
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Real-Time Digital
Signal Processing in
an Open-Hardware
Vector Network
Analyser
EE3L11: Bachelor Graduation Project
A.E. Hinrichs and A.M. Oudijk

Real-Time Digital
Signal Processing in
an Open-Hardware

Vector Network
Analyser

by

A.E. Hinrichs and A.M. Oudijk

in partial fulfillment of the requirements for the degree of

Bachelor of Science

in Electrical Engineering

defended on Friday June 21, 2024 at 10:30 AM.

Students: A.E. Hinrichs 5161274
A.M. Oudijk 5595533

Project Supervisor: Prof.dr. G.A. Steele TU Delft
EEMCS Supervisor: Dr.ir. N. Haider TU Delft
Thesis committee: Dr.ir. N. Haider TU Delft

Prof.dr. G.A. Steele TU Delft
Dr.ir. J.S.S.M Wong TU Delft

Cover: Red Pitaya STEMlab 125-14, SynthHD V2 by Windfreak Tech-
nologies LLC, Mini-Circuits ZFRSC-42-S+ splitter and Mini-
Circuits ZEM-4300MH+ Mixer connected by coaxial cables.

Style: TU Delft Report Style, with modifications by Daan Zwaneveld

Preface

The last two months have been dedicated to working on the bachelor thesis you have in front of you.
This project, conceived by Gary Steele, has involved tremendous effort to present a working prototype
and to prove the concept.

We want to extend our heartfelt thanks to Gary Steele, Nadia Haider, and Stephan Wong for their
invaluable support and guidance, which were instrumental in making this project a success in our eyes.
We are proud of how far we have come and how much we have learned over this period. We would
also like to thank the Steele Lab group members, who ensured we felt we were a real part of the team
in these two months.

Additionally, we want to thank Ruben Dirkzwager, Matthijs Langenberg, Samet Öztürk, and Simon
Schaap for their excellent teamwork and collaboration throughout this project.

A.E. Hinrichs and A.M. Oudijk
Delft, July 2024

i

Abstract

This thesis discusses the digital signal processing involved in building a Vector Network Analyser for
qubit readout. Existing VNAs are aggregated and used to construct a programme of requirements
for this application. An architecture is constructed and explained, and the stages IQ decomposition
and data reduction are analysed mathematically. The Discrete Fourier Transform is used to extract
DC signals for this application and its properties are compared to different filters. Common digital logic
functions such as AXI, Direct Digital Synthesis, and Direct Memory Access are explained, as well as the
implementations of custom blocks for this application such as accumulators and a sequencer. These IP
blocks are demonstrated individually and integrated to be implemented on a Red Pitaya STEMLab 125-
14 board containing the Zynq 7010 SoC. The implementation is tested using simulated input signals
and the resulting measurements are analysed. The implementation is found to have good absolute
accuracy of within 2% of expected absolute amplitude, 1% of the expected relative amplitude and 8
mrad of expected relative phase. Modulation of the input signals is tested to work as expected and no
major cross-modulation is found. Future improvements are identified and the limitations of the used
data reduction are discussed in relation to a Vector Signal Analyser mode.

ii

Contents

Preface i

Abstract ii

Table of Contents iv

Nomenclature v

1 Introduction2 1
1.1 VNA, a general overview . 1
1.2 Application in quantum research . 2
1.3 Existing solutions . 4
1.4 Functional requirements . 4
1.5 Materials . 5
1.6 Problem definition . 5
1.7 Thesis overview . 6

2 Programme of Requirements 7
2.1 Functional requirements . 7
2.2 Non-functional requirements . 8

3 Design Process 9
3.1 Theory of operation . 9

3.1.1 General overview . 9
3.1.2 First architecture . 10
3.1.3 Second architecture . 11

3.2 Signal processing . 11
3.2.1 Phase and amplitude, I and Q . 11
3.2.2 Data reduction . 14

3.3 Red Pitaya and programmable logic . 17
3.3.1 Red Pitaya . 19
3.3.2 Protocols and pre-made blocks . 20
3.3.3 Custom blocks . 24

4 Implementation and Validation 27
4.1 Implementation and validation of individual components 27

4.1.1 Sequencer . 27
4.1.2 Accumulator . 27
4.1.3 Packetiser . 28
4.1.4 FIFO . 28
4.1.5 DMA . 28

4.2 Integration . 29
4.3 Validation of integrated system . 29

4.3.1 Measurement 1 . 30
4.3.2 Measurement 2 . 30
4.3.3 Measurement 3 . 31

5 Discussion 33
5.1 Shortcomings . 33
5.2 Future work . 33

2This chapter is shared between the three theses written by the three subteams of the project.

iii

Contents iv

6 Conclusion 34

References 35

A Verilog Source Code 37
A.1 Accumulator . 37
A.2 Accumulator trigger . 38
A.3 Accumulator and trigger testbench . 40
A.4 Sequencer . 42
A.5 Sequencer testbench . 44
A.6 Packetiser . 45
A.7 Packetiser testbench and top-level module . 47
A.8 Sample data generator for packetiser testbench . 49
A.9 FIFO filler . 50

B Implementation Block Diagrams 52

C Implementation Testing and Results 57
C.1 Testing parameters and code . 57
C.2 Test results . 59

Nomenclature

Abbreviations and Names
Abbreviation Definition

ADC Analog to Digital Converter
AMBA Arm Advanced Microcontroller Bus Architecture
AXI Advanced eXtensible Interface
C A programming language
CIC/CCI Cascaded Integrating-Comb / Cascaded Comb-

Integrating (filter)
CoM Centre of Mass
CPU Central Processing Unit
DAC Digital to Analog Converter
DC Direct Current, 0 Hz frequency component
DDR Double Data Rate
DDS Direct Digital Synthesis
DFT Discrete Fourier Transform
DMA Direct Memory Access
DSP Digital Signal Processing
DTFT Discrete-Time Fourier Transform
DUT Device Under Test, used for both the device and sig-

nal affected by it
EE Electrical Engineering
EMW ElectroMagnetic Wave
FIFO First In First Out, type of queue
FIR Finite Impulse Response (filter)
FPGA Chip containing PL
GPIO General Purpose Input/Output, exposed on physical

pins
IF Intermediate Frequency
IFBW Intermediate Frequency BandWidth
IIR Infinite Impulse Response (filter)
IP Intellectual Property, functional block implemented

in PL
iPython Interactive variant of Python
IQ In-phase and Quadrature components
LO Local Oscillator
LPF Low-Pass Filter
LUT LookUp Table
MMIO Memory-Mapped Input/Output, may be internal to

PL
PL Programmable Logic
PLL Phase Locked Loop
PoR Program of Requirements
PS Processing System
PYNQ Python library used for communication between PL

and PS
Python A programming language
RAM Random Access Memory

v

Contents vi

Abbreviation Definition

Red Pitaya Red Pitaya STEMlab 125-14 development board
REF REFerence device, used for both the device and the

signal affected by it
RF Radio Frequency
S21 Transmission/S parameter 𝑆21
SDR Software-Defined Radio
SMA Sub-Miniature version A, RF connector
SNR Signal-to-Noise Ratio
SoC Chip containing both a PS and PL
SQUID Superconducting QUantum Interference Device
USB Universal Serial Bus
Verilog A hardware description language
Vivado Software used to implement Verilog modules in PL
VNA Vector Network Analyser
VSA Vector Signal Analyser
Xilinx Company behind Zynq and Vivado
Zynq Series of SoC

1
Introduction1

1.1. VNA, a general overview
A Vector Network Analyser (VNA) is a device that sends an electromagnetic wave (EMW) at a known
frequency and amplitude through a Device under Test (DuT) or network, and records the reflected and
transmitted waves[1]. The recorded waves are compared to the stimulus wave to derive a vector output,
giving the change in amplitude and phase caused by the DuT.

Figure 1.1: S-parameters [2]

The reflected EMW, transmitted EMW and the EMW that is sent by the VNA, which from now on can
be referred to as the reference signal, can be represented using two sinusoidal waves: an in-phase
cosine (I), and a sine, shifted by 90 degrees compared to I, referred to as the quadrature wave (Q).
These waves are combined to form a complex mathematical IQ representation: 𝐼 + j𝑄.
The change caused by a DuT in its reflection and transmission of the reference signal are quantified by
scattering parameters, or S-parameters, which are a form of network parameters. For a two-port DuT,
the S-parameters can be put inside a 2×2-matrix [3], shown in figure 1.1. These parameters contain
information about both the phase and amplitude change caused by the DuT, in a complex form. They
are obtained by complex division of the reflected or transmitted signal by the reference signal, such as
in equation (1.1).

𝑆21 =
𝑏2
𝑎1
= 𝐼trans + j𝑄trans

𝐼ref + j𝑄ref
(1.1)

For this project, this 𝑆21 transmission parameter is of interest, which relates the transmitted signal (𝑏2
in figure 1.1) to the reference signal (𝑎1).
VNAs have two main procedures to test a DuT. The first procedure is called frequency sweep, where
an EMW is sent with a constant power and a frequency changing over a short time span in predefined
steps. This procedure is used to determine the frequency dependence of the reflection and transmis-
sion parameters of the DuT. The second procedure is a power sweep, where an EMW is sent with

1This chapter is shared between the three theses written by the three subteams of the project.

1

1.2. Application in quantum research 2

constant frequency and a power changing over a short time span. This procedure is used to determine
the power transfer of the DuT at different input powers. For this project, only the frequency sweep is of
interest, and implementation of power sweeping is left to future projects.

Figure 1.2: Block diagram of a simple VNA, [4]

The internal working of a general simple VNA is shown in figure 1.2. An RF stimulus coming from
port 1 is provided to a DuT, which is connected between port 1 and port 2 (not shown in the figure).
The stimulus is passed through a bridge (directional coupler), which splits the EMW in forward- and
backward-going waves, which takes this signal as reference (Ref). This reference signal is demodu-
lated into a lower frequency IF signal (intermediate frequency) using a mixer and a local oscillator (LO).
The intermediate frequency is determined by the difference in frequency of the LO and the incoming
signal. The reflected EMW coming from the DuT will be split off as the “Inc”-signal by the bridge at
port 1, and the transmitted wave as the “Inc”-signal at port 2. They then go through the same process
as the reference signal, to obtain two more IF signals. The same process can also be done with a
RF stimulus coming from port 2, producing another reference, transmission and reflection IF signal, to
study the effects of the DuT in two directions by finding other S-parameters.

All IF signals are then digitised in Analog-to-Digital Converters (ADCs) and processed in the Digital
Signal Processing unit (DSP). In the DSP unit, the four S-parameters are calculated by doing complex
divisions such as the one in equation 1.1. After that, the data can be retrieved via a data bus such as
USB, or be immediately shown on a screen.

1.2. Application in quantum research
A Transmon qubit is a type of superconducting charge qubit. It consists of a superconducting quantum
interference device (SQUID), a non-linear inductive element made of two superconductors separated

1.2. Application in quantum research 3

by a thin insulating barrier, and a shunting capacitor 𝐶t. The SQUID consists of two Josephson junctions
in a loop. The Josephson junctions provide the non-linear inductance necessary to create quantised
energy levels with nonuniform spacing (also known as anharmonicity). Anharmonicity is the key to con-
fining the dynamics of multi-level quantum system (such as a Transmon) to within a two-level subspace
when it is driven.

Being able to confine the dynamics within a two-level subspace is important, because it simplifies
the system to a manageable quantum bit, or qubit, which is the fundamental unit of information in
quantum computing. This confinement allows for clear distinction between the two states, |0⟩ and |1⟩,
necessary for reliable quantum operations and algorithms. It also reduces the likelihood of leakage into
higher energy states, which can lead to errors and decoherence, thus improving the overall stability and
performance of quantum circuits. The primary role of the shunting capacitor is to increase the charging
energy relative to the Josephson energy, which mitigates the effects of charge noise and enhances the
robustness of the qubit.

Figure 1.3: Transmon qubit coupled to a resonator [5]

Figure 1.3 shows the lumped element model of the Transmon qubit coupled to a resonator. The res-
onator is implemented as a waveguide (here modelled as a single inductance 𝐿r and capacitance 𝐶r).
The resonator is the mechanism by which the qubit is read out, so it is also called the readout resonator.

Figure 1.4: Left: image of a real Transmon qubit and the attached readout resonator. Right: amplitude of transmitted signal
through the qubit as a function of applied frequency.[5]

1.3. Existing solutions 4

The key to the microwave readout is sending a calibrated microwave pulse towards the resonator. This
pulse is typically set at or near the resonator’s base frequency 𝜔r , but the qubit-state-dependent fre-
quency shift (either 𝜔r−𝜒 or 𝜔r+𝜒) affects how this pulse interacts with the resonator. The way this is
done in practice is by the use of a VNA. Qubit measurement can be performed by taking the supercon-
ducting qubit circuit as the device under test (DuT) and measuring its 𝑆21-parameter. This parameter
helps to determine changes in the microwave signal due to the qubit-state-dependent frequency shift,
thereby enabling the measurement of the qubit state.

In figure 1.4, an actual picture of the Transmon qubit can be seen, together with the readout resonator
and what a successful readout looks like. In figure 1.5, a more schematic representation of the readout
procedure is shown.

Figure 1.5: Readout of a Transmon qubit [5]

1.3. Existing solutions
Commercial VNAs from companies like Keysight and Tektronix are often quite expensive, having price
tags of several tens of thousands of euros[6]. This is in large part due to their accuracy combined with
a large frequency range which extends into multiple decades, which requires expensive components.
Extensibility is provided with equally expensive options, but offer limited flexibility since users are limited
to the offerings of the company for that specific model.

Cheaper options are available too, in the price range of hundreds to thousands of euros, but these
options provide a narrower frequency range and lower accuracy [7]. Being sold in a single package,
these options also do not offer much extensibility without having to study the (often open-source) doc-
umentation thoroughly.

VNAs are in the field of quantum computing sold as quantum controllers[8][9]. These systems offer
most of the flexibility that are required for qubit research, but have prices in the range of hundreds of
thousands of euros. This is the case because of their very high accuracy and very large frequency
range.

To offer much higher flexibility than the mentioned VNAs, and low to moderate prices, there have been
projects on VNAs using SDR (software defined radio) technology, which recreates (expensive) analog
EMW components in software[10]. This can be done using for example a field programmable gate
array (FPGA) to obtain even higher flexibility and processing speed. A hobbyist’s attempt to create a
VNA using SDR technology on an FPGA is well documented on internet [11]. There has also been a
paper on an FPGA-based alternative for a VNA used for imaging in industry in the range of 200 GHz [12].
Recently, there has also been an effort to create a VNA or quantum controller using SDR technology
on an FPGA [13].

1.4. Functional requirements
The requirements for the VNA of this project select the basic VNA functionality which is most useful for
the application of interfacing with qubits. Omitting other functions of a commercial VNA is what makes
it possible to offer a cheaper and more modular system. The system can be made using off-the-shelf

1.5. Materials 5

RF components, an FPGA and a RF signal generator. The layout for the FPGA and the interfacing
programs are made open-source, to make the product available for free in the research sector. To
make the interaction with the VNA understandable for the researchers, Python code is used for the
user interface and API. The qualitative requirements of the entire VNA are shown below:

1. The system must have the ability to measure the 𝑆21 (transmission) parameter at different fre-
quencies.

2. The system must be modular, so the system should work with most RF generators without any
adjustments.

3. The system must be designed in such a way that it is usable by students and researchers without
experience in electrical engineering.

The absolute calibration of the device is not important. It will only be used for relative measurements,
because the 𝑆21 parameter is just a ratio between input RF signals (through-DuT or reference) and the
output RF signal of the VNA.

Besides the qualitative, there are also some quantitative requirements for the system:

1. The operating frequency range must be 4−8 GHz.
2. Integration time per measurement point:

• upper limit: up to 1 second per point (1 Hz IF bandwidth).
• lower limit: down to 1 millisecond per point (1 kHz IF bandwidth).

3. Transfer overhead time to transmit the data to the client must be less than 10 % of the total
measurement time.

4. Spurs of the signal going to the device under test must be less than 40 dBc.
Then there are some objectives that the project should aim to achieve:

1. The system should be responsive for a human user by having a time under 100 ms between a
user input/output and a physical event happening.

2. As much open-source software as possible should be used for the project.

The specific functional requirements for this subteam will be covered in chapter 2.

1.5. Materials
A Red Pitaya STEMlab 125-14 board is used for the digital section, which is described as a signal
acquisition and generation platform. This device contains a Xilinx Zynq 7010 System on Chip (SoC)
and several connectors, such as an ethernet port, micro-USB port, GPIO pins and RF SMA connectors.
The SoC contains both Programmable Logic (PL) like that found in a Field Programmable Gate Array
(FPGA), and a Processing System (PS) which contains an dual-core ARM processor.

For the RF section, SMA coaxial cables, RF mixers and power splitters from Mini-Circuits are used.
Also, the following RF generators have been used:

• A SynthHD (V2) 10MHz - 15GHz Dual Channel Microwave Generator byWindfreak Technologies,
LLC. With its 2 output channels it produced both the RF stimulus signal and the RF LO signal, in
one package with a single API. This generator degraded to an extent which made in unusable for
the VNA, which is why it was replaced halfway the project by the following 2 RF generators:

• An HMC-T2100 10 MHz - 20 GHz synthesized signal generator by Hittite Microwave Corporation
(now from Analog Devices, Inc.), which was used for the stimulus signal.

• An APUASYN20 8 kHz - 20 GHz Ultra-Agile Signal Source by AnaPico AG, which was used as
LO.

1.6. Problem definition
To achieve the functional requirements, several engineering problems had to be solved. For this, three
teams or subgroups of two students have been formed: the RF team, the FPGA team and the software

1.7. Thesis overview 6

team. The RF team had to route and downconvert the RF signals going to the DuT and REF to IF,
which then could be digitised by the ADC on the Red Pitaya and used as digital input for the FPGA
team. Generators, mixers and power splitters had to be chosen which would work best to achieve the
requirements. Moreover, the behaviour of these components had to be measured and documented as
well as the entire power budget throughout the system.

The signals that were digitised at the input of the Red Pitaya had to be converted into IQ signals by the
FPGA team. Averaging was done on the FPGA to achieve the IF bandwidth requirements. Another
engineering problem for the FPGA team, together with the software team, was the communication be-
tween the PL and the PS. Data from the PL had to be sent to the software teamwhile control instructions
from the software team had to be read by the PL. The software team also had to create an interface
between the user and the VNA. An API and a graphical user interface (GUI) were developed for this
interaction, which were part of a client program written in Python. This client also had to communicate
with the PS of the Red Pitaya’s SoC. A schematic of this arrangement is shown in figure 1.6.

Figure 1.6: Simplified input/output scheme of each subgroup.

1.7. Thesis overview
This thesis describes the theory, design, and implementation of the Digital Signal Processing part of
the Vector Network Analyser implemented in Programmable Logic, for which it is split up into several
chapters. Chapter 2 describes the requirements specific to this part of the VNA that will be referenced
throughout the document. Chapter 3 is split up into three sections: section 3.1 describes the theory of
operation and lays out the architecture of the system, section 3.2 derives mathematical analysis and
intuition behind the performed signal processing, and section 3.3 explains the digital implementation
of different functions used. Chapter 4 describes the testing of the individual components as well as
the system as a whole and analyses measurements made out-of-context. Finally, chapter 5 ends the
thesis with a discussion of the shortcomings of the current implementation and the possibilities for future
work.

2
Programme of Requirements

This programme of requirements is part of the SteeleLab VNA project, where the goal is to create
a low-cost open hardware VNA which performs on such a level that it is useful for the researchers
and students that are part of the SteeleLab group. This PoR regards the part of the VNA between
the RF subsystem and the software subsystem, it transforms the signals from the RF domain to the
digital domain in a useful way for the software system. To do this, a Red Pitaya STEMlab 125-14 was
supplied by the SteeleLab group. This board has RF inputs and outputs, GPIO, ADCs, DACs and an
SoC containing a processing system and programmable logic. The server is defined as the program
running on the processing system of the Pitaya board, made by the software team.

2.1. Functional requirements
The qualitative requirements for the DSP implementation are as follows:

1. The digital part of the VNA system must be based on the Red Pitaya STEMlab 125-14 board.
2. The implementation must be able to digitise the IF signals coming from the analogue part.
3. The implementation must be able to IQ decompose the digitised IF signals.
4. The implementation must be able to apply data reduction to the IQ stream.
5. The implementation must be able to generate configurable triggers for the RF generators.
6. The implementation must generate a synthesized 10MHz reference clock out of the on-board

DACs.
7. The server must be able to get IQ data from the implementation.
8. The server must be able to configure the timing of the acquisition cycle.

The quantitative requirements are as follows:

1. Data reduction in the programmable logic should be configurable to collect a maximum of 1 sec-
ond of samples per point and a minimum of 1 millisecond of samples per point. This results in an
IF BandWidth (IFBW) between 1 Hz and 1 kHz.1

2. Filtering as a result of the data reduction should be matched and locked to the sampling rate and
have a high (more than 20 dB) harmonic rejection.

3. The filtering should also have less than 3 dB SNR reduction and less than 3 dB correlation in the
data.

1The definition of the term IFBW varies between VNA manufacturers, in this thesis we will be defining it as the inverse of
accumulation time. Note that this means the IQ sampling rate is lower than the IFBW as each point also has overhead in the
form of settling time.

7

2.2. Non-functional requirements 8

2.2. Non-functional requirements
1. The system should consist of open hardware and software as much as is reasonably possible.
2. The system should be documented in such a way that it is usable by students and researchers

without Electrical Engineering (EE) experience.
3. The system should be documented in such a way that third-year EE bachelor students can further

develop the system.

3
Design Process

In this chapter the broad theory of operation of the digital part of the VNA is laid out, followed by an
explanation of the mathematics behind the signal processing and details on how this is implemented
in the Programmable Logic area of the chosen FPGA board.

3.1. Theory of operation
The goal of this part of the VNA is to extract the relative amplitude and phase of two incoming Electro-
Magnetic Waves (EMWs) at an Intermediate Frequency (IF), which together represent the S21 param-
eter of the Device Under Test (DUT). To this end, the signal processing implementation should extract
the I and Q parameters of these signals which are directly related to their amplitude and phase as
described in section 3.2.1. This task can be achieved in several different ways, generally referred to
as architectures. A detailed breakdown of the task is given, followed by a discussion of two possible
architectures, the latter of which is implemented.

3.1.1. General overview
The signal chain implemented in the Programmable Logic consists of four stages: digitisation, IQ de-
composition, data reduction and data output. Alongside this signal chain, there is its control logic, and
also a completely separated clock reference generator.
The incoming signals are of a fixed Intermediate Frequency, sampled at 𝐹𝑠 = 125 MHz. While the
choice of 𝐹𝑠 is fixed by the design of the Red Pitaya FPGA board, the choice of IF is somewhat arbi-
trary as it does not significantly impact the theory of operation and performance. It was chosen to be
𝜔𝐼𝐹 =

2𝜋
16 rad/sample =

2𝜋⋅𝐹𝑠
16 = 7.8125 MHz. This frequency was chosen as it is related to the sampling

rate of the ADCs by a power of two to simplify various digital circuits in the Programmable Logic imple-
mentation. It is also low enough that RF effects and aliasing are not major issues. Most critically, it is
not close to any harmonics of 10 MHz, which is a very interference-prone frequency due to laboratory
equipment often using 10 MHz reference clocks. It was chosen early in the design process because
the IF affects many details of the design, including the ease of implementing various DSP elements
and component values in the analogue RF part handled by a different subgroup.
Below are explanations pertaining to the different sections of the implementation.

Digitisation
The digitisation stage is responsible for controlling the ADC chip available on the Red Pitaya board,
namely the Analog Devices LTC2145-14[14][15]. This chip converts the incoming analogue IF signals
into discrete ones sampled at 125 MHz with 14 bits per sample. The chip is connected directly to the
PL and an open source IP block implemented therein that converts its data into an AXI4-Stream to be
used internally. This is discussed in section 3.3.2.

9

3.1. Theory of operation 10

DUT I

Q

Data
reduction

Delay
or PLL

Data
reduction

sin

cosREF

DUT

REF

I

Q

Data
reduction

Data
reduction

I

Q

Data
reduction

DDS

Data
reduction

sin

cos

Figure 3.1: High-level block diagrams of the signal chain of both the first (left) and second (right) architectures.

IQ Decomposition
The IQ decomposition stage multiplies the digitised signals by the sine and cosine of a Local Oscillator
(LO). The output of this stage is one or two discrete complex signals represented by their I and Q
components. The theory of this part is described in section 3.2.1.

Data reduction
The data reduction stage takes in the I and Q stream(s) from the IQ decomposition stage, which is
sampled at 125 MHz, and combines samples into points at a rate configured by the user (the IFBW).
This stage also removes unwanted frequency components of the IQ signal. The theory of this part is
described in section 3.2.2.

Data output
Last in the signal chain, the data output stage bundles the points from the data reduction stage into
packets and stores these until they are requested by the server, at which point it writes the data into
system memory where the server can read it. This is discussed in section 3.3.2.

Control logic
The control logic is responsible for configuring and coordinating the different stages of the signal chain.
It takes in configuration data from the Processing System and routes this to the appropriate components.
It also contains a sequencer to coordinate the acquisition cycle. This is discussed in sections 3.3.2 and
3.3.3.

Reference clock
Finally, the clock reference generator is completely isolated from all other parts except through sharing
the same internal clock. It uses Direct Digital Synthesis to generate a 10 MHz sinusoid and outputs
this using the on-board Analog Devices AD9767 DAC[14][16] chip to be used as a reference clock by
external components such as the microwave generators. The DAC, like the ADC, is controlled by an
open-source IP block. This part is discussed in section 3.3.2.

3.1.2. First architecture
The first architecture (shown on the left side of figure 3.1) utilises the incoming reference signal (REF)
as the local oscillator used to decompose the test signal (DUT). This has a major benefit in that the IF
does not have to be very precise, as long as the frequency on the DUT and REF inputs is still the same,
and so clock-locking is not required.
The IQ decomposition can be done by directly using the acquired REF signal as the cosine and a de-
layed version of that same signal as the phase-shifted sine. This is not ideal, however, as the REF

3.2. Signal processing 11

signal can vary in amplitude, reducing the precision. Furthermore, because of the variable input fre-
quency, it is not possible to delay the wave by exactly 90 degrees, causing IQ imbalance that requires
software correction.
To solve these issues, a Phase Locked Loop (PLL) can be used, or rather a digital version thereof. This
block should generate a sine and cosine wave that are phase-locked to the incoming reference signal.
Reconstructing the wave like this solves the two disadvantages mentioned above.
Both methods have a significant flaw, however; While the outputted IQ stream contains information
about the relative phase between the two signals, the amplitude is related to the product of the am-
plitude of the DUT and REF signals instead of the division thereof. This means separate amplitude
detection circuitry is required to derive the relative amplitude which significantly increases the complex-
ity compared to the elegance of the initial idea. Not only that, but, while theoretically possible to build,
the PLL block as described would require too much time to create for this project.

3.1.3. Second architecture
The second architecture (shown on the right side of figure 3.1) treats both the DUT and REF signals
identically throughout the entire signal chain, only distinguishing between them in software. Both IF
signals are decomposed into IQ signals using the same LO, using complex division in software to turn
these two absolute signals into a single relative signal. This architecture incurs a small amount of
software overhead and takes up more space inside the Programmable Logic, but has the advantage
of being very straightforward to implement. It also allows the channels to be used independently. This
architecture even theoretically still allows a small IF offset while doing relative measurements, though
this is hindered by the chosen implementation of data reduction as explained in section 3.2.2. This
architecture is more similar to a traditional VNA.[17]

3.2. Signal processing
In the previous section, two different architectures for extracting the IQ parameters of a signal are
described. This section demonstrates themathematics behind the IQ decomposition and data reduction
stages and derives the effect of several design choices on performance.

3.2.1. Phase and amplitude, I and Q
Phasors
Before the derivations, it is useful to have an intuitive framework to relate the equations to. For this
topic, intuition is in the form of so-called phasors, also sometimes referred to as complex amplitude.
Phasors are related to complex exponential oscillators, the generic form of which being 𝐴𝑒𝑗𝜔𝑡+𝜃. Plot-
ting the result of this function as a vector in the imaginary plane shows the vector is rotating around the
origin at a constant rate (figure 3.2).[18]
A phasor is a complex number that represents a (complex) sinusoidal function of some frequency 𝜔
as a modification of this basic oscillator. They are usually denoted in polar and sometimes exponential
form, 𝐴∠𝜃 = 𝐴𝑒𝑗𝜃, and represent the function 𝐴𝑒𝑗(𝜔𝑡+𝜃) = 𝐴𝑒𝑗𝜃 ⋅ 𝑒𝑗𝜔𝑡. Writing the function as a mul-
tiplication like this shows that the phasor is nothing more than a constant complex factor to the basic
oscillator, defining its starting point and thus amplitude and phase. The instantaneous magnitude and
angle of an oscillator can also be expressed as a phasor.
As mentioned, phasors are usually denoted in polar or exponential form as these directly show magni-
tude and angle in the notation. In some cases however, it is useful to denote it in the rectangular form
𝐴∠𝜃 = Re{𝐴𝑒𝑗𝜃} + 𝑗 ⋅ Im{𝐴𝑒𝑗𝜃} = 𝐼 + 𝑗𝑄. The visual interpretation of the parameters is shown in figure
3.3. The rest of this section will use the exponential and rectangular forms.

IQ decomposition
The goal of the digital part of the VNA is to extract the relative amplitude and phase between two EMWs,
and the simplest way to do this is by way of IQ decomposition.
The incoming signal to be decomposed 𝑠[𝑛] has been digitised by the ADC and so is real and sampled
(discrete time). It can be modelled as the real part of a complex oscillator 𝐴𝑒𝑗𝜃 ⋅ 𝑒𝑗𝜔𝐼𝐹𝑛 = 𝐴𝑒𝑗(𝜔𝐼𝐹𝑛+𝜃)
where 𝜔𝐼𝐹 is equal to the Intermediate Frequency and the objective is to extract the phasor describing
the signal, namely 𝐴𝑒𝑗𝜃 = 𝐼 + 𝑗𝑄.
Using Euler’s formula the real oscillator can be rewritten as two complex oscillators at a positive and

3.2. Signal processing 12

0°

45°

90°

135°

180°

225°

270°

315°

t = 0

Complex exponential oscillator Aej(t +)

A

Figure 3.2: A complex exponential oscillator rotating in the imaginary plane.

0°

45°

90°

135°

180°

225°

270°

315°

Phasor Aej

A

I
Q

Figure 3.3: An example phasor with its parameters.

3.2. Signal processing 13

30 20 10 0 10 20 30
Frequency [MHz]

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ise

d
Am

pl
itu

de
 S

pe
ct

ra
l D

en
sit

y
[-] Frequency shift in IQ decomposition

Shift by LO = IF

Original
Decomposed

Figure 3.4: Amplitude spectrum before and after IQ decomposition.

negative frequency, shown in equation 3.2.

𝑠[𝑛] = 𝑅𝑒{𝐴𝑒𝑗(𝜔𝐼𝐹𝑛+𝜃)} = 𝐴 cos (𝜔𝐼𝐹𝑛 + 𝜃) (3.1)

= 1
2(𝐴𝑒

𝑗(𝜔𝐼𝐹𝑛+𝜃) + 𝐴𝑒−𝑗(𝜔𝐼𝐹𝑛+𝜃)) (3.2)

Like all real signals, this signal has a frequency spectrum symmetric around 0. Multiplying this signal
by a complex LO shifts these frequencies by the frequency of the LO as seen in equation 3.4 and figure
3.4. Note how because the signal is now complex the spectrum is also no longer symmetrical.

1
2((𝐴𝑒

𝑗(𝜔𝐼𝐹𝑛+𝜃) + 𝐴𝑒−𝑗(𝜔𝐼𝐹𝑛+𝜃)) ∗ 𝑒𝑗𝜔𝐿𝑂𝑛) = 1
2(𝐴𝑒

𝑗(𝜔𝐼𝐹𝑛+𝜃) ⋅ 𝑒𝑗𝜔𝐿𝑂𝑛 + 𝐴𝑒−𝑗(𝜔𝐼𝐹𝑛+𝜃) ∗ 𝑒𝑗𝜔𝐿𝑂𝑛) (3.3)

= 1
2(𝐴𝑒

𝑗((𝜔𝐼𝐹+𝜔𝐿𝑂)𝑛+𝜃) + 𝐴𝑒−𝑗((𝜔𝐼𝐹−𝜔𝐿𝑂)𝑛+𝜃)) (3.4)

Just doing this multiplication has not achieved much as the desired information is still encoded into two
frequency components. However, by choosing an appropriate value for 𝜔𝐿𝑂 we can move one of these
components to DC where it is easy to measure. Choosing 𝜔𝐿𝑂 = 𝜔𝐼𝐹 will move both components
to the right and so move the negative frequency component to DC. While this would work for the
implementation, the math is slightly more elegant when shifting the other way, so𝜔𝐿𝑂 = −𝜔𝐼𝐹 is chosen,
resulting in equation 3.5 and the decomposed spectrum shown in figure 3.4.

1
2(𝐴𝑒

𝑗((𝜔𝐼𝐹−𝜔𝐼𝐹)𝑛+𝜃) + 𝐴𝑒−𝑗((𝜔𝐼𝐹+𝜔𝐼𝐹)𝑛+𝜃)) = 1
2(𝐴𝑒

𝑗𝜃 + 𝐴𝑒−𝑗(2𝜔𝐼𝐹𝑛+𝜃)) (3.5)

The important result of this is that the DC component of the final signal is now equal to the phasor that
was used to describe the input signal. Finally, the equation can be rewritten into real and imaginary
parts, shown in equations 3.6 and 3.7, to reveal the DC components to be equal to 1

2 𝐼 and
1
2𝑄 from

the rectangular notation. This factor 12 stems from the fact the IQ decomposition only moves one of the
two frequency components in the original signal to DC and so half of the amplitude is lost.

Re{12(𝐴𝑒
𝑗𝜃 + 𝐴𝑒−𝑗(2𝜔𝐼𝐹𝑛+𝜃))} = 1

2𝐼 +
1
2𝐴 cos (−2𝜔𝐼𝐹𝑛 + 𝜃) (3.6)

Im{12(𝐴𝑒
𝑗𝜃 + 𝐴𝑒−𝑗(2𝜔𝐼𝐹𝑛+𝜃))} = 1

2𝑄 +
1
2𝐴 sin (−2𝜔𝐼𝐹𝑛 + 𝜃) (3.7)

There is also still a second component at 2 ∗𝜔𝐼𝐹 which should be removed in the data reduction stage.
Expected defects of the input signal include the presence of DC offset (a 0 Hz frequency component)
introduced in the ADC, and harmonics of the IF caused by nonlinearities in the analogue signal chain.

3.2. Signal processing 14

Using the same derivation as above it can be shown that these additional frequency components end
up on different harmonics of the IF and should also be filtered by the data reduction stage.1

3.2.2. Data reduction
The IQ decomposition stage outputs sampled signals for I and Q with the same sample rate as the
input signal, which is 125 MHz in this case. This is a tremendous amount of data to process and
store, especially for longer sweeps, totalling over 1 GB per second. Furthermore, recall that the IQ
signal contains two frequency components, one at 𝜔 = 0 (DC) and one at 𝜔 = 2 ∗ 𝜔𝐼𝐹, while only the
DC component is relevant for this application. Lastly, because of frequency spurs, interference, and
quantisation each individual point is not very precise, meaning a large part of the resultant information
is just noise. All three of these problems can be addressed at once by downsampling the signals, where
many samples are combined into one. Downsampling is a form of data reduction.

Different downsampling methods
To downsample a signal by an integer fraction 1

𝑅 , a Low-Pass Filter (LPF) needs to be applied to the
signal of which the cutoff frequency is tuned such that the passband fits inside the Nyquist frequency
of the reduced sample rate, 𝐹𝑁𝑖𝑞𝑢𝑖𝑠𝑡,𝑜𝑢𝑡 =

𝐹𝑠,𝑖𝑛
2𝑅 , followed by decimation by discarding all but every R-th

sample. When using an ideal filter, this method preserves all low-frequency information without any
aliasing.[19] Unfortunately, ideal filters do not exist in this non-ideal world so a filter type must be chosen
based on performance in this specific application.
When doing ameasurement the desired result is the S21 value of the DUT, derived from the IQ values of
the received EMWs, at certain precise frequencies (”points”). This is accomplished by doing a stepped
sweep; configuring the RF signal generators to hold a set frequency, waiting for them to settle, acquiring
data for a set period, before switching to the next frequency and repeating this process. This means
each individual point in the reduced output has a certain period in time, and thus a set of samples,
associated with it that should all represent a single IQ value.
Because the parameters are held constant during the acquisition period, all the samples therein contain
the same amount of information and so all of their signal energy should be utilised to maximise the SNR.
The requirements state only 3 dB of their energy is allowed to be lost in DSP. Furthermore, because
the acquisition period for a point is the only time where the parameters are correct for that point, the
samples outside of this period should not affect its final value. At most -3 dB of the value of a point
is allowed to come from surrounding samples. Lastly, the acquisition time per point can vary between
sweeps as the IFBW is configured by the user, which means the filter response also needs to be
configurable at runtime. These three requirements constrain the selection of filters by affecting their
impulse responses, which describe how much influence a given sample has on the result.

The first option is any form of Infinite Impulse Response (IIR) filter, such as the popular Butterworth
filter. These filters are simple to implement and require fewer resources than other filter types to meet
the same frequency-based requirements. As their name implies, however, their impulse response is
infinitely long, which means the correlation between sequential points is unavoidable. They are also
hard to design, which complicates changing the response at runtime. Lastly, their phase response is
not linear which poses an issue if the frequency of the incoming waves is not exactly equal to 𝜔𝐼𝐹.[20]
The obvious solution to the infinite length of the impulse response is to use a Finite Impulse Response
(FIR) filter instead. These filters also have the benefits of being easier to design and having a linear
phase response, simplifying their use in this situation. However, they do not perform as well in the fre-
quency domain as IIR filters and so need more logic resources to implement a similarly sharp filter.[20]
Cascaded Comb-Integrating (CIC/CCI) filters are a subset of FIR filters that include decimation inside
the filter and can be implemented without multiplication.[21] This greatly reduces the amount of logic
resources required at the cost of severely limiting the space of achievable responses. In fact, the only
response achievable is moving time averages of 𝑁 points. While this sounds bad, the moving time
average, also known as boxcar averaging, actually optimises the two quantitative performance require-
ments that affect this filter, those being minimal SNR reduction and minimal inter-point correlation. This
is because the moving average impulse response only considers samples inside the moving window

1Some very high harmonics of the IF do end up at DC due to aliasing. However, due to the IF being set at 𝐹𝑠16 the first harmonic
that poses a potential issue is the 16th, which is so far removed its amplitude can be neglected.

3.2. Signal processing 15

2.5 2.0 1.5 1.0 0.5 0.0
Time [acquistion periods]

0

1
0

1
0

1
0

1

No
rm

al
ise

d
im

pu
lse

 re
sp

on
se

 [-
]

Reversed impulse responses of various filters

IIR
FIR
CIC
DFT

Figure 3.5: Reversed impulse response examples of various low pass filter implementations. The highlighted regions indicate
the accumulation time (green) and settling time (red) per point.

and none outside, as can be seen in figure 3.5. Unfortunately, this is still not ideal when considering
the entire device as a whole. This is because canonical CIC filters have a window length 𝑁 equal
to or larger than the downsampling ratio 𝑅, which means they also include samples from the period
of time when the generators are still settling, which leads to unpredictable results. This is quite sim-
ple to solve in an FPGA implementation but that requires a different approach to model mathematically.
Another way to approach the filter choice is to question if the traditional method of filtering then decimating-
should be used in this application at all. That method assumes the signal to be extracted is continuous
and bandlimited, however, the IQ signal that actually needs to be measured is stepped at regular inter-
vals while being constant within these steps.
The Discrete Fourier Transform (DFT) is a transform that takes in a bounded set of 𝑁 samples and out-
puts the frequency content of the signal in that bounded time interval, including its DC component. This
is exactly what is required, but DFT is incredibly complex to implement. Luckily though, just extracting
a single component is a lot simpler.
Figure 3.5 shows example impulse responses of the described filters. In practice, the exact response
has to be varied during runtime to meet the configurable IFBW. Note that the impulse responses are
reversed and thus show the contribution of different past samples to the output sample at 𝑡 = 0. The
highlighted regions indicate the accumulation time (green) and settling time (red) per point.

Extracting DC in an interval using DFT
The DFT is a transform that can be applied to discrete-time signals. The output is a signal in the
frequency domain consisting of discrete points that represent the ’amount’ of a specific frequency that
is present in the original signal by way of phasors. It is defined as shown in equation 3.8.[22]

𝑆[𝑘] =
𝑁−1

∑
𝑛=0

𝑠[𝑛] ⋅ 𝑒−𝑗2𝜋
𝑘
𝑁𝑛 (3.8)

This equation defines each point of the DFT of a signal as the summation of all the points in the original
time signal multiplied by a complex oscillator with its frequency being dependent on the sample of the
DFT currently being calculated. Note that the DFT is periodic in 𝑘 with period 𝑁, a consequence of
the input signal being discrete time. While in general this transform would require calculating many
complex exponentials in parallel, in this case only the DC component needs to be extracted. For this
point 𝑘 = 0, so the exponential reduces to a simple factor of 1, reducing the transform to just simple

3.2. Signal processing 16

summation (equations 3.9 to 3.12).2

𝑆[𝑘] =
𝑁−1

∑
𝑛=0

𝑠[𝑛] ⋅ 𝑒−𝑗2𝜋
𝑘
𝑁𝑛 with 𝑘 = 0 (3.9)

𝑆[0] =
𝑁−1

∑
𝑛=0

𝑠[𝑛] ⋅ 𝑒−𝑗2𝜋
0
𝑁𝑛 (3.10)

=
𝑁−1

∑
𝑛=0

𝑠[𝑛] ⋅ 𝑒0 (3.11)

=
𝑁−1

∑
𝑛=0

𝑠[𝑛] (3.12)

This is extremely simple to implement in hardware and once again optimises the two requirements for
this part similar to a CIC filter. The impulse response3 is very similar, except for its length and a factor
𝑁. This response is also shown in figure 3.5 and can be described with the following equation:

𝑥[𝑛] = {1 0 ≤ 𝑛 < 𝑁
0 otherwise

However, while the impulse response optimises the energy requirements, the frequency response also
needs to be considered as this is important for harmonic and spur rejection.

Frequency response of DFT
The response of a single DFT point to an input of given frequency can be derived using the Discrete
Time Fourier Transform (DTFT). As the name suggests, this transform is closely related to the DFT,
with the primary difference being that it applies to infinite-length time signals and as a consequence
it is continuous in the frequency domain. By applying the DTFT to the impulse response of the DC
point in the DFT we can obtain its continuous frequency response, shown in figure 3.6.4 The response
turns out to be a sinc function with its nulls placed at 𝑘𝐹𝑠𝑁 for 𝑘 ∈ ℤ ⧵ {0}. Recall that the IQ signal still
contains frequency components at harmonics of the IF, 𝑘𝐹𝑠16 for 𝑘 ∈ ℤ ⧵ {0}, that need to be cancelled.
Conveniently, it is possible to choose 𝑁 such that the nulls land on these harmonics, which is achieved
with 𝑁 = 16𝑘 for 𝑘 ∈ ℕ+. In other words, the number of samples accumulated into a single point should
be a multiple of 16. This also makes intuitive sense, the integral of a sinusoidal wave is equal to zero
if the integration period is a multiple of the wave period, where the positive and negative parts of the
wave are equal. The IF was chosen to be equal to 𝐹𝑠

16 , which means each period of the IF is 16 cycles
long, so the integration period should be a multiple of 16 cycles to cancel the harmonics of the IF.

Mismatched IF
In a previous section, it was explained that IQ decomposition relies on 𝜔𝐼𝐹 equalling 𝜔𝐿𝑂. If that condi-
tion is met, the frequency components of the original signal are shifted such that the positive component
ends up at DC and so the DC value of the resulting signal can be interpreted as a phasor. However,
when 𝜔𝐼𝐹 ≠ 𝜔𝐿𝑂 the positive component is shifted to a low but non-zero frequency. This has an impact
on the output value because the response of the DFT is not unity for any frequency other than DC, with
the exact factor depending on the ratio 𝜔𝐼𝐹−𝜔𝐿𝑂

𝐼𝐹𝐵𝑊 . This can be visualised using phasors.
The DFT data reduction is equivalent to plain averaging of all the samples in the acquisition period. If the

2An observant reader might note that the complex exponential in the DFT that is being discarded is equivalent to the LO used
in IQ decomposition. While this is true, it is not described this way in this thesis as the multiplication by LO and accumulation
perform different functions of the design (IQ decomposition and data reduction). This allows choice of data reduction method as
described in section 3.2.2.

3Because DFT is not a continuous operation like a filter it does not have an impulse response in the traditional sense, the
phrase is used here to refer to the function describing the response of the (scalar) output to individual samples in the input.

4Similar to the impulse response discussed above, points of a DFT also do not have a traditional frequency response. It is
used here to mean the (absolute) value of the point if the input is a wave of a certain frequency.

3.3. Red Pitaya and programmable logic 17

0 500 1000 1500 2000 2500 3000
Frequency [Hz]

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ise

d
re

sp
on

se
 [-

]

Frequency response of DC bin of DFT with Fs = 125 MHz

N = 250000
N = 125000
N = 50000

Figure 3.6: Frequency response of the DC bin of the DFT for various N at fixed sampling rate 𝐹𝑠 = 125 𝑀𝐻𝑧.

phasor represented by the low-frequency component of the IQ signal is static, this will take the average
of many similar samples and so return that same value while rejecting any noise present in the individ-
ual samples. When 𝜔𝐼𝐹 ≠ 𝜔𝐿𝑂 however, the resulting low frequency component is 𝐴𝑒𝑗𝜃 ⋅ 𝑒𝑗(𝜔𝐼𝐹−𝜔𝐿𝑂)𝑛.
This can be modelled using a complex oscillator, visualised as a slowly rotating phasor. The value
output from the data reduction stage is still the average of all the samples in the acquisition period, but
those now form an arc instead of a point, and so the average will be at the Centre of Mass (CoM) of
the traced arc, as shown in figure 3.7.
This measured IQ point will always have a lower magnitude than the intended result as the CoM of a
circular arc is always closer to its origin than any point on the arc. This response depends on the angle
swept by the phasor during the acquisition period as shown in figure 3.8. This in turn is related to the
ratio 𝜔𝐼𝐹−𝜔𝐿𝑂

𝐼𝐹𝐵𝑊 as demonstrated in figure 3.9.
Contrary to how it initially appears, however, this has very little effect on the operation of the VNA due
to the chosen architecture. Firstly, the microwave generators are frequency-locked to the Red Pitaya
board through the 10 MHz reference output included in the digital design. This means the IF coming
out of the analogue part of the design is extremely close to the frequency used for IQ decomposition
inside the Programmable Logic. Furthermore, the S21 value the VNA measures is the relative value
of the DUT signal compared to the REF signal. Because these signals are both at the same frequency
and are processed the same by the signal chain, they are affected in identical ways and so the relative
value theoretically does not change. In practice, the loss of signal magnitude decreases the precision
and thus causes an increase in noise when the frequency offset is close to a multiple of the IFBW, as
seen in figure 3.9. Whether or not this is a violation of quantitative requirement 3 is left as an exercise
to the reader.

3.3. Red Pitaya and programmable logic
Being the interface between the RF subsystem and the software, the digital subsystem of the VNA will
have to process and digitise the signals coming in at IF. It has to be able to receive IF inputs, has to
contain enough processing power and has to do this processing fast and precisely enough to meet
the quantitative requirements. The board chosen for this application is the Red Pitaya STEMlab 125-
14 [14], shown in figure 3.10. This board has on-board ADCs and DACs and an SoC containing a
processing system and programmable logic. The programmable logic can be configured using Vivado
software which is made by Xilinx. Vivado also includes some pre-made logic blocks, called Intellectual
Property blocks (IP blocks), that can execute common functions. These include things like direct digital
synthesis to generate a sine wave, arithmetic units or slicers. It is also possible to create custom
blocks using (synthesisable) Verilog. Verilog is a hardware description language, the syntax of which

3.3. Red Pitaya and programmable logic 18

0°

45°

90°

135°

180°

225°

270°

315°

Angle swept [°]

Visualisation of phasor rotating during accumulation

Swept arc
Starting phasor
Ending phasor
Measured IQ

Figure 3.7: Visualisation of the result of data reduction when the low-frequency component is not at DC.

0°

45°

90°

135°

180°

225°

270°

315°

Angle swept [°]

0.2
0.4

0.6
0.8

1.0

Effect on measured magnitude of phasor rotating during accumulation

Measured amplitude
0 2
2 4
4

Figure 3.8: Effect of the angle swept by the IQ signal phasor on the measured magnitude.

3.3. Red Pitaya and programmable logic 19

1500 1000 500 0 500 1000 1500
Frequency offset [Hz]

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

su
re

d
am

pl
itu

de
 re

la
tiv

e
to

 th
eo

re
tic

al
 [-

]

Attenuation of signals around IF
500 Hz IFBW
1000 Hz IFBW
2500 Hz IFBW

Figure 3.9: Effect of the IFBW on the magnitude response to frequencies around the IF. Note that IFBW here refers to the
inverse of accumulation time and not the total time per point.

is supposed to resemble C [23]. It is a subset of the SystemVerilog language. In turn, a subset of the
Verilog language is synthesisable, which means it is possible to physically realise this code and turn it
into a bitstream for an FPGA or even a custom chip.
The connections between IP blocks made by Xilinx adhere to the AXI communication bus protocol.
This protocol is specifically created for on-chip communication. The ADCs and DACs are chips outside
the SoC on the Red Pitaya board. They can however also be controlled using a block in the Vivado
software because these are connected to the SoC. The blocks to do this were created by Pavel Demin
and are freely available. The following subsections will specify and explain the function of each of the
components used.

3.3.1. Red Pitaya
The Red Pitaya STEMlab 125-14 development board is used to implement the design made in Vi-
vado. The board is very versatile and is meant to develop applications related to RF. The core of the
board is the Xilinx Zynq 7010 SoC. This SoC consists of two ARM Cortex A9 processing cores and
programmable logic. The PL is equivalent to an Artix-7 series FPGA [24]. To indicate the size of the
PL: it has approximately 28k logic cells, 18k LUTs, 35k flip-flops, 80 DSP slices and 2.1 Mb block RAM
space [24]. Besides the SoC having some integrated cache, the Pitaya possesses 512 MB RAM. It
also has connectivity via USB and Ethernet for remote connectivity possibilities and can run Linux from
an SD card. The RF in- and outputs are SMA type and are connected to a DAC and an ADC with two
channels each. The DAC can update at 125 MS/s and the ADC can sample at 125 MS/s, both using
14 bits per channel. The DAC used is the AD9767 [16] and the ADC is the LTC2145-14 [15]. Besides
the RF connectors, the board has extension connectors with pins for some common communication
interfaces and general-purpose IO, both digital and analogue.

3.3. Red Pitaya and programmable logic 20

Figure 3.10: The Red Pitaya board [25].

3.3.2. Protocols and pre-made blocks
To configure the programmable logic, Vivado software is used. It is made by Xilinx and the version
used for this project is available at no cost for a limited number of devices, including the SoC on the
Red Pitaya. The blocks made by Xilinx and Pavel Demin all adhere to the AXI bus protocol. To interact
with these modules, the custom blocks will also have to use this protocol.

AXI
The AXI (Advanced eXtensible Interface) bus protocol is designed specifically for on-chip communi-
cation. It is part of the AMBA specification, which is freely available from ARM and royalty-free. The
standard is widely adopted and ensures IP components are compatible between different designers.
This is important due to the open nature of the VNA project, as it will ensure that even the IP blocks on
the programmable logic are easily interchangeable. Others could even use custom blocks created for
this project. The specific version of AXI used most is called AXI4-Stream. This is a simplified version
of the full AXI protocol and is suitable for FPGAs [26]. By AXI-Stream, AXI4-Stream is meant. If only
AXI is written the information is valid for the general AXI protocol.

The complete AXI protocol includes many control and data signals. It specifies full communication
between a master and a slave component. The master can send a read address to the slave and
the slave will reply with data it has stored at that location via the read data channel. The master can
also write data to the slave by sending a write address and data. These channels are all accompanied
by many control and handshake signals. The full AXI protocol is very complex and not very relevant
for this project. The only components that use this protocol are ready-made by Xilinx. It is however
relevant to have a global understanding of the full protocol, to be sure the ready-made components
are connected and functioning correctly. The AXI-Stream protocol, which is explained below, is used
in custom components, therefore a more rigorous understanding of this protocol is required.

The AXI-Stream protocol in its simplest form consists of a transmitter and a receiver and four signals
between them: a clock signal, an information bus, a valid signal and a ready signal. The information
bus must be an integer number of bytes and has a standard width of 32 bits in this project. Please
note that some abbreviations might still reflect the previous naming convention of ’master’ and ’slave’
instead of ’transmitter’ and ’receiver’. For this report, the latter is used for AXI-Stream. The regular AXI
protocol still uses ’master’ and ’slave’ naming conventions as seen before.
The transmitter sends the valid signal and the receiver sends the ready signal (TVALID and TREADY).
Once both are high, the data transfer occurs on the next (low to high) clock edge. This ensures both
blocks are ready for the transfer and no corrupt data is transferred. A simple handshake is visible in
3.11. As soon as the information becomes valid, the transmitter changes the valid signal to one and
once the ready signal is also one by the receiver the transfer occurs on the clock edge of T3. After
this, the ready and valid signals are made zero by their respective producers and the information can
change again. The system is ready for the next transfer.

3.3. Red Pitaya and programmable logic 21

Figure 3.11: Timing diagram of AXI handshake [26]

In this protocol, it is possible to combine individual transfers into one long packet. The simplest way
to do this is to transfer data like normal and then set a TLAST signal to high after the last individual
transfer has occurred. This lets the receiver know that all transfers up to the previous TLAST belong to
one packet [26].
The AXI-Stream protocol also includes functionality for routing different data streams through a bus.
This can be done using the TID and TDEST signals. These are not relevant for this project as there is no
bidirectional bus shared between all components like a CPU might have. Instead, every component’s
data bus is connected directly to the next component and does not need to be shared.

MMIO
To control GPIO, the processing system can use memory-mapped IO. This means certain memory
addresses are linked to in- or outputs and whenever the processing system reads from or writes to this
address, the signal is passed on to the GPIO. This is contrary to port-mapped IO, where the CPU will
have separate instructions for reading to and writing from the IO.
MMIO can be implemented on the Red Pitaya by using an AXI bus coming from the processing system.
The processor will write to a memory address corresponding to this AXI bus and this AXI bus can
then be split into multiple destinations. In this project, the MMIO is only used to send signals from the
processing system to the programmable logic. Thismeans the signals stay in the SoC, the same system
would apply however if the signal were connected to outside the SoC. The communication between the
programmable logic and the processing systems works via a memory map. The address map of the
entire memory space of a Zynq-7000 series SoC can be seen in figure 3.12. The address space is 32
bits, which allows the system to access approximately four gigabytes of memory. The first gigabyte of
address space is mapped to RAM, after which two gigabytes are mapped to the programmable logic
(PL) via AXI, General Purpose Port one and two. The final gigabyte is used for miscellaneous purposes.

3.3. Red Pitaya and programmable logic 22

Figure 3.12: System-level address map for the Zynq-7000 SoCs[27]

The signal now reached the PL via AXI. To convert it to IO signals in the PL, an AXI GPIO block is used.
This block is made by Xilinx and converts the data sent via AXI to MMIO inside the programmable logic
[28]. It is now possible to write configuration data to the PL to set parameters of different parts of the
design and allow the PS to customise the acquisition and timing.

DMA
Direct memory access allows a system other than the CPU to directly access the main memory. This
makes sure the CPU does not have to execute every read or write to or from the memory. It saves the
CPU time and allows it to do other tasks in the meantime. Another reason direct memory access might
be necessary is the speed of data coming in. It might be too high for the CPU to handle. When running
an ADC for example, capturing the data using the CPU could become an all-encompassing task for it.
If the ADC can just put the data directly into memory the CPU can process it at a later time making the
system more flexible. For the project it’s important to allow the PL to write measurement data directly
to the memory, to allow the CPU to run the server. To do this, another IP block by Xilinx is used. This is
an AXI DMA block that will take in an AXI-Stream bus from storage in the programmable logic, a FIFO
buffer in this design, and translate this to an AXI bus for the processing system’s memory controller.

DDS
Another relevant pre-existing block made by Xilinx is the DDS block. DDS stands for direct digital
synthesis and is a technique for digitally synthesizing analogue waveforms. It works by using a phase
accumulator, which is incremented by 𝑀 every clock cycle [29]. The size of the register in the phase
accumulator is 𝑛 bits. This allows the programmer to set the time between overflows of the register,
resulting in a frequency 𝑓𝑜𝑢𝑡 controlled by the 𝑛 and 𝑀 parameters as seen in equation 3.13, where 𝑓𝑐
is the clock frequency. The 𝑛 and 𝑀 parameters also influence the resolution of the output waveform.
To enable the DAC to reconstruct a sine wave with the correct frequency, at least two samples are
required between each overflow by Nyquist [29].

3.3. Red Pitaya and programmable logic 23

𝑓𝑜𝑢𝑡 =
𝑀 ⋅ 𝑓𝑐
2𝑛 (3.13)

The output of the phase accumulator is now a saw tooth wave. This wave can be fed to a lookup table
storing a custom waveform, a sine wave for example. This lookup table then outputs the value of a
sine corresponding to the phase value sent by the accumulator. When feeding the values from the
lookup table to a DAC, the digital wave can be made analogue. It can also be filtered after the DAC to
smooth out some of the artefacts created by the synthesizing process. Figure 3.13 shows the entire
DDS process.

Count
Increment (M)

Phase
Accumulator

Lookup Table DAC
Low-pass

Filter

Clock

n-bits n-bits n-bits Analog

Figure 3.13: Block diagram of a simple DDS signal train.

The DDS Compiler by Xilinx integrates the phase accumulator and the lookup table. It has many
different options to configure it for different applications. The increment can either be fixed internally
or coming from an external source, the frequency is configurable using the 𝑛 and 𝑀 parameters and
there is functionality to output the current phase, amongst many other things. It can only output sine
and cosine waves in standard form but it is possible to use the phase accumulator part separately
and connect a custom LUT [30]. The number of bits in the phase and output signal can be set by the
designer and the LUT is generated specifically for this configuration. This makes sure the fidelity of the
output is only dictated by the samples in each cycle and not by rounding of the data stored in the LUT.

Multiplier
The multiplier block by Xilinx is quite simple. It is one piece of pipelined combinatorial logic with two
inputs and one output, the sizes of which can be configured. It implements fixed-point multiplication
and can be realised using either DSP slices or lookup tables [31].

FIFO
To make sure the values coming from the accumulation system don’t have to instantly be transferred
into memory by the DMA, a buffer is needed. This buffer should be able to hold a certain number of
samples to make sure no measurements are lost if the DMA is unavailable. The standard buffer used
for such applications is a FIFO buffer. This stands for first in first out, which means that data stored
first in this buffer is available first at the output, regardless of data stored in the buffer later [32]. It can
be seen as a queue where data arriving can only leave when all data that arrived earlier has left. The
buffer only requires one input and one output. The implementation by Xilinx is very straightforward to
use [33]. An important consideration when using the buffer is its size. The buffer is synthesized using
block RAMs on the programmable logic which are 512 times 32 bits in size. It would thus be logical to
use a set number of block RAMs for the buffer.

3.3. Red Pitaya and programmable logic 24

Red Pitaya ADC/DAC controllers
The on-board DAC and ADC chips can be controlled by dedicated IP blocks in the Vivado software.
These blocks are made by Pavel Demin[34], instead of Xilinx. The ADC block communicates with the
chip outside the SoC and outputs the data into an AXI-Stream bus. Inside the ADC chips, there are
two 14-bit channels that can be used as two separate ADCs. The block doesn’t require any buffer,
as the transformation to AXI-Stream happens instantly. The only change that happens to the signal is
padding to 32 bits, the TVALID signal is always set high. The ADCs can sample at 125 MS/s maximum.
The chip allows other sampling frequencies than 125 MHz but the version of Red Pitaya used in this
project is not capable of sending it to another clock without modifications. The SNR of the ADC is 73.1
dB according to the datasheet [15].

The on-board DAC is more complicated than the ADC. This report won’t go into the full details of this
component, instead explaining how to use it. The DAC chip has, like the ADC, two channels of 14
bits. Each of these channels functions essentially as an independent DAC [16]. A problem that arises
from this is that there is only one 14-bit connection to the two-channel DAC chip. This problem is
solved by the DAC by using a double data rate (DDR) clock of 250 MHz. The DAC controller block
on the programmable logic has a 32-bit input, where two 14-bit channels are padded with four bits. It
will alternate between which 14 bits are sent to the DAC using the DDR clock, switching to the other
channel every clock cycle. This allows the programmable logic to send data to both DACs using one
14-bit interface.

3.3.3. Custom blocks
To achieve the required functionality, not everything could be made using Xilinx IP Blocks. For this
reason, custom IP blocks were designed. This can be done in the Vivado software by writing synthe-
sisable Verilog code. Synthesisable means the code can be expressed in hardware by a synthesiser.
An example of non-synthesisable Verilog are things like ’turn a signal on after 100 ns’, while the synthe-
sisable version would be ’turn a signal on after 10 cycles of this 100 MHz clock signal’. After declaring
the block in a separate Verilog file, the block becomes visible in the block design editor. It can now be
used in conjunction with the Xilinx blocks.

Accumulators
The accumulators will record the values coming in from the ADCs after they have been IQ decomposed.
They will have to add all values together and keep track of the number of values they have added
together. The division for averaging will be done outside the programmable logic to save space, as
division is very hard to implement in hardware. The accumulators should be implemented in such a
way that the resolution stays maximal and no data is lost, as long as this fits on the available logic. To
achieve this, the following design was made.

Accumulator System

Trigger

Accumulator

Clock

Enable

In value [31:0]

Trigger

Reset

Current phase [7:0]

Done samples valid

Out value [63:0]

Sample count [31:0]

Figure 3.14: Block diagram of the accumulator system.

The accumulator is split into two parts, visible in figure 3.14, the accumulator itself and the accumulator
trigger. The trigger module takes the enable signal from the sequencer (named trigger in the figure) and

3.3. Red Pitaya and programmable logic 25

produces the enable signal for the accumulator while taking the current phase of the DDS used for IQ
decomposition into account. It makes sure the accumulator stays enabled until a full period of the DDS
is completed, as prescribed in section 3.2.2. It will remember the phase when it started accumulating
and only disable the enable signal once this phase is matched. This is done by implementing the state
machine visible in figure 3.15 in Verilog. It waits for a trigger in the stopped state and then transitions
to the starting state once the trigger is enabled. In the starting state, the current phase is saved and
the state transitions to the running state, where accumulation starts. Once the trigger is de-asserted,
the state transitions to waiting, where the system will keep accumulating until the phase from the DDS
matches the previously saved phase. It will transition to the ending phase and assert the valid signal to
signify the data coming from the accumulators is now valid. The valid signal has the same use as the
AXI-Stream TVALID bit, in this case signalling the packetiser there is new data available. On the next
clock edge, the system will transition to the stopped state. Every state transition happens on a positive
clock edge.

Stopped
enable = 0
valid = 0

Starting
enable = 0
valid = 0

phase = current_phase

Running
enable = 1
valid = 0

Waiting
enable = 1
valid = 0

Ending
Enable = 0
Valid = 1

Trigger = 1

Else

Always Trigger != 1

Else

Current phase == phase

Else

Always

Reset

Figure 3.15: State machine for the accumulator trigger.

The accumulator itself is a simpler state machine, visible in figure 3.16. It works by waiting in the waiting
state until the enable signal is high to transition into the accumulating state. Here the value coming in
is added to the total and the sample count is increased by one. Once the enable is set low, the total is
increased by the input value and the count is increased by one once more and sent to the output. The
system then enters back into the waiting state. Please note that the count in the accumulator is named
’sample count’. The ’sample count’ counts the number of samples the accumulator sums up to later
divide the total by, producing one point for the rest of the system.

Waiting
total = 0

count = 0

Accumulating
total = total + value_in

count = count + 1

Output
total = total + value_in

count = count + 1
Enable = 1 Enable = 0

Else
Else Always

Reset

Figure 3.16: State machine for the accumulator.

Sequencer
The sequencer block is tasked with timing every sample period. It will have to trigger the generator, wait
for it to settle and accumulate for a set time after that. It should then reset and start the next sample. To
achieve this, a simple counter was implemented. The different signals will turn on and off for different
ranges of the counter. These ranges are configurable by turning the settling time, accu time and gen
end parameters. The timing is visible in figure 3.18. A previously discussed MMIO interface can be
used to send timing values to this block.

3.3. Red Pitaya and programmable logic 26

Sequencer

Clock

Reset

Settling time [31:0]

Accu time [31:0]

Gen end [31:0]

Generator trigger

Accumulator trigger

Figure 3.17: Sequencer diagram.

Sequencer

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Generator trigger

Accumulator trigger

gen end

settling time

accu time

Figure 3.18: Sequencer digital timing diagram.

Packetiser
The packetiser can take values from the accumulators, both the accumulated value and the ’sample
count’, and turn these into an AXI-Stream packet. It does this by splitting the 64-bit outputs from the
accumulator into 32-bit signals. It will then step through each of the twelve 32-bit signals, and send it
to the AXI-Stream bus. This results in twelve consecutive data pieces, after which the TLAST signal is
asserted. This signals the end of a packet to the next block. As the next block in the design is a FIFO
buffer, this can get full. This is why an inhibit signal is created that will make sure the packetiser stops
sending packets if the buffer is almost full so packets do not get corrupted.

4
Implementation and Validation

4.1. Implementation and validation of individual components
4.1.1. Sequencer
The sequencer module, described in section 3.3.3, was implemented in Verilog. Its code can be found
in appendix A.4. A testbench for it can be found in appendix A.5. The behaviour of the system was sim-
ulated and the resulting waveform can be seen in figure 4.1. Comparing this waveform to the expected
waveform in figure 3.18, the result looks very similar, with the generator trigger and accumulator trigger
asserting and de-asserting at the correct time. More careful inspection of the simulated waveform re-
veals that every transition happens two counter increments later than it should but because this is true
for every signal change, the length of the cycles is not impacted and the system functions correctly.

Figure 4.1: Waveform resulting from the sequencer test. (Decimal radix for all signals.)

4.1.2. Accumulator
The accumulator and accumulator trigger modules, described in section 3.3.3, were implemented in
Verilog. The code can be found in appendix A.1 and A.2. To validate the function of the accumulator,
a testbench was constructed that can be found in appendix A.3. This testbench initialises the system
and sends random input data with looping phase data, like what would be coming from the DDS. The
waveform resulting from the system behaviour can be observed in figure 4.2.

Figure 4.2: Waveform resulting from the accumulator and trigger test. (Decimal radix for all signals.)

The waveform shows after 100 ns the trigger is asserted and a little later values and phase data start

27

4.1. Implementation and validation of individual components 28

coming in. The system saves the phase and the accumulator is enabled. The output increases as
expected. Once the trigger is de-asserted, the enable doesn’t follow instantly but turns low once the
saved phase number comes by again. This shows both the accumulator and the trigger module work.

4.1.3. Packetiser
The packetiser, described in section 3.3.3, was implemented in Verilog with the assistance of ChatGPT
and can be found in appendix A.6. To test the packetiser, a testbench was made along with a sample
data generator. The testbench and a top-level module can be found in appendix A.7 and the sample
data generator in appendix A.8. Data is available at all input ports of the module and it has to turn this
into packets while taking control signals into account. One packet transfer can be seen in figure 4.3.
At the start of the packet, the different values are sent to the output and the valid signal is asserted.
Then the ready signal is turned off by the testbench, simulating a receiver that’s not ready to receive
data. After the ready signal is turned on again, the rest of the data is transferred and after the last
piece of data, TLAST is turned on for one clock cycle to let the receiver know the packet is finished. The
packetiser works correctly.

Figure 4.3: Waveform resulting from the packetiser test.

4.1.4. FIFO
The FIFO was implemented using several block RAMs available in the programmable logic. The FIFO
is configured as 32,768 32-bit stages, which results in the FIFO being able to store 2,730 packets. This
was estimated to be well within the limits of the server’s ability to transfer data to the memory in time
for the FIFO not to get full.

4.1.5. DMA
Testing the DMA using a simulation was unfortunately not practical due to its interactions with the Pro-
cessing System. Unlike the other premade components it was very hard to get working and the limited
debugging options and incomplete error documentation did not help with this. A system using the sam-
ple data generator A.8, also used in the previous section, and a FIFO with FIFO filler in appendix A.9
were used to understand the functioning of the DMA.
A prominent error in this process was DMA not started. The error was caused by the requested trans-
fer size being too small to contain all the data until the TLAST signal was sent. The only recovery once
this error occurred is completely re-downloading the overlay. On the other hand, a transfer larger than
the packet length leaves the last part of the DMA buffer unchanged, returning old measurement data.
To check if this has happened the transfer length register can be read. The error would also happen
unexpectedly if the FIFO is cleared. The first four words of the next packet are buffered inside the DMA
which is reset separately from the FIFO, and a cleared FIFO could thus result in the first packet being
prepended with these four words and exceeding the length of the transfer.
Another common error was Transfer size is XXXX bytes, which exceeds the maximum DMA buffer
size YYY. This was caused by micro DMA, a specific DMA implementation, only allowing single burst
transfers. It was solved by not using this DMA implementation at the cost of requiring more logic re-
sources.
DMA not idle was also common, it meant the last transfer hadn’t finished yet. Transfers can hang
for arbitrary reasons, the only recovery found is again re-downloading the overlay. This error should
only happen when no data is available to the DMA but other unknown causes were suspected during
testing. For this issue no fix was found, instead it seems to have been solved while working on other
errors. This error also occurred in the process of finding temporary fixes for the previous two errors.
Resetting only the DMA instead of re-downloading the overlay causes this error as the internal states
of the DMA and the PYNQ library desynchronise.

4.2. Integration 29

Mixers Accumulators

ADC's
DUT

REF

Multiplier

Multiplier

Multiplier

Multiplier

DDS IF

[15:0]DUT

[15:0]REF

Cos [15:0]

Sin [15:0]

DUT I [31:0]

REF I [31:0]

DUT Q [31:0]

REF Q [31:0]

Accumulator
Trigger

Accumulator

Accumulator

Accumulator

Accumulator

Sequencer Trigger

Generator Trigger

Current Phase AXI-Stream

Packetiser

Value [63:0]

Count [31:0]

Value

[63:0]
Count [31:0]

Value [63:0]

Count [31:0]

Value [63:0]

Count [31:0]

FIFO DMA Processing
Subsystem

AXI-Stream AXI-Stream AXI

MMIO Config

Config Data AXI

DDS REF DACAXI-Stream 10 Mhz Reference

Enable

Figure 4.4: High-level and simplified block diagram of the entire logic implementation implemented in the PL.

ACCUS

current_phase

aclk

dut_cos_accu[63:0]

dut_cos_cnt[31:0]

dut_sin_accu[63:0]

dut_sin_cnt[31:0]

ref_cos_accu[63:0]

ref_cos_cnt[31:0]

ref_sin_accu[63:0]

ref_sin_cnt[31:0]

output_valid

dut_cos[31:0]

dut_sin[31:0]

ref_cos[31:0]

ref_sin[31:0]

rst

trigger

CNTRL

S_AXI

S_AXI1

aclk

rst

s_axi_aclk

s_axi_aresetn

gen1_trigger

gen2_trigger

accumulator_trigger

Dout[15:0]

DAISY_BUF

daisy_p_i[1:0]

daisy_n_i[1:0]

daisy_p_o[1:0]

daisy_n_o[1:0]

MIXERS

s_axis

s_axis1

aclk

dut_cos[31:0]

ref_cos[31:0]

ref_sin[31:0]

dut_sin[31:0]

PS

DDR

FIXED_IO

M00_AXI

M01_AXI

S_AXI_HP0

M02_AXI

FCLK_CLK0

S00_ARESETN[0:0]

RP_DAC

S_AXIS

clk_in1

dac_clk_o

dac_rst_o

dac_sel_o

dac_wrt_o

dac_dat_o[13:0] dac_wrt_o

cdc_reset

xpm_cdc

dest_clk
dest_arst

src_arst

mmio_config_1

AXI GPIO

S_AXI

GPIO

gpio_io_i[31:0]

gpio_io_o[31:0]

GPIO2

gpio2_io_i[31:0]

gpio2_io_o[31:0]

s_axi_aclk

s_axi_aresetn
mmio_config_2

AXI GPIO

S_AXI

GPIO

gpio_io_i[31:0]

gpio_io_o[31:0]

GPIO2

gpio2_io_i[31:0]

gpio2_io_o[31:0]

s_axi_aclk

s_axi_aresetn

sequencer

sequencer_v1_0

aclk

rst

dead_time[31:0]

point_time[31:0]

trig_config[31:0]

gen1_trigger

gen2_trigger

accumulator_trigger

xlslice_0

Slice

Din[31:0] Dout[15:0]

xlslice_1

Slice

Din[31:0] Dout[0:0]

dac_sel_o

util_ds_buf_1

Utility Buffer

CLK_IN_D

IBUF_DS_P[1:0]

IBUF_DS_N[1:0]

IBUF_OUT[1:0]

util_ds_buf_2

Utility Buffer

CLK_OUT_D3

OBUF_DS_P[1:0]

OBUF_DS_N[1:0]

OBUF_IN[1:0]

DDR

FIXED_IO

dac_rst_o

mult_dut_cos

Multiplier

CLK

A[13:0]

B[13:0]

P[31:0]

mult_dut_sin

Multiplier

CLK

A[13:0]

B[13:0]

P[31:0]

mult_ref_cos

Multiplier

CLK

A[13:0]

B[13:0]

P[31:0]

mult_ref_sin

Multiplier

CLK

A[13:0]

B[13:0]

P[31:0]

split_adc

axi_split_v1_0

s_axis

aclk

data_lower[13:0]

data_upper[13:0]

split_if

axi_split_v1_0

s_axis

aclk

data_lower[13:0]

data_upper[13:0]

dac_clk_o

processing_system7_0

ZYNQ7 Processing System

MDIO_ETHERNET_0

DDR

FIXED_IO

SPI_0

USBIND_0
S_AXI_HP0_FIFO_CTRL

M_AXI_GP0
S_AXI_HP0

TTC0_WAVE0_OUT

TTC0_WAVE1_OUT

TTC0_WAVE2_OUT

M_AXI_GP0_ACLK

S_AXI_HP0_ACLK

FCLK_CLK0

FCLK_RESET0_N

ps7_0_axi_periph

AXI Interconnect

S00_AXI

M00_AXI

M01_AXI

M02_AXI

ACLK

ARESETN

S00_ACLK

S00_ARESETN

M00_ACLK

M00_ARESETN

M01_ACLK

M01_ARESETN

M02_ACLK

M02_ARESETN
rst_ps7_0_125M

Processor System Reset

slowest_sync_clk

ext_reset_in

aux_reset_in

mb_debug_sys_rst

dcm_locked

mb_reset

bus_struct_reset[0:0]

peripheral_reset[0:0]

interconnect_aresetn[0:0]

peripheral_aresetn[0:0]

RP_ADC

AXI4-Stream Red Pitaya ADC

M_AXIS

adc_clk

adc_csn

adc_clk_p

adc_clk_n

adc_dat_a[13:0]

adc_dat_b[13:0]

adc_enc_p_o

axis_red_pitaya_dac_0

AXI4-Stream Red Pitaya DAC

S_AXIS

aclk

ddr_clk

locked

dac_clk

dac_rst

dac_sel

dac_wrt

dac_dat[13:0]

clk_wiz_0

Clocking Wizard

clk_in1
clk_out1

locked

Vaux0

Vaux1

Vaux8

Vaux9

Vp_Vn

adc_dat_a_i[13:0]

adc_dat_b_i[13:0]

axi_mem_intercon

AXI Interconnect

S00_AXI

M00_AXI

ACLK

ARESETN

S00_ACLK

S00_ARESETN

M00_ACLK

M00_ARESETN

c_counter_binary_0

Binary Counter

CLK
THRESH0

Q[4:0]

dac_dat_o[13:0]

dac_pwm_o[3:0]

daisy_n_i[1:0]

daisy_n_o[1:0]

daisy_p_i[1:0]

daisy_p_o[1:0]

dds_if

DDS Compiler

M_AXIS_DATA

M_AXIS_PHASEaclk

event_pinc_invalid

dds_ref

DDS Compiler

M_AXIS_DATA
aclk

event_pinc_invalid

dma

AXI Direct Memory Access

S_AXI_LITE

M_AXI_S2MMS_AXIS_S2MM

s_axi_lite_aclk

m_axi_s2mm_aclk

axi_resetn

s2mm_prmry_reset_out_n

s2mm_introut

exp_n_tri_io[7:0]

exp_p_tri_io[7:0]

fifo_packet

AXI4-Stream Data FIFO

S_AXIS

M_AXISs_axis_aresetn

s_axis_aclk

m_axis_aclk

prog_full

led_o[7:0]

packetiser

packetiser_v1_0

M_AXIS_OUT

val_1[63:0]

cnt_1[31:0]

val_2[63:0]

cnt_2[31:0]

val_3[63:0]

cnt_3[31:0]

val_4[63:0]

cnt_4[31:0]

trigger

inhibit

aclk

rst

adc_clk_n_i

adc_clk_p_i

adc_csn_o

adc_enc_n_o

accu_trigger

accu_trigger_v1_0

current_phase

aclk

rst

trigger

accu_enable

done_samples_valid

accu_ref_sin

accumulator_v1_0

aclk

enable

rst

in_value[31:0]

out_value[63:0]

sample_count[31:0]

accu_ref_cos

accumulator_v1_0

aclk

enable

rst

in_value[31:0]

out_value[63:0]

sample_count[31:0]

accu_dut_sin

accumulator_v1_0

aclk

enable

rst

in_value[31:0]

out_value[63:0]

sample_count[31:0]

accu_dut_cos

accumulator_v1_0

aclk

enable

rst

in_value[31:0]

out_value[63:0]

sample_count[31:0]

xlconcat_0

Concat

In0[0:0]

In1[0:0]

In2[0:0]

In3[0:0]

In4[0:0]

In5[0:0]

In6[0:0]

In7[0:0]

dout[7:0]

Figure 4.5: Complete block diagram of the entire logic implementation implemented in the PL as exported from Vivado. An
enlarged version can be found in appendix B

4.2. Integration
All the functions described in the previous sections are implemented as Intellectual Property blocks (IP
blocks) in the Vivado software used to generate a bitstream for the Programmable Logic in the SoC.
These blocks combine to form the stages described in section 3.1. In turn, these stages combine to
form the complete overlay. These combinations are assisted by several blocks and connections not
described in detail as they function simply as ”glue logic”, performing functions such as splitting and
merging busses and managing clock domains. A simplified block diagram is shown in figure 4.4, with
the complete diagram as exported from Vivado shown in figure 4.5. The logic resource use of the
implementation is shown in figure 4.6. This summary shows the implemented logic only takes up a
small part of the available resources, leaving ample room for future work.

4.3. Validation of integrated system
The integrated system was tested using a UNI-T UTG962E arbitrary waveform generator.[35] Its two
output channels were connected directly to the two input channels of the Red Pitaya board (named
DUT and REF) with appropriate termination to prevent signal reflections. The generator was config-
ured to output a 7.8125 MHz sinewave on both of its outputs, mimicking an IF signal coming from the

Figure 4.6: Overview of available and used logic resources.

4.3. Validation of integrated system 30

Figure 4.7: Attenuation of the analogue front-end of the Red Pitaya board.[36]

analogue part of the VNA. The amplitude and phase of both of these waves were then varied and mea-
sured with the implementation under test. The data was extracted using a simple iPython notebook
based on the PYNQ library, included in appendix C.1. The notebook runs a series of tests, testing two
different IFBWs1 for each of three different configurations of the input waves. Each test acquires 1000
points spread over one second. It should be noted that the used function generator is not a precision
instrument and as such it will introduce errors in the results. The following analysis takes this into
account.

4.3.1. Measurement 1
The first input configuration is two identical sinusoids at 2 𝑉𝑝𝑝 with no phase difference, described in
phasor form as F𝐷𝑈𝑇 = 1∠0 𝑉 and F𝑅𝐸𝐹 = 1∠0 𝑉. This resulted in the data shown in figure 4.8.
It can be seen that for both channels and both IFBWs, the measured amplitude is approximately 5%
lower than expected, with the IFBW of 1 kHz being slightly more attenuated than 10 kHz. This is
mostly caused by attenuation in the analogue front-end of the Red Pitaya board, shown in figure 4.7.
The expected attenuation of the front-end at 7.8 MHz is approximately -0.3 dB, or about 6.7%. The
remaining deviation is approximately 1.7% which is within the specifications of the ADC and function
generator. The slight amplitude difference between the IFBW configurations is due to an IF mismatch
between the function generator and Red Pitaya board of approximately 100 Hz, the used generator
does not have a reference input and thus could not be locked to the board as would be done in use.
Both of the mentioned effects affect the channels the same and so the relative amplitude measurement
is very accurate, well within 1% of the expected value. The noise is also fairly low at less than -43 dB
at 1 kHz IFBW, though this is only a rough estimate and more specific measurements are required to
specify it fully. The noise at 10 kHz IFBW is slightly higher, as expected due to the shorter integration
time.
The IF mismatch also affects the absolute phase measurements of the individual channels, rendering
them unusable. The relative measurement, however, is still valid and accurate to approximately 2.5
mrad.

4.3.2. Measurement 2
The second input configuration is described in phasor form as F𝐷𝑈𝑇 = 0.5∠0 𝑉 and F𝑅𝐸𝐹 = 1∠

𝜋
2 𝑉. This

resulted in the data shown in figure 4.9.
This measurement contains an unexpected amplitude modulation in the DUT channel which affects

1As a reminder, IFBW is the inverse of accumulation time, not the IQ sampling rate.

4.3. Validation of integrated system 31

0 250 500 750 1000
Sample [-]

0.940

0.945

0.950

0.955

M
ea

su
re

d
am

pl
itu

de
 [V

] Measured amplitude DUT channel

IFBW = 10 kHz
IFBW = 1 kHz

0 250 500 750 1000
Sample [-]

0.935

0.940

0.945

M
ea

su
re

d
am

pl
itu

de
 [V

] Measured amplitude REF channel

0 250 500 750 1000
Sample [-]

1.00590

1.00595

M
ea

su
re

d
am

pl
itu

de
 [-

] Measured relative amplitude

0 250 500 750 1000
Sample [-]

2

0

2

M
ea

su
re

d
ph

as
e

[ra
d]

Measured phase DUT channel

0 250 500 750 1000
Sample [-]

2

0

2

M
ea

su
re

d
ph

as
e

[ra
d]

Measured phase REF channel

0 250 500 750 1000
Sample [-]

0.00245

0.00250

0.00255

M
ea

su
re

d
ph

as
e

[ra
d]

Measured relative phase

Measurement results for DUT = 1 0 V, REF = 1 0 V

Figure 4.8: Results of measurement 1. Mind the variable vertical scales.

both its absolute measurements and the relative ones. Even still, it can be seen that the measured
amplitude is approximately as expected, taking into account the same attenuation effects as in the
first measurements. The phase is correctly measured, this time to within 8 mrad. Note the phase is
measured as negative due to the phase offset being applied to the REF channel. This measurement
also features a more significant difference in noise between the two IFBW configurations, with the lower
IFBW resulting in less noise as expected.

4.3.3. Measurement 3
The last input configuration is described in phasor form as F𝐷𝑈𝑇 = 𝐴∠0 𝑉 and F𝑅𝐸𝐹 = 1∠𝜃 𝑉, where 𝐴
and 𝜃 were modulated. The amplitude was modulated using a positive-ramp sawtooth wave between
0.1 𝑉 and 1 𝑉𝑝𝑝 at a rate of 3 Hz. The phase was modulated similarly between −𝜋 rad and 𝜋 rad at 5
Hz. This resulted in the data shown in figure 4.10.
This measurement shows modulating the signal parameters during a measurement works as expected
and does not introduce anymajor cross-modulation effects. Note that the relative phase shows negative-
ramp sawtooth modulation while the generator was configured for positive ramp. This is because the
phase modulation was assigned to the REF channel instead of the DUT channel, inverting its transfer.
This was done because the generator only allows one modulation per channel, so it was chosen to
apply amplitude modulation to the DUT channel and phase modulation to the REF channel.

4.3. Validation of integrated system 32

0 250 500 750 1000
Sample [-]

0.4600

0.4625

0.4650

M
ea

su
re

d
am

pl
itu

de
 [V

] Measured amplitude DUT channel

IFBW = 10 kHz
IFBW = 1 kHz

0 250 500 750 1000
Sample [-]

0.930

0.935

0.940

0.945

M
ea

su
re

d
am

pl
itu

de
 [V

] Measured amplitude REF channel

0 250 500 750 1000
Sample [-]

0.4920

0.4925

0.4930

M
ea

su
re

d
am

pl
itu

de
 [-

] Measured relative amplitude

0 250 500 750 1000
Sample [-]

2

0

2

M
ea

su
re

d
ph

as
e

[ra
d] Measured phase DUT channel

0 250 500 750 1000
Sample [-]

2

0

2

M
ea

su
re

d
ph

as
e

[ra
d] Measured phase REF channel

0 250 500 750 1000
Sample [-]

1.5640

1.5638

1.5636

M
ea

su
re

d
ph

as
e

[ra
d] Measured relative phase

Measurement results for DUT = 1
2 0 V, REF = 1 2 V

Figure 4.9: Results of measurement 2. Mind the variable vertical scales.

0 250 500 750 1000
Sample [-]

0.2

0.4

M
ea

su
re

d
am

pl
itu

de
 [V

] Measured amplitude DUT channel

IFBW = 10 kHz
IFBW = 1 kHz

0 250 500 750 1000
Sample [-]

0.93

0.94

M
ea

su
re

d
am

pl
itu

de
 [V

] Measured amplitude REF channel

0 250 500 750 1000
Sample [-]

0.2

0.4

M
ea

su
re

d
am

pl
itu

de
 [-

] Measured relative amplitude

0 250 500 750 1000
Sample [-]

2

0

2

M
ea

su
re

d
ph

as
e

[ra
d]

Measured phase DUT channel

0 250 500 750 1000
Sample [-]

2

0

2

M
ea

su
re

d
ph

as
e

[ra
d]

Measured phase REF channel

0 250 500 750 1000
Sample [-]

2

0

2

M
ea

su
re

d
ph

as
e

[ra
d]

Measured relative phase

Measurement results for DUT = A 0 V, REF = 1 V

Figure 4.10: Results of measurement 3. 𝐴 and 𝜃 were modulated using positive-ramp sawtooth waves. Mind the variable
vertical scales.

5
Discussion

5.1. Shortcomings
The current implementation of the system satisfies all functional requirements set forth at the beginning
of this project. However, unfortunately, the allotted time was too limited to finish the non-functional
requirements concerning documentation of the system, both for users and future developers. The doc-
umentation should include comments in the source Verilog files, as well as a document describing the
details of interfacing with the implementation from software. There is already an example iPython note-
book demonstrating basic access, this could be expanded to a self-contained library and potentially
ported to other languages.
Additionally, the system could not be tested in the context of the rest of the Open-Hardware VNA due to
issues with the commercial microwave generators used. In-context testing provides information about
performance when used as intended. More out-of-context testing is also recommended to thoroughly
characterise the performance of the system and find correction factors for error sources like the atten-
uation of the front-end or attenuation from IF mismatch.
Both of these shortcomings are candidates for future work.

5.2. Future work
As discussed in the previous section, both documentation and testing of the system are not yet com-
plete and are thus candidates for future work.
Furthermore, as far as tested, the current implementation does not contain any major bugs or glitches,
however, there are some known smaller ones and there is potential for imperfections in areas such as
cycle-accurate timings of all the state machines. Although fixing these would not have a major impact
on the performance of the system, if the project is to be published as a working solution such imperfec-
tions should not be present.
Another possible improvement is allowing the configuration of the DMA packet size. During testing, it
was observed that DMA transfers incur significant overhead in the Processing System, and so increas-
ing the amount of data transferred at once would allow for faster acquisitions. This has already been
implemented but could not be tested due to time constraints.
A useful feature addition for the VNA as a whole is the ability to perform power sweeps. This function-
ality was not explicitly considered during the design of the PL implementation, but due to the chosen
architecture we expect there will be no changes needed as the PL does not need to be aware of the
properties of the sweep other than its timings.
Lastly, another additional feature of the system could be a Vector Signal Analyser mode. In this mode,
the two channels operate independently to measure the frequency spectrum of the input signal around
a certain centre frequency. This can also already be done with the current implementation, though its
performance would be very poor due to the frequency transfer of the current method of data reduc-
tion. Research into a better method for data reduction and/or switching data reduction methods during
runtime would be hugely beneficial for such a feature.

33

6
Conclusion

In this thesis, an FPGA implementation of Real-Time Digital Signal Processing for an Open-Hardware
Vector Network Analyser has been described. The user context of qubit research was identified, as well
as existing commercial and open VNAs. Requirements for the DSP were set, and a theory of operation
was devised. The theory of operation and design decisions of the different parts were supported mathe-
matically and their logical implementation described. The testing of these component implementations
as well as the integration and testing of the whole system were described. Several out-of-context test
measurements were analysed and were found to be satisfactory to the functional requirements. The
thesis concluded with a discussion of the shortcomings in the non-functional requirements of the current
implementation and identification of potential future work.

34

References

[1] What is a Vector Network Analyzer and How Does it Work? [Online]. Available: https://www.
tek.com/en/documents/primer/what-vector-network-analyzer-and-how-does-it-work.

[2] L. Zhong, R. Yu, and X. Hong, “Review of carbon-based electromagnetic shielding materials: film,
composite, foam, textile,” Textile Research Journal, vol. 91, p. 004 051 752 096828, Oct. 2020.
DOI: 10.1177/0040517520968282.

[3] F. Caspers, “RF engineering basic concepts: S-parameters,” CERN, Tech. Rep., 2013.
[4] What Can You Do With a VNA? 2023. [Online]. Available: https://coppermountaintech.com/

what-can-you-do-with-a-vna/.
[5] L. Dicarlo, Introduction to circuit QED, 2023.
[6] Keysight. “Product page: P9372A Keysight Streamline USB Vector Network Analyzer, 9 GHz.”

(2024), [Online]. Available: https://www.keysight.com/us/en/product/P9372A/keysight-
streamline-usb-vector-network-analyzer-9-ghz.html.

[7] “About nanovna.” (), [Online]. Available: https://nanovna.com.
[8] “Shfqa+ 8.5 ghz quantum analyzer.” (), [Online]. Available: https://www.zhinst.com/europe/

en/products/shfqa-quantum-analyzer.
[9] “Opx+: Ultra-fast quantum controller.” (), [Online]. Available: https://www.quantum-machines.

co/products/opx/#.
[10] A. Raza, A. Jabbar, D. A. Sehrai, H. Atiq, and R. Ramzan, “SDR Based VNA for Characterization

of RF Sensors and Circuits,” in 2021 1st International Conference on Microwave, Antennas &
Circuits (ICMAC), 2021, pp. 1–4. DOI: 10.1109/ICMAC54080.2021.9678273.

[11] H. Forstén, “Improved homemade VNA,” Tech. Rep., 2017. [Online]. Available: https://hforst
en.com/improved-homemade-vna.html.

[12] J. Mower and Y. Kuga, “A FPGA-BasedReplacement for a Network Analyzer in an Instrumentation-
Based 200 GHz Radar,” High Frequency Electronics, pp. 30–40, Sep. 2013.

[13] Y. Xu, G. Huang, N. Fruitwala, et al.,QubiC 2.0: An Extensible Open-SourceQubit Control System
Capable of Mid-Circuit Measurement and Feed-Forward, 2023. arXiv: 2309.10333 [quant-ph].

[14] STEMlab 125-14 - Red Pitaya, en-US, Jun. 2021. [Online]. Available: https://redpitaya.com/
stemlab-125-14/ (visited on 04/25/2024).

[15] LTC2145-14 Datasheet and Product Info. [Online]. Available: https://www.analog.com/en/
products/ltc2145-14.html (visited on 04/25/2024).

[16] AD9767 Datasheet and Product Info. [Online]. Available: https://www.analog.com/en/produc
ts/AD9767.html (visited on 06/13/2024).

[17] C. M. Technologies. “What are the basics of a vna? - copper mountain technologies.” (), [Online].
Available: https://coppermountaintech.com/what- are- the- basics- of- vna/ (visited on
09/29/2023).

[18] E. Cheever. “Phasor introduction and demo.” (), [Online]. Available: https://lpsa.swarthmore.
edu/BackGround/phasor/phasor.html.

[19] E. Li Tan. “Eetimes - multirate dsp, part 1: Upsampling and downsampling.” (), [Online]. Available:
https://www.eetimes.com/multirate-dsp-part-1-upsampling-and-downsampling/?_ga
(visited on 04/21/2008).

[20] M. Zoran Milivojević. “Types-of-digital-filters - mikroe.” (), [Online]. Available: https://www.mikr
oe.com/ebooks/digital-filter-design/types-of-digital-filters.

35

https://www.tek.com/en/documents/primer/what-vector-network-analyzer-and-how-does-it-work
https://www.tek.com/en/documents/primer/what-vector-network-analyzer-and-how-does-it-work
https://doi.org/10.1177/0040517520968282
https://coppermountaintech.com/what-can-you-do-with-a-vna/
https://coppermountaintech.com/what-can-you-do-with-a-vna/
https://www.keysight.com/us/en/product/P9372A/keysight-streamline-usb-vector-network-analyzer-9-ghz.html
https://www.keysight.com/us/en/product/P9372A/keysight-streamline-usb-vector-network-analyzer-9-ghz.html
https://nanovna.com
https://www.zhinst.com/europe/en/products/shfqa-quantum-analyzer
https://www.zhinst.com/europe/en/products/shfqa-quantum-analyzer
https://www.quantum-machines.co/products/opx/#
https://www.quantum-machines.co/products/opx/#
https://doi.org/10.1109/ICMAC54080.2021.9678273
https://hforsten.com/improved-homemade-vna.html
https://hforsten.com/improved-homemade-vna.html
https://arxiv.org/abs/2309.10333
https://redpitaya.com/stemlab-125-14/
https://redpitaya.com/stemlab-125-14/
https://www.analog.com/en/products/ltc2145-14.html
https://www.analog.com/en/products/ltc2145-14.html
https://www.analog.com/en/products/AD9767.html
https://www.analog.com/en/products/AD9767.html
https://coppermountaintech.com/what-are-the-basics-of-vna/
https://lpsa.swarthmore.edu/BackGround/phasor/phasor.html
https://lpsa.swarthmore.edu/BackGround/phasor/phasor.html
https://www.eetimes.com/multirate-dsp-part-1-upsampling-and-downsampling/?_ga
https://www.mikroe.com/ebooks/digital-filter-design/types-of-digital-filters
https://www.mikroe.com/ebooks/digital-filter-design/types-of-digital-filters

References 36

[21] R. Lyons. “A beginner’s guide to cascaded integrator-comb (cic) filters.” (), [Online]. Available:
https://www.dsprelated.com/showarticle/1337.php (visited on 03/26/2020).

[22] S. Roberts. “Lecture 7 - the discrete fourier transform.” (), [Online]. Available: https://www.
robots.ox.ac.uk/~sjrob/Teaching/SP/l7.pdf.

[23] “IEEE Standard for SystemVerilog–Unified Hardware Design, Specification, and Verification Lan-
guage,” IEEE Std 1800-2023 (Revision of IEEE Std 1800-2017), pp. 1–1354, Feb. 2024, Confer-
ence Name: IEEE Std 1800-2023 (Revision of IEEE Std 1800-2017). DOI: 10.1109/IEEESTD.
2024.10458102. [Online]. Available: https://ieeexplore-ieee-org.tudelft.idm.oclc.org/
document/10458102 (visited on 06/10/2024).

[24] Zynq-7000 SoC Product Selection Guide. [Online]. Available: https://docs.amd.com/api/khub
/documents/1L_hkh2pbc5l0Oz7tcLspA/content?Ft-Calling-App=ft%2Fturnkey-portal&Ft-
Calling-App-Version=4.3.44# (visited on 06/14/2024).

[25] 4.1.1.2. STEMlab 125-14 — Red Pitaya 2.00-35 documentation. [Online]. Available: https://
redpitaya . readthedocs . io / en / latest / developerGuide / hardware / 125 - 14 / top . html
(visited on 06/14/2024).

[26] AMBA AXI-Stream Protocol Specification. [Online]. Available: https://developer.arm.com/
documentation/ihi0051/latest (visited on 06/10/2024).

[27] Zynq-7000 SoC Technical Reference Manual, Jan. 2018.
[28] AXI GPIO v2.0 Product Guide. [Online]. Available: https://docs.amd.com/api/khub/documen

ts/0c0ItRCmnYkoHpcYUCPkEA/content?Ft-Calling-App=ft%2Fturnkey-portal&Ft-Calling-
App-Version=4.3.43# (visited on 06/11/2024).

[29] All About Direct Digital Synthesis | Analog Devices. [Online]. Available: https://www.analog.
com/en/resources/analog-dialogue/articles/all-about-direct-digital-synthesis.
html (visited on 06/13/2024).

[30] DDS Compiler, en. [Online]. Available: https://www.xilinx.com/products/intellectual-
property/dds_compiler.html (visited on 06/13/2024).

[31] Multiplier v12.0 Product Guide, Nov. 2015. [Online]. Available: https://docs.amd.com/api/khub
/documents/idOj3Pp9ocZdMoFz3IpkjQ/content?Ft-Calling-App=ft%2Fturnkey-portal&Ft-
Calling-App-Version=4.3.44# (visited on 06/15/2024).

[32] A. S. Tanenbaum and H. Bos,Modern Operating Systems, en. Pearson, 2015, Google-Books-ID:
9gqnngEACAAJ, ISBN: 978-0-13-359162-0.

[33] AXI4-Stream Infrastructure IP Suite v3.0 LogiCORE IP Product Guide, Aug. 2022. [Online]. Avail-
able: https://docs.amd.com/r/en-US/pg085-axi4stream-infrastructure/AXI4-Stream-
Infrastructure-IP-Suite-v3.0-LogiCORE-IP-Product-Guide (visited on 06/15/2024).

[34] P. Demin. “Red pitaya notes.” (), [Online]. Available: https://pavel-demin.github.io/red-
pitaya-notes/.

[35] UNI-T. “Utg900e - waveform generators - products - uni-t voltage meter, multimeter, oscilloscope
| uni-t.” (), [Online]. Available: https://instruments.uni-trend.com/cate/22.html.

[36] R. Pitaya. “Stemlab 125-14 — red pitaya 2.00-35 documentation.” (), [Online]. Available: https:
//redpitaya.readthedocs.io/en/latest/developerGuide/hardware/125-14/top.html.

https://www.dsprelated.com/showarticle/1337.php
https://www.robots.ox.ac.uk/~sjrob/Teaching/SP/l7.pdf
https://www.robots.ox.ac.uk/~sjrob/Teaching/SP/l7.pdf
https://doi.org/10.1109/IEEESTD.2024.10458102
https://doi.org/10.1109/IEEESTD.2024.10458102
https://ieeexplore-ieee-org.tudelft.idm.oclc.org/document/10458102
https://ieeexplore-ieee-org.tudelft.idm.oclc.org/document/10458102
https://docs.amd.com/api/khub/documents/1L_hkh2pbc5l0Oz7tcLspA/content?Ft-Calling-App=ft%2Fturnkey-portal&Ft-Calling-App-Version=4.3.44#
https://docs.amd.com/api/khub/documents/1L_hkh2pbc5l0Oz7tcLspA/content?Ft-Calling-App=ft%2Fturnkey-portal&Ft-Calling-App-Version=4.3.44#
https://docs.amd.com/api/khub/documents/1L_hkh2pbc5l0Oz7tcLspA/content?Ft-Calling-App=ft%2Fturnkey-portal&Ft-Calling-App-Version=4.3.44#
https://redpitaya.readthedocs.io/en/latest/developerGuide/hardware/125-14/top.html
https://redpitaya.readthedocs.io/en/latest/developerGuide/hardware/125-14/top.html
https://developer.arm.com/documentation/ihi0051/latest
https://developer.arm.com/documentation/ihi0051/latest
https://docs.amd.com/api/khub/documents/0c0ItRCmnYkoHpcYUCPkEA/content?Ft-Calling-App=ft%2Fturnkey-portal&Ft-Calling-App-Version=4.3.43#
https://docs.amd.com/api/khub/documents/0c0ItRCmnYkoHpcYUCPkEA/content?Ft-Calling-App=ft%2Fturnkey-portal&Ft-Calling-App-Version=4.3.43#
https://docs.amd.com/api/khub/documents/0c0ItRCmnYkoHpcYUCPkEA/content?Ft-Calling-App=ft%2Fturnkey-portal&Ft-Calling-App-Version=4.3.43#
https://www.analog.com/en/resources/analog-dialogue/articles/all-about-direct-digital-synthesis.html
https://www.analog.com/en/resources/analog-dialogue/articles/all-about-direct-digital-synthesis.html
https://www.analog.com/en/resources/analog-dialogue/articles/all-about-direct-digital-synthesis.html
https://www.xilinx.com/products/intellectual-property/dds_compiler.html
https://www.xilinx.com/products/intellectual-property/dds_compiler.html
https://docs.amd.com/api/khub/documents/idOj3Pp9ocZdMoFz3IpkjQ/content?Ft-Calling-App=ft%2Fturnkey-portal&Ft-Calling-App-Version=4.3.44#
https://docs.amd.com/api/khub/documents/idOj3Pp9ocZdMoFz3IpkjQ/content?Ft-Calling-App=ft%2Fturnkey-portal&Ft-Calling-App-Version=4.3.44#
https://docs.amd.com/api/khub/documents/idOj3Pp9ocZdMoFz3IpkjQ/content?Ft-Calling-App=ft%2Fturnkey-portal&Ft-Calling-App-Version=4.3.44#
https://docs.amd.com/r/en-US/pg085-axi4stream-infrastructure/AXI4-Stream-Infrastructure-IP-Suite-v3.0-LogiCORE-IP-Product-Guide
https://docs.amd.com/r/en-US/pg085-axi4stream-infrastructure/AXI4-Stream-Infrastructure-IP-Suite-v3.0-LogiCORE-IP-Product-Guide
https://pavel-demin.github.io/red-pitaya-notes/
https://pavel-demin.github.io/red-pitaya-notes/
https://instruments.uni-trend.com/cate/22.html
https://redpitaya.readthedocs.io/en/latest/developerGuide/hardware/125-14/top.html
https://redpitaya.readthedocs.io/en/latest/developerGuide/hardware/125-14/top.html

A
Verilog Source Code

A.1. Accumulator
1 `timescale 1ns / 1ps
2 //
3 // Company:
4 // Engineer:
5 //
6 // Create Date: 07.05.2024 14:43:35
7 // Design Name:
8 // Module Name: accumulator
9 // Project Name:

10 // Target Devices:
11 // Tool Versions:
12 // Description:
13 //
14 // Dependencies:
15 //
16 // Revision:
17 // Revision 0.01 - File Created
18 // Additional Comments:
19 //
20 //
21

22

23 module accumulator(
24 input aclk,
25 input enable,
26 input reset, // Active low
27 input [31:0] value_in,
28 output [63:0] out_value,
29 output [31:0] sample_count
30);
31

32 // Create three states
33 localparam state_width = 3;
34

35 localparam state_waiting = 'd0;
36 localparam state_accumulating = 'd1;
37 localparam state_output = 'd2;
38

39 // Create registers
40 reg [state_width -1:0] state;
41 reg [state_width -1:0] newstate;
42 reg [63:0] accu_total;
43 reg [31:0] samplecountreg;
44

45 // Change state to new state on positive clockedge
46 always @(posedge aclk) begin
47 if (!reset)

37

A.2. Accumulator trigger 38

48 state <= state_waiting;
49 else
50 state <= newstate;
51 end
52

53 // State change conditions
54 always @* begin
55 case(state)
56 state_waiting: begin
57 if (enable) newstate = state_accumulating;
58 else newstate = state_waiting;
59 end
60 state_accumulating: begin
61 if (enable == 1'b0) newstate = state_output;
62 else newstate = state_accumulating;
63 end
64 state_output: begin
65 newstate = state_waiting;
66 end
67 default: newstate = state_waiting;
68 endcase
69 end
70

71 // Outputs for every state
72 always @(posedge aclk) begin
73 case(state)
74 state_waiting: begin
75 accu_total <= 64'd0;
76 samplecountreg <= 32'd0;
77 end
78 state_accumulating: begin
79 // Sign extend the value coming in and add it to the (64-bit)

total
80 accu_total <= accu_total + {{32{value_in[31]}}, value_in

[31:0]};
81 samplecountreg <= samplecountreg + 1; // Increment sample count by one
82 end
83 state_output: begin
84 accu_total <= accu_total + {{32{value_in[31]}}, value_in[31:0]};
85 samplecountreg <= samplecountreg + 1;
86 end
87 default: begin
88 accu_total <= 64'd0;
89 samplecountreg <= 32'd0;
90 end
91 endcase
92 end
93

94 // Permanently connect the registers to the outputs
95 assign sample_count = samplecountreg;
96 assign out_value = accu_total;
97 endmodule

A.2. Accumulator trigger
1 `timescale 1ns / 1ps
2 //
3 // Company:
4 // Engineer:
5 //
6 // Create Date: 07.05.2024 14:47:45
7 // Design Name:
8 // Module Name: accu_trigger
9 // Project Name:

10 // Target Devices:
11 // Tool Versions:
12 // Description:
13 //
14 // Dependencies:
15 //

A.2. Accumulator trigger 39

16 // Revision:
17 // Revision 0.01 - File Created
18 // Additional Comments:
19 //
20 //
21

22

23 module accu_trigger(
24 input aclk,
25 input reset,
26 input trigger,
27 input [31:0] current_phase_tdata,
28 input current_phase_tvalid ,
29 output accu_enable,
30 output done_samples_valid
31);
32

33 // Declare all possible states
34 localparam state_width = 3;
35

36 localparam state_stopped = 'd0;
37 localparam state_starting = 'd1;
38 localparam state_running = 'd2;
39 localparam state_waiting = 'd3;
40 localparam state_ending = 'd4;
41

42 // Declare registers
43 reg [state_width -1:0] state;
44 reg [state_width -1:0] newstate;
45 reg [31:0] phase;
46 reg accu_enable_reg;
47 reg dsv_reg;
48

49 // Change state to new state on positive clockedge
50 always @(posedge aclk) begin
51 if (!reset)
52 state <= state_stopped;
53 else
54 state <= newstate;
55 end
56

57 // State change conditions
58 always @* begin
59 case(state)
60 state_stopped: begin
61 if (trigger) newstate = state_starting;
62 else newstate = state_stopped;
63 end
64 state_starting: begin
65 newstate = state_running;
66 end
67 state_running: begin
68 if (!trigger) newstate = state_waiting;
69 else newstate = state_running;
70 end
71 state_waiting: begin
72 if (current_phase_tdata == phase) newstate = state_ending;
73 else newstate = state_waiting;
74 end
75 state_ending: begin
76 newstate = state_stopped;
77 end
78 default: newstate = state_stopped;
79 endcase
80 end
81

82 // Outputs for every state
83 always @(posedge aclk) begin
84 case(state)
85 state_stopped: begin
86 accu_enable_reg <= 1'b0;

A.3. Accumulator and trigger testbench 40

87 dsv_reg <= 1'b0;
88 end
89 state_starting: begin
90 accu_enable_reg <= 1'b0;
91 dsv_reg <= 1'b0;
92 phase <= current_phase_tdata;
93 end
94 state_running: begin
95 accu_enable_reg <= 1'b1;
96 dsv_reg <= 1'b0;
97 end
98 state_waiting: begin
99 accu_enable_reg <= 1'b1;

100 dsv_reg <= 1'b0;
101 end
102 state_ending: begin
103 accu_enable_reg <= 1'b0;
104 dsv_reg <= 1'b1;
105 end
106 default: begin
107 accu_enable_reg <= 1'b0;
108 dsv_reg <= 1'b0;
109 end
110 endcase
111 end
112

113 // Permanently connect the registers to the outputs
114 assign accu_enable = accu_enable_reg;
115 assign done_samples_valid = dsv_reg;
116

117 endmodule

A.3. Accumulator and trigger testbench
1 `timescale 1ns / 1ps
2 //
3 // Company:
4 // Engineer:
5 //
6 // Create Date: 17.05.2024 15:26:14
7 // Design Name:
8 // Module Name: tb_accusys
9 // Project Name:

10 // Target Devices:
11 // Tool Versions:
12 // Description: Testbench for accumulator and accu_trigger modules
13 //
14 // Dependencies:
15 //
16 // Revision:
17 // Revision 0.01 - File Created
18 // Additional Comments:
19 //
20 //
21

22 module tb_accusys();
23

24 // Clock and reset signals
25 reg aclk; // Clock signal
26 reg reset; // Reset signal
27

28 // accu_trigger module signals
29 reg trigger; // Trigger signal to start the accumulation
30 reg [31:0] current_phase_tdata; // Current phase data
31 reg current_phase_tvalid; // Valid signal for current phase data
32 wire accu_enable; // Enable signal for the accumulator (output from

accu_trigger)
33 wire done_samples_valid; // Signal indicating done samples are valid (output from

accu_trigger)
34

A.3. Accumulator and trigger testbench 41

35 // accumulator module signals
36 reg [31:0] value_in; // Input value to the accumulator
37 wire [63:0] out_value; // Accumulated output value from the accumulator
38 wire [31:0] sample_count; // Sample count output from the accumulator
39

40 // Instantiate the accu_trigger module
41 accu_trigger uutTrig (
42 .aclk(aclk),
43 .reset(reset),
44 .trigger(trigger),
45 .current_phase_tdata(current_phase_tdata),
46 .current_phase_tvalid(current_phase_tvalid),
47 .accu_enable(accu_enable),
48 .done_samples_valid(done_samples_valid)
49);
50

51 // Instantiate the accumulator module
52 accumulator uutAcc (
53 .aclk(aclk),
54 .enable(accu_enable),
55 .reset(reset),
56 .value_in(value_in),
57 .out_value(out_value),
58 .sample_count(sample_count)
59);
60

61 // Clock
62 initial begin
63 aclk = 1'b0;
64 forever #5 aclk = ~aclk;
65 end
66

67 // Initial reset sequence
68 initial begin
69 reset = 1'b0;
70 #10 reset = 1'b1;
71 end
72

73 // Test sequence
74 initial begin
75 // Initialize input signals
76 current_phase_tvalid = 1; // Set phase data valid
77 trigger = 0; // Initialize trigger to 0
78 value_in = 32'd0; // Initialize value_in
79 current_phase_tdata = 32'd0; // Initialize current phase data
80

81 // Wait for some time before starting the trigger
82 #100;
83

84 // Start the accumulation process with a trigger
85 trigger = 1; // Assert trigger to start accumulation
86 //#10 trigger = 0; // Deassert trigger
87

88 // Simulate accumulating values
89 #10 value_in = 32'd10; // First value to accumulate
90 current_phase_tdata = 32'd1; // Change phase data
91

92 #10 value_in = 32'd10; // Second value to accumulate
93 current_phase_tdata = 32'd2; // Change phase data
94

95 #10 value_in = 32'd10; // Third value to accumulate
96 current_phase_tdata = 32'd3; // Change phase data
97

98 #10 value_in = 32'd20;
99 current_phase_tdata = 32'd4;

100

101 #10 value_in = 32'd23;
102 current_phase_tdata = 32'd5;
103

104 #10 value_in = 32'd52;
105 current_phase_tdata = 32'd6;

A.4. Sequencer 42

106

107 #10 value_in = 32'd43;
108 current_phase_tdata = 32'd7;
109 trigger = 0; // Deassert trigger
110

111 #10 value_in = 32'd61;
112 current_phase_tdata = 32'd0;
113

114 #10 value_in = 32'd33;
115 current_phase_tdata = 32'd1;
116

117 #10 value_in = 32'd89;
118 current_phase_tdata = 32'd2;
119

120 #10 value_in = 32'd93;
121 current_phase_tdata = 32'd3;
122

123 #10 value_in = 32'd91;
124 current_phase_tdata = 32'd4;
125

126 #10 value_in = 32'd123;
127 current_phase_tdata = 32'd5;
128

129 #10 value_in = 32'd32;
130 current_phase_tdata = 32'd6;
131

132 #10 value_in = 32'd22;
133 current_phase_tdata = 32'd7;
134

135 #10 value_in = 32'd12;
136 current_phase_tdata = 32'd0;
137

138 #10 value_in = 32'd0;
139

140 // Wait and observe the output
141 #100;
142

143 // Print results
144 $display("out_value:␣%d", out_value);
145 $display("sample_count:␣%d", sample_count);
146 $display("accu_enable:␣%d", accu_enable);
147 $display("done_samples_valid:␣%d", done_samples_valid);
148

149 // End simulation
150 #20 $stop;
151 end
152

153 endmodule

A.4. Sequencer
1 `timescale 1ns / 1ps
2 //
3 // Company:
4 // Engineer:
5 //
6 // Create Date: 24.05.2024 08:35:10
7 // Design Name:
8 // Module Name: sequencer
9 // Project Name:

10 // Target Devices:
11 // Tool Versions:
12 // Description:
13 //
14 // Dependencies:
15 //
16 // Revision:
17 // Revision 0.01 - File Created
18 // Additional Comments:
19 //

A.4. Sequencer 43

20 //
21

22

23 module sequencer(
24 input aclk,
25 input rst,
26 input [31:0] dead_time,
27 input [31:0] point_time,
28 input [31:0] trig_config,
29 output gen1_trigger,
30 output gen2_trigger,
31 output accumulator_trigger
32);
33

34 reg [31:0] counter;
35 reg first_sample;
36

37 reg [31:0] dead_time_reg;
38 reg [31:0] point_time_reg;
39 // Trigger config input is split into multiple registers
40 reg [31:0] trig_time_reg;
41 reg trig1_invert_reg;
42 reg trig1_first_reg;
43 reg trig1_rest_reg;
44 reg trig2_invert_reg;
45 reg trig2_first_reg;
46 reg trig2_rest_reg;
47

48 reg accumulator_trigger_reg;
49 reg generator_trigger_reg;
50

51 wire gen1_first, gen1_rest;
52 wire gen2_first, gen2_rest;
53

54 // Sequential logic to count clock cycles and handle reset
55 always @(posedge aclk) begin
56 if (!rst) begin
57 // Reset state
58 counter <= 32'b0;
59 first_sample <= 1'b1;
60 accumulator_trigger_reg <= 1'b0;
61 generator_trigger_reg <= 1'b0;
62

63 // Parse and latch inputs
64 dead_time_reg <= dead_time;
65 point_time_reg <= point_time;
66 trig_time_reg <= {8'b0, trig_config[23:0]};
67 trig1_invert_reg <= trig_config[24];
68 trig1_first_reg <= trig_config[25];
69 trig1_rest_reg <= trig_config[26];
70 trig2_invert_reg <= trig_config[28];
71 trig2_first_reg <= trig_config[29];
72 trig2_rest_reg <= trig_config[30];
73 end
74 else begin
75 // Increment counter on every clock cycle
76 counter <= counter + 1;
77

78 // Check if we should be outputting generator trigger
79 if (counter < trig_time_reg) begin
80 generator_trigger_reg <= 1'b1;
81 end
82 else begin
83 generator_trigger_reg <= 1'b0;
84 end
85

86 // Check if we should be outputting accumulator trigger
87 // gt instead of ge means we lose a cycle but that is required for packetiser

trigger
88 if (counter > dead_time_reg) begin
89 accumulator_trigger_reg <= 1'b1;

A.5. Sequencer testbench 44

90 end
91 else begin
92 accumulator_trigger_reg <= 1'b0;
93 end
94

95 // End of sample
96 if (counter >= point_time_reg) begin
97 // Reset counter but clear first_sample
98 counter <= 32'd0;
99 first_sample <= 1'b0;

100 // Don't latch inputs again, a sweep should have constant settings
101 end
102 end
103 end
104

105 // assign gentrig_point = generator_trigger_reg;
106 // assign gentrig_sweep = first_sample ? generator_trigger_reg : 1'b0;
107 // assign gentrig_not_first = first_sample ? 1'b0 : generator_trigger_reg;
108 // assign gen1_trigger = trig1_invert_reg ^ (trig1_type_reg ? (trig1_first_reg ?

gentrig_point : gentrig_not_first) : gentrig_sweep);
109

110 assign gen1_first = trig1_first_reg & generator_trigger_reg;
111 assign gen1_rest = trig1_rest_reg & generator_trigger_reg;
112 assign gen1_trigger = trig1_invert_reg ^ (first_sample ? gen1_first : gen1_rest);
113

114 assign gen2_first = trig2_first_reg & generator_trigger_reg;
115 assign gen2_rest = trig2_rest_reg & generator_trigger_reg;
116 assign gen2_trigger = trig2_invert_reg ^ (first_sample ? gen2_first : gen2_rest);
117

118 assign accumulator_trigger = accumulator_trigger_reg;
119

120 endmodule

A.5. Sequencer testbench
1 `timescale 1ns / 1ps
2

3 module sequencer_tb;
4

5 // Testbench signals
6 reg [31:0] settling_time;
7 reg [31:0] accu_time;
8 reg [31:0] gen_end;
9 reg [31:0] counter_out;

10 reg aclk;
11 reg reset;
12

13 wire generator_trigger;
14 wire accumulator_trigger;
15

16 // Instantiate the sequencer module
17 sequencer uut (
18 .settling_time(settling_time),
19 .accu_time(accu_time),
20 .gen_end(gen_end),
21 .aclk(aclk),
22 .reset(reset),
23 .generator_trigger(generator_trigger),
24 .accumulator_trigger(accumulator_trigger),
25 .counter_out(counter_out)
26);
27

28 // Clock generation
29 initial begin
30 aclk = 0;
31 forever #5 aclk = ~aclk; // 10ns period clock
32 end
33

34 // Stimulus process
35 initial begin

A.6. Packetiser 45

36 // Initialize inputs
37 reset = 0;
38 // It will act two clock cycles later
39 settling_time = 32'd50;
40 accu_time = 32'd150;
41 gen_end = 32'd20;
42

43 // Wait for a few clock cycles
44 #20;
45

46 // Deassert reset
47 reset = 1;
48

49 // Wait for some time to observe the behavior
50 #1500;
51

52 // Assert reset again to observe the reset behavior
53 //reset = 1;
54 //#20;
55 //reset = 0;
56

57 // Wait and then finish simulation
58 #2000;
59 $finish;
60 end
61

62 // Monitor the outputs
63 initial begin
64 //$monitor("Time: %0d, reset: %b, counter: %d, generator_trigger: %b,

accumulator_trigger: %b",
65 // $time, reset, uut.counter, generator_trigger, accumulator_trigger);
66 end
67

68 endmodule

A.6. Packetiser
1 `timescale 1ns / 1ps
2 //
3 // Company:
4 // Engineer:
5 //
6 // Create Date: 22.05.2024 11:58:55
7 // Design Name:
8 // Module Name: packetiser
9 // Project Name:

10 // Target Devices:
11 // Tool Versions:
12 // Description:
13 //
14 // Dependencies:
15 //
16 // Revision:
17 // Revision 0.01 - File Created
18 // Additional Comments:
19 //
20 //
21

22 // Made by ChatGPT without modification..
23

24 module packetiser(
25 input [63:0] val_1,
26 input [31:0] cnt_1,
27 input [63:0] val_2,
28 input [31:0] cnt_2,
29 input [63:0] val_3,
30 input [31:0] cnt_3,
31 input [63:0] val_4,
32 input [31:0] cnt_4,
33 input trigger,

A.6. Packetiser 46

34 input aclk,
35 input rst,
36 output reg [31:0] M_AXIS_OUT_tdata,
37 output reg M_AXIS_OUT_tvalid,
38 input M_AXIS_OUT_tready,
39 output reg M_AXIS_OUT_tlast
40);
41

42 // State machine states
43 localparam IDLE = 2'b00;
44 localparam SEND_WORDS = 2'b01;
45

46 reg [1:0] state, next_state;
47

48 // Registers to hold the data
49 reg [63:0] val_reg_1, val_reg_2, val_reg_3, val_reg_4;
50 reg [31:0] cnt_reg_1, cnt_reg_2, cnt_reg_3, cnt_reg_4;
51 reg [3:0] word_count;
52

53 // Registering input values on trigger
54 always @(posedge aclk) begin
55 if (!rst) begin
56 val_reg_1 <= 64'b0;
57 cnt_reg_1 <= 32'b0;
58 val_reg_2 <= 64'b0;
59 cnt_reg_2 <= 32'b0;
60 val_reg_3 <= 64'b0;
61 cnt_reg_3 <= 32'b0;
62 val_reg_4 <= 64'b0;
63 cnt_reg_4 <= 32'b0;
64 end else if (trigger) begin
65 val_reg_1 <= val_1;
66 cnt_reg_1 <= cnt_1;
67 val_reg_2 <= val_2;
68 cnt_reg_2 <= cnt_2;
69 val_reg_3 <= val_3;
70 cnt_reg_3 <= cnt_3;
71 val_reg_4 <= val_4;
72 cnt_reg_4 <= cnt_4;
73 end
74 end
75

76 // State machine for packetizing data
77 always @(posedge aclk) begin
78 if (!rst) begin
79 state <= IDLE;
80 end else begin
81 state <= next_state;
82 end
83 end
84

85 always @(*) begin
86 next_state = state;
87 case (state)
88 IDLE: begin
89 if (trigger) begin
90 next_state = SEND_WORDS;
91 end
92 end
93 SEND_WORDS: begin
94 if (word_count == 4'd11 && M_AXIS_OUT_tready) begin
95 next_state = IDLE;
96 end
97 end
98 endcase
99 end

100

101 always @(posedge aclk) begin
102 if (!rst) begin
103 word_count <= 4'b0;
104 M_AXIS_OUT_tdata <= 32'b0;

A.7. Packetiser testbench and top-level module 47

105 M_AXIS_OUT_tvalid <= 1'b0;
106 M_AXIS_OUT_tlast <= 1'b0;
107 end else if (state == SEND_WORDS) begin
108 if (M_AXIS_OUT_tready) begin
109 word_count <= word_count + 4'b1;
110 M_AXIS_OUT_tvalid <= 1'b1;
111

112 case (word_count)
113 4'd0: M_AXIS_OUT_tdata <= val_reg_1[31:0];
114 4'd1: M_AXIS_OUT_tdata <= val_reg_1[63:32];
115 4'd2: M_AXIS_OUT_tdata <= cnt_reg_1;
116 4'd3: M_AXIS_OUT_tdata <= val_reg_2[31:0];
117 4'd4: M_AXIS_OUT_tdata <= val_reg_2[63:32];
118 4'd5: M_AXIS_OUT_tdata <= cnt_reg_2;
119 4'd6: M_AXIS_OUT_tdata <= val_reg_3[31:0];
120 4'd7: M_AXIS_OUT_tdata <= val_reg_3[63:32];
121 4'd8: M_AXIS_OUT_tdata <= cnt_reg_3;
122 4'd9: M_AXIS_OUT_tdata <= val_reg_4[31:0];
123 4'd10: M_AXIS_OUT_tdata <= val_reg_4[63:32];
124 4'd11: begin
125 M_AXIS_OUT_tdata <= cnt_reg_4;
126 M_AXIS_OUT_tlast <= 1'b1;
127 end
128 endcase
129 end
130 end else begin
131 word_count <= 4'b0;
132 M_AXIS_OUT_tvalid <= 1'b0;
133 M_AXIS_OUT_tlast <= 1'b0;
134 end
135 end
136

137 endmodule

A.7. Packetiser testbench and top-level module
1 `timescale 1ns / 1ps
2 //
3 // Company:
4 // Engineer:
5 //
6 // Create Date: 23.05.2024 14:32:10
7 // Design Name:
8 // Module Name: tb_tb_packetiser
9 // Project Name:

10 // Target Devices:
11 // Tool Versions:
12 // Description:
13 //
14 // Dependencies:
15 //
16 // Revision:
17 // Revision 0.01 - File Created
18 // Additional Comments:
19 //
20 //
21

22

23 module tb_top_module;
24

25 reg aclk;
26 reg rst;
27 wire [31:0] M_AXIS_OUT_tdata;
28 wire M_AXIS_OUT_tvalid;
29 reg M_AXIS_OUT_tready;
30 wire M_AXIS_OUT_tlast;
31

32 // Instantiate the top module
33 top_module uut (
34 .aclk(aclk),

A.7. Packetiser testbench and top-level module 48

35 .rst(rst),
36 .M_AXIS_OUT_tdata(M_AXIS_OUT_tdata),
37 .M_AXIS_OUT_tvalid(M_AXIS_OUT_tvalid),
38 .M_AXIS_OUT_tready(M_AXIS_OUT_tready),
39 .M_AXIS_OUT_tlast(M_AXIS_OUT_tlast)
40);
41

42 // Clock generation
43 initial begin
44 aclk = 0;
45 forever #4 aclk = ~aclk; // 125 MHz clock -> 8ns period -> 4ns half period
46 end
47

48 // Reset generation
49 initial begin
50 rst = 0;
51 #20 rst = 1; // Assert reset for 20ns
52 end
53

54 // Stimulate M_AXIS_OUT_tready
55 initial begin
56 M_AXIS_OUT_tready = 0;
57 #50 M_AXIS_OUT_tready = 1;
58 // Keep M_AXIS_OUT_tready asserted
59 forever #80 M_AXIS_OUT_tready = ~M_AXIS_OUT_tready;
60 end
61

62 // Simulation duration
63 initial begin
64 #100000 $stop; // Run the simulation for 100us
65 end
66

67 endmodule

1 `timescale 1ns / 1ps
2 //
3 // Company:
4 // Engineer:
5 //
6 // Create Date: 23.05.2024 14:28:39
7 // Design Name:
8 // Module Name: tb_packetiser
9 // Project Name:

10 // Target Devices:
11 // Tool Versions:
12 // Description:
13 //
14 // Dependencies:
15 //
16 // Revision:
17 // Revision 0.01 - File Created
18 // Additional Comments:
19 //
20 //
21

22 // ChatGPT without modification
23

24 module top_module (
25 input aclk,
26 input rst,
27 output [31:0] M_AXIS_OUT_tdata,
28 output M_AXIS_OUT_tvalid,
29 input M_AXIS_OUT_tready,
30 output M_AXIS_OUT_tlast
31);
32

33 wire [63:0] val_1, val_2, val_3, val_4;
34 wire [31:0] cnt_1, cnt_2, cnt_3, cnt_4;
35 wire trigger;
36

37 // Instantiate the test_packetiser module

A.8. Sample data generator for packetiser testbench 49

38 test_packetiser test_inst (
39 .aclk(aclk),
40 .rst(rst),
41 .val_1(val_1),
42 .cnt_1(cnt_1),
43 .val_2(val_2),
44 .cnt_2(cnt_2),
45 .val_3(val_3),
46 .cnt_3(cnt_3),
47 .val_4(val_4),
48 .cnt_4(cnt_4),
49 .trigger(trigger)
50);
51

52 // Instantiate the packetiser module
53 packetiser packet_inst (
54 .val_1(val_1),
55 .cnt_1(cnt_1),
56 .val_2(val_2),
57 .cnt_2(cnt_2),
58 .val_3(val_3),
59 .cnt_3(cnt_3),
60 .val_4(val_4),
61 .cnt_4(cnt_4),
62 .trigger(trigger),
63 .aclk(aclk),
64 .rst(rst),
65 .M_AXIS_OUT_tdata(M_AXIS_OUT_tdata),
66 .M_AXIS_OUT_tvalid(M_AXIS_OUT_tvalid),
67 .M_AXIS_OUT_tready(M_AXIS_OUT_tready),
68 .M_AXIS_OUT_tlast(M_AXIS_OUT_tlast)
69);
70

71 endmodule

A.8. Sample data generator for packetiser testbench
1

2 // Made by ChatGPT with modifications
3

4 module test_packetiser(
5 input aclk,
6 input rst,
7 output reg [63:0] val_1,
8 output reg [31:0] cnt_1,
9 output reg [63:0] val_2,

10 output reg [31:0] cnt_2,
11 output reg [63:0] val_3,
12 output reg [31:0] cnt_3,
13 output reg [63:0] val_4,
14 output reg [31:0] cnt_4,
15 output reg trigger
16);
17

18 reg [31:0] cycle_count;
19

20 always @(posedge aclk) begin
21 if (!rst) begin
22 cycle_count <= 32'b0;
23 trigger <= 1'b0;
24 val_1 <= 64'h12345678ABCDEF01;
25 cnt_1 <= 32'h00000001;
26 val_2 <= 64'h23456789BCDEF012;
27 cnt_2 <= 32'h00000002;
28 val_3 <= 64'h3456789ACDEF0123;
29 cnt_3 <= 32'h00000003;
30 val_4 <= 64'h456789ABDEF01234;
31 cnt_4 <= 32'h00000004;
32 end else begin
33 if (cycle_count < 32'd1000) begin

A.9. FIFO filler 50

34 cycle_count <= cycle_count + 1;
35 trigger <= 1'b0;
36 end else if (cycle_count == 32'd1000) begin
37 cycle_count <= 32'd0;
38 //cycle_count <= cycle_count + 1;
39 trigger <= 1'b1;
40 // Change values for each trigger if needed
41 val_1 <= val_1 + 64'h0101010101010101;
42 cnt_1 <= cnt_1 + 32'h01010101;
43 val_2 <= val_2 + 64'h0101010101010101;
44 cnt_2 <= cnt_2 + 32'h01010101;
45 val_3 <= val_3 + 64'h0101010101010101;
46 cnt_3 <= cnt_3 + 32'h01010101;
47 val_4 <= val_4 + 64'h0101010101010101;
48 cnt_4 <= cnt_4 + 32'h01010101;
49 // end else begin
50 // cycle_count <= cycle_count;
51 // trigger <= 1'b0;
52 end
53 end
54 end
55

56 endmodule

A.9. FIFO filler
1 `timescale 1ns / 1ps
2 //
3 // Company:
4 // Engineer:
5 //
6 // Create Date: 17.05.2024 11:26:46
7 // Design Name:
8 // Module Name: fifo_filler
9 // Project Name:

10 // Target Devices:
11 // Tool Versions:
12 // Description:
13 //
14 // Dependencies:
15 //
16 // Revision:
17 // Revision 0.01 - File Created
18 // Additional Comments:
19 //
20 //
21

22

23 module fifo_filler #
24 (
25 parameter integer AXIS_TDATA_WIDTH = 32,
26 parameter integer VALUE_COUNT = 8
27)
28 (
29 input aclk,
30 input rst,
31 output [AXIS_TDATA_WIDTH -1:0] m_axis_tdata,
32 output m_axis_tvalid,
33 input m_axis_tready,
34 output m_axis_tlast
35);
36

37 reg [AXIS_TDATA_WIDTH -1:0] counter, next_count;
38 reg done, next_done;
39

40 always @(posedge aclk) begin
41 if (!rst) begin
42 counter = 10;
43 done = 0;
44 end

A.9. FIFO filler 51

45 if (m_axis_tready && !done) begin
46 counter = next_count;
47 done = next_done;
48 end
49 end
50

51 always @* begin
52 next_count = counter + 1;
53 next_done = next_count >= (VALUE_COUNT+10);
54 end
55

56 assign m_axis_tdata = counter;
57 assign m_axis_tvalid = !done;
58 assign m_axis_tlast = next_done && !done;
59

60 endmodule

B
Implementation Block Diagrams

52

53

Mixers Accumulators

ADC's
DUT

REF

Multiplier

Multiplier

Multiplier

Multiplier

DDS IF

[15:0]DUT

[15:0]REF

Cos [15:0]

Sin [15:0]

DUT I [31:0]

REF I [31:0]

DUT Q [31:0]

REF Q [31:0]

Accumulator
Trigger

Accumulator

Accumulator

Accumulator

Accumulator

Sequencer Trigger

Generator Trigger

Current Phase AXI-Stream

Packetiser

Value [63:0]

Count [31:0]

Value

[63:0]
Count [31:0]

Value [63:0]

Count [31:0]

Value [63:0]

Count [31:0]

FIFO DMA Processing
Subsystem

AXI-Stream AXI-Stream AXI

MMIO Config

Config Data AXI

DDS REF DACAXI-Stream 10 Mhz Reference

Enable

Figure B.1: Simplified block diagram of the entire logic implementation implemented in the PL.

54

A
C

C
U

S

cu
rr

en
t_

ph
as

e

ac
lk

du
t_

co
s_

ac
cu

[6
3:

0]

du
t_

co
s_

cn
t[3

1:
0]

du
t_

si
n_

ac
cu

[6
3:

0]

du
t_

si
n_

cn
t[3

1:
0]

re
f_

co
s_

ac
cu

[6
3:

0]

re
f_

co
s_

cn
t[3

1:
0]

re
f_

si
n_

ac
cu

[6
3:

0]

re
f_

si
n_

cn
t[3

1:
0]

ou
tp

ut
_v

al
id

du
t_

co
s[

31
:0

]

du
t_

si
n[

31
:0

]

re
f_

co
s[

31
:0

]

re
f_

si
n[

31
:0

]

rs
t

tr
ig

ge
r

C
N

T
R

L

S
_A

X
I

S
_A

X
I1

ac
lk

rs
t

s_
ax

i_
ac

lk

s_
ax

i_
ar

es
et

n

ge
n1

_t
rig

ge
r

ge
n2

_t
rig

ge
r

ac
cu

m
ul

at
or

_t
rig

ge
r

D
ou

t[1
5:

0]

D
A

IS
Y

_B
U

F

da
is

y_
p_

i[1
:0

]

da
is

y_
n_

i[1
:0

]

da
is

y_
p_

o[
1:

0]

da
is

y_
n_

o[
1:

0]

M
IX

E
R

S

s_
ax

is

s_
ax

is
1

ac
lk

du
t_

co
s[

31
:0

]

re
f_

co
s[

31
:0

]

re
f_

si
n[

31
:0

]

du
t_

si
n[

31
:0

]

P
S

D
D

R

F
IX

E
D

_I
O

M
00

_A
X

I

M
01

_A
X

I

S
_A

X
I_

H
P

0

M
02

_A
X

I

F
C

LK
_C

LK
0

S
00

_A
R

E
S

E
T

N
[0

:0
]

R
P

_D
A

C

S
_A

X
IS

cl
k_

in
1

da
c_

cl
k_

o

da
c_

rs
t_

o

da
c_

se
l_

o

da
c_

w
rt

_o

da
c_

da
t_

o[
13

:0
]

da
c_

w
rt

_o

cd
c_

re
se

t

xp
m

_c
dc

de
st

_c
lk

de
st

_a
rs

t
sr

c_
ar

stm
m

io
_c

on
fig

_1

A
X

I G
P

IO

S
_A

X
I

G
P

IO

gp
io

_i
o_

i[3
1:

0]

gp
io

_i
o_

o[
31

:0
]

G
P

IO
2

gp
io

2_
io

_i
[3

1:
0]

gp
io

2_
io

_o
[3

1:
0]

s_
ax

i_
ac

lk

s_
ax

i_
ar

es
et

n
m

m
io

_c
on

fig
_2

A
X

I G
P

IO

S
_A

X
I

G
P

IO

gp
io

_i
o_

i[3
1:

0]

gp
io

_i
o_

o[
31

:0
]

G
P

IO
2

gp
io

2_
io

_i
[3

1:
0]

gp
io

2_
io

_o
[3

1:
0]

s_
ax

i_
ac

lk

s_
ax

i_
ar

es
et

n

se
qu

en
ce

r

se
qu

en
ce

r_
v1

_0

ac
lk

rs
t

de
ad

_t
im

e[
31

:0
]

po
in

t_
tim

e[
31

:0
]

tr
ig

_c
on

fig
[3

1:
0]

ge
n1

_t
rig

ge
r

ge
n2

_t
rig

ge
r

ac
cu

m
ul

at
or

_t
rig

ge
r

xl
sl

ic
e_

0

S
lic

e

D
in

[3
1:

0]
D

ou
t[1

5:
0]

xl
sl

ic
e_

1

S
lic

e

D
in

[3
1:

0]
D

ou
t[0

:0
]

da
c_

se
l_

o

ut
il_

ds
_b

uf
_1

U
til

ity
 B

uf
fe

r

C
LK

_I
N

_D

IB
U

F
_D

S
_P

[1
:0

]

IB
U

F
_D

S
_N

[1
:0

]

IB
U

F
_O

U
T

[1
:0

]

ut
il_

ds
_b

uf
_2

U
til

ity
 B

uf
fe

rC
LK

_O
U

T
_D

3

O
B

U
F

_D
S

_P
[1

:0
]

O
B

U
F

_D
S

_N
[1

:0
]

O
B

U
F

_I
N

[1
:0

]

D
D

R

F
IX

E
D

_I
O

da
c_

rs
t_

o

m
ul

t_
du

t_
co

s

M
ul

tip
lie

r

C
LK

A
[1

3:
0]

B
[1

3:
0]

P
[3

1:
0]

m
ul

t_
du

t_
si

n

M
ul

tip
lie

r

C
LK

A
[1

3:
0]

B
[1

3:
0]

P
[3

1:
0]

m
ul

t_
re

f_
co

s

M
ul

tip
lie

r

C
LK

A
[1

3:
0]

B
[1

3:
0]

P
[3

1:
0]

m
ul

t_
re

f_
si

n

M
ul

tip
lie

r

C
LK

A
[1

3:
0]

B
[1

3:
0]

P
[3

1:
0]

sp
lit

_a
dc

ax
i_

sp
lit

_v
1_

0

s_
ax

is

ac
lk

da
ta

_l
ow

er
[1

3:
0]

da
ta

_u
pp

er
[1

3:
0]

sp
lit

_i
f

ax
i_

sp
lit

_v
1_

0

s_
ax

is

ac
lk

da
ta

_l
ow

er
[1

3:
0]

da
ta

_u
pp

er
[1

3:
0]

da
c_

cl
k_

o

pr
oc

es
si

ng
_s

ys
te

m
7_

0

Z
Y

N
Q

7
P

ro
ce

ss
in

g
S

ys
te

m

M
D

IO
_E

T
H

E
R

N
E

T
_0

D
D

R

F
IX

E
D

_I
O

S
P

I_
0

U
S

B
IN

D
_0

S
_A

X
I_

H
P

0_
F

IF
O

_C
T

R
L

M
_A

X
I_

G
P

0
S

_A
X

I_
H

P
0

T
T

C
0_

W
A

V
E

0_
O

U
T

T
T

C
0_

W
A

V
E

1_
O

U
T

T
T

C
0_

W
A

V
E

2_
O

U
T

M
_A

X
I_

G
P

0_
A

C
LK

S
_A

X
I_

H
P

0_
A

C
LK

F
C

LK
_C

LK
0

F
C

LK
_R

E
S

E
T

0_
N

ps
7_

0_
ax

i_
pe

rip
h

A
X

I I
nt

er
co

nn
ec

t

S
00

_A
X

I

M
00

_A
X

I

M
01

_A
X

I

M
02

_A
X

I

A
C

LK

A
R

E
S

E
T

N

S
00

_A
C

LK

S
00

_A
R

E
S

E
T

N

M
00

_A
C

LK

M
00

_A
R

E
S

E
T

N

M
01

_A
C

LK

M
01

_A
R

E
S

E
T

N

M
02

_A
C

LK

M
02

_A
R

E
S

E
T

N
rs

t_
ps

7_
0_

12
5M

P
ro

ce
ss

or
 S

ys
te

m
 R

es
et

sl
ow

es
t_

sy
nc

_c
lk

ex
t_

re
se

t_
in

au
x_

re
se

t_
in

m
b_

de
bu

g_
sy

s_
rs

t

dc
m

_l
oc

ke
d

m
b_

re
se

t

bu
s_

st
ru

ct
_r

es
et

[0
:0

]

pe
rip

he
ra

l_
re

se
t[0

:0
]

in
te

rc
on

ne
ct

_a
re

se
tn

[0
:0

]

pe
rip

he
ra

l_
ar

es
et

n[
0:

0]

R
P

_A
D

C

A
X

I4
-S

tr
ea

m
 R

ed
 P

ita
ya

 A
D

C

M
_A

X
IS

ad
c_

cl
k

ad
c_

cs
n

ad
c_

cl
k_

p

ad
c_

cl
k_

n

ad
c_

da
t_

a[
13

:0
]

ad
c_

da
t_

b[
13

:0
]

ad
c_

en
c_

p_
o

ax
is

_r
ed

_p
ita

ya
_d

ac
_0

A
X

I4
-S

tr
ea

m
 R

ed
 P

ita
ya

 D
A

C

S
_A

X
IS

ac
lk

dd
r_

cl
k

lo
ck

ed

da
c_

cl
k

da
c_

rs
t

da
c_

se
l

da
c_

w
rt

da
c_

da
t[1

3:
0]

cl
k_

w
iz

_0

C
lo

ck
in

g
W

iz
ar

d

cl
k_

in
1

cl
k_

ou
t1

lo
ck

ed

V
au

x0

V
au

x1

V
au

x8

V
au

x9

V
p_

V
n

ad
c_

da
t_

a_
i[1

3:
0]

ad
c_

da
t_

b_
i[1

3:
0]

ax
i_

m
em

_i
nt

er
co

n

A
X

I I
nt

er
co

nn
ec

t

S
00

_A
X

I

M
00

_A
X

I

A
C

LK

A
R

E
S

E
T

N

S
00

_A
C

LK

S
00

_A
R

E
S

E
T

N

M
00

_A
C

LK

M
00

_A
R

E
S

E
T

N

c_
co

un
te

r_
bi

na
ry

_0

B
in

ar
y

C
ou

nt
er

C
LK

T
H

R
E

S
H

0

Q
[4

:0
]

da
c_

da
t_

o[
13

:0
]

da
c_

pw
m

_o
[3

:0
]

da
is

y_
n_

i[1
:0

]

da
is

y_
n_

o[
1:

0]

da
is

y_
p_

i[1
:0

]

da
is

y_
p_

o[
1:

0]

dd
s_

if

D
D

S
 C

om
pi

le
r

M
_A

X
IS

_D
A

T
A

M
_A

X
IS

_P
H

A
S

E
ac

lk

ev
en

t_
pi

nc
_i

nv
al

id

dd
s_

re
f

D
D

S
 C

om
pi

le
r

M
_A

X
IS

_D
A

T
A

ac
lk

ev
en

t_
pi

nc
_i

nv
al

id

dm
a

A
X

I D
ire

ct
 M

em
or

y
A

cc
es

s

S
_A

X
I_

LI
T

E

M
_A

X
I_

S
2M

M
S

_A
X

IS
_S

2M
M

s_
ax

i_
lit

e_
ac

lk

m
_a

xi
_s

2m
m

_a
cl

k

ax
i_

re
se

tn

s2
m

m
_p

rm
ry

_r
es

et
_o

ut
_n

s2
m

m
_i

nt
ro

ut

ex
p_

n_
tr

i_
io

[7
:0

]

ex
p_

p_
tr

i_
io

[7
:0

]

fif
o_

pa
ck

et

A
X

I4
-S

tr
ea

m
 D

at
a

F
IF

O

S
_A

X
IS

M
_A

X
IS

s_
ax

is
_a

re
se

tn

s_
ax

is
_a

cl
k

m
_a

xi
s_

ac
lk

pr
og

_f
ul

l

le
d_

o[
7:

0]

pa
ck

et
is

er

pa
ck

et
is

er
_v

1_
0

M
_A

X
IS

_O
U

T

va
l_

1[
63

:0
]

cn
t_

1[
31

:0
]

va
l_

2[
63

:0
]

cn
t_

2[
31

:0
]

va
l_

3[
63

:0
]

cn
t_

3[
31

:0
]

va
l_

4[
63

:0
]

cn
t_

4[
31

:0
]

tr
ig

ge
r

in
hi

bi
t

ac
lk

rs
t

ad
c_

cl
k_

n_
i

ad
c_

cl
k_

p_
i

ad
c_

cs
n_

o

ad
c_

en
c_

n_
o

ac
cu

_t
rig

ge
r

ac
cu

_t
rig

ge
r_

v1
_0

cu
rr

en
t_

ph
as

e

ac
lk

rs
t

tr
ig

ge
r

ac
cu

_e
na

bl
e

do
ne

_s
am

pl
es

_v
al

id

ac
cu

_r
ef

_s
in

ac
cu

m
ul

at
or

_v
1_

0

ac
lk

en
ab

le

rs
t

in
_v

al
ue

[3
1:

0]

ou
t_

va
lu

e[
63

:0
]

sa
m

pl
e_

co
un

t[3
1:

0]

ac
cu

_r
ef

_c
os

ac
cu

m
ul

at
or

_v
1_

0

ac
lk

en
ab

le

rs
t

in
_v

al
ue

[3
1:

0]

ou
t_

va
lu

e[
63

:0
]

sa
m

pl
e_

co
un

t[3
1:

0]

ac
cu

_d
ut

_s
in

ac
cu

m
ul

at
or

_v
1_

0

ac
lk

en
ab

le

rs
t

in
_v

al
ue

[3
1:

0]

ou
t_

va
lu

e[
63

:0
]

sa
m

pl
e_

co
un

t[3
1:

0]

ac
cu

_d
ut

_c
os

ac
cu

m
ul

at
or

_v
1_

0

ac
lk

en
ab

le

rs
t

in
_v

al
ue

[3
1:

0]

ou
t_

va
lu

e[
63

:0
]

sa
m

pl
e_

co
un

t[3
1:

0]

xl
co

nc
at

_0

C
on

ca
t

In
0[

0:
0]

In
1[

0:
0]

In
2[

0:
0]

In
3[

0:
0]

In
4[

0:
0]

In
5[

0:
0]

In
6[

0:
0]

In
7[

0:
0]

do
ut

[7
:0

]

Figure B.2: An enlarged version of the complete block diagram of the entire logic implementation implemented in the PL as
exported from Vivado.

55

Figure B.3: The IQ decomposition stage implementation.

Figure B.4: The data reduction stage implementation.

56

Figure B.5: The data output stage implementation.

Figure B.6: The control section implementation.

C
Implementation Testing and Results

C.1. Testing parameters and code
1 import numpy as np
2 from pynq import MMIO, Overlay, allocate
3 import matplotlib.pyplot as plt
4 import time
5

6 # ----- NEXT CELL -----
7

8 RAW_TO_VOLTS = 2**-25 # Fixed point to floating point
9

10 def uint64_to_signed_int(unsigned):
11 """Converts 64-bit unsigned integer to signed integer. By Bit Twiddling Hacks; see
12 https://stackoverflow.com/questions/1375897/how-to-get-the-signed-integer-value-of-a-long

-in-python.
13 """
14 unsigned &= (1<<64) - 1 # Keep only the lowest 64 bits.
15 return (unsigned ^ (1<<63)) - (1<<63) # Swap and shift down.
16

17 def buffer_to_volts(buffer):
18 """Divides integer I and Q values by sample count. Buffer is an array containing a

multiple of three
19 elements: I value, Q value, count. The I and Q values are divided by count
20 and multiplied by a conversion factor to get the unit of volts.
21 """
22 volts = [
23 (
24 uint64_to_signed_int(int(buffer[i]) # to Python integer(first entry:

unsigned 32-bit integer
25 + (int(buffer[i + 1]) << 32)) # adding second unsigned integer

shifted left 32 bits)
26 / buffer[i + 2] # dividing by third entry (count)
27 * RAW_TO_VOLTS # scaling to units of volts
28)
29 for i in range(0, 12, 3) # i = 0, 3, 6, 9
30]
31 return volts
32

33 def volts_to_phasors(volts):
34 """Interpret the 4 voltage values as phasors
35 """
36 dut = volts[0] + 1j*volts[1]
37 ref = volts[2] + 1j*volts[3]
38 rel = dut/ref
39 return dut, ref, rel
40

41 # ----- NEXT CELL -----
42

43 # Set configuration bits using MMIO

57

C.1. Testing parameters and code 58

44

45 ADC_FREQ = 125_000_000
46 cyc = lambda x: round(x*ADC_FREQ)
47 RESET_BIT = 0b1
48

49 # Trigger configuration, eg trigger1_conf = TRIG_POS+TRIG_SWEEP
50 TRIG_POS = 0b0000
51 TRIG_NEG = 0b0001
52 TRIG_SWEEP = 0b0010
53 TRIG_POINTS = 0b0100
54

55 mmio_dead_time = MMIO(0x42000000) # Dead time in ADC samples
56 mmio_point_time = MMIO(0x42000008) # Total point time in ADC samples (dead time +

accumulation time)
57 mmio_trigger_conf = MMIO(0x41200000) # Trigger config
58 mmio_general_conf = MMIO(0x41200008) # General config
59

60 def set_config(dead_time = 300E-6, point_time = 1E-3, trigger_length = 10E-6, trigger1_conf =
0, trigger2_conf = 0):

61 # assert trigger_length <= dead_time <= point_time, "Trigger length should be less than
settling time, less than total point time!"

62

63 mmio_dead_time.write(0, cyc(dead_time)) # Only one value in register,
overwrite completely

64 mmio_point_time.write(0, cyc(point_time)) # Idem
65 mmio_trigger_conf.write(0, cyc(trigger_length) + (trigger1_conf << 24) + (trigger2_conf

<< 28))
66

67 def read_status():
68 return mmio_general_conf.read(0)
69

70 def start_acq(dma_recv):
71 curr = mmio_general_conf.read(0)
72 mmio_general_conf.write(0, curr | RESET_BIT)
73

74 # dma request of 16 words to get rid of misformed packet
75 buffer = allocate(shape=(16,), dtype=np.uint32)
76 dma_recv.transfer(buffer)
77 dma_recv.wait()
78 del buffer
79

80 def stop_acq():
81 curr = mmio_general_conf.read(0)
82 mmio_general_conf.write(0, curr & ~RESET_BIT)
83

84 # ----- NEXT CELL -----
85

86 # Program the overlay onto the PL, configure it and get a handle for the DMA
87

88 ol = Overlay("/home/xilinx/bit/vna_v1_7.bit")
89

90 dma = ol.dma
91 dma_recv = dma.recvchannel
92

93 # ----- NEXT CELL -----
94

95 # Allocate input buffer and show it's empty
96

97 data_size = 12
98 buffer = allocate(shape=(data_size,), dtype=np.uint32)
99

100 for i in range(data_size):
101 print(f'0x{format(buffer[i],␣"02x")},␣', end='')
102

103 # ----- NEXT CELL -----
104

105 # Transfer data and show it (can repeat indefinitely)
106

107 set_config(dead_time=250E-6, point_time=1E-3, trigger_length=10E-6, trigger1_conf=TRIG_POS+
TRIG_SWEEP, trigger2_conf=TRIG_POS+TRIG_POINTS)

108

C.2. Test results 59

109 # Acquire data
110 start_acq(dma_recv)
111 dma_recv.transfer(buffer)
112 dma_recv.wait()
113 stop_acq()
114

115 # Convert it to human units
116 volts = buffer_to_volts(buffer)
117 dut, ref, rel = volts_to_phasors(volts)
118

119 # Print results
120 for i in range(data_size):
121 print(f'0x{format(buffer[i],␣"02x")},␣', end='')
122 print()
123 print(volts)
124 print(f'DUT:␣{np.abs(dut):.3f}V,␣{np.angle(dut):.3f}r,␣' +
125 f'REF:␣{np.abs(ref):.3f}V,␣{np.angle(ref):.3f}r,␣' +
126 f'REL:␣{np.abs(rel):.3f},␣{np.angle(rel):.3f}r')
127

128 # ----- NEXT CELL -----
129

130 from pickle import Pickler
131

132 TESTS = [(1000E-6, 900E-6, 1000, "2vpp␣0d,␣2vpp␣0d"),(1000E-6, 0.5E-6, 1000, "idem"),
133 (1000E-6, 900E-6, 1000, "1vpp␣0d,␣2vpp␣90d"),(1000E-6, 0.5E-6, 1000, "idem"),
134 (1000E-6, 900E-6, 1000, "0.1-1vpp␣3hz␣0d,␣2vpp␣-90-90d␣5hz"),(1000E-6, 0.5E-6, 1000,

"idem"),
135]
136

137 results = []
138

139 for TIME, DEADTIME, POINTS, INSTRUCTIONS in TESTS:
140 input(INSTRUCTIONS)
141

142 set_config(dead_time=DEADTIME, point_time=TIME, trigger_length=0.5E-6, trigger1_conf=
TRIG_NEG+TRIG_SWEEP, trigger2_conf=TRIG_POS+TRIG_POINTS)

143 values = np.ndarray((POINTS, data_size), dtype=np.uint32)
144

145 start_acq(dma_recv)
146 start = time.perf_counter()
147 for i in range(POINTS):
148 dma_recv.transfer(buffer)
149 dma_recv.wait()
150 values[i] = buffer
151 end = time.perf_counter()
152 stop_acq()
153 print(f"Took␣{end-start:.4f}s")
154

155 # Calculate after the loop to allow faster IFBWs (above 2k instead of barely 1k)
156 all_values = np.ndarray((POINTS, 3), dtype=complex)
157 for i, buf in enumerate(values):
158 volts = buffer_to_volts(buf)
159 all_values[i, :] = volts_to_phasors(volts)
160

161 results.append(all_values)
162

163 Pickler(open("thesis_measurements.pickle", "wb")).dump(("time␣per␣point,␣deadtime,␣points,␣
instructions", TESTS, results))

C.2. Test results

C.2. Test results 60

0 250 500 750 1000
Sample [-]

0.940

0.945

0.950

0.955

M
ea

su
re

d
am

pl
itu

de
 [V

] Measured amplitude DUT channel

IFBW = 10 kHz
IFBW = 1 kHz

0 250 500 750 1000
Sample [-]

0.935

0.940

0.945

M
ea

su
re

d
am

pl
itu

de
 [V

] Measured amplitude REF channel

0 250 500 750 1000
Sample [-]

1.00590

1.00595

M
ea

su
re

d
am

pl
itu

de
 [-

] Measured relative amplitude

0 250 500 750 1000
Sample [-]

2

0

2

M
ea

su
re

d
ph

as
e

[ra
d]

Measured phase DUT channel

0 250 500 750 1000
Sample [-]

2

0

2

M
ea

su
re

d
ph

as
e

[ra
d]

Measured phase REF channel

0 250 500 750 1000
Sample [-]

0.00245

0.00250

0.00255

M
ea

su
re

d
ph

as
e

[ra
d]

Measured relative phase

Measurement results for DUT = 1 0 V, REF = 1 0 V

Figure C.1: Results of experiment 1. Mind the variable vertical scales.

0 250 500 750 1000
Sample [-]

0.4600

0.4625

0.4650

M
ea

su
re

d
am

pl
itu

de
 [V

] Measured amplitude DUT channel

IFBW = 10 kHz
IFBW = 1 kHz

0 250 500 750 1000
Sample [-]

0.930

0.935

0.940

0.945

M
ea

su
re

d
am

pl
itu

de
 [V

] Measured amplitude REF channel

0 250 500 750 1000
Sample [-]

0.4920

0.4925

0.4930

M
ea

su
re

d
am

pl
itu

de
 [-

] Measured relative amplitude

0 250 500 750 1000
Sample [-]

2

0

2

M
ea

su
re

d
ph

as
e

[ra
d] Measured phase DUT channel

0 250 500 750 1000
Sample [-]

2

0

2

M
ea

su
re

d
ph

as
e

[ra
d] Measured phase REF channel

0 250 500 750 1000
Sample [-]

1.5640

1.5638

1.5636

M
ea

su
re

d
ph

as
e

[ra
d] Measured relative phase

Measurement results for DUT = 1
2 0 V, REF = 1 2 V

Figure C.2: Results of experiment 2. Mind the variable vertical scales.

C.2. Test results 61

0 250 500 750 1000
Sample [-]

0.2

0.4

M
ea

su
re

d
am

pl
itu

de
 [V

] Measured amplitude DUT channel

IFBW = 10 kHz
IFBW = 1 kHz

0 250 500 750 1000
Sample [-]

0.93

0.94

M
ea

su
re

d
am

pl
itu

de
 [V

] Measured amplitude REF channel

0 250 500 750 1000
Sample [-]

0.2

0.4

M
ea

su
re

d
am

pl
itu

de
 [-

] Measured relative amplitude

0 250 500 750 1000
Sample [-]

2

0

2

M
ea

su
re

d
ph

as
e

[ra
d]

Measured phase DUT channel

0 250 500 750 1000
Sample [-]

2

0

2

M
ea

su
re

d
ph

as
e

[ra
d]

Measured phase REF channel

0 250 500 750 1000
Sample [-]

2

0

2

M
ea

su
re

d
ph

as
e

[ra
d]

Measured relative phase

Measurement results for DUT = A 0 V, REF = 1 V

Figure C.3: Results of experiment 3. 𝐴 and 𝜃 were modulated using positive-ramp sawtooth waves. Mind the variable vertical
scales.

	Preface
	Abstract
	Table of Contents
	Nomenclature
	IntroductionThis chapter is shared between the three theses written by the three subteams of the project.
	VNA, a general overview
	Application in quantum research
	Existing solutions
	Functional requirements
	Materials
	Problem definition
	Thesis overview

	Programme of Requirements
	Functional requirements
	Non-functional requirements

	Design Process
	Theory of operation
	General overview
	First architecture
	Second architecture

	Signal processing
	Phase and amplitude, I and Q
	Data reduction

	Red Pitaya and programmable logic
	Red Pitaya
	Protocols and pre-made blocks
	Custom blocks

	Implementation and Validation
	Implementation and validation of individual components
	Sequencer
	Accumulator
	Packetiser
	FIFO
	DMA

	Integration
	Validation of integrated system
	Measurement 1
	Measurement 2
	Measurement 3

	Discussion
	Shortcomings
	Future work

	Conclusion
	References
	Verilog Source Code
	Accumulator
	Accumulator trigger
	Accumulator and trigger testbench
	Sequencer
	Sequencer testbench
	Packetiser
	Packetiser testbench and top-level module
	Sample data generator for packetiser testbench
	FIFO filler

	Implementation Block Diagrams
	Implementation Testing and Results
	Testing parameters and code
	Test results

