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Abstract

The modeling and simulation of Taylor bubble flow using CFD can contribute significantly to the topic
of nuclear reactor safety and in particular, in the emergency cooling of nuclear reactors during a loss of
coolant accident, or in the U-tubes of a stream generator during a pipe rupture. To achieve an accurate
representation of the gas-liquid interface for high values of Reynolds number, a general interfacial
turbulence model should be developed which adapts to local conditions automatically. Direct Numerical
Simulation (DNS) of relevant large interface two-phase turbulence has the potential to contribute to
this, as it can produce more refined insight while being complementary to experimental data. The
current graduation project illustrates a simulation approach towards DNS of turbulent co/counter-
current Taylor bubble flow. It comprises a continuation of the novel simulation strategy indicated in [1,
OpenFOAM)] in which LES of co-current turbulent Taylor bubble flow was indicated and the authors
concluded that LES mesh resolution is not sufficient to capture accurately the gas-liquid interface,
velocity fluctuations, and bubble disintegration rate. To counter this, in the current work, a Basilisk
code is developed which due to its adaptive local grid refinement and its accurate solution of advection
equation, comprises a better choice than OpenFOAM for DNS in two-phase flows (via the settings of
[2] for laminar bubble flow and [3] for turbulent co-current flow) since it captures sharper the interface
and reduces the computational cost significantly. Except for OpenFOAM, Basilisk is also successfully
validated against [4, ANSYS] for the laminar Taylor bubble flow. Last but not least, the work is further
extended to the simulation of laminar and turbulent counter-current Taylor bubble flows in which the
effect of the choice of the pipe diameter and the initial bubble length on the bubble’s decay rate is
analyzed for the experimental setting of [5]. Overall, despite the lack of fully DNS quality, this study
extends the work of [1] and provides further insight into the performance of Basilisk in two-phase flows at
a reasonable computational cost. The results and conclusions from the current study may contribute to
the development of low-order turbulence models and the validation of more general two-phase modeling
strategies.
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Introduction

1.1. Introduction to Computational Fluid Dynamics

Since the 19*"-century significant efforts have been made in the field of fluid dynamics to understand
the physical behavior, motion, and properties of fluids to translate them into mathematical expressions
and governing laws.

The basic governing equations representing the flow of a viscous fluid are the Navier-Stokes equations
which were derived from the application of Newton’s second law of motion to fluid motion and are also
called momentum equations. The Navier-stokes equations are extensions of the Euler Equations and
include the effects of viscosity [6]. In the case of Newtonian fluid, the conservation form of Navier-Stokes
momentum equations describe a balance between inertia, pressure, viscosity and external forces and is
given in differential form by

d (puw)
at
where p is the fluid density, u the velocity field of the fluid, t the time, p the pressure, yu the dynamic
viscosity and g the gravitational acceleration when gravity is the external force [6]. In particular:

1
+V-(pu®u) = -Vp + uViu + §,uV (V-u) + pg, (1.1)

d(pu)

o T V. (pu @ u) indicates the momentum convection,

e —Vp demonstrates the pressure,
o uV?u+ iuV (V- u) displays the viscous forces,
e and the last term pg the external(i.e. gravitational) forces.

If we rewrite the Navier-stokes into dimensionless form, a very important dimensionless quantity
will come from the viscous and convection terms, known as Reynolds number. The Reynolds number
comprises the most important dimensionless number in fluid dynamics because it characterizes the flow
and is defined as the ratio of inertial over viscous forces according to the formula

UL UL
Re=2"2 =22 (1.2)
U v
where v is the kinematic viscosity, L is the characteristic length, and U the upstream velocity. If
Re >> 1, then inertia forces dominate while in case of Re << 1 friction forces (i.e. viscosity) dominate
[7].

The Navier-Stokes equations are always solved together with the continuity equation which is known
as conservation of mass as well as a particular set of boundary conditions. Together they form a
boundary value problem [6]. The conservation of mass is described by the continuity equation and is
given in differential form by

dp

57 TV (pw =0. (1.3)
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Navier-Stokes equations are usually too complex to be solved analytically, except for a few simple
cases [6]. Therefore, a numerical approach is needed to be able to solve them. During a numerical
approach, the first step is the spatial discretization of a domain, known as mesh generation. Depending
on the problem, the Navier-Stokes equations can be solved either iteratively or directly.

The choice of spatial discretization method is very important for achieving accurate calculations.
The typical discretization methods are finite difference, finite element, and finite volume methods. The
common idea in all methods is to divide the geometrical domain into very small finite parts (i.e. mesh
generation). There are three types of grids: structured grids, unstructured grids, and block-structured
grids [7],[8].

The Navier-stokes equations are unsteady in their general form and they need to be discretized also
in time. In general, the temporal discretization is done through integration over time on the discretized
equation. Temporal discretization methods varies in numerical analysis from fully implicit to fully
explicit methods depending on the number of the weighted average between current and future values.
Implicit methods are computationally more expensive and sometimes they can be much harder to be
implemented than explicit methods. However, implicit methods may achieve fast convergence rates and
they are preferred when stability plays an important role e.g. at stiff problems [9], [7], [8].

Runge-Kutta methods are a family of both implicit and explicit iterative methods that are widely
used in numerical analysis for the solution of Navier-Stokes equations. The solvers of Navier-stokes
equations can be also divided to coupled solvers where velocity and pressure are solved simultaneously
(e.g. backwards differencing schemes, Crank-Nicolson scheme) or segregated/splitting methods where
the velocity and pressure are solved sequentially (e.g. SIMPLE, PISO).The selection of the appropriate
temporal discretization methods depend on the computational cost and the required stability [8], [7].

High-speed computers have been used for the implementation of numerical solution to Navier-stokes
equations. The accuracy is determined by the choice of the spatial and time discretization scheme, the
stopping criterion selected by the user, or simply by the floating-point precision of the system used. The
simulation results of a problem are compared with the results derived from experiments and possible
errors are determined. This is an iterative process until the maximum accuracy is achieved. The whole
process is illustrated in figure 1.1.

Discretize
FVYM
. Model —
FImd_probIem NN
Pipe-flow Parameterize

Boundary /
conditions 4

Figure 1.1: Flow chart of the CFD process in a fluid problem

This process is defined as Computational Fluid Dynamics, or CFD for short. This makes CFD a
crossing point of three disciplines: Fluid dynamics, Mathematics, and Computer science, as it numeri-
cally solves complex partial differential equations to describe the behavior of fluids [10].

There are many high-performance CFD software packages. Their main division is between commer-
cial and open-source software packages. Open-source means that the user is free to view and modify
the underlying code of the software. Both open-source and commercial CFD software packages are
used in a wide range of research and industrial areas. CFD is a great research, educational and indus-
trial tool which covers the fields of aerospace, automotive engineering, chemical and mineral processing,
biomedical science, civil and environmental engineering as well as power generation [10].

1.2. Multiphase Flows

A fluid flow can be characterized as:
e laminar or turbulent flow depending on the value of Reynolds number, and

e single-phase fluid flow or Multi-phase fluid flow depending on the number of phases that simulta-
neously exist.

Classic study of fluid dynamics is focused on the flow of a single homogeneous phase such as water, air
or steam [11]. In cases and locations where the fluid flow consists of more than one state or component,
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the relatively simple relationships used for analyzing single-phase flow are insufficient and the problem
must be solved as multiphase flow [12].

Multiphase flow is defined as the simultaneous flow of materials with two or more different thermo-
dynamic states or phases (e.g. steam-water flows)[11]. Multiphase flow takes also place when there are
two or more materials with different physical properties but in the same phase or state (e.g. oil-water
flows) [13]. Therefore, in the second definition the word "multi" is referred to the different components
and not to the amount of "phases" even though this kind of flows is also called multiphase. Every phase
of each material depicts a volume fraction of solid, liquid or gaseous matter with its properties such
as velocity and temperature [11]. In cases where the temperature of one phase is different from the
temperature of the other(s) state(s), then there is also multiphase heat transfer through their interfaces.
Moreover, if the heat transfer takes place between different phases of the same material, then the heat
transfer is also followed by mass transfer (solid-liquid, solid-vapor or liquid-vapor phase change) [14].

The analysis and solution of multi-phase fluid flow is usually very complex compared with conditions
of single phase flow. The modeling of two-phase flow is still under development because there are many
types of instabilities in multiphase flow.

The three main steps for the modelling of a multiphase flow problem consists the identification of
the type of the multiphase flow, the specification of the physical process together with the phenomena
may occur, and at the end the determination of the mathematical model [15].

First of all, it is essential to identify the characteristics of the flow and the important effects which
will influence the choice of the appropriate model. This analysis requires the determination of the char-
acteristics of the flow,the hydrodynamic effects as well as the transport phenomena. The characteristics
of the flow consists the knowledge of the flow regime (e.g. bubbly flow,slug flow etc.), the grade of
turbulence at the flow, the density and the viscosity of each phase, surface tension etc .Depending on
the type of the flow, the hydrodynamic effects may include the change in interface,a particle-wall or
particle-particle collision,a possible coalescence, turbulent flow etc. On the other hand, the transport
phenomena may include heat transfer, mass transfer, change in composition or/ and heterogeneous re-
actions. Therefore the natural process specification may include the phenomena of separation, filtration,
suspension, evaporation or reaction [16].

The specification of the flow regime between two or more immiscible fluids can be classified into
types according to its behaviour. Three main types of the multiphase flow can be found in the literature
[12], [14], [16]:

e Flow with separated phases: Different immiscible fluids in continuous phases which are separated
by interface.

e Dispersed flow: Finite amount of components in dispersed phase (e.g. droplets, bubbles) which
are spread within the volume of the other, continuous phase.

e Mixed Phases: Presence of both separated and dispersed phases.

Different examples of multiphase problems are classified with respect their phase type and are
indicated at figure 1.2. Examples of flow regimes include discrete gaseous bubbles in a continuous
liquid, discrete fluid droplets in a continuous gas/liquid , discrete solid particles in a continuous fluid
(i.e. particle-laden), melting of binary solid, large bubbles in a continuous liquid (i.e. slug flow),
continuous liquid along walls, gas in core (i.e. annular flow), immiscible fluids separated by a clearly-
defined interface (i.e. stratified/free surface flows) [16].

The mathematical modelling of multiphase flows can be done with three ways:

e theoretically, through using governing equations and other mathematical formulas,
e experimentally, in fully- equipped laboratories, and
e using CFD packages by taking advantage of modern high-tech computers and their processors.

Due to the complexity of the flow in most engineering problems and the inability to apply Navier-
Stokes equations for every phase and find the solution for every property at each single point of a
multiphase flow, the predictions are based mainly on computational models and secondary on theoretical
models. Testing experimentally can be very expensive for most of the problems and even impossible for
others [12].
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Figure 1.2: Multiphase flow regimes classified according to the type of phases as illustrated in [14].

In the case of multiphase flow with separated phases,the simplest approach for uncomplicated prob-
lems is to split the problem into different single-phase flows, apply the governing equations (Navier-stokes
and mass conservation) to each of the phases and together with the relevant "jump conditions" at the
interface, one can determine the solution [14].

However,the application of an interface analysis in multiphase flow problems with dispersed or mixed
phases is impossible. At these cases, a control volume approach within the multiphase flow is usually
followed with a space averaging of governing equations over all phases at the same time [14]. No matter
which spatial discretization method is used, the volume fraction of each phase is given by the formula

Volume of the phase in the cell,

Volume of phase; = (1.4)

Total volume of the cell

where i € [1,..,n] indicates the referring phase in a n-phase flow.

Several mathematical models have been developed for the simulation of the multiphase flow depend-
ing on the physical process of the problem and the specification of the flow. The choice of the best model
for each case is still a challenging decision. Generating both realistic and simpler models is the key factor
for multiphase fluid flow simulations [12]. Two of the most popular mathematical modelling techniques
for multiphase flows which are widely used in the literature are the Volume of Fluid(VoF) and the level
set method (LS) [17], [1], [18]. Both of them belong under the umbrella of Eulerian front-capturing
methods where the interface between the immiscible fluids is depicted as contact discontinuity on a fixed
computational stationary mesh [17]. Except them, other commonly used mathematical approaches that
can be found in the literature are [16]:

e Lagrangian Multiphase (LMP): Track individual point particles, particles do not interact e.g. in
droplet flows.

e Discrete Element Method (DEM): Solve the trajectories of individual objects and their collisions,
inside a continuous phase e.g. in particle flows.

e Eulerian Multiphase (EMO): Dispersed flow, particle flows, bubbly flows, boiling heat and mass
transfers, interphase mass transfer.



1.3. Taylor bubble flows 5

e Eulerian/Lagrangian Dispersed Phase Model (DPM): Particle-wall interaction is always consid-
ered, particle-particle is usually not.

e Algebraic Slip Mixture Model (ASM): Neither particle-wall interaction nor particle-particle are
considered.

e Eulerian-Eulerian Model (EEM): Particle-wall interaction is considered, particle-particle is usually
not.

e Eulerian-Granular Model (EGM): Both particle-wall and particle-particle interactions are consid-
ered.

e Various empirical correlations.

Many real-world engineering problems rely on the numerical analysis of fluid flow, which typically
consists of more than one phase. Multiphase regimes are taken place in automotive, oil and gas, power
generation, paper, and pulp industry and even medicine. In particular, multiphase flow is important
in many industrial processes such as fluidized bed in chemical reactors for emergency cooling, gas-
liquid flows in evaporators and condensers in thermal power plants, bubbly flows in nuclear reactors,
production of hydrocarbon in wells and their transportation in pipelines, pump cavitations, gas-particle
flow in combustion reactors and fiber-suspension flows in paper and pulp industry [12], [13], [19], [1].

Last but not least, multiphase flow problems are also met in several natural phenomena. For instance,
multiphase flow take place in sediment transport in river flow, withing clouds, at waves on the sea or
between plasma and red blood cells in blood flow [12].

1.3. Taylor bubble flows

In pipe flow problems where both gas and liquid flow simultaneously, different multiphase flow regimes
may arise (see figure 1.2) depending on the volumetric flow rates, the geometry (pipe diameter and
length, wall roughness) and orientation of the pipe and several fluid properties (density, viscosity, surface
tension) [20]. Among the resulting flow regimes, there is the case of slug flow where a disperse gas bubble
is pushed along by a lighter and faster moving continuous fluid which contains gas bubbles [21]. Slug
flow in a horizontal pipe is illustrated in figure 1.3.
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Figure 1.3: Flow regime of slug flow where gas bubbles push along a larger gas bubble in a liquid slug [22].

In the case of slug flow in a vertical pipe where gas is fed with different flow rates at the bottom
of the pipe, the small gas bubbles follow a random distribution. The random movement of gas bubbles
take place for any liquid velocity. The main difference is that the gravity acts along the pipe flow
whereas in the horizontal pipe it was acting along it [17]. If the gas flow rate is further increased, the
small bubbles are merging into a larger bubble, which is known as Taylor bubbles [20], [1].

Taylor bubbles are of bullet shape and occupying most of the pipe diameter and as the Taylor
bubble’s size is increasing, the thickness of the liquid film between the pipe wall and the bubble is
becoming smaller. In real-world problems, Taylor bubble is often followed by other Taylor bubbles. The
sequence of Taylor bubbles is separated by liquid slugs which consist of smaller dispersed bubbles[20].
Taylor bubble is moving along the pipe under the effect of gravitational, inertial, viscous and interfacial
forces [1].
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A very important parameter that influences the flow is the presence of the bubble wake behind the
Taylor bubble. The possibility of the existence of the wake increases as the Taylor bubble is rising
and the thin liquid film decreases. As it approaches the bottom of the pipe, the annular thin film
moves downstream the Taylor bubble, within the area of liquid slug, and may create a wake. The
possibility, the region and the order of magnitude the wake depends on the trailing edge of the Taylor
bubble, the distance between two Taylor bubbles as well as on fluid properties( density, viscosity, surface
tension, etc.), flow conditions (liquid and Taylor bubble velocity, temperature) and pipe geometry (wall
roughness and pipe diameter and length) [20] .

Vertical gas-liquid slug flow with the creation of Taylor bubbles is met in many industrial processes
such as in geothermal power plants, evaporation, and condensation in thermal power plants, oil extrac-
tion from wells, transportation of hydrocarbons through pipes and in the emergency core cooling of
nuclear reactors [20], [1].

The first chapter included an introduction to Computational Fluid Dynamics and Multiphase Flows
with a focus on Taylor bubble flows. Next, the literature review on Taylor bubble flows is indicated
followed by the scientific gap and the preliminary research questions in which the current work replies
to. Basilisk software is introduced in the third chapter while in the fourth, the developed code is
tested against published studies in the limits of a laminar bubble flow, laminar Taylor bubble flow and
turbulent co-current Taylor bubble flow. After the successful validation of Basilisk code for all these
cases, the turbulent counter-current Taylor bubble flow is simulated and its results are presented in
chapter five together with an extensive analysis in the effect of the choice of pipe diameter and initial
bubble’s length on loss of void. The current work comes to a conclusion in chapter six with an overall
presentation of the results.



Literature review on Taylor bubble flow

The main target of the literature study is to illustrate the state-of-the-art numerical simulations and
experimental results for the motion of the Taylor bubble within a pipe through background liquid flow
and indicate the current scientific gap that can be explored through the master thesis work. The main
target of the literature study is to illustrate the state-of-the-art numerical simulations and experimental
results for the motion of the Taylor bubble within a pipe through background liquid flow and indicate
the current scientific gap that can be explored through the master thesis work.

2.1. Numerical Modeling

The gas-liquid interface between Taylor bubble and the liquid within the pipe flow can be identified
and controlled by using the appropriate numerical modeling method. The interface is non-stationary
and its’ form is changing in time. Therefore, a good numerical model provides the user the knowledge
of gas-liquid interface’s location and curvature at each time step. It is important to notice at this point
that the choice of a numerical flow modeling technique is not a standalone flow solving algorithm. The
governing equations describing the motion of the flow have to be solved separately like in all kinds of
advection algorithms.

Significant efforts have been done for the numerical modeling of the Taylor bubble flow over the
last decades. The different numerical techniques for multiphase flows can be characterized as either
Eulerian front-capturing or front-tracking techniques. The main difference is that at Eulerian front-
capturing techniques, the thin interface between gas-liquid on a fixed computational stationary mesh
is interpreted as touch discontinuity and is implicitly specified by an indicator function while in the
Eulerian front-tracking techniques, the interface is explicitly rebuilt.

Although there are some publications in which Eulerian front-tracking techniques are utilized for
Taylor bubble flows ([23], [24], [25]) , the majority of the researchers are using front-capturing methods
and therefore, this literature study focus only on the latter [26], [27], [18], [28]. The most famous among
them which can be found in the literature are the Volume of Fluid (VoF) and the level set method (LS).
Both modeling techniques have some important disadvantages and for this reason many researchers
have recently tried to define dual interface techniques which combine VoF and LS methods in order to
minimize the drawbacks and increase solver’s efficiency [17], [29].

2.1.1. Level-set method

The level set method is widespread among researchers for the simulation of Taylor bubble flows [30],
[31], [32], [33]. The LS method provides an easy and implicit idea for the construction of the gas-liquid
interface in the domain and it was first introduced at [34].

According to [35], the LS method is defined as " a particular family of transportation models in
which a distance function (named level-set function) is transported". This distance function ¢ is an
Eulerian function and is computed with respect to an interface, i.e. the interface (which is a surface in
three-dimensions) is defined to be at the zero level set of the distance function. The distance function
is a scalar quantity which is positive at the one phase (e.g. gas) and negative at the other phase(e.g.

7



8 2. Literature review on Taylor bubble flow

liquid) as shown in figure 2.1 obtained by [36]. The level set function ¢ is a signed scalar quantity which
is advected by the moving fluid and can be applied to the transport equation [35], [32]:

a¢ ~
E+u-V¢)—O, (2.1)

where u is the fluid velocity. The numerical solution of the level-set equation can be done with e.g.
Finite-difference methods or upwind methods.

Field 2 o+

®-
Field 1

Figure 2.1: Schematic view of a Level-Set method on a moving interface, in green two isocontours of the Level-Set
function ®+ and ®— are represented on each side of the interface as shown in [36].

Another important characteristic of the level-set function is that it should be an Eulerian function
which means that the ||V¢|| = 1. In Taylor bubble flows, the level set function ¢ may lose this property
after some steps because of dissipation. As a consequence, it is necessary a re-initialization process
should be applied every few iterations so that the Eulerian property is satisfied.

Unlike VoF method, any discontinuities near the interface at the values of the properties between
gas and liquid would lead to stability issues. Therefore, at LS method it is essential to define a Heaviside
kernel function H(¢) which usually is defined as:

H)=1 if ¢>0,

. (2.2)
H(@)=0 if $<0

With the help of the smooth Heaviside kernel function, the material properties such as density and
viscosity can be defined:

p(9) = H(@)pg + (1 — H(P)p (2.3)

1(9) = H(@)ug + (1 — H(), (2.4)

where p(¢) represents the density with respect the distance from the interface, py the gas density, p;
the liquid density, u the viscosity with respect the distance from the interface, y; the liquid viscosity
and p, the gas viscosity.

Therefore, no matter how complex the multiphase flow is, the level set method can model easily
the interface with the help of the smooth distance function even for sharp changes on fluid material
properties. In some cases, due to the big differences of the velocity field, the distance function may show
some deformations which lead to inaccurate results for the distance function in the areas far away from
the interface. In order to fix this problem, some researchers tried to improve the accuracy by defining
a correction function for re-distancing the level set contours [32]. Figure 2.2 indicates the results of
the simulation of a rising bubble in a liquid domain using a conservative LS method [31]. This method
decreases the problem of mass conservation of the standard level-set methods which was introduced by
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Figure 2.2: Simulation of a rising bubble which was implemented in [31] using conservative LS method as verified at [37].

Balcazar at [37]. The idea of conservative LS method is the basis for the coupled/dual interfaces and it
will be analyzed further later.

All in all, the LS method is relatively straightforward to be applied, computationally cheap and
integrate smoothly complex topology changes. Therefore, it is easy to compute the mixture viscosity,
density and surface tension. Moreover, the LS method shows good stability properties even for high
gradients. However, the numerical implementation of interface advection with LS method is unable to
preserve the volume of liquid and gas over time and therefore, although the individual phase volumes
may change over time, with the LS method they will remain constant due to the fact that conservation
of ¢ does not imply conservation of mass [31].

2.1.2. Volume of Fluid method

Although the first publication of the VoF method was done four decades ago [18], the method still
remains popular due to its’ reliability and effectiveness and comprises the basis for the modeling of
multiphase flows and in particular, of Taylor bubble flows. The VoF method, opposed to the LS
method conserves the volume of the phases with time since the change of topology is implicit in the
algorithm but it cannot give the specific position and curvature of the interface within a volume cell.
As a consequence, the model needs more computations so that the user can identify the location of the
interface and therefore, which leads to important CPU times. Therefore, VoF approach has in general
more computational cost than LS method.

There are numerous publications simulating a Taylor bubble flow by using VoF method for the flow
modeling [26], [27], [38], [39]. Many correction algorithms have been proposed for the improvement of
efficiency and accuracy of the VoF method but the main idea is the same in all the cases.

After the mesh generation and the division of the domain into mesh cells, the idea of VoF method
involves the definition of the volume fraction @. The volume fraction is a scalar function a which

represents the quantity of gas (or liquid) in an individual computational mesh cell. Tt can be computed
by

a;jich® = f f f x(x,y,z)dxdydz, (2.5)
(L)

where h is the mesh size and y is the characteristic function of gas (or liquid) within the cell.
There are three different cases for the values of a in a single cell:

e a=1 ,i.e. the cell consists only gas.
e a—=0 ,i.e. the cell consists only liquid.

e 0< a <1, i.e. the thin gas-liquid interface passes through this cell. In this case, a is a discontinuous
function and its’ value jumps from 0 to 1 at some point within the cell. At the sudden increase
of a from 0 to 1, the user can identify the direction perpendicular to the gas-liquid interface
by using several approaches (Parker and Yong’s method, finite difference method, Least-squares
method etc.). In the three-dimensional case, the interface is represented by a plane while in two-
dimensional case, it is just a line. However, the exact location and the curvature of the interface
cannot be defined accurately and therefore, more local grid refinement has to be done which means
more computational cost.



10 2. Literature review on Taylor bubble flow

The volume fraction is applied in all cells for all time steps. The density and the viscosity of the
fluid at each space point are not constant and their values are computed with the help of the volume
fraction. When a=0, the density and viscosity at this space point (and at a specific time step) are given
by the liquid’s density and viscosity whereas when a=1, are given by the density and viscosity of the
gas. In the case where the interface is passing through a cell, the density and viscosity are computed
by linear interpolation:

p=apg+(1—a)p (2.6)

p=au; +(1-ay, (2.7)

where p represents the mixture density, pg the gas density, p; the liquid density, 4 the mixture viscosity,
W the liquid viscosity and ug the gas viscosity [1].

The transport equation (or convection-diffusion equation) is a generalization of continuity equation
and describes how a scalar quantity is transported in space [40]. Therefore, it can be applied to the
volume fraction a after having an approximation for the interface. In the case of volume fraction, the
transport equation should be solved without diffusion in order to eliminate smearing of the free-surface.
Therefore the flux of @ between mesh cells can be found by

dea+u-Va =0, (2.8)

where u represents the mixture velocity which varies from cell to cell. The mixture velocity applied
also to mass conservation (equation 1.3) the Navier-Stokes equations (equation 1.1) which now take the
forms:

ap
5, tV (W =0, (2.9)

d:(pu) + V- (puu) = —Vp + pg + V- (2uD) + cknd(n), (2.10)

where p and p are computed for each cell according to equations 2.6, 2.7, D illustrates the deformation
tensor, ¢ surface tension, k the surface curvature, n the surface normal component, and interfacial
Dirac delta function §(n) .The last term in the right-hand side of Navier-Stokes equations represents
the capillary term and is defined as the extra force applied onto the fluid because of the surface tension
between gas and liquid and is non-zero only at the cells where 0 < a < 1, i.e. cells in which the
gas-liquid interface is passing through. For incompressible flows the mass conservation equation 2.9
converts into V-u = 0 [1].

The system of equations described before (equations 2.6 - 2.10) consists of seven equations for a three-
dimensional Taylor bubble flow (since equations 2.10 gives one equation for each velocity component)
with seven unknowns (p, i, a, p, uy, Uy, u,) for each cell. In particular, a VoF algorithm solves the
problem of updating in time the volume fraction a given the fixed mesh, the velocity field, the pressure
distribution and the volume fraction a at the previous time step for all cells.

This means that the interface is rebuilt in each time step and the VoF method does not track the
interface explicitly. The problem which occurs during the reconstruction of the interface in each time
step, is that its’ location and curvature should be approximated by knowing only the volume fraction
of the cells from which the interface is passing (where 0 < @ < 1) and their neighboring cells.

Several methods for the reconstruction of the interface exist, depending on the required accuracy
and the computational cost and time. Among these, there are models with first-order accuracy where
the reconstruction of the gas-liquid interface is done from a sequence of segments lined up with the grid
cells. Most of the examples of first-order accuracy models are improvements on either the simple line
interface calculation (SLIC) or the SOLA-VoF algorithm [41], [18], [42].

More accurate VoF techniques try to fit the interface through piecewise linear segments. One of the
most widespread approach is the Piecewise Linear Interface Calculate (PLIC) [43]. The distinguishing
feature of algorithms like PLIC is that they rebuilt the gas-liquid interface as a discontinuous (with
asymptotically small discontinuities) and not as a continuous chain of segments as illustrated in 2.3.
PLIC algorithm consists of a reconstruction and a propagation step. No matter how big is the curvature
of the approximation of the interface, PLIC algorithm gives robust solutions and the discontinuities of
interface’s location may vary from 0(h?) to O(h) [42], [44], [45].
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Figure 2.3: The basic principle of the VoF piecewise linear interface calculation (PLIC) method: the interface is
reconstructed by linear unconnected segments in each cell [45].

Moreover, there are also publications with high-order discretization schemes for the advective trans-
port equation of multiphase flows which can also apply to Taylor bubble flows [46], [47]. All in all,
the effectiveness and the accuracy of VoF method depends heavily on the choice of the discretization
scheme used for the advection of the volume fraction.

2.1.3. Dual-interface methods

The bigger disadvantage of the LS method for the numerical modeling of interface advection in Taylor
bubble flows is the lack of the conservation of volume of liquid and gas phase in time while, on the
other hand, the VoF method requires many computations and local refinements to identify the location
of the thin interface between the two phases. Those problems can be solved by using a coupled method
that applies both LS and VoF such that the combined modeling technique eliminates the drawbacks of
each method and at the same time keep their advantages. In particular, with a combined method the
user can have both track and control of the interface location with low computational cost.

There can be found many several coupled/ dual-interface methods in the literature. The slightly
differences between the coupled methods are mentioned on the way of the interaction between LS and
VoF method. The final choice for the combined solver for the interface simulation of the Taylor bubble
flow depends on the user and at the problem’s requirements for efficiency, accuracy and computational
time. Some examples of dual-interface methods are the coupled volume-of-fluid and level set method
(VOSET) [48], the adaptive coupled level-set/volume-of-fluid (ACLSVoF) method [49], the novel cou-
pled method for unstructured meshes [50], the Mass-Conserving Level Set method (MCLS) method in
Cartesian coordinates [51] and its’ improvement in cylindrical coordinates [17]. At this literature study,
an detailed analysis of the MCLS method in cylindrical coordinates is presented which has been used
in the past for the modelling of Taylor bubble flows. The small differences between the methods can
become comprehensible by studying the relevant literature.

The distinguishing feature of the Mass-Conserving Level Set method is that it achieves mass conser-
vation by calculating the VoF value at each cell through the level-set function and its gradient. This
feature can be applied both on a uniform Cartesian grid or a cylindrical grid and one of its’ applications
comprises the Taylor bubble flow. The MCLS method has been validated for indicating good levels of
robustness and accuracy in comparison with the rest coupled methods [51], [17]. Moreover, the algo-
rithm in cylindrical coordinates tried to eliminate all instabilities and possible singularities that may
occur in the multiphase flow field, accomplish competent accuracy (minimum second order) and at the
same time to be computationally cheap. The reason is that the algorithm is designed such that it can
apply to turbulent flows where irregular fluctuations in time as well as in space, small as well as large
three-dimensional eddies (vortices) coexist. To achieve this, the domain is limited to a straight, inclined,
cylindrical pipe [17].

The MCLS algorithm is illustrated at figure 2.4. For clarity, the explanation of the algorithm will
be done by keeping the same notation with the literature:
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e The level-set or distance function of the center of each cell to the interface is given by (l)l-(;? at

time step n.

e The volume fraction or volume value of the center of each cell at VoF is given by 1/)1(7,? at time

step n.
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Figure 2.4: MCLS algorithm with Level-Set function ¢, VoF function ¥: The left-hand side branch corresponds to pure
Level-Set advection. The right-hand side branch represents the VoF advection [17].

The idea of the method is that we can fix the lack of the mass conservation LS method by applying

some corrections to the Level-set function q,’)l-(’r,? which are derived from volume fraction wi(;) of VoF
method for every cell and every time step. This is done with the following steps (2.4):

1 1
e Firstly, the LS function <;bl(7; 2) and the VoF function wl(z 2) are advected together with the

velocity field at the time step n — %

1
L(n+>
e Then, by solving numerically the advection equation for LS, a first prediction of the level set ¢; 2)

1
n+-
for each cell at the next time step is approximated. Simultaneously, the VoF fraction 1/)1-(, X 2) is

computed through its’ advection algorithm for which it is known that the mass conservation
property holds.

1
+3)

. n+3) . .
e Next, the computed accurate value of volume fraction ¢;;, *" is compared at each mesh cell with an

1
~(n+2
approximate value of volume fraction 1,bl( X 2) obtained as the result of a non-linear function f which

1 1
takes as arguments the approximate values ¢3£Z+2) and V(f)i(‘r,l:z) and maps them to the volume
fraction of VoF. The comparison checks for each cell if the discrepancy between the approximated
value and the accurate value of volume fraction of VoF method is smaller than a user-defined
value €. The choice of € is important for the accuracy and the computational cost of the method.

1
S+
e Depending on the result of the comparison, the initial approximation of q)i(’ k 2) for every cell may
(if discrepancy is bigger than €) or may not be corrected (if discrepancy is smaller than €).
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1
L+

e If a correction is need, the algorithm continues by computing a new approximated value qbl-(’ k 2)
of level set function. This is done by calculating the inverse function of f, namely g, which takes

A L (n+3)
as arguments the computed accurate value of volume fraction 1, ** and the V¢, *" from the
initial guess.
1
2)

~(n+
e After calculating the new approximated value of level-set function ¢l( r,i , its’ gradient is computed

1
~(n+3

and a new approximation of 1,[11( X 2) is obtained.

e The comparison check continues iteratively until the required tolerance is achieved for all cells.

Then we can proceed with the next time step.

2.2. Software used for the Simulation of Taylor bubble flow

There is a big variety of open source and commercial software packages that are widely used in research
and industry for the simulation of the Taylor bubble flow. Since there is no analytical solution to the
Navier-Stokes equations for the Taylor bubble flow problem, the error of a simulation can be hard to
quantify. This is the reason why an experiment is often chosen to confirm the findings of the simulations
and the validation of theoretical models. Therefore, for the verification of the accuracy of CFD software
in Taylor bubble flows, we intended to find articles where the results from simulation were also followed
by experiments under the same physical flow conditions, e.g. same Reynolds number [10]. In cases
where the simulation results are not followed by an experiment (due to cost or complexity of the flow),
the researchers compare their findings with previous publications which simulated exactly the same
problem under identical conditions but with different software or flow modeling method. Moreover,
there are a few cases of papers with a code comparison for Taylor bubble flow simulations. Since each
software package uses its own parameters and variables for describing the same problem, a mapping
between the software’s parameters was needed.

During the current literature study, an important parameter is the version of the software package
that was used in the bibliography because the target was to capture the latest versions of each software.
Therefore, the search was limited to the results from the last decade so that the most recent documents
are gathered.

2.2.1. Commercial software packages

VoF method has been known for several decades, has gone through a continuous process of improvement
and is used by several commercially available software programs the last decades for simulation of rising
bubble flow problems [52]. On the other hand, other numerical methods for multiphase flow modeling
such as Level-set method, dual-interface methods, front-tracking methods, etc. have either recently
or not yet been developed in the most popular packages [52]. Therefore, the only way to perform
these methods is through user-defined functions such as in the recent numerical studies implemented in
ANSYS Fluent [53], [54], [55], [56].

ANSYS Fluent is the most widespread CFD software package used for simulations of multiphase
flows and in particular, for the motion of a rising bubble in a liquid. In ANSYS Fluent, there are
both Eulerian-Eulerian two-fluid models and Lagrangian discrete phase models. For Taylor bubble flow,
three different Fuler-Euler multiphase flow modeling methods are available: the VoF, the mixture, and
the Eulerian-Eulerian model [52], [57]. Front-tracking methods for flow modeling are not yet available
on ANSYS Fluent and they can still be performed only via user-defined functions such as in [56].

The VoF model is the easiest and most popular method to be implemented in ANSYS Fluent,
nevertheless, there are some limitations in the model’s implementation and especially in the early
versions [52]. For example, in Release 12.0 the restrictions in the use of VoF modeling contain that the
simulation can be implemented only by the pressure-based solver, stream-wise periodic flow cannot be
used and second-order implicit time-discretization scheme is not possible [58].

Despite those restrictions, predictions from numerical simulations are found to be accurate even for
early versions. For instance, the simulation of a Taylor bubble flow in both stagnant and flowing liquid
is implemented in Fluent (Release 5.4.8) using VoF method in [27] and the findings are found to be in
good agreement with experimental results obtained from literature [59].
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However, in the early versions, the LS method is not available and therefore, a coupled LS and
VoF method could be performed only via the tool of user-defined functions. For example, the coupled
LS-VoF (CLSVoF) method for modeling of gas-liquid interface in bubbly flow as presented in [54]. The
authors eliminated the drawbacks of both individual methods and achieved a CLSVoF method by using
the available VoF method in ANSYS Fluent (version 6.3.26) and performing LS method via user-defined
functions.

The latest versions of ANSYS Fluent show a significant improvement in the accuracy of the numerical
simulations of Taylor bubble flow. For example, the VoF methodology of ANSYS Fluent (Release 12.0.1)
is performed in the numerical survey about the rising of Taylor bubbles through a stagnant Newtonian
liquid [4]. The results obtained for the velocity and the frontal radius of the nose of the Taylor bubble
are favorably compared with a published collection of data from experimental measurements [60].

The next release (14.0) of ANSYS Fluent is the first version which had available the CLSVoF method
so that the deficiencies of the LS method and the VoF method are overcome. The efficiency of CLSVoF
method is illustrated in a numerical study for the bubble formation in a square microchannel with a
converging shape mixing junction with background liquid flow [53]. The comparison between VoF and
CLSVoF model of ANSYS Fluent indicated that with CLSVoF model a more accurate interface can be
achieved especially at the rupture stage of the bubble and the bubbles obtained, were more consistent
with the experimental outcome.

A finite-volume-based CFD solver ANSYS Fluent of Release 14.0 is also performed in the numerical
simulation for the dynamics of bubble formation from two submerged orifices in an immiscible Newtonian
liquid [61]. The dynamic effects of the quiescent and the co-flowing liquid ambiance on the bubble
evolution and detachment processes were compared with experiments from literature [62].

Release 15.0 is applied for the simulation of rising Taylor bubbles in [24], [55]. In [24], VoF method
is applied in the flow field and the values obtained are matching favorably with published experimental
and other modeling findings [63] while in [55], a numerical study for the bubble dynamic behavior
utilizing the coupled Level Set and Volume of Fluid (CLSVoF) method is illustrated. The authors in
the latter study used also the tool of user-defined functions but only for the mass and energy transfer
and not for the CLSVoF as in [54].

ANSYS Fluent 16.0 was used for performing a detailed numerical study focused on the mass trans-
fer phenomenon from Taylor bubbles of pure oxygen to co-current liquid initially absent of solute is
presented in [39]. The authors implemented a VoF method for capturing the interface accurately.

Another well-known commercial CFD software package is the STAR-CCM+ software. STAR-CCM+
offers a wide choice in modeling multiphase flows and is implemented in many researches flows such as
in [64]. In this publication, the aim was to indicate the accuracy of numerical simulations using STAR-
CCM-+ (version 10.06.010) with VoF modeling in slug flow conditions and in particular, in Taylor bubble
flow. STAR-CCM+ has been validated in several studies for Taylor bubble flow and can give accurate
predictions. For example, in [64], the divergence of the prediction from experimental results is less than
2%.

Last but not least, NEPTUNE CFD, which is based on a finite volume approach, is a multiphase-
flows solver which can be used for Taylor bubble flows like in [36]. NEPTUNE CFD is powered by Code
Saturne HPC capabilities and can be embedded in the SALOME platform.

2.2.2. Open source software packages

Open-source means that the user is free to view and modify the underlying code of the software. This
approach is beneficial to researchers in at least two ways; First, they can freely release their data and
experiments so that anyone can replicate the study just by downloading and installing the software;
Secondly, the original code is open to be read and so anyone can check the validity of either the
mathematics or other technique’s used in the publication. This can not always be done with commercial
software packages, as not everyone has access to them because of their cost and the code, is often treated
as secret so no one can read it.

OpenFOAM is an open-source CFD software package and comprises a collection of C++ libraries.
OpenFOAM and its’ libraries are widely used for simulation of multiphase flows and in particular, Taylor
bubble flows [65]. Until the last decade, OpenFOAM and most open-source CFD software packages
were not yet released [66], and therefore, the majority of the CFD simulations in multiphase flows were
done with commercial software packages. OpenFoam has a standard two-phase incompressible flow
solver for VoF method, namely InterFOAM, which solves the two-phase equations of flow on collocated
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grids using finite volume discretization [1], [38].

A numerical prediction for the motion of Taylor bubbles rising in a liquid using OpenFOAM is pre-
sented in many studies. For example, OpenFOAM version 2.3 and its’ multiphase solver InterFOAM
is used in [38] while a modified version of the standard InterFOAM VoF solver (OpenFOAM 4.0) for
unstructured grids is applied in [1]. The two main differences of the latter study from standard Inter-
FOAM version are the lack of the dissipative term in the incomplete flux and the two-stage Diagonally
Implicit Runge-Kutta (DIRK) for the time integration scheme. In both studies, the results are compared
favorably with the other numerical and experimental results [67], [68], [69], [70], [4], [3]-

Another efficient open-source code for Taylor bubble flows is the Parallel Hierarchic Adaptive Stabi-
lized Transient Analysis (PHASTA). PHASTA software comprises a direct numerical simulation (DNS)
flow solver which can model compressible or incompressible, laminar or turbulent, steady or unsteady
flows in 3D, using unstructured grids. PHASTA adopts the LS and not the VoF method for the mod-
eling of the interface of the two-phase bubble flow. PHASTA may give from second to fifth order of
accuracy and is based on a stabilized formulation of Finite Element Method (FEM) and have been
confirmed many times in the past for various configurations of bubble flows [71], [72]. For example,
in [32], a three-dimensional numerical analysis of the dynamics of large deformable bubbles in pipes
of different geometries and orientations was implemented using PHASTA. PHASTA is also used in a
novel algorithm which has been recently published in order to prevent or delay bubble coalescence while
simulating multiple bubble behavior using LS approach at large scale [30].

A parallel c++/ MPI code, called TermoFluids is designed for direct numerical simulation and large
eddy simulation of turbulent flows and it is used in many studies. For example, a numerical study of
Taylor bubbles rising in a stagnant liquid using a coupled conservative LS-moving mesh method is tested
in [31]. TermoFluids was also used in the research for the simulation of single and multiple bubbles
with the conservative LS method which is performed in [37]. The same authors use also TermoFluids in
another two researches for multiphase flows; a coupled VoF /LS method for simulating incompressible
two-phase flows on unstructured meshes and a finite-volume/level-set method for simulating two-phase
flows on unstructured grids [50], [33].

Moreover, a novel numerical two-phase flow algorithm in cylindrical coordinates was implemented
in FORTRAN 90 in [17]. The case of Taylor bubble flow in is tested and the accuracy of the code is
compared with the results from other studies which used different software [23].

2.2.3. Comparison between CFD software

Regarding code comparison, some empirical parameters and model details have to be changed to obtain
comparable agreement between different codes which simulate the same problem. Therefore, it is
necessary to perform a mapping between the various software parameters to apply a comparison.

For example, a comparison of commercial software packages ANSYS Fluent and Transport phenom-
ena Analysis Tool (TransAT) have been implemented for the simulation of bubbly flow case in [73]. VoF
modeling is adopted in Fluent while LS model is selected in TransAT which is developed by ASCOMP
GmbH [74]. The results indicate a recirculating flow for bubbles by TransAT while negligible recircula~
tion was observed in the solution with Fluent. In general, the TransAT captured the instabilities and
therefore, it predicted with better accuracy the slug flow in comparison with the experimental findings.
The computation times between the two methods are similar.

A code comparison has been also implemented for dispersed bubble flow. For example, a code
comparison between OpenFOAM (version 2.2.x) and ANSYS CFX for monodisperse bubbly flow was
executed and their predictions are compared with results from experiments [75]. Another study for CFD
simulations of a bubble column with and without internals compare results between OpenFOAM and
ANSYS Fluent [76]. In both examples, comparable results obtained with both commercial and open-
source codes (deviations around 3-4%) for different configurations of multiphase bubble flows in [76]
although some differences in the procedure remained [75]. For example, for the implementation of the
turbulent wall functions in [75], cell-centered discretization is used in OpenFOAM while a vertex-based
scheme is preferred in ANSYS-CFX. In general, although the experimental data are satisfactorily repro-
duced by the numerical simulations implemented in OpenFOAM, some deviations from experimental
results have been identified.

Similar efforts for the comparison between open-source and commercial software packages and their
matching with the experimental results have been also done for flows in micro-scale pipes (with a di-
ameter of less than 1mm). An interesting research paper in this field was the numerical as well as the
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experimental examination of the dynamic behavior of isolated confined air bubbles in laminar fully-
developed flows within circular channels of very small diameters [77]. The experimental results derived
from the micro-particle velocimetry technique were compared with the outcome of the computational
fluid dynamic simulations performed both in ANSYS Fluent v.14.5 and ESI OpenFOAM v.2.1.1. The
paper concludes that numerical results coming from both ANSYS Fluent and OpenFOAM agreed well
with the experimental results in the majority of cases (errors always smaller than 10%) and the dis-
crepancies occurred between experimental and numerical bubble velocity and liquid film thickness are
within the error bands of the experimental measurements. Only in cases of large capillary numbers, the
results of the dynamics of the liquid film for air-water flows were slightly better using ANSYS Fluent
in comparison with OpenFOAM because OpenFOAM resulted in narrower bubbles which led to errors
in the surface tension forces. In the extreme case of significantly small capillary numbers, even the
experimental results led to absolute errors up to 30% while in normal cases the error coming from
experiments is assumed negligible or it is identified and subtracted [77].

2.3. Previous simulations in Taylor bubble flows

A large amount of studies is published every year in the dynamics of Taylor bubbles rising within vertical
pipes which also contain viscous liquid. The reason is that the formation of Taylor bubble flow is met
in many industrial applications such as in geothermal power plants, steam boilers, and heat exchangers
in thermal power plants, oil extraction from wells, transportation of hydrocarbons through pipes, blood
flows and in the emergency core cooling of nuclear reactors [25], [20], [1].

The shape of the Taylor bubble may be different even for the same application. In general, Taylor
bubble is always bullet-shaped with a rounded leading edge, a cylindrical main part and either a more
rounded or more flattened trailing edge. The width of the Taylor bubble usually conceives almost all
cross-section of the pipe and therefore, a very thin film of liquid exists between the bubble and the pipe
walls [1]. As this thin film decreases, a wake is created in the region behind the Taylor bubble. The
wake region depends on the trailing edge of the Taylor bubble, fluid properties, flow conditions, and
pipe geometry [20].

Taylor bubbles usually appear in sequences, i.e. behind a Taylor bubble another Taylor bubble is
flowing with similar shape and velocity. The so-called liquid slugs which consist of smaller dispersed
bubbles are present between two Taylor bubbles [20]. The distance between two Taylor bubbles also
affects the wake region.

The behavior and motion of the Taylor bubble are affected by a group of non-dimensional numbers.
The most important non-dimensional numbers for the Taylor bubble flow are the Eétvis (Eo) or Bond
(Bo) number, the Morton (Mo) number and the Froude (Fr) number and are defined as:

e Mo = g,ulg,
p1o
U,

o Fr = =,
JgD

where p; is the liquid density, u; the liquid viscosity, g the gravitational acceleration, D the pipe
diameter, o the surface tension and U; the terminal velocity of the bubble. In particular, Eo represents
the ratio of gravitational forces to surface tension and together with Mo number characterizes the shape
of the bubble moving in a surrounding fluid while Fr is the ratio of the flow inertia to the external field
(i.e. gravity). The Eo and Mo consists of the input parameters of a simulation while Fr is a number
that comes from the outcome of the prediction [17].

However, to be able to sufficiently describe the Taylor bubble flow and derive the non-dimensional
governing equations, it is necessary to define another few non-dimensional numbers: the Reynolds (Re)
number (defined already in its general form in 1.3), the Archimedes (Ar) number, the Weber (We) as
well as the density and viscosity ratio. These numbers are defined as:
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where Ap = p; — pg is the density difference and v; the kinematic viscosity of the liquid. The Re
depicts the ratio of inertia to viscous forces, the Ar the ratio of gravitational forces to viscous forces
while Weber number represents the fluid’s inertia compared to its surface tension.

The problem becomes more complex as the liquid flow is increasing from (initially) stagnant to
laminar and then to turbulent flow [25]. In this chapter, predictions of numerical simulations in Taylor
bubble flow which was found in the literature are presented together with their achieved accuracy
compared to experimental findings or results from other publications. Taylor bubble flow problems
are very complex problems due to the aperiodic and unsteady behavior both in space and time and
therefore, there are some restrictions at studies coming only from experimental work without using any
simulation [20], [69].

All numerical simulations of rising Taylor bubbles in pipes through liquid background flow are
taking into consideration some assumptions in order to reduce the complexity, and therefore the com-
putational cost, of the problem. For example, the majority of numerical simulations of Taylor bubbles
flow in cylindrical pipes with laminar or (initially) stagnant liquid background flow are simplified into
two dimensions since there is no flow in the circumferential direction. Moreover, the flow is assumed ax-
isymmetric along pipe axis in many studies, and therefore, its motion is governed by a two-dimensional
momentum equation in the half pipe domain. Last but not least, in simulations of stagnant liquids with
high viscosity, the predictions lead to steady behavior and shape of Taylor bubbles and therefore, there
is no need for long (in time) simulations.

As a consequence, the complexity of the dynamics of the Taylor bubble depends on the background
liquid flow. Therefore, the current research is divided into three main subsections depending on the
background liquid flow within the vertical tube. In particular, the studies are divided into the type
of background liquid flow: (initially) stagnant, laminar or turbulent. In most of the literature, the
analysis is done on co-current Taylor bubble flow, which means that the Taylor bubble flows in the
same direction as the buoyancy force. For example, a schematic sketch of a (half) Taylor bubble rising
within a tube filled in with co-current liquid is illustrated in figure 2.5 as presented in [25].

2.3.1. Stagnant liquid

Firstly, studies from simulations of Taylor bubble flows in initially stagnant liquid are illustrated. Al-
though initially the liquid is quiescent, the rule is that as the Taylor bubble is moving up, the liquid
ahead of the bubble is starting to accelerate downwards until it reaches a maximum (usually steady)
terminal velocity.

The pioneer research on rising Taylor bubbles was carried out in [78] and [79]. Since there was neither
simulation tools nor experimental findings, it was only theoretically found that the rising velocity of a
Taylor bubble in an inviscid flow was U, = a,/gD where a is a coefficient with value between 0.33 and
0.35. The results of the above studies have been validated experimentally later in [80], [81].

A stabilized finite element method with LS modeling of the interface for the three-dimensional
computation of incompressible bubble flowing within an (initially) quiescent liquid is illustrated in [72].
The results from the three dimensional analysis indicate that the capability of the method to manage
the bubble coalescence and breakup.

Numerical simulations for three different cases of laminar Taylor bubble flow in an initially stagnant
liquid have been implemented in [1], amongst others. The three cases which were tested are convex tail
without wake, concave tail without wake, and concave tail with wake. A Moving Frame of Reference
(MFR) is attached to the Taylor bubble and non-periodic inlet and outlet boundary conditions are used.
The predictions coming from the modified InterFOAM compare favorably with the experimental results
from [69], [70] and the numerical models of [4]. The small deviations are justified by some unsteady
behavior near the tail of the Taylor bubble. The bubble is predicted to have an (almost) steady value
before the first second.

A numerical study of Taylor bubbles rising in an initially stagnant liquid is illustrated in [31]. The
governing equations have been discretized on a collocated unstructured grid arrangement with a central
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Figure 2.5: Schematic sketch of a (half) Taylor bubble rising in a cylindrical tube filled with co-current liquid as shown
in [25]. The co-current liquid can flow upwards or downwards. The Taylor bubble flow within a pipe is an-axis
symmetric problem and it is usual to do the half sketch.

difference scheme of the Finite Volume Method (FVM), according to [33] in which rising gas bubbles are
simulated in quiescent liquid on unstructured grids. Both studies used TermoFluids for their simulations.
The results of the former study show very small deviations from experimental findings 28] and other
numerical studies [82], and therefore, the numerical prediction is characterized as accurate.

A conservative level-set (CLS) method has been used to study the buoyancy-driven motion of single
and multiple bubbles on a one-directional periodic domain through an initially stagnant liquid in [37].
The equations of CLS have been discretized on a collocated unstructured mesh with a Finite Volume
Method and a central difference (CD) scheme is used to discretize the convective term. The simula-
tions were implemented in Termofluids and the predictions are found to be in good agreement with
experimental and numerical results from the literature such as in [83] and [84].

Rising Taylor bubbles through initially stagnant liquid is also performed in the simulation in [54]. In
this study, a three dimensional Cartesian level set method was coupled with the volume of fluid method
within ANSYS Fluent version 6.3.26 which uses a staggered grid. The level set was discretized with a
fifth-order weighted essentially non-oscillatory (WENO) scheme for spatial derivatives and a first-order
Euler explicit method for temporal discretization. The method was implemented on both serial and
parallel solvers. In the end, the authors compared the CLSVoF method with the original VoF and
conclude that CLSVoF acquires better accuracy. In particular, the deviation from experiments was less
than 16% using CLSVOF whereas with VoF the maximum relative error was 19%.

A three-dimensional simulation has been also applied for Taylor bubble turbulent flow in initially
stagnant liquid in [64]. The experiment published in [85] is used as a reference for all calculations.
LES calculations implemented with STAR-CCM+ give less than 2% error for a well-refined mesh. The
dependency of the results from mesh size and Courant number were assessed in this work.

A complete dimensionless analysis of single Taylor bubble rising through a vertical stagnant New-
tonian liquid problem is carried out in [24]. The FVM is used to discretize the governing equations.
Using VoF method in ANSYS Fluent, good approximations are found for Taylor bubble’s shape and
velocity, flow in the liquid film region and flow in the wake region with respect to the experiments [69]
and other theoretical models [60].

Stationary liquid is also used in the numerical simulation of Taylor bubbles rising in a vertical tube
at [26]. A Finite Difference Method is used for the discretization of NS and VoF for capturing the
gas-liquid interface. The simulation was executed with ANSYS Fluent and was matching well with the
experimental findings in the literature [86].



2.3. Previous simulations in Taylor bubble flows 19

Last but not least, similar simulations have been carried out in [38] where Taylor bubbles with
turbulent wake and their coalescence have been investigated. An OpenFOAM solver using VoF modeling
and FDM discretization gave accurate predictions for void fraction, mean Taylor bubble velocity and
turbulent fluctuations. The results were compared favorably with experimental findings [67].

2.3.2. Laminar liquid flow

In several studies, simulation of Taylor bubble flow are performed both in initially stagnant and laminar
flowing liquids are illustrated and therefore, it is difficult to categorize them. Although the rule in a
flow with initially stagnant liquid is that the bubble reaches a steady state and constant shape, this
does not happen always when there is also co/counter-current liquid flow.

Examples of laminar Taylor bubble flow are indicated in [27] and in [50] where a novel coupled
method for unstructured meshes is presented. The distance between the front nose of the Taylor bubble
and the accelerated liquid is smaller for slower bubbles. The same time at region at the rear of the
bubble, a wake may appear which depends on the inverse viscosity dimensionless number N¢. The
results of the simulation in [27], which was performed with Ansys Fluent using the VoF method, agree
fairly well with experimental and numerical results from the literature. In particular, the shape and
velocity of the slug, the velocity distribution and the distribution of local wall shear stress illustrate a
great matching with [86].

Numerical predictions for Taylor bubble flow in both co-current and counter-current flow with lam-
inar background liquid flow are presented in [25]. The front tracking method for interface capturing
together with the finite difference method for Navier-Stokes equations are used for the dynamic analy-
sis. The Crank Nicholson method is applied for the time integration. The results show that when the
co-current flows in the same direction with the buoyancy (i.e. upward flow), the bubble is elongated
and the flow separation at the elongated tail is easier. On the contrary, when the co-current flows on a
rising Taylor bubble in the direction opposite to the buoyancy force (i.e. downward flow), the bubble
becomes fatter and shorter, the tail’s shape is more rounded for large Ar numbers and therefore, the
flow separation is more difficult.

A new dual-interface capturing method for axisymmetric flows is presented and it is tested for the
laminar Taylor bubble case in [17], amongst others. The spatial discretization of the Navier-Stokes
equations is implemented by using a second-order accurate finite difference approach as presented in
[87]. The momentum equations are linearized with Newton linearization, and the discretization in time
is done with an Implicit Midpoint time integration method. The Poisson equation for the pressure
is solved by implementing the Conjugate Gradient (CG) method. The simulation is implemented in
FORTRAN for two low-viscosity cases and three moderate-viscosity cases and the results are compared
with the numerical results of [23] as well as the experiments of [86] and [28]. The deviation of the output
Fr number is found to be around 1% in comparison with the numerical simulations of [23]. In general,
for all cases, the shape, and the terminal velocity are in agreement with the numerical and experimental
findings from literature except for one case of large Reynolds numbers where the bubble breaks up after
some time.

A numerical analysis of the dynamics of large deformable bubbles in pipes of different geometries
and orientations for laminar liquid flow was investigated in [32]. The reference for the formulation of
the three-dimensional set up of the bubbly flow is the experimental conditions used in the literature [88].
Due to negligible movement in the circumferential direction, the problem is described by the governing
equations in two dimensions. The results derived from numerical predictions are found to accurately
matching with those from both experiments and theoretical models for all configurations.

Simulation of rising Taylor bubbles for varying inlet liquid velocities but always within the laminar
range is executed in [39]. For achieving constant solute concentration at the bubble surface, the flow
domain is solved by coupling the VoF method with a geometric reconstruction scheme which uses PLIC
method as applied in [43]. The simultaneous solution of the flow field, bubble shape, and mass transfer
in a domain with stationary walls was predicted accurately. However, the results obtained by ANSYS
Fluent for the mass transfer coefficient data from soluble bubbles showed a remarkable divergence in
comparison with the existing theoretical models [89], [63]. The reason for this difference can be explained
by implementing the relevant experiments.

Two different codes, Transat and ANSYS Fluent, were compared each other for the accuracy of their
predictions for the case of rising bubbles in laminar co-current liquid flow, amongst others [73]. The
codes use different spatial and space discretization schemes as well as interface tracking methods. The
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simulation in Transat was executed with LS interface capturing method, 3rd order Quadratic Upstream
Interpolation for Convective Kinematics (QUICK) for spatial discretization and 3rd order Runge-Kutta
for time discretization. On the other hand, ANSYS Fluent uses a VoF method, 3rd order Monotonic
Upwind Scheme for Conservation Laws (MUSCL) and 1st order Euler correspondingly. Computational
times, complexity, accuracy, consistency, recirculation, and stability are checked for both codes and the
results are compared with their deviation from experiments found in the literature [90].

2.3.3. Turbulent liquid flow

A Large Eddie Simulation (LES) of turbulent co-current Taylor bubble flow is illustrated in [1]. Ac-
cording to the knowledge of the author, this is the only publication that can be found in the literature
which presents a fully three-dimensional simulation that can reproduce the motion of an individual
Taylor bubble in a turbulent co-current background liquid flow. In this study, after the validation of
the predictions of laminar Taylor bubble flow, a simulation is performed for a turbulent co-current
Taylor bubble flow. For the discretization in space, a mixed scheme is used in order to verify stability
and at the same time minimize the artificial numerical dissipation. In particular, at the free surface, a
Van Leer flux-limiter is used which stabilizes the free surface and suppresses artificial bubble formation
together with a second-order central difference scheme in the rest domain. Moreover, a second-order
accurate diagonally implicit Runge-Kutta scheme is used for the temporal discretization. The accuracy
of the numerical simulation is compared with the findings of [3] for the Taylor bubble in a turbulent
co-current liquid flow. The prediction model agrees with the published data from the literature except
for an underestimation of the velocity fluctuations close to the Taylor bubble due to the laminarization
of the flow in the wake region and the great bubble decay at the bubble’s tail.

2.4. Discussion on literature review

The literature study provided in the current chapter comprises the theoretical background necessary for
understanding the problem of Taylor bubble flow and provides most of the up-to-date relevant research
that has been published. The motivation for this work comprises both the wide variety of engineering
systems in which the Taylor bubble flow is encountered as well as the scientific gap that was found. The
three main interface modeling methods have been explained in detail and the capabilities and restrictions
of each software that has been used in similar studies are indicated. After analytical research, the lack
of realistic and accurate data in the laminar, transitional, and turbulent co/counter-current flow has
been identified and the current master thesis tries to fill a part of this scientific gap.

In particular, the literature study prospects on performing a high fidelity simulation of Taylor bubbles
in co/counter-current turbulent flow. The project is performed in cooperation with the research and
innovation unit of NRG using Basilisk software. Corresponding research questions, goals as well as the
strategic approach that is followed are stated in this chapter prospecting on the remaining part of the
master thesis.

2.4.1. Scientific gap

Numerical simulations of Taylor bubble flows are complex and unsteady problems. Most of the studies
found in the literature and presented in chapter 4 try to decrease the complexity and computational
cost. For example, this is done by using coarser meshes or performing simulations in a laminar flow
which usually leads to two-dimensional problems.

Table 2.1 summarizes the main sources that are found in the literature for the numerical simulation
of Taylor bubble flows. The first column indicates the source, the second the interface tracking method,
the third the used computational method, the fourth the software package used for the simulation and
the last one depicts the type of background liquid flow. It can be observed that almost all studies
implement simulations of Taylor bubbles in stagnant or laminar liquid background flow while only [1]
simulates Taylor bubbles in co-current turbulent liquid flow.

According to the research of [20], despite the number of studies performed, there is a lack of realistic
accurate data in the case of not only turbulent but also transient or even laminar liquid co/counter-
current flow. The reason is that important assumptions and different constraints that are used in order
to reduce the degrees of freedom, like symmetry, type of flow, flow parameters, or choice of a coarse
grid, may affect the consistency of the results. In simulations of stagnant liquids with high viscosity,
the predictions lead to steady behavior of Taylor bubbles. However, as Re increases, this two-phase
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Table 2.1: This table displays the interface modeling techniques, the discretization method, the software and the type of
background liquid flow used for each numerical simulation of Taylor bubble flow found in the literature.

Author-source interface modeling discretization method software liquid flow type
Oud, [17] MCLS FDM FORTRAN laminar
Frederix, [1] VoF FVM OpenFOAM turbulent/ stagnant
Montoya, [64]  VoF FVM STAR-CCM+ stagnant

Taha, [27] VoF FVM ANSYS Fluent stagnant,/ laminar
Massoud, [24]  VoF FVM ANSYS Fluent stagnant

Quan, [25] FT FDM not mentioned laminar

Bugg, [26] VoF FDM ANSYS Fluent stagnant

Talley, [30] LS FEM PHASTA stagnant
Gutiérrez, [31] CLS FVM TermoFluids stagnant
Behafarid, [32] LS FEM PHASTA laminar
Balcazar, [33] LS FVM TermoFluids stagnant
Sussman, [34] LS FDM not mentioned stagnant
Mimouni, [36] LS FVM NEPTUNE CFD laminar /stagnant
Balcézar, [37]  CLS FVM TermoFluids stagnant
Shaban, [38] VoF FDM OpenFOAM stagnant

Silva, [39] VoF FEM ANSYS Fluent laminar
Balcazar, [50]  CLSVoF FVM TermoFluids stagnant

Dang, [53] CLSVoF / VoF FVM ANSYS Fluent laminar

Nichita, [54] CLSVoF FVM ANSYS Fluent stagnant

Igaadi, [55] CLSVoF FDM ANSYS Fluent stagnant

Hua, [56] FT FVM ANSYS Fluent stagnant

Aratjo, [4] VoF FVM ANSYS Fluent stagnant

Prasad, [61] VoF FVM ANSYS Fluent stagnant
Nagrath, [72] LS FEM not mentioned stagnant
Carlson, [73] LS / VoF QUICK/MUSCL TransAT/ANSYS Fluent laminar

flow problem becomes unsteady. Even in simulations of laminar Taylor bubble flow, the flow can be
semi-turbulent at the wake region behind the bubble and therefore, if its motion is governed by a
two-dimensional momentum equation, the results will be less accurate [64], [27]. The same opinion is
illustrated by the authors in [32]. In this study, it is also mentioned that the predictions of numerical
simulations must not only be compared against specific experimental results but also to be carefully
checked for their physical consistency and restrictions.

In many engineering problems of rising Taylor bubbles, the liquid background flow is turbulent
and unsteady vortices of different sizes are created which interact with each other and increase the
complexity of the problem due to their chaotic behavior. Therefore, an accurate prediction requires
a fully three-dimensional analysis and enough computer resources. For example, in the design and
operation of a nuclear facility, it is important to understand the behavior of Taylor bubble flow in all
flow regimes and all types of liquid background flow, including turbulent. The scientific gap of the
simulations of Taylor bubbles in co/counter-current turbulent flow is a challenging topic and comprises
the ambitious target of the current master thesis which has been carried out in collaboration with NRG.

2.4.2. Preliminary research questions

Each of the different multiphase flow regimes can be a thesis project in itself, therefore during the
current master thesis work the main focus is on the way to successfully tackle high fidelity simulations
of Taylor bubbles in co/counter-current turbulent flow, using the Basilisk software. To achieve reliable
predictions, the following approach is followed and analyzed in the next chapters:

e Learning Basilisk. Basilisk is an open-source flow solver that employs the Volume of Fluid ap-
proach for the modeling of two-phase flow [91]. One of the main features of Basilisk is the fact
that it can perform dynamically local grid refinement so it has the potential to capture accurately
the gas-liquid interface.
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Identification and development of several simple test cases, for example in the dam break problem
or in a rising bubble in a liquid column, to be simulated with Basilisk and to be post-processed.

Validation of the Basilisk solver in the setting of single-phase turbulent pipe flow based on [92].
Simulation of laminar Taylor bubble flow rising in stagnant liquid based on [4].

Simulation of co/counter-current laminar Taylor bubble flow and validation against the experi-
ments of [3] and [5].

Development of a high-fidelity simulation of the Taylor bubble in co/counter-current turbulent
flow and comparison against experimental findings of [3] and NRGs OpenFOAM Large Eddy
Simulation (LES) results of [1] for co-current and against experiments of [5] for counter-current
flow.

In the numerical analysis of Taylor bubbles in co/counter-current turbulent flow using Basilisk, some
critical issues have to be taken into account and several corresponding sub-questions to be answered:

By default the domain on which the equations are solved in Basilisk is a square box (or cube in
3D). How can the cylindrical domain and the embedded boundaries of the pipe flow problem be
constructed? How can we simulate a fixed wall?

The problem is transient due to strong shear stresses, which leads to a continuous and progressive
reduction in the Taylor bubble’s size (i.e. at the tail). What averaging strategy and what mesh
size will be used?

The small bubbles which are expected to break-up from the Taylor bubble may either merge again
with the Taylor bubble or may be transported downstream of the flow. Is this bubble break-up
physical and how can it be verified that our results will be realistic after the break-up?

Preliminary simulations of Taylor bubble flow showed that the use of a linear interpolation scheme
for the face-interpolated velocity leads to a very unstable free surface, producing significant arti-
ficial break-up. What can be done to avoid the instabilities of the free surface?

Due to wall friction, the liquid flow loses kinetic energy and it is driven by a constant and spatially
uniform pressure gradient. Therefore, even for high Reynolds number, laminarization of the liquid
flow can be observed due to the thin liquid film between the Taylor bubble and the wall [93]. How
can we keep the liquid flow turbulent?

Taking the above into consideration, we come up to the main research question:
What simulation strategy can be developed in Basilisk to accurately reproduce the motion of an indi-
vidual Taylor bubble in turbulent co/counter-current background liquid flow?



Model and methods

3.1. Why Basilisk?

The main difficulty in the simulation of Taylor bubble flows is to capture accurately the changes in
the shape of the gas-liquid interface. To achieve this, Basilisk software has been used. Basilisk is
open-source software for the solution of partial differential equations describing fluid flow on adaptive
Cartesian meshes and is designed to replace Gerris [94], [91].

The big advantage of Basilisk is the capability of local refinement of cells adaptively in time that
allows capturing certain features in the flow with high precision while leaving other regions relatively
unrefined. Such an approach may be proven to be very useful for multi-scale problems such as two-phase
flow where the interface can be captured sharply in high resolution. Therefore, in the case of Taylor
bubble flow, it can be used with very high mesh resolution near the bubble’s interface and the wall while
elsewhere the grid is allowed to be much coarser which leads to significantly less CPU time. In each time
step, the mesh is adapted based on a user-defined tolerance which is defined as the maximum accepted
discretization error for each scalar field (e.g. void fraction or/and velocity components). The built-in
adaptive function checks each scalar field for the discretization error in each time step and refines the
grid if the error exceeds at least one of the given tolerance values of each field. The underlying data
structure is allowed only in a quadtree/octree approach and allows fast solution procedures since in
these types of grids the resolution can vary within the spatial domain.

The base of quadtree (in two-dimensions) or octree (in three-dimensions) grids in Basilisk is the
multi-resolution grid structure, called multigrid. Starting from the domain which is initially considered
as a single cell, the idea of multi-resolution grid forms when one or more levels of refinement are added.
The extra capability of tree-based grids is that they allow higher resolution along time only in the areas
in which the user desires. The concept of the octree is based on parents’ and children’s cells. Higher
levels are called the children of the cell located at one lower level which is called parent cell. Each
children cell having half mesh size of the parent cell in each direction or vice versa, each parent cell is
divided into 2 cells in each direction. Therefore, the idea is the 2-fold refinement of cells in each spatial
direction. Based on this idea, the user can choose to refine dynamically some cells up to a specific level
while leaving other cells unchanged. This idea is illustrated with an example in figures 3.1, 3.2 in [95].

Level =0 Level =1 Level = 2

Figure 3.1: The cells within a simple Tree grid as illustrated in [95].
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Figure 3.2: Conceptual view of the tree grid from the example above as shown in [95].

3.2. Numerical modeling of multiphase flows in Basilisk

Basilisk is a flow solver that employs a conservative, non-diffusive, geometric VoF scheme for the mod-
eling of two-phase flows as illustrated in [96], [97]. The treatment of the interface is implemented with
a piecewise continuous interface representation. In each iteration, reconstruction of the interface is
performed by computing the outward normal vector n and slope a. An approximation of the interface
normal using the Mixed-Youngs-Centered scheme [98]. The computation of the void fraction is per-
formed by checking the sign of the component of velocity normal to the interface u, in each face of
grid cells and the index of the corresponding upwind cell as indicated in figure 3.3, [99]. Moreover, it
is necessary to ensure the convergence condition by Courant Friedrichs Lewy by checking the CFL
number in each time step.

b

Figure 3.3: Volume fraction flux [100].

The governing equations that standard Basilisk solver uses for two-phase flows are already presented
in 2.6-2.10. However, some modifications to the standard Basilisk N.S. solver have been made to improve
its efficiency. The main differences that apply to all test cases are the following:

e First of all, when using the quadtree (or octree) approach all domains in Basilisk are by default
square-shaped (or cube-shaped in three-dimensions) and this is often not desirable like in pipe
flow simulations. Although there are built-in functions to overcome this problem in single-phase
flows, they are not compatible with multi-phase flows with Message Passing Interface (MPI).
Therefore, the construction of a non-square domain and its embedded boundary conditions has
to be constructed manually in Basilisk for the simulation of a multi-phase flow like Taylor bubble
flow when using multiple processors. The smoother damping of the velocity near the inside walls is
achieved with an extra damping term that is added to to the right-hand side of the N.S. equations
of 2.10 only for cells satisfying the embedded condition and only in the desired directions. The
extra damping term h is computed using the direct volume penalization method as illustrated in
[101], and has the following form:

HXx)-u
T

h= (3.1)
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, where T << At the time scale of velocity damping and H(X) a masking function which is unity
for cells inside the solid wall and zero outside. The implicit damping in the desired direction is
achieved by introducing an anisotropic damping parameter vector field which allows to damping
only in one direction. For example, in case that it is desired to mimic a slip wall the velocity
should be damped only in one direction. The effect of this modification will become visible in
section 4.2.2 where it is compared against the standard Basilisk N.S. solver for which only explicit
damping of velocity near the wall can be applied with post-processing.

e The momentum equation is solved by selecting the appropriate Runge-Kutta (RK) scheme from
the Butcher tableau following a more general PISO algorithm (Pressure-Implicit with Splitting of
Operators) which solves two iterations in implicit RK stages and one iteration for the explicit as
illustrated in [102] while the standard Basilisk solver is using a two-point approach with upwinding
as presented in [103].

e To define the dynamic viscosity at the interface, a harmonic mixing has been used instead of using
the averaging procedure described by 2.7:

1
A A CE))
12 Hg

(3.2)

e Another amendment within the N.S. solver regards fact the full discretization of the diffusion term.
This means that the second part of the deformation tensor D = %[Vu + (Vu)T] is not assumed to
be zero, even though the velocity field should be divergence-free.

All in all, the developed Basilisk code is not the same for each test case. Except for the amendments
to the standard Basilisk solver that already mentioned, all Basilisk codes differ each other in several
other parameters (e.g. selection of the spatial and temporal discretization schemes). The crucial changes
that have been made in the developed code of each validation case are mentioned and justified in the
relevant section separately.






Validation of Basilisk code

As mentioned in the previous chapters, the current study is heading for the implementation of a Direct
Numerical Simulation (DNS) strategy which can accurately reproduce the motion of an individual
Taylor bubble in a turbulent co/counter-current background liquid flow using a code developed in
Basilisk. Before beeing able to go towards a fully DNS approach, the Basilisk code is firstly validated
for several cases. In the beginning, Basilisk code is tested in the setting of a circular bubble rising in a
liquid rectangular column against the simulation data published by three independent research groups
as presented in [2]. The same simulation setup is also implemented in OpenFOAM and the results are
compared with Basilisk in terms of computational cost and code’s efficiency. Next, simulations in the
limits of laminar Taylor bubble flow in an initially stagnant liquid are performed in Basilisk and the
predictions are compared with [4, ANSYS] and [1, figure 4, OpenFOAM] for different combinations of
Eotvos and Morton numbers both in two and three directions. As a third step, the code is validated
in the turbulent co-current Taylor bubble flow against the results of [1, figure 4, OpenFOAM] using
the experimental setting of [3]. All these validation cases demonstrate that the developed Basilisk code
produces results that are consistent with the published simulation data that was found in the literature.
The effects of the amendments to the standard Basilisk N.S. solver that were already described in
chapter 3 are visible in the following sections together with the extra modifications that are applied in
each validation case separately.

4.1. Laminar bubble flow

The first case which is performed in Basilisk regards the simulation of a two-dimensional bubble which
is released in a rectangular box and raises under the influence of buoyancy while undergoing shape
deformation. To determine if Basilisk solves the posed problem correctly, the predictions are compared
with the numerical results in two different configurations produced by three independent research groups
as illustrated in [2]. Each research group implemented a separate computational study and utilized only
one processor per simulation. The benchmark data is provided in ASCII text files and is available in
[104].

Since there are no exact solutions available for this problem, the authors in [2] compare the results
from the three institutes both quantitatively and visually. The necessity for quantitative comparisons
for the validation of the mathematical modeling comes from the fact that different codes with identical
problem formulations do not often produce identical results, such as in figure 4.1 which illustrates the
resulting shape of the bubble for the second configuration after three simulation seconds using different
software. It can be easily observed that all codes give different final shapes and therefore, due to
the absence of an analytical solution, it is hard to judge which code is closer to reality. Thus, the
visualization of the shape of the bubble may illustrate an indicator but cannot be considered as the
only criterion for drawing conclusions.

For the reasons mentioned above, three different benchmark quantities are defined in [2] which de-
scribe both direct and indirect topological parameters: center of mass, mean rise velocity and circularity.
In the current study, only the first two benchmark quantities are measured in Basilisk.

In particular, the position of center of mass of the bubble is given for each coordinate from the
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Figure 4.1: Numerical simulations of a two-dimensional rising bubble for six different codes with identical problem
formulations as shown in [2]. The simulations regard case 2 of the table 4.1.

formula:

J, ®dx

== W, (4].)

Xe = (%¢, ¥Ye)

where (), illustrates the area of the bubble in two-dimensions.
The mean rise velocity is measured as the moving velocity of the center of the bubble in each time
step and is defined as:

Jo, udx

e = J, 1dx

(4.2)

The first configuration has small density and viscosity ratios whereas the second case has big density
and viscosity ratios. The choice of physical properties and important dimensionless numbers for the two
cases are taken identical to those from [2] and are indicated in table 4.1. Except density and viscosity
ratios, E6tvos (Eo) number as defined in 2.3 and therefore, surface tension as well are the quantities
that are changing from first to second configuration. On the contrary, the Reynolds number remains
constant at laminar level in both cases.

Table 4.1: Physical parameters and important dimensionless numbers identical to [2].

Test case I P2 1y i e a Re Eo 21/ 02 1y /sy
1 1000 100 10 1 0.98 24.5 35 10 10 10
2 1000 1 10 0.1 0.98 1.96 35 125 1000 100

The governing equations for this two-phase problem are the Navier-Stokes equations together with
mass conservation for incompressible flows (equations 2.9, 2.10). Surface tension effects are also taken
into account at the interface between the liquid and the gas so it is necessary to use an accurate modeling
method for interface tracking. Basilisk uses the VoF method for mathematical modeling as described
in 2.1.2. The initial and boundary conditions are identical for both configurations and are taken from
[2] and can be seen in figure 4.2. In particular, the initial bubble shape is a circle of diameter 0.5 meter
and the center of the circle is initially placed at point [0.5 x 0.5] of a rectangular domain [1 x 2| square
meters. The no-slip boundary condition is set at the top and the bottom of the boundaries and the
free-slip boundary condition at vertical walls. All the above forms the boundary value problem in each
configuration.

The initial refinement area for both cases in Basilisk has been chosen to be performed in a circle
with radius one and a half- times the radius of the initially circular bubble which has diameter half.
The initial refinement is executed up to the finest refinement level (i.e. maximum) so that the initial
bubble shape is accurate.
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Figure 4.2: Initial position of the bubble and boundary conditions for both cases as illustrated in [2].

In the first place, the efficiency of the Basilisk code is compared against the results of [2] for the two
configurations both qualitatively and quantitatively. In particular, the reference value of each bench-
mark quantity is considered as the average between the most accurate solutions (those coming from the
most refined grids) of each research group. The qualitative comparison regards the shape of the bubble
after three simulation seconds. Secondly, the two test cases are also simulated in OpenFOAM with
identical setup with Basilisk and the two software are compared each other in terms of computational
time needed for achieving a certain accuracy.

4.1.1. First test case

The first configuration simulates a rising bubble with small density and viscosity ratios for three seconds.
Both density and viscosity of the liquid are ten times greater than those of gas. Eo number is also 10
because the surface tension is higher in this case.

The total number of simulations that are implemented in Basilisk for the first configuration is
six. Three different pairs of minimum and maximum refinement level have been selected and each
of them is combined with two different values of accepted velocity and void fraction tolerance. All
possible combinations are compared with the average of the solutions coming from the most refined
grids (% = 320) of each of the three research groups in [2]. The simulation results are checked both
visually (i.e. identical shape in each snapshot) and quantitatively by checking the benchmark quantities
of interest. The bubble is only moving on the vertical direction so the only the vertical component of
position and velocity (direction opposite to gravity) varies in each time step. The deviations of the
benchmark quantities from the reference solutions can be found in tables 4.12, 4.13 where [y, I, and Iy
error norms are calculated for each simulation which are defined as:
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Regarding the final shape after three seconds, the bubble ends up with an ellipsoidal regime which is
in agreement not only with the three numerical results in [2] but also with the experiments implemented
in [105]. The shape agreement is tested separately for each simulation. No break up appears since the
interfacial force is high due to strong surface tension.

The first simulation is performed for minimum refinement level 5 and maximum refinement level
7. Although the position of the center of the bubble is captured pretty well, an overestimation of the
velocity of the centre of the bubble is observed as well as a significant difference in the final shape at
t = 3. Two possible possibilities are analyzed for minimizing the deviation from the reference solution:
Increasing the minimum or/and the maximum level of refinement or/and increasing the velocity and
void fraction tolerance which is defined as the maximum accepted discretization error for each scalar
field respectively.

The latter proposal is simulated firstly where there is an increase of one level of magnitude in the
tolerance values of both velocity-components and gas fraction (from 0.01 to 0.001). The minimum and
maximum refinement level was kept constant. The plots of the benchmark quantities are indicated in
figures 4.3a, 4.3b. Surprisingly, the simulation with a higher tolerance value seems to be slightly closer
to the reference solution for all error norms. Although the difference between the two simulations can
be considered negligible (same values up to third decimal), an explanation for that is that our reference
solution came from an average of the best solutions among numerical results and not from an analytical
solution. On the other hand, concerning velocity, the convergence is better for the simulation with a
smaller tolerance. Moreover, the final shape of the bubble is also more accurate with smaller tolerance
as shown in figures 4.4a, 4.4b.
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Figure 4.3: Case 1: ordinate of position (4.3a) and velocity (4.3b) of the centre of the bubble for minimum and
maximum levels of refinement 5 and 7 and different tolerances.

An alternative for the previous proposal is to increase the maximum level of refinement from 7 to
12. However, in this case, and for tolerance values 0.01, it has been observed from the visualization of
the output of the simulation that the maximum level of refinement is never achieved and the higher
level of refinement is 9 (figure 4.11). Two simulations are executed for the same values of minimum
and maximum levels and different tolerance (0.01 and 0.001 respectively) are executed as before. The
results for the evolution of the bubble’s position and velocity are illustrated in figures 4.5a, 4.5b while
the final shape and position of the bubble are indicated at 4.6a, 4.6b.

The last pair of simulations for the first configuration is implemented for maximum level of refine-
ment 9 while the minimum refinement level is increased from 5 to 7 to get even better convergence
even for tolerance 0.01 (for both velocity components and gas fraction). Indeed, the predictions seem
more accurate than the previous simulations both visually (i.e. identical final shape 4.8a, 4.8b) and
quantitatively by checking the benchmark quantities (figures 4.7a, 4.7b). This pair of simulations is
more accurate and has less computational cost than the previous pair (level 5-12)

Comparison of the bubble’s position among the three different choices of levels of refinement and
their convergence to the reference solution is indicated in figures 4.9a, 4.9b. Similarly, the convergence
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Figure 4.4: Case 1: Final shape (at t = 3) for minimum and maximum levels of refinement 5 and 7 and tolerance 0.01
(4.4a) and 0.001 (4.4b) correspondingly.
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Figure 4.5: Case 1: Ordinate of position (4.5a) and velocity (4.5b) of the centre of the bubble for minimum and
maximum levels of refinement 5 and 12 correspondigly and different tolerances.
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Figure 4.6: Case 1: Final shape (at t = 3) for minimum and maximum levels of refinement 5 and 12 and tolerance 0.01
(4.6a) and 0.001 (4.6b) correspondingly.
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Figure 4.7: Case 1: Ordinate of position (4.7a) and velocity (4.7b) of the centre of the bubble for minimum and
maximum levels of refinement 7 and 9 correspondigly and different tolerances.
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Figure 4.8: Case 1: Final shape (at t = 3) for minimum and maximum levels of refinement 7 and 9 and tolerance 0.01
(4.8a) and 0.001 (4.8b) correspondingly.
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1.1

to the reference solution of bubble velocity for all simulations is illustrated in 4.10a, 4.10b.
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Figure 4.9: Test Case 1: Ordinate of position of the centre of the bubble over time for three different pairs of minimum
and maximum level of refinement and the reference solution for tolerance of velocity and void fraction 0.01 (4.9a) and
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Figure 4.10: Case 1: Ordinate of velocity of the centre of the bubble over time for three different pairs of minimum and
maximum level of refinement and the reference solution for tolerance of velocity and void fraction 0.01 (4.10a) and 0.001
(4.10b) correspondingly.

Figure 4.11 illustrates the refinement levels in all cells of the domain at the final time and for all
simulations. This is an important indicator which shows the cells in which the values of void fraction
and velocity exceeds the tolerance value in the final time step. It is easily observed that maximum
refinement should be at least 9 in combination with low tolerance.

Overall, the error norms of the benchmark quantities can be seen in 4.12. The maximum velocity,
the real-time it occured during each simulation, the final ordinate of the position of the center of the
bubble as well as the CPU time and the number of iterations are shown in 4.13. Basilisk shows very
good quantitative (position and velocity of the center of bubble) and qualitative (shape) matching for
the first configuration with the numerical results produced by the three research groups. Due to the
capability of dynamically local grid refinement, much less numerical effort is required to attain a certain
accuracy. The best option for the levels of refinement seems to be 7 for the minimum and 9 for the
maximum.
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Figure 4.11: Case 1: Levels of refinement of each cell of the domain at the final position (t=3) in all six simulations in
Basilisk. The levels vary from 5 (dark blue) up to 12 (dark red).

Ref.L5-7, | Ref.L5-7, | Ref.L5-12, | Ref.L5-12, | Ref.L7-9, | Ref.L7-9,
tol=0.01 | tol=0.001 | tol=0.01 tol=0.001 | tol=0.01 | tol=0.001

[le]y  0.006309 0.007865 0.003259  0.002754 0.002757 0.002667

pos.
llell; 0.018286 0.017541 0.018286  0.008224 0.00476  0.004549
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lle]l.  0.007352 0.008549 0.004843  0.003624 0.002997 0.002971
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vel.

Figure 4.12: Case 1: Error norms of ordinate of position and velocity of centre of bubble for six simulations which are
compared against the reference solution.
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tol=0.01 tol=0.001 | tol=0.01 tol=0.001 tol=0.01 | tol=0.001 | 1/h =320
Vemax ~ 0.243957 0.24520  0.241965 0.242421 0.24295 0.242528 0.2419 + 0.002

tyeevomsx 095 0.9 091610 092448 090702 090974  0.92 +0.02

Ve t=3) 1.09185 1.09153 1.089406 1.086926 1.08390 1.08354 1.081 +0.003

CPU 1.9 122 614.7 109632 528.9 1941 TP2D=126373
FreeLIFE= 108846
MooNMD = 180819

time 610 610 11452 104049 3895 4629 TP2D=15360

steps FreeLIFE= 960

MooNMD= 6000

Figure 4.13: Case 1: Comparison of benchmark quantities and computational time against reference solution.
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4.1.2. Second test case

The second configuration is more challenging and simulates a rising bubble with bigger density and
viscosity ratios for three time units. The density of the liquid is a thousand times greater than the
density of gas while the viscosity ratio is a hundred. Eo number is 125 because the surface tension is
lower in this case. The final regime of the bubble is expected to be between the skirted and dimpled
ellipsoidal-cap with a possible break up phenomenon due to the weak surface tension and the flow
properties.

Similarly with the first case, three pairs of simulations with different minimum and maximum levels
of refinements are chosen. Each pair has one simulation with one order of magnitude less tolerance
for both void fraction and velocity. Again, the same benchmark quantities have been selected for the
quantitative comparison. All simulations are compared with the average of the solutions coming from
the most fine grids (% = 640) of each of the three research groups in [2]. However, the results of the
three research groups agree very well for the computed benchmark quantities only up to t = 1.75—2.0s.
After this time, although all codes predict a similar shape for the main bulk of the bubble, there is no
agreement concerning the thin filamentary regions. Therefore, there is no reference solution for the last
time unit of this simulation.

In the first place, two simulations with minimum 5 and maximum of 7 levels of refinement are imple-
mented for tolerance 0.01 and 0.001. However, the velocity plot shows some non-physical fluctuations
which are not present in the reference solution. The final shape is also not captured well. The results
are shown in figures 4.14a, 4.14b for the ordinate of position and velocity of the center of the bubble and
in 4.15a, 4.15b for the final shape. The simulation with tolerance 0.001 captures better the final shape
at the nose of the bubble. There is no break-up phenomenon like the reference solution 3 (MoonNMD
code) and the results from the commercial codes CFX and Fluent indicated in figure 4.1.
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Figure 4.14: Case 2: Ordinate of position (4.14a) and velocity (4.14b) of the centre of the bubble for minimum and
maximum levels of refinement 5 and 7 correspondigly and different tolerances.

Next, the maximum level of refinement is only increased to 11 while the minimum remains at 5.
Again, the two simulations are executed with the tolerances of both velocity and void fraction 0.01 and
0.001 respectively. The position and velocity plots for the two simulations are illustrated in figures 4.16a,
4.16b while the final shape at figures 4.17a, 4.17b. The results indicated that even with the increased
maximum level of velocity, the final shape and position are not captured accurately.

Therefore, a decision for increasing the minimum level of refinement up to 6 was made and at
the same time, the maximum level was set to 10 to keep CPU time low. The figures of ordinate of
position and velocity of the bubble are indicated in 4.18a, 4.18b, and the final shape at 4.19a, 4.19b. All
benchmark quantities seem to be accurately captured and with less computational costs for the second
pair of simulations. Even for this choice of levels, no break-up is observed at the trailing edges of the
bubble but only a reduction in the thickness at the long trailing filaments. Possible explanations for
this are the way that the treatment of the interface in the advection equation is performed and the
calculation of interface mean curvature k which involves the second partial derivative of height functions
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Figure 4.15: Case 2: Final shape (at t = 3) for minimum and maximum levels of refinement 5 and 7 and tolerance 0.01
(4.15a) and 0.001 (4.15b) correspondingly.

—e— ref. L5-11, tol. 0.01 y 0.25
ref. L5-11, tol. 0.001 \
—7— Reference / R\,V/\v
M 0\//\.\v_
= 1.0 . 0207 T
=) % =
£ / B
3 ]
g 2 0.15
B y B
P 0.8 o 0.10
< s U.1U
=1 =1
= ¥ oo
E =
° ° 005
0.6 ' s
. —®— Ref. L5-11, tolerance 0.01
./ Ref. L5-11, tolerance 0.001
0.00 4 —v— reference
T T T T T T T T
0 1 2 3 0 1 2 3

time time
(a) (b)

Figure 4.16: Case 2: Ordinate of position (4.16a) and velocity (4.16b) of the centre of the bubble for minimum and
maximum levels of refinement 5 and 11 correspondigly and different tolerances.

(distance between cell-center and interface) [106], [107].

The refinement levels for all Basilisk simulations at the final snapshot (t=3) are indicated in figure
4.20. It is obvious that for this configuration simulations with minimum level of refinement 5 do not
capture the problem accurately. Similarly, in simulations where the maximum refinement level is only
7, the mesh is refined up to this level almost everywhere around the bubble.

The comparison of all Basilisk simulations is illustrated in figures 4.21a,4.21b for position and 4.22a,
4.22b velocity. Moreover, the error norms of the ordinate of position and velocity of the center of the
bubble are shown in 4.23 while in 4.24, the values of the two local maximum velocities (and the time
they occur), the final position and the CPU time for the simulation are indicated. It can be easily
observed that the choice of refinement level 6-10 with tolerance 0.001 comprises the best option.

The best option in Basilisk (levels 6-10, tolerance 0.001) match all benchmark quantities and predicts
similar bubble shape with the reference solutions. However, all codes do not match each other in the thin
filamentary regions after t = 1.75s as was already observed in figure 4.1. Although two research groups
(TP2D and FreeLIFE) capture a break up at the tail, they do not agree in its timing while the third
research group (MoonNMD code) does not show a break-up within 3s similar to what is predicted in
Basilisk. A possible explanation is the way of the treatment of interface in advection equation. Figures
4.25a-4.25h indicate the evolution of the interface along time in Basilisk and TP2D code from [2].
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Figure 4.17: Case 2: Final shape (at t = 3) for minimum and maximum levels of refinement 5 and 11 and tolerance 0.01
(4.17a) and 0.001 (4.17b) correspondingly.

—e— ref. L6-10, tol. 0.01
—m— ref. L6-10, tol. 0.001
—v— Reference

ordinate of position
o =
o0 o

| |

o
=)
|

0.25

0.20

0.154

0.10+

ordinate of velocity

0.05

0.00

—e— Ref. L6-10, tolerance 0.01
—m— Ref. L6-10, tolerance 0.001
—v— reference

1 2 3
time

(®)

Figure 4.18: Case 2: Ordinate of position (4.18a) and velocity (4.18b) of the centre of the bubble for minimum and
maximum levels of refinement 6 and 10 correspondigly and different tolerances.
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Figure 4.19: Case 2: Final shape (at t = 3) for minimum and maximum levels of refinement 6 and 10 and tolerance 0.01
(4.19a) and 0.001 (4.19b) correspondingly.
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Figure 4.20: Case 2: Levels of refinement of each cell of the domain at the final position (t=3) and for all six simulations
in Basilisk. The levels vary from 5 (dark blue) up to 11 (dark red).
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Figure 4.21: Test Case 2: Ordinate of position of the centre of the bubble over time for three different pairs of minimum
and maximum level of refinement and the reference solution for tolerance of velocity and void fraction 0.01 (4.21a) and
0.001 (4.21b) correspondingly.
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Figure 4.22: Case 2: Ordinate of velocity of the centre of the bubble over time for three different pairs of minimum and
maximum level of refinement and the reference solution for tolerance of velocity and void fraction 0.01 (4.22a) and 0.001
(4.22b) correspondingly.
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Figure 4.23: Case 2: Error norms of ordinate of position and velocity of centre of bubble for six simulations which are
compared against the reference solution.

Ref.L5-7, | Ref.L5-7, | Ref.L5-11, | Ref.L5-11, | Ref.L6-10 | Ref.L6-10 | Reference
tol=0.01 | tol=0.001 | tol=0.01 tol=0.001 | tol=0.01 tol=0.001 | 1/h = 640

Vemaxt  0.263576  0.26198  0.24390 0.25127  0.250511 0.251388  0.25 +0.01
tye=max1 ~ 0.75714  0.75714  0.72307 0.72378  0.70775 0.736434 t=0.73 +0.02

Vemaxe ~ 0.23392  0.23115 0.2275 0.2447 0.2352 0.24157  0.242 +0.03

tve=maxe ~ 1.86193  1.86923 2.050 2.0223 1.9945 1.98449 t=2.0£0.12

Yo t=3) 1.13069 1.121 1.1039 1.14557 1.1223 1.13985 1.13 £ 0.01

CPU 29.1 67.4 47489.7 279218 10807 48888.5  Not mentioned
time 348 356 10528 10951 3892 3945 Not mentioned
steps

Figure 4.24: Case 2: Comparison of benchmark quantities and computational time against reference solution.
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Figure 4.25: Case 2: Interface at different snapshots. Comparison between Basilisk and TP2D solver.
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4.1.3. Basilisk vs OpenFOAM

Next, the performance of Basilisk code in the two-phase flow problem of the rising bubble in stagnant
liquid is tested against OpenFOAM for both cases. For each case, six simulations with uniform meshes
within the liquid tank have been performed with each software. In addition, due to the advantage of the
adaptive grid with local refinement in Basilisk, four more simulations with varying resolution (maximum
resolution near the interface) along time have been implemented in which in each time step the grid is
adaptive within the cells where the value of interface change more than 0.001. The simulations with
the most refined mesh of each software are used as reference solutions and therefore, the efficiency of
each simulation of each software is tested in the sense of self-convergence. Moreover, both software is
compared both to each other and against the predictions of the MooNMD code presented in [2].

All simulations in both Basilisk and OpenFOAM are using a cell-centered grid and the solvers are us-
ing the same configuration settings and schemes. In particular, diagonally implicit Runge-Kutta method
of second-order has been used for temporal discretization and central spatial discretization scheme for
both diffusive and convective terms of Navier-Stokes equations. In addition, fully discretization of the
shear strain rate tensor (all three terms) has been concluded to give more accurate results in Basilisk.
Moreover, CFL < 0.1 has been applied for preserving stability (especially for case 2) while 12 corrector
steps have been used in the PISO algorithm for achieving high accuracy and keep the error always below
0.001 at the velocity-pressure calculation.

To make the differences between the different meshes and software visible, table 4.2 for the first and
4.3 for the second case have been created. These tables indicate the number of cells per dimension, the
number of processors used, the accuracy of each simulation compared to the reference solution (mesh
F of each software) by measuring the L1-norm of the two benchmark quantities (y and u,), the total
simulation time and the amount of computational time per processor per cell per time step.

Case 1

As mentioned in 4.1.1, the first configuration simulates a rising bubble with small density and viscosity
ratios while the strong interfacial forces are keeping the gas-liquid interface consistent. The results of
each simulation are checked from the reference solutions (mesh F) of each software both visually (final
shape) and quantitatively by checking the evolution benchmark quantities (y and u,).

Table 4.2 indicates the mesh used in each simulation and its data. In the first place, a direct
comparison between simulations with the same uniform meshes (A, B, C, D, E, F) can be done between
OpenFOAM and Basilisk. An important conclusion is that Basilisk shows better self-convergence to the
reference solution (mesh F) in coarser meshes than OpenFOAM because the deviation in the ordinate
of the position and velocity of the bubble is always smaller in Basilisk. In particular, as the mesh is
becoming finer (after mesh C), the difference in absolute values between the two software becomes more
significant, i.e. values in Basilisk are one order of magnitude smaller. Moreover, the order of magnitude
of the computational time needed per processor per cell per time step remains small even for meshes with
high resolution in Basilisk while in OpenFOAM, it increases after mesh D. These differences become
even greater when non-uniform adaptive meshes are used in Basilisks simulations in which the mesh is
refined as much as possible near the interface whereas everywhere else remains coarse (meshes E5, E6,
E7, E8). Comparing to mesh E, the simulations with adaptive meshes last up to 8 times less since the
degrees of freedom (DOF) are much less, while the deviation from the reference mesh F remains low.

The above quantitative conclusions become visible in figures 4.26 and 4.27. The bubble rising velocity
and position converge faster in uniform meshes in Basilisk than in OpenFOAM while adaptive meshes
show great accuracy (4.26b, 4.27b). Moreover, the velocity curve along time in Basilisk coincides with
MooNMD identically.
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Table 4.2: Simulation data for each mesh and software for case 1. The table illustrates the number of cells per
dimension, the number of processors used, the L1-norm of the two benchmark quantities (y and u,), the total
simulation time and the amount of computational time per processor per cell per time step.

OpenFOAM
Mesh Nx Ny Ncells Nproc ||ey|: HEE Iter. tsm tsm® Mproo/ Neans/ iter.
A 16 32 512 1 0.010053883 0.055258588 2062 3 3.72734E05
B 32 64 2048 1 0.00650898 0.041308687 472 36 3.72418E-05
C 64 128 8192 1 0.005091715 0.036623344 S04 402 5.42835E05
D 128 256 32768 2 0.004118119 0.030283293 1739 4044 0.000141936
E 236 512 131072 7 0.002626718 0.019796888 33064 10714 0.000170092
F(ref) 512 1024 524288 16 - - 6449 60010 0.000283976
Basilisk
[leyl |2 lleulls - tim  tsm® Nproc/Ncess/iter
A 16 32 512 1 0.0055113 0.0330930 216 b 5.67E-05
B 32 6 2048 1 0.0024737 0.0061449 433 31 3.55E-05
C b4 128 2192 1 0.001532 0.0030585 263 314 4.44E-05
D 128 256 32768 2 0.0006702 0.0014417 1784 2372 8.11E-05
E 256 512 131072 7 0.0001501 0.0004872 4614 4450 5.15E-05
F (ref) 212 1024 524288 1o - - 13015 38500 9.02E-05
ES 32< Nx, Ny <512 ~ 2K 2 0.00435992 0.0255144 4614 603.3 0.000119
EG B4< Nx, Ny <512 -1 4 2 0.0018582 0.0128521 4614 1339 0.000163
E7 128< Nx, Ny <512 ~“aK 2 0.00098332 0.005348 4614 1929 8.89E-05
E& 256< Nx, Ny <312 ~34K 2 0.000522 0.0016617 4614 7540 0.000101
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Figure 4.26: Case 1: Ordinate of bubble’s position along time from simulations with different meshes in different
software.
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Figure 4.27: Case 1: Ordinate of bubble’s velocity along time from simulations with different meshes in different
software.

Regarding the final shape, the bubble ends up with an ellipsoidal regime in all software. Figure
4.28 shows the resulting shape of simulations with uniform grids in OpenFOAM, uniform/ non-uniform
adapted grids in Basilisk and the reference meshes in Basilisk, OpenFOAM, and MooNMD (as presented
in [2]). Both Basilisk and OpenFOAM capture the final shape very accurately at both meshes E and
F. Moreover, all adaptive non-uniform meshes with refinement around the interface in Basilisk achieve
accurate shape even for a coarse grid elsewhere in the domain (mesh E5).

Case 2

As mentioned in section 4.1.2, the second configuration is more challenging and simulates a rising bubble
with bigger density and viscosity ratios for three seconds. The final shape of the bubble is between the
skirted and dimpled ellipsoidal-cap with a possible break up phenomenon at the tail.

Table 4.3 illustrates all the useful data of each simulation. Similarly to what was concluded for
case one, Basilisk seems to show better convergence to the reference simulation (mesh F) for coarse
grids (meshes A, B) for the two benchmark quantities (y and u,). For finer meshes (C, D, E) though,
the differences in accuracy are negligible. However, in Basilisk, the gain of computational time needed
per processor per cell per time step remains significant. Furthermore, by using an adaptive mesh with
local refinement around the liquid-gas interface in Basilisk (meshes E5, E6, E7, E8), the same accuracy
for bubbles position and velocity can be achieved with much less computational effort since less total
simulation time (in comparison with mesh E) with fewer processors (2 instead of 7) give similar results.

The evolution of the bubble mean rising velocity (u,) and position (y) is illustrated in figure 4.29
for uniform meshes in OpenFOAM, uniform/non-uniform adaptive meshes in Basilisk and reference
solutions in OpenFOAM, Basilisk, and MooNMD. Basilisk shows better convergence for coarser meshes
in velocity and position while in reference meshes (4.29d, 4.29h), velocity plots of OpenFOAM and
Basilisk coincides with a small deviation from MooNMD in the area of the second velocity maximum.
Except for mesh E5, all adaptive meshes in Basilisk capture the velocity evolution with great precision.
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Figure 4.28: Case 1:Final bubble’s shape (t = 3) from simulations with different meshes in different software.

Table 4.3: Simulation data for each mesh and software for case 2.The table illustrates the number of cells per dimension,
the number of processors used, the L1-norm of the two benchmark quantities (y and uy), the total simulation time and
the amount of computational time per processor per cell per time step.

OpenFOAM

Mesh Nx Ny Ncells Nproc |ley]]:  |les]]s  IHer.  tum tsim® Nproc/ Neets/iter
A 16 32 512 1 0.020644 0.094559 283 5 345E-05
B 32 64 2048 0.013496 0.0597795 599 40 3.26E-05
C 64 128 8192 1 0.005868 0.034879 1146 439 4.67E-05
D 128 256 32768 2 0.002979 0.020916 2173 4237 0.000119
E 256 512 131072 7 0.00161 0.01060 4166 14096 0.000180

F (ref) 512 1024 524288 16 - - 8160 78353 0.000293

Basilisk

Mesh Nx Ny Ncells Nprc |]ey]l: |leu]]2 Iter.  tsm  tim™ Mprod/ N ite
A 16 32 212 1 0.00638 0.027158 229 ] 5.80E-035
B 32 64 2048 1 0.007861 0031076 478 35 3.59E-05
C 64 128 8192 1 0.005334 003344 983 350 4,34E-05
D 128 256 32768 2 0.003155 0022860 1897 2815 9.05E-05
E 256 512 131072 7 0.001591 0.01119 3706 39529 5.66E-05

F (ref) 512 1024 524288 16 - 0 73653 23000 9.533E-05
ES 32< Nx, Ny <512 ~4K 2 0.002306 0.020500 2683 696.8 0.000138
EG B4 Nx, Ny <512 ~5K 2 0.003208 0013257 2662 1269 0.000154
E7 128< Nx, Ny <512 ~11k 2 0.003164 0.019591 2655 2405 0.000168
E8 256< Nx, Ny <512 ™35k 2 0.002191 0018020 2711 4250 9.18E-05
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Figure 4.29: Case 2: Ordinate of bubble’s position and velocity along time in simulations with different meshes and
software.
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Figure 4.30 indicates the final shape of the bubble for simulations with a uniform grid in OpenFOAM,
uniform and adapted grid in Basilisk as well as the comparison between simulations with reference
meshes between Basilisk, OpenFOAM and MooNMD (4.30d). As expected from the study of [2], the
final shape of the bubble is like dimpled ellipsoidal-cap with two long trailing filaments without the
presence of a break up of bubbles interface. Furthermore, all adaptive non-uniform meshes near the
interface in Basilisk (4.30b) match better the shape of the reference simulation than those with uniform
meshes in Basilisk and/or OpenFOAM (4.28a, 4.30c).
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Figure 4.30: Case 2: Final bubble’s shape (t = 3) from simulations with different meshes in different software.

All in all, in both cases that analyzed in two-phase flow, Basilisk is found to be superior to Open-
FOAM in terms of computational time and accuracy for simulations with the same uniform meshes.
When using the adaptive grids with local refinement, the gain from computational effort is further
increased by at least one order of magnitude. This section illustrated the potential of Basilisk to run
precise simulations of two-phase flows with little computational effort and this is the reason that Basilisk
was selected for running high-fidelity Taylor bubble flows.
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4.2. Laminar Taylor bubble flow

4.2.1. Two-dimensional flow

The next validation case regards the laminar Taylor bubble flow in the context as illustrated [4]. In
this survey, the authors simulated in ANSYS Fluent a wide range of laminar Taylor bubble flows in a
stagnant liquid, by performing simulations with different Morton and E6tvés numbers. As mentioned in
chapter 2.3, these two non-dimensional numbers (input parameters) together with the Froude number
(output parameter) can fully describe the dynamic behavior of the Taylor bubble. The study in [4] is
focused on the influence of those numbers on the hydrodynamic features that occur at the nose region,
wake region and the thin liquid film created between the bubble and the pipe wall. The evolution of
bubble velocity is also analyzed and all predictions of [4] are validated with the experimental results of
[69], [70].

Among the different cases presented in [4], three pairs of Mo-Eo are selected to be simulated in
Basilisk which result in three different flow regimes: convex tail without wake, concave tail without
wake, and concave tail with wake. The choice of these configurations have been also done because the
comparison can be implemented not only against the results from [4], [69], [70] but also the numerical
predictions from OpenFoam as recently presented in [1].

Tail Wake M Eo o[N/m] vy [m?/s]
Casel concave yes 0.0431 187 0.000529 2.84 x 10°°
Case2 concave no 0.0164 71 0.001394 4.60 x 1072
Case 3 convex no 0.0164 25 0.003960 1.01 x 1074

Figure 4.31: Values of the properties of the simulated cases in Basilisk taken from [1], [4].

All the differences between the three cases are illustrated in figure 4.31. The rest domain and
fluid properties that are not mentioned in the table are the same in all simulations: pipe Diameter
D = 0.01m, pipe length L = 11 - D, gas and liquid densities pg; = 1kg/m3 , p; = 100kg/m3 and gas
kinematic viscosity vg = 10~5m?/sec. Moreover, the Taylor bubble flow is laminar in all cases so the
bubble movement in circumferential axis can be considered negligible. Therefore, the simulations can
be performed in two dimensions: axial (z-direction) and radial (r-direction). The initial shape of the
Taylor bubble is a hemispherical (semi-circle in 2D) front nose of diameter Dy, = D — 28 , with § the
film thickness, and a cylindrical main part (rectangle in 2D) of length three times the pipe diameter
and width Dy,. Therefore, the tail of the bubble initially is flat in all simulations. The bubble is
symmetrical along the pipe axis and initially the middle of its cylindrical body coincides is set to be at
the point (0.25L,0) of the pipe. Thus, on the axis of the pipe (y = 0), symmetry boundary conditions
are imposed and the simulation is performed only for the upper half of the domain (y > 0) which
reduces computational cost and time. The initial guess for film thickness is calculated from formula 4.6
illustrated in [108]:

1

_ 3viurp s
0= (m(R - 5)2> ) (46)

where R = 0.5D and initial bubble velocity Urg (only in axial direction) is calculated with the
general correlation presented in [109]:

U Z00Ny 337-Fo
Fr = —LB =0,345(1—e 0.345 )(1—e m ) (4.7

oD

1

3\ 4
where Ny = (%) is the inverse viscosity number and m a parameter depending on Ny.

All simulations have been chosen to be implemented in Basilisk using a Moving Frame of Reference
(MFR) which is attached to the Taylor bubble with non-periodic inlet/outlet boundary conditions as
suggested in [4] and [1]. This approach solves the two main problems in the case of using a non-moving
frame of reference with periodic pipe. In particular, for a choice of MFR:
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e firstly, there is no need to implement a pressure jump condition from the inlet to the outlet and
secondly,

e in the first case where breaking up of small bubbles occurs at the tail of the Taylor bubble, the
small bubbles exit the domain together with the liquid flow and do not interact with the Taylor
bubble nose as it may happen in the case of periodic (and not long enough) pipe.

In the MFR approach, the bubble remains fixed in its initial position and never exits the domain.
This is achieved by balancing the buoyancy of the bubble with a force coming from the liquid which is
set on a movement towards its nose. In each time step, the inlet liquid (at the top of the domain) is
adapted to a uniform velocity given by the following formula:

ntl = Uznnlet - ﬂUTB (48)

inlet

,where f is an under-relaxation factor which in the simulations performed in Basilisk is set to half and
Urg is the bubble velocity in the MFR which is calculated in each time step from volume-averaged gas
velocity (as calculated from NS equation in axial-direction) in the gas volume fraction V.

V*

The inlet liquid velocity in an MFR keeps the bubble fixed at the same position as it acts in the
opposite direction to the buoyancy. Moreover, the wall is also set to have the same velocity with inlet
liquid in all simulations since the flow problem regards a Taylor bubble flow in stagnant liquid. The
same approach is described in [1]. Figure 4.32 illustrates the construction of the MFR approach as
presented in [4].

1
V*

inlet flow
. | U,=Un
4 ¥
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3
Moving wall
/ l U’uwﬂ’ = U‘h‘i
Taylor
50 bubble
symmetryi
boundary

axis ! ’ outflow

Figure 4.32: Schematic representation of the domain, boundary and initially conditions for the MFR approach as
presented in [4].

All three simulation cases are implemented in Basilisk for a maximum refinement level 12 and a
minimum refinement level 10 within the pipe domain while at the solid wall (from the outer side of the
pipe) the level of refinement is forced to the minimum possible level, i.e. 2. In each time step, the mesh
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is refined up to the maximum level near the interface and in all cells of pipe region near the wall (from
the inner side of the pipe). The tolerance given for the gas volume fraction is 0.0001 while the tolerance
in the region near the wall is set to 0.1 for all simulations. Since Basilisk has a varying amount of cells
in each time step, an interpolation is used to create a uniform mesh (2288x104) similar to the reference
solutions, so that the aspect ratio of cells is unity (since L = 11D). An implicit treatment of velocity
with post-processing is applied in each time step to achieve a damping of velocity near the inside pipe
wall for the construction of the embedded boundaries. As it is illustrated in the next section, although
this post-processing approach to the standard Basilisk solver for damping the velocity near the pipe
wall seems to work fine in two dimensions, it shows an important divergence in three-dimensions.
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Figure 4.33: Streamlines contours (top half of each figure) and axial component of liquid velocity scaled by actual Taylor
bubble velocity for an MFR attached to the bubble (bottom half of each figure) for the three cases (case 1 top, case 2
middle, and case 3 bottom figure). The color map ranges from -1 (dark blue) to 1 (dark red). The interface of the
Taylor bubble (black line) at f = 0.5. Simulations performed in 2D with levels of refinement ranging from 10 to 12.

The results of the three simulations cases are indicated in figure 4.33. Starting from the first case
at the top sub-figure and ending at the third case at the bottom, each sub-figure is divided into two
different pieces. The upper part illustrates the streamline contours while the lower part shows the axial
component of liquid velocity scaled by actual Taylor bubble velocity for an MFR attached to the bubble.
Comparing with [4, ANSYS]| and [1, figure 4, OpenFOAM] , all cases show the expected behaviour. In
particular, the Taylor bubble has a concave tail with wake in case 1, concave tail without wake in case 2
and convex tail without wake in case 3. Moreover, in all cases, the Taylor bubble has a thoroidal vortex.
This occurs due to the fact that the axial velocity is positive (dark red in the color map) near the core
of the bubble and negative (blue) near the interface. All simulation cases indicate (almost) steady-state.
In particular, the free-stream liquid velocity (e.g. in the inlet) is resulted around ujper ~ 0.1 for the
first case, Ujpier = 0.09 for the second and ujner = 0.061 for the third case in Basilisk. Similarly with
OpenFOAM simulations illustrated in [1], some unsteadiness at the tail of the bubble occured in Basilisk
at the first case with break up of small bubbles as the time is passing and therefore, a time-averaging
procedure is performed for the calculation of the steady axial velocity.
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numerical results of [4, ANSYS], [1, OpenFOAM] and experimental results of [69], [70]. Comparison is performed in a
non-moving frame of reference (NMFR) and the measurements are implemented for the radial planes located at distance
z =0 and z = 0.15D upstream the bubble nose (left sub-figure) and in the wake region downstream the bubble (right
sub-figure) at distance z = —0.1D and z = —0.35D from the tail. Simulation in 2D with levels of refinement ranging from
10 to 12.

Figure 4.34: Comparison of dimensionless axial velocity for case 1 (concave tail with wake) between Basilisk and

Y2 for the first
Urp

case (concave tail with wake) is implemented between Basilisk and the numerical results as presented
in [4, figure 4] obtained with ANSYS, in [1, figure 5] obtained with OpenFOAM. All of them are
also compared against the experiments performed in [69], [70]. The liquid velocity is measured both
upstream the Taylor bubble (4.34a), exactly at the nose interface and at distance z = 0.15D from the
nose, and downstream the tail of the bubble (4.34b) at distances z = 0.1D and z = 0.35D in absolute
values. The scaled axial velocity is calculated for an NMFR and the results in Basilisk are in line with
the other studies, i.e. the axial velocity follows a parabola curve. In particular, both upstream and
downstream of the bubble, the liquid velocity is maximum at the middle of the pipe (r = 0) and closer
to the interface (z = 0) while it reaches a negative value at the thin liquid film between the wall and
the bubble.

In general, good quantitative and qualitative matching of Basilisk for all cases with numerical findings
of [4, ANSYS], [1, OpenFOAM] and experimental results of [69], [70]. After the successful implemen-
tation of the laminar Taylor bubble flow in two dimensions, an extension of the same study into three
dimensions is performed in Basilisk. The reason for this decision is that since the main goal is to simulate
a Taylor bubble in turbulent flow later, it is necessary firstly to validate Basilisk in three-dimensional
two-phase flow in the simpler case of laminar flow.

A quantitative comparison of axial velocity scaled with the actual bubble velocity
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4.2.2. Three-dimensional flow

The above laminar Taylor bubble flow problem is also simulated in Basilisk in three-dimensions. Al-
though more computational cost in comparison with the 2D (two orders of magnitude more cells for
the same simulation parameters), interesting conclusions can be extracted from the three-dimensional
simulation which is useful for the turbulent Taylor bubble flow later. For a choice of a maximum re-
finement level 10 (11 for the first case) and a minimum refinement level 9 (10 for the first case), the
domain is split into more than 2 million cube cells.

Although figure 4.35 indicates similar quantitative results for streamline contours with 4.33 for all
cases, figures 4.36a , 4.36b show a deviation of the axial liquid velocity profile in the region near the
wall which is not present in 2 dimensions(4.34a).

This deviation leads to the need for an improved N.S. solver in Basilisk as described in section 3.2.
The solver uses general PISO-like approach built around a general Runge-Kutta (RK) Butcher tableau,
fully discretizes the shear strain rate tensor, uses harmonic mixing for the computation of viscosity, and
implements the volume penalization method for the smoother damping of the velocity near the inside
walls. The latter is the most important reason why the modified solver produces accurate predictions
for the axial velocity profiles as indicated in figures 4.37a, 4.37b.

The explanation for the deviation between the standard and modified solver can be seen in figure
4.38 indicating the radial velocity profile. Although the standard N.S. conserves mass, a part of it is not
advected along the pipe but it is moving into the radial direction. Moreover, the modified N.S. solution
results in a smoother velocity damping at the wall.

Another interesting observation is the fact that steady-state is achieved for all cases from very early
time steps in the modified three-dimensional simulation in Basilisk. In particular, the steady inlet
liquid velocity found to be u; = —0.096, u, = —0.087, uz = —0.044 for the first, second and third case
correspondingly. On the contrary, simulation in Basilisk in two-dimensions as well as in [1] predicted
some unsteadiness for the first case.
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Figure 4.35: Streamlines contours (top half of each figure) and axial component of liquid velocity scaled by actual Taylor
bubble velocity for an MFR attached to the bubble (bottom half of each figure) for the three cases (case 1 top, case 2
middle, and case 3 bottom figure). The color map ranges from -1 (dark blue) to 1 (dark red). The interface of the
Taylor bubble (black line) at f = 0.5. Simulation in 3D with levels of refinement ranging from 9 to 11.
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Figure 4.36: Simulation in 3D with standard N.S. Basilisk solver and levels of refinement ranging from 10 to 11.
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Comparison of dimensionless axial velocity U for case 1 (concave tail with wake) between Basilisk and numerical
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results of [4, ANSYS]|, [1, OpenFOAM]| and experimental results of [69], [70]. Comparison is performed in a non-moving

frame of reference (NMFR) and the measurements are implemented for the radial planes located at distance z = 0 and

z = 0.15D upstream the bubble nose (left sub-figure) and in the wake region downstream the bubble (right sub-figure) at
distance z = —0.1D and z = —0.35D from the tail.
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Figure 4.37: Simulation in 3D with modified N.S. solver levels of refinement ranging from 10 to 11. Comparison of

dimensionless axial velocity : Z for case 1 (concave tail with wake) between Basilisk and numerical results of [4,
TB

ANSYS], [1, OpenFOAM] and experimental results of [69], [70]. Comparison is performed in a non-moving frame of
reference (NMFR) and the measurements are implemented for the radial planes located at distance z = 0 and z = 0.15D
upstream the bubble nose (left sub-figure) and in the wake region downstream the bubble (right sub-figure) at distance

z = —0.1D and z = —0.35D from the tail.
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Figure 4.38: Radial velocity profile ahead the nose at distance z/D = 0.15. Comparison between 3D standard and
modified N.S. solver.

The three-dimensional approach provide useful information about how gas fraction, velocity, and
pressure field are distributed across pipe axis. In particular, planes normal to axial direction can be
created by slicing the pipe at certain positions upstream, downstream, and in the middle of the bubble.

The analysis is presented only for the first case since it results in the most interesting hydrodynamic
features among the three cases (unsteadiness, concave tail, wake region with break up of small bubbles).
Figure 4.39 indicates the cross-cutting plane of the pipe in the middle of the domain which is also the
plane passing through the middle of the main cylindrical part of the bubble. Therefore,in figure 4.39a,
the gas fraction is represented by a circle of radius R — §, as calculated by 4.6. The thin liquid film is
also a circle that is created between the pipe wall and the bubble. As expected from figure 4.35, the
streamwise velocity is changing from positive at the core of the bubble to negative as it approaches the
interface due to the thoroidal vortex (4.39b).

(a) (b)

Figure 4.39: Profile view of gas (void fraction f = 0) /liquid fraction (f = 1) (4.39a) and axial velocity (4.39b) by
vertically slicing the pipe across the pipe axis at the middle of the domain for case 1.

Figure 4.40 illustrates a cross-cutting plane with the same orientation at the gas/liquid interface at
the bubble’s front nose. Since the nose is semi-spherical, the two-dimensional interface appears as a
small circle (figure 4.40a). The axial component of velocity is dominant (figure 4.40b) with an equally
distributed velocity to the other two directions (figures 4.40c, 4.40d).

Last but not least, figure 4.41 shows the plane normal to the axial direction in the region slightly
downstream the tail of the bubble. Similarly to what indicated in two dimensions (figure 4.33), a wake
appears in this small region and thus, the velocity is spreading in all directions with the same order
of magnitude (figures 4.41b, 4.41c, 4.41d). Moreover, three small areas with bigger level of refinement
come into view in sub-figure 4.41a. This is due to the small bubbles which break up from the Taylor
bubble which would be more visible if the maximum level of refinement was greater.
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Figure 4.40: Profile view of gas/liquid fraction (4.40a) and velocity components in x- (streamwise, 4.40b), y- (4.40c) and
z-direction (4.40d) by slicing the domain across the pipe axis at the gas/liquid interface at bubble’s nose for case 1.

(b)

(©) (d)

Figure 4.41: Profile view of gas/liquid fraction (4.41a) and velocity components in x- (streamwise, 4.41b), y- (4.41c) and
z-direction (4.41d) by slicing the domain across the pipe at the wake region downstream the bubble for case 1.
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4.3. Turbulent co-current Taylor bubble flow

The results from laminar Taylor bubble flow 4.2 indicate that Basilisk shows great potential for produc-
ing high-fidelity simulations of Taylor bubbles in the turbulent co-current flow.

As mentioned in section 2.4.1, the only fully three-dimensional simulation that predicts the motion
of an individual Taylor bubble in a turbulent co-current liquid flow is implemented in [1, OpenFOAM]
which uses the setting as presented in the experimental results of [3]. The study of [1] indicates the results
of a Large Eddy Simulation (LES) and is focused on the hydrodynamic features that happen in the
wake region behind the Taylor bubble both qualitatively and quantitatively. Since an underestimation
of the turbulent fluctuations in the wake of the Taylor bubble was observed in the LES results in [1],
it was suggested by the authors that LES mesh resolution is not sufficient to capture the break-up and
bubble formation accurately.

The current work comprises a continuation of the study of [1] and moves towards a DNS approach of
co-current turbulent Taylor bubble flow using the Basilisk code. Before validating the results of Basilisk
simulations against the reference studies of [1], [3] for turbulent co-current Taylor bubble flow, it is
essential firstly to describe the simulation strategy that has been followed. Part of it is the simulation
of single-phase pipe flow since upward the Taylor bubble, there is only fully developed turbulent liquid
flow.

4.3.1. Single-phase turbulent pipe flow
The validation of the Basilisk code for single-phase turbulent pipe flow has been done both quantitatively
and qualitatively against [92]. However, the current study is focused only on two-phase flows (and in
particular, in Taylor bubble flows) so the validation of Basilisk in single-phase pipe flow is out of the
scope of this work and will only be part of a future publication. The main objective from the simulation
of turbulent single-phase pipe flow in the current work is to investigate the size of the necessary pipe
length for producing a simulation with fully-developed turbulent liquid flow. The resulting flow field
is used as the initial flow field of the Taylor bubble flow. This is the reason why the Basilisk code has
been also tested for the flow parameters with the turbulent Taylor bubble flow (as presented in [3]).
As explained in chapter 1, when the flow in pipes becomes turbulent, large rotational eddies are
forming in regions of high shear near the wall which results in non-smooth values of velocity and pressure
fields. The local velocity within the eddies has components in all three dimensions and therefore, it
is different from the bulk velocity of the stream. Thus, in turbulent pipe flow, a division of Reynolds
number into the bulk and the friction one(near the wall) is necessary for the analysis. The bulk Reynolds
number is based on the bulk mean velocity (4.3.1) and the channel width while the friction Reynolds
to the friction velocity (4.3.1) correspondingly:

Upyi D
Rebulk = uT (410)
u; D
Re, = ’v (4.11)

The turbulent pipe flow is simulated to validate Basilisks performance in a cylindrical domain,
for which the volume penalization method is applied for modeling the velocity field near the wall as
presented in 3.2. The turbulent flow of the liquid occurs in a cylindrical pipe of length 16D (with
D = 1.4cm the diameter of the pipe) with bulk Reynolds number Re = 8250. The liquid density is
at p = 1000kg/m3 and the kinematic viscosity v = 1073m?2/sec. The flow loses kinetic energy near
the wall due to shear stress and is driven by a spatially uniform pressure gradient given by the formula
4.3.1 in [110]:

ap pu;
L) 4.12
0x D ( )
Periodic boundary conditions are defined in the axial direction while no-slip for the velocity and zero
normal-gradient for pressure at the wall are imposed in the other directions. The initial uniform axial
velocity is set to u, = V% while the initial uniform pressure field p = 0. Regarding the meshing strategy,
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cell dimensions are expressed in wall units, i.e. the first layer of cells at the wall has a wall-normal size
of roughly Ay* = 1 wall unit which is defined according to [110] as:

Ay

u
y v e, (4.13)

Figures 4.42 and 4.43 illustrate the average in time and space(in tangential direction) streamwise
velocity and the root mean squared (RMS) velocity fluctuations for simulations with two different
meshes in Basilisk. It is concluded that the coarser mesh 10-10 is accurate enough and shows negligible
deviation from the finer mesh regarding streamwise velocity and velocity fluctuations. Moreover, as
expected velocity fluctuations in the axial direction is bigger than in the other two directions. The
friction Reynolds number has been computed equal with Re; = 532.
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Figure 4.42: Streamwise velocity averaged in time and space(in tangential direction) for simulations with two different
meshes in Basilisk.
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Figure 4.43: RMS Velocity fluctuations averaged in time and space(in tangential direction) for simulations with two
different meshes in Basilisk.
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The outcome of single-phase flow simulations in Basilisk is used for the simulation setup of the
turbulent co-current Taylor bubble flow which is presented in the next sections. In particular, a snapshot
of the velocity field at fully developed turbulent pipe flow is used as an initial snapshot for the two-phase
simulation of Taylor bubble flow, where ahead of the bubble, single-phase liquid turbulence is recycled
over an interval of - D at the top boundary of the vertical pipe. The snapshot of turbulent pipe flow
at time t = 9s is illustrated in figure 4.44.

Figure 4.44: Streamwise velocity field in single-phase turbulent pipe flow in Basilisk at t = 9s.

4.3.2. Simulation setup

Table 4.4 illustrates the flow parameters for the turbulent co-current Taylor bubble as indicated in [1].
Since Re = 8250, it is clear that we are in the turbulent flow regime where the bubble (i.e. air) is
moving upwards in the vertical pipe under buoyancy with actual velocity u;, = 0.83m/s and the inlet
liquid (i.e. water) is flowing in the same direction with the bubble with actual velocity upy;, = 0.59m/s
(positive in the direction opposite to gravity). The frictional velocity near the wall is u; = 0.038m/s
according to equation 4.3.1. The very small Mo and the low Eo numbers indicate that interfacial forces
are dominated in the flow with negligible viscous forces trying to delay the bubble decay. Although the
turbulent Taylor bubble flow problem is completely unsteady, the bubble is expected to have a concave
tail with the presence of the wake behind it for the given Mo and Eo numbers according to the studies
of [3], [1]. The pipe in the experiment of [3] is six meters long and the initial bubble length (length of
main cylindrical part) is Ly, = 2D = 0.026m.

Table 4.4: Flow properties for the turbulent co-current Taylor bubble as presented in [1].

Property Value

Pipe diameter D) 1.4 cm
Liquid bulk velocity Upyk 0.59m/s
Bulk Reynolds number Rep,, 8250
Relative Taylor bubble velocity Uy, 0.24m/s
Frictional velocity u* 0.038m/s
E6tvis number Eo 28

Morton number M 2.85 % 10711

The simulation setup of the turbulent co-current Taylor bubble flow setup is similar to the setup
used in [1]. In the case of laminar Taylor bubble flow 4.2.1, the Taylor bubble started to move due to
buoyancy in an initially stagnant liquid. Therefore, for a choice of MFR, attached to the bubble, the
relative wall velocity was equal with the relative inlet liquid velocity. However, this is not true in the
case where the liquid has an actual inlet velocity. The wall velocity in this configuration for an MFR
differs from the relative inlet liquid velocity by the actual mean liquid velocity, which is known as bulk
velocity.

Uwan = Ulkie: = Upuik (4.14)

Therefore, equations 4.8, 4.9 are now paired with equation 4.14 in each time step for an MFR.
However, there are three important modifications in equations 4.8, 4.9 in the turbulent co-current case.
In particular:

e Firstly, for the calculation of the volume-averaged bubble’s velocity with equation 4.9, the chosen
gas volume V* is limited at the front half of the bubble only. The reason that the averaging occurs
only at the nose is to avoid including in the calculations the volume of the small bubbles detached
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from the tail of the bubble as the time goes on and which are either transported downwards with
the liquid flow or merge again to the bubble.

e Secondly, to achieve accurate results, the initial velocity should already be turbulent. Therefore,
single-phase pipe flow simulations with the same flow parameters as in two-phase flow were initially
run in Basilisk for t = 10s. Different velocity profiles of the single-phase flow within this interval
are set as the initial profile of the two-phase Taylor bubble flow for each simulation. Due to the
randomness of turbulent flow, profiles from different snapshots are statistically independent of
each other.

e A recycled adapted inlet flow has been used for verifying fully developed turbulent flow. The
recycled cross-pipe Simulations of single-phase pipe flow in Basilisk shown that m * D comprises a
sufficient length (section 4.3.1).

UMt (x,y,2) =00 (x—m-D,y,z) — BUrp (4.15)

inlet
, where x is the axial direction and with under-relaxation parameter is chosen f = 0.1 such that
the oscillations of the bubble’s position are reduced along time. The idea of the recycled inlet was
taken from [1].

The pipe length in Basilisk has been chosen L = 16D = 0.224m. Moreover, the thin liquid film
was calculated as § = 0.001m according to equation 4.6 so the diameter of the main cylindrical part
of the bubble is set to Dy, = 0.012m. Last but not least, the bubble’s nose is initially set to be at a
distance x = 1.5mD from the inlet such that there is sufficient margin of 0.57D so that the recycling
cross-section profile is far enough from the nose so that is not affected by the presence of the bubble.
Moreover, there is enough distance downstream of the bubble until the outlet and in any case larger
than the wake length. Figure 4.45 illustrates the domain and the simulation setup in Basilisk.
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Figure 4.45: Simulation setup using an MFR attached on the bubble.

4.3.3. Preliminary simulations and discretization schemes

Despite the strong interfacial forces, the bubble is losing mass gradually due to instabilities at the tail,
and therefore the problem is unsteady. The small bubbles that break up from the Taylor bubble are
either carried away by the liquid flow or they merge back again to the bubble. Therefore, the flow
problem is changing as time goes on since the mass of the bubble is reduced.

Preliminary simulations in Basilisk also indicate that the problem seems not only time-dependent
but it is also sensitive to the selected mesh. The coarser the grid, the bigger loss of void is observed
which is in agreement with whats is concluded in [1]. This happens because coarser grids cannot capture
such sharply the actual curvature of the interface (especially at the tail) which leads the bubble to smear
out and therefore, to bigger entrainment of liquid into the bubble which results in bigger bubble decay.
However, decay in Basilisk seems to be much less in comparison with [1, OpenFOAM] at the same time
snapshots since a decay of D/2 at pipe axis is not achieved even for simulations with very coarse meshes
in Basilisk as figure 4.46 illustrates in which snapshots of the flow field are taken at specific times that
are chosen with indicator the flow-through time (FFT). One FFT comprises the time which is needed
for the inlet liquid to pass through the whole pipe if the bubble was not present with the given velocity,
ie.

L _ 0.224m
Upulk - 059m/s

FFT = = 0.38s (4.16)
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Regarding mesh strategy, for a fully DNS approach, high resolution at the wall is necessary to
minimize the artificial numerical dissipation. However, since stretched meshes could only be used in
single-phase flow problems in Basilisk yet, no stretching has been implemented in the current study.
Therefore, due to limited computing power, it is difficult to attain computational meshes with cell size
Ay* =1 (i.e. one wall unit as defined in 4.3.1) in the current study for the given setting.

(a) Coarse (top) and fine(bottom) grid at half FFT.

(b) Coarse (top) and fine(bottom) grid at 1 FFT.

(c) Coarse (top) and fine(bottom) grid at 2 FFT.

Figure 4.46: Preliminary simulations of turbulent Taylor bubble flow at different snapshots for coarse at the top (levels
of refinement 7-8) and fine grid at the bottom (level of refinements 9-10) with the same flow parameters.

Moreover, the choice of the spatial discretization scheme and time integration scheme affect the
stability and convergence of the solution. Therefore, in the first place, it is important to select the
best schemes for accomplishing a high-fidelity simulation of the turbulent Taylor bubble flow. For
example, choosing a central/linear discretization scheme for both convective and diffusive terms, the
bubble crashed and the simulation stops after a while. This happens because the scheme is not of
a positive type for all Peclet numbers for all cells, i.e. the local mesh Peclet number is too large
|[p| = h - |u| - Pe >> 2 which leads to convergence problems [7].

This problem can be overcome by treating differently the convection term V- (uu) of Navier-Stokes
equations (equation 2.10) and the same time fully discretized the deformation tensor as described in
section 3.2. In particular, if a first-order upwind scheme is used for the convection term (and central
for the diffusive term), then stability is achieved. However, the upwind scheme is too dissipative, so
it leads to numerical errors. A third option is to take a linear upwind scheme which is more accurate
(second-order) than upwind. Nevertheless, there is a need to preserve monotonicity and prevent the
local minimal/maximal by limiting the spatial velocity derivatives to realistic values. This can be done
by applying advanced discretization schemes that use flux limiters in high-resolution schemes (TVD
schemes) [7], [111]. The flux limiters differ from each other on the way they treat the fluxes between
neighbor cells. Several flux limiters of order 2 (superbee, minmod, ospree, etc.) have been tested in
Basilisk for the discretization of the convection term and compared to each other. The resulting shapes
at t = 3 of the bubble are indicated in figure 4.47. The best choice found to be a combination of two
schemes: minmod (limiter with less numerical dissipation) is only applied near the interface to ensure
stability and flux monotonicity while far away from the the interface (i.e., in single-phase regions),
central /linear scheme (limiter function is one) is selected to reduce artificial numerical dissipation.

To achieve the best combination of accuracy, convergence, and computational cost, the investiga-
tion has been also done on time integration schemes. For any choice of flux limiter for the spatial
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(b) Magnitude of velocity.

Figure 4.47: Preliminary simulations of turbulent Taylor bubble flow using different flux limiters (from top to bottom:
ospree, minmod, superbee) at time snapshot at t = 3s and a plane normal to the circumferential direction.
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discretization of the convective term, an extra non-linear term is added in the momentum equation
so fully implicit schemes found to be too costly in Basilisk. Therefore, several linear multistep time
discretization implicit-explicit schemes (IMEX) were tried for the solution of the convection-diffusion
problem, i.e. explicit Euler for the convective term and implicit Euler for the diffusive term. Basilisk
was found to have great sensitivity in the selected RK scheme for turbulent Taylor bubble flows in
terms of stability so a decision for improved IMEX schemes was taken as presented in [112] which have
better stability regions than the best known IMEX multistep schemes over a wide parameter range.
Among, the different choices, a second-order scheme was selected which uses a two-stage, second-order
diagonally implicit Runge-Kutta scheme (which is stiffly accurate) for the diffusion and a three-stage,
second-order explicit RK scheme for the convection. Furthermore, in all simulations CFL < 0.4 in each
time step was made to ensure stability and fully discretization of the strain tensor was applied.

Last but not least, both linear and midpoint interpolation for the central part of the convective
term have been tried. For linear interpolation, a linear distance weighting is used while for midpoint
a 50%-50% of weighting is used. For a mesh without stretching, midpoint interpolation is found to be
the best choice.

The cylindrical domain with the cell-centered mesh (DOF = 4 - cells , i.e. three components of
velocity and one for pressure) and the embedded no-slip boundary conditions at the wall are constructed
with the modified Navier Stokes Basilisk solver similar to the laminar case that already described in
section 3.2. PISO algorithm with two correctors were applied with given tolerance 0.0001.

4.3.4. Averaging strategy

Due to the bubble decay, the simulation of turbulent Taylor bubble flow problem needs to be measured
within a specific time interval, otherwise, the simulation is running a different problem since the mass
of the bubble is reducing along time. Therefore, the results of this unsteady flow problem have to
been post-processed by applying the following averaging procedure for the results to be as accurate as
possible:

e Firstly, averaging in time starting after simulation time 1FFT such that the flow is fully developed
and the adapted inlet velocity has reached a kind of steady value.

e Averaging in space in the circumferential direction (along different angles 8) with interpolation
the data to a structured cylindrical mesh.

e Ensemble averaging (4 simulations for each mesh was proven to be enough) with a statistically
independent initial velocity field for obtaining converged results since the problem is unsteady.

Overall, the resulting output data from each mesh are presented in an x-r plane.

In addition to the above, use of phase-averaged velocity and fluctuations, i.e. the root mean square
(RMS) of velocity components have been applied which are essential for measuring velocity and turbulent
kinetic energy in the wake region. The velocity and fluctuation phased-averages are defined in the same
way with the reference study of [1] so that a direct comparison can be done for mean gas velocity, mean
liquid velocity, mean gas fluctuations and mean liquid fluctuations in all three directions:

a,U
U, = £ (4.17)
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, with ag; =1 — q; the void fraction which ranges between 0 and 1.



62 4. Validation of Basilisk code

4.3.5. Results

After the conclusions extracted by the preliminary simulations shown in the previous section, simulations
with three different meshes (with minimum and maximum levels of refinement 9-10, 10-10 and 10-11
correspondingly) were performed in Basilisk according to the setting described previously. Table 4.5
indicates all simulation data. Regarding cell dimensions, the first layer of cells at the wall has a wall-
normal size of roughly from Ay™ = 4 to 16 wall units and DNS quality can only be approximated and
not be reached. As it was observed even from preliminary simulations in section 4.3.3, the bubble decay
at the tail is much less in Basilisk in comparison with [1, OpenFOAM]. In particular, the decay rate is
measured as the shifted distance of the tail’s point that lies on pipe axis and is computed 0.11D/sec
(which corresponds to 4, 7% loss of initial total volume per second) for the coarsest and 0.016D /s (which
corresponds to 0,7% loss of initial total volume per second) for the finest mesh in Basilisk while in [1,
OpenFOAM] was ranged between 0.4D /s (finest) and 1.2D /s (coarsest). For this reason, the averaging
in time is performed for an interval of 2s repeated for 4 simulations for each mesh (ensemble averaging).
The total computational time for 4 simulations with the same mesh in Basilisk ranges from around 8K
(mesh 9-10) to 100K (mesh 10-11) CPU hours which can be characterized very low considering the DOF
( DOF = amount of cells). Each simulation has been running with 128 cores each and therefore, lasted
between 1 and 8 days.

. Neae/D Ay*
Mesh Lein - Neel min max min  max  Neese I[d CFL Decay mte [D/]
9-10 9 10 ~2 350k 32 64 16.6 83 4 20 0.4 0.11
10-10 10 10 3.5M 64 64 83 83 4 20 04 0.0357
10-11 10 11 ~3 AM 64 128 8.3 42 4 20 04 0016

Table 4.5: Simulation data for the turbulent co-current Taylor bubble for three different meshes in Basilisk.

A three-dimensional visualization of the liquid axial velocity field and velocity magnitude of the
turbulent co-current Taylor bubble flow computed in Basilisk can be seen in figure 4.48 at snapshots
every 0.5s for simulations with uniform mesh 10-10. The visualization is extracted with the liquid flow
upstream of the bubble being fully developed from the beginning of the simulation. In all simulations
in Basilisk, bubble’s nose is elongated slightly after early steps (before t = 0.5s). This can be explained
by the oscillations in bubble’s position at the beginning due to the small value of the under-relaxation
parameter (f = 0.1) and the variation of the value of total force the bubble accepts since the adaptive
inlet velocity needs some time (almost 1FFT) until a kind of almost steady state is reached for the
value of the relative inlet velocity (around —0.2m/s). Despite the nose’s elongation, turbulent pipe
flow upstream is not affected that much from the presence of the bubble even for distances close to the
nose. Therefore, the safety margin (after w - D) upstream the bubble can be even smaller than 0.57 - D.
Moreover, the wake behind the bubble can be observed with a positive value of the velocity near the
pipe axis and very negative in the thin liquid film near the wall. It can be observed that the decay rate
is very low (i.e. 0.057D/sec) along time. The wake length seems somewhat constant in all snapshots.
Some of the small bubbles that break up from the main bubble move away with the liquid flow while
most of them are recirculated due to the toroidal vortex in the wake and may merge back to the bubble.

Figure 4.49 indicates a cross-section view of the ensemble (4 simulations), time (t = 2s), and space
(in the circumferential direction) averaging of void fraction along the pipe axis for the three different
meshes. Similar to what is concluded from the calculated values of the decay rate, the mean void
fraction shows similar behavior in all three meshes. This verifies that the time interval of t = 2s and
the ensemble averaging of 4 simulations is enough such that the resulting mean void fraction is (almost)
mesh-independent. A small instant deviation of mesh 10-10 at the cross-section passing through the
bubble’s tail can be explained by the uniform mesh and the use of adaptive function in meshes 9-10
and 10-11 near the gas-liquid interface. Whenever the adaptive function is used in the cells near the
tail, it suppresses the value of void fraction by interpolating back-and-forth. This interpolation results
in a damping of the void fraction in this area. The use of dynamically refined mesh near the interface
and in particular near bubble’s tail is visible in the next two figures (4.50 and 4.51).

Figure 4.50 indicates two 2D consecutive void fraction’s snapshots as extracted from Paraview with
mode "surface with edges" for the simulation with refinement levels 9 — 10. The top sub-figures (4.50a
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Figure 4.48: Time evolution of magnitude (4.48a) and streamwise (4.48b) velocity for simulation with mesh 10-10.
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Figure 4.49: Cross-section view of the ensemble, time and space averaging of void fraction along the pipe axis for the
three different meshes (9-10, 10-10 and 10-11) in Basilisk.

and 4.50b) illustrate all pipe domain around the bubble while the sub-figures at the bottom (4.50c and
4.50d) indicate a zoom of the top sub-figures across the half bubble’s tail. During the transition from
t = 1.9s to t = 2s, some coarser cells (approximately just after the vertical plane at x = 0.126) are
splitted into 22 = 8 (i.e. in all three directions) smaller cells due to the mesh refinement at the interface
from level 9 to level 10 while some other finer cells (approximately just before the vertical plane at
x = 0.126) are merged in groups of 23 = 8 as explained in 3.1.

The space, time and ensemble-averaged qualitative results in Basilisk are indicated in figure 4.51.
Starting from the simulations coarsest mesh (9-10) at the top sub-figure and ending at the simulation
with the finest mesh at the bottom, each sub-figure illustrates the cross-section image of streamline
contours, bubble’s shape and the streamwise component of velocity scaled by actual Taylor bubble
velocity for an MFR attached to the bubble. In all cases, a toroidal vortex appears both within the
bubble and in the wake. Although the toroidal vortex within the bubble shows similar behavior in all
cases, the vortex at the wake region is larger for the coarsest mesh 9-10 (top figure) and extends at
3D length, the region in which higher axial velocity appears. A small area of overlapping of the two
vortices is observed in each case which is larger in the coarsest grid and this explains why it results
in bigger bubble decay. Moreover, the average shape of the tail seems very sensitive to the selection
of mesh since it ranges from flat at meshes 9-10 and 10-11 to slightly concave at mesh 10-10. This
difference between uniform and non-uniform meshes is something that was already observed in figure
4.49 and can be explained by the use of the adaptive function near the gas-liquid interface which results
in slightly different tail curvature.

Comparing with the reference study of [1, figure 10, OpenFOAM], simulations in Basilisk illustrate
a smaller area of overlapping of the two vortices and as a consequence, much less bubble decay along
time. The length of the vortex in the wake in [1, figure 10, OpenFOAM] was found to be shorter
than Basilisk for coarser meshes. Furthermore, the curvature of the tail was found to be concave in
all examined grids while the shape of the tail in Basilisk seems to be mesh-dependent and affected by
the use of adaptive function in non-uniform meshes. However, the time-averaging in simulations of [1,
figure 10, OpenFOAM] was implemented for much smaller window (ranging from 1FFT to 3FFT) while
all simulations in Basilisk was averaged for 2s since simulations in [1, figure 10, OpenFOAM] was by
far more mesh-dependent than Basilisk.

Next, a direct quantitative comparison is done between Basilisk and reference studies of [3] and
[1, OpenFOAM] regarding the axial and radial velocity in the wake behind the bubble. Figure 4.52
indicates the computed axial (4.52a,4.52b,4.52c) and radial (4.52d,4.52e,4.52f) velocity scaled by the
relative velocity in Basilisk [3, experiments]| and [1, figure 13, OpenFOAM] at radial cross-section profiles
at distances 0.6D (left), 1D (middle) and 2D (right) behind the tail. In general, there is good agreement
between Basilisk and [1, figure 13, OpenFOAM] for the axial velocity at the wake except for a small
overestimation of simulation mesh 9-10 in Basilisk at distance 2D from the tail due to the estimated
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Figure 4.50: Void fraction’s snapshots of simulation with adaptive mesh. Refinement levels 10 near the interface and
along pipe wall and 9 everywhere else. Blue color for gas and red for liquid.
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Figure 4.51: Space, time and ensemble-averaged streamline contours (top half of each figure) and axial component of
velocity scaled by actual Taylor bubble velocity for an MFR attached to the bubble (bottom half of each figure) for the
three meshes (9-10 top, 10-10 middle, and 10-11 bottom figure). The color map ranges from -1 (dark blue) to 1 (dark

red). The interface of the Taylor bubble (black line) at f = 0.5.
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length of the wake. Regarding the radial velocity profiles, predictions from the two finest meshes in
Basilisk match with those of [1, figure 13, OpenFOAM], except at distance 1D where weaker radial
velocity in Basilisk is observed due to longer wake length. On the other hand, experiments of [3] result
in smaller wake so there is a small deviation from simulations in both axial and radial velocity at almost

all distances but with the same trend and extreme values.
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Figure 4.52: Averaged axial (left) and radial (right) velocity for different meshes in Basilisk at distances 0.6D (top), 1D
(middle) and 2D (bottom) downstream the bubble’s tail and comparison against [3| and [1, figure 13, OpenFOAM].

Figure 4.53 illustrates the scaled velocity fluctuations in axial and radial directions at the same
cross-section radial profiles and distances. RMS of velocity in each direction is calculated according to
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equation 4.19 and the comparison is done again against the reference studies of [3] and [1, figure 14,
OpenFOAM]. Although simulations in [1, OpenFOAM] illustrate much larger bubble’s decay rate, the
predictions of simulation with meshes 10-10 and 10-11 in Basilisk are in favor of the results of [1, figure
14,0penFOAM] in both radial and velocity fluctuations. However, the predicted velocity fluctuations
from both software are underestimated compared to the experimental values of [3].
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Figure 4.53: RMS of averaged axial (left) and radial (right) velocity for different meshes in Basilisk at distances 0.6D
(top), 1D (middle) and 2D (bottom) downstream the bubble’s tail and comparison against 3] and [1, figure 14,
OpenFOAM].



Influence of pipe diameter and bubble
length on Taylor bubble flows

The validation cases demonstrated in chapter 4 (i.e laminar bubble flow, laminar Taylor bubble flow, and
turbulent co/counter-current Taylor bubble flow) indicate that the developed Basilisk code produces
results that are in very good agreement with the published literature and with a low computational
cost. In this chapter, the study of Taylor bubble flow is extended to the cases in which the liquid flows
in the direction of gravity and counter-acts the movement of the Taylor bubble. This flow problem is
known as the counter-current Taylor bubble flow.

The simulations are performed in Basilisk in both laminar and turbulent counter-current Taylor
bubble flow using the experimental setting of [5]. The objective of these simulations is to investigate
the influence of the pipe diameter and the bubble’s length on the Taylor bubble flow and in particular,
on the bubble decay rate and the gas-liquid interface. For this reason, the same setting, flow parameters,
and discretization methods are used in both laminar and turbulent flow with the only difference the
value of pipe diameter (which affects Re, Mo, Eo numbers) which is set to D = 1.24cm for laminar and
2.6cm for turbulent flow. To check the effect of bubble length, three different values of bubble lengths
have been chosen common in both laminar and turbulent flow: 2D, 4D and 6D.

5.1. Simulation strategy

Table 5.1 indicates the values of the flow parameters that depend on the value of the pipe diameter
and therefore, are different between the laminar and turbulent counter-current Taylor bubble flow.
The interfacial forces are much stronger than the viscous forces (very small Mo) while the Reynolds
number changes from Re = 2200 to Re = 5600. Although the liquid flow is still laminar upstream
the bubble in the simulations with the small pipe diameter, becomes semi-turbulent at the wake so a
fully 3D simulation has been implemented in Basilisk since the goal is to capture the volume of bubble
disintegration as accurately as possible. Water and air at a temperature of 30°C are the selected fluids
for this two-phase flow problem.

Table 5.1: Flow properties of laminar and turbulent counter-current Taylor bubble flow used in Basilisk simulations
taken from experiments of [5].

Parameter laminar turbulent
Pipe diameter D 0.0124m 0.026m
Initial bubble length Ly 2D /4D /6D 2D /4D / 6D
Bulk Reynolds number Rey,;, 2200 5600

Eo6tvos number Eo 21 92

Morton number Mo 1.1-10"11 1.1-10"11
Froude number Fr 0.4 0.34

Since bubble rising velocity is on the opposite direction of the liquid velocity, a non-moving frame of
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reference (NMFR) has been selected in Basilisk. Depending on the value of the inlet liquid flow (which
creates a force that counteracts buoyancy), the bubble may move upward, downward, or stay at an
almost fixed position. The idea of simulations in Basilisk is to have an adapted axial inlet flow which is
balanced by buoyancy and therefore, make the bubble remain at a fixed position (us, = 0). Therefore,
the simulation strategy of counter-current Taylor bubble flow looks similar to the one described and
used for turbulent co-current Taylor bubble flow (section 4.3.2) with an MFR attached to the bubble
where for Upy,;, < U the simulation setup was converted to a counter-current Taylor bubble flow
problem. Thus, equations 4.9, 4.8 can fully describe the simulated Taylor bubble flow. However, since
the wall is stationary in an NMFR, equation 4.14 is replaced in each time step by:

Upa = 0 (5.1)

Apart from that, the simulation setup for both flows is similar to the one described in section 4.3.2).
Two single-phase pipe flow simulations (one for laminar and one for turbulent) were initially carried out
in Basilisk for t = 6sec with the same flow parameters as in two-phase flows and their final velocity
profile were used as the initial liquid velocity profile of Taylor-bubble simulations so that each two-
phase Taylor bubble flow simulation starts with a fully laminar/turbulent developed flow. Moreover,
the inlet velocity profile is adapted by the actual Taylor bubble velocity and also recycled by taking the
streamwise cross-section velocity profile at distance mD from the inlet so that the resulted inlet velocity
is not a plug flow (equation 4.15 with under-relaxation parameter is chosen g = 0.1.).

Figures 5.1a and 5.1b illustrate the simulation setup used in Basilisk for laminar and turbulent
counter-current Taylor bubble flows respectively. For all choices of bubble length, the simulation setup
is the same with pipe length equal to L = 16D = 0.1984m for laminar and L = 16D = 0.416m for
turbulent flow and initial bubble width D, = 0.85D.
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Figure 5.1: Simulation setup for an NMFR used in all simulations of laminar (5.1a) and turbulent (5.1b) counter-current
Taylor bubble flow.

Since the target is to capture the average bubble decay as accurately as possible, all simulations have
been performed for t = 10s using a uniform mesh with refinement level 10 everywhere which results
in constant mesh size h = L/2! = 0.1984/21° = 0.19375mm for laminar and h = L/2! = 0.416/21° =
0.4mm for turbulent flow. This ends up at 3.5M cells (and DOF) for both flows. The modified N.S solver
has been applied in Basilisk as described in section 3.2 using the volume penalization method for the
smooth damping of velocity near the wall. Crank-Nicolson has been used for the temporal discretization
to minimize the computational time while the linear scheme is used for spatial discretization everywhere
in the domain except in the cells near the interface where the minmod flux limiter is applied to the
convection term. Moreover, the CFL number is set less than 0.4 in each time step to ensure stability.
Last but not least, only one simulation per bubble length is performed for t = 10s so averaging
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only in time and space (in the circumferential direction) is applied (not ensemble) together with the
interpolation of the data to a structured cylindrical mesh.

5.2. Laminar counter-current Taylor bubble flow

Figure 5.2 illustrates a three-dimensional visualization of the streamwise velocity field and its evolution
along time for all three simulations. In particular, sub-figure 5.2a shows the evolution (by taking
snapshots every 2.5s) of the simulation with initial bubble length 2D while sub-figures 5.2b and 5.2¢
show the velocity field for the simulations with initial bubble length 4D and 6D correspondingly. It
can be easily observed that in all cases, the majority of the bubble decay occurs between t = 0 and
t = 2.5s5 while after that, the rate of bubble decay is somehow similar to the rate that the bubble gains
gas by merging back some of the bubbles that have been detached. Moreover, most of the detached
bubbles seem to be trapped in the wake while only a few are transported away of the pipe domain by
the laminar liquid flow.

Figure 5.3 illustrates the cross-section view of streamline contours, bubbles shape and the axial
component of velocity averaged in time (for an interval of ¢ = 10s) and space (in the circumferential
direction) for all three simulations of laminar counter-current Taylor bubble flow. Two toroidal vortices
appear in all simulation cases: one at the wake region behind the bubble of length 1D and one within
the bubble. Although the length of each vortex seems to be independent of the initial bubble length,
the average curvature of the tail is ranging from flat with a trend to convex for the shorter bubble to flat
with a small trend to concave for the longer bubbles. Moreover, the toroidal vortex within the bubble
is stronger for the longest bubble and weaker for the shortest.

The critical value for which the force created by the adapted axial inlet flow reaches an almost
steady-state and is balanced by buoyancy so that the bubble remains at a fixed position (u;, = 0) is
found to be on average around Ui, = —0.085m/s in Basilisk. The value of the streamwise component
of the inlet velocity seems independent of the choice of the bubble length as indicated in figure 5.9
and is achieved 0.05sec after the beginning of the two-phase flow. After this time, the streamwise
component of the inlet velocity is fluctuating up to 0.01m/s around the (almost) steady critical value.
The equilibrium happens so early because the bubble was initialized in a fully developed laminar flow
(i.e. was restarted from single-phase flow). For bigger (absolute) value than the critical of inlet liquid
flow, the bubble is moving at an NMFR in the direction of the liquid flow while for smaller values the
buoyancy is overcoming the liquid flow and the bubble is moving up.

Like [5] observed experimentally, the choice bubble length does not influence on the (almost) steady
inlet flow. However, there is an underestimation of around 30% of the value indicated in [5]. This may
happen because the thickness of the boundary layer in Basilisk seems bigger than the thin liquid film
between the bubble and the pipe wall which affects the almost steady value of the adapted inlet while
in experiments, the width of the boundary layer is often cut artificially upstream the bubble such that
it does not affect the flow.

Three instant gas volumetric flow rates at different pipe cross-sections are illustrated in figure 5.5.
All three pipe cross-sections are placed far downstream of the bubble and near the output (liquid flow
is coming from the negative direction), i.e. figure 5.5a shows the gas volumetric rates at x = 2D, figure
5.5b at x = D and figure 5.5¢ at x = 0.5D. The choice of the pipe cross-sections has been made such
that each of them is outside the wake region for all bubble lengths. The wake length has been computed
around 1D in all simulations (5.3), which is three times less than the axial distance between the tail of
the longer simulated bubble (i.e. 6D) and the first measured cross-section (x = 2D at sub-figure 5.10a).
However, some instant negative (i.e. opposite to the direction of the liquid velocity) flows are observed
especially at the two cross-sections closer to the wake (at x = 1D and x = 2D), which means that some
instant recirculations of the detached bubbles still exists far away from the wake. To be able to make
a direct comparison, a time-shifting is necessary because the tail of the longer bubble is closer to the
cross-sections than the others. Therefore, the time starts (t = 0) from the time point in which the void
fraction at the specific cross-pipe section is non-zero for each simulation (bubble length 2D,4D,6D), i.e.
the first detached bubbles are passing from this cross-section. No big differences in the gas volumetric
flow rates along time can be observed between the various bubble lengths.

Figure 5.6 indicates the ratio of the initial bubble volume that has left the domain along shifted
time (with the same post-processing procedure described before) for all three simulations of laminar
counter-current Taylor bubble flow. The volume of gas that exits the domain is very low for two reasons.
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Figure 5.2: Time evolution of liquid streamwise velocity and bubble behaviour for simulations of laminar
counter-current Taylor bubble flow with initial bubble length 2D (5.2a), 4D (5.2b) and 6D (5.2c).
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Figure 5.3: Space and time-averaged streamline contours (top half of each figure) and axial component of velocity scaled
by Taylor bubble velocity (bottom half of each figure) for the three simulations of laminar counter-current Taylor bubble
flow with different initial bubble length (2D top, 4D middle, and 6D bottom figure). The color map ranges from -1
(blue) to 1 (dark red). The interface of the Taylor bubble (black line) at f = 0.5.
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Figure 5.4: Value of adapted streamwise velocity at the inlet along time for three simulations with different initial
bubble lengths in laminar counter-current Taylor bubble flow.
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Figure 5.5: Instant gas volumetric flow rates at three different pipe cross-sections downstream the wake along shifted
time in laminar counter-current Taylor bubble flow. Time starts when the first detached bubble is passing from each
cross-section for each simulation case.
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Firstly, the flow downstream the bubble is very weak and secondly, Eo is quite big in the laminar flow
which means that the interfacial forces are strong resulting in less loss of void. Therefore, the ratio
of the initial bubble volume that has been lost is smaller for larger bubbles in the laminar flow even
though the loss of void is almost the same in absolute values for all simulations (since the initial bubble
volume of bubble with length 6D is almost three times greater than the one of 2D).
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Figure 5.6: Cumulative percentage of the initial bubble volume that has been detached and transported outside the
domain by the liquid flow within the t = 10s for different bubble lengths in the laminar counter-current Taylor bubble
flow. Time starts when the first detached bubble is passing from each cross-section for each simulation case.
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5.3. Turbulent counter-current Taylor bubble flow

The three-dimensional visualization of the evolution axial liquid velocity field of the turbulent counter-
current Taylor bubble flow can be seen in figure 5.7. Sub-figures 5.7a, 5.7b, 5.7c indicate the streamwise
velocity field at snapshots of 2.5s for each simulation case. Similar to what was observed in the laminar
counter-current case in section 5.2, the most significant bubble decay is noticed during the first t = 2.5s
in all cases. After that, the detached gas volume from the bubble’s tail is of a similar order of magnitude
with the gas volume attached to the tail. Another interesting observation is the fact that the bubble
not only oscillates back and forth from in the axial direction (due to the adapted inlet) but also in the
radial direction as well. This is in contract to the turbulent co-current flow in which the bubble was
oscillating only in the axial direction (section 4.3). The trend of this movement of the bubble to the
radial direction wall happened not suddenly but gradually (started slightly to appear around t=4s) and
is neither continuous nor constant. However, this wobbly behavior of the Taylor bubble is also observed
in [5] and affects the the length and behavior of the wake. For example, in the case of a bubble with
initial length 2D, the center of mass of the bubble seems closer to the pipe wall from the "upper" side
(in two-dimensional representation) at t = 5s while it moves again to the pipe axis at t = 7.5s before it
ends up near the "bottom" side wall (in two-dimensional representation) at the final time. In general,
after careful attention to the bubble’s evolution, it can be concluded that this radial movement starts
happening after 2 — 3s and it gradually continues as time goes.

The fact that this radial movement is instant and random (in the sense that it is not in favor of
a specific side of the cylindrical pipe wall) can be verified from figure 5.8 which shows the bubble’s
position, the scaled streamwise velocity and streamline contours averaged in time (for t = 10s) and
space (in the circumferential direction) for each simulation. The toroidal vortex at the wake is of length
1.5D for all bubbles while the vortex that appears within the bubble is stronger for the longest bubble
as predicted for the laminar case in section 5.2. However, opposite the laminar case, the choice of the
bubble’s length seems independent of the curvature of the tail in the turbulent counter-current case. In
particular, all simulations show a flat tail with a trend to concave for the part of the tail closer to the
wall.

The streamwise component of the inlet adapted velocity along time for each simulation is indicated
in figure 5.9. The mean value of the axial adapted inlet velocity is found to be around —0.16m/s
independent of the choice of the bubble length. Of course, since the flow is turbulent, the inlet adapted
value never reach a steady state but 0.1s after the beginning of the flow (i.e. restart of single-phase flow
with bubble initialization), the value of the inlet streamwise velocity is fluctuating only up to 0.2m/s
around the mean value. Similar to what is expected from the laminar counter-current Taylor bubble
flow (section 5.2), no significant difference is observed between the simulations with different initial
bubble length, so it can be concluded that the choice of bubble length does not affect the value of the
adapted inlet, something that is also observed in the experiments of [5]. The predicted mean value of
the inlet velocity in Basilisk is slightly underestimated compared to the experiment of [5] (=0.17m/s).
However, the underestimation in turbulent counter-current Taylor bubble flow is much less than the
laminar case and approaches only 7% which is within the tolerance limits given by [5].

Similar to what has been done in figure 5.5 for laminar counter-current Taylor bubble flow, the
instant gas volumetric flow rates at three different pipe cross-sections are presented in figure 5.10.
Figure 5.10a indicates the gas volumetric flow rates at x = 2D, figure 5.10b at x = D and figure 5.10c
at x = 0.5D. The wake length in the turbulent counter-current Taylor bubble flow has been computed
around 1.5D in all simulations (5.8), which is half than the axial distance between the tail of the longer
simulated bubble (i.e. 6D) and the first measured cross-section (x = 2D at sub-figure 5.10a). Again,
a time-shifting is applied and for each simulation, the time starts (¢ = 0) from the time point in
which the first detached bubbles are flowing through each pipe cross-section. The simulation with the
longest bubble shows greater values of flow rates because the longer bubble results in more loss of void.
Moreover, the cross-sections (mainly the first one, i.e. (5.10a)) of the longest bubble are closer to the
wake region than the rest and even though the average wake length is 1.5D, some recirculation is still
observed.

The cumulative ratio of the initial bubble volume that has left the pipe domain along shifted time
(with the same post-processing procedure described before) is illustrated in figure 5.11 for all three
simulations of turbulent counter-current Taylor bubble flow. Even though the time has been shifted,
the cumulative gas volume which exits the domain seems dependent on the bubble’s length. In particular,
the largest ratio (1.06%) is observed for the longest bubble (i.e. 6D) in such a strong turbulent counter-
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Figure 5.7: Time evolution of liquid streamwise velocity and bubble behaviour for simulations of turbulent
counter-current Taylor bubble flow with initial bubble length 2D (5.7a), 4D (5.7b) and 6D (5.7c).
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Figure 5.8: Space and time-averaged streamline contours (top half of each figure) and axial component of velocity scaled
by Taylor bubble velocity (bottom half of each figure) for the three simulations of turbulent counter-current Taylor
bubble flow with different initial bubble length (2D top, 4D middle, and 6D bottom figure). The color map ranges from
-1 (dark blue) to 1 (dark red). The interface of the Taylor bubble (black line) at f = 0.5.
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Figure 5.9: Value of adapted streamwise velocity at the inlet along time for three simulations with different initial
bubble lengths in turbulent counter-current Taylor bubble flow.
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Figure 5.10: Instant gas volumetric flow rates at three different pipe cross-sections downstream the wake along shifted
time in turbulent counter-current Taylor bubble flow. Time starts when the first detached bubble is passing from each
cross-section for each simulation case.
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current Taylor bubble flow, opposite to what has been predicted in the laminar flow in figure 5.6.
However, the cumulative ratio of gas that has left the pipe domain after t = 10s for the shortest bubble
(i.e. 2D) is very close to the one of the longest (0.93%) and definitely greater than the ratio bubble of
length 4D (0.58%). In absolute values, the volume of the detached bubbles that have been transported
away with the flow is approximately equal between the shortest and the bubble of moderate length,
since the initial bubble volume of the latter, is almost double of the latter.
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Figure 5.11: Cumulative percentage of the initial bubble volume that has been detached and transported outside the
domain by the liquid flow within the t = 10s for different bubble lengths in the turbulent counter-current Taylor bubble
flow. Time starts when the first detached bubble is passing from each cross-section for each simulation case.

5.4. Turbulent vs laminar counter-current Taylor bubble flow

After having analyzed how the initial bubble length influences the bubble behavior and its decay rate,
the study is extended on how the selection of pipe diameter (and therefore also Eo, Re) affects the
bubble decay. Therefore, a direct comparison between the results extracted from laminar (small pipe)
in section 5.2 and turbulent counter-current Taylor bubble flow is implemented.

Before starting the comparison, it is better firstly clarifying the relation between the initial Taylor
bubble volumes. Due to the bullet shape of the Taylor bubble (cylindrical main part and semi-spherical
front nose), the total initial volume is given by:

3

2
2 Dy, 2 (D
I Zard3=ml 22 (- | =
Vicog = mr Lb+37t1" 7r<2> (x D)+3n<2> (5.2)

with L, the bubble’s length which equals with x times the pipe diameter (with x represents the

factor 2,4 or 6 for the current setting) and r the radius of the spherical nose which is equal with r = %.

D .
Due to the choice of the pipe diameter that has been made for laminar and turbulent case ( LU 2),
small

the initial bubble volume of small pipe diameter is around one order of magnitude smaller than the
initial bubble volume of the big diameter for all the selected choices of bubble length, and in particular,
big

Me=o] g
Vtsl‘%all .

The comparison of the resulting bubble decay between small and big pipe (or equivalently, between
laminar and turbulent flow) starts with figure 5.12 which shows the ratio of the initial gas volume that
has been transported outside the pipe domain of L = 16D by the liquid flow for both small (small)
and big (turbulent) pipe along (non-shifted) time. Each sub-figure of 5.12 indicates a different bubble
length. As already mentioned before, the pipe diameter is smaller (half) for the laminar case and thus,
the distance between the tail of the bubble and the outlet is smaller (half) but so does the axial liquid
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velocity and therefore, no time-shift is applied at this case. Although the initial Taylor bubble volume
in the turbulent case is nine times more than in the laminar flow in all simulations, the ratio of the
detached bubbles that have been transported with the flow after t = 10s is ranging from three to five
times more than the respective ratio in the laminar flow for all cases. This means that the total amount
of gas volume that has been carried out away is from 27 to 51 times greater in turbulent than the
laminar case. This difference between laminar and turbulent flows can be explained by the fact that
the laminar flow is too weak to detach too much volume of the initial bubble. However, to make a more
accurate prediction about this, it is essential to check how much gas volume of the detached bubbles is
trapped within the wake region of its simulation and compare against the volume of gas that exits the
pipe domain.
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Figure 5.12: Cumulative percentage of the initial bubble volume that has been detached and transported outside the
domain by the liquid flow within the t = 10s for different bubble lengths in both turbulent and laminar counter-current
Taylor bubble flow.

Figure 5.13 indicates the difference between laminar and turbulent flow both in the volumetric
amount of the detached bubbles and also in the volume of "trapped" gas within the wake. It consists
of three cross-section views of time (for an interval of t = 10s) and space (in the circumferential and
radial directions) averaging of void fraction along the scaled (by the value of the pipe diameter in each
case) pipe axis for small (laminar flow) and big pipe (turbulent) diameter. There are three sub-figures,
one for each initial bubble length (2D, 4D, 6D) so the initial ratio of the mean void fraction in each pipe
cross-section is the same for both simulations indicated in each sub-figure. The laminar flow results
in less detached bubbles since not only 27 times less gas is leaving the domain as already indicated in
figure 5.12 but also less gas is trapped in the wake behind the bubble for all simulation cases.

To approximate the difference in the loss of void between the two flows quantitatively and estimate
the ratio of the detached bubbles that finally exits the pipe domain within t = 10s for each bubble length,
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an assumption came from the deployment of figures 5.3 and 5.8 has been made. These figures illustrated
that after the average (in time and space) curvature of the tail is flat shaped and perpendicular to the
direction of gravity. Therefore, every cell center that lies on the tail interface, has been shifted by the
same distance due to the loss of void. Therefore, it is enough to compute the mean shifted distance
of the tails point that lies on the pipe axis and then expand it to all points belong to the surface of
the tail interface. With this approach, the volumetric bubble decay can be accurately approximated
by including all the detached small bubbles that have been merged back to the bubble. The shifted
distance is calculated lower for the cases of laminar flow and equals with 0.075D, 0.3 and 0.59 for
bubble’s initial length 2D, 4D and 6D respectively which corresponds to the ratio of loss of void over
initial bubble diameter equal with 0.033, 0.07 and 0.093 according to the following formula:

AV =mr?-H (5.3)

, where H is the averaged (in time for t = 10s and space in both circumferential and radial direction)
shifted distance of all points that lie on the flat interface of the bubble’s tail of radius r.

Similarly, for turbulent flow, the shifted distances are greater and in particular, they are measured
0.11D, 0.425D and 0.6D which corresponds to a volumetric loss of void equal with 0.049, 0.099 and
0.095 times the initial bubble volume Vj;-¢) for bubble’s initial length 2D, 4D and 6D respectively.
Therefore, it seems that the volumetric loss of void is comparable between the laminar and turbulent
flow when expressed as a ratio over initial bubble volume. Moreover, it seems that the ratio of loss of
void over initial bubble volume is increasing with increasing bubble length except for the transient from
4D to 6D in the turbulent counter-current Taylor bubble flow.
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Figure 5.13: Cross-section views of the time and space averaging of void fraction along the pipe axis for the three
different bubble lengths (5.13a for 2D, 5.13b for 4D, 5.13c for 6D) in both laminar and turbulent counter-current Taylor
bubble flow.
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To sum up, table 5.2 summarizes the most important data of the simulations performed in both
laminar (section 5.2) and turbulent counter-current Taylor bubble flow. In particular, the table indicates
the initial bubble length, the bubble diameter, the ratio of volumetric bubble decay over initial bubble
volume, the mesh size, Re number, the mean value of adapted inlet velocity, the wake length, the total
wall-clock time, the ratio of volumetric bubble decay over the initial bubble volume, the ratio of the
total volume of gas left pipe domain of L = 16D in t = 10s over initial bubble volume and the ratio of
total volume of gas left pipe domain over the total loss of void. The degrees of freedom are equal with

the amount of cells for a cell-centered approach (cells= DOF) and each simulation has used 64 cores.

The most interesting values of this figure are the three last columns indicating the relation between
initial bubble volume, total loss of void and total volume of gas that left the pipe domain. The loss
of void in the case of laminar flow is one order of magnitude less (in absolute values) than the loss
of void in the turbulent flow which is expected since Eo is around four times smaller in the laminar
flow. However, when taking account of the initial bubble volumes, the ratio between the two flows is
comparable. Regarding the ratio of the volume of the detached bubbles that have left the pipe domain
over the total loss of void after t = 10s, it remains small for both flows and ranges from 1.2% to 8.8%
(depending on initial bubble length) for weaker laminar flow and from 6% to 18.8% for the strongest
turbulent flow.

Table 5.2: Simulation data for the laminar and turbulent counter-current Taylor bubble flow: Initial bubble length,
bubble diameter, initial gas volume, mesh size, Re number, the mean value of adapted inlet velocity, wake length, total
wall-clock time, the ratio of volumetric bubble decay over initial bubble volume, the ratio of the total volume of gas left

pipe domain over initial bubble volume, and the ratio of the volumetric gas that left the domain over the total
volumetric loss of void.

Ly D[m]  Viqy[m®] h Re  nieelm/s] Luake twquld] 1—-1= Jew  Jou
[t=0] [t=0] [t=10]
2D 0.0124 25E-06 16D/2'° 1400 0.085 1D 8 0.03 0.0029 0.088
4D 0.0124 4.7E-06 16D/2'° 1400 0.085 1D 11 0.07 0.0022 0.032
6D 0.0124 69E—06 16D/2'° 1400 0.085 1D 16 0.09 0.0011 0.012
2D 0.026 23E—-05 16D/2'° 5200 0.16 1.5D 8 0.049 0.0093 0.188
4D 0.026 4.2E — 05 16D/210 5200 0.16 1.5D 11 0.099 0.0058 0.059
6D 0.026 6.2E — 05 16D/2'° 5200 0.16 1.5D 14 0.097 0.0106 0.11







Conclusions

The current work demonstrates a systematic approach towards DNS of turbulent co-current and counter-
current Taylor bubble flow and comprises a continuation of the work of [1, OpenFOAM]. The developed
code was written in Basilisk open-source software using an "octree" grid approach which allows for
adaptive local grid refinement. Basilisk has been validated for three different two-phase flow regimes
against published literature.

Firstly, predictions from Basilisk were compared for a two-dimensional bubble rising in a liquid
column against three independent studies presented in [2]| for two different configurations. The rising
bubble simulations in Basilisk showed that the bubble’s position, shape, and rise velocity were in
excellent agreement with [2] and at much less computational cost due to the local adaptive refinement
strategy. Then, the same simulations were executed in OpenFOAM, and the results illustrated that
Basilisk captures the gas-liquid interface both much sharper due to its accurate solution of advection
equation and in less time even for uniform meshes.

Next, simulations in the laminar Taylor bubble flow rising in a stagnant liquid were carried out in
Basilisk for three different configurations as presented in [4]. In the first place, these simulations were
implemented using a two-dimensional axial symmetry of the pipe since, in the laminar flow regime, the
changes in the circumferential direction can be considered negligible. The predictions of Basilisk for all
configurations were in favor of all reference studies ( [4, ANSYS], [1, OpenFOAM], [70], [69]). Then,
the same simulations were performed in three-dimensions in Basilisk as well where it was observed that
using the standard N.S. solver in Basilisk with explicit damping of velocity at the pipe wall does not
give the expected solution. For this reason, the direct volume penalization method was implemented
implicitly within a modified Basilisk N.S. solver instead which produced results of excellent accuracy.

The conclusions from the above validation cases paved the way towards the main target of the current
work: High-fidelity simulations of fully turbulent co-current Taylor bubble flow in Basilisk. Due to the
limited computational resources and the inability of stretched mesh in two-phase flows, simulations were
carried out with three computational meshes with cell sizes ranging from 16 to 4 wall units according to
the experimental setting described in [3]. Although these meshes are too coarse for DNS quality, they
assist in providing further insight into the performance of the developed Basilisk solver at a reasonable
computational cost. The same simulation strategy with [1, OpenFOAM] was followed allowing for a
direct comparison of the results. It was observed that the loss of void of the Taylor bubble in Basilisk
was much smaller than what was predicted by OpenFOAM due to the sharper capturing of gas-liquid
interface. This increased the allowable averaging time while decreasing the number of simulations in
the ensemble. In general, the results of Basilisk for mean streamwise and radial velocity and velocity
fluctuations are in qualitative agreement with [1, OpenFOAM] while both software shows significant
deviation from the experimental findings of [3] in the velocity fluctuations.

After the successful validation of simulations in the co-current Taylor bubble flow, the work was
extended beyond its initial scope by simulating laminar and turbulent counter-current Taylor bubble
flow by using the same simulation strategy. The flow parameters of the experiment of [5] were used
and simulations were performed in Basilisk for small (laminar flow) and big (turbulent flow) values
of pipe diameter and for three different initial bubble lengths. The analysis was focused on how the
bubble decay rate is affected by the selection of pipe diameter and initial bubble length, keeping all the
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rest parameters the same. Except having calculated the total loss of void, measurements of how much
gas exited the domain or remained in the wake were also performed. The results showed that longer
bubbles lead to greater in absolute values bubble decay volumetric rates whereas most of the detached
bubbles are trapped within the wake and are not transported away with the liquid flow for both laminar
and turbulent counter-current flows. Regarding the selection of the value of the pipe diameter (and
therefore the type of the flow), simulations in turbulent counter-current Taylor bubble flows resulted in
about 27 — 51 times more detached gas volume in absolute values for the same choice of initial bubble
length. Furthermore, in all simulation cases, the total rate of loss of void was not constant along time.
It was observed that the loss of void is greater during the first simulation second and after that, the
bubble decay rate becomes almost equal to the bubble merging rate, i.e. the rate of the volume of the
detached bubbles which are merging back to the Taylor bubble is only slightly smaller than the rate of
loss of void.

To sum up, the current work illustrates a proof of concept of simulating turbulent co/counter-current
Taylor bubble flow at affordable computational cost and with good numerical accuracy. With additional
computational resources available or/and with the implementation of a stretched mesh in two-phase
flows, this work should pave the way towards DNS of turbulent co-current Taylor bubble flow. The
simulation data from both co-current and counter-current turbulent Taylor bubble flows can be proven
useful for the development of low-order turbulence models or/and the validation of more general two-
phase modeling strategies.
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