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Abstract—Currently, literature regarding Multi-
agent Path Finding (MAPF) does not give a broad
enough overview of all the different approaches. Many
papers are hard to read and require proper knowledge
of MAPF. The goal of this report is to give a global
overview of MAPF. To achieve this goal, we provide a
detailed explanation of what MAPF problems look like,
as well as giving a clear overview of the strength and
weaknesses of different solutions. Besides this theoreti-
cal analysis, we also analyse and critique benchmarking
performed by other researchers. Following all this,
we conclude that the field of MAPF lacks agreement
on terminology. Furthermore, performance analysis is
limited to researchers choice, skewing research in their
own favour.
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I. Introduction
The world is more connected than ever before and

getting increasingly connected by the day. With that,
problems in logistics with regards to airplanes, ships,
trains and other means of transport and travel are
becoming more and more difficult. With this increased
amount of traffic there is also an increased chance of
collisions between the paths, e.g. between the paths of
two planes, which could have disastrous consequences. So
how do we make sure that there are no collisions? Besides
that, how do we make sure everything arrives on time?
This problem can be modelled as a Multi-Agent Path
Finding (MAPF) problem.

MAPF is a type of multi-agent planning problem in which
the task is to plan paths for multiple agents. The agents
are substitutes for real world entities (trains, planes
etc). While it is easy enough to create a path for each
agent individually, problems arise when we have to factor
in the interaction with other agents. In general MAPF
problems, two agents are not allowed to collide with each
other. This means that besides finding the optimal path
on an individual level, the agents also have to make sure
there are no conflicts with other agents. (Stern et al., 2019)

With this report we aim to give a global overview of
MAPF and illustrate where it might be a suitable solution
for a problem. We believe that the current literature
does not give a broad enough overview of the different
approaches which have been developed so far. Many
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papers are difficult to read on their own, and require the
reader to first brush up on their knowledge of MAPF
in other places. In the same trend, many papers only
discuss their own developed algorithm, and compare it
with older, but still similar, types of algorithms. This
paper aims to give a more top-down approach into the
different classes of MAPF algorithms. This allows the
reader to make an educated choice whether MAPF is
suitable for their problem in the first place and which
type of algorithm would best suit their needs.

The first important step in solving any real-world problem
involves finding solutions that already exist for similar
problems, to prevent ”re-inventing the wheel”. Conse-
quently, it is important to describe exactly what MAPF
problems look like. We also show some example problems
where MAPF has already been applied, and how the
two problems were related. This is done in chapter II. If
MAPF turns out to a problem that suits your needs, the
next step would be to determine which solutions would
be a good fit (e.g. speed vs efficiency). Many different
solutions have been proposed in the literature, but there
is not yet a clear overview of their differences in strengths
and weaknesses. We attempt to provide such an overview
in chapter III. Such an overview is also beneficial for
engineers who are not satisfied with the performance of
their current implementation. However, theoretical analy-
sis is just that, theoretical. The actual performance of a
solution may, in reality, differ from the predictions. It is
therefore important to also perform empirical analysis. In
chapter IV we provide a summary of the most relevant
performance analysis in the literature so far, as well as
recommend methods to create your own analysis. Finally,
we summarise all of our findings and important knowledge
that we have gained while working on the paper in the
conclusion.

II. General MAPF Instance

Multi-agent path-finding is not a stand-alone problem,
but is designed to model real-world problems into some-
thing more simplistic and well-defined. Before we discuss
different algorithms and their performances, we must first
look at what a MAPF instance may look like. This is
because we need to establish basic knowledge about the
entities and objectives that are present in this problem.
To prevent re-explaining these concepts later on, we define
terms that describe these concepts which we will use in
the remainder of this paper. The terms and concepts are
explained in section II-A. In order to also visualise these



concepts, in section II-B, we describe a few real-world
cases where MAPF algorithms have already been applied.
Afterwards, we provide a formal definition in terms of
graphs and sets in section II-C. We will explain key terms
that are used to describe the inner workings of MAPF
algorithms. Finally, we look at a a number of variants that
have been developed. These variants indicate how the basic
model can be extended to better represent the original
problem.

A. Informal description
In order to determine the applicability of MAPF to a

problem, we need to look how a problem can be reduced
to an instance of MAPF. An instance of MAPF consists of
a number of agents, a domain/environment in which the
agents can move. Agents move through the environment
to reach their goal locations.

1) Environment
Many MAPF problems are based on movement of real
entities, such as robots, vehicles, or simply humans. To
reduce such a problem to a MAPF instance, the real,
physical world must somehow be represented by a finite
amount of data. This means that possible locations in
the real world must be mapped to some digital data
structure. A common approach is to use a grid. A grid
is a surface (2D) or volume (3D) divided into a fixed
number of equally sized cells (squares or cubes). Each cell
represents a small part of the original physical area. See
figure 1 for an example of a grid with obstructions. Making
the cells bigger results in less computation time, but also
less precision, and vice-versa. If the agents are assumed
to position themselves in the centre of the cells, larger
cells could be used to enforce a certain distance constraint
between the agents.
Some real-world applications exist for which grids are not
a good idea. These are applications where the pathways
are already discrete by construction (e.g. motorways, train
tracks). This could more easily be done in a (finite) graph.
A graph consists of a number of nodes, which represent
locations, and a number of edges connecting any 2 nodes,
representing a pathway. Since this is all that is required
to define a movement (a start point, an endpoint, and
a pathway), any domain that allows movement can be
reduced to a graph. One algorithm that uses this and was
inspired by road networks is FAR, which is discussed in
the next chapter.

Fig. 1: Example from (Silver, 2005) of a grid domain.
Agent start locations are marked with Si, goal locations
are marked with Gi. Black squares represent obstructions
through which the agents cannot move.

2) Actions
Agents will attempt to reach their goal positions

by performing one of two actions: move or wait. The
wait action is a natural consequence of the no-collisions
constraint, since an agent has to let another agent pass
first if they are set to collide. The wait action can also be
used to prevent agents blocking other agents, see figure 2.

Fig. 2: Example from (Sigurdson et al., 2018) of grid
containing a one-cell-wide corridor. The green triangular
agent on the left wants to move to the red square, but is
blocked by the green square agents that have already reached
their goals. The other 2 agents must therefore wait before
they reach the corridor so the triangle can first reach its
goal state.

3) Objectives
As mentioned, the main goal is for the agents to reach

their target location at some point in time. In many
real-world problems, there exist some constraints on the
amount of time available, or the amount of energy avail-
able (e.g. robots running on batteries, vehicles running
on fuel). Minimising the amount of time until all agents
reach their goals is called minimising the makespan (Stern



et al., 2019). Minimising the total amount of energy used
can be equated to minimising the total length of all paths
combined, or sum-of-costs for short. See figure 3 for an
example of makespan and sum-of-costs.

Fig. 3: Example from (Surynek et al., 2016) of an instance
where optimizing makespan and sum-of-costs yields differ-
ent solutions. µ denotes the makespan, ξ denotes the sum-
of-costs. In the top-right solution, ξ is optimised. In the
bottom-right solution, µ is optimised

B. Example Applications
Now that we have an understanding of the different

components in a MAPF instance, we will visualise them
by using real-world examples. This should illustrate in
which cases it can be of use. On top of that it shows
the benefits of MAPF when applied correctly. The first
example we discuss are video games. In video games,
players only constitute a very small percentage of the
objects because there are a lot of non player characters
(NPCs) walking around. The paths of these NPCs are
determined by an MAPF algorithm. Game designers that
want to offer their players a smooth gaming experience
will benefit from selecting a suitable MAPF algorithm.
The second example takes place in warehouses. Because
there is a growing amount of shopping taking place,
warehouses need to become bigger as well as more
efficient. This process can be streamlined with the use of
robots. However, these robots need to know where to go
without colliding into each other. In the third and final
example we discuss the problem of logistics in a harbour.
Ships travel between harbours all over the world where
they need a place dock. Which ship has to dock where
and how the routes to their docking locations are decided
is determined by an MAPF algorithm. MAPF could be
used to minimise the makespan which could in turn result
in less working hours for the personnel. In the following
three subsections we will relate the concepts that we have
learned in the previous section (e.g. agents, environment)
to the real-world entities in the given example.

1) Video game NPCs
Video games often have a lot of objects moving around

at the same time. An example of this is (Sigurdson
et al., 2018), where multiple algorithms are tested for the
game Dragon Age: Origins (DAO), a 3D RPG. The map
contains some characters that the player can control,

some buildings, walls, and a bunch of computer-controlled
characters (NPCs). At any point in time, the player is
able to assign or alter goal locations of his characters.
These characters cannot move through each other, or
through walls. A MAPF instance models these characters
as agents. The map is represented as a 8-connected grid
(the agents can move in 8 directions). Goal locations are
set by the user, and can be changed at any moment. In
order to account for this sporadic re-planning, the chosen
MAPF algorithm must trade in optimality for speed.
More on this trade-off is explained in chapter III.

2) Autonomous Warehouse Robots

With the ever growing amount of online shopping that
we do nowadays, distribution centers also have to get
bigger and more efficient. One way warehouse processes
have been streamlined is with the use of Autonomous
Robots. Normally employees have to fetch a product
themselves from a certain location if it is required (e.g.
for delivery), which takes time. A system called Kiva
uses autonomous robots that ride around to fetch these
products (Wurman et al., 2008). The storage shelves in
this case can be attached to the moving robots. The
shelves that hold one of the ordered items are then
transported to a central point for collection. In this case
the robots are the agents, and the goal location is the
central point for collection. The warehouse itself is a
grid where robots move around upon. MAPF is used
to create the paths of the various robots and to make
sure no collisions occur. Using Kiva for a warehouse as is
described by Wurman et al. greatly increases efficiency
and reduces the expenses on personnel.

3) Vessel traffic

As was described in the introduction, the world is
more connected than ever before. Trade between a lot of
countries in the world is flourishing and a lot of goods
are exchanged. To transport all these products over the
world, a large number of ships are needed. All of these
ships have to dock in a harbour to load or unload goods,
and they continuously get assigned new target locations.
These ships may come from many different places and
have different destination points. They should, however,
never end up in the same place or along the same path,
since that would result in a collision. MAPF algorithms
plan the routes of these ships in such a way that this will
never happen (Teng et al., 2017). In this case the ships
are the agents and the harbour is represented by a grid.
The goal locations are the places where a ship can dock to
load or unload their goods. A difficulty with ships is that
unlike cars, ships cannot use brakes and stand still in a few
moments. Surprisingly enough, a lot of accidents happen
in harbours around the world. MAPF algorithms have
been proven to be effective at reducing those collisions in
harbours (Kim et al., 2014).



C. Formal definition

In this section, we will define an MAPF instance in
more formal notation. We believe that explaining the
inner workings in different ways improves understanding.
This notation is commonly used in the literature on
this subject, and will therefore also prove useful when
performing your own research.

The environment is represented by an undirected graph
G = (V,E), where V = {v1, v2, ..., vn} is a finite set of
vertices and E = {(vi, vj)|vi, vj ∈ V } is a finite set of
edges. Grids can be represented as graphs by constructing
a vertex for each cell. In case of a 4-connected grid, edges
are constructed for left, right, up, and down movements.
In case of a 8-connected grid, edges for diagonal movement
are also constructed.

Agents can be represented by a single set
A = {a1, a2, ..., am} and two functions as and ag,
where as(ai) returns the initial vertex of agent ai, and
ag(ai) returns the goal vertex of agent ai.

For every agent ai, a movement plan πi is calculated.
An agent’s movement plan is a an ordered list of po-
sitions which stores the location of the agent at every
time step. We assume time is discretised, and that every
agent performs one action (move or wait) in each time
step. Let πi(j) denote the location of agent ai at time
step j. A feasible solution of the MAPF problem is then
the combination of all different plans, π =

⋃
ai∈A πi.

The solution is valid when the following constraints are
satisfied:

• Each individual plan is valid. That means that for
every two succeeding time steps, the agent moves
along an edge e ∈ E, or remains in the same position.
Formally, if πi(j) = v and πi(j + 1) = u, then either
(u, v) ∈ E (move) or u = v (wait).

• No collisions must exist between any two agents. Mul-
tiple types of collisions are possible, although some of
them can be relaxed depending on the situation (see
section II-D). The most common (Stern et al., 2019)
types of collisions are:

– Vertex conflict. This conflict occurs when more
than 1 agent is present in a vertex at the same
time.

– Edge conflict. This conflict occurs when more
than 1 agent moves along the same edge at the
same time. Note that an edge conflict in the
same direction is impossible if vertex conflicts are
already avoided. We then only talk about edge
conflicts where agents swap places.

– Following conflict. This conflict occurs when
an agent moves to a vertex at the same time
that another agent leaves that vertex. A following
conflict involving more than 2 agents is called a
cycle conflict.

D. Variants
In section II-A we have described the basic instance

of a MAPF problem. This instance can be extended to
better fit the original problem, which can differ from the
basic instance in several ways. We call these variants of
the basic instance.

One variant introduces teamwork to solve goals that can
be shared between multiple agents. A good example is
the Package-Exchange Robot-Routing Problem (PERR)
(Ma, Tovey, et al., 2016). In this problem, packages must
be picked up and delivered at some destination. It does
not matter which agent delivers the package, only that it
gets delivered. In this particular example, an additional
action is introduced to allow agents to exchange packages
between agents.

Other variants are more concerned with quantifying the
actions of the agents. This is because in reality, agents
may require a different amount of time per action. For
example, non-holonomic robots need to turn before they
can change direction, and will take longer to reach the
next location than if the robot would move in a straight
line (Ma et al., 2017; Cirillo et al., 2014). Agents could
also be of different size, which can be modelled by allowing
some agents to occupy more than 1 vertex (Li et al., 2019).

Some variants have been designed to better suit the
restricted movement of certain vehicles. Vehicles such
as automobiles, aircraft and vessels cannot instantly
accelerate/decelerate (aircrafts are also not allowed to
stop mid-air). Neither can they turn 90 or 180 degrees
in a single time step. The model in this variant describes
the movement of an agent in terms of speed and angle
(Pallottino et al., 2007).

The movements can also be made to be influenced
by past movements (Jansen and Sturtevant, 2008) or by
user-defined ”high-ways” (Ma, Koenig, et al., 2016), to
make the agents their movements more predictable in an
environment where humans also work.
We will not further discuss these variants in later chapters,
as they are too specific to allow a decent comparison to
be made.

III. Algorithm Selection
Multi-agent path finding (MAPF) algorithms are used

for different types of applications like controlling charac-
ter movement in video games, controlling traffic flow or
routing of planes in an aviation context (Felner et al.,
2017). Because of this variety in MAPF algorithms, it is
important to be able to compare different MAPF algo-
rithms and make comparisons between those algorithms
based on aspects that differentiate them from other al-
gorithms. The aim of this chapter is to give the reader
a better understanding of the way a MAPF algorithm
can be selected. Each setting discusses an important



aspect of MAPF algorithms and explains what benefits
and drawbacks a specific type of that aspect has. In the
first section III-A we discuss the difference between a
centralised and a distributed setting. We discuss whether
the agents are in control of their own actions or whether
there is some centralised system in control of the agents
and their movements. In section III-B we differentiate
between a coupled and decoupled solution approach used
by MAPF algorithms. The solution approach used by a
MAPF algorithm is closely related to the dependency
between agents in the problem environment. Section III-C
then differentiates algorithms that produce an optimal and
a sub-optimal solution to a given problem. In some cases
an optimal solution is not necessary and a trade-off is made
between speed versus accuracy of the solution. We achieve
this by discussing a few example algorithms. Finally all
our findings are concluded in section III-D where we have
a table with the various algorithms discussed and the
different aspects the algorithms do or do not possess.

A. Controlling Agents: Setting
The way MAPF algorithms control agents in the

environment of a given problem is called the setting.
MAPF algorithms can be classified into two settings;
centralised settings and distributed settings. Centralised
settings are used when their is one computer in the
real-world that control all agents while a distributed
setting is used when each agent in the real world has its
own computer. What setting to chose is important to
consider since the two settings require different ways of
implementation in the real world. A distributed setting
is sometimes called a decentralised setting. To make the
distinction between the two settings clear this paper uses
the term distributed setting. This section discusses what
both settings mean and when they should be used.

1) Centralised Setting
MAPF algorithms that use a centralised setting have

one computational unit that makes decisions for the
agents in the environment (Felner et al., 2017). Agents
do not think for themselves, but rather receive simple
instructions on what action to perform. A centralised
setting is applicable to environments where the agents
are fully or partially dependent. Centralised path finding
is often used in combination with a coupled solution
approach (see section III-B1). Centralised path finding
algorithms are often optimal. Optimality is thoroughly
discussed in section III-C.

2) Distributed Setting
MAPF algorithms that use a distributed setting have

agents in the environment that all have their own com-
puter for making decisions (Felner et al., 2017). A dis-
tributed setting is often used for problems where the
agents are independent or almost independent of each
other. Although the agents in a distributed setting make
decisions on their own, collisions are still prevented.

For example, Windowed Hierarchical Cooperative A*
(WHCA*) reserves paths found for individual agents in
a reservation table that is shared among all agents in the
environment (Bnaya and Felner, 2014).

B. Solution Approach: Coupled & Decoupled
The process of finding feasible paths for all agents can

be done in either a coupled, or a decoupled approach. The
choice between these two options has an impact on the
run-time of the algorithm and the quality of the solution.
These approaches are not mutually exclusive and can be
combined to get the best of both worlds.

1) Coupled Approach
In a coupled approach, the solutions of all agents

depend on each other. This means that the entire search-
space must be traversed to find a feasible solution for
all agents. Due to this, the cost of finding a solution
grows exponentially with the number of agents. On the
other hand, it is well suited for finding optimal solutions.
More on optimality can be found in section III-C. This
dependency on each other requires the algorithm to store
information on all agents. It is therefore best combined
with a centralised approach.

2) Decoupled Approach
In a decoupled approach, each agent finds an individual

(optimal) path for reaching its goal. The solutions these
agents find are either fully or partially independent of
each other. This means that conflicts between the paths
are possible. There are several ways to resolve these
conflicts. One way is by preventing collisions in the first
place, by using reservation tables. Reservation tables
are explained in III-C5b. Another way is to search for
and resolve conflicts after the fact. For example, FAR
performs such re-planning on-the-fly using predefined
rules.

3) Combination of Coupled and Decoupled
The high computational cost of using a coupled ap-

proach leads to the approach being unsuitable for usage
in environments with many agents. A decoupled approach
is prone to suboptimality and deadlocks. A nice middle-
ground can be found by combining both approaches.
Conflict-Based Search is an example of an algorithm that
uses a combination of the coupled and decoupled ap-
proaches and will be discussed in further detail in section
III-C4b.
Subdimensional expansion is an example method that
combines the coupled and decoupled approach (Wagner
and Choset, 2015). Subdimensional expansion itself is
not an algorithm but rather a method that can be used
by MAPF algorithms for finding a solution. Subdimen-
sional expansion initially uses a decoupled approach to
find individual paths in a low-dimensional search-space.
If a collision is found, a small part of the search-space
around the collision is increased in dimension to calculate
alternate paths. This is done in a coupled manner.



C. Quality of the Solution: Optimality
In most cases it takes significantly longer to find the

best possible solution compared to finding a solution
that approaches the best solution. Therefore there is
a trade-off between speed and accuracy of the solution
between sub-optimal and optimal solutions (Stern et al.,
2019). Before we move on to the question of optimality we
first need to explain the term completeness, which is done
in the next subsection. On top of that it is important to
determine what the algorithms we discuss in the next
chapter are based on. We explain what it means to be a
reduction based algorithm or an A* based algorithm in
the subsections below.

1) Completeness
When a path planning algorithm is guaranteed to

either find a path or to determine that no path exists it
is deemed to be complete (Wagner and Choset, 2011).
Depending on the application it can be very important to
find a solution if one exists. On top of that completeness
can assist in speeding up the algorithms. It is less costly
to find any solution than it is to find an optimal or
sub-optimal solution. This information can be used to see
if the instance is solvable at all before executing the more
costly algorithm.

2) Reduction based
In complexity theory, there exists a class of decision

problems that can be solved in at most exponential time
(relative to the input size), while verifying yes-instances
requires only polynomial time. This class is called NP.
A subset within NP, called NPC, is assumed to only
contain decision problems to which any NP problem can
be reduced in polynomial time. That is, any decision
problem in the class NP (and by inclusion, also NPC)
can be rewritten as an instance of any NPC problem,
using less than exponential time. If this reduction is done
correctly, a yes-instance in the original problem results
in a yes-instance in the reduced problem, and vice-versa.
Because of this property, a lot of time has been invested
into creating solvers for some of these NPC problems.
Since other NPC problems can be reduced to one of
these already fleshed-out NPC problems, it prevents
having to design a new algorithm for newly discovered
NPC problems. The difficult part then lies only in the
reduction. Some examples of NPC problems with existing
solvers are Propositional Satisfiability (SAT), Integer
Programming (IP), and Constraint Satisfaction Problem
(CSP).

The decision variant of MAPF is proven to be a NPC
problem (LaValle, 2006). The makespan decision variant
gives an answer to the question: is there a solution to this
MAPF instance, using no more than k time? Surynek
has developed an efficient reduction from this decision
variant to the SAT problem. Obtaining an optimal value
is achieved by executing the decision variant on an
increasing value of k (k = k0, k0 + 1, ...). Surynek calls

this the incremental strategy.

3) A* based
A* is a single-agent path finding algorithm that is

proven to be complete and optimal. A downside of A*
is that executing A* on multiple agents will result in
a search space which size grows exponentially with the
number of agents. Newly developed algorithms that are
based on A* therefore try to minimise the amount of
search space that is traversed, while maintaining the
optimal and completeness properties. Two very popular
extensions to A* have been introduced by Standley,
called Operator Decomposition (OD) and Independence
Detection (ID).

ID tries to reduce the search-space by grouping agents
together which do not have conflicts between each other.
OD tries to reduce the search-space by making an
educated choice in which possible movements to consider
first. In the worst case, both improvements perform just
as bad as A*. In a performance analysis in chapter IV,
we will see that, in general, these improvements result in
a faster performance.

4) Optimal
To find an optimal solution the required setting is a

centralised setting (Khorshid et al., 2011). The reason
for this is that for an optimal solution the routes of the
agents are predetermined. Adjustments to the routes of
the agents, like conflicts or deadlocks, cannot be resolved
halfway through because an agent would have to adjust
its optimal route, which could lead to a sub-optimal
route and therefore a sub-optimal solution. Optimal
solutions require at least as much time as sub-optimal
solutions. An advantage is that the quality of the solution
is better. These types of algorithms are used when it
is more important to minimise either the makespan or
the sum-of-costs instead of the time it takes to find the
solution.
In the following subsections we will discuss variants
of optimal solutions by using a few examples. These
examples are state-of-the-art optimal MAPF algorithms.
We will start off with discussing increasing cost tree
search, afterwards we discuss conflict based search and
finally we discuss branch, cut & price.

a) Increasing cost tree search
Increasing Cost Tree search (ICTS) search algorithms

build a tree that consists of the costs of the best path
for every agent. ICTS is an A* based algorithm. The
algorithm builds a tree a using a top down approach
where the root of the tree is the best path for every
agent when the other agents are not taken into account.
Children of a node are generated by adding a unit cost of
1 to one of the agents. For each of these nodes paths are
calculated according to the distance that is written down
for every agent. This search tries to combine individual
paths of the agents so that there are no conflicts between



them. If this succeeds the optimal solution is found,
otherwise it will try to do so on the next node.
The way the searches are performed on the nodes of the
tree is in a breadth first search manner. By doing this an
optimal solution will be found, because in every row in
the tree the nodes have the same depth. Therefore every
row has the same total sum-of-costs.

On the one hand the algorithm performs well when
there are many chunks of open areas, but on the other
hand it performs inefficiently when the environment is
dense. Experimental results showed that on a number of
domains ICTS outperforms the previous state-of-the-art
A* approach by up to three orders of magnitude in many
cases (Sharon et al., 2013).

b) Conflict-based search
Conflict-based algorithms are algorithms that find a

set of constraints for individual agents so an optimal
solution can be found. These types of algorithms do
so by performing 2 types of searches. First there is a
low level search which finds an optimal route. Secondly
there is a high level search that finds constraints that
it needs to impose on individual agents for an optimal
solution. A constraint for an agent means that that
agent cannot occupy a certain location at a certain time
step. These constraints are in place to resolve conflicts
between agents. Every time new constraints are imposed
the low level search is performed again whilst taking
the new constraints into account. By repeating this
process eventually a set of constraints will be created that
removes all the conflicts and returns an optimal solution
(Sharon et al., 2015).

c) Branch, Cut & Price
Branch cut and price (BCP) is a more recent optimal

state-of-the-art algorithm. It uses a combination of the
strengths of CBS with the search performance of mixed
integer programming (MIP). Because it uses MIP, it
is a reduction based algorithm instead of an A* based
algorithm (see III-C2). BCP is faster than CBS with a
higher success rate (Lam et al., 2019). In the next chapter
we are going to compare BCP and CBS more extensively.

5) Sub-optimal
Sub-optimal solutions in most cases use the distributed

setting. That is because the solution does not need to be
optimal. The benefits are that the algorithms scale better
on larger graphs or with more agents. The algorithms
are also in most cases faster than their centralised
counterparts. A disadvantage is that in most cases no
completeness guarantees are provided (Wang and Botea,
2008). Sub-optimal solutions can be divided into three
types, namely rule-based, search-based and hybrid-based
approaches. Below we will discuss all three with the use
of examples.

a) Rule-based
Rule-based algorithms have agent-specific rules in place

for different scenarios. They usually do not include a
massive search like search-based algorithms. Rule-based
solvers usually guarantee to find a solution very fast,
but those solutions are in most cases far from optimal.
An example of such an algorithm is tree based agent
swapping strategy (TASS). TASS uses a centralised
approach with a sub-optimal solution. The algorithm is
centralised because all rules apply to all agents. It uses
an algorithm called Graph-to-Tree-Decomposition (GTD)
to induce trees from graphs. TASS can only be used on
trees, according to Khorshid et al. this applies to a lot of
MAPF instances.

TASS provides no guarantees to the quality of the
solution, but it is complete for tree graphs. It is also
very fast even with a cluttered search space where there
are many agents in a small space. As was discussed in
the paper on a tree with a 1000 nodes and 996 agents
(only 4 empty spaces where agents are allowed to move)
a solution was found in 8 seconds (Khorshid et al., 2011).
Other rule-based algorithms are for example Bibox and
push and rotate (Surynek, 2009), (de Wilde et al., 2014).

b) Search-based
Search-based approaches do not use any rules to

reach their goal destination, but only searches. Collisions
are avoided because of adjustments in the searches or
other systems that are in place, as we will shortly see
in the example. Search-based algorithms are not the
fastest algorithms, but they create high quality solutions
(Stern et al., 2019). There are also optimal search-based
algorithms, for example CBS that we discussed previously
(Barer et al., 2014).

An example of a sub-optimal search-based algorithm
is windowed hierarchical cooperative A* (WHCA*). It
uses a decoupled approach with single-agent searches.
In cooperative path finding an agent has full knowledge
of other agents’ travel plans. It achieves this by using
a reservation table. Every agent, after performing its
search, puts their states in the reservation table. This
ensures that locations at certain time steps are impassable
for other agents. This process eliminates deadlocks and
collisions. A drawback however is that the order of
the agents matters. The path of one agent could lead
to the next agent not being able to find a path to its
location, because at certain time steps locations are in
the reservation table. In this case, the order of the agents
matters if the paths of the two agents are not mutually
exclusive.
The problem can be partially resolved with the use of a
window. The window in WHCA* determines the size of
the partial solutions created by the agents. To make sure
the agents still walk in the right direction, an abstract



Algorithm Optimal Setting Coupled/Decoupled Source
M* Yes Distributed Subdimensional expansion (Wagner and Choset, 2011)

FAR No Distributed Decoupled (Wang and Botea, 2008)
WHCA* No Centralised Decoupled (Bnaya and Felner, 2014)

TASS No Centralised Decoupled (Khorshid et al., 2011)
CBS Yes Centralised Combination (Sharon et al., 2012)
ICTS Yes Centralised Coupled (Sharon et al., 2013)
BCP Yes Centralised Combination (Lam et al., 2019)

TABLE I: Overview of different MAPF algorithms

search is used. This abstract search is performed from the
location of the agent to its goal and is abstract because
it ignores all other agents and their reservations. (Silver,
2005).

Another example of search-based algorithms are bounded
sub-optimal solvers. Multiple of these algorithms are
described in (Barer et al., 2014) as well as some optimal
search-based algorithms.

c) Hybrid-based
Hybrid-based algorithms use rules as well as an initial

search for the optimal route. Flow Annotation Replanning
(FAR) is a hybrid-based algorithm which works on a grid.
Initially, for every agent the optimal route is calculated.
Conflicts are not taken into account in the planning step.
All plans are then executed. Rules are in place to resolve
conflicts and if they result in a deadlock, a local (instead of
global) re-planning step is done to break the deadlock. In
other cases where a deadlock consists of multiple agents,
one of the agents is temporarily forced off its trajectory so
the other agents can continue their route.
An example of a rule implemented in this system is that an
agent has to reserve its move for the next time step before
moving there. On top of that agents are aware of the next
few steps nearby agents will take. This way two different
agents will never move to the same location. FAR is faster
and uses less memory than WHCA*. That is because the
completeness and optimality of the solution are traded for
efficiency (Wang and Botea, 2008).

D. Algorithm Overview
In table I an overview is given of MAPF algorithms and

the aspects that are discussed in this section.

IV. Performance Of MAPF Algorithms
As shown in chapter III, there are many different types

of algorithms. Since these algorithms work in different
ways, and have different objectives, it can be very hard
to directly compare them. It is important to make these
comparisons, since this grants us knowledge of which
algorithms work best. A method of comparing different
algorithms is benchmarking. Using this method we can
create certain scenarios, and let multiple algorithms cre-
ate paths. We can then compare the results of all the
algorithms to show which one works the best in that
situation. Benchmarking is the best approach to this
problem, because it eliminates the differences that make

the comparisons difficult. All algorithms are ran on the
same environment, with the same goal. In order to find the
most representative results, it is important to standardise
the graphs we perform analysis on. In section IV-A we
give an overview of some of the more commonly used
graphs in previous research. The published research seems
to focus primarily on grids, so section IV-A will do the
same. Besides the graph that the algorithm is ran on,
there are different properties of the environment that
can noticeably impact the performance of the algorithms.
Some of these will be discussed in section IV-B. Then,
in order to give some idea of what algorithms perform
the best, we have analysed multiple papers that perform
benchmarking. The benchmarking approach and results
can be found in section IV-C. Finally, we will give some
research recommendations in section IV-D. This way re-
searchers are able to recognise some of the gaps we found
in literature, which would be beneficial to the field as a
whole.

A. Test benchmarks
There exist a large library of open source MAPF

benchmark instances1 which are being used more and
more frequently in the literature. These benchmark
instances mainly consist of different types of grids on
which MAPF algorithms can be ran. It is important to
standardise these, since this allows for better comparison
between different algorithms. In a paper by (Stern et al.,
2019), an overview is given of the most commonly used
benchmark graphs. We will give a small overview of the
different types here, since this helps to illustrate the
types of graphs that are used in the analysed papers.
Knowledge of the instances is critical to understand how
different types of environment effect the result of the
algorithms.

1) N ×N grids
Because of their simplicity, square grids are an easy way

of testing. Sizes of N generally range between 8 and 32.
When left completely open, without any obstacles, they
are best suited for testing the effect of high agent density.
Since there are no obstacles, any large path lengths will
be caused by the interaction between agents.
It is also possible to add random obstacles to the grid.
This forces the agents to create more complex paths to
reach their destination.

1movingai.com/benchmarks/

https://movingai.com/benchmarks/


Fig. 4: Example of a warehouse grid. (Cohen et al., 2018)

2) Dragon Age Origins maps
The Dragon Age Origins maps have been standardised

for testing grid algorithms by (Sturtevant, 2012), where
they are available for download from a public repository
too. These maps are popular instances in several MAPF
benchmarks: (Felner et al., 2017; Stern et al., 2019). These
maps are relatively large with on average over 20 000
walkable tiles, and contain very few obstacles. These maps
better represent a real world scenario than square grids.
They could, for instance, represent a small section of a city.

3) Warehouse grids
These grids are inspired by one of the older MAPF

applications: warehouse robots. The grid is characterised
by many narrow hallways, much like one would find in a
warehouse (Liron Cohen et al., 2018). Figure 4 shows an
example of a warehouse grid. Because it is modelled after
a real world scenario, this type of grid is a good test for
algorithms that want to solve this specific problem. If we
are designing an algorithm to solve this specific problem,
then it is not necessary for the algorithm to perform well
on the other grid types.

B. Environmental difficulties
In certain scenarios the complexity of a problem

cannot be represented by just the graph the algorithm is
performed on. Luckily there are different properties that
can be changed to perform more extensive testing. In this
section we discuss some environmental properties that
could cause problems for algorithms.

1) Sources and targets assignment
Besides the graph, the location of the start and end-

points of each agent’s path also have a great effect on
the performance of an algorithm. There are multiple ways
available to generate these sources and targets (Stern
et al., 2019). Again we will give a small overview of the
different techniques used.
• Random: Random assignment is the most common

method found in the literature. This method is per-
formed by giving each agent a random source and
target from the pool of available grid slots.

• Clustered: For this method, the first agent gets
source and target assigned at random. Every subse-
quent agent will have its source and target location

chosen with a maximum distance from the first agent.
This method is used to increase the difficulty of the
MAPF problem, since it will ensure that the agents
are close to each other.

• Designated: The final method can be used to better
simulate real world scenarios. Here there are sets of
designated source and target locations which every
agent chooses from. In real world scenarios, like an
automated warehouse, there are usually specific spots
designated for humans. Using this method, it is pos-
sible to test the algorithm to path towards and from
those spots in the most efficient way possible.

2) Dynamic environment
In general, MAPF environments are static (Majerech,

2017), meaning that the only thing that moves around are
the agents. In a dynamic environment, it is also possible
for the obstacles to move. When the obstacles move they
might cut off the path of an agent, meaning that the agent
has to find a new route. It is also possible that shorter
paths are revealed. These continuous changes means that
the algorithm has to continuously adjust itself to its
new surroundings. Real world equivalents of a dynamic
environment could be a bridge collapsing, or a street being
blocked.

C. Experimental Results
While most papers perform some analysis with regards

to performance, most of these Analyses are not very
extensive. The benchmarks used are generally skewed
towards the researchers’ own algorithms. In this section
we analyse a couple of papers which we deem extensive.
These papers test different types of algorithms in different
environments. The result of that analysis can be found in
this section. This analysis is important, because it shows
which algorithms work best in different situations. Since
it is important what situation the algorithms are tested
on, we have also provide a detailed explanation of the
way the experiment is performed.

1) SAT-based approach
Surynek performs extensive bench-marking for a SAT-

based approach (Surynek, 2017). A comparison is made
between modified versions of the search-based Operator
Decomposition/Independence Detection (OD+ID),
Conflict-based Search (CBS), Increasing Cost Tree
Search (ICTS), and 5 different encodings of a SAT-based
approach. OD+ID, CBS, and ICTS are modified to
optimise makespan instead of sum-of-cost. Surynek
(2017) acknowledges that these modifications compromise
the design of the algorithm to some extent. The graphs
the algorithms were tested on were: 6x6, 8x8, and 12x12
4-connected grids with 20% of vertices occupied by
randomly placed obstacles. The start and goal locations
for each agent were chosen randomly. The algorithms
were given a time-limit of 256 seconds to solve a single
instance. The results were only taken into account when
an algorithm could solve 10 random instances within this



time limit, for a certain number of agents. Analysis was
performed on the run-time of the algorithms, as well as
on the sum-of-costs.

When looking at the run-time in figure 5, we can clearly see
that ICTS and CBS have an average run-time that is way
faster than the SAT-based methods. All the search-based
methods also perform better in terms of median run-time,
which can be seen in figure 6. This result is present in all
three grid sizes. However, the search based methods are
only able to find solutions within the given time limit for
agent numbers up to 7, 8, and 12 for the different grid sizes
respectively. The SAT-based solutions however, are con-
sistently finding results with agent counts about 2.5 times
greater. This clearly shows that the SAT-based methods
perform well when as the number of agents increases. Most
of the different encoding types find solutions within 100
seconds on average, for all three map sizes.

Fig. 5: Average run-time on 6 × 6 grid. Taken from
(Surynek, 2017).

When looking at the sum-of-costs in figure 7, we can
see a similar pattern. The search-based method OD+ID
produces results with shorter paths with few agents, but
cannot compute the paths when the agent number gets
too big. It is also shown that the SIMPLIFIED encoding
produces solutions with the fewest moves in about 75% of
the cases.

a) Conclusion
From this paper we can conclude that SAT-based

algorithms work very well on small graphs with high
agent density. While search-based methods give good
results both in run-time and solution quality, these
algorithms do not scale well with the number of agents. It
is also shown that the SIMPLIFIED encoding SAT-based
algorithm yields results with the fewest moves in most
cases. However, the experiment is only performed on
relatively small grids with 20% obstacles. While Surynek
states that the SAT-based algorithms work best on small,
dense grids, it would have been interesting to see what

Fig. 6: Median run-time on 6 × 6 grid. Taken from
(Surynek, 2017).

Fig. 7: Average sum-of-costs on 6 × 6 grid. Taken from
(Surynek, 2017).

happens on larger, more sparsely populated grids.

2) Cooperative A*
Silver has benchmarked a number of cooperative

pathfinding algorithms (Silver, 2005). Comparisons are
made between four algorithms: Local Repair A* (LRA*),
Cooperative A* (CA*), Hierachical Cooperative A*
(HCA*), and Windowed Hierachical Cooperative A*
(WHCA*). WHCA* uses a window, therefore tests have
been performed with three different window sizes: 8, 16,
and 32. Tests are performed on a 32x32 4-connected grid,
with impassable obstacles randomly placed in 20% of the
grid locations. An example of this grid can be found in
figure 1. Start and goal locations were randomly chosen
on the grid, with the only constraint being that no two
agents can share a start or goal location. Agents had to
reach there destination within a limit of 100 turns, where
each turn an agent either moves or waits. A possible move
can also be for the agent to stay on the same spot. If an



Fig. 8: Success percentage. Taken from (Silver, 2005).

agent that exceeded this move-limit was unable to find
a route, or collided with any other agent, the agent was
considered a failure. Analysis was performed for: success
percentage, average path length, number of cycles, and
calculation time.

As figure 8 clearly shows, when there are only few agents
present, all of the algorithms achieve a success rate near
100%. When the number of agents scales up, we can clearly
see that LRA* has the biggest drop in performance. When
there are 100 agents present, we see a success rate of only
85%. This result is in stark contrast with the results of
WHCA* with window sizes 16 and 32, which still have
success rates very close to 100%.
The resulting path lengths in figure 9 also shows clearly

that LRA* is not very well optimised. While the average
path lengths of all the other agents stay very close to
the optimum, LRA* already shows an increase of approx-
imately 5 steps. This difference changes to about 2 times
as long when the number of agents is equal to 100. On this
benchmark CA* and HCA* perform the best, consistently
producing the shortest average paths. Of the windowed
variants, the path length decreases when the window size
is increased.

Next we look at the number of cycles an agent produces
in its path. A cycle is counted when an agent revisits a
grid location. This means that an agent uses a path that
is inefficient, since the cycle could have also been skipped
entirely. When looking at the number of cycles in figure
10, there really only is one outlier. LRA* consistently
produces many cycles, which would also explain the large
increase in path length. The average amount of cycles can
increase to as much as 16 cycles per agent. All the other
algorithms average at most 1.5 cycles with 100 agents
present. This huge difference mostly comes from the fact
that LRA* is not able to deal with bottleneck regions,
while the other algorithms have a plan to work around
those.
In this experiment, calculation time is divided into two

Fig. 9: Average path length. Taken from (Silver, 2005).

Fig. 10: Number of cycles. Taken from (Silver, 2005).

different types: total initial path calculation and maximum
total calculation time per turn. Since the algorithms all
need paths for individual agents first, this takes up a
certain amount of time. In figure 11 we see that LRA*,
WHCA* (8), and WHCA* (16) perform the best, all
taking under 100 ms to calculate the paths. CA* and
HCA* take way longer to initialise. This is caused by the
fact that both these algorithms have to perform full-depth
cooperative searches in space-time.
In figure 12 we see that LRA* has a very short calculation
time per turn. This is quite a misleading statistic however,
since LRA* takes many more turns than the other options.
The window size of WHCA* has very little effect on the
calculation time per turn.

a) Conclusion
All the benchmarks show that LRA* is outperformed

by the Cooperative A* algorithms in environments with
many agents. When increasing the number of agents, CA*
and HCA* create the highest quality paths. However,
because these algorithms take relatively long to calculate,
they are not well suited for real-time applications. The
window added by WHCA* gives the opportunity to
create a trade-off between calculation speed and path



Fig. 11: Initial calculation time. Taken from (Silver, 2005).

Fig. 12: Average calculation time per turn. Taken from
(Silver, 2005).

quality. Increasing the window size will increase the initial
calculation time, but also creating the highest quality
paths. Behaviour will be similar to HCA*. Decreasing the
window size will decrease the calculation time, but the
path length will also increase. The behaviour of WHCA*
is then more like LRA*. What this paper is missing to
fully complete its analysis, is to add different types of
algorithms to the comparison. All the algorithms are
improved versions of each other, or different window sizes
in the case of WHCA*. Right now, no conclusion of the
true strength of the algorithms can be made.

3) Constraint Based Search
The optimal Constraint Based Search (CBS) algorithm

is introduced in Sharon et al. (2012). To evaluate the
performance of the algorithm, Sharon et al. let the al-
gorithm compete against four others in two benchmarks.
The algorithms used are A*, A* enhanced by OD (denoted
A*+OD), ICTS, ICTS enhanced with a high-level pruning
technique that uses information about small groups of up
to 3 agents and their internal conflicts (ICTS+3E), and
CBS.

a) 8x8 4-connected grid
Sharon et al. ran all algorithms on an 8x8 4-connected

grid with 3 to 13 agents. The results are summarised in
figure 13. For each instance, all algorithms were given a
five minute time limit to find a solution. If an algorithm
did not manage that, figure 13a shows NA. The run-times
shown in figure 13a are averaged over 100 instances. The
node number represents how many nodes the algorithm
had to create in its search tree to find a solution. CBS
has a high and a low level tree, so node numbers for both
levels have been included. ICTS node numbers have been
omitted because ICTS is not solely search-based. Figure
13b shows the success rate of some algorithms over a
range of agent counts.

CBS outperforms A* and A*+OD by up to an order of
magnitude in this benchmark, even though sometimes
more nodes are generated. This is because CBS spends less
time per node than A*+OD. The other two algorithms
are better at keeping up. CBS only outperforms ICTS
on instances with at least 8 agents, and ICTS+3E when
instances have 9 or more agents.

b) Dragon Age: Origins maps
From the OPENAI library, 3 Dragon Age: Origins

maps have been tested: den520d, ost003d and brc202b
(Sturtevant, 2012). These maps are considerably larger
than the 8x8 grid tested before, which is why only
the three strongest algorithms, A*+OD, ICTS+3E and
CBS, are present in this benchmark. Sharon et al. does
show node counts for A* without OD and CBS, where
can be seen that CBS almost always generates less
nodes. Since CBS uses less time per node than A*, it
is concluded that A* would be slower in all executed tests.

Figure 14 shows what the tested maps look like,
with the achieved success rates in the graphs. From the
presented results, one can conclude that ICTS+3E in all
cases has a higher success rate than A*+OD. The results
of CBS are mixed, however, ending up in first, second
and third place depending on the map.

CBS ends up third in figure 14a, because there are
barely any bottlenecks but abundant open spaces. In
figure 14b there are a few bottlenecks and small open
spaces, which resulted in a second place for CBS. The
last map, figure 14c, has many narrow corridors and
bottlenecks, and only few open spaces, resulting in CBS
performing noticeably better than the other algorithms.

c) Conclusion
The presented benchmarks show that the relative

performance of CBS highly depends on the graph used.
A theoretical comparison with A* has shown that CBS
performs better than A* based algorithms when there’s a
bottleneck, while A* performs better than CBS in open
space. That finding is confirmed with the benchmarks.
The paper acknowledges that more research is needed
to show how much the used domain matters for the
achieved performance. In 2019, Lam et al. created a



#Generated Nodes Run-time (ms)
k A* A*+OD CBS(hl) CBS(ll) A* A*+OD ICTS ICTS3 CBS
3 414 82 7 229 14 3 1 1 2
4 2,843 243 31 1,135 380 10 2 1 13
5 19,061 556 42 1,142 9,522 50 5 5 13
6 64,734 677 42 1,465 47,783 90 9 10 16
7 NA 4,451 287 13,804 NA 1,122 92 44 186
8 NA 8,035 308 13,820 NA 1,756 271 128 211
9 NA 30,707 740 25,722 NA 7,058 2,926 921 550
10 NA 54,502 1,095 34,191 NA 21,334 10,943 2,335 1,049
11 NA NA 2,150 69,363 NA NA 38,776 5,243 2,403
12 NA NA 11,694 395,777 NA NA NA 25,537 15,272
13 NA NA 22,995 838,149 NA NA NA 45,994 36,210

(a) Node count and run-time on 8x8 grid
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Fig. 13: 8x8 grid benchmark results from Sharon et al. (2012).
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Fig. 14: Dragon Age: Origins benchmark results from
Sharon et al. (2012).

new algorithm, branch-and-cut-and-price (BCP), which
is faster than CBS in many cases (Lam et al., 2019). It
would be interesting to see this benchmark rerun with
BCP added to see how it copes with bottlenecks and
open spaces compared to ICTS and A*+OD.

4) Search-based Optimal Solvers
Felner et al. (2017) gives a summary of search-based

techniques for optimally solving MAPF under the sum-
of-costs objective. Benchmarks where different classes
of optimal algorithms are compared against each other

are included too, with the goal to show that there is no
universally winning algorithm. In Felner et al. (2017),
five different optimal algorithm classes are identified:
A*, M*, CBS, ICTS and SAT-based. For each family of
algorithms, the best variant available to Felner et al. is
reported: EPEA* for the A* family, ODrM* for the M*
family, ICBS for the CBS family, ICTS+p for the ICTS
family and MDD-SAT for the SAT based solvers designed
for sum-of-costs.

Felner et al. performed three benchmarks using these
algorithms. For each algorithm, the success rates on
different instances is reported. Success rate refers to the
percentage of instances that could be solved within a five
minute time limit.

a) Dragon Age: Origins
For the first benchmark, Felner et al. used Dragon

Age: Origins map ost003d from the Moving AI repository
(Sturtevant, 2012). The measured success rates are
shown in figure 15a. The plot shows that when less
than 55 agents are used, ICBS has the highest success
rate. Above that, ICTS generally has a higher success rate.

Felner et al. also measured consumed CPU time. Figure
15b shows the consumed CPU time for all instances
solvable by all algorithms tested in this paper, excluding
MDD-SAT and ODrM* because of their exceptional poor
performance in this category. Here, ICBS almost always
outperforms all other measured algorithms, even above
55 agents.

b) An 8x8 grid with 10% random obstacles
The second benchmark Felner et al. (2017) presents

measures the performance of several algorithms on an
eight-by-eight grid, where a random 10% of the available
squares are filled with obstacles. The results, shown in
figure 15c, show that MDD-SAT clearly outperformed all
other tested algorithms. ODrM* has been excluded from
this benchmark for an unknown reason.

c) Maze with corridor widths 1 and 2
The last benchmark published in Felner et al. (2017)

evaluates the performance of all algorithms tested in this
paper on two mazes, also taken from the Moving AI



(a) Benchmark 1 success rate (b) Benchmark 1 CPU time (c) Benchmark 2
Success rate Runtime (ms)

W EPEA* ICTS ICBS SAT M* EPEA* ICTS ICBS SAT M*
1 84% 43% 51% 7% 87% 3,016 23,535 7,778 ¿111,805 2,974
2 100% 100% 100% 59% 99% 2,033 2,012 239 ¿243,045 1,935

(d) Benchmark 3

Fig. 15: Benchmark results from Felner et al. (2017).

repository (Sturtevant, 2012). The results are presented
in figure 15d. The first maze, 512-1-{2,6,9}, is a maze
with one cell wide corridors. EPEA* and ODrM* had
the highest success rate and lowest runtime here. The
second maze, 512-2-{2,5,9}, is a maze with two cell wide
corridors. Again, EPEA* and ODrM* show very good
results, achieving close to 100% success rate. This time,
however, a lot more algorithms achieve 100% success rate.
ICBS stands out, as it managed to get 100% success rate
in almost 1

10 th of the runtime that the runner-up required.

d) Conclusions

The differences between the acquired results demon-
strates that no universal winner can be assigned. The
worst performer in some cases is the best in others, which
shows the importance of benchmarking different algo-
rithms for each use-case. Felner et al. did, however, provide
some guidance on how the analysed algorithms would
perform on different scenarios. Felner et al. concluded
that CBS based algorithms performs better than A* based
algorithms when there are more bottlenecks, small areas
where only a few agents can pass through simultaneously.
If there are areas with a high agent density, CBS will
have to process too many conflicts. In such situations,
A* based algorithms will usually perform better. ICTS is
effective in situations where the sum of individual costs
heuristic is close to the optimal solution and there are
a lot of agents. The performance of MDD-SAT strongly
depends on the quality of the used solver. MDD-SAT is
strong if the problem is hard and the solver is still able
to gather enough information on dependencies between
the defined variables. This was the case in figure 15c.
(Felner et al., 2017) is by far the most extensive benchmark
covered in this section, with a representative algorithm
from each main category. Unfortunately, it only covers
optimal algorithms. It might be interesting to execute a
similar benchmark for the representative algorithms of the
sub-optimal categories and compare the results with this
benchmark.

D. Recommended Further Research
At this point in time, there is no standardised method

for testing the performance of a MAPF algorithm. This
issue originates mostly from the fact that researchers cre-
ate algorithms to solve specific issues. The benchmarking
that is then performed is also generally skewed towards
the newly created algorithm. The chosen graph and other
environment variables are often chosen in a way that is
favourable for that algorithm. Besides this, algorithms
are often implemented in different programming languages
and ran on different hardware every time researchers
perform benchmarking. This means that even when an al-
gorithm is tested in separate papers, it is still not possible
to create a fair comparison between the two. We suggest
that research is performed on a large set of different
algorithms, where the researcher has no affiliation with
any of the tested algorithms. This will eliminate any bias
in chosen environment and algorithms. The importance of
the research lies mostly in the algorithm diversity, since
this is very much missing at this point in time. We believe
that this research will help to improve the field of MAPF
drastically.

V. Conclusion

The aim of this paper is to give a guide to readers that
are currently searching for a solution to a pathfinding
problem for multiple agents. We believe that the current
literature does not explain MAPF at an entry level and
does not give a broad enough overview of the different
approaches within MAPF. Chapter II attempted to help
readers to establish whether their problem can be (in
part) modelled to this abstract version of pathfinding.
Chapter III described several classes of algorithms, in
the same way that is present in the current literature.
This is for readers that have decided to use MAPF, or
for engineers that are not satisfied with the performance
of their current implementation. Current state-of-the-art
algorithms are showcased and categorised according to



these classes. Chapter IV provided an empirical analysis
into the actual performance of these algorithms. We
looked at differences in both run-time and total path
lengths. We also discussed how differences in performance
are determined by the instance on which the algorithms
run.

We have made an attempt to unify multiple publications
in the field of MAPF. Significant effort has already been
invested in this goal by the creators and contributors of
the website mapf.info (Sven Koenig, 2019). The website
provides a large database of publications, as well as
open-source implementations, benchmarks, and a list of
contact details on researchers that are currently working
on this topic.

We recognise our study is not all encompassing. One of the
shortcomings of this paper is the diversity of sources. We
primarily used the aggregated publications on mapf.info,
which may be prone to a ”bubble” of topics and solutions.
Even though the website is regularly managed by a
handful of people, we cannot assume that the included
research adequately covers all discoveries that are made in
this field. Another shortcoming would be that we have not
performed any research of our own. Our understanding is
therefore limited by the findings that have been published
in the current literature. Consequently, we cannot make
concrete statements on the applicability of different
algorithms in different environments (as discussed in
section IV-B). Further studies could be performed to run
a larger amount of algorithms on the already existing
variety of benchmark environments. This would provide
a more approachable way for engineers to decide which
algorithm to use in their situation.

What we found to be lacking in this field of study is
an agreement on terminology. Terms such as decoupled,
coupled, centralised and distributed are used freely and
it is often unclear what is actually meant. Furthermore,
publications that introduce a new algorithm are often
only interested in their performance relative to algorithms
that are related to their own. While this is to be expected
- as no researcher has the time or energy to compare it
with all existing algorithms - evaluation of performance
is limited to their choice. On the website mapf.info a
beginning has been made to solve this problem. There is
however still a lot of work to be done. We recommend
readers that want to perform their own performance
analysis to use one of the benchmarks provided on the
website.
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Majerech, Ondřej (2017). “Solving Algorithms for Multi-
agent Path Planning with Dynamic Obstacles”. In:

Pallottino, Lucia, Vincenzo G. Scordio, Antonio Bicchi,
and Emilio Frazzoli (2007). “Decentralized cooperative
policy for conflict resolution in multivehicle systems”.
In: IEEE Transactions on Robotics. issn: 15523098.

Sharon, G, R Stern, A Felner, and N Sturtevant (2012).
“Conflict-Based Search for Optimal Multi-Agent Path
Finding”. In: Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI).

Sharon, G, R Stern, A Felner, and N Sturtevant
(2015). “Conflict-Based Search for Optimal Multi-Agent
Pathfinding”. In: Artificial Intelligence 219, pp. 40–66.

Sharon, G, R Stern, M Goldenberg, and A Felner (2013).
“The Increasing Cost Tree Search for Optimal Multi-
Agent Pathfinding”. In: Artificial Intelligence. Vol. 195,
pp. 470–495.

Sigurdson, D, V Bultiko, W Yeoh, C Hernandez, and
S Koenig (2018). “Multi-Agent Pathfinding with Real-
Time Heuristic Search”. In: Proceedings of the IEEE
Conference on Computational Intelligence and Games
(CIG). Vol. 2018-Augus, pp. 1–8. isbn: 9781538643594.

Silver, David (2005). “Cooperative pathfinding”. In: Pro-
ceedings of the 1st Artificial Intelligence and Interac-
tive Digital Entertainment Conference, AIIDE 2005,
pp. 117–122.

Standley, Trevor (2012). “Independence detection for
multi-agent pathfinding problems”. In: AAAI Workshop
- Technical Report.

Stern, R, N Sturtevant, A Felner, S Koenig, H Ma, T
Walker, J Li, D Atzmon, L Cohen, S Kumar, E Boyarski,
and R Bartak (2019). “Multi-Agent Pathfinding: Defini-
tions, Variants, and Benchmarks [Position Paper]”. In:
Proceedings of the Symposium on Combinatorial Search
(SoCS), (in print).

Sturtevant, N R (2012). “Benchmarks for Grid-Based
Pathfinding”. In: IEEE Transactions on Computational

Intelligence and AI in Games 4.2, pp. 144–148. issn:
1943-0698 VO - 4.

Surynek, P (2009). “A Novel Approach to Path Planning
for Multiple Robots in Bi-Connected Graphs”. In: Pro-
ceedings of the International Conference on Robotics and
Automation (ICRA), pp. 3613–3619.

Surynek, P (2017). “Time-Expanded Graph-Based Propo-
sitional Encodings for Makespan-Optimal Solving of
Cooperative Path Finding Problems”. In: Annals of
Mathematics and Artificial Intelligence 81.3–4, pp. 329–
375.

Surynek, P, A Felner, R Stern, and E Boyarski (2016).
“An Empirical Comparison of the Hardness of Multi-
Agent Path Finding under the Makespan and the Sum
of Costs Objectives”. In: Proceedings of the Symposium
on Combinatorial Search (SoCS), pp. 145–147.

Teng, Teck Hou, Hoong Chuin Lau, and Akshat Kumar
(2017). “A multi-agent system for coordinating vessel
traffic”. In: Proceedings of the International Joint Con-
ference on Autonomous Agents and Multiagent Systems,
AAMAS. isbn: 9781510855076.

Wagner, G and H Choset (2011). “M*: A Complete
Multirobot Path Planning Algorithm with Performance
Bounds”. In: Proceedings of the International Con-
ference on Intelligent Robots and Systems (IROS),
pp. 3260–3267.

Wagner, G and H Choset (2015). “Subdimensional Ex-
pansion for Multirobot Path Planning”. In: Artificial
Intelligence 219, pp. 1–24.

Wang, C and A Botea (2008). “Fast and Memory-Efficient
Multi-Agent Pathfinding”. In: Proceedings of the In-
ternational Conference on Automated Planning and
Scheduling (ICAPS), pp. 380–387. isbn: 9781577353867.

de Wilde, B., A. W. Ter Mors, and C. Witteveen (Oct.
2014). “Push and Rotate: a Complete Multi-agent
Pathfinding Algorithm”. In: Journal of Artificial Intel-
ligence Research 51, pp. 443–492. url: https://doi.org/
10.1613/jair.4447.

Wurman, Peter R., Raffaello D’Andrea, and Mick Mountz
(Mar. 2008). “Coordinating Hundreds of Cooperative,
Autonomous Vehicles in Warehouses”. In: AI Magazine
29.1, pp. 9–19. url: https://aaai.org/ojs/index.php/
aimagazine/article/view/2082.

https://doi.org/10.1613/jair.4447
https://doi.org/10.1613/jair.4447
https://aaai.org/ojs/index.php/aimagazine/article/view/2082
https://aaai.org/ojs/index.php/aimagazine/article/view/2082

	Introduction
	General MAPF Instance
	Informal description
	Environment
	Actions
	Objectives

	Example Applications
	Video game NPCs
	Autonomous Warehouse Robots
	Vessel traffic

	Formal definition
	Variants

	Algorithm Selection
	Controlling Agents: Setting
	Centralised Setting
	Distributed Setting

	Solution Approach: Coupled & Decoupled
	Coupled Approach
	Decoupled Approach
	Combination of Coupled and Decoupled

	Quality of the Solution: Optimality
	Completeness
	Reduction based
	A* based
	Optimal
	Increasing cost tree search
	Conflict-based search
	Branch, Cut & Price

	Sub-optimal
	Rule-based
	Search-based
	Hybrid-based


	Algorithm Overview

	Performance Of MAPF Algorithms
	Test benchmarks
	N N grids
	Dragon Age Origins maps
	Warehouse grids

	Environmental difficulties
	Sources and targets assignment
	Dynamic environment

	Experimental Results
	SAT-based approach
	Conclusion

	Cooperative A*
	Conclusion

	Constraint Based Search
	8x8 4-connected grid
	Dragon Age: Origins maps
	Conclusion

	Search-based Optimal Solvers
	Dragon Age: Origins
	An 8x8 grid with 10% random obstacles
	Maze with corridor widths 1 and 2
	Conclusions


	Recommended Further Research

	Conclusion

