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PREFACE 

The time when I started my research for master thesis topic, I was surprised by the wide 

spectrum of research topics that bioinformatics has and the pace at which this field is 

evolving. After the outbreak of SARS-CoV-2 in 2019 and following pandemic, RNA viruses 

gained a lot of attention. I was really drawn towards viruses and keen on spending my 

research period exploring about RNA viruses and why is it still so challenging to tackle them. 

I have spoken more about what RNA viruses are in detail for the readers with no biological 

background in Chapter 1. The following report talks about my master thesis in which eight 

months (October 2021 – May 2022) were spent in exploring and learning about viral 

quasispecies and creating benchmarking datasets along with evaluating the performance of 

various viral quasispecies assembly tools. All these months have been no less than a roller-

coaster ride but exciting journey in both research and personally.  

I would like to express my gratitude towards my supervisor Dr. Thomas Abeel for addressing 

the broader questions related to the thesis and preparing me for future challenges. I am also 

very thankful to my second supervisor Dr. Jasmijn Baaijens who always supported and 

motivated me and pushed me to do things beyond my capabilities, to look at the bigger 

picture even when the timeline was tight.  I would also like to thank you for inspiring me 

during the challenging periods. She has always been really calming and helped me focus on 

completing my task list. I would also like to express my sincere thanks to Dr. Julián Urbano for 

being a part of my thesis defense committee and looking forward to getting your valuable 

feedback on the work done.  

Lastly, I would like to specially thank my family and friends who supported and believed in me 

and listened to my crazy ideas during the rough phases of this journey. It would have been 

really difficult without them.  

 

I wish you enjoy what you read! 

Rucha Narkhede 
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ABSTRACT 

Viral quasispecies refers to viral populations that comprises of numerous viral strains closely 

related to each other due to within-host evolution or co-infection. The reconstruction of viral 

strain-specific genomes using sequencing reads is referred to as viral quasispecies assembly, 

and it is also crucial to determine the relative abundances of the viral strains in the mixture 

for various treatments. There are currently many software tools available to transform NGS 

sequencing reads into haplotypes but earlier benchmarks of viral quasispecies reconstruction 

tools were only tested using simulated datasets but do not reflect closely on the real-world 

scenarios and on virus evolution. In this research, using realistic evolutionary viral 

populations, we assessed six viral quasispecies assembly tools. The existing real dataset mix 

that is still being used for experiments is a decade old, so it has become important to create 

broader and complex high quality real datasets as a new standard for future haplotype caller 

experiments. We introduce a new high quality benchmarking dataset for viral quasispecies 

assembly from real samples. The aim of this research is to evaluate extensive performance of 

six tools approaches that allow for reconstruction of unique viral haplotypes which are 

necessary to research complex and heterogeneous virus communities thoroughly. A 

comparative study of the performance of these tools has been done. Based on the results 

achieved, to improve the haplotypes generated, an existing de novo method is used for 

reconstructing full-length haplotypes from pre-assembled contigs of challenging mixed 

samples. In general, this improved the overall accuracy of the assembly and abundance 

estimations. 
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1 Introduction 
 

RNA viruses like SARS-CoV, HIV, Hepatitis and influenza are main causes of infection and 

illness in human[1], [2]. Because of their genetic variety and the infections, they induce, RNA 

viruses have gained a lot of attention. The exceptional propensity of RNA viruses to acquire 

resistance to treatment is one of the most challenging aspects of therapy based on viral 

inhibitor chemicals[2]. For example, a single point mutation has been demonstrated to 

provide considerable resistance to Human Immunodeficiency Virus HIV after a minimal 

exposure to several non-nucleoside reverse transcriptase inhibitors[3], [4]. Severe acute 

respiratory syndrome coronavirus (SARS-CoV) virus is mutating in real time[5]. As the SARS-

CoV-2 epidemic unfolds, it is posing a challenge to existing containment techniques. Before 

we discuss about the rapid mutation rates, it is first important to understand the structure of 

RNA.  

Ribonucleic Acid (RNA) consists of four nucleotides (Adenine(A), Cytosine(C), Guanine(G) and 

Uracil (U) instead of thymine(T))[1]. Usually, RNA molecules are single stranded unlike the 

double stranded structure of DNA molecules. Due to this, the RNA molecules are prone to 

errors during any damages. These errors result in genomic mutations of the virus. These 

errors are so common that the mutation rates are also high. RNA viruses' fast mutation rate 

helps them to quickly adapt to novel surroundings, such as host immunological challenges 

and therapeutic treatments. RNA Viral genomes contains all genetic information for the virus 

to exist and replicate. Higher error rates, along with fast replication, rapidly result in the 

establishment of a community of genomes that are remarkably identical also known as viral 

quasispecies[6].  Viral quasispecies is explained further in Section 1.1.   
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1.1 Viral Quasispecies 
In comparison to bacteria and eukaryotes, viral genomes are comparatively small, yet they 

are vulnerable to extremely rapid mutation rates [7]. Within individual hosts, virus 

populations can have a lot of genetic variability. A typical characteristic observed in RNA 

viruses is sequence heterogeneity[2], [8]. The population of RNA viruses that possess such 

a characteristic is commonly referred to as quasispecies. Some common diseases and 

infections caused by viruses like human immunodeficiency virus (HIV), COVID-19, Hepatitis 

C virus (HCV) are influenced by the dynamic and diverse nature of quasispecies[7]. 

Quasispecies provide significant challenges in terms of treatment and immune response 

resistance, resulting in viral evolution in animals and human species[9]. In every replication 

cycle, the mutation rate in quasispecies can be as high as 10-4 substitutions per 

nucleotide(nt) copied. This happens due to the lack of repair and proofreading 

mechanisms. Viruses such as HIV multiply rapidly after infection and frequently incorporate 

mutations into their offspring's genomes. In HIV, due to the absence of error checking 

mechanisms, the error rate is approximately 3.4 x 10-5 per nucleotide due to high mutation 

rates during replication cycles[6], [10].  

 

 

 

 

 

 

 

 

 

 

Figure 1 depicts the development of a hypothetical quasispecies, originating at cycle 

1(infection genome). The abundance of every individual virus in the quasispecies cloud is 

Figure 1:Hypothetical representation of Quasispecies formation 
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determined by its own replication ability as well as the likelihood that it will originate 

through mutation of existing individuals of quasispecies cloud. The quasispecies population 

exists as a whole structure so any selective pressures cannot be applied to an individual 

mutant but to the whole cloud. In the first cycle, it starts with a parent viral 

genome(infected). The initial parent virus replicates as the time progresses from cycle 1 to 

cycle 4. Simultaneously, the population size increases along with the introduction of new 

viruses to the quasispecies cloud. The new viruses added to the community, mutates and 

replicates in a similar way producing new offspring, rapidly resulting in a population of 

extremely similar viruses. The fitness of these descendants is related to the host’s fitness.  

The fitness of descendant mutants is based on the survival of the host. In the given figure, 

node number 3 is eventually going to die out with time. The parent genome and the 

offspring's genomes will continue to replicate independently if the mutant offspring is 

suitable for existence in the host, along with relative abundances being proportional to their 

fitness. At a molecular scale, determining the genetic diversity of a viral quasispecies would 

aid researchers in better understanding the behavior and development of quasispecies-

forming RNA viruses. 

 

1.2 Genome sequencing 
 

A machine called a sequencer can process physical DNA molecules and determine the 

corresponding sequence of nucleotides. Unfortunately, sequencersare unable to process a 

full genome at this time. Moreover, the reads produced by a sequencer may have errors 

that do not exist in the genomic information. A mismatch error is one form of mistake that 

can be introduced while sequencing using a sequencer. For instance, a sequencer could 

report an A when in the genomic sequence it is a G. 

In the last decade, with the development of next-generation sequencing (NGS), it was 

possible to produce genome wide data in a short period of time and at a relatively lower 

cost. This transformed the fields of transcriptomics, genomics, medical research and 

evolutionary biology[11]. It is now possible to sequence complete genomes of practically 

any organism at a sufficient coverage. The identification of haplotypes and their occurrence 

in diverse virus species is progressing thanks to the advent of NGS methods[12]. Each of the 
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three methods can be used to examine viral genomes, but none of them can reliably 

sequence sections longer than a few hundred bases. 

Thereafter, a new set of sequencing technologies known as third generation sequencing 

(TGS) or long-read sequencers have been available. These technologies can generate reads 

up to 900 Kilobase pairs(kbp) length[13]. 

Paired-end reads are created when the fragment size employed in the sequencing 

procedure is substantially larger (usually between 250 and 500 bp) and the ends of the 

fragment are read in towards the middle[14]. There are two "paired" readings as a result of 

this. One from the left end of a piece and one from the right end, separated by a given 

distance. While long read sequencing has a lot of potential but they also increase the error 

rate significantly (approximately 13%) and there is a lot of NGS data in the sequencing 

reads archives. In this thesis, we have worked with paired-end reads. The algorithms directly 

used in this thesis were developed to deal with NGS datasets, particularly Illumina 

sequencing technologies. 

1.3 Assembly 
 

The crucial task is to rebuild a genome using the sequencing data. This process is termed as 

genome assembly. Usually, it is done in two steps. Firstly, the sequencing reads produced 

by the technologies are utilized to construct continuous sequences of the maximum length, 

known as contigs. Secondly, these contigs are further connected together to form a 

sequence of contigs[15]. The order of these contigs depends on the order of these contigs 

as they appear in the genome wherever possible. These sequence of contigs are known as 

scaffolds. 

A viral quasispecies assembly, in theory, describes an infection's genetic diversity by showing 

all the viral haplotypes. Along with the haplotypes, it also shows the abundance rates of 

each strain. There are two key obstacles to overcome. In most cases, the number of distinct 

strains is unknown[16]. Furthermore, strains can be different from each other by only tiny 

amounts of mutations. The abundance rates might be as low as sequencing error rates, 

making it difficult to discover real mutations that occur at low frequencies. Reference 

genomes with high-quality consensus genome sequences may be outdated at the time of 
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the disease epidemic due to the large variety and high mutation rates[15]. As sequencing 

reads produced by technologies discussed earlier contain errors, with error rates changing 

by sequencing technology, error correction is a crucial part of genome assembly[17]. By 

using specific tools for correcting errors on the datasets before actually assembling, some 

assembly tools presume the input is free on any errors. While some assemblers don’t require 

any preprocessing and deal with sequencing problems during the assembly process. One of 

the most challenging aspects of genome assembly is distinguishing between sequencing 

mistakes and actual genomic variation. Many viral quasispecies assembly procedures are 

hampered by the absence of a relevant reference genome. We will be talking about the two 

types of genome assembly methods: Reference-free (de novo) and reference-guided 

assembly in detail in Chapter 2. 

 

1.4 Research Objectives 
 

The aim of this research is to evaluate performance of available approaches that allow for 

thorough reconstruction of unique viral haplotypes which are necessary to research 

complex and heterogeneous virus communities thoroughly. Over the last decade, several 

genome assembly methods have been developed to help with the problem of determining 

sequence variations from NGS data. Until now, these methods have only been evaluated on 

the old 5-virus mix which contains real samples[18] or simulated datasets. The work done in 

[19]also evaluates the performance of the tools using simulated datasets. We studied the 

challenges faced by these methods on real datasets. It is also important to understand why 

this research focuses on real datasets. In general, real datasets are messier and much more 

difficult to deal with compared to simulated datasets. Simulated datasets or synthetic 

datasets mimic the real datasets, but they do not completely reflect the real samples. There 

is a wide range of methods to simulate datasets, but they come with limitations. Usually, 

tools perform better on simulated datasets. To evaluate performance of these assembly 

tools on real dataset, we created benchmarking datasets from real dataset samples.  

The first part of the research is to create a high-quality benchmarking dataset for viral 

quasispecies analysis which is obtained from real samples. This study is highly motivated by 

the work done in [18]. The existing dataset in [18] is still being used which is older than nine 
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years. Due to the fast-evolving nature of viruses, this dataset is ancient. There are a lot of 

other issues along with this which are discussed in Chapter 5. The second task in this 

research is to perform benchmarking experiments of six haplotype reconstruction tools (de-

novo and reference based) on the benchmarked dataset in the first step and on the 

simulated dataset.  Once the evaluation of these existing methods has been done, the next 

task is to figure out if the results obtained can be improved. For that, we use VG-Flow 

method implemented in [20]. VG-Flow method consists of two steps. The first step is to build 

a variation graph followed by haplotype reconstruction. The original algorithm uses VG 

toolkit[21] for constructing variation graph which comes with limitations. VG toolkit is 

updated frequently which makes it difficult to work with the older versions of the tool as 

they are not compatible with the new versions. There are various other issues faced while 

using VG. To overcome these issues, we implemented Seqwish[22] instead of VG to build 

the variation graph followed by the second step of VG-Flow.  

This research and its contributions can be divided into three parts and are briefly listed 

below :   

1. A benchmarking dataset for viral quasispecies assembly from 

real data. 

2. Perform benchmarking experiments results of different 

assembly tools on the above dataset and simulated datasets 

obtained from and evaluate on different metrics using 

QUAST[23]. 

3. Perform experiments using VG-Flow with pre-assembled 

contigs produced by the assembly tools in part 2.  

 

1.5 Report Outline 
 

To make it easier to achieve a natural flow, the report is divided into four parts. Each part is 

presented as chapter. All the chapters are linked to each other.  
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Chapter 2 talks about various viral quasispecies genome assembly methods and how they 

work. Chapter 3 describes about the benchmarking real datasets design for the experiments 

as well as existing simulated datasets. Chapter 4 and 5 talk about the metrics used for 

evaluation, results and interpretation of the results.  
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2 Genome Assembly Tools 

To support the ever-growing amount of sequencing data, a range of sequence assembly 

techniques and tools exist. Furthermore, the diverse nature of data generated by various 

sequencing platforms necessitates the development of specific algorithms for each type of 

sequencing data.  

2.1 De-Novo Assembly 

De novo genome assembly presumes no prior knowledge of the length, architecture, or 

composition of the original DNA sequence. The DNA of the target organism is broken up into 

millions of little fragments and read on a sequencing machine in a genome sequencing study. 

Depending on the sequencing method, the length of these "reads" can range from 20 to 1000 

nucleotide base pairs (bp). A read’s position is determined by identifying reads that overlap 

because of similar sequences when compared to the true sequence (true positives) and 

overlaps because of sequencing errors (False Positives). Until a low coverage sequence region 

is met, the true positives are clustered into a continuous set of read sequences. The advantage 

of a de novo assembler is that it can predict placement of reads within a continuous region, 

but it can be difficult for a de novo assembler to place the reads in fragmented regions. For 

this purpose, some de novo assemblers employ the mate-pair reads’ information to aid in 

allocation of placement locations and fragmented regions. 

For de novo assembly approach generally sequence graphs are used. All the de novo assembly 

methods use sequence graphs mostly like de bruijn graph or overlap graph for viral 

quasispecies reconstruction. These assemblers depending on its type either focus on 

reconstructing all the strains in the population or are consensus-based. The primary purpose 

of de novo (consensus-based) methods can also be to produce a better reference genome 

that can then be utilized as a template sequence for further detailed studies. In our 

experiments, we have only used strain-specific de novo assemblers.  
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The final genome sequences produced by viral quasispecies assemblers like SAVAGE and 

Haploflow do not always reflect the full-length haplotypes. Haploflow integrates resolving 

strain-level sequences and assembling haplotypes for a strain-resolved viral genome 

assembly[24]. This is achieved by combining de bruijn graph assembly (fast metagenome 

assembler) along with obtaining a customized sequence flow algorithm that captures 

variations in the strains. This also helps in linking strain-variants which does not co-occur[24]. 

While Haploflow is based on de bruijn graphs, SAVAGE is based on overlap graphs. After 

constructing an overlap graph, SAVAGE joins overlapped read pairs. At the next step, SAVAGE 

iteratively merges reads into contigs and contigs into scaffolds using clique enumeration and 

contig formation. Finally, the tool uses Kallisto to estimate frequencies of the resulting 

haplotype. SPAdes was traditionally developed for bacterial genomes. SPAdes also uses de 

bruijn assembly approach. The recent development of assemblers like VG-Flow are developed 

to complete strain-specific assemblies using pre-assembled contigs produced by assemblers. 

VG-flow is based on flow-variation graphs and tries to convert strain-specific contigs into full-

length haplotypes taking into account their abundances. VG-Flow is divided into two steps. 

Firstly, it constructs a variation graph from the pre-assembled contigs provided as an input 

and secondly, reconstructing the individual haplotypes present in an assembly[20]. Originally, 

the VG-Flow algorithm uses vg toolkit to build the variation graphs. Following table shows a 

brief description of the de novo assemblers that we have used for our experiments. 

 

Software Tool Published 

year 

Last 

Updated 

Programming 

language 

Abundances of 

the strains 

Haploflow 2018 2021 Java 6 yes 

SAVAGE 2014 2014 C ++ Yes 

SPAdes (Generic 

Assembler) 

2013 2022 Java 7 yes 

Table 2 : De-novo assemblers used for experiments in this research 

 

 

 



 12 

Benchmarking of viral quasispecies assembly algorithms| Master Thesis | Rucha Narkhede 

2.2 Reference-Based Assembly 

In reference-guided assembly, as the name suggests, one or several known true genome 

(reference) sequences are used to assemble the genome under examination[15]. In 

reference-based assembly, a couple or several genome sequences are aligned to check for 

similarity; this process is called sequence alignment or read mapping. For accurate 

reconstruction of sequences, a high-quality reference genome is required[25]. The assembled 

genome sequences are often biased towards the genome sequence used for the assemblies. 

Rather than utilizing a single genome sequence, this bias can be minimized by employing a 

set of genome sequences capturing variants in the given population. Reference-guided 

assembly is substantially more computationally efficient than de novo. This only holds true 

given if the existing assembly is sufficiently comparable to the genome that is being 

assembled[15]. The capability to rebuild full-length haplotypes is the fundamental benefit of 

reference-based assembly approaches over de novo assemblers.  

Reference based assemblers use variety of ways to reconstruct the haplotypes. CliqueSNV 

being a reference based assembler, assembles a graph using the information of links among 

variations of single nucleotide. Further, it identifies true strain variants then merges cliques 

while assembling the graph[26]. 

QuasiRecomb and HaploClique both being pretty old tools use distinct techniques and 

applying these techniques to the problem of viral variant reconstruction were novel. 

HaploClique allows for huge insertions and deletions. It is also built in a way that detects point 

mutations. QuasiRecomb tries to incorporate the existing knowledge of recombining of 

sequencing as events into viral mutations and evolution. HaploClique first reconstructs reads 

that may potentially represent haplotypes. This is done by enumerating maximum cliques and 

inserting a size distribution in a given viral network[27]. The complex implementation of 

Maximal clique enumeration makes it computationally expensive which in turn affects the 

resource requirements for HaploClique on data sets with coverage more than or equal to 

1,000×. Finally, QuasiRecomb utilizes data parameters of a hidden Markov model for 

estimating point mutations and recombination events. These parameters allow estimation of 

the probability of each possible haplotype with respect to the observed read data[19]. 
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Software 

Tool 

Published 

year 

Last 

Updated 

Programming 

language 

Abundances of the 

strains 

CliqueSNV 2018 2018 Java 6 yes 

HaploClique 2014 2014 C ++ Yes 

QuasiRecomb 2013 2013 Java 7 yes 

Table 3 : Reference-based assemblers used for experiments in this research 

 

It should be noted that there are various de novo as well as reference-based assemblers that 

supports reconstructing of viral quasispecies sequences. We did an extensive research on 

most of the tools based on graph used, publications, what type of input does it support, if 

error correction is needed for the input reads, output generated and how regularly is the tool 

updated. The qualifying factors for the tools were if the tools were developed purely for viral 

quasispecies assembly, whether the tools are used in practice or has many issues (if it does it 

was discarded as an option), how frequently is the tool updated or how well is the repository 

maintained. We also tried to include tools which were recent rather than older tools like QuRe 

which requires a really high memory limit and does not work on very complex datasets. For a 

better comparison, we tried to include both de novo and reference-based assemblers. Based 

on this, we shortlisted six assembly tools which are discussed above.  
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3 Benchmarking Datasets 

3.1 Description of the dataset used 

For the purpose of evaluation and benchmarking experiment results of different assembly 

tools, we have conducted experiments on both benchmarking real data mixtures and 

simulated datasets. For the benchmarking of real dataset for viral quasispecies assembly, we 

obtained the dataset sample from Harvard lab. In addition to the real datasets, we have also 

done our experiments on existing simulated datasets simulated using SimSeq[28]. SimSeq 

simulates paired-end short read sequences for Illumina[28]. We have used 6-strain Poliovirus 

Mixture, 10-strain HCV mixture and 15-strain ZIKV mixture obtained from (paper). These 

datasets have been described in detail below.  

3.1.1. Real Benchmarking Dataset 

We created three real dataset mixtures for benchmarking of five, four and two strains with 

varying complexity. It is challenging to deal with real datasets. The dataset is obtained from 

Harvard Lab of 61 different bacteriophages of about 15kb each. Bacteriophages, in short, 

phages, are viruses thus having the same structural properties as any other viruses. The only 

difference is these viruses only infect and multiply in bacteria. We have used phages because 

of the following reasons. Firstly, it exhibits similar structural features to animal and human 

viruses. Secondly, phages are also easier to produce in large quantities resulting into larger 

complex datasets. Lastly, they possess morphological and genetic diversity which makes it a 

good choice for viral quasispecies analysis. 

These bacteriophages were sequenced using NovaSeq[29]. NovaSeq can perform whole-

genome sequencing efficiently and is also budget friendly[29]. It can generate up to 6TB and 

20 billion reads[29]. The dataset consists of 7 different samples pf read length 2 x 250bp. The 

average coverage of the dataset is ~50,000x. To analyze the effect of the level of divergence 

and of different abundance of the strains, we constructed three datasets. From the first 

sample we created a five-strain mixture of strain divergence of about 2 – 4%. The strain 

abundance varies from 1 – 60%; 1%, 2%, 7%, 22% and 68% abundance distribution increasing 

exponentially for all the five strains. For observing the performance of assembly tools with 

lower divergence, we constructed an additional dataset with four strains with strain 

divergence of maximum of 4%. The abundance distribution varies from 2-78%. To assess the 
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performance of the genome assemblers for lower abundances, we created a 2- strain mixture 

with varying abundances thus producing thirteen datasets: (1%,99%), (2%,98%), (3%,97%), 

(4%,96%), (5%,95%), (6%,94%), (7%,93%), (8%,92%), (9%,91%), (10%,90%), (15%,85%), 

(20%,80%), (30%,70%). These datasets provided interesting insights about the performance 

of the assembly tools. The main aim was to produce a high quality, realistic dataset, for this 

we only trimmed the adapters to produce realistic results. We constructed datasets for 

low(100x), medium(1000x) and high(10000x) coverages for all the strain mixtures.Before 

conducting any experiments using these datasets, the unprocessed NGS Illumina reads were 

trimmed from ends using bbduk[30] and Skewer[31] to get rid of any adapters. Adapters are 

short synthetic oligonucleotides that are covalently attached to the ends of RNA or DNA 

sequences[31]. Some tools require error-corrected reads as an input, for this purpose we have 

used MultiRes[32]. 

The following table 2 gives a brief description of the characteristics of the real benchmarking 

datasets created.     

Obtained From Genome 
Length(bp) 

No. of 
strains 

Abundance 
Distribution 

Pairwise 
Divergence 

Boston wastewater 
(2021-09-21) 

14707-15079 
 

5 1-60% 1-4% 

Boston wastewater 
(2020-07-07) 

 

14689 -15578 
 

4 2-78% 1-5% 

Boston wastewater 
(2021-09-21) 

14707-15079 
 

2 1-99% 4% 

 

Table 4 : Characteristics of viral Quasispecies of benchmarking real datasets. 

 

3.1.2. Simulated Datasets 

Along with real dataset benchmarks, to expand our research and examine the performance 

of the six assembly tools on various datasets with varying complexity we also considered three 

simulated datasets: 6-strain Poliovirus mixture, 10-strain HCV mixture and 15-strain ZIKV 

mixture.  Along with varying complexity, some experiments have already been performed on 

these datasets so it might also help in better comparison of performance of the tools. HCV 

and ZIKV are the two most challenging simulated datasets presented in[33]. These datasets 

were simulated using SimSeq (2 x 250bp) Illumina MiSeq reads.   
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Poliovirus Mixture  

This is a combination of six Poliovirus strains with a total sequencing depth of ~20 000. The 

haplotypes were derived from the NCBI database of Poliovirus genomes[33]. The simulation 

of paired-end reads was done at 1.6 -50.8% relative frequencies. Abundance distribution 

increases exponentially like the real benchmarking datasets: 1.6%, 3.2%, 6.3%, 12.7%, 25.4%, 

50.8%. 

 

HCV Mixture  

This is a combination of ten hepatitis C virus (HCV) strains from Subtype 1a, with a total 

sequencing depth of 20 000x (400 000 reads)[33]. The haplotypes were derived from the NCBI 

database of HCV genomes and pairwise divergence ranges from 6% to 9%. The simulation of 

pair-ended reads was done at 5-13% relative frequencies, sequencing depth varying from 

1000x- 4600x. 

ZIKV Mixture  

This is a combination of fifteen strains of Zika Virus (ZIKV) retrieved from NCBI database which 

includes three parent strains along with four mutations per parent strain [33]. This dataset 

consists of Illumina MiSeq 2 x 300bp reads with a pairwise divergence ranging from 1-12%. 

The simulation of pair-ended reads was done at 2-13.3% relative frequencies at a sequencing 

depth of 20,000x. 

The following table 2 gives a brief description of the characteristics of the real benchmarking 

datasets created.  

Simulated 
Dataset 

Genome 
Length(bp) 

No. of 
strains 

Abundance 
Distribution 

Pairwise 
Divergence 

Poliovirus mix 7428-7460 
 

6 1.6-51% 1.2-7% 

HCV mix 9273-9311 
 

10 5-19% 5-19% 

ZIKV mix 10251-10269 
 

15 2-13% 2-13% 

Tabel 5 : Characteristics of viral Quasispecies of existing simulated datasets. 
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4 Benchmarking Results and Analysis 

This section presents the results obtained on different datasets presented in Chapter 3 to gain 

insight into the performance of different genome assemblers, challenges faced with 

increasing complexity of the datasets. This chapter is divided into three main parts. First part 

talks about the results obtained on datasets with real mixtures with varying number of strains 

followed by the results obtained on simulated datasets described above. The last part 

provides insights on how VG-Flow can be used to improve the quality of pre-assembled 

contigs by producing full length haplotypes and improving the contiguity of the assembly.  

4.1 Performance Metrics 

For evaluating the performance of the assembly tools and the quality of haplotype assembly 

produced by these tools we have used MetaQUAST (Meta Quality Assessment 

Tool)[34], which is widely used to analyze metagenomic assemblies (genetic composition of 

any collection of microorganisms is called metagenome) and gives valuable metrics was used. 

It is a tool that assesses and compares metagenome assemblies by comparing them to the 

closest reference genome. MetaQUAST is ideal for comparison since it can be used with 

various assemblies simultaneously. For our experiments we have evaluated the assembly 

tools on the following eight metrics. These metrics are described as follows:  

• Number of contigs - Reports the number of contigs present in the assembly produced 

by the tools. 

• Genome Fraction - the percentage of target or reference genome covered 

• N50 - N50 score reflects on the completeness of an assembly 

• NGA50 - NGA50 predicts the largest alignment and continuity  

• Absolute Frequency Error Rates - Absolute Frequency Errors as ∑
|𝑥𝑖−𝑥𝑖

′|

|𝐼|𝑖𝜖𝐼 , where xi 

and x’i represent the estimates and true abundances. The strain abundance 

estimates(xi) was calculated by adding the abundance estimates of each sequence 

allocated to each actual true haplotype. 

• Error Rate – Error Rate is calculated as Summation of mismatches, indels and N-rate 

• Misassemblies 
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• Precision - To reflect upon the False Positives (FP), we have also calculated the 

precision (𝑇𝑃 ÷ (𝑇𝑃 + 𝐹𝑃)) where, TP (True Positives) specifies the percentage of 

accurately assembled strain genomes of all the ground truth genome assembly. 

 

Number of contigs, N50 and NGA50 are important metrics which tells about the correctness 

and if the assembly is continuous or fragmented. The genome length for which the total 

assembly length produced by the assembly tools of the blocks that are aligned of length or 

greater is at least 50% of the total genome length of actual haplotypes is reported by the 

NGA50 metric. If a genome coverage of 50% is not achieved, the NGA50 value is 

undetermined. If a contig has a single misassembly, that means a location where the left and 

right bordering sequences correspond to the actual genomes with an overlap or gap 

(>1kbp) or align to other strains or strands. Error rate helps to show how accurate the 

assembly is. It is relative to the genome size. MetaQUAST[23], [34] was also used to check the 

contigs against the consensus strains of the ground truth. This was helpful in the evaluation 

of frequency estimates. To evaluate the tools on abundance estimates, we compared the 

estimated abundances with the true abundance of the strains. For this we computed Absolute 

Frequency Errors as mentioned above. As we cannot expect an assembly method to predict 

the abundances of absent strains, we only took into account the strains present in the 

assembly along with the abundances (i.e., xi > 0). For every assembly, we have evaluated the 

assemblies by comparing the constructed contigs with the ground truths. The ground truth 

was constructed using SPAdes[35].  

4.2 High coverages result in improved assembly quality  

First, we evaluated performance of the de novo and reference-based assemblers on real 

benchmarking dataset mixtures. Dealing with real datasets is the most challenging for these 

tools as discussed in previous chapters. For benchmarking purposes, the performance of the 

genome assembly tools was evaluated on three real datasets with varying abundances and 

strains. A mixture of five, four and two strains were used. The description of these datasets is 

mentioned in the previous chapter.  The experiments were performed on low, medium and 

high coverages: 100x, 1000x and 10000x for every mixture.  

Haplotype reconstruction of PRD mixtures 
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1. 5 strain PRD mixture 

Overall, out of these methods, based on all the performance metrics all the tools perform 

decently well except for QuasiRecomb (Appendix 1).  Figure 2 gives a visual idea of how these 

tools perform on different coverages with respect to the viral quasispecies assembled and the 

contiguity which also reflects on the length of the contigs. It is quite clear that with increasing 

coverage, the quality of the assembly also improves for almost all the tools except SPAdes. In 

case of SPAdes, the NGA50 value is unknown because the genome target covered is less than 

50% for all the three coverages. 

Haploflow being a de novo assembler could assemble at least more than half of the 

quasispecies for all the coverages with a decent performance for other metrics as well with a 

low error rate. The mismatch rate/kb was less than 2 with no False Positives. The quality of 

the assembly tends to improve with increasing coverage in case of SAVAGE. This shows that 

the size of the population does play an important role in the results obtained with SAVAGE. 

As the size of the population increases, performs of SAVAGE also improves. In terms of error 

rate, SAVAGE outperforms all the other tools. CliqueSNV gives consistent results for low and 

medium coverages (genome fraction: 49.83%, NGA50: 14817). Even though the assembled 

genome for 10000x coverage is 66.388% covered but it underestimates the number of strains 

in the sample. This is because CliqueSNV fails in assembling strains having low frequency. It 

misses out on the low-frequency strains (<5%) completely.  This is further reflected in the 

Figure 2 : Performance of the assembly tools for real 5-strain mixture on all the three coverages on two metrics. A show the target genome 
covered (Genome Fraction (%)) of the ground truth. B shows the continuity of the assembly constructed (NGA50) 
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results using 2-strain mixture samples where we study the performance of the tools for low 

abundances. SPAdes being a generic genome assembler could not assemble half of the target 

genome. The lower N50 value shows that it produces fragmented assembly. It also produced 

shorter length contigs for medium and high coverages. HaploClique produced an immense 

number of fragmented contigs due to which the assembly was substantially fragmented but 

is also able to assemble more than 90% of the genome assembly for 1000x and 10000x 

coverage. It’s important to note here that, after careful consideration we filtered out the 

contigs with frequency below 0.05% without losing on the quality of assembly. Firstly, to get 

rid of the excess contigs and secondly, an attempt to get rid of the fragmented overlapping 

contigs. 

In general, out of all the reference-based assemblers, CliqueSNV performed the best across 

all the metrics. In terms of misassemblies, all the tools were equally good with zero 

misassemblies except for HaploClique with one misassembly and QuasiRecomb reported 

more than eleven misassemblies for coverages equal to or more than 1000x.  QuasiRecomb 

was not able to assemble even half of the genome assembly (48.67% - 49.83%).  

Figure 3 : Radar plot depicts an informative comparison of the performance of the six tools on all the metrics for real 5-
strain mixture dataset. The best values are at 100%.  A, B and C represent 100x, 1000x and 10000x coverage datasets 

respectively. 
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Figure 3 gives an overall comparison of the performance of the tools on all the metrics. The 

best values are on the outsides, the worst values are in the centerpoint. For 100x coverage, 

CliqueSNV ranks first in N50, NGA50, misassemblies whereas Haploflow ranks first in 

Precision, Genome Fraction and misassemblies. HaploClique and QuasiRecomb rank really 

low in strain precision. For 1000x, similar pattern is observed for CliqueSNV and Haploflow. 

HaploClique outperforms in terms of total assembly covered but as discussed before 

produces more number of contigs (lower NGA50) and a strain genome with more 

mismatches.  

2. 4 strain PRD mixture 

We next evaluated the performance of these six tools on a four-strain mixture with 

characteristics described previously. This dataset was comparatively complex to deal with 

because of more low-frequency strains. Figure 5 gives a visual representation of the genome 

target reconstructed and the contiguity (NGA50) of the assemblies. Similar trends are 

observed in both the 5-strain and 4-strain real dataset mixtures, the performance of most 

of the tools improve with increasing coverage. 

 

Figure 4 : Performance of the assembly tools for real 4-strain mixture on all the three coverages on two metrics. A shows 
the continuity of the assembly constructed (NGA50) B shows the target genome covered (Genome Fraction (%)) of the 

ground truth. 
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Out of these six assemblers, Haploflow’s performance was consistent across all the metrics 

for all the coverages (Appendix 1). The overall score of Haploflow was better than other 

tools. In case of SAVAGE, HaploClique and QuasiRecomb, similar trends were observed as in 

5-strain mix. SAVAGE was able to reconstruct genome fraction of more than 40% of the total 

assembly of quasispecies for coverages higher than 1000x. Compared to the 5-strain mix, 

Haploflow reconstructs a better-quality assembly for 4-strain mix in terms of contiguity 

(N50:13545- 14841, NG50 :12244-12981) and length of contigs which is quite higher than 

the 5-strain mix. This is possibly because the strain-wise divergence for 4 strain mixture 

varies from 2-6% and for 5 strains mix it varies from 2-4%. So, it becomes easier for the 

assembler to distinguish between the strains.  Haploflow and CliqueSNV assemblies were of 

really high quality for 1000x and 10000x coverage, recovering the most correct strain 

genomes (2 out of 4 strains). Haploflow and HaploClique was also able to recover more than 

60% of the low abundant strain but for HaploClique the assembly was fragmented resulting 

in poor contiguity along with high error rates (more than 1.5%). 

 

 

Figure 6 shows the comparison of the performance of all the assembly tools on all the metrics 

for 4-strain mixture. For 100x coverage, CliqueSNV ranks first in N50, NGA50, misassemblies 

whereas Haploflow ranks first in Precision, Genome Fraction and misassemblies (similar trend 

was observed for 5-strain mixture). HaploClique and QuasiRecomb rank really low in strain 

precision. For 1000x, similar pattern is observed for CliqueSNV and Haploflow. SAVAGE 

outperforms all the tools in error rate for all the coverages. HaploClique outperforms in terms 

Figure 5 : Radar plot depicts an informative comparison of the performance of the six tools on all the metrics for real 4-strain mixture dataset. The best values 
are at 100%.  A, B and C represent 100x, 1000x and 10000x coverage datasets respectively 
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of total assembly covered but as discussed before produces more number of contigs (lower 

NGA50) and a strain genome with more mismatches also more false positives.  

 



 

 

 

 

 

 

 

The error rate reflects upon the mismatches rate/kb, indels and the N-rate. These metrics 

measure the correctness of the assembly. SAVAGE performs extremely well with an error rate 

of almost 0% for both the mixtures. This is illustrated in Figure 4. This chart gives a good 

comparison of the average error rates produced by the assemblers for both the 4-strain and 

5-strain mix for all the coverages.  Second best is CliqueSNV and Haploflow (<0.9%). CliqueSNV 

has a slightly lower error rate than Haploflow. The trend observed in error rates for the both 

the mixtures is similar for all the tools. QuasiRecomb performance is extremely poor with an 

error rate more than 2%.  

Figure 6 : Comparison of error rates produced by the assembly tools on two different 
real dataset mixes (5-strain and 4-strain mixture) 
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The NGA50 alone reflects upon the contiguity of the assembly but along with the number of 

contigs taken in logarithmic form, it also reflects upon the quality of the assembly. The 

comparison of number of contigs and NGA50 produced by different tools for real datasets (4-

strain and 5-strain) is shown in figure 8. CliqueSNV performs the best on these two metrics. It 

produces a smaller number of full length contigs. SAVAGE performs average and produces 

smaller contigs. NGA50 for Haploflow varies a lot with coverage. This can be because the 

number of contigs produced for high coverage is also higher than the low coverage. 

HaploClique produces the greatest number of contigs but lowest NGA50 which also shows 

that the assembly produced is fragmented (in pieces). If we look at QuasiRecomb’s NGA50 

values alone, it looks like it performs really well but the number of contigs is also really high 

for QuasiRecomb which shows that the quality of assembly is really low as the contigs 

produced are overlapping or erroneous. 

 

 

 

 

 

Figure 7 :Comparison of continuity and quality of the assembly. A Range Plot to show the range of average NGA50 observed for 4-strain 
and 5-strain real dataset mixtures. B Line graph to depict the average number of contigs (all the values are taken in log normal form) 

produced by the assemblers for real datasets on low to high coverages. 
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3. Performance of assembly tools on low-abundant strains in a mixture  

As discusses earlier, abundance estimation and reporting the frequencies of the strains 

present in a viral quasispecies population is crucial for various treatment and immunity 

related concerns. In reality, these populations also consist of strains of low frequencies 

~1%. To test if these six tools can report or assemble the low abundant strains, we 

performed the below experiments on a 2-strain mixture. To examine the performance of 

the assembly tools on low frequency strains we created various benchmarking datasets 

of 2 strains with varying abundance distributions ((1,99), (2,98), (3,97), (4,96), (5,95), 

(6,94), (7,93), (8,92), (9,91), (10,90), (15,85), (20,80), (30,70)) at 1000x coverage. The 

summarized results are mentioned in Appendix 1. 

 

 

It is comparatively difficult for the assemblers to assemble sequences of strains with low abundances. 

We compared the performance of all the assembly methods on all the metrics (Appendix 1). We 

investigated that Haploflow performed the best in handling the low abundant strains with good quality 

assemblies. The continuity (NGA50) and error rate vary a lot with different abundances. Haploflow 

was able to reconstruct the genome more than 90% when the lowest abundant strain is >2%. Whereas 

Figure 8 : Performance of the assembly tools on lowest abundant strain from 2-strain mixture real dataset samples. A 
shows the continuity of the assembly (NGA50). B shows the target genome recovered (genome graction (%)). C depicts the 

trends in error rate(%) 

A B 

C 
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SAVAGE tends to improve linearly after 5% abundance reaching more than 90% for 20% lowest 

abundant strain. SAVAGE and SPAdes produces approximately negligible error rate. CliqueSNV and 

SPAdes highly underestimates the lower abundant strain. The 50% target genome reconstructed 

reflects that it only reconstructs one of the two strains, that is the higher abundant strain with the 

best NGA50 for CliqueSNV. CliqueSNV produced contigs of length more than 14000bp which did not 

change with changing abundances. HaploClique was able to recover the target genome of more than 

90% for all the abundances but it produces fragmented assembly with huge number of contigs as 

observed before. The error rate is also pretty high for HaploClique.  

 

Runtime and Memory consumption  

The increase in average runtime (seconds) with low to high coverages for 5-strain and 4-strain 

mixtures is given in Figure 10. All the experiments were performed on TU Delft’s HPC cluster 

(on the same cluster node). Haploflow was the fastest compared to all the other tools with 

an average memory peak of 15 GB. SPAdes being a generic assembler still was the second 

best followed by CliqueSNV. HaploClique and SAVAGE took comparable runtime, but 

SAVAGE’s memory usage was higher than HaploClique. QuasiRecomb took the most runtime 

and Memory Usage.  

 

 

 

 

 

 

 

 

 

 

 

Figure 9 : Runtime comparison of all the six assembly tools on real datasets on 
all the coverages: 100x, 1000x and 10000x. 
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4.3 Assembly tools perform better on simulated datasets compared to real 

datasets 
We also performed our experiments on three simulated datasets (2 x 250bp Illumina Miseq 

reads) with varying complexity. The datasets are from different viral quasispecies infections 

like Poliovirus, Hepatitis C virus (HCV), Human Immunodeficiency virus (HIV).  The detailed 

description of the datasets is given in Chapter 3. The following section gives valuable insights 

on how the genome assemblers performed on these datasets.  

 

The results have been summarized in Appendix 1. Overall, HaploClique and SAVAGE are able 

to reach a higher target (>75%) for all the datasets compared to the other assembly tools. 

Overall, the error rate for SAVAGE is also approximately zero whereas HaploClique has a really 

high error rate that is more mismatches, N-rate and indels (Appendix 1).  SPAdes was capable 

of reaching a genome fraction more than 50% which is assembling more than half of the viral 

quasispecies with a really low error rate. The target genome covered is the least (~70%) for 

15-strain ZIKV mixture as it contains more low abundant strains. As observed before, SPAdes 

misses out on low abundant strains. The contiguity of the assembly is average compared to 

Haploflow and CliqueSNV which do not reach a genome target of more than 78% for the 6-

Figure 10 : Performance comparison of all the assembly tools on all the three simulated datasets. A, B and C shows the target genome covered. D, E and 
F depicts the NGA50 achieved by the assembly tools on 6-strain Poliovirus, 10-strain HCV, 15-strain ZIKV respectively. 
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strain Poliovirus mixture and 15-strain ZIKV mixture (Figure 11). For Haploflow, we also 

observe that the number of total output sequences is two to three magnitudes greater than 

the true value of number of strains in the sample. On all the simulated datasets, CliqueSNV 

ranks first in the continuity and length of the contigs which shows that the assembly produced 

in continuous and not fragmented. Even though QuasiRecomb ranks the second best in 

continuity, it produces huge number of contigs with the highest error rate (>2%). Among the 

datasets, all the datasets perform the best on 10-strain HCV mixture. This is because as 

datasets get more complicated or complex i.e., low abundant strains, more strains and less 

pairwise divergence we observed higher error rates. It is also important to note that the 

performance of reference-based assembly tools (CliqueSNV, HaploClique and QuasiRecomb) 

is highly dependent on the quality of the reference genome.  

 

 

Figure 12 gives a comparison of performance of all the tools for all the three simulated 

datasets. There is no clear winner in this one. As we can observe that some tools perform 

better on some metrics, and some perform better on other. In general, there are zero 

misassemblies in the assemblies produced by Haploflow, SAVAGE, CliqueSNV and SPAdes. 

CliqueSNV, followed by Haploflow produce the most continuous assembly for all the datasets 

compared to other tools. As observed for real datasets as well, Haploflow performs the best 

in precision. SAVAGE, CliqueSNV and SPAdes perform equally well on precision metrics (i.e., 

less False Positives) on simulated datasets compared to real datasets.  

 

 

Figure 11 : Radar plot depicts an informative comparison of the performance of the six tools on all the metrics for real 5-strain mixture dataset. The best 
values are at 100%.  A, B and C represent 6-strain Poliovirus, 10-strain HCV, 15-strain ZIKV datasets respectively 
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4.4 Improved assembly quality on at least one performance metric using VG -

Flow  
After gaining insights from the results obtained using these six viral genome assembly tools, 

we see that the length of the reconstructed contigs can be improved. Along with the length, 

the contiguity of the assembly also can be improved. Most of these tools focus on 

reconstructing relatively shorter regions of the genomic assembly. Also, some of the tools do 

not report the abundance estimation of the strains. To achieve better results, we applied VG-

Flow. VG-Flow is a two-step assembly method. Firstly, it employs vg toolkit for the 

construction of variation graphs. Instead of using vg toolkit we have used Seqwish to build 

the variation graph. VG- Flow is a de novo assembly tool for reconstructing full-length 

haplotypes from pre-assembled contigs of complex mixtures.  

We compared the performance of some VG-Flow + contigs produced by genome assemblers 

(Haploflow, SAVAGE and CliqueSNV) with the results obtained without VG-Flow. We 

evaluated the performance of VG-Flow on three benchmarked real datasets: 5-strain mixture 

(1000x coverage), 5-strain mixture(10000x coverage) and 4-strain mixture(1000x coverage) 

and three simulated datasets : Poliovirus, HCV and ZIKV mixtures as mentioned before. For 

input, VG-Flow uses contigs obtained from Haploflow, SAVAGE and CliqueSNV.  

Simulated Datasets 

Figure 12 : Performance comparison of Haploflow, SAVAGE and CliqueSNV alone and along with VG-Flow tools on all the three simulated datasets. 
A, B and C shows the target genome covered. D, E and F depicts error rate on 6-strain Poliovirus, 10-strain HCV, 15-strain ZIKV respectively. 
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We observed that VG-Flow significantly improves the continuity (Figure 13) of the assembly and 

lowers the error rate to almost zero for all the assemblies.  On all the datasets, we observe that the 

target genome recovered also improves in most of the cases or remains roughly the same (1% 

decrease in case of Haploflow for Poliovirus and HCV datasets). This is shown in Figure 12(A, B and C). 

This can be because VG-Flow algorithm filters out contigs with abundances below a threshold value 

to ensure correctness of the assembly. On the ZIKV dataset, Haploflow covers 67.11% of the target 

genome covered which improved with VG-Flow (78.89%). Overall, the number of contigs also reduces 

while improving the continuity of the assembly. As observed before, SAVAGE produces shorter 

contigs. With VG-Flow, the number of contigs reduces for all the datasets with an increase in NGA50 

(contiguity of the assembly). In general, CliqueSNV produces a continuous assembly along with longer 

contigs but with a higher error rate going up to 1.624%. VG-Flow doesn’t improve the assembly so 

much in case of CliqueSNV, but it decreases the error rate to ~0.05%.  

Real Datasets 

We also evaluated the performance of VG-Flow on real datasets. We observe similar pattern 

as observed for simulated datasets in the results obtained for real datasets. The contiguity of 

the assembly improves significantly while decreasing the number of contigs which improves 

the overall quality of the assembly. This is illustrated in Figure 14. For 5-strain mixture 

(10,000x coverage) the error rate for CliqueSNV lowers from 1.38% to 0%. The assembly also 

recovers more than half of the true genome assembly (56.14%). With improved continuity of 

the assembly for Haploflow on 5-strain mixture (1000x coverage), the target genome covered 

has slightly reduced by ~3 which is not a significant difference. Overall, the error rate for 

SAVAGE is really low, but with VG-Flow the contiguity and the length of the contigs drastically 

improve (10074 -14112bp) along with slight increase in the genome target covered. 

Figure 13 : Performance comparison of HaploFlow, SAVAGE and CliqueSNV alone and along with VG-Flow tools on all the three 
simulated datasets. A, B and C shows the NGA50 value achieved on 6-strain Poliovirus, 10-strain HCV, 15-strain ZIKV respectively. 
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Abundance Estimations 

The absolute frequency errors per assembler on 5-strain real dataset mixture is shown in 

Figure 15. This figure highlights that VG-Flow performs the best which has smaller error values 

than CliqueSNV, HaploClique and QuasiRecomb. QuasiRecomb highly overestimated the 

higher abundant strains. VG-Flow + Haploflow performs the best with ~0.01 error across all 

the datasets. All the tools except for HaploClique highly underestimated the lower abundant 

strain. Similar conclusions were drawn from the 2-strain mixture analysis.  

 

Figure 14 : Bar charts shows the improvement in the performance of Haploflow, SAVAGE and CliqueSNV alone and along with VG-Flow on real 
datasets. A, B and C show the genome fraction reconstructed by the tools; D, E and F show the error rate produced by the assemblers; G, H and I 

show the NGA50 achieved by the assembly tools on 5-strain mixture (1000x coverage), 5strain mixture(10000x coverage) and 4-strain mixture(1000x 

coverage) respectively. 
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Figure15 : Abundance estimation errors on 5-strain real mixture dataset. Absolute Frequency errors compared to the true abundances. A 100x : VG-Flow was not 
implemented on this dataset so the comparison is done for only three tools; B 1000x; C 10000x coverage 
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5 Conclusions and Discussions 

5.1 Why is reconstructing of Viral quasispecies genomes important? 

Recent viral diseases outbreak like SARS-COV2 and earlier outbreaks like Hepatitis C virus 

(HCV) has indicated the urgent need for techniques or ways to examine genetic diversity of 

viral diseases. As mentioned before, viral quasispecies can rapidly evolve which results in 

multiple infectious strains either evolution within the same host or intra-host. Strains can 

have different phenotypes, like resistance, or the level of immunity resistance against 

the host immunity or virulence all of which is crucial for treatment related concerns[24]. The 

goal of haplotype-aware genome assembly is to use sequencing reads to reassemble an 

organism's copies of original genomic sequences called haplotypes. 

5.2 Importance of creating broad and diverse gold-standard datasets 
 

Until now, all the experiments are mostly performed using the virus mix in [18]or simulated 

datasets with similar characteristics presented in [15], [27], [36]. The major drawback of the 

5-virus mix presented in [18] is that the least abundant strain is about 20% which is unlikely 

to see in real. Even though datasets presented in [15], [27] contain haplotypes ranging from 

6-20%, they are still simulated. Usually, the pairwise divergence between the strains is about 

1-10% but the 5-virus mix consists of strains at pairwise divergence varying from 2.6% to 8.4%. 

They do not or poorly reflect viral intra-host evolution as seen in previous studies. Here we 

created multiple benchmarking real datasets with varying number of strains (five, four and 

two) and coverages (100x, 1000x and 10000x) to overcome these challenges. The pairwise 

divergence varies from 1-5% for most of the datasets and the least abundant strain is also 

about 1% which reflects more on how the haplotypes frequencies exist in nature.  

5.3 None of the six assembly tools outperforms other tools on all the performance metrics 

When compared to simulated datasets, real dataset was more challenging to handle for the 

assembly tools. The results indicate that none of the six assembly tools perform the best on 

all the performance evaluation metrics. The trends observed in the performance of all the six 

assembly tools was similar for both real and simulated datasets. As we saw earlier, as the 

complexity of the datasets increase, the quality of the produced haplotypes also reduces. For 
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real datasets, the assembly tools perform better for 4-strain mixture than 5-strain mixture in 

terms of contiguity and produces a shorter length assembly. This can be explained by 4-strain 

mixture is less complex to handle as it contains lesser strains and the pairwise divergence is 

approximately 1% more than 5-strain mixture. Similarly for simulated datasets the assembly 

tools performed the best on 10-strain HCV mixture as it is the least complex dataset to handle 

compared to 6-strain Poliovirus and 15-strain ZIKV mixtures. The genome target achieved for 

15-strain mixture was the least for almost all the tools compared to other simulated datasets 

because of high number of strains and the sample has a greater number of less abundant 

strains (~1%). If we look into the individual performance of the tools, Haploflow could handle 

datasets with substantial variation in terms of all the metrics for real datasets but does not 

report anything about the abundances. SAVAGE performs significantly better as coverage 

increases for real datasets but performs the best in genome coverage for all the simulated 

datasets but produces relatively shorter contigs. SAVAGE outperformed all the tools in terms 

of error rate (mismatches, indels and N-Rate). CliqueSNV and QuasiRecomb perform the best 

in terms of continuity, but QuasiRecomb performs poorly on all the other metrics. It also 

crashed a lot of times for complex datasets. Even though it achieved a high genome coverage 

CliqueSNV failed to assemble the strains with lower abundances. SPAdes being a generic 

assembler performs decently well on all the datasets but fails to assemble the low abundant 

strains. HaploClique produced a substantially fragmented assembly with huge number of 

contigs for all the real and benchmarking datasets but performs really well in terms of genome 

coverage. Overall, in the beginning of the research we expected that reference-based 

assemblers to produce more accurate haplotypes compared to de-novo assemblers but that 

was not the case as the assembly produced by reference-based assemblers.  

5.4 Improved strain-specific genome assemblies with VG-Flow using pre-assembled contigs 

Now the question is if these assembled contigs further be used to produce a high quality and 

accurate assembly and if so, how? To test this, we used VG-Flow assembly method with some 

tweaks. VG-Flow improved the quality and accuracy of the haplotypes. One feature of VG-

Flow is deriving frequencies of output contigs which is crucial in viral quasispecies assemblies. 

As many assembly tools for example SAVAGE and Haploflow in our case do not report any 

frequencies for the assembled contigs, therefore, implementing VG-Flow along with these 
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assemblers is highly important. Even if reference-based tools like CliqueSNV, HaploClique and 

QuasiRecomb report the frequencies of the assembled contigs, VG-Flow outperforms all the 

tools in terms of abundance estimates. The type of pre-assembled contigs given to VG-Flow 

also plays a major role.  So, the final conclusion is, to achieve a better continuous assembly 

we recommend using VG-Flow along with the pre-assembled contigs because it does improve 

the performance on at least one of the metrics.  

5.5 Limitations and Future Work 

The main goal of this research if put in layman terms was to produce a high-quality real 

benchmarking datasets which can be a primary standard or inspire researchers to focus on 

broader real datasets. Along with that, examining the performance of viral quasispecies 

assemblers at strain-level and to find alternative ways to improve the quality of the produced 

haplotypes. We focused our research on developing a high-quality challenging benchmarking 

real datasets and how the six assembly tools perform on these real and existing simulated 

datasets. As mentioned earlier, we have used bacteriophages (phages) for our benchmarking 

datasets. Well, phages are viruses and exhibit same properties as any other viruses, but these 

are not human or animal viruses. Though the structural properties are like that of higher order 

viruses like human viruses. 

Our results also show that there is a need to create assembly tools which can handle more 

complex and diverse datasets with different strain variants and varying coverages. It might be 

interesting to investigate long reads rather than short reads and see how the tools perform. 

With Long-read sequencing technologies like PacBio and Nanopore advancements and price 

reductions present a different set of problems for haplotype reconstruction, along with the 

creation of novel sequencing techniques and tools. This emerging technology is capable 

of sequencing amplicons or even complete viral genomes sequences in a single run, 

eliminating the requirement for sequencing read assembly. Upcoming simulation research 

should also focus on handling datasets which are prone to errors with haplotype 

reconstruction tools that can incorporate handling these errors as well as the impact 

of average coverage and recombination on haplotype reconstruction. In the second part of 

our research where we use VG-Flow method to improve the quality of the haplotypes. 
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However, VG-Flow has not been tested for the threshold of maximum number of pre-

assembled contigs that is given to it as input.  
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APPENDIX 1 

1. 5-strain mixture 

The results of all the six assembly tools for 5-strain mixture(100x, 1000x and 10000x) are 

summarized in the tables below. 

 

 

 

 

 

 

Table 5: 100x coverage 

 

Assembly Tools #contigs Target(%) N50 NGA50 ER(%) #Misassemblies 

Haploflow 11 67.02 7100 7071 1.01 0 

SAVAGE 17 54.012 4471 3108 0 0 

CliqueSNV 9 49.83 14927 14817 0.819 0 
SPAdes 19 46.114 994 - 0.12 0 

HaploClique 1500 92.97 562 307 1.529 1 

QuasiRecomb 334 48.67 14984 12719 2.17 12 
Table 6 : 1000x coverage 

Assembly Tools #contigs Target(%) N50 NGA50 ER(%) #Misassemblies 

Haploflow 19 79.258 5164 5123 1.262 0 

SAVAGE 49 89.045 4555 3214 0.01 0 

CliqueSNV 3 66.388 14926 14817 1.383 0 

SPAdes 43 39.96 1092 - 0.683 0 

HaploClique 1757 92.979 562 307 2.968 2 

QuasiRecomb 912 48.67 14984 12719 2.17 27 
Table 7 : 10000x coverage 

 

2. 4-strain mixture 

The results of all the six assembly tools for 4-strain mixture(100x, 1000x and 10000x) are 

summarized in the tables below. 

 

Assembly Tools #contigs Target(%) N50 NGA50 ER(%) #Misassemblies 

Haploflow 7 69.265 5849 5808 0.186 0 

SAVAGE 5 32.036 4555 - 0 0 

CliqueSNV 6 49.824 14882 14817 0.977 0 
SPAdes 1 49.7 14719 - 0 0 

HaploClique 108 57.224 553 307 0.910 0 

QuasiRecomb 278 49.83 14836 12711 2.38 0 
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Assembly Tools #contigs Target(%) N50 NGA50 ER(%) #Misassemblies 

Haploflow 10 62.221 13733 12588 0.033 0 

SAVAGE 8 34.62 3341 - 0.01 0 

CliqueSNV 6 44.827 15216 14077 0.383 0 

SPAdes 8 29.569 3061 - 0.716 0 
HaploClique 278 60.21 9685 498 1.78 1 

QuasiRecomb 927 41.89 14105 13002 2.178 19 

 

Table 8 : 100x - 4strain mixture 

 

Assembly Tools #contigs Target (%) N50 NGA50 ER (%) #Misassemblies 

Haploflow 11 65.87 13545 12244 1.01 0 

SAVAGE 12 48.504 4641 4116 0.01 0 

CliqueSNV 8 49.778 15226 14077 0.727 0 

SPAdes 18 30.621 1505 - 0.573 0 

HaploClique 924 90.118 9685 498 1.480 1 

QuasiRecomb 1025 43.592 14108 14105 2.519 15 

 

Table 9 : 1000x - 4strain mixture 

 

Assembly Tools #contigs Target(%) N50 NGA50 ER(%) #Misassemblies 

Haploflow 14 72.092 14841 12981 1.41 0 

SAVAGE 57 70.058 4685 3156 0.01 0 

CliqueSNV 4 64.02 15226 14077 1.42 0 
SPAdes 48 45.594 1947 1108 0.705 0 

HaploClique 1214 91.782 9685 501 2.968 4 

QuasiRecomb 2289 48.901 14105 14105 3.105 27 

 

Table 10 : 10000x coverage 

3. 2 strain mixtures 

The results of five assembly tools for 2 -strain mixture(1000x) coverage for different 

abundance distribution are summarized in the tables below  

 

Assembly Tools #contigs Target(%) N50 NGA50 ER(%) #Misassemblies 

Haploflow  6 50.347 4413 2511 0.1 0 
SAVAGE 13 54.233 3441 975 0.01 0 

CliqueSNV 1 50.081 14882 14837 0.06 0 

HaploClique 1078 92.634 588 305 1.349 1 
SPAdes 1 50.347 14928 14928 0 0 
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      Table 11 : 1,99  

 

Assembly Tools #contigs Target(%) N50 NGA50 ER(%) #Misassemblies 

Haploflow  8 56.786 4352 2281 0 0 

SAVAGE 12 54.14 3441 972 0 0 

CliqueSNV 1 50.081 14881 14837 1.66 0 
HaploClique 1022 90.245 583 311 2.92 3 

SPAdes 12 58.118 1563 588 0.1 0 
                      Table 12 : 2,98 

 

Assembly Tools #contigs Target(%) N50 NGA50 ER(%) #Misassemblies 

Haploflow  7 98.813 7453 7453 1.959 0 

SAVAGE 13 55.251 3441 975 0.2 0 

CliqueSNV 2 50.081 14840 14840 2.11 0 

HaploClique 1171 93.319 583 310 2.349 1 
SPAdes 11 52.482 4084 588 0.108 0 

Table 13 : 3,97 

 

Assembly Tools #contigs Target(%) N50 NGA50 ER(%) #Misassemblies 

Haploflow  8 99.477 7452 7453 0.2 0 
SAVAGE 13 55.255 3441 975 0 0 

CliqueSNV 1 50.081 14884 14836 0.282 0 

HaploClique 1121 92.15 584 310 2.349 2 
SPAdes 11 52.482 1984 588 0 0 

Table 14 : 4,96 

Assembly Tools #contigs Target(%) N50 NGA50 ER(%) #Misassemblies 

Haploflow  6 90.219 7452 7451 0.2 0 

SAVAGE 15 64.556 3792 1094 0 0 
CliqueSNV 2 50.088 14884 14842 0.282 0 

HaploClique 1195 94.779 584 310 2.349 2 

SPAdes 11 53.062 1984 588 0 0 
Table 15 : 5,95 

 

Assembly Tools #contigs Target(%) N50 NGA50 ER(%) #Misassemblies 

Haploflow  4 99.642 9725 9626 1.959 0 

SAVAGE 14 64.244 3792 1094 0.2 0 
CliqueSNV 7 50.088 14884 14842 2.11 0 

HaploClique 1125 94.319 583 310 2.349 1 

SPAdes 11 53.062 1984 588 0.108 0 
Table 16 : 6.94 

 

Assembly Tools #contigs Target(%) N50 NGA50 ER(%) #Misassemblies 

Haploflow  4 99.7 12165 12124 0.1 0 
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SAVAGE 16 69.14 3441 707 0.2 0 
CliqueSNV 6 50.088 14884 14842 0.06 0 

HaploClique 1198 94.454 584 310 1.349 1 

SPAdes 10 49.295 1918 562 0 0 
Table 17 : 7,93 

 

 

Assembly Tools #contigs Target(%) N50 NGA50 ER(%) #Misassemblies 

Haploflow  4 99.642 9725 9626 0 0 

SAVAGE 14 67.639 3441 707 0 0 
CliqueSNV 6 50.088 14884 14842 1.66 0 

HaploClique 1199 94.645 583 310 2.92 3 

SPAdes 10 49.295 1918 562 0.1 0 
Table 18 : 8,92 

 

Assembly Tools #contigs Target(%) N50 NGA50 ER(%) #Misassemblies 

Haploflow  9 99.703 3291 3290 1.959 0 

SAVAGE 14 67.68 3441 707 0.2 0 

CliqueSNV 6 50.088 14884 14842 2.11 0 
HaploClique 1127 93.774 583 310 2.349 1 

SPAdes 10 49.295 1918 562 0.108 0 

   

Table 19 : 9,91 

Assembly Tools #contigs Target(%) N50 NGA50 ER(%) #Misassemblies 

Haploflow  7 84.927 7273 7232 0.1 0 

SAVAGE 14 81.094 3441 707 0.01 0 

CliqueSNV 6 50.091 14885 14843 0.06 0 

HaploClique 1031 94.634 583 310 1.349 1 
SPAdes 11 48.863 1563 562 0 0 

                                             Table 20 : 10,90 

 

 

Assembly Tools #contigs Target(%) N50 NGA50 ER(%) #Misassemblies 

Haploflow  4 99.98 11558 11453 0 0 

SAVAGE 17 87.291 3441 707 0 0 

CliqueSNV 4 99.723 14885 14840 1.66 0 

HaploClique 1054 95.761 583 310 2.92 1 
SPAdes 10 49.035 1918 562 0.1 0 

Table 21 : 15,85 
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Assembly Tools #contigs Target(%) N50 NGA50 ER(%) #Misassemblies 

Haploflow  9 96.162 3494 3348 0.1 0 

SAVAGE 15 94.145 3441 707 0.15 0 

CliqueSNV 6 99.713 14882 14840 0.06 0 

HaploClique 1180 95.12 583 310 1.349 1 
SPAdes 12 52.024 1563 588 0 0 

Table 22 : 20,80 

 

 

Assembly Tools #contigs Target(%) N50 NGA50 ER(%) #Misassemblies 

Haploflow  7 97.757 4730 4743 0.486 0 

SAVAGE 11 94.145 3041 2245 0.15 0 

CliqueSNV 3 99.713 14885 14840 1.305 0 

HaploClique 1157 94.794 582 309 1.726 1 
SPAdes 13 58.071 1501 702 0.121 0 

Table 23 : 30,70 

 

4. Simulated datasets 

 

Assembly Tools #contigs Target(%) N50 NGA50 ER(%) #Misassemblies 

Haploflow 5 76.001 7356 7298 0.712 0 

SAVAGE 44 77.9 2154 1585 0.02 0 

CliqueSNV 2 55.3 7428 7412 0.291 0 

SPAdes 8 72.476 4216 3705 0.014 0 

HaploClique 552 89.901 557 307 1.924 10 

QuasiRecomb 2411 41.89 7422 7105 2.064 14 
Table 24 : 6-Strain Poliovirus Mixture 

 

Assembly Tools #contigs Target(%) N50 NGA50 ER(%) #Misassemblies 

Haploflow 40 96.915 9311 8862 0.55 0 

SAVAGE 24 95.58 8680 8115 0.01 0 

CliqueSNV 14 91.04 9208 9201 1.624 0 

SPAdes 10 90.582 8680 8070 0.013 0 

HaploClique 1162 92.98 512 357 2.14 8 

QuasiRecomb 5492 48.67 9245 9228 2.17 10 
Table 25 : 10 Strain HCV Mixture 

 

Assembly Tools #contigs Target(%) N50 NGA50 ER(%) #Misassemblies 

Haploflow 25 67.114 10081 10005 1.671 0 

SAVAGE 100 94.792 3724 2915 0.01 0 

CliqueSNV 22 88.491 10251 10244 0.989 0 
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SPAdes 50 70.941 3473 3471 0.242 0 
HaploClique 1757 92.979 524 361 2.106 7 

QuasiRecomb 7785 47.15 10278 10272 2.78 11 
Table 26 : 15-strain ZIKV mixture 

 

5. VG-Flow Results  

Assembly Tools #contigs Target(%) N50 NGA50 ER(%) #Misassemblies 

Haploflow 11 67.02 7100 7071 1.01 0 

Haploflow+VG-Flow 5 64.861 13343 12107 0.01 0 

SAVAGE 17 54.012 4471 3108 0 0 
SAVAGE+VG-Flow 3 57.115 12909 12112 0.0 0 

CliqueSNV 9 49.83 14927 14817 0.819 0 

CliqueSNV+VG-Flow 3 47.15 14928 14911 0.02 11 
 Table 27 : VG-Flow results obtained on 5-strain real dataset sample mixture (1000x coverage). 

 

Assembly Tools #contigs Target(%) N50 NGA50 ER(%) #Misassemblies 

Haploflow 19 79.258 5164 5123 1.262 0 

Haploflow+VG-Flow 7 86.912 14267 14250 0.02 0 

SAVAGE 49 89.045 4555 3214 0.01 0 
SAVAGE+VG-Flow 15 87.91 12115 11995 0.0 0 

CliqueSNV 3 66.388 14926 14817 1.383 0 

CliqueSNV+VG-Flow 3 65.117 14926 14911 0.0 0 
 Table 28 : VG-Flow results obtained on 5-strain real dataset sample mixture (10000x coverage). 

 

Assembly Tools #contigs Target(%) N50 NGA50 ER(%) #Misassemblies 

Haploflow 11 65.87 13545 12244 1.01 0 

Haploflow+VG-Flow 5 78.26 13789 13215 0.01 0 
SAVAGE 12 48.504 4641 4116 0.01 0 

SAVAGE+VG-Flow 5 52.891 11945 10074 0.0 0 

CliqueSNV 8 49.778 15226 14077 0.727 0 

CliqueSNV+VG-Flow 4 56.142 15226 15102 0.04 0 
Table 29 : VG-Flow results obtained on 4-strain real dataset sample mixture (1000x coverage) 

 

 

Assembly Tools #contigs Target(%) N50 NGA50 ER(%) #Misassemblies 

Haploflow 5 76.001 7356 7298 0.712 0 

Haploflow+VG-Flow 4 74.028 7443 7302 0.0 0 
SAVAGE 44 77.9 2154 1585 0.02 0 

SAVAGE+VG-Flow 14 84.97 7415 7378 0.04 0 

CliqueSNV 2 55.3 7428 7412 0.291 0 

CliqueSNV+VG-Flow 2 56.91 7445 7427 0.02 0 
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Table 30 : VG-Flow results on 6-strain Poliovirus simulated dataset 

 

Assembly Tools #contigs Target(%) N50 NGA50 ER(%) #Misassemblies 

Haploflow 40 96.915 9311 8862 0.55 0 

Haploflow+VG-Flow 14 95.21 9311 9107 0.02 0 

SAVAGE 24 95.58 8680 8115 0.01 0 
SAVAGE+VG-Flow 11      94.00 9205 8902 0.02 0 

CliqueSNV 14 91.04  9208 9202 1.291 0 

CliqueSNV+VG-Flow 12 95.67 9311 9302 0.05 0 
Table 31 : VG-Flow results on 10-strain HCV mixture 

 

Assembly Tools #contigs Target(%) N50 NGA50 ER(%) #Misassemblies 

Haploflow 25 67.114 10081 10005 1.671 0 

Haploflow+VG-Flow 13 78.89 10267 10150 0.02 0 

SAVAGE 100 94.792 3724 2915 0.01 0 

SAVAGE+VG-Flow 19     91.05 10176 9978 0.02 0 

CliqueSNV 22 88.491 10251 10244 0.989 0 
CliqueSNV+VG-Flow 12 89.98 10269 10252 0.05 0 

 Table 32 : VG-Flow results on 15-strain ZIKV mixture dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 44 

Benchmarking of viral quasispecies assembly algorithms| Master Thesis | Rucha Narkhede 

 

6  References 

[1] P. Poltronieri, B. Sun, and M. Mallardo, “RNA Viruses: RNA Roles in Pathogenesis, 

Coreplication and Viral Load,” Current Genomics, vol. 16, no. 5, 2015, doi: 

10.2174/1389202916666150707160613. 

[2] E. Domingo, J. Sheldon, and C. Perales, “Viral Quasispecies Evolution,” Microbiology and 

Molecular Biology Reviews, vol. 76, no. 2, 2012, doi: 10.1128/mmbr.05023-11. 

[3] E. Ghedin et al., “Mixed Infection and the Genesis of Influenza Virus Diversity,” Journal of 

Virology, vol. 83, no. 17, 2009, doi: 10.1128/jvi.00773-09. 

[4] M. Vignuzzi, J. K. Stone, J. J. Arnold, C. E. Cameron, and R. Andino, “Quasispecies diversity 

determines pathogenesis through cooperative interactions in a viral population,” Nature, vol. 

439, no. 7074, 2006, doi: 10.1038/nature04388. 

[5] F. Sun et al., “SARS-CoV-2 Quasispecies Provides an Advantage Mutation Pool for the 

Epidemic Variants,” Microbiology Spectrum, vol. 9, no. 1, 2021, doi: 

10.1128/spectrum.00261-21. 

[6] E. Domingo, “Quasispecies Theory in Virology,” Journal of Virology, vol. 76, no. 1, 2002, doi: 

10.1128/jvi.76.1.463-465.2002. 

[7] A. S. Lauring and R. Andino, “Quasispecies theory and the behavior of RNA viruses,” PLoS 

Pathogens, vol. 6, no. 7. 2010. doi: 10.1371/journal.ppat.1001005. 

[8] M. C. F. Prosperi and M. Salemi, “QuRe: Software for viral quasispecies reconstruction from 

next-generation sequencing data,” Bioinformatics, vol. 28, no. 1, 2012, doi: 

10.1093/bioinformatics/btr627. 

[9] I. N. Lu, C. P. Muller, and F. Q. He, “Applying next-generation sequencing to unravel the 

mutational landscape in viral quasispecies,” Virus Research, vol. 283. 2020. doi: 

10.1016/j.virusres.2020.197963. 

[10] S. Prabhakaran, M. Rey, O. Zagordi, N. Beerenwinkel, and V. Roth, “HIV haplotype inference 

using a propagating dirichlet process mixture model,” IEEE/ACM Transactions on 

Computational Biology and Bioinformatics, vol. 11, no. 1, 2014, doi: 10.1109/TCBB.2013.145. 

[11] H. E. L. Lischer and K. K. Shimizu, “Reference-guided de novo assembly approach improves 

genome reconstruction for related species,” BMC Bioinformatics, vol. 18, no. 1, 2017, doi: 

10.1186/s12859-017-1911-6. 

[12] R. Pereira, J. Oliveira, and M. Sousa, “Bioinformatics and computational tools for next-

generation sequencing analysis in clinical genetics,” Journal of Clinical Medicine, vol. 9, no. 1. 

2020. doi: 10.3390/jcm9010132. 

[13] T. Xiao and W. Zhou, “The third generation sequencing: The advanced approach to genetic 

diseases,” Translational Pediatrics, vol. 9, no. 2. 2020. doi: 10.21037/TP.2020.03.06. 



 45 

Benchmarking of viral quasispecies assembly algorithms| Master Thesis | Rucha Narkhede 

[14] N. Beerenwinkel and O. Zagordi, “Ultra-deep sequencing for the analysis of viral populations,” 

Current Opinion in Virology, vol. 1, no. 5. 2011. doi: 10.1016/j.coviro.2011.07.008. 

[15] J. A. Baaijens, A. Z. el Aabidine, E. Rivals, and A. Schönhuth, “De novo assembly of viral 

quasispecies using overlap graphs,” Genome Research, vol. 27, no. 5, 2017, doi: 

10.1101/gr.215038.116. 

[16] S. Mangul, N. C. Wu, N. Mancuso, A. Zelikovsky, R. Sun, and E. Eskin, “Accurate viral 

population assembly from ultra-deep sequencing data,” Bioinformatics, vol. 30, no. 12, 2014, 

doi: 10.1093/bioinformatics/btu295. 

[17] Y. Lin, J. Li, H. Shen, L. Zhang, C. J. Papasian, and H. W. Deng, “Comparative studies of de novo 

assembly tools for next-generation sequencing technologies,” Bioinformatics, vol. 27, no. 15, 

2011, doi: 10.1093/bioinformatics/btr319. 

[18] F. di Giallonardo et al., “Full-length haplotype reconstruction to infer the structure of 

heterogeneous virus populations,” Nucleic Acids Research, vol. 42, no. 14, 2014, doi: 

10.1093/nar/gku537. 

[19] A. Eliseev et al., “Evaluation of haplotype callers for next-generation sequencing of viruses,” 

Infection, Genetics and Evolution, vol. 82, p. 104277, Aug. 2020, doi: 

10.1016/J.MEEGID.2020.104277. 

[20] J. A. Baaijens, L. Stougie, and A. Schönhuth, “Strain-aware assembly of genomes from mixed 

samples using flow variation graphs,” in Lecture Notes in Computer Science (including 

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2020, 

vol. 12074 LNBI. doi: 10.1007/978-3-030-45257-5_14. 

[21] G. Hickey et al., “Genotyping structural variants in pangenome graphs using the vg toolkit,” 

Genome Biology, vol. 21, no. 1, 2020, doi: 10.1186/s13059-020-1941-7. 

[22] E. Garrison and A. Guarracino, “Unbiased pangenome graphs,” bioRxiv, p. 

2022.02.14.480413, 2022, [Online]. Available: 

https://www.biorxiv.org/content/10.1101/2022.02.14.480413v1 

[23] A. Gurevich, V. Saveliev, N. Vyahhi, and G. Tesler, “QUAST: Quality assessment tool for 

genome assemblies,” Bioinformatics, vol. 29, no. 8, 2013, doi: 10.1093/bioinformatics/btt086. 

[24] A. Fritz et al., “Haploflow: strain-resolved de novo assembly of viral genomes,” Genome 

Biology, vol. 22, no. 1, 2021, doi: 10.1186/s13059-021-02426-8. 

[25] X. Luo, X. Kang, and A. Schönhuth, “Strainline: full-length de novo viral haplotype 

reconstruction from noisy long reads,” Genome Biology, vol. 23, no. 1, 2022, doi: 

10.1186/s13059-021-02587-6. 

[26] S. Knyazev et al., “CliqueSNV: Scalable Reconstruction of Intra-Host Viral Populations from 

NGS Reads,” bioRxiv, vol. xx, 2018. 

[27] A. Töpfer, T. Marschall, R. A. Bull, F. Luciani, A. Schönhuth, and N. Beerenwinkel, “Viral 

Quasispecies Assembly via Maximal Clique Enumeration,” PLoS Computational Biology, vol. 

10, no. 3, 2014, doi: 10.1371/journal.pcbi.1003515. 



 46 

Benchmarking of viral quasispecies assembly algorithms| Master Thesis | Rucha Narkhede 

[28] S. Benidt and D. Nettleton, “SimSeq: A nonparametric approach to simulation of RNA-

sequence datasets,” Bioinformatics, vol. 31, no. 13, 2015, doi: 

10.1093/bioinformatics/btv124. 

[29] Illumina, “NovaSeq 6000 Sequencing System,” 770-2016-025-H, vol. 4, no. February. 2016. 

[30] A. Kechin, U. Boyarskikh, A. Kel, and M. Filipenko, “CutPrimers: A New Tool for Accurate 

Cutting of Primers from Reads of Targeted Next Generation Sequencing,” Journal of 

Computational Biology, vol. 24, no. 11, 2017, doi: 10.1089/cmb.2017.0096. 

[31] H. Jiang, R. Lei, S. W. Ding, and S. Zhu, “Skewer: A fast and accurate adapter trimmer for next-

generation sequencing paired-end reads,” BMC Bioinformatics, vol. 15, no. 1, 2014, doi: 

10.1186/1471-2105-15-182. 

[32] R. Malhotra, M. Jha, M. Poss, and R. Acharya, “A random forest classifier for detecting rare 

variants in NGS data from viral populations,” Computational and Structural Biotechnology 

Journal, vol. 15, 2017, doi: 10.1016/j.csbj.2017.07.001. 

[33] J. A. Baaijens, B. van der Roest, J. Köster, L. Stougie, and A. Schönhuth, “Full-length de novo 

viral quasispecies assembly through variation graph construction,” Bioinformatics, vol. 35, no. 

24, 2019, doi: 10.1093/bioinformatics/btz443. 

[34] A. Mikheenko, V. Saveliev, and A. Gurevich, “MetaQUAST: Evaluation of metagenome 

assemblies,” Bioinformatics, vol. 32, no. 7, 2016, doi: 10.1093/bioinformatics/btv697. 

[35] A. Bankevich et al., “SPAdes: A new genome assembly algorithm and its applications to single-

cell sequencing,” Journal of Computational Biology, vol. 19, no. 5, 2012, doi: 

10.1089/cmb.2012.0021. 

[36] D. Jayasundara, I. Saeed, S. Maheswararajah, B. C. Chang, S. L. Tang, and S. K. Halgamuge, 

“ViQuaS: An improved reconstruction pipeline for viral quasispecies spectra generated by 

next-generation sequencing,” Bioinformatics, vol. 31, no. 6, 2015, doi: 

10.1093/bioinformatics/btu754. 

  

 


	Table of Contents
	PREFACE
	Abstract
	Viral quasispecies refers to viral populations that comprises of numerous viral strains closely related to each other due to within-host evolution or co-infection. The reconstruction of viral strain-specific genomes using sequencing reads is referred ...
	RNA viruses like SARS-CoV, HIV, Hepatitis and influenza are main causes of infection and illness in human[1], [2]. Because of their genetic variety and the infections, they induce, RNA viruses have gained a lot of attention. The exceptional propensity...
	Ribonucleic Acid (RNA) consists of four nucleotides (Adenine(A), Cytosine(C), Guanine(G) and Uracil (U) instead of thymine(T))[1]. Usually, RNA molecules are single stranded unlike the double stranded structure of DNA molecules. Due to this, the RNA m...
	1.1 Viral Quasispecies
	1.2 Genome sequencing
	1.3 Assembly
	1.4 Research Objectives
	1.5 Report Outline

	2 Genome Assembly Tools
	To support the ever-growing amount of sequencing data, a range of sequence assembly techniques and tools exist. Furthermore, the diverse nature of data generated by various sequencing platforms necessitates the development of specific algorithms for e...
	2.1 De-Novo Assembly
	3 Benchmarking Datasets
	3.1 Description of the dataset used
	3.1.1. Real Benchmarking Dataset


	4 Benchmarking Results and Analysis
	4.1 Performance Metrics
	4.2 High coverages result in improved assembly quality
	4.3 Assembly tools perform better on simulated datasets compared to real datasets
	4.4 Improved assembly quality on at least one performance metric using VG -Flow

	5 Conclusions and Discussions
	5.1 Why is reconstructing of Viral quasispecies genomes important?

	Recent viral diseases outbreak like SARS-COV2 and earlier outbreaks like Hepatitis C virus (HCV) has indicated the urgent need for techniques or ways to examine genetic diversity of viral diseases. As mentioned before, viral quasispecies can rapidly e...
	5.2 Importance of creating broad and diverse gold-standard datasets
	5.3 None of the six assembly tools outperforms other tools on all the performance metrics

	When compared to simulated datasets, real dataset was more challenging to handle for the assembly tools. The results indicate that none of the six assembly tools perform the best on all the performance evaluation metrics. The trends observed in the pe...
	5.4 Improved strain-specific genome assemblies with VG-Flow using pre-assembled contigs

	Now the question is if these assembled contigs further be used to produce a high quality and accurate assembly and if so, how? To test this, we used VG-Flow assembly method with some tweaks. VG-Flow improved the quality and accuracy of the haplotypes....
	5.5 Limitations and Future Work

	The main goal of this research if put in layman terms was to produce a high-quality real benchmarking datasets which can be a primary standard or inspire researchers to focus on broader real datasets. Along with that, examining the performance of vira...
	Our results also show that there is a need to create assembly tools which can handle more complex and diverse datasets with different strain variants and varying coverages. It might be interesting to investigate long reads rather than short reads and ...
	APPENDIX 1
	1. 5-strain mixture
	The results of all the six assembly tools for 5-strain mixture(100x, 1000x and 10000x) are summarized in the tables below.
	2. 4-strain mixture
	The results of all the six assembly tools for 4-strain mixture(100x, 1000x and 10000x) are summarized in the tables below.
	3. 2 strain mixtures
	The results of five assembly tools for 2 -strain mixture(1000x) coverage for different abundance distribution are summarized in the tables below
	4. Simulated datasets
	5. VG-Flow Results
	6  References

