024 -02 -15 16:39:18.029205] I MapAngle: 120.543
LOG: [2024 -02 -15 16:39:18.029205] I Init Coord (rotated): -1.603, -0.486, 0.823
LOG: [2024 -02 -15 16:39:18.029205] I Check Coord: 0.376, 1.828, 0.000
LOG: [2024 -02 -15 16:39:18.029205] I Find angle between 21 and 14
LOG: [2024 -02 -15 16:39:18.029205] I base posX A = -0.465, base posX B = 0.376
LOG: [2024 -02 -15 16:39:18.044829] I nodeDist = 2.712 -> deltaX = 0.841 -> TranslatedNodeDist = 2.579
LOG: [2024 -02 -15 16:39:18.044829] I AltitudeH A = 0.811, AltitudeH B = 1.828
LOG: [2024 -02 -15 16:39:18.044829] I MapAngle: 153.247
LOG: [2024 -02 -15 16:39:18.044829] I CheckCoord (rotated): 0.376, -1.632, 0.823
LOG: [2024 -02 -15 16:39:18.044829] I Distance between 11 and 14 is 1.194
LOG: [2024 -02 -15 16:39:18.044829] I compare 0.376, -1.632, 0.823 with -1.603, -0.486, 0.823
LOG: [2024 -02 -15 16:39:18.044829] I (YAW) checkCoord: 1.230 , 1.138, 0.823
LOG: [2024 -02 -15 16:39:18.044829] I compare 1.230, 1.138, 0.823 with -1.603, -0.486, 0.823
LOG: [2024 -02 -15 16:39:18.044829] I (-YAW) checkCoord: 0.376 , -1.632, 0.823
LOG: [2024 -02 -15 16:39:18.044829] I (Y) checkCoord: 0.376, 1.632, 0.823
LOG: [2024 -02 -15 16:39:18.060455] I (Y+YAW) checkCoord: -1.603, -0.486, 0.823
LOG: [2024 -02 -15 16:39:18.060455] I compare -1.603, -0.486, 0.823 with -1.603, -0.486, 0.823
LOG: [2024 -02 -15 16:39:18.060455] I Check deviation between 1.194 and 1.148: 0.038
LOG: [2024 -02 -15 16:39:18.060455] I Coord (14) (-1.603, -0.486, 0.823) added to Map
LOG: [2024 -02 -15 16:39:18.060455] I Triangle 9 (23:14:12) has no baseEdge 23:21
LOG: [2024 -02 -15 16:39:18.060455] I Triangle 10 (23:11:14) has no baseEdge 23:21
LOG: [2024 -02 -15 16:39:18.060455] I Triangle 11 (23:8:14) has no baseEdge 23:21
LOG: [2024 -02 -15 16:39:19.095939] I CoordMap:
LOG: [2024 -02 -15 16:39:19.095939] I Node 23: x = 0.000, y = 0.000, z = 0.000
LOG: [2024 -02 -15 16:39:19.106515] I Node 21: x = 0.935, y = 0.000, z = 0.000
LOG: [2024 -02 -15 16:39:19.112024] I Node 12: x = -0.776, y = 1.354 , z = 0.000
LOG: [2024 -02 -15 16:39:19.112024] I Node 15: x = 0.477, y = 0.815, z = 1.256
LOG: [2024 -02 -15 16:39:19.112024] I Node 11: x = -1.687, y = 0.573 , z = 0.387
LOG: [2024 -02 -15 16:39:19.112024] I Node 14: x = -1.603, y = -0.486, z = 0.823
LOG: [2024 -02 -15 16:39:19.112024] I Tetrahedrons: (3)
LOG: [2024 -02 -15 16:39:19.112024] I o=o=o=o : id=0, triangles =0,1,2
LOG: [2024 -02 -15 16:39:19.112024] I o=o=o=o : id=1, triangles =0,3,4
LOG: [2024 -02 -15 16:39:19.112024] I o=o=o=o : id=2, triangles =0,8,9
LOG: [2024 -02 -15 16:39:19.112024] I isvalid? 1
LOG: [2024 -02 -15 16:39:19.112024] I --> Send coord: id=23, x=0.000 , y=0.000 , z=0.000
LOG: [2024 -02 -15 16:39:19.253499] I reliable msg success
LOG: [2024 -02 -15 16:39:28.302089] I CoordMap:
LOG: [2024 -02 -15 16:39:28.302089] I Node 23: x = 0.000, y = 0.000, z = 0.000
LOG: [2024 -02 -15 16:39:28.302089] I Node 21: x = 0.935, y = 0.000, z = 0.000
LOG: [2024 -02 -15 16:39:28.317239] I Node 12: x = -0.776, y = 1.354 , z = 0.000
LOG: [2024 -02 -15 16:39:28.317239] I Node 15: x = 0.477, y = 0.815, z = 1.256
LOG: [2024 -02 -15 16:39:28.317239] I Node 11: x = -1.687, y = 0.573 , z = 0.387
LOG: [2024 -02 -15 16:39:28.317239] I Node 14: x = -1.603, y = -0.486, z = 0.823
LOG: [2024 -02 -15 16:39:28.317239] I isvalid? 1
LOG: [2024 -02 -15 16:39:28.317239] I --> Send coord: id=21, x=0.935 , y=0.000 , z=0.000
LOG: [2024 -02 -15 16:39:28.460418] I reliable msg success
LOG: [2024 -02 -15 16:39:37.670487] I CoordMap:
LOG: [2024 -02 -15 16:39:37.673922] I Node 23: x = 0.000, y = 0.000, z = 0.000
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LOG: [2024 -02 -15 16:39:37.676918] I Node 21: x = 0.935, y = 0.000, z = 0.000
LOG: [2024 -02 -15 16:39:37.678920] I Node 12: x = -0.776, y = 1.354 , z = 0.000
LOG: [2024 -02 -15 16:39:37.680918] I Node 15: x = 0.477, y = 0.815, z = 1.256
LOG: [2024 -02 -15 16:39:37.681920] I Node 11: x = -1.687, y = 0.573 , z = 0.387
LOG: [2024 -02 -15 16:39:37.682920] I Node 14: x = -1.603, y = -0.486, z = 0.823
LOG: [2024 -02 -15 16:39:37.683920] I isvalid? 1
LOG: [2024 -02 -15 16:39:37.685918] I --> Send coord: id=12, x=-0.776, y=1.354 , z=0.000
LOG: [2024 -02 -15 16:39:37.775551] I reliable msg success
LOG: [2024 -02 -15 16:39:44.887834] I sendMeshState
LOG: [2024 -02 -15 16:39:46.737841] I CoordMap:
LOG: [2024 -02 -15 16:39:46.737841] I Node 23: x = 0.000, y = 0.000, z = 0.000
LOG: [2024 -02 -15 16:39:46.737841] I Node 21: x = 0.935, y = 0.000, z = 0.000
LOG: [2024 -02 -15 16:39:46.753517] I Node 12: x = -0.776, y = 1.354 , z = 0.000
LOG: [2024 -02 -15 16:39:46.753517] I Node 15: x = 0.477, y = 0.815, z = 1.256
LOG: [2024 -02 -15 16:39:46.753517] I Node 11: x = -1.687, y = 0.573 , z = 0.387
LOG: [2024 -02 -15 16:39:46.753517] I Node 14: x = -1.603, y = -0.486, z = 0.823
LOG: [2024 -02 -15 16:39:46.753517] I isvalid? 1
LOG: [2024 -02 -15 16:39:46.753517] I --> Send coord: id=15, x=0.477 , y=0.815 , z=1.256
LOG: [2024 -02 -15 16:39:47.413663] I reliable msg success
LOG: [2024 -02 -15 16:39:54.323864] I CoordMap:
LOG: [2024 -02 -15 16:39:54.326878] I Node 23: x = 0.000, y = 0.000, z = 0.000
LOG: [2024 -02 -15 16:39:54.326878] I Node 21: x = 0.935, y = 0.000, z = 0.000
LOG: [2024 -02 -15 16:39:54.326878] I Node 12: x = -0.776, y = 1.354 , z = 0.000
LOG: [2024 -02 -15 16:39:54.326878] I Node 15: x = 0.477, y = 0.815, z = 1.256
LOG: [2024 -02 -15 16:39:54.326878] I Node 11: x = -1.687, y = 0.573 , z = 0.387
LOG: [2024 -02 -15 16:39:54.342514] I Node 14: x = -1.603, y = -0.486, z = 0.823
LOG: [2024 -02 -15 16:39:54.342514] I isvalid? 1
LOG: [2024 -02 -15 16:39:54.342514] I --> Send coord: id=11, x=-1.687, y=0.573 , z=0.387
LOG: [2024 -02 -15 16:39:54.467095] I reliable msg success
LOG: [2024 -02 -15 16:40:01.571905] I CoordMap:
LOG: [2024 -02 -15 16:40:01.586486] I Node 23: x = 0.000, y = 0.000, z = 0.000
LOG: [2024 -02 -15 16:40:01.586486] I Node 21: x = 0.935, y = 0.000, z = 0.000
LOG: [2024 -02 -15 16:40:01.586486] I Node 12: x = -0.776, y = 1.354 , z = 0.000
LOG: [2024 -02 -15 16:40:01.586486] I Node 15: x = 0.477, y = 0.815, z = 1.256
LOG: [2024 -02 -15 16:40:01.586486] I Node 11: x = -1.687, y = 0.573 , z = 0.387
LOG: [2024 -02 -15 16:40:01.586486] I Node 14: x = -1.603, y = -0.486, z = 0.823
LOG: [2024 -02 -15 16:40:01.602124] I isvalid? 1
LOG: [2024 -02 -15 16:40:01.602124] I --> Send coord: id=14, x=-1.603, y=-0.486, z=0.823
LOG: [2024 -02 -15 16:40:01.697388] I reliable msg success
LOG: [2024 -02 -15 16:40:09.487751] I CoordMap:
LOG: [2024 -02 -15 16:40:09.487751] I Node 23: x = 0.000, y = 0.000, z = 0.000
LOG: [2024 -02 -15 16:40:09.487751] I Node 21: x = 0.935, y = 0.000, z = 0.000
LOG: [2024 -02 -15 16:40:09.487751] I Node 12: x = -0.776, y = 1.354 , z = 0.000
LOG: [2024 -02 -15 16:40:09.487751] I Node 15: x = 0.477, y = 0.815, z = 1.256
LOG: [2024 -02 -15 16:40:09.503351] I Node 11: x = -1.687, y = 0.573 , z = 0.387
LOG: [2024 -02 -15 16:40:09.503351] I Node 14: x = -1.603, y = -0.486, z = 0.823
LOG: [2024 -02 -15 16:40:09.503351] I Finished sending topology
LOG: [2024 -02 -15 16:40:09.503351] I TOPOLOGY RESEARCH DONE!
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Appendix G

RSSI and edge distance
distribution Boxplots

Figure G.1: Box-plots of edge statistics for distance and RSSI, nodes
sorted on RSSI.
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Figure G.2: Box-plots of edge statistics for distance and RSSI, nodes
sorted on RSSI.

63



Figure G.3: Box-plots of edge statistics for distance and RSSI, nodes
sorted on RSSI.
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Figure G.4: Box-plots of edge statistics for distance and RSSI, nodes
sorted on RSSI.
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Appendix H

Edge statistics for distance
and RSSI

Table H.1: Edge statistics for distance and RSSI for Node 1 (left) and
Node 6 (right).

Node ID Mean Distance Std Distance Mean RSSI Std RSSI
9 1.426 0.100 -52.7 1.324
10 1.505 0.122 -53.7 1.53
15 1.632 0.125 -55.3 1.404
12 1.847 0.181 -57.7 1.853
11 2.083 0.251 -60.0 1.981
1 2.220 0.211 -61.3 1.814
7 2.291 0.287 -61.9 2.231
22 2.536 0.207 -63.9 1.605
8 2.846 0.294 -66.1 2.007
17 2.841 0.088 -66.2 0.6
14 3.161 0.340 -68.2 1.991

Node ID Mean Distance Std Distance Mean RSSI Std RSSI
9 1.426 0.010 -52.7 1.752
10 1.505 0.015 -53.7 2.341
15 1.632 0.016 -55.3 1.971
12 1.847 0.033 -57.7 3.434
11 2.083 0.063 -60.0 3.926
1 2.220 0.045 -61.3 3.29
7 2.291 0.082 -61.9 4.98
22 2.536 0.043 -63.9 2.576
8 2.846 0.086 -66.1 4.027
17 2.841 0.008 -66.2 0.36
14 3.161 0.116 -68.2 3.965

Table H.2: Edge statistics for distance and RSSI for Node 7 (left) and
Node 8 (right).

Node ID Mean Distance Std Distance Mean RSSI Std RSSI
22 1.605 0.124 -55.0 1.528
8 1.766 0.209 -56.8 2.411
17 1.962 0.142 -58.9 1.443
11 2.030 0.152 -59.6 1.498
10 2.145 0.304 -60.6 2.431
14 2.193 0.263 -61.0 2.068
12 2.246 0.404 -61.4 2.911
6 2.335 0.319 -62.2 2.437
15 2.446 0.211 -63.2 1.669
9 2.810 0.000 -66.0 0.0
1 3.086 0.514 -67.5 3.59

Node ID Mean Distance Std Distance Mean RSSI Std RSSI
17 1.645 0.078 -55.5 0.866
22 1.717 0.038 -56.3 0.471
1 1.731 0.112 -56.5 1.22
7 1.773 0.228 -56.8 2.61
14 1.796 0.138 -57.2 1.542
12 1.964 0.213 -58.9 1.906
15 2.051 0.199 -59.7 1.967
9 2.052 0.076 -59.8 0.687
11 2.415 0.349 -62.8 2.752
10 2.578 0.288 -64.2 1.939
6 2.896 0.501 -66.3 2.927

Table H.3: Edge statistics for distance and RSSI for Node 9 (left) and
Node 10 (right).

Node ID Mean Distance Std Distance Mean RSSI Std RSSI
10 1.116 0.049 -47.9 0.842
6 1.426 0.094 -52.7 1.258
15 1.565 0.101 -54.5 1.236
11 1.783 0.163 -57.0 1.769
1 1.818 0.313 -57.2 3.049
8 2.163 0.151 -60.8 1.344
12 2.269 0.257 -61.7 2.256
14 2.302 0.203 -62.0 1.732
22 3.113 0.711 -67.5 4.631
17 3.292 0.078 -69.1 0.457
7 3.450 0.000 -70.0 0.0

Node ID Mean Distance Std Distance Mean RSSI Std RSSI
9 1.110 0.044 -47.8 0.753
6 1.513 0.126 -53.8 1.569
15 1.643 0.132 -55.4 1.45
1 1.827 0.142 -57.5 1.438
11 2.054 0.080 -59.8 0.761
7 2.150 0.352 -60.5 2.756
12 2.273 0.104 -61.8 0.913
14 2.491 0.115 -63.6 0.88
8 2.567 0.244 -64.1 1.698
22 2.630 0.311 -64.6 2.195
17 3.095 0.476 -67.7 2.891
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Table H.4: Edge statistics for distance and RSSI for Node 11 (left) and
Node 12 (right).

Node ID Mean Distance Std Distance Mean RSSI Std RSSI
12 1.275 0.089 -50.5 1.206
14 1.280 0.045 -50.6 0.705
1 1.322 0.121 -51.2 1.797
22 1.750 0.085 -56.7 0.943
9 1.772 0.160 -56.9 1.729
17 1.980 0.210 -59.0 2.16
7 2.039 0.151 -59.7 1.467
10 2.036 0.080 -59.7 0.788
15 2.074 0.269 -59.9 2.348
6 2.087 0.300 -60.0 2.254
8 2.377 0.301 -62.6 2.529

Node ID Mean Distance Std Distance Mean RSSI Std RSSI
22 1.210 0.030 -49.5 0.5
11 1.281 0.091 -50.6 1.222
1 1.377 0.057 -52.1 0.778
15 1.737 0.119 -56.5 1.317
6 1.841 0.176 -57.6 1.835
14 1.921 0.134 -58.5 1.323
8 1.959 0.212 -58.8 1.895
17 1.978 0.100 -59.1 0.994
9 2.170 0.217 -60.8 1.993
7 2.247 0.470 -61.3 3.076
10 2.279 0.098 -61.9 0.858

Table H.5: Edge statistics for distance and RSSI for Node 14 (left) and
Node 15 (right).

Node ID Mean Distance Std Distance Mean RSSI Std RSSI
11 1.284 0.047 -50.7 0.733
22 1.462 0.089 -53.2 1.166
1 1.584 0.122 -54.7 1.447
8 1.797 0.139 -57.2 1.561
17 1.837 0.293 -57.4 3.178
12 1.927 0.130 -58.6 1.296
7 2.197 0.268 -61.1 2.105
9 2.336 0.206 -62.3 1.75
10 2.494 0.165 -63.6 1.177
15 2.949 0.136 -66.9 0.9
6 3.317 0.513 -69.0 2.781

Node ID Mean Distance Std Distance Mean RSSI Std RSSI
22 1.361 0.082 -51.8 1.208
9 1.563 0.097 -54.5 1.205
1 1.579 0.152 -54.6 1.828
6 1.627 0.116 -55.3 1.317
10 1.647 0.134 -55.5 1.486
12 1.735 0.123 -56.5 1.339
8 2.053 0.193 -59.8 1.894
11 2.096 0.289 -60.1 2.548
7 2.450 0.161 -63.3 1.317
17 2.590 0.131 -64.4 0.985
14 2.946 0.138 -66.9 0.912

Table H.6: Edge statistics for distance and RSSI for Node 17 (left) and
Node 22 (right).

Node ID Mean Distance Std Distance Mean RSSI Std RSSI
8 1.620 0.076 -55.2 0.86
1 1.693 0.151 -56.0 1.751
14 1.891 0.306 -58.0 3.24
22 1.880 0.210 -58.0 2.236
7 1.969 0.129 -59.0 1.279
12 1.996 0.115 -59.3 1.135
11 2.031 0.144 -59.6 1.498
15 2.634 0.134 -64.7 1.005
6 2.841 0.088 -66.2 0.6
10 3.106 0.489 -67.7 3.081
9 3.256 0.088 -68.9 0.515

Node ID Mean Distance Std Distance Mean RSSI Std RSSI
1 1.199 0.200 -49.1 3.343
12 1.240 0.060 -50.0 1.0
15 1.381 0.079 -52.1 1.109
14 1.472 0.084 -53.3 1.106
7 1.626 0.164 -55.2 1.939
8 1.685 0.085 -56.0 1.0
11 1.717 0.038 -56.3 0.471
17 1.952 0.134 -58.8 1.344
10 2.464 0.130 -63.4 1.02
6 2.550 0.236 -64.0 1.844
9 3.164 0.690 -67.8 4.503
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Appendix I

MAE and RMSE plots

Figure I.1: Comparison of RMSE and MAE variations across intervals
for different Node IDs, illustrating both the original and smoothed
versions filtered with a 35-interval window. The top row depicts the
normal data, while the bottom shows the smoothed versions.
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