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Abstract

Blockchains such as the Bitcoin facilitate the online transaction between users
without an intermediate financial institution and can serve as a global currency.
However, at the moment, blockchain solutions are suffering from low transaction
throughput and high delays. For instance, the bitcoin network processes at most
7 transactions per second. Blockchain second layer solutions aim to solve this
transaction scaling problem with the idea of creating off-chain transactions using
payment channels. For a payment channel, the blockchain network is only required
to initialize and terminate the channels. Otherwise, they can finalize transactions
between pairs of users instantly without using the blockchain network. The Light-
ning Network is one such payment channel solution that creates an overlay network
on top of the blockchain and routes payments across users. Currently, the Light-
ning network uses source routing to route payments from a source to a destination.
However, source routing does not scale to large networks.

In this thesis, we begin by establishing the requirements for routing in the Light-
ning Network. Next, we analyze generic payment routing algorithms based on the
set requirements and understand their limitations. Further, we design a routing al-
gorithm for the Lightning Network that builds upon the key ideas found in the pre-
vious work. We, in particular, provide design solutions for computing transaction
fees and communicating errors in a privacy-preserving manner. These problems
were not addressed in any earlier works. Finally, we implement our algorithm in
an active Lightning Network codebase. We evaluate it with regard to security, pri-
vacy, and performance requirements and also compare the same with the existing
solution.
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Chapter 1

Introduction

1.1 Blockchain

Blockchain is a technology which promises to revolutionize the current payments
system. In the past decade, many prominent blockchain protocols like Bitcoin [49],
Ethereum [61] and Ripple [23] have come into existence. People have already
started to use this technology for their financial needs. In the month of July 2019,
the Bitcoin network witnessed at least 270,000 transactions per day [2] and its net
market cap as an asset class was worth over $200 Billion.

The blockchain can be described as a decentralized, immutable public record
of transactions. Every transaction in a blockchain network is broadcast to all the
participating nodes in the network. The nodes validate this transaction and add it
to a pool of transactions called a block. At the core of any blockchain protocol, a
consensus algorithm decides the next block that will be added to the blockchain.
Subsequently, the next block will be linked to the previous record of blocks forming
a virtual chain of blocks, hence the name blockchain. Anyone can read and verify
the correctness of the data on the blockchain but cannot tamper or delete it. Such an
architecture has a vital implication that even untrusted entities can directly interact
with each other without requiring the presence of a trusted intermediary. These
properties are relevant to financial institutions, banks and even common people
who would want to avoid the middleman costs for different operations.

In spite of the attractive properties the blockchain provides, there are still some
hurdles to overcome for widespread adoption of this technology. Performance of
the blockchains is one such factor that requires significant improvements. For
instance, the bitcoin blockchain currently can handle around 7 transactions per
second [28]. On the contrary, Visa which facilitates electronic fund transfers all
over the world can processes around 1700 transactions per second on an aver-
age [20]. This is not only pertaining to Bitcoin, but a general issue of block-
chains [38]. This is an important bottleneck that needs to be resolved for block-
chains to be considered viable mechanisms for day-to-day payments.

According to recent works, the solutions to reduce the bottleneck in blockchains
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can be classified into two general approaches namely:

1. Layer-one solutions: These solutions focus on improving the core com-
ponents of the blockchain. This maybe dealing with the consensus proto-
cols [49, 26, 43, 24], modifying the block sizes or sharding [44, 37].

2. Layer-two solutions: Also called as off-chain solutions, are built on top of
the blockchain network, but still rely on the securities of the underlying
blockchain. The main idea is to create transactions using payment chan-
nels [53, 31, 30] or state channels [48, 17] between the nodes.

The topic of interest in this thesis is the payment channels as they promise near
instantaneous transactions and reduced fees allowing blockchain to scale.

1.2 Payment Channels

In a payment channel two parties establish a private channel between them. This
channel will be governed by a set of rules, which allows both the parties to update
the current balances in the channel. To open a channel, both the nodes need to lock
funds as collateral on the blockchain. The locked funds can only be spent with the
permission of both the nodes. Once a channel is established, both the nodes can
update the balance in the channel as many times they desire, according to the pre-
set rules. To update the channel balance no broadcast is made to the blockchain
network. Later, the two nodes can terminate their channel by broadcasting their
latest balance to the blockchain. With payment channels, only the opening and
closing of a channel is broadcast to the blockchain. Thus, if payment channels are
used for most of the transactions, it can lead to drastically reducing the transaction
load on the underlying blockchain.

When a payment channel is established between two nodes, they can send and
receive funds between them as many times on that channel. However, if a channel
is not established with some node they need to either open a channel or send funds
directly over the blockchain. Opening a payment channel with all such nodes is
not practical because:

• Opening and closing a channel will cost the nodes. As both these activities
requires the blockchain, a mining fee will be deducted for the operations.

• The sender needs to wait until the channel is opened for doing the first pay-
ment. A channel is considered open when the blockchain records in a block
that both the nodes have some funds locked. Also, that particular block must
have sufficient confirmations. These activities take time according to the
underlying blockchain.

A payment channel network aids to solve this problem. In a payment channel
network, funds can be routed across multiple nodes from a source to the destination
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if there is a path of channels between them. Thus, there is no need to open payment
channels with everyone, only a viable route needs to be found between nodes.

Some promising designs for the payment channel networks have been proposed [53,
17, 31]. In this thesis we will focus on the Lightning network [53] as a payment
channel network solution. The motivation for this choice is that Lightning net-
work is designed to work on Bitcoin-like blockchains and it already has an active
mainnet deployed [9, 4, 6].

1.2.1 Lightning Network

The Lightning network leverages the smart contract functionality of Bitcoin-like
blockchains to create a network of user-generated bi-directional channels to send
payments back and forth across the network. Clearly, such a network can aid bit-
coin to scale to a much higher transactional throughput. The mainnet of the Light-
ning network has around 9000 nodes with over 30000 channels open and a total
capacity of about 820 Bitcoins ( $9 Million) in August 2019 [11]. The growth in
the capacity of the network from September 2018 can be seen in the Figure 1.1.

Figure 1.1: Growth in the Lightning network [18]

In Lightning, payments can be routed across multiple nodes from a source to
the destination if there is a path of channels between them. A viable route having
enough capacity to transfer the funds needs to be found. As Lightning is a dis-
tributed network, there is no central source to determine these routes. The nodes
need to cooperate among themselves to find such routes. The Lightning network
white paper[53] focuses on the payment algorithm for off-chain transactions but
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does not throw light into how routing should work. Later, the specifications for
the Lightning were developed terming them as BOLTS (Basis of Lightning Tech-
nology Standards)[10]. According to the BOLTS, the nodes use source routing to
route payments between them. Source routing is a routing technique where the
source node decides the whole path of a packet in the network to reach the destina-
tion. To do so, the source adds the whole path information in the packet so that the
intermediaries can decode and forward according to the instructions.

1.3 Motivation

To accomplish source routing in the Lightning Network, every node maintains a
local view of the complete network. The nodes refer to this snapshot locally to
determine the routes. This technique is indeed advantageous in discovering the
most efficient routes. It allows the source to discover all the possible routes and
determine the best one that has the lowest overall routing fees. However, a major
downside is that to maintain the local snapshot of the network, every node needs to
broadcast regularly its state and the required channel states to the whole network.
This might be acceptable in a small network but if the network keeps growing as
shown in the Figure 1.1 it will be highly inefficient to maintain a local snapshot
of the network as even a small change in the state needs to be broadcast. The
Lightning network is still in its initial stages, but steadily growing everyday. Thus,
other efficient routing techniques need to be explored which can handle this scaling
issue as the network evolves.

1.4 Problem statement and research objectives

The motivation to introduce a new routing algorithm in the Lightning network is
discussed in Section 1.3 which translates into the following problem-statement for
the thesis:

Design a payment routing algorithm for the Lightning network that builds upon
key ideas in previous work, but takes the specifics of Lightning into consideration.

This problem expands to the following research objectives for the project:

1. Determine the characteristics of the Lightning network and formalize a set
of requirements for routing payments.

2. Study and analyze the generic routing algorithms for payment channel net-
works and determine their limitations with respect to the established require-
ments.

3. Select a routing algorithm that satisfies most of the requirements and does
not have inherent issues which cannot be addressed. Determine the limit-
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ations of the chosen algorithm and establish the ones that will be resolved
through this thesis.

4. Define the goals, the evaluation criteria, and hence the designs to resolve the
identified problems in the routing algorithm.

5. Implement the new routing algorithm in an active Lightning network code-
base.

6. Evaluate the performance of the routing algorithm based on various metrics
on an emulation network.

1.5 Contributions

This thesis answers the problem-statement specified in Section 1.4 by solving the
individual objectives. The contributions can be summarized as answers to these
individual research objectives:

• The Lightning network is studied in detail and its characteristics for routing
payments are derived. With the help of these characteristics and the prop-
erties of the Lightning network, the requirements for routing payments are
proposed.

• A thorough literature study is performed to learn the state of the art rout-
ing algorithms in payment channel networks. The following routing al-
gorithms are analysed: Flare [54], Flash[60], Spider [58], Ant [39], Silent-
Whisphers [45] and SpeedyMurmurs [56]. The limitations of each of these
algorithms are established as per our requirements.

• After analysis, SpeedyMurmurs is chosen as the generic routing algorithm
as it satisfies most of the requirements when compared with the rest. The
algorithm is scalable, efficient, provides formal security guarantees and cost-
efficient as well. The shortcomings of SpeedyMurmurs are also discussed
and specifically, two of them are chosen to be fixed upon in this thesis.

– How the source node will acquire the routing fees and CheckLock-
TimeVerify (CLTV) expiry before initiating routing?

– How the routing nodes in the network can send errors securely to the
source node?

• To solve both the issues, first, the security goals are defined which act as
guidelines the solutions must follow. The security goals are defined with
respect to confidentiality, integrity and privacy. Next, the detailed designs
of the solution are discussed. Finally, the design solution is evaluated with
respect to the set security goals.
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• The generic SpeedyMurmurs algorithm along with the proposed design changes
is implemented and integrated into an active Lightning codebase (LND [9]).
The LND is made to use our routing algorithm for forwarding payments in-
stead of source routing. We also design a system and define all its compon-
ents to set up an emulation network environment. We use this environment
for running different test scenarios.

• We evaluate SpeedyMurmurs and source routing’s performance based on
the success ratio, success volume, path lengths, transaction delays, network
stabilization, stabilization overhead and transaction overheads.

1.6 Thesis Outline

The contents of this thesis are outlined as follows: Chapter 2 gives the relevant
background on the Bitcoin and Lighting network. Chapter 3 proposes the require-
ments for routing in the Lightning network, while Chapter 4 gives details on the
current state-of-the-art routing algorithms in payment channel networks. Chapter 5
proposes the complete design of our routing algorithm. The system setup to evalu-
ate the performance of the new routing algorithm is described in Chapter 6 and the
results of these evaluations are presented and discussed in Chapter 7. The thesis
draws its conclusions in Chapter 8 and provides directions for future work.
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Chapter 2

Background

Conventions

The following conventions are used in the document:

• Source/sender/initiator node and destination/receiver/recipient node are the
first and the last node respectively on the payment path.

• Hops are the intermediate nodes on a payment path

• A peer is node that has an open channel with a node.

• Erring node: The node which has incurred some error.

In this chapter we give the relevant background to understand the thesis. We
first explain about the Bitcoin network. Further, the Lightning network is explored
in detail. We discuss multi-hop payments, the process of routing in the Lightning
network and also the onion encryption scheme.

2.1 Bitcoin

Bitcoin is a distributed system running on a peer-to-peer network. The goal of the
network is to collectively maintain a global state. This global state is known as the
ledger or blockchain itself. Peers can send and receive currency (cryptocurrency)
by broadcasting a transaction onto this network. A transaction typically comprises
an input and an output state. The output state embodies the cryptocurrency amount
to be sent and a script which defines the conditions to spend that amount. The input
state points to the output of an older transaction and also fulfils the conditions to
spend the referred output.

Transactions are broadcast to the entire network with the intention of it being
included in the ledger. All the receiving nodes verify if the transaction is valid by
checking its input and output states. They verify that the

• referred output is not spent already
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• the value the transaction wants to transfer is smaller than that of the referred
output.

The order of the transactions received and validated by the peers may be different
due to the distributed environment of the system. Two or more transactions can
claim the same output, and its validity will depend on the order in which the trans-
actions were received. This will lead to inconsistencies within the ledger between
the peers. Bitcoin resolves this problem by electing a leader (a miner), who will be
responsible to decide the next set of transactions (called a block) that will be going
into the ledger. The transactions that are included in a block and gets published to
the network are said to be confirmed. Once a transaction has enough block con-
firmations over it (generally 6), then the payment can be considered irreversible.
The leader election and thus the block addition happens through the consensus
protocol[49]. This process is time-consuming and happens at an average interval
of time of about 10 minutes. Thus, the long delays for a transaction to be confirmed
in the Bitcoin network.

2.2 Lightning Network

The Lightning network is a payment channel network solution. It aims to reduce
the transaction load on the blockchain by creating payment channels between pairs
of users. Let us consider an example that Alice and Bob want to transact using the
Lightning network. Both of them decide to invest 1.0 BTC to their payment chan-
nel. The combined amount of 2 BTC will be the capacity of the channel. They,
then cooperate to commit their decided funds to a multi-signature (multisig) ad-
dress. Agreement of both the parties would be necessary to spend from a multisig
address. This initial transaction is called as Funding transaction. This transaction
is broadcast to the blockchain. After the necessary block confirmations over the
funding transaction, a channel is established between them. Now, if Alice would
like to send 0.5 BTC to Bob, she will create a new transaction, spending from the
Funding transaction. 1.5 BTC will be assigned to Bob and 0.5 BTC to Alice and
it will have relevant digital signatures of the counterparties. This transaction is
called Commitment transaction and it is not broadcast to the blockchain. If any
of the parties would like to pay each other again, they create a new Commitment
transaction as earlier and revoke the previous Commitment transaction. The re-
vocation is important because it is possible that either party can broadcast an older
transaction which is beneficial to them. Thus, Alice and Bob can instantly send
funds between them without broadcasting on the Bitcoin network. When any of
them want to withdraw their funds from the channel, they broadcast their latest
commitment transaction to the blockchain. If the nodes try to broadcast any older
states of the channel, the counterparty can detect such misbehaviour and penalize
it by taking all the funds in the channel.
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2.2.1 Multi-hop payments

Lightning Network achieves multi-hop payments through Hashed TimeLock Con-
tracts (HTLC). HTLC is a conditional contract made to the payee that, the payee
will receive the funds if it produces a cryptographic proof before a certain timeout.
Otherwise, the funds are returned to the payer. Every hop in the payment route (in-
cluding source, excluding destination node) extends an HTLC contract to their suc-
cessors. In this way, a hop receives an HTLC payment contract of a certain amount
on one of its channels. It then forwards a contract with a little lesser amount(a small
routing fee is deducted) onto the next hop in the path. This process is extended until
the payment reaches the recipient.

To suffice an HTLC contract, the payee needs to provide a preimage (S) of a
certain hash value h(S) within a timeout. The S and h(S) are generated by the
recipient and only h(S) is shared with the sender initially. When the recipient
receives the HTLC contract, it reveals S to its previous node and claims the HTLC
output. Similarly, the previous node reveals S to its previous node to claim its
HTLC output. This process extends back until the preimage is revealed to the
source node, hence fulfilling the transfer. If any hop does not cooperate to disclose
S, the counter-party waits until the timelock expires. It further closes the channel
and broadcasts the latest channel state, to claim its funds.

The timeouts in the HTLC are enforced through the bitcoin’s scripting lan-
guage opcode CheckLockTimeVerify(CLTV). The CLTV allows a transaction to
be locked until a definite number of bitcoin blocks are mined. The CLTV expiry in
the HTLC contracts increases from the destination to the source. This ensures that
all the hops have enough time to claim their funds back if someone becomes unre-
sponsive. Figure 2.1 shows a simple example of a multi-hop payment where Alice
sends Dave 0.5 BTC via Bob and Charlie. It can be noticed that Bob and Charlie
deduct a routing fee(0.01 BTC) before forwarding payment to their next hops. The
CLTV expiry(should be expressed as block height, for simplicity showed in days)
are also in decreasing order from Alice until Dave.

Figure 2.1: An example of a multi-hop payment

In the next section, we will look in detail the route discovery mechanism in the
Lightning network.
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2.3 Routing in the Lightning Network

The payment process begins with the sender node requesting an invoice for the
payment from the recipient. The invoice contains the necessary information for
the sender to make the transaction. The recipient generates the invoice and it must
have the following information:

• blockchain: The blockchain network for which this invoice is generated, for
example Bitcoin mainnet, Bitcoin testnet or Litecoin mainnet.

• amount: The amount of bitcoins to be paid

• payment hash: Hash of the pre-image that can settle the HTLC contracts.

• time-stamp: The time at which the invoice was generated.

• expiry: The time after which the invoice is considered invalid.

• CLTV expiry: The CLTV value that has to extended to the recipient node.

The invoice is protected by the recipients digital signature to prevent any tam-
pering. Apart from these compulsory parameters, an invoice can also include para-
meters such as a description and the hints for the routing.

After receiving the invoice, the sender computes a valid route having enough
capacity to transfer the required amount. To compute such a route, the source node
requires the knowledge of all available public payment channels with its proper-
ties such as routing fees and its capacity. Then using any efficient pathfinding
algorithms it constructs a path from the source node to the desired destination. To
aid every node with such a local payment channel network graph, the BOLT’s [10]
propose a gossip protocol between the nodes.

2.4 Gossip protocol

The gossip protocol describes the specifications for node discovery and channel
discovery. When the nodes receive any gossip message, they validate the relevant
signatures in the message. Only if validation is successful, they process the mes-
sage and broadcast it to their peers. Otherwise, they discard it to stop spreading
corrupt messages in the network.

2.4.1 Node discovery

As the name suggests the Node discovery allows discovery of different nodes in
the network so that connections can be established with them by opening channels.
The gossip message to establish node discovery is:
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• node announcement: The message mainly has the internet address of the
node so that other nodes can start interacting with it.

The message has the following fields (shown as size in bytes: field name):

[64:signature]

[2:flen]

[flen:features]

[4:timestamp]

[33:node id]

[3:rgb color]

[32:alias]

[2:addrlen]

[addrlen:addresses]

The internet address here can be an IPv4/IPv6 address or even a Tor [19]
onion service address.

2.4.2 Channel discovery

Allows nodes to discover all the new public channels that are created across the
network. There are three messages designed to facilitate this functionality:

• announcement signatures: The two nodes operating a channel need to ex-
press to each other their willingness to make their channel public. They do
so by sending this message to each other. The message has the following
fields (shown as size in bytes: field name):

[32:channel id]

[8:short channel id]

[64:node signature]

[64:bitcoin signature]

The digital signatures in this message are generated from the channel announcement
message. Both the nodes craft the channel announcement message first but
do not send to each other. Subsequently, generate generate their signatures
for channel announcement and populate it in the announcement signatures
message. Only the announcement signatures message is sent to the node at
the other endpoint of the channel.

• channel announcement: The purpose of this message is, to broadcast to
the entire network about the existence of a new public channel. Before
broadcasting, the nodes at either end of the channel wait for announce-
ment signatures message from each other. When they receive this acknow-
ledgement of making their channel public from each other, they can complete
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the construction of channel announcement message. This message proves to
all other nodes in the network, the presence of a channel between node 1 and
node 2. In order to do this, they have to

1. prove that the funding transaction pays to bitcoin key 1 and bitcoin key 2

2. prove that node 1 owns bitcoin key 1

3. prove that node 2 owns bitcoin key 2

Using the short channel id in this message, the nodes can verify that the
funding transaction pays to bitcoin key 1 and bitcoin key 2. The last two
can be verified by the digital signatures corresponding to the bitcoin keys.

The message has the following fields (shown as size in bytes: field name):

[64:node signature 1]

[64:node signature 2]

[64:bitcoin signature 1]

[64:bitcoin signature 2]

[2:len]

[len:features]

[32:chain hash]

[8:short channel id]

[33:node id 1]

[33:node id 2]

[33:bitcoin key 1]

[33:bitcoin key 2]

This message is initially broadcast to all the neighbours of both the nodes
operating the channel. The neighbours which receive this, verify the con-
tents of the message. If the verification succeeds they again broadcast it to
their neighbours and this process repeats. In this manner, the existence of a
channel is made public to the entire network.

• channel update: After a channel has been announced, now both the nodes
can broadcast their channel-specific parameters. The channel update mes-
sage is adopted for that.

The message has the following fields (shown as size in bytes: field name):

type: 258 (channel update)

data:

[64:signature]

[32:chain hash]
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[8:short channel id]

[4:timestamp]

[1:message flags]

[1:channel flags]

[2:cltv expiry delta]

[8:htlc minimum msat]

[4:fee base msat]

[4:fee proportional millionths]

[8:htlc maximum msat]

This message as well is broadcast to the entire network. A node operating
the channel, can update the channel parameter values by again broadcasting
a new message.

2.5 Onion Encryption

This section explains the onion encryption scheme proposed in the BOLTS [10].
The source node after finding a viable path uses onion encryption to forward in-
structions to the individual hops on the path.

The nodes in the network have the information about all the public channels
present in the network due to the gossip mechanism. Following are the properties
of the channels that are made public to the entire network.

• Channel ID: The unique identification for every channel created.

• ChainHash: Identify the blockchain on which this channel was opened (Hash
of genesis block)

• Node Keys: The public keys of both the nodes involved in channel formation.

• Bitcoin Keys: The bitcoin public keys of both the nodes involved.

• Authentication proof: Set of signatures to prove the legitimacy of the channel

• Capacity: The total capacity of the channel

• CLTV expiry delta: The time gap required between the timelocks (CLTV
expiry) of the incoming and the outgoing HTLC.

• Base Fee: The minimum routing fees to forward a payment of any amount.

• Proportional Fee: The routing fees to be deducted proportional to the amount.
Usually expressed in millionths of a satoshi(smallest unit of the bitcoin cur-
rency) transferred.
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With this information the nodes construct a graph of channels with properties
associated with it. When it wants to initiate a payment it searches for the best path
available to the destination from this graph. The best path is the one which

• has the capacity to support the amount being transferred

• has the minimum fees compared to rest of the paths and satisfies the first
requirement

With the knowledge of the path the source node constructs an onion packet to
the destination. This scheme is built upon the Sphinx [29] cryptographic message
format. This onion packet has the instructions for every intermediate hop in the
route as to where and how much funds to transfer. The instructions for individual
hops can only be decrypted by that specific individual hop. The hops only gets to
know who their predecessor and successor are, without discovering any knowledge
about the initiator or the recipient of the payment. The source node uses a specific
scheme within the Elliptic-curve cryptography (ECC) to encrypt instructions for
the individual hops. We first discuss the ECC scheme and then explain the onion
packet construction.

2.5.1 Encryption/Decryption scheme

Elliptic Curve Integrated Encryption Scheme (ECIES) is one of the widely known
encryption schemes based on ECC. The onion encryption scheme uses ECIES as
a building block to encrypt and decrypt messages. ECIES is a framework which
allows the implementer to choose different functions for its operation. The ECIES
has the following functions:

• Shared secret generation (SS): A function used to generate a shared secret
between the involved parties. Diffie-Hellman key agreement protocol [32]
is an example of such a function.

• Key Derivation Function (KDF): Generate sets of keys for different oper-
ations, such as encryption and Message Authentication Code (MAC) gen-
eration. The input to this function would be the shared secret generated
in previous stage and optional parameters. For example PBKDF2 [42] or
Srypt [51].

• Encryption(ENC): A symmetric encryption algorithm such as the AES [55]
to encrypt the plain text.

• Message Authentication Code (MAC): Function to generate and verify the
authentication codes. For example HMAC-SHA-2 [35] is a MAC generation
function.

The Figure 2.2 shows the process of encrypting a plain text and generating a
MAC code for it. During decryption the process will remain similar, except, the
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Figure 2.2: ECIES scheme encryption process

recipient will use its private key and the senders public key to generate shared
secret and decrypt the message.

In the Lightning network the choices for these functions are shown in Table 2.1.

Function Choice
Shared secret generation ECDH
KDF HMAC-SHA 256
Encryption ChaCha20
MAC HMAC-SHA 256

Table 2.1: ECIES function selection

• Elliptic-curve DiffieHellman (ECDH): It is a variant of the standard Diffie-
Hellman algorithm [32] for the elliptic curves. ECDH establishes a shared
secret between two parties, which have an elliptic-curve (EC) key pair. If
Alice and Bob want to establish a shared secret between them, Alice uses her
EC private key and Bob’s EC public key as an input to the ECDH algorithm.
Similarly, Bob uses his EC private key and the EC public key of Alice as
inputs to the ECDH. The ECDH algorithm ensures that both Alice and Bob
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end up with the same secret. This secret sometimes is directly used as a key,
or multiple keys can be derived from it.

• HMAC-SHA 256:The keyed-hash message authentication code is used as
the key derivation function and also for generating the MAC code.

• ChaCha20: It is a stream cipher [25].

2.5.2 Onion packet construction

The intention of the onion packet is to instruct every hop about:

• Next hop on the path

• The amount they should forward

• The CLTV expiry they must apply in the HTLC script

Structure of the packet

The structure of the packet has the following fields as shown in Table 2.2

Size(bytes) 1 33 20*65 32
Field Version Public key Hops data HMAC

Table 2.2: Structure of the onion packet

• A byte for the version

• Public key which is an ephemeral key generated by the source node

• Forwarding data for 20 intermediate hops. For this version the size is restric-
ted to 20 hops and the size of the packet is fixed even though there may be
less than 20 hops. This is to prevent the hops learning the length of the route.

• HMAC to verify the integrity of the packet

The structure of the Hops data field is as shown in Table 2.3. It has a Realm field
which defines the structure of Per hop field. HMAC is again to verify the integrity.

Size(bytes) 1 32 32
Field Realm Per hop HMAC

Table 2.3: Structure of Hops data

The Per hop field has the forwarding instructions that every individual hop must
obey in the path. Its structure is as shown in Table 2.4 and has the following fields:
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Size(bytes) 8 8 4 12
Field Short Channel ID Amount to forward Outgoing CLTV Padding

Table 2.4: Structure of Per hop field

• Short Channel ID: It is the outgoing short channel ID on which a node must
forward the payment to. It is a unique identification for a channel. It is
comprised of the block height at which the funding transaction of the channel
is created, the transaction index of the funding transaction within the block
and the transaction position indicating transaction output. It is strictly not
necessary for a hop to use the same channel mentioned in the Per hop field.
The hop can forward on a different channel, however, the next hop must be
the same(multiple channels can be opened between two peers). If it fails to
adhere to this rule and forwards to an unintended hop, that hop will not be
able to decrypt the instructions in the onion packet. Eventually, the whole
payment will fail.

• Amount to forward: This is the amount to forward to the hop having the
Short Channel ID opened with. The node can calculate the fees it receives
from this transaction by
Fee = Incoming amount−Amount to forward
Every hop must deduct the fee according to the advertisement made during
gossip. Failing to do so would mean the destination node will receive a
different amount than it is expecting. Thus, it will fail the transaction and
none of the hops will receive the routing fees.

• Outgoing CLTV value: It is the CLTV value the HTLC contract must have
when forwarding. The node must ensure that this value satisfies the CLTV
expiry delta which it had advertised over its channels.

• Padding: This field is reserved for future use

To craft an onion packet the source node performs the following actions:

• Shared secret generation: The sender knows the public keys of all the inter-
mediate hops, due to the gossip mechanism. The sender generates shared
secrets for every hop including the destination node using ECDH. The input
to the ECDH function is an ephemeral private key and the node public key
of a hop. Ephemeral key pair is used instead of the sender’s node keys to
prevent knowing the sender’s identity. The ephemeral public key will be a
part of the onion message as shown in Table 2.2.

• Key Derivation: Three keys are derived from the shared secret for the fol-
lowing purpose.

– To encrypt the Per hop information
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– Generating the HMAC’s for verifying integrity of Per hop and overall
onion packet

– For encrypted error reporting back to the source node from an interme-
diate hop

The keys are generated by calculating the HMAC-SHA256 over the shared
secret.

Key = HMAC(shared secret value)key=key type

The keys for this operation are predefined as shown in Table 2.5(Predefining
the keys will not compromise the security of the HMAC algorithm, as the
input to the HMAC is a secret).

key type key
Encryption (Per hop) 0x72686F
MAC generation 0x6d75
Error encryption 0x756d

Table 2.5: Keys for different operations

• Encryption: The forwarding instructions are filled in the Per hop field for
all the hops. They are encrypted individually with the generated encryption
keys. Each field is placed in the onion packet according to the Sphinx [29]
construction.

• MAC generation: The HMAC’s are computed for the individual Per hop
field and added to the Hops data field. Thus, completing the onion packet
construction.

The intermediate hops receive the onion packet and they peel their individual
onion layers to decrypt the forwarding instructions. They use their node private
key and the ephemeral public key received as a part of the onion message to derive
the required keys for decryption. They validate the individual values in their Per
hop field so that there are no discrepancies and it can be fulfilled. The integrity of
the message is also validated by computing the HMAC and verifying it against the
received one. If all the validations are successful, they extend an HTLC contract
with the next hop and forward the onion packet to it.

Finally, the onion packet reaches the recipient. The recipient also performs the
same steps as the hops to decrypt the payload. It validates that it is being paid the
exact amount and being extended the HTLC expiry as requested in the invoice. If
validations are successful, it settles the HTLC by revealing the preimage with the
previous hop. The HTLC settlement should continue until the sender, thus fulfilling
the transfer.
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Analysis of the onion routing

We analyze the onion routing scheme according to confidentiality, integrity, avail-
ability and privacy. Generally, an information security system is governed by three
goals which are confidentiality, integrity and availability, often called as the CIA
Triad. The Confidentiality deals with providing access to particular set of inform-
ation only for authorized users. Integrity is about verifying that any data has not
been tampered by an unauthorized party. The Availability is about ensuring that
information is available when required by any authorized party. We also consider
privacy goals to be important in systems such as the Lightning network. Privacy
goals aim to protect the personal node information such as the identity of the nodes
sending and receiving payments and the individual channel balances.

• Confidentiality: The forwarding instructions for a hop can only be decrypted
by that individual hop only. There are two layers of message encryption
done to achieve this. The first layer is described in BOLT 8 (Encrypted and
Authenticated Transport), which is for secure communication between any
two Lightning nodes. The second layer of encryption is applied through the
onion routing process by the sender.

• Integrity: The intermediate hops can authenticate that the received onion
packet is not tampered and sent by some node in the network. However, it
cannot authenticate that it was sent by the source node. If the source had used
its node key in the construction of onion packet instead of an ephemeral key
then this scheme would have provided end to end authenticity. Although,
doing so would have revealed the sender identity which is not desired. A
malicious intermediate hop can generate a new ephemeral key and construct
an onion packet with relevant HMAC’s for its desired route and forward the
packet. The hops will not be able to differentiate between the packet sent by
the malicious node and the actual source node as they cannot associate the
ephemeral key to any node in the network.

• Availability: Multiple nodes can collude to lock the funds of specific nodes.
Due to the gossip protocol, all the nodes know the entire channel network
topology. Malicious nodes can act as a sender and a receiver and transfer a
payment on a particular route. Later, the malicious recipient when it receives
an HTLC request from its previous node will turn unresponsive. Thus, funds
will be locked until the timeouts occur, however, no funds will be lost.

• Privacy: From the onion message, the hops do not get to know who the
sender and the receiver of the payment is. They also don’t learn the path
lengths. However, with timing analysis, the hops can estimate its distance
from the recipient. The hop can calculate the difference between the time it
got the onion message and the time when its HTLC was settled. By dividing
this time with the average time to settle an HTLC between nodes it can ap-
proximate the hop distance with the receiver. Further, it knows the complete

21



network topology, thus, it can pinpoint the few nodes at the discovered hop
radius which should be the recipient.

2.5.3 Encrypting Errors

The intermediate nodes can incur different errors while forwarding the payment.
It is important that this error is reported back to the source node as it can take
appropriate action. The errors are also encrypted to prevent leaking any sensitive
information. To send an error message the hops cannot use a similar onion packet
format like the one crafted by source node. The hops do not have information
about the route back to the source node. It can only send the error message to its
immediate peer who had forwarded the onion packet to it. The format of the error
message is as shown in Table 2.6.

Size(bytes) 32 2 Failure Length 2 Pad length
Field HMAC Failure Length Failure Message Pad length Padding

Table 2.6: Structure of Error Message in Lightning

The keys for encrypting the message and computing HMAC are done in a similar
manner as while forwarding the onion messages. Every receiving hop encrypts the
message again but does not update the HMAC field. Finally, the error message
reaches the sender. It knows the node public keys of all the hops. It decrypts the
multiple layers of encryption until the computed HMAC matches with the received
HMAC.

Analysis of the error encryption scheme

• Confidentiality: The error message can only be decrypted by the sender.

• Integrity: The HMAC in the message field validates the integrity of the mes-
sage. Due to the use of the node keys in encrypting the message, it also
authenticates that the error is sent by a particular hop.

• Privacy: It does not leak any information about the sender, receiver or the
path lengths. However, probing attacks are possible to find out the balance
present in the channels [41].
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Chapter 3

Requirement Formalization

In this chapter, we understand the routing characteristics of the Lightning network
and then formalize a set of requirements for routing.

3.1 Characteristics of the Lightning network

Routing is critical for the Lightning network to fulfill its promise of multi-hop pay-
ments. With efficient routes, most of the payments can be delivered off-chain, re-
ducing the burden on the blockchain. Though routing is well-studied and a classic
problem in the field of computer networks, there are essential differences between
routing in a computer network and a payment channel network like Lightning. The
job of a routing algorithm in a computer network is to route data from the source to
destination. While routing so, the link bandwidth capacities do not change dynam-
ically. Also, the link bandwidth is not regarded as private information. However,
the characteristics are different for the Lightning network:

• As the payments are routed over a link(channel), the link bandwidth(channel
balance) also change accordingly.The links can also become unidirectional
over the time.

• The actual bandwidth over a link is considered as a private information and
only the total capacity(initial funding) of the channels can be revealed.

• The nodes in the network can become online/offline anytime. New channels
can be opened/closed at any moment. These activities can give rise to new
and better routes or invalidate some old routes in the network.

3.2 Requirement for routing

Considering the characteristics of the Lightning network as discussed in Section 3.1
we summarize the following as the requirements a routing algorithm must satisfy.
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• Effective route discovery: The algorithm must be able to find routes between
nodes such that there is a high probability that the payment will be success-
ful.

• Efficiency: The memory required to store any routing information, the com-
munication and computations for finding routes must be low.

• Scalability: Even though the number of nodes in the network is increased(at
least 100,000), the algorithm must still hold its effective route discovery and
efficiency requirements.

• Cost efficient: Among the viable paths, the routing algorithm should be able
to find the ones lower transaction fees.

• Fee and TimeLock predictability: The nodes should know the fees for a
route beforehand making a payment. Thus, the sender must be able to decide
whether it would accept the fees for that route and make a payment or look up
for a different route. This also holds good for TimeLock, the sender should
be able to gather the CLTV expiry for a route before initiating a payment.

• Privacy: The routers (intermediate nodes) should not get to know who the
sender or the receiver of the payment is. The routers should also not know
the actual value being transferred to the receiver.

• Security: Even in the case of any adversaries lying about their routing
state/information the sender must be guaranteed that his funds will not be
lost in such scenarios.

Some of these requirements are also discussed in various works [54, 58, 40, 56],
we have summarized the most essential ones for the Lightning network here. Next,
we review and analyze the generic routing algorithms for payment channel net-
works and determine their limitations with respect to the established requirements.
If there are any inherent issues with the algorithm, we do not further discuss all the
requirements for it.
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Chapter 4

Literature review

The similarities between routing in a payment channel network and a general net-
work, has led the current work to be based on well studied concepts. Interestingly,
one of the algorithms [39] is inspired by the behaviour of insects. The Table 4.1
categorizes the algorithms according to the underlying concepts they are based on:

Concept/Technology Algorithms
Flow-based [22] Spider [58], Flash [60]
Distributed Hash Tables [47] Flare [54]
Behaviour of ants [33] Ant [39]
Landmark routing [59] SilentWhisphers [45]
Network Embeddings [50] SpeedyMurmurs [56]

Table 4.1: Underlying concepts of different payment routing algorithms

4.1 Spider

Spider [58] derives inspiration from the packet-switched networks for routing in
payment channel networks. Its goal is to have an equal incoming and outgoing
payment flows through every node, thus keeping the network balanced. The main
idea is to break up the payment into transaction units and sends them across routes
that also keep the channels balanced. Spider does not consider channels becoming
imbalanced overtime as a separate problem but tries to solve it along with routing.
It does so by giving higher preference to routes which rebalance channels and
also does on-chain transactions for rebalancing. Spider also tries to introduce a
congestion control algorithm which decides the rate at which the transactions units
must be sent for the payments.

Evaluations [58] with a real-world dataset show that spider is effective in find-
ing routes in the network. To do so, just like Lightning, every node requires the
complete payment channel network map. Maintaining a global map of a dynamic
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network is not an efficient solution as the network scales. Other important analysis
of the algorithms are listed below:

• The nodes also require link weights to solve the optimization problem to find
routes. Revealing the link weights is considered as private information.

• As the algorithm proposes for on-chain rebalancing, latencies for such trans-
actions will be higher.

• Spider also does not allow the routers to decide their routing incentives. This
may not be acceptable for individuals who want to maximise their profits.

For all these discussed issues we do not proceed ahead with Spider.

4.2 Flash

Flash [60] is a flow-based algorithm which aims to find routes having the right
trade-off between optimal paths and the probing overhead. The idea is to recog-
nise the unique characteristics of transactions in a payment channel network and
apply distinct routing strategies for them. The authors studied the transactions in
the Bitcoin and the Ripple networks and categorised the transactions into mice and
elephant payments. Mice payments are comprised of small values and the elephant
payments are of huge values. Flash applies differential treatment to both of these
payments. To route an elephant payment, it adopts a modified max-flow algorithm
to find k paths and find maximum flow through them. Next, it solves an optimiz-
ation problem over the k paths to minimize the routing fee. For routing the mice
payments, Flash finds the top m shortest paths to the receiver and starts sending
the full payment along one of them. If the payment is not successful, it probes the
corresponding path for capacity and sends a partial payment on it. It continues this
iteration with the remaining paths until the full payment is transferred.

One of the reasons for development of payment channel networks was to sup-
port micro-payments. An on-chain micro-payment transaction would bear a high
fee when compared to the transaction amount itself. Thus, in such a network hav-
ing sufficient liquidity to support an elephant payment may be difficult. A user
may prefer to do an on-chain transaction for an elephant payment instead. Flash
provides algorithm for routing in off-chain networks based on the on-chain trans-
action characteristics. A study of off-chain transaction characteristics also needs
to be done to understand whether it would behave the same as on-chain charac-
teristics. The flow-based approach used to finding routes with sufficient capacity
will not be scalable as it will have a high probing overhead for larger networks.
Also, every node needs to maintain the complete channel network topology, which
makes the solution inefficient.
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4.3 Flare

Flare [54] uses the key ideas of the Kademilia Distributed Hash Table [47] for find-
ing routes in payment channel networks. The algorithm proposes the nodes in the
network maintain routing information of their neighbouring nodes within a certain
hop distance. Also, every node connects with a set of nodes as beacons in the net-
works. The beacons are chosen such that they are nearer to individual nodes in
terms of node addresses. After this setup, a node will have local visibility due to
the information stored about the neighbours. Furthermore, they will have an exten-
ded outreach in the network because of the beacons. To find a route between two
nodes, both the corresponding routing tables are combined to find an intersecting
pathway. If there is no intersection, the sender will iteratively try to fetch rout-
ing information from the nodes closest to the receivers address until it can find a
beacon which has a pathway to the receiver. The Figure 4.1 shows an example of
the neighbouring and beacon nodes for two nodes A and B. It also shows a path
from A to B (through X and Y nodes)when both of the nodes do not have any
common nodes in their neighbourhoods.

The algorithm is better than in the Lightning with respect to memory usage, as
only neighbourhood channel information needs to be stored. However, if a node
is not present in the neighbourhood the path lengths can get longer as shown in
their results [54]. This will result in routes which are costly. The algorithm does
not discuss how will it adapt itself to the dynamics of a payment channel network.
The authors perform simulations in a static environment where the balances in the
channel do not change when a payment is executed. Thus, further evaluations are
required to comment about its efficiency and scalability in a dynamic setting.

Figure 4.1: Example of neighbouring and beacon nodes in Flare
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4.4 Ant

The authors of the Ant routing algorithm [39] derive inspiration from algorithms
the ants use to coordinate with each other to find their food. The authors cite
that the process of natural selection has driven to prevail only the top-performing
algorithms among the ants. This was an important reason for them to study their
behaviour and analyze if it applies to the payment channel networks. The main
idea of their proposed algorithm to find routes is that, initially the sender and the
receiver initiate a certain gossip in the network. Eventually, this gossip from both
the nodes is detected by an intermediary, thus discovering a path. To begin the
gossip, the sender and the receiver exchange secrets between them. Subsequently,
they generate a seed from this secret termed as a pheromone seed which only differs
by the starting bit between both the nodes. Both of them broadcast their respective
pheromone seeds to their immediate neighbours and wait for a reply from them
about the discovery of a path. The intermediate nodes receive these pheromone
seeds and they check whether they also have the corresponding matching seed. If
there is no match they broadcast again to their immediate neighbours. In case of a
match, they communicate this information back along the respective paths until it
reaches the sender and the receiver.

The Ant [39] algorithm would allow finding routes in a payment channel net-
work. However, to achieve this, there is intensive communication in the network
to propagate the pheromone seeds for every transaction. This makes the algorithm
highly inefficient for larger networks. The authors also do not claim about scalab-
ility and performance of the algorithm and imply that further simulations are re-
quired to evaluate them.

4.5 SilentWhisphers

SilentWhisphers [45] leverages from the traditional landmark routing technique
and adapts it to a distributed environment. The idea is to use a well known in-
termediate node called as landmarks, to find routes between any two nodes. To
explain further, the information about a certain set of nodes termed as landmarks
are made public to all the nodes in the network. The landmark node computes the
shortest distance from itself to all the nodes, as well as, the shortest distance from
all nodes to itself. A Breadth-First-Search algorithm is executed by every landmark
to find these distances. Thus, the best route between two nodes in such a setting
would be, the shortest path from the sender to the landmark combined with the
shortest path from the landmark to the receiver. The Figure 4.2 shows an example
of a discovered route (thicker connecting links) between two nodes A and B in
SilentWhisphers. The algorithm further proceeds to provide a privacy-preserving
method to calculate the available bandwidth in the discovered routes. It does so by
designing a secure multi-party computation protocol where the landmarks act as
the computation party.
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As every path must traverse through a landmark, the discovered path lengths
can get longer which will result in costly routes. Performance evaluation with a
real-world data set also reveals that the algorithm suffers from low effectiveness
in a static environment (link balance do not change) when compared rest of the
algorithms [56]. Every transaction requires a multi-party computation to determine
the bandwidth in a route. This is a costly operation in terms of communication and
will be inefficient for larger networks.

Figure 4.2: Example of a route between two nodes in SilentWhisphers

4.6 SpeedyMurmurs

SpeedyMurmurs [56] is an embedding-based routing protocol that tries to over-
come the shortcomings in the SilentWhispers. The idea is that unique coordinates
are assigned to every node in the network according to their position in a span-
ning tree and routing decisions are based on these coordinates. To elaborate, the
nodes initially cooperate with each other to build a rooted distributed spanning tree
in the network. Subsequently, they start assigning coordinates to themselves in a
greedy approach. Coordinates are in the form of vectors with the root node hav-
ing assigned the empty vector. Every node receives its coordinates from its parent
node which will be the parent’s coordinates appended with an enumeration index.
The Figure 4.3 shows an example of the assignment of such network embeddings.
The nodes are also aware of the coordinates of all of its neighbours. For a routing
decision, a node calculates the distance between its neighbours and the destination
node. It will then route the payment on the shortest path towards the destination
that has sufficient balance. The links in the spanning tree are not considered during
routing, which allows to find shorter routes.

Evaluations [56] of this algorithm with a real-world dataset with over 90000
nodes show that it has a success ratio of about 90% in a static setup(where link bal-
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Figure 4.3: Example of the assignment of network embedding in SpeedyMurmurs

ance do not change). In a dynamic setup(link balance change according to transac-
tions) its effectiveness remained similar to or below that of SilentWhisphers [45].
The algorithm can handle the dynamic topology changes in the network well, as
it only affects a part of the spanning tree and not the whole network. Thus, in
a dynamic setting, the messages required to stabilize the network are low which
makes it efficient. SpeedyMurmurs strives to find the shortest path in the spanning
tree which also leads to cost-efficient routes. The algorithm also provides formal
privacy guarantees for value, sender and the receiver. However, it does not satisfy
the fee and timelock predictability requirement as the algorithm is designed for
generic payment channels and not specific to the Lightning.

Considering all the algorithms reviewed in this section, the SpeedyMurmurs is
scalable, efficient, finds shorter routes and has formal privacy guarantees. Rest
of the reviewed algorithms could not satisfy all of these requirements. Thus, it
would be a suitable candidate to be investigated more to make it adaptable to the
Lightning network.
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Chapter 5

Routing in SpeedyMurmurs

This chapter presents the entire design of the routing algorithm. We first establish
the problems we will be solving in SpeedyMurmurs. Further, we discuss in detail
the design goals, the actual design, their security and privacy analysis to solve the
particular problems. Finally, we also compare our solution with that of the Light-
ning Network.

According to the current specifications of the Lightning Network [10], every node
maintains a local topology of the entire channel network through a gossip protocol.
To make any payment routing decisions, the nodes refer to this local network topo-
logy. SpeedyMurmurs [56], on the other hand, does not require the nodes to learn
the entire channel interconnection topology. The algorithm starts with the nodes
coordinating with each other to construct a distributed spanning tree between them.
Further, proceeds to establish their individual coordinates depending on their posi-
tion in the spanning tree. These coordinates are broadcast to the neighbouring peers
so that they are updated with the latest coordinate information. The next node on
the path towards the destination is calculated based on these coordinates. Thus,
the nodes running SpeedyMurmurs will hold knowledge about only its immediate
peers.

Unlike source routing in the Lightning Network, the nodes running SpeedyMur-
murs cannot precompute an entire path to the destination. It can only forward the
payment to one of its immediate peer that will eventually lead towards the destin-
ation node. The sender also cannot calculate the Fees and CLTV over the route as
it does not have the luxury of the entire network topology. However, to start for-
warding the funds the sender requires this information. This leads to an interesting
question with respect to the SpeedyMurmurs algorithm, which is

How the sender can calculate the Fees and the CLTV over the entire route be-
fore initiating a payment?
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Finding a solution to this problem is critical to initiate payments.

5.1 Gathering Fee and CLTV

Before proposing any design solution for this problem, it is important to define
the security goals. These goals will act as a guideline our design solution must
obey. We will define our goals according to confidentiality, integrity, and privacy.
The emulation network (explained in Chapter 6) in this thesis work is relatively
small to do evaluations related to the Availability. Thus, Availability goals will not
be considered in this thesis. In the later Section 5.1.4 a thorough analysis of the
design according to these goals is made.

5.1.1 Security Goals

• Confidentiality: This is a query message to the intermediate nodes on the
path. Only the intermediate nodes should know the contents of this query.

• Integrity: End to end integrity of the message is required. The source/destination
node should be able to detect any inconsistent/malicious tampering of this
query message.

• Privacy: For any payment transaction the following information must not be
revealed to the intermediate nodes on the path because of our design:

1. The sender and the receiver identity, which is the respective node public
keys.

2. The exact hop distance to the sender or the receiver.

3. The actual invoice being transferred to the recipient.

The following information is also desirable to remain private, as it can be
used as an attack vector similar to explained in [41] to reveal undesirable
information.

1. Intermediate nodes identity: The identity, which is the public keys for
the intermediate nodes should not be revealed in the route even to the
sender or the receiver. The exception being the immediate peers from
which the nodes receive the funds, and the peers to which they forward
the funds to. The Figure 5.1 shows an example payment path, wherein
the public keys of Hop2 and Hop3 must not be revealed to the sender
nor the receiver.

Our intention is to uphold these security goals when designing the routing com-
ponents in the Lightning network. Some of these goals are violated at different
layers [41] of the protocol for which orthogonal work is being carried out.
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Figure 5.1: Intermediate node public keys that must be hidden from sender and the
recipient

5.1.2 Adversary Model

We also make the following assumptions about the adversary.

1. The adversary is computationally bound. The adversary can be a node in the
Lightning Network or otherwise as well.

2. It can weaken the security goals by deviating from the protocol.

3. The adversary does not have control over significant nodes in the network. It
can add its own nodes in the network (bound by its computation and funding
capacity), however, it cannot control/corrupt any nodes at will.

4. In this thesis, we are not considering adversaries that want to perform a
Denial-of-service attack (for example flooding or replay attacks). We also
overlook attacks based on network traffic analysis and timing analysis.

5.1.3 Design

According to our design the routing in SpeedyMurmurs must proceed in two phases:

1. Query: In this phase the sender will aggregate the fees and CLTV values
over as many routes as it wants to split the amount into. SpeedyMurmurs can
incorporate multiple spanning tree construction between the nodes. Thus,
there can be multiple routes to a destination in which the payment can be
split into.

2. Forwarding: In this phase the sender and the intermediate nodes starts for-
warding the payments towards recipient based on the information collected
in Query phase.

We will first elaborate the Query phase and in section 5.2 the Forwarding phase
is discussed. The following descriptions will be made considering payment is made
through a single path. In the case of Atomic Multi-Path payments [21], our design
will still hold good, only, it needs to be applied to the involved multiple paths.
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Query phase

The main idea in the Query phase is that, the initiator will send a query packet on
the route towards the destination. The intermediate nodes will update the query
packet and finally return it to the initiator.

The sending of funds to a recipient begins with a request to the recipient for
an invoice. The invoice has critical information for the sender as described in the
Section 2.3 to initiate a payment. Along with the usual information in the invoice,
now the recipient will also add the following parameters in it:

• Probe ID: A 4-byte randomly generated ID which will associate a partic-
ular payment only with this ID. A node can receive multiple payments at
a time. It needs an identifier to differentiate between various payments. 4
bytes provide enough randomness to handle the number of payments in the
network (For example, TCP uses 4 bytes for its sequence numbers).

• Destination Address: Every node running the SpeedyMurmurs algorithm
has a unique coordinate associated with them depending on their position
in the spanning tree. These addresses are only broadcast to the immediate
neighbours of every node. The sender may or may not be an immediate
neighbour with the recipient. Thus, the recipient needs to explicitly inform
its coordinates to the sender.

We distinguish the behaviour of the algorithm based on whether a node is the
sender, an intermediate hop or the recipient. They are discussed in detail below.

Sender

The sender after receiving the invoice starts constructing the Query message as
shown in Table 5.1. It performs the following actions:

• Fill the ProbeID and Destination address as it had received from the invoice.
To prevent the intermediate nodes from discovering path lengths we initialize
the CLTV field with 0. The Amount field cannot be initialized to 0 as every
hop would be relying on this value(and Destination address) to find the next
hop. If we initialize the field with the value received in the invoice, it will
lead to discovering the hop distance to the receiver, violating our privacy
goals (The hops can subtract the values it receives in the downstream and
upstream message to estimate distance. This will be clear when explaining
the behaviour of the hops). Thus, we increase the received invoice amount
by a small random value and add it in the Amount field. If increased by a
large value, SpeedyMurmurs may not be able to find a viable route for that
large amount eventhough there existed a route to send the invoice amount.
At the moment we have configured the random value to be a random number
between 0 to 0.2% of the payment. The reason being, the Lightning nodes
have a default fee of 0.01%, and for a route of 20 nodes, the total fee would
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be approximately 0.2%. Both the CLTV and the Amount field will be ap-
propriately updated first by the recipient according to the invoice when it
receives this query.

• Generate two pairs of Elliptic-curve ephemeral public-private key pairs. Add
one of the public keys in the query message. Communicate the other public
key directly to the recipient. These keys are a part of the design to return
encrypted errors back to the source node. The necessity for generating two
key pairs and the design for returning the routing errors are elaborated in the
Section 5.3.

• Populate its digital signature over the SHA-256 hash of query message.

• Find the next hop according to the SpeedyMurmurs algorithm and forward
this message to it.

Size(bytes) 4 8 4 80 33 64
Field ProbeID Amount CLTV Destination PubKey Signature

Table 5.1: Structure of Query Message to collect Fee and CLTV

The digital signature asserts the fact that the query message is being sent by a
hop with whom the receiving node has an open channel with. The receiving node
can verify the same as it has the knowledge of the previous hops public key. The
Algorithm 1 gives the pseudocode of the operations done by the source node to
send the query message.

Algorithm 1 Query message initiation by the sender
1: procedure SENDQUERYMESSAGE

2: invoice = RECIEVEINVOICE()
3: keyPair1, keyPair2 = GENERATEEPHEMERALKEYPAIRS()
4: m = GENERATEEMPTYQUERYMESSAGE()
5: m.Amount = invoice.Amount + RANDOM(0,invoice.Amount)*0.2%
6: m.CLTV = 0
7: m.PubKey = keyPair1.PubKey
8: m.ProbeID = invoice.ProbeID
9: m.Destination = invoice.Destination

10: m.Signature = GENERATENODESIGNATURE(m)
11: SENDEPHPUBKEYTORECIPIENT(keyPair2.PubKey)
12: SENDMESSAGETONEXTHOP(m)

Recipient

This query message gets forwarded by intermediate nodes and eventually reaches
the recipient. A node can determine that it is the recipient by comparing the
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ProbeID with the ID’s of the open invoices it still has and also the destination
address in the message. It then performs the following actions:

• Verify the digital signature in the message that it has been signed by an im-
mediate peer with whom it has at least a channel open. If the verification
fails discard the message and send an error according to section 5.3.

• Fill the Amount and the CLTV field as it is present in the invoice generated
by itself.

• Change the public key in the query message to the one it had received from
the sender node initially. The details of why this activity is important is
described in section 5.3.

• Add its digital signature and return this message to the peer from which it
had received this message.

The Algorithm 2 gives the pseudocode for processing the query message by a
recipient.

Algorithm 2 Query message processing by the recipient
INPUT:
m - query message
openInvoices - list of open invoice
myAddress - node coordinate

1: procedure PROCESQUERYMESSAGERECIPIENT

2: if m.Destination != myAddress then
3: PROCESQUERYMESSAGEHOP(m, openInvoices)
4: EXIT()

5: if m.ProbeID not in openInvoices then
6: EXIT()
7: else
8: invoice = the invoice corresponding to m.ProbeID
9: if VERIFYSIGNATURE(m) = false then

10: SENDERROR()
11: EXIT()

12: m.Amount = invoice.Amount
13: m.CLTV = invoice.CLTV
14: m.PubKey = invoice.PubKey
15: m.Signature = GENERATENODESIGNATURE(m)
16: SENDMESSAGETOPREVHOP(m)
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Hops

The intermediate hops receive the query message twice for a particular payment.
First, during the upstream, when the message is being propagated towards the re-
ceiver. Second, during the downstream, when the message is sent back towards the
sender node. The hops can detect the message is an upstream/downstream message
by checking the ProbeID. The message is upstream if the node has not received a
query message with this ProbeID. Otherwise, it is a downstream message if the
node had earlier received an upstream message with this ProbeID. The hops per-
form the following actions when they receive a query message:

• Verify the digital signature in the message. Check that the digital signature
belongs to the immediate hop which sent this message. If the verification
fails discard the message and send an error.

• If it is an upstream message, update the signature field with its digital signa-
ture in the message and forward it to the next hop according to the SpeedyMur-
murs.

• If it is a downstream message, update the Amount and CLTV field. To update
the Amount, it calculates the fee required to forward the value present in
the message and adds this fee to that value. CLTV is updated by adding
its channel CLTV delta to the value present in the message. It updates the
signature field with its digital signature and sends the message to the node
from which it had received the upstream version of it.

• In the case of any other errors it discards the message and sends an error
message according to section 5.3.

The Algorithm 3 gives the pseudocode for processing the query message by an
intermediate hop.

The downstream message finally reaches the sender travelling hop by hop through
the intermediate nodes. The sender will now know the total amount it must transfer
to satisfy the invoice. This total amount will include the routing fees of the hops in
the path. The sender will also get to know the CLTV expiry value to begin creating
the HTLC contracts with the next node. Knowing both of this information for a
particular route, the sender can decide whether it wants to go ahead with this route
or query another one.

The Figure 5.2 shows an example of the above design. There are four nodes in
the route including the sender and the receiver. Only, the Amount field of Table 5.1
is considered in this example for simplicity. Let us assume the sender wands to pay
5000 satoshis to the receiver. Let the intermediate nodes have uniform fees as in
Table 5.2:

The sender constructs the query message, with the Amount field having the ac-
tual invoice amount (5000 here) plus a random value (8 here). The intermediate
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Algorithm 3 Query message processing by the hops
INPUT:
m - query message
openInvoices - list of open invoice

1: procedure PROCESQUERYMESSAGEHOP

2: if VERIFYSIGNATURE(m) = false then
3: SENDERROR()
4: EXIT()

5: if m.ProbeID not in openInvoices then . upstream
6: next node, error =GETNEXTHOP(m)
7: if error != null then
8: SENDERROR()
9: EXIT()

10: m.Signature = GENERATENODESIGNATURE(m)
11: SENDMESSAGEUPSTREAM(m)
12: else . downstream
13: if HASBANDWIDTH(m.Amount, next node) == false then
14: SENDERROR()
15: EXIT()

16: m.Amount = m.Amount + CALCULATEFEE(m.Amount, next node)
17: m.CLTV = m.CLTV + GETCLTVDELTA(next node)
18: m.Signature = GENERATENODESIGNATURE(m)
19: SENDMESSAGEDOWNSTREAM(m)

Fee Type Fee in satoshi
Base fee 1
Proportional fee 1 per 1000 satoshi

Table 5.2: Routing fees of intermediate nodes

Figure 5.2: Sender acquiring the total amount to be paid on a route

nodes find the next hop according to the destination address having the link band-
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width of at least 5008 satoshis. When the query reaches the receiver, it replaces the
value in the Amount field with the actual invoice amount and sends it downstream.
Hop2, when it receives the query again, it calculates the fees for transferring 5000
satoshis and updates the Amount field accordingly (routing fees = 1 + 5000/1000
= 6 satoshis in this case). Hop1 also does a similar job to update the query and
sending the message back upstream. Finally, the sender receives the completely
updated query message which instructs it to pay 5011 satoshis to settle an invoice
of 5000 satoshis.

5.1.4 Design analysis with respect to security goals

• Confidentiality: The confidentiality goal is achieved through encryption of
messages before forwarding to the nodes on the path. Our design does not
add an explicit layer of encryption like the onion routing in Lightning Net-
work. We rely on the underlying encrypted transport between the nodes as
described in the BOLT 8 Encrypted and Authenticated Transport [10]. This
query message is propagated along the path to the destination. Thus, only
the intermediate nodes on the path can decrypt this message. It is quite pos-
sible that a malicious node on the path can decrypt this message and share
or distribute the contents of this message. This holds for any information
system where an authorized user, if not detected as an adversary can access
confidential information and play with it. Detecting such adversarial activit-
ies in the network is out of the scope of this thesis. However, the contents of
the query message are such that the privacy goals which we have set cannot
be weakened by such activity.

• Integrity: The digital signature in the message field validates that this mes-
sage is sent by a node with whom it has at least an open channel with. The
signature also assures the integrity of this message for individual nodes. A
node with malicious intent can tamper with the contents of the message be-
fore forwarding. We analyze below the effects of tampering the individual
fields:

– Probe ID: A malicious intermediate node can update the Probe ID
with some random ID. The next hops on the path cannot determine
that such activity has taken place. They sincerely forward the up-
stream/downstream message. When this message reaches the recipient
or the sender they can detect this tampering. The sender and the re-
cipient know the Probe ID’s they are involved with. Thus, when they
receive a message with an unknown Probe ID they will simply discard
the message and try to query a different route. With such tampering,
an adversary does not gain any incentive other than denying service.

– Amount: This field can be tampered in differnt ways, let us consider
all the cases
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Random value in the amount field: A malicious node can randomly
increase or decrease the Amount field, without calculating its actual
fee and propagate the message. The rest of the intermediate nodes will
not be able to differentiate that such an activity has taken place. They,
would honestly update the Amount field according to their channel fee
rate and propagate. The source node when it receives the updated query
can detect such discrepancies as it knows the actual value to be trans-
ferred. If the received Amount deviates a sane threshold value of the
actual amount, it can conclude a malicious behavior by one/more inter-
mediate nodes. Then it can drop that path and try a different route.
Increase in the Amount field by a small value: An intermediate node
can calculate the actual fee required to transfer the received amount and
bump it up with some delta value. The intermediate nodes have all the
rights to do it, as they are the ones who control the routing fees through
them. The source node should decide whether it agrees with this rout-
ing fees or would like to try a different route.
Decrease in the Amount field by a small value: An intermediate node
can decrease the Amount field in the following ways:

Amount+ fee−δ (5.1)

Amount+ δ (5.2)

Amount−δ (5.3)

In the case of 5.1 and 5.2, if the nodes behave as per their advertisement
during the actual payment routing then the payment will be success-
ful(as the recipient will receive the exact amount as requested in the
invoice). If they dont behave accordingly and deduct a higher fee then
the payment will fail. The destination node, as it knows the invoice can
easily detect that it is being forwarded a reduced amount which it will
reject. In case 5.3, the payment is bound to fail as the destination node
will not agree to any amount lesser than the invoice.
In all the cases discussed about the Amount field, an adversary cannot
weaken the security goals we have held. It can only try to deny service
to some of the nodes in the network.

– CLTV: The analysis for this field will remain the same as that of the
Amount field.

– Destination address: An adversary can tamper the destination field in
the message. It can update it with an actual coordinate of a node in
the network or a random coordinate address. In either of the cases the
honest hops try to forward the message towards the tampered destina-
tion node address. If the message reaches a destination, the node will
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discard it straight away. The destination node can detect it as it is not
aware of an open invoice with a Probe ID in the received message. It
is also possible that the message will be discarded by an intermediate
node itself, when it cannot find the next node on the path.

– PubKey: A detailed analysis for this field is provided in the Section 5.3.

• Availability: The Availability goals are not considered to be in the scope of
this thesis.

• Privacy: Let us recall the privacy goals we had set and assess our design
according to them. We intended that the intermediate nodes must not learn
the following information:

– The sender and the receiver identity, which is the respective node public
keys: In our design we never reveal the node public keys of the sender
and receiver to the intermediate nodes.

– The exact hop distance to the sender or the receiver: Preventive meas-
ures are taken so that the intermediate nodes do not discover the hop
distance. While the message is travelling upstream, the CLTV fields
is initialized to zero and the Amount field has a random value. The
fields are correctly populated only during the downstream propagation
of the message. This ensures the intermediate nodes cannot estimate
hop distances by calculating the difference in the downstream and up-
stream message values. However, the simulation results in SpeedyMur-
murs [56] show that the path lengths are usually short. This allows the
intermediate nodes to estimate the sender or receiver being in a shorter
hop radius, but not the exact radius.

– The actual invoice being transferred to the recipient: If the sender uses
only one path to transfer the funds the intermediate nodes can estimate
the invoice being settled. However, if the sender uses Atomic multi-
path transactions and splits the payment disproportionately the inter-
mediate nodes cannot estimate the invoice amount.

– Intermediate nodes identity: We do not gather the intermediate node
keys before initiating payment as done currently in the Lightning net-
work. Our design works without knowing the intermediate node iden-
tities.

5.2 Forwarding payments

After the query phase, the sender will know the appropriate fee and CLTV over a
route. If it is satisfied with the fees over the route, it can start forwarding the pay-
ment to the next hop. The sender and the intermediate nodes craft the message as in
Table 5.3 which it will send to the next hop on the path. The message comprises of
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the amount a node is forwarding, the CLTV it is applying, an ephemeral public key
for returning errors and the coordinates of the destination node. Simultaneously
with this message the nodes also craft and send the HTLC contracts according to
the description in the BOLT 3: Bitcoin Transaction and Script Formats [10].

Size(bytes) 8 4 33 80 4 64
Field Amount CLTV Eph PubKey Dest Address ProbeID Signature

Table 5.3: Structure of forwarding message

The intermediate nodes after receiving the message and the scripts should for-
ward the payment to the next node after deducting the routing fee from the amount.
The deduced routing fee must be the same which it had advertised during the query
phase(the same holds good for CLTV as well). The hops will obtain the routing
fee incentive only if the whole payment is successful. If any of the hops become
greedy and deduce a higher routing fee then the recipient will detect it and discard
the whole payment. Thus, to earn the routing fee the nodes have to behave honestly
in the network.

5.2.1 Comparison with the Lightning network

The Lightning network uses the gossip protocol and the onion encryption scheme
to find a route and forward funds. SpeedyMurmurs, on the other hand, does an
on-demand query of a route, and then forwards payments accordingly without the
onion routing.
Below we compare both these techniques according to Confidentiality, Integrity
and Privacy.

• Confidentiality: In both techniques, only the intended recipient can decrypt
any of the messages sent.

• Integrity: The digital signatures and HMACs in the various message fields
assure the integrity of the messages to the intermediate nodes. The onion
encryption has a stronger sense of an end to end integrity when compared to
our design. Any tampering to the onion packet(other than the ones intended
in the protocol) by an intermediate node will lead to detection by the sub-
sequent node. In our design, such tampering will be eventually detected by
the sender or the receiver. The consequences of the lowered integrity can be
that, it can lead to increased network congestion due to the propagation of
the tampered messages until the source or the destination.

• Privacy: The gossip protocol in the Lightning network reveals all the nodes
in the network, the number of open channels they have, the capacities of
each of the channel(not bandwidth) as well. In our design, we only get the
channel information of the corresponding peer with whom it is open.
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The size of the onion message is larger when compared to the messages used
in our design. However, we have a probing overhead before forwarding payments.
Thus, it would be interesting to see a comparison between the algorithms regarding
the actual transaction overhead they make in a network(Results are in Chapter 7).

5.3 Returning Error Messages

While forwarding the payments, the nodes can face many errors such as insuffi-
cient channel balance, the next hop being inactive, insufficient fee or the amount is
below a minimum transfer value. Communicating this error to the source is critical
because it can take suitable actions according the received errors. As SpeedyMur-
murs does not use onion routing for forwarding payments, we cannot use the same
technique used in Lightning network to return errors. We need a different design
that can comply with the SpeedyMurmurs. This leads us to the following question:

How the routing nodes in the network can send errors securely back to the source
node?

Before proposing any design solutions let us again set the security goals we want
to achieve. As described in section 5.1 we will segregate our goals based on Con-
fidentiality, Integrity and Privacy.

5.3.1 Security Goals

• Confidentiality: The contents of the error message may leak undesirable
private information to the intermediate nodes. For example, a node returning
an error that it does not have a sufficient channel balance can reveal that
nodes channel balance is below a threshold. Thus, it becomes important that
only the initiator of the payment should be able to decrypt the error message
and not all the hops in the path. The confidentiality goal is also in accordance
with the current standards described in BOLTS [10].

• Integrity: Preserving the integrity of the error messages is critical. Without
integrity checks an adversary can try to tamper with the message and convey
fake information to the initiator. Thus, we want the initator to be able to
detect any tampering of messages.

The Privacy goals remain the same as described in Section 5.1.1.

5.3.2 Design

As we are operating in a distributed network and there are no pre-shared secrets/keys
between the nodes, we will be using public-key cryptography to achieve our goals.
We will explain our design in two stages:
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1. Encryption/Decryption

2. Key Distribution

Encryption/Decryption

For encryption and decryption of message, we will use the same scheme (Elliptic
Curve Integrated Encryption Scheme (ECIES) explained in Section 2.5.1) as that
being used in the Lightning network. In our design, the choices for the different
functions in ECIES will be the same as that of the Lightning network as shown in
Table 2.1. We do not intend to modify the encryption technique as there is no need
for that.

• Shared secret generation: ECDH operation is used to generate a shared secret
between the erring node(the intermediate node which has incurred some er-
ror) and the source node. The erring node requires a public key from the
source as another input to the ECDH. The source should not reveal its node
public key as this can lead to revealing the origin of the payment. Thus, the
source node will generate an ephemeral EC key pair and communicate the
respective public key to the erring node as explained later in the Key dis-
tribution phase. Similarly, the source also needs the corresponding public
key from the erring node for the ECDH operation. The erring node as well
should not reveal its node public key because of the privacy goals we have
set. It will also generate an ephemeral EC key pair and has to communicate
the public key to the source node. Thus, the sender and the erring nodes need
to use their respective ephemeral private keys and the other partie’s ephem-
eral public key as an input for the ECDH. The format of the error message is
shown in Table 5.4. The erring node starts populating the message fields by
filling in its ephemeral EC public key in it.

Size(bytes) 33 32 2 Length 2 Pad Length 4
Field PubKey HMAC Length Message Pad Length Pad ProbeID

Table 5.4: Structure of Error Message

• Key derivation function: HMAC-SHA 256 is the key derivation function
used here. We require two keys for our operation, one for encrypting the
errors and the other for generating the MAC tag. HMAC-SHA 256 takes as
input the generated shared secret and a key. The keys for different operations
are predefined in the BOLTS [10] and the required ones are as follows:

– Encrypting errors: 0x756d

– MAC generation: 0x6d75

Thus, with the KDF the erring and the source node will have two sets of keys
which they can use for encryption/decryption and message authentication.
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• Encryption: With the encryption key generated using KDF, the erring node
encrypts the plain error message using the ChaCha20 [25] algorithm and
populates it in the message field. Similarly, the source node can decrypt with
the same encryption key it will generate when it receives the error message.

• Message Authentication Code: Again, HMAC-SHA 256 is chosen to derive
the MAC tag for the encrypted message. The input key for the HMAC-
SHA 256 is derived during the KDF stage. The erring node calculates the
HMAC over the entire message and updates it in the message field. After
generating the MAC tag, all the fields in the message as shown in Table 5.4
are populated and ready to be sent to the source node. When the source node
receives this message it can check the message integrity as it can also derive
the required MAC key for verification.

Thus, with the ECIES scheme the erring node can encrypt the errors and the
source node decrypt this message. The Algorithm 4 gives the pseudocode for the
operations required to generate an error message. Next, we will describe how to
distribute the required keys between the intermediate nodes and the source node.

Algorithm 4 Generate Error Message
INPUT:
SourcePubKey - ephemeral public key received in the upstream/downstream
routing message
error - The error message to be sent in plain text

1: procedure GENERATEERRORMESSAGE

2: keyPair = GENERATEEPHEMERALKEYPAIR()
3: secret = GENERATESHAREDSECRET(SourcePubKey, keyPair.PrivKey)
4: encKey, macKey = KEYDERIVATIONFUNCTION(secret)
5: encMess = ENCRYPTERRORMESSAGE(error, encKey)
6: macTag = GENERATEHMAC(encMess, macKey)
7: m = POPULATEERRORMESSAGE(encMess, macTag, keyPair.PubKey)

return m

Key Distribution

The error encryption/decryption operation begins with the shared secret generation
between the erring node and the source node. To generate the shared secret either
party require the corresponding public keys of the each other. As explained earlier
these keys will be ephemeral public keys generated by both the nodes. In the Light-
ning network, the source node knows the node public key of all the intermediate
nodes, thanks to the gossip protocol. Later, the source communicates its ephem-
eral public key in the onion message to the intermediate nodes. This is how the key
distribution problem is solved in the Lightning network. The same solution cannot
be applied in SpeedyMurmurs because:
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• No gossip protocol to collect the public keys of all nodes in the network.

• No onion routing for forwarding payments.

Thus, in SpeedyMurmurs we need a design to solve the key distribution problem.
Following are the problems we want to solve:

1. Communicate an ephemeral public key from the source node to the interme-
diate nodes.

2. Communicate an ephemeral public key from the erring node to the source.

We are designing this solution to return errors from intermediate nodes if any
during two occasions. It is expected that our design will be consistent during both
these following occasions:

1. Gather Fee and CLTV: Here, the query message traverses first from the
source to destination (upstream), and then back to the source (downstream)
as explained in Section 5.1.

2. Forwarding payments: The forwarding message only traverses from the source
to the destination(upstream) as explained in Section 5.2.

A simple solution as shown in the Figure 5.3 would be that the source node will
embed its ephemeral public key(shown in green colour) in the upstream message.
This message would travel hop by hop to all the intermediate nodes. The erring
node would use this received public key for encryption of error message. Then
along with the encrypted message the erring node would have sent its ephemeral
public key(shown in blue colour) back to the source node.

Figure 5.3: Key distribution in a non-adversarial scenario

This solution would cleanly work in a non-adversarial scenario. However, if
there are nodes with malicious intents they can easily launch a classic Man-in-
the-middle attack as shown in Figure 5.4. An intermediate adversary can replace
the key with its own public key(shown in red colour) and forward the message
towards the destination. The erring node cannot detect such tampering and would
encrypt the message using the adversarial public key. The adversary now can read
the contents of the error message sent by the erring node and also can forward
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Figure 5.4: Key distribution in an adversarial scenario

a fake encrypted message back to the source node. This will clearly violate our
confidentiality and integrity goals.

The problem with the simple solution was that we allowed both the public keys
(from source to erring and from erring to source) to traverse through the same
set of intermediaries. Thus, an adversary gets an opportunity to replace the keys
in both the direction and remain undetected. Our solution will improve if we do
not traverse both the keys on the same set of intermediaries and use a different
route(assuming only one adversary present in a route). Let us consider both the
instances of message traversal and see how we can use different routes to send the
keys.

• Upstream: The Figure 5.5 shows the process that will be explained. Up-
stream is when a message traverses from the source to the destination. This
can occur during the fee gathering phase or while forwarding payments as
explained in Sections 5.1 and 5.2 respectively. In both of these messages
as shown in Table 5.1 and Table 5.3 the source node will add its ephemeral
public key (green colour). The erring node uses this key in the message for
encrypting its error. Now, instead of sending the error message(which in-
cludes the ephemeral public key (blue colour) of erring node as shown in
Table 5.4 ) back on the same route, we can utilise the other contents of the
forwarded message to dispatch the error along a different path. Both the
upstream messages as in Table 5.1 and Table 5.3 have a coordinate address
of the destination node. Thus, the erring node can send the error message
towards this destination address instead towards the source. The path to
the destination from the erring node can never have an intersection with the
intermediate nodes that had already received the upstream message. This
property is guaranteed due to the underlying spanning tree construction in
the SpeedyMurmurs. The destination node when it receives the error mes-
sage can send it to the source node which can decrypt the message and also
validate its integrity.

• Downstream: The Figure 5.6 shows the key distribution process during the
downstream. Downstream is when a message traverses from the destination
back to the source node. This can occur during the fee gathering phase as
explained in section 5.1. In this case, the erring node cannot send the error
message towards the destination as done during the upstream case. It also
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Figure 5.5: Ephemeral key distribution during the upstream traversal of message

Figure 5.6: Ephemeral key distribution during the downstream traversal of message

cannot send towards the source node as the adversaries between source and
the erring node could have replaced the public key sent by the source node
during the upstream message. This problem can be solved if we send a
different public key during the downstream and the upstream message to
the intermediate nodes. Before initiating the query request the source node
shares an ephemeral public key with the destination node. The destination
node when it receives an upstream message, updates the message with a
new public key (yellow colour) it would have received from the source node.
The erring node uses the updated key to encrypt the error and send its own
ephemeral key (blue colour) back towards the source. The adversaries (if
any) between the source and the erring node will not be able to decrypt the
message even though they have replaced the public keys during the upstream
message.

In the above design it can be seen that the cooperation of the intermediate nodes
is required in forwarding the error message. The incentive for them is that their
cooperation helps to improve the overall payment effectiveness of the network.

5.3.3 Design analysis with respect to security goals

• Confidentiality: The error message sent by the erring node can only be de-
crypted by the source node. Only the source node has the corresponding
private keys for the public key with which the message was encrypted. Even
in case of a Man-in-the-middle attack the source node can detect such tam-
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pering of the message. However, the adversaries can succeed in decryption
of the message if multiple of them collude on the path (at least one adversary
must be before and after the erring node). The adversary before the erring
node would change the public key in the upstream message. When the erring
node forwards the error towards destination, another adversary can hand over
this message back to the former one.

Though such a coordinated attack is presumable, the possibility of such an
attack depends on whether the adversaries can be on the same payment path.
This in turn depends on:

– Position of the adversaries in the spanning tree of the network

– The position of the source and the destination for a particular payment

– The invoice amount of the payment

Thus, the adversaries have to plan their position in the spanning tree well and
hope that they will be included in the payment path. Planning their position
in the spanning tree is also not easy, as the nodes don’t have access to a
global map of the spanning tree.

• Integrity: Detecting tampered messages is important as it helps prevent un-
desirable situations to the source node. The source node can validate the in-
tegrity of the error message by calculating its HMAC and checking it against
the received HMAC in the message. If they do not match it can discard the
error message. If there is only one adversary on the path, tampering of any
fields in the error message can be detected by validating HMAC. If multiple
adversaries coordinate they can successfully tamper the message without the
source node detecting it. However, as explained earlier it is not simple for
adversaries to be on the same payment path.

• Privacy: Let us again recall the privacy goals we had set and assess our
design according to them. We intended that the intermediate nodes must not
learn the following information:

– The sender and the receiver identity, which is the respective node public
keys: In our design we never reveal the node public keys of the sender
and receiver to the intermediate nodes.

– The exact hop distance to the sender or the receiver and the actual in-
voice being transferred to the recipient: No field in the error message
can help to discover both these information.

– Intermediate nodes identity: We generate ephemeral public keys to en-
crypt errors to prevent revealing intermediate node identities.
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5.3.4 Comparison with Lightning network

Again, we compare our design with that of the Lightning network according to
Confidentiality, Integrity and Privacy:

• Confidentiality: In both the designs only the source node can decrypt the er-
ror message. However, multiple nodes can collude to weaken this guarantee
in our design(however, it is not easy as explained during the analysis). Such
an attack will not succeed with the onion routing.

• Integrity: The source node can validate the integrity of the error message in
both the designs. The same drawback exists in our design as discussed in
Confidentiality if multiple nodes collude.

• Privacy: In the Lightning network, the source node gets to know who sent
the error message. This has led to probing attacks [41] to discover channel
balance of a node. Our design does not reveal the identity of the erring node,
thus such probing attacks are not possible.

5.4 Root Election and Spanning Tree construction

The main components in the SpeedyMurmurs can be divided into the following:

1. Root Election: The elected node will be the root node in the spanning tree.

2. Spanning Tree construction: A distributed spanning tree that will be built
across all the nodes that have open channels.

3. Coordinate gossip: To establish their individual coordinates, the nodes send
and receive their tentative coordinates with their neighbours.

4. Query phase: To query a route for knowing the fees and the CLTV to be
applied.

5. Payment forwarding: The Speedymurmurs decides which is the next hop a
node should forward payments to.

6. Returning errors: Mechanism to return encrypted errors during the Query or
Payment forwarding phase, back to the source node.

We have discussed in detail the design of the last three components in the earlier
sections of this chapter. The root election and the spanning tree algorithm are also
the core components of the Speedymurmurs. In this thesis, we have not considered
deliberating over the design of these algorithms, to meet the same security and
privacy goals as that in Section 5.1.1. Such a design requires a separate thesis of
its own. As all the components need to be implemented to evaluate SpeedyMur-
murs, we only consider scalability as the factor when choosing the Spanning tree
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protocol. The Radia Perlman spanning tree protocol [52] has been a fundamental
block in the modern Ethernet. The algorithm transformed the original limited-
scalable Ethernet to a protocol that can manage massive networks today. It allows
to construct a rooted spanning tree in any graphs, thus, it satisfies the requirements
for 1st and 2nd components which we need to implement. The next section explains
the Radia Perlman algorithm to construct a rooted spanning tree and how we adapt
it to according to the Lightning network.

5.4.1 Spanning tree algorithm

The algorithm was initially developed for the bridges in a Local area network to
prevent broadcast storms. In the original algorithm, every bridge competes to be-
come the Root Bridge (RB) and then tries to find the shortest paths to RB from all
its ports. The RB in the network will be the one with the numerically lowest MAC
address. For all the operations required the bridges communicate among them-
selves with messages called as Bridge Protocol Data Units (BPDU). The BPDU
comprises mainly of the Bridge ID (Bridge priority + MAC address), Root Bridge
ID (The bridge which it thinks is the Root Bridge), Cost to Root (Distance or Cost
to the Root Bridge). Initially, every Bridge initializes itself as the RB and cost
to Root as 0 and participates in the algorithm. Every bridge keeps sending this
BPDU messages to its connected bridges at regular interval of times. They process
these received BPDU’s periodically such that, if it receives a better BPDU (which
has a lower Root ID or a lower cost to Root) it updates its Root according to this
BPDU and propagates this information down to its other connected entities. The
port on which the Bridge receives the best BPDU (the best path to the Root) will
be labelled as the Root port. The port which is the best path for a LAN segment
to reach the RB will be labelled as the designated port. This is determined by if
the port has sent out BPDU along it and has not received any better BPDU on that
port. The ports which are neither Root ports or Designated ports will be Blocked
ports. Blocked ports break the loops in the network as no traffic will be sent or
received along them. Finally, the RB will be the one having all its ports labelled as
the Designated ports. If a new node enters the system, it will start itself as RB and
again there will be an exchange of BPDU’s in the network.

The explained algorithm is adapted and implemented for the Lightning network.
The algorithm remains the same only some terminologies will be adjusted for the
distributed network.

• Bridges -> Individual nodes in the Lightning network

• Bridge ID -> Node ID. (Generated by SHA-256 hash of the public key of
the Lightning nodes.)

• Cost to Root -> Number of hops required to reach the Root node.

• BPDU -> Hello Message. The Table 5.5 shows the fields in the Hello mes-
sage.
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Size(bytes) 4 4 4
Field Node ID Root Node ID Cost to Root

Table 5.5: Structure of spanning tree Hello message

When a node opens a new channel with another node, or rejoins the network
after being offline it broadcasts the Hello messages to its peers. Processing of
these Hello messages is done at regular intervals of time(currently 5 seconds) and
the best path found is advertised to the other connected peers. While processing
these Hello messages, the paths originating from the node are marked as Root, Des-
ignated or Blocked according to the algorithm. When there is no more exchange
of Hello Messages in the network, it signals that the Spanning tree construction is
completed. The final elected Root node will be the one, which has all its paths/ports
labelled as Designated.

5.4.2 Coordinate gossip

The nodes advertise their coordinates to their peers in the following two cases:

1. When they join the network by opening a channel, announcing themselves
as the Root node.

2. Once their coordinate address is updated when they find a better path to the
Root node.

The Table 5.6 shows the structure of the gossip message the nodes exchange.

Size(bytes) 4 80
Field Node ID Coordinate Address

Table 5.6: Structure of the coordinate gossip messages

These messages are also sent and processed in periodic intervals of time(5 seconds).
With the termination of the spanning tree construction, the coordinate gossip will
also terminate as nodes will be sure of the Root port node.

To conclude, this chapter gave an elaborate design of each and every component
of SpeedyMurmurs. In the next chapter we explore a system to implement and
evaluate our design.
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Chapter 6

System Setup

Having proposed the design in Chapter 5, we want to evaluate the performance
of the routing algorithm according to different metrics. The aim is to emulate the
Lightning network with many interacting nodes. Subsequently, execute payments
to evaluate the routing algorithm. The mainnet and the testnet of the Lightning
network cannot be used for obvious reasons to run our tests. Thus, we need to
explore the different solutions offered by the Lighting network implementations to
execute tests as per our aim. Also, we need to decide the exact Lightning network
implementation we would implement the routing algorithm in. In this chapter, we
explore and finalise a suitable system to run our evaluations.

We require that the emulation system will at least fulfill the following require-
ments:

• The Lightning and the Bitcoin nodes follow the standard set of rules as de-
scribed in their respective white papers [53, 49]. As, we want to emulate the
Lightning network.

• The Lightning nodes should support opening and closing of channels. They
should allow single and multi-hop payments.

• Funding to any bitcoin addresses should be rather quick and computationally
inexpensive. This saves us time and the energy that would require for mining
the Bitcoin blocks for running our tests.

To establish such a network for our study, we first describe the general archi-
tecture of the different software components the Lightning network interacts with.
Later, analyze each individual components and understand which solutions suit our
requirements. Finally propose the network architecture on which we will do our
evaluation study.
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6.1 General Network Architecture

Figure 6.1 shows the architecture of the different components the Lightning Node
interacts with. Generally three components interact with each other on one host:

Figure 6.1: Architecture of components interacting in Lightning

• Lightning Node: Implements the Lightning protocol [53] and participates in
the peer-to-peer Lightning network.

• Bitcoin Full Node: A full node can verify all the the activities happening on
the blockchain according to the Bitcoin rules. The Lightning nodes require
access to the verified blockchain data to manage its channel states.

• Lightning client: An interface for interacting with the Lightning node for
activities such as sending payments and accessing node channel balances.

There may be variations of this architecture, such as multiple Lightning nodes
connecting to the same Bitcoin node, but this holds good in general. Each of these
components has different implementations providing various features and capabil-
ities. We analyse each of these and select the ones that match our requirements.

6.1.1 Lightning Node

We are designing an algorithm for the Lightning network. It makes sense that
the algorithm is evaluated by implementing it in one of the Lightning codebases,
instead of simulating it. The Table 6.1 shows the active implementations of the
Lightning network maintained by different entities. Four of them comply with the
BOLT [10] standards and one do not.

After a brief study of all these implementations, we chose LND [9] as the most
suitable one to implement and evaluate our design solution. Following are the
reasons why LND was chosen:
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Implementation Name Developers Language Bolt Compliance
LND [9] Lightning Labs Golang Yes
C-Lightning [4] Blockstream C Yes
Eclair [6] ACINQ Scala Yes
Ptarmigan [16] Nayuta C++ Yes
LIT [12] MIT-DCI Golang No

Table 6.1: Existing Implementations

• The LND provides a local simulation framework, wherein as many LND
nodes can be spawned on a local machine. The spawned nodes can interact
with each other in the localhost to form the payment channel network. Sim-
ulating the lightning network on a local setup is crucial as it is not feasible
to test it on the main network.

• LND has the highest adoption rate when counted the number of nodes run-
ning the the software in the main network.

• Has a docker support, which can be used to spawn a required number of
nodes during testing and evaluation.

• It has a responsive developer community that can be reached out for queries.

• The code has decent comments for understanding. Initial documentation is
available to get acquainted with the testing environment.

Lightning Network Daemon (LND)

The LND complies with the BOLT standards, and their developers(Lightning Labs [8])
are active contributors to the BOLT’s. LND can interact with the Lightning net-
work that is deployed over the Bitcoin or the Litecoin [13] network. LND requires
a backend full node to be always connected to manage its channels. For Bitcoin, it
can connect with the BITCOIND [1] or BTCD [3] full nodes. It can also connect
to a light client called Neutrino [15]. The LND in its current development state has
the following capabilities:

1. Create and close channels between nodes

2. Manage all the channel states

3. Maintain a fully authenticated and validated network channel topology

4. Finding paths within the network to route payments.

5. Sending onion-encrypted payments over the network, and forwarding in-
coming payments
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6. (Autopilot) Can automatically create and manage channels.

7. Provides an experimental feature to connect with a Bitcoin light client (Neut-
rino). It helps clients to reduce bandwidth and storage required for running
a Bitcoin node.

SpeedyMurmurs can be developed and integrated with the first two capabilities
to send multi-hop payments. The next three (3-5) capabilities will help us evaluate
the existing source routing algorithm.

6.1.2 Bitcoin Full Node

The Lightning nodes need access to the activities happening on the blockchain
to manage their channels. The full nodes provides access to the validated block-
chain information to the Lightning nodes. For our study we need to open channels
between Lightning nodes by executing an on-chain funding transaction initially.
This means the Bitcoin addresses corresponding to the Lightning nodes must have
some token balance to fund them. The Bitcoin addresses can be funded in the
following ways:

1. The tokens are sent to that address on-chain from some other address.

2. The full node mines Bitcoin and the reward payout is made to that address

The first activity takes time and the second one requires a lot of resources to ac-
complish. These are the problems we are trying to avoid in the off-chain solutions.
The full node implementations provide a regression testing(regtest) mode to save
the developers time and resources for such activities. In a regtest test mode, the
mining difficulty is drastically reduced so that the bitcoin node can instantly mine
and create new blocks. Additionally, the full node will not interact with any other
peers and creates and maintains a private blockchain on a single computer. Thus,
the full node need not sync with the global blockchain saving us time, memory
and bandwidth. The regtest mode is suitable for our study as we can instantly
make payouts to the bitcoin addresses by mining blocks. Both BTCD [1] and BIT-
COIND [3] support the regtest mode. We choose BTCD as the backend full node,
however, BITCOIND could have been adopted as well.

6.1.3 Lightning Client

The client software allows users to interact with their Lightning nodes. Every
Lightning implementation is shipped with a client software. LND also has a com-
mand line utility for the same. The LND also allows to directly interact with it
using Remote Procedure Calls(RPC). A structured suite of gRPC [7] API’s are
defined [14] for developers to build their own clients. Once we implement our
routing algorithm in the LND, we need to change payment related gRPC services
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to adapt accordingly. Thus, we will develop a minimal client of our own which
can interact via gRPC with the LND. This will allow us to have a fine-grain control
over the emulation environment.

As a conclusion the Table 6.2 presents the implementations and their respective
modes we will setup in our study:

Implementation Mode
Lightning Node LND simnet
Bitcion Full Node BTCD regtest
Lightning Client Write our own Client NA

Table 6.2: Chosen software components and their modes

6.2 Emulation Network Architecture

Now that the individual components are fixed we can design our emulation net-
work. The simnet feature of the LND allows to spawn local nodes on a machine
and also connect just one Bitcoin node at the backend. Thus, we can launch only
one BTCD for all the LND nodes to connect with. The Lightning Client we develop
is also made generic so that it can interact with all nodes at once. This gives better
control to simulate different test scenarios. Our emulation network architecture is
as shown in the Figure 6.2.

The proposed setup has both advantages and disadvantages:

• Advantages: Saves us time, energy and bandwidth to run our experiments.
Also, better control over the setup as it is running on only one host computer.

• Disadvantages: The maximum number of LND nodes that can be spawned
will be limited by the memory and the computing resources of the host com-
puter. This problem can be solved if the Lightning nodes can run on different
hosts and still be a part of the same simnet. We could not find any imple-
mentations that provided this feature.

6.2.1 Bootstrapping the emulation network

We want to evaluate our design by sending single/multi-hop payments over the
Lightning network. Before sending any payments between the Lightning nodes we
need to ensure that:

• The emulation network is connected as shown in Figure 6.2.

• The Lightning nodes have opened channels between them according to some
desired test network graph.

57



Figure 6.2: Emulation Network Setup

We describe in detail the activities performed so that our network is bootstrapped
to perform payments between the nodes.

• Starting the nodes: The BTCD node is started in the regression testing mode.
The required number of LND nodes are spawned in the simnet mode. The
LND’s are connected backend to the BTCD.

• Wallet creation: Lightning node has a wallet which manages its tokens, keys,
tracks balance and signs transactions. When a node is being spawned for the
first time, we need to create and initialize such a wallet for every node. gRPC
services are provided to do the same.

• Payout to Bitcoin addresses: We generate new bitcoin addresses for every
node. Next, we iteratively select all the bitcoin addresses to be the mining
reward address and mine a few blocks. The Bitcoin balance in these ad-
dresses is necessary for funding the channels. While mining blocks, care is
taken that all the LND nodes are synced with the latest mined block height,
else it may lead to inconsistencies.

• Opening channels: For the required number of nodes a network graph is gen-
erated. The edges in the graph depict the channels to be opened between the
nodes. Depending on edges in the graph, the channels are opened between
pairs of nodes by initiating the funding transactions. Later, bitcoin blocks
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are mined so that the funding transaction goes through and channel opening
is complete.

The implemented Lightning client orchestrates and ensures all of these activities.

6.3 Integration in the LND

The SpeedyMurmurs algorithm as explained in the Chapter 5 is implemented and
integrated with the various components in the LND. The routing algorithm is con-
figured with one underlying spanning tree as LND does not support Atomic Multi-
Path [21] payments yet. LND is made to use SpeedyMurmurs to route payments
instead of the onion encrypted source routing.

To conclude this chapter, we have defined the emulation setup and also the in-
volved components. We have also discussed the integrations done to the LND and
also the functionalities of the Lightning client that we have implemented.
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Chapter 7

Evaluations and Results

In the previous chapter, we described our system setup on which we will be doing
our evaluations. Following up on it, in this chapter, we execute evaluation tests and
present and discuss the results. We evaluate the performance of SpeedyMurmurs
and also compare it with the existing source routing in the Lightning network. By
evaluating the performance of a routing algorithm, its characteristics can be de-
termined, such as the quality of service it offers, the amount of network congestion
it creates and the load(communication and computation) it puts on the hosts. Vari-
ous metrics are available to help us determine such characteristics. We first discuss
the metrics for the evaluations, then describe the dataset and the execution envir-
onment, finally the results obtained and their discussion.

7.1 Performance Metrics

The performance of a routing algorithm in a payment channel network can be char-
acterized by the following metrics:

• Success ratio: It is the percentage of payments that were successful. The
payment is considered successful if the destination node receives the amount
as it had requested in its invoice.

• Success volume ratio: Success volume is the total volume of the successful
payments. Here, we find the ratio between the success volume of SpeedyMur-
murs with that of Source routing. This metric helps to compare the success
volume between both the algorithms.

• Path Lengths: The number of hops required to reach the destination in a
successful payment transaction. The path lengths cannot be determined in
SpeedyMurmurs, hence we add an extra field in the probe message(Table 5.1)(only
for evaluation purposes)so that every hope can increment accordingly.

• Transaction delay: It is the total time taken between the initiation and ter-
mination of a payment transaction. The timer is started after the source node
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receives the invoice for the transaction, and is stopped when it receives either
a success or failure message from one of its peers. We only consider pay-
ments that were successful.

• Network Stabilization: It is the total number of bytes that were exchanged
between all the nodes to have an updated routing state information to achieve
a particular network snapshot. In SpeedyMurmurs, a node has an up to date
routing state information when:

– The distributed spanning tree is built and the algorithm has termin-
ated(no more spanning tree messages in the network).

– The coordinate gossip has also terminated(when no more gossip mes-
sages are transmitted related to coordinate). The nodes know individual
coordinates as well as that of their neighbours.

For SpeedyMurmurs we count the number of bytes required for the span-
ning tree construction(Table 5.5) and the gossip to establish node coordin-
ates(Table 5.6). In the source routing, to have an updated routing state the
nodes must have constructed the local channel network topology of the input
network snapshot. We count the bytes due to the channel announcement and
channel update messages of the Lightning network, which were explained in
Section 2.4.2.

• Transaction overhead: The number of bytes that were exchanged between
the nodes to complete a payment transaction. In SpeedyMurmurs we count
the query message(Table 5.1) and the payment forwarding message(Table 5.2)
exchanged. For source routing the onion messages(Table 2.2) are considered
to evaluate this metric.

• Stabilization overhead: The number of bytes transmitted in the network to
have an updated routing state information when a node opens/closes a chan-
nel. To measure the overhead, we first setup a network snapshot of required
size. Then, 5 new nodes are made to open channels with 5 random existing
nodes. We count the number of bytes that are exchanged after opening the
new channels.

7.2 Parameters

The different parameters configured for running the tests are described below:

• Network size: We evaluate networks with size 50 and 100 nodes. We would
have liked to test on larger networks, however, 100 nodes were the maximum
we could execute on one server. The server environment is discussed in
Section 7.3.
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• Channel network topology: The Lightning channel topology in its current
state resembles a hub and spoke model [57]. Simulating a hub and spoke
with a maximum of 100 nodes will result in very small transaction path
lengths. This will not provide enough scope to evaluate routing algorithms.
Thus, we generate connected random graphs and evaluate using them. The
ErdsRnyi model [34] is used to generate the graphs. The Figure 7.1 shows
one such topology graph for 50 nodes. The vertices are the nodes and the
edges are the channels between them. The Table 7.1 shows the number of
bi-directional channels opened between the nodes in respective networks.

Network Size Number of channels
50 73
100 153

Table 7.1: The number of nodes in the network and the number of channels opened

• Channel balance: Every channel is uniformly funded with 1000000 satoshis.
This could have been any other amount as well, the value does not matter for
our tests.

• Transaction amounts: The transaction amount in the Lightning network is
hidden. So, there is no information about the distribution of the transac-
tion amounts in Lightning. Thus, we generate our own dataset for testing.
Four datasets are generated, each containing random amounts within varying
percentages(5, 10, 25 and 50 per cent) of the funding transaction(1000000
satoshis in our case). This approach of capping the transaction amount at
different percentages will provide better insights about the effectiveness of
the routing algorithm, than sending random amounts without particular cap-
pings.

• Number of payments: In total 5000 payments are executed in the network.
For each payment, a random source and a destination node is chosen. By
executing 5000 payments in a network of 50-100 nodes, various degrees of
network channel imbalance occurs during the execution. The performance
of both the algorithms during such imbalanced environments would be inter-
esting.

The same parameters will be used for Source routing and SpeedyMurmurs while
execution of tests.

7.3 Execution environment

The experiments were executed on the Distributed ASCI Supercomputer 4 [5]
(DAS-4) systems. DAS-4 supercomputers are widely used in experimental com-
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Figure 7.1: Channel topology for 50 nodes
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puter science research in the Netherlands. Every node in the cluster is a dual-quad-
core node with 2.4GHz speed. Different cluster sites provide access to varying
memory sizes from 24GB to 48GB of RAM. The DAS-4 runs on the CentOS Linux
operating system. The clustering capability within the DAS could not be harnessed
as our setup can run only on one host node.

7.4 Results and Discussion

In this Section we present and discuss the results obtained according to the per-
formance metrics.

7.4.1 Success Ratio

The Figure 7.2 shows the success ratio of SpeedyMurmurs and the Source rout-
ing algorithms. For smaller transaction amounts we observe that Source routing
achieves nearly 100% success and SpeedyMurmurs perform above 85% success
ratio. For larger amounts, SpeedyMurmurs dips by a maximum of about 25%
compared to the Source routing. This is expected as SpeedyMurmurs incorporates
a greedy approach in finding paths with enough bandwidth, which does not always
provide the optimal solution. In our implementation, we have only one spanning
tree configured for SpeedyMurmurs. If we construct multiple spanning trees in
the network and use Atomic Multi-Path [21] to divide the transaction amount into
smaller chunks and settle the payments, the success ratio then will be much higher
for SpeedyMurmurs.

Figure 7.2: Success ratio of SpeedyMurmurs and Source routing

7.4.2 Success Volume

The Figure 7.3 shows the ratio of the total volume of payments that were success-
ful between SpeedyMurmurs and Source routing. If we compare this result with
the success ratio in Figure 7.2, we can derive that SpeedyMurmurs did not per-
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form well with high-volume payments. The performance of SpeedyMurmurs will
increase by configuring multiple spanning trees as explained in Section 7.4.1.

Figure 7.3: Success volume ratio between SpeedyMurmurs and Source routing

7.4.3 Path Length and Delays

The Figure 7.4 and 7.5 show the average path lengths and the transaction delays in
both 50 and 100 node network. It can be observed that routes in SpeedyMurmurs,
have on an average only about an extra hop when compared to Source routing. The
exception being when the transaction amounts are up to 50%. The average transac-
tion delays are proportional to the path lengths for smaller payments(5 and 10 %).
The sudden rise in the delay and the increased path lengths at higher transaction
amount for Source routing can be explained by its repeated effort of finding a valid
path. The gossip protocol in the current Lightning network allows nodes to know
the link capacity between all the nodes but not the bandwidth. With source routing,
Lightning first tries to settle payments with a path having the least routing fees(i.e.
shortest paths as fees are uniform in our simulation) based on the knowledge of
link capacities. When shorter paths fail due to the non-availability of the required
bandwidth Lightning tries with longer paths until it finds one or exhausts all the
paths. The behaviour with SpeedyMurmurs is different. It uses greedy approach to
find shortest paths with enough bandwidth. If no route is found, there are no retries
to change course and find a new path. Different route explorations can be possible
with SpeedyMurmurs when multiple spanning trees are configured.

7.4.4 Network stabilization

The Figure 7.6 shows the amount of data transferred in MegaBytes for all the nodes
to have an updated state information required for the routing. SpeedyMurmurs
clearly is better here, with the Source routing’s data transmission at least 100 times
larger than the SpeedyMurmurs. Increasing the network size from 50 to 100 nodes
resulted in a two-fold increase in transmission for SpeedyMurmurs. However, for
Source routing it increased nearly 5 times. These results prove that SpeedyMur-
murs consumes less bandwidth and also can scale well. The results with regard to
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Figure 7.4: Average path length and transaction delays for 50 node network

Figure 7.5: Average path length and transaction delays for 100 node network

SpeedyMurmurs will change with the introduction of a secure spanning tree pro-
tocol. The new spanning tree algorithm would have its own message formats as
against in Table 5.5 that would be transmitted in the network.

Figure 7.6: Number of MegaBytes transferred for the network stabilization

7.4.5 Transaction overhead

The Figure 7.7 shows the overhead in MegaBytes transferred to accomplish all the
transactions in the network. We include the overhead of failed payments along
with the ones being successful. The reason being, failed payments also create net-
work congestion by either querying for routes or attempting to forward payments.
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We should not disregard that data. We can see that the transaction overhead in
SpeedyMurmurs is fairly constant over different transaction amounts. On the other
hand, we observe in Source routing that the overhead increases with the increase in
the transaction amounts. This is due to the behaviour of Source routing that tries all
the viable paths if it doesn’t find one as explained in the Section 7.4.3. SpeedyMur-
murs, though being an on-demand route querying algorithm shows promising res-
ults when compared with Source routing. It has an overhead of at least 50% or
much lesser than that of Source routing. This is due to the effect of not using the
onion routing by the nodes to forward payments.

Figure 7.7: Number of MegaBytes transferred for all the transactions

7.4.6 Stabilization overhead

The Figure 7.8 shows the number of KiloBytes transferred in the network when
5 new links(channels) were established. It can be observed that SpeedyMurmurs
outclasses the performance of Source routing. In SpeedyMurmurs, when a new
node/link is added, only a sub-network is affected to update their routing states(spanning
tree links, coordinates). The affected sub-network depends on the position of
node/link in the network. The worst-case occurs when the entered new node be-
comes the root in the spanning tree. This would force the entire network to re-
build the spanning tree. Thus, while developing the root election algorithm for
SpeedyMurmurs, it should strive for less new emergent leaders in the network.
While in Source routing addition of a node/link affects the entire network. The
node/link is advertised to every participating node, which results in a high stabiliz-
ation overhead.

By analysing all the results in this section, we can conclude that SpeedyMurmurs
easily outperformed source routing in the data consumption for any of the routing
operations. One of the main reasons is due to its on-demand stabilization towards
the network changes. This property helps to have low network congestion and
allows scaling to a much larger network.

The success ratio in SpeedyMurmurs was at worst 25% lesser than source rout-
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Figure 7.8: Number of KiloBytes transferred during the network stabilization

ing. This can be attributed to its greedy approach in discovering paths, which is
not an optimal solution. The same tests need to be executed with multiple spanning
trees configured under SpeedyMurmurs. This will enable SpeedyMurmurs to try
multiple routes and also split the payment into smaller chunks. Doing so will take
the success ratio higher. Also, in the real Lightning Network, a failed payment can
be tried after a while. As the link balances change dynamically in the network,
a previously failed route may become valid after some time. Still, if no routes
are found, a flow-based algorithm such as the Ford-Fulkerson [36] can be used to
discover if a route exists in the network.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

Payment channel networks are an emerging field to solve the transaction through-
put and latency issues in the existing blockchain systems. The Lightning Network
has been one of the successful payment channel networks to operate on the main
network. Routing payments is a key component in the Lightning network that
needs to be handled in a proper manner to scale the network efficiently. With this
premise the thesis has sought to fulfill the following research objective:

Design a payment routing algorithm for the Lightning network that builds upon
key ideas in previous work, but takes the specifics of Lightning into consideration.

To answer this question, we began by leveraging SpeedyMurmurs, a generic
payment routing algorithm, to make it specific according to the Lightning net-
work. Subsequently, two important problems in SpeedyMurmurs were identified
and solved. An on-demand privacy-preserving method was designed to compute
the transaction fees and the CLTV expiry. Similarly, another design to send routing
errors in a secure privacy-preserving manner was proposed.

To evaluate our routing algorithm, we designed an emulation network and iden-
tified all its components. The evaluations were performed according to various per-
formance metrics. The results show that SpeedyMurmurs is highly efficient with
respect to the amount of data used in the network for all its operations, compared
with the source routing. Considering that only one spanning tree was configured
during evaluations, SpeedyMurmurs performed decently to find viable routes to
make payments. SpeedyMurmurs though incorporated an on-demand fee collec-
tion and route discovery, its transaction overhead was much lesser than that of the
source routing in the Lightning network.

Thus, we were able to design, implement, test and evaluate a routing algorithm
specific to the Lightning Network, which satisfies our main research objective.
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8.2 Future Work

The following describes the related future research directions:

• Spanning tree: An efficient root election and spanning tree protocol needs
to be designed for SpeedyMurmurs. The protocol also needs to adhere to
the security and privacy guarantees provided by SpeedyMurmurs. It should
also be tolerant towards different Byzantine behaviours exhibited by nodes
while constructing the spanning tree. The authors in [27] attempt for such
an algorithm, which could be a good starting point to investigate further on
this topic.

• Concurrent payments: The thesis did not explore the effects of concurrency
in the routing algorithm. The performance of the routing algorithm with
varying degree of concurrent payments need to be studied. Currently, Light-
ning blocks funds until the payment is successful. There are ongoing re-
search to have non-blocking algorithms [46] during a transaction. This will
affect the performance of the routing algorithm which needs to be studied
further.

• Optimising fees: Most of the Lightning nodes on the mainnet have the same
routing fees at this moment. However, it cannot be guaranteed it will re-
main the same in the future. SpeedyMurmurs tries to finds shortest routes
irrespective of the routing fees of intermediaries. Thus, with non-uniform
fees it is possible that a shorter path has higher fees than the longer ones.
SpeedyMurmurs need to incorporate fees as well when making routing de-
cisions.

• Atomic Multi-path(AMP): There are proposals [21] to make Lightning net-
work support Atomic Multi-path payments. When AMP will be introduced
into the Lightning, the performance of SpeedyMurmurs also needs to be
measured with varying number of spanning trees configured.

To conclude the thesis, though the Lightning Network is relatively new, the net-
work size is growing at a fast pace . The existing source routing algorithm will turn
inefficient soon at such a growth rate. This thesis provides a design of an efficient
routing algorithm that could be a suitable contender to replace the source routing
algorithm.
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