

Delft University of Technology

ElasticDNN
On-Device Neural Network Remodeling for Adapting Evolving Vision Domains at Edge
Zhang, Qinglong; Han, Rui; Liu, Chi Harold; Wang, Guoren; Chen, Lydia Y.

DOI
10.1109/TC.2024.3375608
Publication date
2024
Document Version
Final published version
Published in
IEEE Transactions on Computers

Citation (APA)
Zhang, Q., Han, R., Liu, C. H., Wang, G., & Chen, L. Y. (2024). ElasticDNN: On-Device Neural Network
Remodeling for Adapting Evolving Vision Domains at Edge. IEEE Transactions on Computers, 73(6), 1616-
1630. https://doi.org/10.1109/TC.2024.3375608

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TC.2024.3375608
https://doi.org/10.1109/TC.2024.3375608

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

1616 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024

ElasticDNN: On-Device Neural Network
Remodeling for Adapting Evolving Vision

Domains at Edge
Qinglong Zhang , Rui Han , Chi Harold Liu , Senior Member, IEEE, Guoren Wang , Senior Member, IEEE,

and Lydia Y. Chen , Senior Member, IEEE

Abstract—Executing deep neural networks (DNN) based vision
tasks on edge devices encounters challenging scenarios of signif-
icant and continually evolving data domains (e.g. background
or subpopulation shift). With limited resources, the state-of-the-
art domain adaptation (DA) methods either cause high training
overheads on large DNN models, or incur significant accuracy
losses when adapting small/compressed models in an online
fashion. The inefficient resource scheduling among multiple ap-
plications further degrades their overall model accuracy. In this
paper, we present ElasticDNN, a framework that enables online
DNN remodeling for applications encountering evolving domain
drifts at edge. Its first key component is the master-surrogate
DNN models, which can dynamically generate a small surrogate
DNN by retaining and training the large master DNN’s most
relevant regions pertinent to the new domain. The second novelty
of ElasticDNN is the filter-grained resource scheduling, which
allocates GPU resources based on online accuracy estimation and
DNN remodeling of co-running applications. We fully implement
ElasticDNN and demonstrate its effectiveness through extensive
experiments. The results show that, compared to existing online
DA methods using the same model sizes, ElasticDNN improves
accuracy by 23.31% and reduces adaption time by 35.67x.
In the more challenging multi-application scenario, ElasticDNN
improves accuracy by an average of 25.91%.

Index Terms—Edge vision, deep neural networks, domain
adaptation.

I. INTRODUCTION

TREMENDOUS success of deep neural networks (DNN)
has been demonstrated on vision applications executed

on edge devices [1], e.g. image recognition [2], semantic seg-
mentation [3], and object detection [4]. These DNNs are pre-
trained using massive labeled data (called source domain) in
cloud, and the compressed small DNNs are deployed on edge
devices for various vision tasks. The input data stream on

Manuscript received 20 April 2023; revised 8 January 2024; accepted
21 February 2024. Date of publication 14 March 2024; date of current
version 10 May 2024. This work was supported in part by the National Key
R&D Program of China under Grant 2021YFB3301503, and in part by the
National Natural Science Foundation of China under Grant 62272046, Grant
62132019, and Grant 61872337. Recommended for acceptance by D. Bertozzi.
(Corresponding author: Rui Han.)

Qinglong Zhang, Rui Han, Chi Harold Liu, and Guoren Wang are
with Beijing Institute of Technology, Beijing 100081, P.R. China (e-mail:
hanrui@bit.edu.cn).

Lydia Y. Chen is with the TU Delft, 2628 Delft, The Netherlands.
Digital Object Identifier 10.1109/TC.2024.3375608

edge devices usually comes with a continually changing dis-
tribution, known as evolving domain shifts [5], which may
cause a significant accuracy degradation of the deployed DNN.
For instance, when an automatic vehicle moves to different
locations such as residential area, city center and rural area,
different new domains with diverse backgrounds, features, and
subpopulations differing from the source domain may appear.
Adapting and retraining DNNs in accordance to the evolu-
tion of target domains faces several challenges. First of all,
such model retraining needs to be executed on device, due
to communication and data privacy issues [6]. Second, input
data on edge devices has unknown (or unpredictable) pattern
and unfortunately unlabeled [6]. Last but not least, the most
relevant and realistic execution scenario is that multiple vision
applications are concurrently deployed on a single edge device
whose computation resources, e.g. GPU cycles, can only be
provided in a limited fashion. All in all, retraining multiple
DNN applications on edge devices needs to consider the trade-
off among: evolution of domain shifts, accuracy requirements,
and available GPU resources across applications’ DNNs.

Motivation. We use vision applications of image classifica-
tion (ResNet56 [2]) and object detection (YOLOV3 [7]) to high-
light the challenges of running concurrent domain adaptation
(DA), shown in Fig. 1’s example. We analyze existing model
adaptation techniques and gain insights on their limitations on a
resource-constrained edge device (NVIDIA Jetson AGX Orin).

Limitation 1: Accuracy-overhead dilemma in a single
application. When facing evolving non-stationary vision do-
mains, e.g. can be high up to 30 target domains in Fig. 1,
current online DA methods can be divided into three types:
(1) they train compressed/small models using feature align-
ment [8]; (2) they only tune batch normalization (BN) layers
in original/large models [9]; and (3) they first retrain original
models and then distill and retrain small models from them
[6]. Fig. 1(a) and 1(b) illustrate these methods’ model accu-
racies and retraining time. For the first two types of methods,
only retraining small models or BN layers of large models
results in low accuracies, because the learning capacity of their
backbone model tends to saturate easily when encountering
drastically changing data domains. Although the third type of
methods achieves much higher accuracies, these methods incur
much longer retraining time and become infeasible when having

0018-9340 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on May 30,2024 at 09:25:31 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4072-1198
https://orcid.org/0000-0001-6894-1921
https://orcid.org/0000-0002-0252-329X
https://orcid.org/0000-0002-0181-8379
https://orcid.org/0000-0002-4228-6735
mailto:hanrui@bit.edu.cn

ZHANG et al.: ELASTICDNN: ON-DEVICE NEURAL NETWORK REMODELING FOR ADAPTING EVOLVING VISION DOMAINS AT EDGE 1617

(a) (b) (c) (d)

Fig. 1. Motivation examples in the single/multi-application scenarios to understand DA methods at edge.

limited retraining window at edge. Therefore, the first chal-
lenge lies in designing an adaptation scheme that can dy-
namically adapt/retrain a large model into a small one while
preserving the high accuracy for the incoming target domains
on the fly.

Limitation 2: Inefficient resource scheduling among
multiple co-running applications. Current edge vision sys-
tems allocate an even amount of GPU resources to co-running
vision applications, under an assumption that their DNN model
sizes are fixed during the adaptation [4]. Shown by the prior
art [1], [4], larger models have superior performance in DA
than smaller ones, especially when handling difficult target
domains, meanwhile requiring more computation resources. We
demonstrate in Fig. 1(c) that compared to the optimal GPU
cycle allocation, the accuracy degradation from even and fixed
GPU cycle scheduling can be severe (up to 37.51%), because
it does not factor in the difficulties of target domains across ap-
plications, i.e., changing applications’ model sizes adapting to
domain difficulties. However, existing remodeling techniques,
i.e. adapting DNN models and retraining their weights, con-
sume prohibitively high overheads and hence when applying
them in edge devices, they adversely have the lowest accuracy
(e.g. 0.0148 in Fig. 1(d)) due to the high profiling and retraining
overheads. The second challenge thus is how to support DNN
remodeling with low overheads and leverage such remodeling
to perform fine-grained resource scheduling across multiple
co-running edge applications.

In this work, we present ElasticDNN, a framework that
proactively addresses the challenges of evolving and drastic
domain changes and enables online DNN remodeling for DA
on edge-based vision systems. The core of ElasticDNN is a
master-surrogate framework which leverages the filters of a
large pre-trained master DNN to adaptively generate and retrain
small surrogate DNN on edge devices upon detecting domain

shifts on the fly. When scheduling GPU cycles among multiple
applications at runtime, ElasticDNN replaces fixed network
adaptation with domain-aware network remodeling, and dy-
namically identifies and retrains a subset of filters that are most
relevant to the current target domain’s accuracy. The remod-
eling and retraining granularity of ElasticDNN is the subset of
filters in the master DNN, which enables finer-grained resource
allocation than the existing studies. As such, ElasticDNN is
able to fully explore the advantages of high accuracy of the
large master DNN and low overhead by using its small domain-
specific surrogate DNN.

ElasticDNN presents the following novel techniques to fully
unleash the optimal performance of co-running vision applica-
tions facing drastic domain changes:

• Master-surrogate DNN adaptation framework is pro-
posed to jointly leverage the large learning capacity of
the master DNN and the efficient model retraining and
low inference latency in its compact surrogate DNNs. The
framework enables dynamic architecture changes in the
master DNN while preserving the trainability [10] when
collaboratively training both master and surrogate DNNs.

• Domain-specific DNN remodeling and retraining for
single application (the first challenge). Upon detecting a
domain shift, it leverages the most accuracy-relevant filters
of the master DNN to generate a domain-specific surrogate
DNN online. We further design a novel collaborative train-
ing approach, which retrains only a small domain-sensitive
region in the surrogate DNN and then updates the master
DNN correspondingly.

• Lightweight and filter-grained resource schedul-
ing (the second challenge). It is designed with the aim
to further optimize the overall accuracy of model re-
training among multiple applications and it is com-
posed of two steps. First, ElasticDNN develops an online

Authorized licensed use limited to: TU Delft Library. Downloaded on May 30,2024 at 09:25:31 UTC from IEEE Xplore. Restrictions apply.

1618 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024

estimator to quickly predict a DNN’s accuracies before
and after retraining for the target domain, and thus es-
timates the effectiveness of GPU allocations when re-
training DNNs of different sizes. Second, ElasticDNN
performs filter-grained scheduling such that the limited re-
sources are first assigned to the filters contributing most to
accuracy improvement.

Summary of experimental results. We fully implement
ElasticDNN on top of TensorFlow Lite and PyTorch to sup-
port vision applications on both smart phones and embedded
devices. We conduct extensive experiments against the state-of-
the-art techniques to evaluate the performance of ElasticDNN,
using image classification, semantic segmentation, and object
detection scenarios, and six commodity edge devices (Huawei
Mate20 X, Xiaomi 5S, and four types of Jetson devices). Each
scenario has a mix of four to six prevalent vision benchmarks
to represent the drastic and continuous domain changes in
edge-based vision systems. The results demonstrate that: (1) in
the single-application scenario, compared to baselines on the
same model size, ElasticDNN improves the model accuracy by
23.31% while also achieving 35.67x reduction in adaptation
time; compared to baselines with similar accuracy, ElasticDNN
speeds up the adaptation by 144.70x, reduces inference latency
and memory footprint by 2.55x and 4.14x, thus saving overall
energy consumption by 7.63x on average, with only marginal
accuracy drops of 0.63% to 2.70% (1.66% on average); (2) in
the multi-application scenario, ElasticDNN improves the model
accuracy by an average of 25.91% within the same retrain-
ing window; (3) ElasticDNN is applicable to different DNNs
and DA algorithms, and its scheduling algorithm can be in-
tegrated into existing resource schedulers to improve model
training performance.

II. BACKGROUND AND RELATED WORK

DNN-based edge vision system has been extensively stud-
ied in recent years for delivering low-latency applications,
such as object detection [1] and video analytic [4]. Its ba-
sic paradigm is to pre-train large DNNs in the cloud, deploy
compressed small DNNs [4] on resource-constrained edge de-
vices for low inference latency, and continuously retrains the
deployed models to mitigate accuracy degradation cased by
two types of non-stationary input data distributions: domain
shift and new taskes/classes. Specifically, incremental/continual
learning techniques retrain a DNN to learn new tasks or classes
using massive labeled data [11], and their major cost comes
from labeling and storing samples of previous tasks. In contrast,
DA techniques retrain a DNN to adapt to new target domains
using unlabeled data. This work focuses on the later case and
we discuss existing work from the perspective of single and
multiple applications.

DA techniques for a single application. Traditional DA
techniques are designed to adapt a model to a single, stationary
target domain, using massive samples from the source and
target domains [6]. They transfer well between two similar
domains based on the assumption that target data is available
during the source domain training. However, in edge computing

scenarios, input data varies continuously and online DA meth-
ods are proposed to adapt to new domains using the fixed DNN
networks without having their labeled data. Typical methods
include: (i) BN tuning techniques fast tune the BN layers of a
DNN model [9], [12]; (ii) feature alignment techniques align
the feature (e.g. feature map or feature distribution) between
source domain and target domain, using loss functions [8], [13],
[14] and GAN [15]; (iii) whole network training techniques
retrain all layers in a DNN, using synthesized image [3] and
meta-learning [5]. As the DNN sizes are fixed for all three types
of methods, they are limited in handling drastically evolving
domain shifts, which are much more challenging.

Resource scheduling techniques for multiple edge vision
applications. Allocating resources to co-running retraining and
inference tasks on an edge device requires careful performance
estimation. Ekya [4] performs online micro-profiling to esti-
mate accuracy improvements under different hyper-parameters
(e.g. training iterations) and resource allocations, thus finding
the best solution to achieve the global optimal accuracy of all
tasks. Similarly, RECL [16] monitors run-time training metrics
and uses them to guide resource allocation. In retraining, RECL
maintains a model zoo of previously trained models and selects
the proper one for the current target domain. While those studies
shed light the importance of allocating resources across co-
running application, they are limited in dealing with learning
applications with fixed DNN, which are shown insufficient to
tackle drastic domain shifts.

We note that some recent techniques study the neural ar-
chitecture search (NAS) for the underlying edge devices [17],
[18]. They rely on labeled source domain data to pre-generate
optimal DNN models for specific devices offline. In contrast,
ElasticDNN needs no prior knowledge when generating a new
network architecture at run-time. In addition, expandable net-
works are widely used in incremental/continual learning to
solve such capacity limitation when learning new tasks/classes
[11]. However, the training of expanded networks are based on
massive labeled samples, which are not available in unsuper-
vised DA scenarios.

III. DESIGN OF ELASTICDNN

A. Overview

We design ElasticDNN to adapt DNN models to evolving
domains on edge devices through the proposed feature of on-
line DNN remodeling. As shown in Fig. 2, ElasticDNN is
composed of five modules and they work together to address
limitations/challenges 1 and 2 proposed in Section I.

Online DNN remodeling and collaborative training
for single application (Section III-B). The key enabling
factor of ElasticDNN is the master-surrogate framework that
enables both high accuracy and small model (challenge 1).
This framework generates a new surrogate DNN upon detect-
ing a domain shift. The surrogate model contains the master
DNN’s most accuracy-relevant filters to the new target domain
detected. To achieve efficient DA on resource-constrained edge
devices, ElasticDNN only updates a subset of filters that are

Authorized licensed use limited to: TU Delft Library. Downloaded on May 30,2024 at 09:25:31 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: ELASTICDNN: ON-DEVICE NEURAL NETWORK REMODELING FOR ADAPTING EVOLVING VISION DOMAINS AT EDGE 1619

Fig. 2. ElasticDNN overview.

most sensitive to the target data, and accumulates seen domains’
knowledge without expensive training of the master DNN.

• Offline master DNN constructor (Section III-B1). In order
to support the master-surrogate DNN framework, the con-
structor uses the source domain data to pre-train the master
DNN with twofold objectives. First, the master DNN
supports dynamic architecture changes at run-time and it
has good trainability [10], which decides the easiness
to optimize a DNN. Second, the constructor generates a
separate data structure, termed domain knowledge, to
store each seen target domain’s trained DNN as its weight
matrices. This data structure is then used to update the
master DNN while maintaining its trainability. The pre-
training is performed once at the offline stage.

• Domain-specific surrogate DNN generator (Section
III-B2). Once a new target domain is detected, the genera-
tor extracts a small domain-specific surrogate DNN from
the master DNN, using one quick inference of the master
DNN on the target domain’s most representative sample.
The surrogate DNN consists of only the most accuracy-
relevant filters of the master DNN.

• Collaborative master-surrogate DNN trainer (Section
III-B3). The trainer has two stages. Stage 1 quickly trains
the generated surrogate DNN by only updating a small
portion of its filters that are most relevant to the model
convergence. Stage 2 first stores the trained surrogate DNN
into the domain knowledge, and then updates the master
DNN. Note that the master DNN is updated layer by layer
to save memory footprint and its size keeps unchanged
with new domain knowledge is stored.

Filter-grained resource scheduling for multiple appli-
cations (Section III-C). On edge devices, ElasticDNN sup-
ports low-overhead DNN remodelling and fine-grained resource
scheduling among multiple applications with two modules
(challenge 2). First, the accuracy estimator for evolving do-
mains quickly estimates each DNN’s accuracy improvement in
DA under different model sizes. The estimation provides mul-
tiple optional model sizes for each application and thus enables
the scheduler to adjust its DNN at the filter granularity. When
considering multiple applications, the filter-grained resource
scheduler optimizes resource allocation such that it assign more
resources to a DNN bring more accuracy improvement in DA.
That is, this DNN is expanded with more filters in remodeling
and it is then retrained.

• Accuracy estimator for evolving domains (Section III-C1).
The estimator has two steps. Step 1 predicts the surrogate

DNN’s accuracy improvement in DA given its model size
and the current target domain’s information. Step 2 then
calibrates the prediction based on the actual predication
results of previous domains. This calibration can improve
the estimation precision because similar domains also have
similar accuracy improvements in DA.

• Filter-grained resource scheduler for n applications (Sec-
tion III-C2). Given the estimated accuracy improvements
and retraining time of all applications, the scheduler con-
structs an optimization problem that maximizes the overall
accuracy be deciding each application’s DNN size and as-
signed resource. The problem is solved by an evolutionary
search approach.

B. Online DNN Remodeling and Collaborative Training for
Single Application

1) Offline Master DNN Constructor: The constructor pre-
trains the master DNN and the domain knowledge for two pur-
poses. First, the master DNN has sufficient learning ability and
it is capable of remodeling into a small surrogate DNN when
detecting a new target domain. Second, the domain knowledge
accumulates the learned DNNs’ knowledge of all seen domains.

In the master DNN, each convolutional layer is extended
with a Feature Boosting and Suppression (FBS) module [19].
FBS allows the layer computing without some filters according
to the layer’s input, that is, it remodels a large layer to a specific
small layer. The addition of FBS only slightly increases the
model size (e.g. 1.87% in ResNet18 [2]).

Let θi,j be the weight of i-th (1≤ i≤N) convolutional
layer’s j-th (1≤ j ≤Ni) filter, the domain knowledge Θ∗ is
defined as a list of weight matrix sets:

Θ∗ = {Θ∗
1,Θ

∗
2, · · · ,Θ∗

N}
Θ∗

i = {θ∗i,1, θ∗i,2, · · · , θ∗i,Ni
} (1)

where Θ∗
i is a weight matrix set and θ∗i,j (1≤ j ≤Ni) is a

weight matrix. In the master DNN and the domain knowledge,
each pair of θ∗i,j and θi,j has the same format and hence these
two matrix sets can interact with each other using addition or
multiplication.

Master DNN and domain knowledge pre-training.
The constructor uses two losses in the pre-training. The
first loss (e.g. the cross-entropy in image classification task)
initializes the master DNN’s learning ability and remod-
eling ability. The second loss defines the interaction be-
tween the master DNN and the domain knowledge. This loss

Authorized licensed use limited to: TU Delft Library. Downloaded on May 30,2024 at 09:25:31 UTC from IEEE Xplore. Restrictions apply.

1620 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024

Fig. 3. Two steps in domain-specific surrogate DNN generator.

is defined as min
∑N

i=1

∑Ni

j=1 ‖θi,j −
∑Ni

k=1 wi(j, k) · θ∗i,k‖22,
where wi(j, k) represents the relevance between the filter θi,j
in the master DNN and the weight matrix θ∗i,k in the domain
knowledge. After pre-training, the loss is minimized to 0 so that
a filter in the i-th layer θi,j equals to a linear combination of
the i-th weight set Θ∗

i in the domain knowledge. This combina-
tion relationship allows each master DNN’s filter to receive an
appropriate amount of knowledge from the domain knowledge,
without affecting master DNN’s remodeling ability.

2) Domain-Specific Surrogate DNN Generator: The
domain-specific DNN generator remodels the master DNN into
a small domain-specific surrogate DNN at run-time with two
steps.

Representative/difficult sample selection. Given unlabeled
samples in a target domain, step 1 selects the most difficult one
to represent this domain. This sample requires the highest level
of activations in model weights/filters to capture its semantic
information [19], and such activation level is also sufficient
to handle other simpler samples in the target domain. To this
end, step 1 defines the difficulty of a sample �xi as the Shan-
non entropy H(yi) =−

∑
c p(y

c
i) · log(p(yci)) of the master

model’s output yi, where p(yci) denotes the probability that �xi is
predicted as class c. A larger value of prediction entropy means
the model is less confident about this prediction, namely �xi

is more difficult [13]. As shown at the top of Fig. 3, given a
batch of v samples {�x1, �x2, · · · , �xv} in the target domain, step
1 first obtains the master DNN’s outputs {y1, y2, · · · , yv} and
calculates their Shannon entropy {H(y1), H(y2), · · · , H(yv)},
and then selects the most difficult sample that has the largest
entropy value �x∗ = �xj (j = argmax

j
H(yj)).

Accuracy-relevant filter selection. Step 2 conducts one
inference of the master model on sample �x∗ and selects the most
accuracy-relevant filters from the master DNN. In inference,
for the i-th convolution layer Convi, the relevance of its filters
to accuracy is calculated by its FBS module. As shown in the
bottom of Fig. 3, its FBS module receives the input feature map
F in

i and outputs a one-dimensional vector �pi. In �pi, the j-th
element pi,j (0≤ pi,j ≤ 1) corresponds to the j-th filter’s rele-
vance to model accuracy. After calculating all filters’ relevance
values, the convolution layer outputs feature map Fout

i :

�pi =ReLU(Linear(AvgPool2d(F in
i)))

Fout
i = Convi(F in

i) ∗ �pi (2)

where ReLU , Linear, and AvgPool2d represent a ReLU
layer, fully connected layer, and average pooling layer in the
FBS module, respectively. The original output feature map is
multiplied by filters’ relevance values �pi. After selecting a pro-
portion (e.g. 30%) of filters with the largest relevance values,
step 2 reassembles these filters into a new surrogate DNN
model. This reassembling process is conducted layer by layer
in the master DNN to save memory footprint.

3) Collaborative Master-Surrogate DNN Trainer: Surro-
gate DNN retraining. The trainer selects and trains a small
proportion of filters in the surrogate DNN. This is based on the
observation that in model training, most of the model weights
have small gradients and contribute little to model accuracy,
but the calculation of these gradients takes most of the model
training time and memory footprint [20]. Our approach chooses
to select model weights at the filter level because a filter is basic
unit to extract feature information of input data [19] and hence
the weights in the filter have similar gradients. The retraining
has two steps.

Step 1. Filter gradient calculation. A straightforward ap-
proach to calculate the magnitude of a filter’s gradient is to
conduct one full forward and backward with target data and then
check the filters’ generated gradients. On resource-constrained
edge devices, the proposed trainer employs a lightweight calcu-
lation method via the BN layer, because the BN layer calibrates
the filter’s output distribution and the magnitudes of their gra-
dients are approximately proportional to each other. Formally,
the magnitude of a filter’s gradient is calculated as the mag-
nitude of its corresponding BN channel’s parameter changes
(i.e. the magnitude of gradients): s= ‖ 1

v

∑v
i=1 ∇βL(yi)‖1 +

‖ 1
v

∑v
i=1 ∇γL(yi)‖1, where β and γ represent the BN chan-

nel’s weight and bias. This calculation is much cheaper than
the calculation using all layers. For example, given a filter in
ResNet56, the BN-based calculation reduces memory footprint
by 192x and FLOPs by 144x.

Step 2. Filter selection and model training. The trainer ranks
the filters in descending order according to their gradients and
selects the top ranked filters whose accumulated gradient meets
the threshold (e.g. 80%) of the summarized gradient. It then
applies an unsupervised training algorithm (e.g. information
maximization [13] or feature alignment [8]) to train the se-
lected filters of the surrogate DNN. Note that compared
with supervised algorithms, unsupervised algorithms use the
model’s output to calculate loss in gradient descent and

Authorized licensed use limited to: TU Delft Library. Downloaded on May 30,2024 at 09:25:31 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: ELASTICDNN: ON-DEVICE NEURAL NETWORK REMODELING FOR ADAPTING EVOLVING VISION DOMAINS AT EDGE 1621

they also employ back propagation to update model pa-
rameters. For example, given only the model’s outputs of
v samples {y1, · · · , yv}, information maximization first cal-
culates loss as − 1

v

∑v
i=1

∑
c p(y

c
i) · log(p(yci)) +

∑
c p(ŷ

c) ·
log(p(ŷc)), where p(yci) denotes the probability that the i-th
sample is predicted as class c and p(ŷc) = 1

v

∑v
i=1 p(y

c
i), and

then back propagates the loss to update model parameters in the
feature extractor.

Master DNN updating. Motivated by the problem that the
master DNN needs to learn from unseen target domains without
incurring high training overheads and sacrificing trainability,
our trainer updates the master DNN’s weights based on the
domain knowledge. That is, the trainer first accumulates a
seen target domain’s full information in the domain knowledge
and then transfers an approximation of this information to the
master DNN. Formally, let Δθi,j be the change (i.e. learned
knowledge) of a filter’s weight θi,j in the surrogate DNN, the
change is first stored into the corresponding weight set Θ∗

i of
the domain knowledge:

∀ θ∗i,k ∈Θ∗
i , θ

∗
i,k ← θ∗i,k + wi(j, k) ·Δθi,j (3)

where ← means assignment operation. We can see that the do-
main knowledge stores the newly learned knowledge by chang-
ing the values of existing weights θ∗i,k, rather than explicitly
storing a new set of surrogate DNN’s weights. Subsequently,
the trainer updates a filter θi,j in the master DNN using the
weight set Θ∗

i :

θi,j ←
∑

∀θ∗
i,k∈Θ∗

i

wi(j, k) · θ∗i,k (4)

Note that Equations 3 and 4 are executed multiple times using
different values of i, j, and k, thus updating the master DNN
layer by layer.

Running Example. Fig. 4 demonstrates how the three mod-
ules of ElasticDNN work together to complete an online re-
modeling and collaborative training on ResNet18. At the offline
stage, the offline master DNN constructor trains the master
DNN using 40k iterations. At run-time, suppose a domain shift
is detected, the domain-specific surrogate DNN generator first
estimates the accuracy relevance of all filters according to the
most difficult sample, and then generates a surrogate DNN with
20% of the most accuracy-relevant filters (i.e. filters with darker
colors). Subsequently, the trainer calculates the magnitude of
surrogate DNN filters’ gradients, and trains only 30% of them
because these filters contribute to 80% of the summarized gra-
dients. Finally, the collaborative master-surrogate DNN trainer
updates the master DNN’s model weights according to the
accumulated domain knowledge.

C. Filter-Grained Resource Scheduling for Multiple
Applications

Given n applications, each application has its target domain k
and C surrogate DNNs of different model sizes, the scheduling
has two stages. First, the accuracy estimator predicts the i-th
application’s accuracy A

(k)
i,j before retraining and accuracy Ã

(k)
i,j

after retraining when it uses the j-th model size (1≤ j ≤ C).

Fig. 4. An example of online remodeling and collaborative training.

Second, the scheduler uses the estimated accuracies to decide all
applications’ model sizes and assigned resources, with the goal
of achieving the highest overall accuracy within the retraining
window tmax.

1) Accuracy Estimator for Evolving Domains: The estima-
tor first gives an initial prediction of model accuracy for target
domain k and then corrects the prediction based on previous
accuracies of the past k − 1 domains. This is based on the
observation that the model accuracy of domain k should be
similar to the model accuracy of a seen domain if two domains
are similar.

Accuracy prediction. For the j-th model size of the i-th ap-
plication, the prediction takes three inputs: (i) remodeling ratio
si,j is the j-th model size divided by the original/uncompressed
model size; (ii) domain distance dis0,k is the distance between
source domain (0-th domain) and target domain k; (iii) domain
representation denotes the mean feature vectors of source and
target domain. By concatenating these inputs as a vector I, the
prediction employs a tiny fully connected network to output a
vector O= (A

(k)
i,j , Ã

(k)
i,j) that contains the estimated accuracies

before and after retraining.

σ1, · · · , σk−1 ← softmax

(
1

disk,1
, · · · , 1

disk,k−1

)

(5)

A
(k)
i,j ← 1

2
A

(k)
i,j +

1

2

(
k−1∑

a=1

σa · rA(a)
i,j

)

(6)

Ã
(k)
i,j ← 1

2
Ã

(k)
i,j +

1

2

(
k−1∑

a=1

σa · r̃A
(a)

i,j

)

(7)

Authorized licensed use limited to: TU Delft Library. Downloaded on May 30,2024 at 09:25:31 UTC from IEEE Xplore. Restrictions apply.

1622 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024

Accuracy calibration. The calibration corrects A
(k)
i,j and

Ã
(k)
i,j using three steps. Step 1 calculates the distance disk,a be-

tween the current target domain k and each past domain a (1≤
a≤ k − 1), and normalizes these distances’ inverses by softmax
(Equation 5). Using the normalized distances as weight, step 2
calculates a weighted average of the past monitored accuracies
before training {rA(1)

i,j , · · · , rA
(k−1)
i,j }, and averages it and A

(k)
i,j

as the calibrated A
(k)
i,j (Equation 6). That is, the monitored

accuracies in similar domains have larger influences in calibra-
tion. Finally, step 3 calculates a weighted average of the past

monitored accuracies after training {r̃A
(1)

i,j , · · · , r̃A
(k−1)

i,j }, and

averages it and Ã
(k)
i,j as the calibrated Ã

(k)
i,j (Equation 7).

2) Filter-Grained Resource Scheduler for n Applications:
Based on the estimated accuracies, the scheduler finds the op-
timal model size and the amount of allocated resources for
each application. The optimization objective is to maximize
the overall accuracy among n applications whose models need
retraining, where each application’s accuracy is the model ac-
curacy averaged over the retraining window (aggregating accu-
racies before and after the retraining) [4]. Equation 8 defines
the optimization objective in the target domain k.

max
n∑

i=1

C∑

j=1

[

A
(k)
i,j ·

(

tmax − Ti,j

λ
(k)
i

)

+ Ã
(k)
i,j · Ti,j

λ
(k)
i

]

·O(k)
i,j

(8)

s.t.

O
(k)
i,j ∈ {0, 1},

C∑

j=1

O
(k)
i,j = 1 (9)

λ
(k)
i =

∑C
b=1 si,b ·O

(k)
i,b

∑n
a=1

∑C
b=1 sa,b ·O

(k)
a,b

(10)

∀ 1≤ i≤ n,

C∑

j=1

Ti,j

λ
(k)
i

·O(k)
i,j ≤ tmax (11)

• The decision variable O
(k)
i,j for selecting a model size is

either 0 (not selected) or 1 (selected). For each application,
only one model size is selected (Equation 9);

• λ
(k)
i represents the percentage of allocated resources to

the i-th application. λ
(k)
i is proportional to the model

size (i.e. the remodeling ratio si,j) of the i-th application
(Equation 10);

• Ti,j represents the retraining time of the i-th application
under the j-th model size when it is allocated 100% of
resources. When it is allocated only λ

(k)
i of resources, its

retraining time needs to be scaled by λ
(k)
i (Equation 8

and 11);
• The time constraint is applied in each application such

that the retraining time should not exceed the retraining
window tmax (Equation 11).

The scheduler utilizes an evolutionary search approach [18]
to solve this optimization problem. The search process consists
of multiple iterations. At each iteration, it either generates new

Fig. 5. An example of filter-grained resource scheduling.

random solutions or randomly mutates previously preserved
solutions, evaluates them, and retains better solutions for the
next iteration. When no better solution can be found, the search
process is early-stopped and outputs the optimal solution. Due
to the small dimension of the solution space (no more than 32
in our case, with n= 4 and C = 8), the search only takes ∼5
seconds on edge devices. After solving the problem, suppose
the i-th application generates a surrogate DNN under the j-
th (O(k)

i,j = 1) model size, this application is allocated λ
(k)
i of

resources in retraining. The resource allocation is developed
based on lightweight Kubernetes/K3s on edge devices. All com-
ponents of K3s consume less than 100MB of memory.

Running Example. Fig. 5 demonstrates how ElasticDNN
performs filter-grained resource scheduling among n applica-
tions. For each application, the accuracy estimator first quickly
predicts its surrogate DNN’s accuracies A

(k)
i,j , Ã

(k)
i,j before and

after DA under different model sizes (e.g. within 0.5 seconds).
Subsequently, the resource scheduler takes the estimated ac-
curacies, the retraining time Ti,j , the remodeling ratios si,j of
n applications, and the retraining window tmax as input, and
spends 5 seconds to search the optimal scheduling solution:
each application’s model size and assigned resource. We can
see that application 2 is allocated the largest proportion (35%)
of resources because its DNN brings the highest accuracy im-
provement in DA.

IV. EVALUATION

In this section, we evaluate the full implementation of Elas-
ticDNN with an extensive set of evaluations.

Authorized licensed use limited to: TU Delft Library. Downloaded on May 30,2024 at 09:25:31 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: ELASTICDNN: ON-DEVICE NEURAL NETWORK REMODELING FOR ADAPTING EVOLVING VISION DOMAINS AT EDGE 1623

TABLE I
SUMMARY OF FOUR WORKLOADS IN EVALUATION

Workload Source Domain Target Domain Model Acc. Metric
Image

Classification
(32× 32)

CIFAR-10 [21]
SVHN [22]

MNIST [23]
STL-10 [24]
USPS [23]

ResNet56 [2] top-1 acc.

Image
Classification
(224× 224)

ImageNet [25]
SYN SIGNS [26]

Caltech256 [27]
GTSRB [28]

DomainNet [29]
SENet18 [30] top-1 acc.

Semantic
Segmentation

GTA5 [31]
Supervisely [32]

CityScapes [33]
BaiduPerson [34]

DeepLabV3 [35] mIoU

Object Detection
MSCOCO2017 [36]
WI Face Mask [37]

VOC2012 [38]
MakeML Mask [39]

YOLOV3 [7] mAP@0.5

A. Basic Settings

Hardware setup. We choose six edge devices of heteroge-
neous hardware architectures: (1) Huawei Mate20 X has eight
2.6GHz ARM-based cores (Kirin 980 GPU) and 8 GB memory;
(2) Xiaomi 5S Plus has four 2.35GHz Quad cores (Qualcomm
Snapdragon 821 CPU) and 4 GB memory; (3) NVIDIA Jetson
TX2 has 256-core NVIDIA Pascal GPU and 8 GB memory;
(4) NVIDIA Xavier NX has 384-core NVIDIA Volta GPU
and 16GB memory; (5) NVIDIA AGX Xavier has 512-core
NVIDIA Volta GPU and 32GB memory; and (6) NVIDIA AGX
Orin has 1792-core NVIDIA Ampere GPU and 32GB mem-
ory. The two smart phones run Android OS 10.0 and support
DNNs in TensorFlow Lite 2.8.0. The four NVIDIA platforms
run Ubuntu 18.04.5 LTS and support DNNs in PyTorch 1.9.0
(Python 3.6.9).

DNN models, evolving datasets, and applications. We
construct four workloads in three representative edge-based
vision scenarios: image classification, semantic segmentation,
and object detection. The configurations of workloads are de-
tailed in Table I. These workloads provide evolving and drastic
domain shifts by interleaving the arrival of target domains over
time and 30 target domains are tested in each workload.

B. Evaluation of Single-Application Scenario

Compared baselines. We implement and compare three
categories of state-of-the art online DA methods: (1) BN tuning
methods including ONline DA (ONDA) [12] and Tent [9]; (2)
feature alignment methods including Source HypOthesis Trans-
fer (SHOT) [13], ConDA [14], Bottom-Up Feature Restora-
tion (BUFR) [40], Incremental Adversarial Domain Adaptation
(IADA) [15], and CUA [8]; and (3) whole network training
methods including Adapting to changing environments (ACE)
[3]. We also report the model accuracies without DA as source.

Offline model pre-training. For each workload, all methods
start from the same large DNN pre-trained using the source
domain data. Subsequently, for baseline methods, four pre-
trained models are compressed by removing 80% filters. For
ElasticDNN, we use the pre-trained model to initialize master
DNN and make sure that its surrogate DNNs have exactly the
same model size as baseline methods’ compressed models. All
offline training tasks are executed on a GPU server with 48-
GB Quadro RTX 8000 Graphics Card. For each workload,
the training time of baseline methods ranges between 2.93 to
5.87 hours, and this time ranges between 6.40 to 13.78 hours

for ElasticDNN. For each method, the offline pre-training is
executed once.

Online DA settings. We implement and evaluate the online
DA using a benchmark for evolving domains at edge [41]. The
hyperparameters of all methods are automatically searched in
this benchmark before evaluation. For each target domain, the
number of available unlabeled samples is set to 100 to reflect
realistic online DA scenario [5]. All workloads are evaluated on
Huawei Mate20 X, Xiaomi 5S Plus, NVIDIA Xavier NX, and
NVIDIA AGX Xavier, respectively.

Metrics. We measure three metrics: (1) model accuracy:
it denotes the accuracy once the model is adapted to a new
target domain; (2) online DA time: it is the model retraining
time for baseline methods; and it includes both surrogate DNN
retraining time and master DNN updating time for ElasticDNN;
(3) online DA overheads including inference latency, memory
footprint in the retraining, and energy consumption by Bat-
teryManager from Android API and in_power0_input
interface on NVIDIA devices.

1) Accuracy Improvement Under the Same Model Size:
Fig. 6 demonstrates the accuracies of all methods in four
workloads. We have three key observations from the results.
First, ElasticDNN consistently delivers higher accuracies than
all baselines for two reasons: (1) the surrogate DNN is cus-
tomized for the target data hence contains its most accuracy-
relevant filters; (2) the master DNN continuously learns from
seen domains to generate more robust surrogate DNNs in the
domains later. Second, when encountering more challenging
scenarios with complex DNNs and vision tasks (Fig. 6(c) and
6(d)), ElasticDNN outperforms existing methods significantly
because baseline methods’ small models lack enough learning
capacity for complex vision tasks. Finally, ElasticDNN is appli-
cable to the DNN models of all workloads. In contrast, BUFR
may cause logit explosion and lead to low accuracy (Fig. 6(b));
SHOT, ConDA, and BUFR are inapplicable to last two work-
loads because their pseudo-labeling or retraining algorithms are
designed for specific image classification applications.

Comparison of DA time. As listed in Table II, two BN
tuning methods (ONDA and Tent) have the lowest DA time,
but they also produce the lowest accuracies among all methods.
Except these two methods, ElasticDNN achieves the shortest
DA time for two reasons: (1) before training, ElasticDNN’s
domain-specific surrogate DNN has a higher accuracy than
most of baseline methods’ models, so its training converges
faster; (2) the surrogate DNN is trained using a small proportion
of filters that have the largest gradients.

Comparison of memory footprint. In this evaluation, we
choose the first domain as an example to test the memory foot-
print of each method (different domains have similar memory
footprints). From the perspective of memory usage, baseline
methods (e.g. CUA) have three stages in retraining: (1) work-
load initialization that loads model parameters and target data
into memory; (2) retraining the loaded model; and (3) retrain-
ing completion that releases the target data and cache from
memory. In contrast, ElasticDNN has two additional stages
before and after the original retraining stage: (4) surrogate
DNN generation that loads and uses the master DNN in one

Authorized licensed use limited to: TU Delft Library. Downloaded on May 30,2024 at 09:25:31 UTC from IEEE Xplore. Restrictions apply.

1624 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024

Fig. 6. Accuracies in continuous domain adaptation of eight baselines and ElasticDNN.

TABLE II
DA TIME (MINUTES) ON SMALL DNNS

Image
Classification

(32×32)

Image
Classification
(224×224)

Semantic
Segmentation

Object
Detection

ONDA 0.09 0.22 0.88 1.01
Tent 0.42 9.42 0.91 2.52

SHOT 629.25 821.20 N/A N/A
BUFR 149.53 251.43 N/A N/A
CUA 1596.70 3378.14 309.48 57.19
IADA 241.39 207.90 153.97 70.73
ACE 2354.95 5219.28 649.91 344.54

ConDA 846.93 1723.43 N/A N/A
ElasticDNN 26.48 58.20 9.97 4.42

inference operation and (5) master DNN updating that loads
and updates the master DNN. Note that fastest BN layer tuning
methods are not considered here because they have the lowest
accuracies (26.60% lower than ElasticDNN). Fig. 7 illustrates
the evaluation results and we have two observations.

First, ElasticDNN has the lowest average memory footprint
than all baseline methods, because it proposes three strategies
to reduce the memory footprint of the large master DNN: (i)
ElasticDNN only requires one quick inference of the master
DNN to generate the surrogate DNN. In inference, ElasticDNN
interleaves the loading and forward operation of layers; (ii) after
retraining, ElasticDNN updates the master DNN layer by layer;
and (iii) ElasticDNN only retrains a small proportion of filters
with the largest gradients.

Second, CUA, ACE, and IADA consume the largest memory
footprint, because they retrain the entire model/feature extrac-
tor and maintain additional samples or models in the mem-
ory. Specifically, CUA randomly stores some previous samples
at each retraining iteration, ACE uses an image generator to

generate high-resolution images, and IADA introduces a gen-
erator and a discriminator to perform feature alignment.

Discussion of NAS-based DA. We note that the NAS-based
DA methods also search for the optimal network architecture
according to the given data. However, they take prohibitively
long time on resource-constrained edge devices. Take the image
classification (224×224) workload as an example, latest tech-
niques such as OFA [18] and PIT [17] are expected to take about
211 and 3.8 days when running on NVIDIA AGX Orin (the
most powerful edge device). This searching time is estimated by
running the two techniques for 5% of search iterations, because
they have the same searching time each iteration.

Results. Compared to baseline techniques using the same
model size, ElasticDNN increases accuracy by an average of
23.31%, accelerates the DA process by an average of 35.67x,
and saves the memory footprint by an average of 43.10%.

2) Energy Consumption Reduction With Similar Accuracy:
Following the settings of the previous section, we compare
baseline methods on the original large DNNs, which achieve
similar accuracies as ElasticDNN. BN layer tuning methods are
not considered because using large DNNs, they still have similar
accuracies with the source method without adaptation and much
lower accuracies than other methods. The evaluation results in
Fig. 9 show that ElasticDNN significantly reduces the inference
latency, DA time, and memory footprint while delivering 4.36%
higher accuracy. In the following experiments, we focus on the
energy consumption metric.

Comparison of energy consumptions on heterogeneous
edge devices. In this evaluation, we test two image classifica-
tion workloads on six edge devices and the last two workloads
on three NVIDIA GPU devices (these workloads cause out-of-
memory (OOM) error on smartphones). For measuring infer-
ence energy consumption of each workload, we emulate its real

Authorized licensed use limited to: TU Delft Library. Downloaded on May 30,2024 at 09:25:31 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: ELASTICDNN: ON-DEVICE NEURAL NETWORK REMODELING FOR ADAPTING EVOLVING VISION DOMAINS AT EDGE 1625

Fig. 7. Memory footprint of baselines methods and ElasticDNN in the first domain.

Fig. 8. Average energy consumption in each domain on heterogeneous devices.

edge-based vision scenario by conducting 1000 inferences in
each target domain. Each evaluation is repeated for three times
and the average energy consumption is reported.

Fig. 8 shows evaluation results (y-axis is in log scale). We
can see that in DA, ElasticDNN achieves remarkable energy
saving in all workloads (59.74x on average). In most cases,
ACE consumes the largest energy because it not only caches
old data samples for future training but also introduces another
huge network to generate high-resolution images. In inference,

the small surrogate DNN in ElasticDNN saves much energy
consumptions compared to baselines methods (2.55x on aver-
age). Table III summarizes ElasticDNN’s energy saving ratios
compared to baseline methods, where “-” notation means the
method suffers from OOM error. Overall, ElasticDNN saves
energy consumptions by an average of 7.63x.

Discussion of power modes. Table IV reports the av-
erage DA energy consumption on edge devices’ different
power modes: (a-c) represent normal/performance/ultra power

Authorized licensed use limited to: TU Delft Library. Downloaded on May 30,2024 at 09:25:31 UTC from IEEE Xplore. Restrictions apply.

1626 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024

Fig. 9. Accuracy and overheads when baselines have similar accuracy to
ElasticDNN.

saving mode respectively on Huawei Mate20 X and Xiaomi 5S
Plus, and (d-f) represent 10W Desktop/15W 6Core/10W 2Core
on NVIDIA Xavier NX respectively. Overall, ElasticDNN
saves energy consumption by an average of 71.61x, 79.80x,
81.55x, 40.04x, 46.50x, 41.12x in the six power modes ((a) to
(f)), respectively.

Results. Compared to all baseline methods using the origi-
nal large DNNs, ElasticDNN achieves 4.36% higher accuracy
and has only up to 2.70% marginal accuracy drop when just
comparing to the method that achieve the highest accuracy.
Based on the similar accuracy, ElasticDNN reduces DA time,
inference latency, memory footprint, and energy consumptions
by an average of 144.70x, 2.55x, 4.14x, and 7.63x, respectively.

C. Evaluation of Multi-Application Scenario

In this section, we extend the above evaluation by test-
ing the multi-application scenarios in Ekya [4]. On an edge
device (NVIDIA Xavier NX or NVIDIA AGX Orin), we
test 2 to 4 concurrent vision applications (image classifi-
cation, semantic segmentation, or object detection). Within

TABLE III
ENERGY SAVING RATIO IN ELASTICDNN

Huawei
Mate20

X

Xiaomi
5S

Plus

NVIDIA
Jetson
TX2

NVIDIA
Xavier

NX

NVIDIA
AGX

Xavier

NVIDIA
AGX
Orin

Image Classifi-
cation (32×32)

DA 117.25x 121.41x 33.19x 36.93x 28.56x 31.56x
Inference 2.37x 2.49x 2.39x 2.21x 2.99x 2.12x

Image Classifi-
cation (224×224)

DA 28.98x 26.29x 313.75x 311.89x 325.18x 327.84x
Inference 2.63x 2.34x 2.63x 2.15x 2.34x 2.13x

Semantic
Segmentation

DA - - - 32.85x 37.97x 34.83x
Inference - - - 3.07x 2.91x 3.14x

Object
Detection

DA - - - 40.54x 47.22x 46.42x
Inference - - - 2.46x 2.45x 2.87x

TABLE IV
AVERAGE ENERGY CONSUMPTION (J) IN DA UNDER

DIFFERENT POWER MODES

SHOT BUFR CUA IADA ACE ConDA ElasticDNN
Image

Classification
(32×32)

(a) 7.15e2 1.51e3 2.00e4 5.80e2 2.60e4 1.33e3 7.13e1
(b) 9.32e2 1.92e3 2.16e4 1.01e3 3.56e4 2.10e3 7.83e1
(c) 9.63e2 2.01e3 1.90e4 1.34e3 4.05e4 2.39e3 8.01e1

Image
Classification
(224×224)

(a) 1.05e4 1.91e4 6.93e4 8.51e4 1.06e5 2.40e4 1.99e3
(b) 1.35e4 2.52e4 9.39e4 1.10e5 1.43e5 2.85e4 2.70e3
(c) 1.40e4 2.87e4 9.21e4 1.11e5 1.38e5 3.20e4 2.76e3

Object
Detection

(d) N/A N/A 2.42e3 2.47e3 1.49e4 N/A 1.65e2
(e) N/A N/A 3.26e3 4.18e3 1.67e4 N/A 1.73e2
(f) N/A N/A 2.20e3 2.82e3 1.09e4 N/A 1.29e2

each retraining window (10 minutes), each application has
both retraining/adaptation and inference tasks, and the tested
scheduler aims to maximize their overall accuracy of all
applications’ tasks.

Compared baselines. We implement and compare with two
edge schedulers: Ekya [4] and its uniform version, denoted as
Uniform, which uses the fixed retraining configuration and av-
eraged resource allocation for each application. We also discuss
RECL [16], which reuses past retrained models and schedules
resources according to the real-time monitored training met-
rics. In addition, we integrate our approach with three resource
schedulers that optimize retraining tasks’ makespan in GPU
servers (AFS [42], Synergy [43], and Muri [44]), and explore
how ElasticDNN can improve these schedulers’ performance.

1) Estimation Accuracy and Overhead: The effectiveness
of resource scheduler is considerably impacted by its ability
to estimate models’ accuracy improvement under diverse target
domains. We test the target domains in Section IV-B’s four
workloads and report the estimation errors in ElasticDNN and
Ekya. Fig. 11 illustrates the estimation errors’ distributions, av-
erage time usages, and average memory consumptions. We can
see that ElasticDNN’s estimation error is much lower, because
of its prediction is based on sufficient offline training and online
calibration using monitored accuracies. Moreover, ElasticDNN
considerably reduces the estimation overheads because Ekya
needs to execute tens of retraining trials for profiling one DNN.
This low estimation overhead as well as the small memory us-
age in retraining (Fig. 7) indicate ElasticDNN can also achieve
the lowest memory footprint in multi-application scenarios.

Result. In estimation, ElasticDNN reduces time usage and
memory consumption by an average of 8.91x and 1.93x, and
achieves 7.74% lower estimation error.

2) Overall Performance: Fig. 10 demonstrates the overall
model accuracies of ElasticDNN as well as two baseline meth-
ods. Each sub-figure represents an evaluation on a specific mix

Authorized licensed use limited to: TU Delft Library. Downloaded on May 30,2024 at 09:25:31 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: ELASTICDNN: ON-DEVICE NEURAL NETWORK REMODELING FOR ADAPTING EVOLVING VISION DOMAINS AT EDGE 1627

Fig. 10. Overall accuracies in the multi-application scenario of two baselines and ElasticDNN.

of applications. The results show that ElasticDNN consistently
outperforms two baselines, because it employs lightweight ac-
curacy estimation that leaves more time for retraining, and
conducts filter-grained resource scheduling that better utilizes
limited resources. In contrast, Ekya’s heavy profiling takes up
a large proportion of time that would be spent in retraining,
making it performs even worse than Uniform in most cases
(except Fig. 10(b)).

Discussion of re-using trained models. A complementary
approach of Ekya is RECL [16], which reuses past trained
models for faster convergence in model retraining. By testing it
using the mix of applications in Fig. 10(f), the results shows that
RECL still performs much worse than our approach by 13.94%,
because all its stored models have a fixed network architecture
and thus have limited learning capacity.

Result. ElasticDNN achieves 17.34% to 35.82% accuracy
improvement compared to the baselines, 25.91% on average.

3) Integration With Resource Scheduler in GPU Servers:
In this evaluation, we test three typical server-based schedulers
using the the mix of applications in Fig. 10(f). These sched-
ulers consider two conditions in their DNNs: fixed models or
domain-adaptive models created by ElasticDNN. The results
show that ElasticDNN are capable of being integrated into
these resource schedulers and improves their accuracies by
19.04%, 17.64%, and 18.25%, respectively. This is because
ElasticDNN’s domain-adaptive surrogate DNN have larger
learning capacity, while allowing these schedulers perform re-
source allocations at the filter granularity.

Result. When integrating with the server-based schedulers,
ElasticDNN improves accuracies by an average of 18.31%.

D. Ablation Study

We further conduct a breakdown analysis of the benefit
brought by each feature of ElasticDNN. The experiments are

Fig. 11. A comparsion of estimation error and overhead of ElasticDNN
and Ekya.

Fig. 12. Model accuracies under different model types.

performed on the image classification (32×32) and object de-
tection workloads.

Generation strategy of surrogate DNN. Compared to ran-
domly choosing some filters to generate surrogate DNN, choos-
ing the most accuracy-relevant filters in ElasticDNN achieves
4.42% and 2.61% higher accuracies in two workloads respec-
tively. This is because these filters, which are chosen by the
most difficult sample, can extract most of the features in the
target domain.

Authorized licensed use limited to: TU Delft Library. Downloaded on May 30,2024 at 09:25:31 UTC from IEEE Xplore. Restrictions apply.

1628 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024

Fig. 13. Discussion of model parameter updating conflicts in two consecutive domains.

Filter selection strategy. We compare the accuracy when
three strategies are used to select filters to be trained: (1) ran-
domly choosing 20% filters; (2) choosing 20% filters that have
the minimum cumulative gradients; (3) choosing 20% filters
that have the maximum cumulative gradients, i.e. the default
strategy applied by ElasticDNN. The evaluation result shows
that the third strategy brings 10.47% and 6.53% accuracy im-
provements in two workloads respectively, because the filters
that have the maximum magnitude of gradients contribute most
to model accuracy.

Updating master DNN. We compare the accuracies of Elas-
ticDNN when the master DNN is updated using the accumu-
lated domain knowledge or not. The result shows that without
updating, the surrogate model has 11.33% and 6.62% lower
accuracies in two workloads, and it also has larger fluctuations
in accuracies. This means ElasticDNN’s collaborative master-
surrogate DNN training not only improves the accuracy of both
DNNs, but also increases the stability of these models when
domain shift happens.

E. Discussion

Applicability of ElasticDNN to unsupervised DA
techniques. ElasticDNN represents the first framework that
supports online DNN remodeling for edge vision systems.
ElasticDNN can be generalized to various unsupervised DA
techniques because its online remodeling is independent
of the underlying retraining algorithm. For instance, Elas-
ticDNN can be applied to two baselines Tent and CUA,
improving their accuracies by an average of 15.43% and
16.21% in image classification (32×32) and object detection
workloads, respectively.

Applicability of ElasticDNN to various DNNs. The above
evaluation tests two types of DNNs: ResNet56 as a deep and
multi-path model and SENet18 with feature map exploitation.
We note that ElasticDNN can be generalized to support most

of prevalent DNNs. To support this claim, we apply Elas-
ticDNN in four DNNs [45] belonging to other prevalent types
using the image classification (32×32) workload: (1) width:
ResNeXt29 (2×64d) and WideResNet; (2) attention: ResNet18
with CBAM; and (3) lightweight DNN: MobileNetV2. Fig. 12
shows that ElasticDNN works well for these DNNs.

Discussion of master DNN’s capacity. In ElasticDNN, the
master DNN acts as the knowledge base of source and seen tar-
get domains, so its capacity decides the upper bound of accuracy
in its surrogate DNN. An evaluation shows that the surrogate
DNN generated by a larger master DNN (with 2x model size)
achieves 14.83% and 15.10% higher accuracies than the one
generated by a smaller master DNN (with 0.5x model size) in
image classification (32×32) and object detection workloads,
respectively.

Discussion of model parameter updating conflict in two
consecutive domains. In ElasticDNN, one surrogate DNN is
generated for a target domain and all surrogate DNNs feedback
their learned knowledge into the same master DNN. This may
cause conflicts between two consecutive domains because their
surrogate DNNs can update the same model parameters in the
master DNN. For example, if these two domains are similar (e.g.
BaiduPerson and Supervisely both have real photos, as shown
in Fig. 13(a1)), their surrogate DNNs thus contains many over-
lapped filters from the master DNN. If two domains are dissim-
ilar (e.g. BaiduPerson and GTA5 in Fig. 13(a2)), their surrogate
DNNs may have different update directions for the same model
parameters in the master DNN. Here we take DeepLabV3 as an
example and design three experiments to discuss this conflict.
Note that the discussion focuses on the master DNN’s last
convolutional layer, because this layer contains more domain-
specific features than other layers. Our evaluation reports
three results.

The percentage of jointly selected filters in two domains. As
shown in Fig. 13(b1) and 13(b2), 84.6% of filters are the same
in two similar domains, while this percentage is only 23.1% in

Authorized licensed use limited to: TU Delft Library. Downloaded on May 30,2024 at 09:25:31 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: ELASTICDNN: ON-DEVICE NEURAL NETWORK REMODELING FOR ADAPTING EVOLVING VISION DOMAINS AT EDGE 1629

two dissimilar domains. In master DNN updating, conflicts can
only occur in these jointly selected filters and hence our two
following experiments focus on model parameters in them.

Parameter updating magnitude in two domains. This magni-
tude refers to the absolute difference between a model param-
eter before and after retraining. A small magnitude indicates
small conflicts in model parameter updating. As shown in Fig.
13(c1), in two similar domains, after the parameters are suffi-
ciently updated in the first domain, their magnitudes become
much smaller in the second domain and thus have negligible
conflicts. In contrast, Fig. 13(c2) shows that in two dissimilar
domains, the jointly selected parameters’ magnitudes are much
smaller than those of other model parameters. This result means
the updating of the former parameters have small impacts on
model accuracy (namely they cause small conflicts).

Parameter updating angle between two domains. As illus-
trated in Fig. 13(e), given a model parameter, two updates in
two domains have two different directions that form an angle.
An acute angle means the updating in the second domain has
a positive effect (that is, improving model accuracy) on the
updating of the first domain, and vice versa. Fig. 13(d1) and
13(d2) show that 89% and 66% of angles are acute between two
similar and dissimilar domains, respectively. This result means
the model parameter updating of the jointly selected parameters
have no conflicts in most of the cases.

In conclusion, ElasticDNN’s master-surrogate model param-
eter updating mechanism cause small conflicts for two rea-
sons. First, two dissimilar domains only have a small per-
centage of jointly selected model parameters that may have
conflicts. Second, in two similar domains, a majority of jointly
selected model parameters have acute updating directions and
their updating magnitudes are much smaller than those of
other parameters.

V. CONCLUSION

This paper presents the design, implementation and evalu-
ation of ElasticDNN, a framework based on on-device DNN
remodeling for adapting evolving vision domains at edge.
Our approach can provide the ideal balance between accu-
racy and retraining cost in the single-application scenario, and
enable the efficient filter-grained resource scheduling in the
multi-application scenario. Extensive evaluation results prove
ElasticDNN’s superior accuracy, efficiency, and applicability
compared to existing techniques.

REFERENCES

[1] R. Han, Q. Zhang, C. H. Liu, G. Wang, J. Tang, and L. Y. Chen,
“LegoDNN: Block-grained scaling of deep neural networks for mobile
vision,” in Proc. 27th Annu. Int. Conf. Mobile Comput. Netw. (ACM
MobiCom ‘21), New Orleans, LA, USA, 2021, pp. 406–419.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Las Vegas, NV, USA, 2016, pp. 770–778.

[3] Z. Wu, X. Wang, J. E. Gonzalez, T. Goldstein, and L. S. Davis, “ACE:
Adapting to changing environments for semantic segmentation,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Seoul, Korea (South), 2019,
pp. 2121–2130.

[4] R. Bhardwaj et al., “Ekya: Continuous learning of video analytics models
on edge compute servers,” in Proc. 19th USENIX Symp. Netw. Syst. Des.
Implementation (NSDI), Renton, WA, USA, 2022, pp. 119–135.

[5] H. Liu, M. Long, J. Wang, and Y. Wang, “Learning to adapt to evolving
domains,” in Proc. Adv. Neural Inf. Process. Syst. 33: Annu. Conf. Neural
Inf. Process. Syst. (NeurIPS), vol. 33, 2020, pp. 22338–22348.

[6] J. Yang, H. Zou, S. Cao, Z. Chen, and L. Xie, “MobileDA: To-
ward edge-domain adaptation,” IEEE Internet Things J., vol. 7, no. 8,
pp. 6909–6918, 2020.

[7] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,”
2015, arXiv:1804.02767.

[8] A. Bobu, E. Tzeng, J. Hoffman, and T. Darrell, “Adapting to continu-
ously shifting domains,” in Proc. 6th Int. Conf. Learn. Representations
(ICLR), Vancouver, BC, Canada, in Workshop Track Proceedings, 2018,
pp. 1–4.

[9] D. Wang, E. Shelhamer, S. Liu, B. A. Olshausen, and T. Darrell, “Tent:
Fully test-time adaptation by entropy minimization,” in Proc. 9th Int.
Conf. Learn. Representations (ICLR), Virtual Event, Austria, 2021.

[10] H. Wang and Y. Fu, “Trainability preserving neural pruning,” in Proc.
11th Int. Conf. Learn. Representations (ICLR), Kigali, Rwanda, 2023.

[11] M. Kanakis, D. Bruggemann, S. Saha, S. Georgoulis, A. Obukhov, and
L. V. Gool, “Reparameterizing convolutions for incremental multi-task
learning without task interference,” in Proc. 16th Eur. Conf. Comput.
Vis. (ECCV), Glasgow, U.K., vol. 12365. New York, NY, USA: Springer-
Verlag, 2020, pp. 689–707.

[12] M. Mancini, H. Karaoguz, E. Ricci, P. Jensfelt, and B. Caputo, “Kitting
in the wild through online domain adaptation,” in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst. (IROS), Madrid, Spain. Piscataway, NJ, USA:
IEEE Press, 2018, pp. 1103–1109.

[13] J. Liang, D. Hu, and J. Feng, “Do we really need to access the source
data? Source hypothesis transfer for unsupervised domain adaptation,”
in Proc. 37th Int. Conf. Mach. Learn. (ICML), Virtual Event, vol. 119.
PMLR, 2020, pp. 6028–6039.

[14] A. M. N. Taufique, C. S. Jahan, and A. Savakis, “ConDA: Continual
unsupervised domain adaptation,” 2021, arXiv:2103.11056.

[15] M. Wulfmeier, A. Bewley, and I. Posner, “Incremental adversarial do-
main adaptation for continually changing environments,” in Proc. IEEE
Int. Conf. Robot. Automat. (ICRA), Brisbane, Australia. Piscataway, NJ,
USA: IEEE Press, 2018, pp. 4489–4495.

[16] M. Khani et al., “RECL: Responsive resource-efficient continuous
learning for video analytics,” in Proc. 20th USENIX Symp. Netw. Syst.
Des. Implementation (NSDI), Boston, MA, USA, 2023, pp. 917–932.

[17] M. Risso et al., “Lightweight neural architecture search for temporal
convolutional networks at the edge,” IEEE Trans. Comput., vol. 72,
no. 3, pp. 744–758, Mar. 2023.

[18] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once-for-all: Train
one network and specialize it for efficient deployment,” in Proc. 8th
Int. Conf. Learn. Representations (ICLR), Addis Ababa, Ethiopia, 2020,
pp. 1–15.

[19] X. Gao, Y. Zhao, Ł. Dudziak, R. Mullins, and C.-z. Xu, “Dynamic
channel pruning: Feature boosting and suppression,” in Proc. 7th Int.
Conf. Learn. Representations (ICLR), New Orleans, LA, USA, 2019,
pp. 1–14.

[20] A. Brock, T. Lim, J. M. Ritchie, and N. Weston, “FreezeOut: Accelerate
training by progressively freezing layers,” 2017, arXiv:1706.04983.

[21] “CIFAR-10 database.” lecun.com. Accessed: Mar. 2023. [Online]. Avail-
able: http://yann.lecun.com/exdb/mnist/

[22] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading digits in natural images with unsupervised feature learning,” in
Proc. NIPS Workshop Deep Learn. Unsupervised Feature Learn., 2011,
vol. 2011, no. 5, p. 7.

[23] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proc. IEEE, vol. 86, pp. 2278–2324,
Nov. 1998.

[24] A. Coates, A. Y. Ng, and H. Lee, “An analysis of single-layer networks
in unsupervised feature learning,” in Proc. 14th Int. Conf. Artif. Intell.
Statist. (AISTATS), Fort Lauderdale, USA, vol. 15, 2011, pp. 215–223.

[25] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst. 25: 26th Annu. Conf. Neural Inf. Process. Syst., 2012,
Lake Tahoe, NV, USA, 2012, pp. 1106–1114.

[26] B. Moiseev, A. Konev, A. Chigorin, and A. Konushin, “Evaluation of
traffic sign recognition methods trained on synthetically generated data,”
in Proc. 15th Int. Conf. Adv. Concepts Intell. Vis. Syst. (ACIVS), Poznań,
Poland, vol. 8192, 2013, pp. 576–583.

[27] G. Griffin, A. Holub, and P. Perona, “Caltech-256 object category
dataset,” Pasadena, CA, USA: California Institute of Technology, 2007.

[28] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “The German traffic
sign recognition benchmark: A multi-class classification competition,”

Authorized licensed use limited to: TU Delft Library. Downloaded on May 30,2024 at 09:25:31 UTC from IEEE Xplore. Restrictions apply.

http://yann.lecun.com/exdb/mnist/

1630 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024

in Proc. Int. Joint Conf. Neural Netw. (IJCNN), San Jose, CA, USA,
2011, pp. 1453–1460.

[29] X. Peng, Q. Bai, X. Xia, Z. Huang, K. Saenko, and B. Wang,
“Moment matching for multi-source domain adaptation,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Seoul, Korea (South), 2019,
pp. 1406–1415.

[30] J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, “Squeeze-and-excitation
networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 8,
pp. 2011–2023, Aug. 2020.

[31] S. R. Richter, V. Vineet, S. Roth, and V. Koltun, “Playing for data:
Ground truth from computer games,” in Proc. 14th Eur. Conf. Comput.
Vis. (ECCV), Part II, Amsterdam, The Netherlands, vol. 9906, 2016,
pp. 102–118.

[32] “Supervisely person dataset.” Supervisely. Accessed: Mar. 2023.
[Online]. Available: https://supervise.ly/

[33] M. Cordts et al., “The cityscapes dataset for semantic urban scene
understanding,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Las Vegas, NV, USA, J2016, pp. 3213–3223.

[34] Z. Wu, Y. Huang, Y. Yu, L. Wang, and T. Tan, “Early hierarchical
contexts learned by convolutional networks for image segmentation,”
in Proc. 22nd Int. Conf. Pattern Recognit. (ICPR), Stockholm, Sweden,
2014, pp. 1538–1543.

[35] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous
convolution for semantic image segmentation,” 2017, arXiv:1706.05587.

[36] T.-Y. Lin et al., “Microsoft COCO: Common objects in context,” in
Proc. 13th Eur. Conf. Comput. Vis. (ECCV), Part V , Zurich, Switzerland,
vol. 8693, 2014, pp. 740–755.

[37] “Face mask detection dataset.” Kaggle, San Francisco, CA, USA.
Accessed: Mar. 2023. [Online]. Available: https://www.kaggle.com/
datasets/wobotintelligence/face-mask-detection-dataset

[38] M. Everingham, L. V. Gool, C. K. I. Williams, J. M. Winn, and A.
Zisserman, “The PASCAL Visual Object Classes (VOC) challenge,” Int.
J. Comput. Vis., vol. 88, no. 2, pp. 303–338, 2010.

[39] “Mask dataset.” Make ML. Accessed: Mar. 2023. [Online]. Available:
https://makeml.app/datasets/mask

[40] C. Eastwood, I. Mason, C. Williams, and B. Schölkopf, “Source-
free adaptation to measurement shift via bottom-up feature restora-
tion,” in Proc. 10th Int. Conf. Learn. Representations (ICLR), Virtual
Event, 2022, pp. 1–14.

[41] Q. Zhang, R. Han, C. H. Liu, G. Wang, and L. Y. Chen, “EdgeVision-
Bench: A benchmark of evolving input domains for vision applications
at edge,” in Proc. 39th IEEE Int. Conf. Data Eng. (ICDE), Anaheim,
CA, USA, 2023, pp. 3643–3646.

[42] C. Hwang, T. Kim, S. Kim, J. Shin, and K. Park, “Elastic resource
sharing for distributed deep learning,” in Proc. 18th USENIX Symp.
Netw. Syst. Des. Implementation (NSDI), 2021, pp. 721–739.

[43] J. Mohan, A. Phanishayee, J. Kulkarni, and V. Chidambaram, “Looking
beyond {GPUs} for {DNN} scheduling on {Multi-Tenant} clusters,” in
Proc. 16th USENIX Symp. Operating Syst. Des. Implementation (OSDI),
Carlsbad, CA, USA, 2022, pp. 579–596.

[44] Y. Zhao, Y. Liu, Y. Peng, Y. Zhu, X. Liu, and X. Jin, “Multi-resource
interleaving for deep learning training,” in Proc. ACM SIGCOMM Conf.
(SIGCOMM ‘22), Amsterdam, The Netherlands, 2022, pp. 428–440.

[45] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “A survey of the
recent architectures of deep convolutional neural networks,” Artif. Intell.
Rev., vol. 53, no. 8, pp. 5455–5516, 2020.

Qinglong Zhang is a Master Student with the
School of Computer Science and Technology, Bei-
jing Institute of Technology. His research inter-
ests include edge intelligence and deep learning
applications.

Rui Han received M.Sc. degree with honor from
Tsinghua University, China, in 2010, and the Ph.D.
degree from Imperial College London, U.K., in
2014. He is an Associate Professor with the School
of Computer Science and Technology, Beijing In-
stitute of Technology, China. His research interests
include system optimization for cloud data center
workloads (in particular highly parallel services
and deep learning applications). He has over 40
publications in these areas, including papers at
MobiCOM, IEEE TRANSACTIONS ON PARALLEL

AND DISTRIBUTED SYSTEMS, IEEE TRANSACTIONS ON COMPUTERS, IEEE
TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, INFOCOM,
and ICDCS.

Chi Harold Liu (Senior Member, IEEE) received
the B.Eng. degree from Tsinghua University, Bei-
jing, China, and the Ph.D. degree from the Imperial
College London, London, U.K. He is currently a
Full Professor and the Vice Dean with the School of
Computer Science and Technology, Beijing Institute
of Technology, Beijing. Before that, he worked for
IBM Research - China and Deutsche Telekom Lab-
oratories, Berlin, Germany, and IBM T. J. Watson
Research Center, USA. He is now an Associate Edi-
tor for IEEE TRANSACTIONS ON NETWORK SCIENCE

AND ENGINEERING. His research interests include the big data analytics,
mobile computing, and deep learning. He is a fellow of IET, and a fellow
of Royal Society of the Arts.

Guoren Wang (Senior Member, IEEE) received the
B.Sc., M.Sc., and Ph.D. degrees from the Depart-
ment of Computer Science, Northeastern University,
Shenyang, China, in 1988, 1991, and 1996, respec-
tively. He is now a Full Professor and a Director
with the Institute of Data Science and Knowledge
Engineering, Department of Computer Science and
Technology, Beijing Institute of Technology, Bei-
jing, China. He was an Assistant President with
Northeastern University, China. His research inter-
ests include XML data management, query pro-

cessing and optimization, bioinformatics, high dimensional indexing, parallel
database systems, and cloud data management. He has published more than
150 research papers in top conferences and journals like IEEE TRANSACTIONS

ON KNOWLEDGE AND DATA ENGINEERING, ICDE, SIGMOD, VLDB, etc.

Lydia Y. Chen (Senior Member, IEEE) received
the B.A. degree from the National Taiwan Uni-
versity and the Ph.D. degree from Pennsylvania
State University. She is an Associate Professor with
the Department of Computer Science, Technology
University Delft. Prior to joining TU Delft, she
was a Research Staff Member with the IBM Zurich
Research Lab from 2007 to 2018. Her research in-
terests include dependability management, resource
allocation, and privacy enhancement for large scale
data processing systems and services. She has pub-

lished more than 80 papers in journals, e.g., IEEE TRANSACTIONS ON

DISTRIBUTED SYSTEMS, IEEE TRANSACTIONS ON SERVICE COMPUTING, and
conference proceedings, e.g., INFOCOM, Sigmetrics, DSN, and Eurosys. She
was a co-recipient of the Best Paper Awards at CCgrid’15 and eEnergy’15.

Authorized licensed use limited to: TU Delft Library. Downloaded on May 30,2024 at 09:25:31 UTC from IEEE Xplore. Restrictions apply.

https://supervise.ly/
https://www.kaggle.com/datasets/wobotintelligence/face-mask-detection-dataset
https://www.kaggle.com/datasets/wobotintelligence/face-mask-detection-dataset
https://makeml.app/datasets/mask

<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo false
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 200
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (Adobe RGB \0501998\051)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams true
	/ImageMemory 1048576
	/DownsampleMonoImages true
	/ColorSettingsFile (None)
	/PassThroughJPEGImages true
	/AutoRotatePages /None
	/Optimize false
	/ParseDSCComments false
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 400
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness false
	/OtherNamespaces [
		<<
			/IncludeSlug false
			/CropImagesToFrames true
			/IncludeNonPrinting false
			/OmitPlacedBitmaps false
			/AsReaderSpreads false
			/Namespace [
				(Adobe)
				(InDesign)
				(4.0)
]
			/FlattenerIgnoreSpreadOverrides false
			/OmitPlacedEPS false
			/OmitPlacedPDF false
			/SimulateOverprint /Legacy
			/IncludeGuidesGrids false
			/ErrorControl /WarnAndContinue
		>>
		<<
			/IgnoreHTMLPageBreaks false
			/IncludeHeaderFooter false
			/AllowTableBreaks true
			/UseHTMLTitleAsMetadata true
			/MetadataTitle /
			/ShrinkContent true
			/UseEmbeddedProfiles false
			/TreatColorsAs /MainMonitorColors
			/MetricUnit /inch
			/RemoveBackground false
			/HonorBaseURL true
			/ExpandPage false
			/AllowImageBreaks true
			/MetadataSubject /
			/MarginOffset [
				0.0
				0.0
				0.0
				0.0
]
			/Namespace [
				(Adobe)
				(GoLive)
				(8.0)
]
			/OpenZoomToHTMLFontSize false
			/PageOrientation /Portrait
			/MetadataAuthor /
			/MobileCompatible 0.0
			/MetadataKeywords /
			/MetricPageSize [
				0.0
				0.0
]
			/HonorRolloverEffect false
		>>
		<<
			/IncludeProfiles true
			/ConvertColors /NoConversion
			/FormElements true
			/MarksOffset 6.0
			/FlattenerPreset <<
				/PresetSelector /MediumResolution
			>>
			/DestinationProfileSelector /UseName
			/MultimediaHandling /UseObjectSettings
			/PreserveEditing true
			/PDFXOutputIntentProfileSelector /UseName
			/BleedOffset [
				0.0
				0.0
				0.0
				0.0
]
			/UntaggedRGBHandling /LeaveUntagged
			/GenerateStructure false
			/AddRegMarks false
			/IncludeHyperlinks false
			/IncludeBookmarks false
			/MarksWeight 0.25
			/PageMarksFile /RomanDefault
			/UntaggedCMYKHandling /LeaveUntagged
			/AddPageInfo false
			/AddBleedMarks false
			/IncludeLayers false
			/IncludeInteractive false
			/AddColorBars false
			/UseDocumentBleed false
			/AddCropMarks false
			/DestinationProfileName (U.S. Web Coated \050SWOP\051 v2)
			/Namespace [
				(Adobe)
				(CreativeSuite)
				(2.0)
]
			/Downsample16BitImages true
		>>
]
	/CompressPages true
	/GrayImageMinResolution 200
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/CompatibilityLevel 1.7
	/MonoImageResolution 600
	/NeverEmbed [
]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/Namespace [
		(Adobe)
		(Common)
		(1.0)
]
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName (http://www.color.org)
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Dot Gain 15%)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth -1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /DCTEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/PDFXOutputConditionIdentifier (CGATS TR 001)
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
		/GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
		/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
		/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
		/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
		/CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
		/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
		/JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
		/SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
		/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		/ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
		/RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
		/HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
		/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
		/TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
		/POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
		/HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
		/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
		/RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
		/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
	>>
	/CropMonoImages false
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo true
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/CropGrayImages false
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages false
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
]
	/HWResolution [
		600
		600
]
>>
setpagedevice

