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Abstract
When a person makes a decision, it is automatically accompanied by a subjective probability judgment of the decision being 
correct, in other words, a confidence judgment. A better understanding of the mechanisms responsible for these confidence 
judgments could provide novel insights into human behavior. However, so far confidence judgments have been mostly 
studied in simplistic laboratory tasks while little is known about confidence in naturalistic dynamic tasks such as driving. In 
this study, we made a first attempt of connecting fundamental research on confidence with naturalistic driver behavior. We 
investigated the confidence of drivers in left-turn gap acceptance decisions in a driver simulator experiment (N = 17). We 
found that confidence in these decisions depends on the size of the gap to the oncoming vehicle. Specifically, confidence 
increased with the gap size for trials in which the gap was accepted, and decreased with the gap size for rejected gaps. Simi-
larly to more basic tasks, confidence was negatively related to the response times and correlated with action dynamics during 
decision execution. Finally, we found that confidence judgments can be captured with an extended dynamic drift–diffusion 
model. In the model, the drift rate of the evidence accumulator as well as the decision boundaries are functions of the gap 
size. Furthermore, we demonstrated that allowing for post-decision evidence accumulation in the model increases its abil-
ity to describe confidence judgments in rejected gap decisions. Overall, our study confirmed that principles known from 
fundamental confidence research extend to confidence judgments in dynamic decisions during a naturalistic task.

Keywords Confidence · Decision making · Driver behavior · Evidence accumulation · Metacognition

Introduction

Our decisions are automatically accompanied by a confi-
dence judgment which is one’s subjectively estimated prob-
ability that their decision is correct (Fetsch et al., 2014; 
Kepecs & Mainen, 2012; Yeung & Summerfield, 2012). Pre-
vious research has demonstrated that the processes respon-
sible for decision making and confidence judgments are 
closely related to each other (Kepecs & Mainen, 2012; Kiani 
& Shadlen, 2009; Murphy et al., 2015; Yeung & Summer-
field, 2012). Confidence judgments affect for example the 
justifications of future decisions and behavior (Folke et al., 

2017). Moreover, the processes responsible for decision 
making (Ratcliff & McKoon, 2008) and confidence judg-
ments are both dependent on the accumulation of evidence 
towards or against a decision (Desender et al., 2022; Fleming 
& Daw, 2017; De Martino et al., 2013; Murphy et al., 2015; 
Pleskac & Busemeyer, 2010; Yeung & Summerfield, 2012).

Earlier experimental studies and confidence models pro-
vided many insights into confidence judgments. In particu-
lar, two of the most robust findings in confidence research is 
that confidence in a decision increases with the strength of 
evidence in favor of the chosen option and that confidence 
correlates negatively with response time (Fleming, 2023; 
Kiani et al., 2014; Rahnev et al., 2020; Yeung & Summer-
field, 2012). However, these findings have been replicated 
in traditional laboratory setups with simplistic preferen-
tial (Brus et al., 2021; De Martino et al., 2013), inferential 
(Chua & Solinger, 2015; Händel, et al., 2020; Liberman, 
2004), or perceptual tasks (Kiani et al., 2014; Rouault et al., 
2019). At the same time, it is unclear if the empirical find-
ings and computational models of confidence in simple tasks 
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generalize to naturalistic, real-life decisions which typically 
involve complex task structure and dynamically changing 
perceptual information (Fleming, 2023).

One domain in which human decisions are inherently 
dynamic is traffic: human drivers and pedestrians make 
safety–critical decisions in complex dynamic scenes on a 
daily basis. An example of a safety–critical decision which 
could cause a conflict between road users is the left turn gap 
acceptance decision, in which a driver must decide if there 
is enough space and time to make a left turn in front of an 
oncoming vehicle. A significant proportion of accidents are 
collisions during the execution of left turns, which often 
result in injuries (Larsen & Kines, 2002; Wang & Abdel-
Aty, 2007). Drivers thus have difficulties with left turn gap 
acceptance decisions, this could be due to lack of atten-
tion or to incorrect estimation of the time-to-arrival of the 
oncoming vehicle (Larsen & Kines, 2002). Recent research 
has examined the cognitive mechanisms behind the deci-
sion-making processes underlying traffic decisions, revealing 
that evidence accumulation models can explain decisions 
and response times observed in a variety of tasks such as 
pedestrian crossing (Markkula et al., 2023; Pekkanen et al., 
2022), left-turn maneuvers (Zgonnikov et al., 2022, 2024), 
and overtaking (Mohammad et al., 2023).

Despite much research into cognitive process modeling 
of driving tasks (including not only decision making in but 
also cognitive workload and multitasking (Castro et al., 
2019; Ratcliff & Strayer, 2014; Tillman et al., 2017), human 
confidence judgments during such tasks received undeserv-
edly little attention. In the context of lane-change decisions, 
driver uncertainty judgments (defined as “driver’s difficulty 
to make appropriate decisions of either changing the lane or 
not in a given lane change situation”) have been shown to 
depend on kinematics of vehicles in the traffic scene (Yan 
et al., 2015, 2023). Uncertainty judgments have also been 
investigated in overtaking decisions (Leitner et al., 2023) 
and interactions at narrow passages (Miller et al., 2022). 
However, uncertainty judgments in traffic decisions have so 
far been analyzed disregarding decision outcomes, obscuring 
the relationship between these judgments and task param-
eters. Furthermore, despite the similarity of concepts, the 
exact relationship between (un)certainty and confidence in 
decision making is unclear (Pouget et al., 2016). This ham-
pers linking recent findings on uncertainty in driving deci-
sions to the fundamental findings and computational models 
of confidence.

In summary, confidence judgments in traffic decisions 
have not been measured yet, let alone modelled. This ren-
ders it unclear whether basic mechanisms of confidence 
extend to complex tasks such as driving. In addition, the 
lack of understanding of cognitive mechanisms underlying 
confidence hinders practical applications such as advanced 
driver assistance systems and automated vehicles, the design 

of which could potentially utilize the insights into drivers’ 
confidence.

In this study, we made a first attempt of connecting the 
fundamental research on confidence with studies of natu-
ralistic human driver behavior. We investigated the confi-
dence of human drivers in left-turn gap (the time and dis-
tance gap to the oncoming vehicle while initiating a left 
turn) acceptance decisions at unprotected intersections. We 
examined the influence of the time-to-arrival (TTA, the time 
it takes the oncoming vehicle to arrive to the ego vehicle 
assuming both vehicles move with their initial speeds) and 
the distance gap to the oncoming vehicle on the decisions 
(Research Question 1a, RQ1a) and response times (RQ1b) of 
drivers. Additionally, we assessed how confidence is related 
to the time-to-arrival and distance gap (RQ2) and how con-
fidence is related to the response time (RQ3). Moreover, 
we investigated how action dynamics of drivers’ behavior 
after the decision relate to confidence (RQ4). Last but not 
least, we assessed how well confidence judgments of drivers 
in left-turn gap acceptance decisions can be described by 
four candidate cognitive models based on extended evidence 
accumulation models (RQ5). Specifically, we tested models 
using either one evidence accumulator describing both deci-
sions (drift–diffusion model) or two independent competing 
evidence accumulators (race model) (Bogacz et al., 2006; 
Zgonnikov et al., 2022; Zylberberg et al., 2012). Also, we 
investigated for each model whether it performs best with or 
without making use of post-decision evidence accumulation 
(Fleming & Daw, 2017; Murphy et al., 2015).

Experiment: Methods

In this study, we investigated the confidence of drivers in 
left-turn gap acceptance decisions through a fixed-base 
driver simulator experiment (N = 17; 9 male; 8 female; mean 
age 31 ± (std) 11 years). The experiment followed the 2-by-2 
within-subjects design. All participants were in possession 
of a valid driving license. The Human Research Ethic Com-
mittee of the TU Delft approved the study and participants 
signed an informed consent form prior to the experiment. All 
the data and source code used to collect and analyze the data 
are publicly available at https:// osf. io/ tgexp/.

Setup

For the driving simulation, we used the simulator software 
Carla (Dosovitskiy et al., 2017) on a Windowsbased desk-
top computer. The driver simulator hardware consisted of 
a 65-inch screen (Samsung UE65MU7000) and a Logitech 
G29 steering wheel and pedals set. Participants were seated 
at a distance of about 1.3 m from the screen.

https://osf.io/tgexp/
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Experiment Protocol

The participants were instructed to drive as they normally 
would, following auditory prompts which navigated them 
through a virtual urban area. The area consisted of a 
square grid of blocks (150 by 150 m each). Before each 
intersection, at a distance of 120 m and 30 m, navigation 
prompts were provided through the headphones, instruct-
ing the participant to drive straight ahead or to make a left 
or right turn.

Each participant drove five different randomly gener-
ated routes, with each route comprising 20 intersections. 
At 80% of the intersections, the participant had to make a 
left-turn across the path of an oncoming vehicle (Fig. 1). In 
the remaining intersections, participants were instructed to 
drive straight ahead (10%) or to make a right-turn (10%). 
Before entering an intersection, the participants needed 
to stop behind a truck that was positioned at the centre of 
the intersection. The truck was present in order to limit the 
view of the driver and to make the oncoming car appear in a 
natural manner. The participant’s vehicle, the truck, and the 
oncoming vehicle were the only vehicles in the scene, i.e. no 
other vehicles were behind the oncoming vehicle.

To make a left turn, participants had to make a gap 
acceptance decision, that is, whether to accept the gap and 
perform the turn in front of the oncoming vehicle (“go” deci-
sion) or reject the gap and wait until the oncoming vehi-
cle had passed (“wait” decision) (Fig. 2). Participants were 
asked to report their decision by pressing one of the two 
buttons on the steering wheel on the moment they made the 
decision, and to execute the turn as naturally as possible. The 
decision indication did not influence the traffic situation in 
any way, nor had effect on the oncoming vehicle and/or the 
participant. After the participants finished the turn (regard-
less of whether this was done before or after the oncoming 
vehicle), they were asked to self-report the level of confi-
dence they had in their decision at the moment they pressed 
the button. This was the only measurement of confidence 
we collected.

Fig. 1  Top-down view of the left-turn gap acceptance scenario. As 
the truck moved away from the intersection, the oncoming vehicle 
appeared in participant’s field of view

Fig. 2  Participants’ view at 
different moments throughout 
a trial: 1) Driving through the 
urban environment, 2) Stop at 
an intersection, whereby the 
front view is blocked by the 
truck, 3) The truck drives away, 
revealing the oncoming vehicle 
(the decision-making process 
starts), 4) Participant has to 
decide to “go” or “wait” by 
pressing a button on the steering 
wheel (the decision-making 
process ends; response time is 
recorded), 5) Execution of the 
turn, 6) Self-report on the confi-
dence the participant had in the 
made decision by answering the 
question: “How confident were 
you in your decision? Give a 
rate on a scale of 1 to 5”

Driving in an urban area Stop behind truck Oncoming vehicle visible 

Decision moment (RT)
of turn Confidence judgement 

(self-report)
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During the driving task, we altered the traffic situation by 
varying the distance gap and the time-to-arrival (TTA) of the 
oncoming vehicle. The distance gap and time-to-arrival were 
the two independent variables, taking values of 70 and 90 m 
and 5.5 and 6.5 s, respectively. On each route, each combina-
tion of distance and time-to-arrival was present four times in 
the random order. The ratio between the initial distance gap 
and time-to-arrival determined the velocity of the oncoming 
vehicle, which ranged between 38.77 km/h and 58.91 km/h 
and remained constant throughout the trial.

To become comfortable with the task, the participants 
drove at least one practice route (that is, ten intersections) 
before starting the experiment. We mitigated the fatigue and 
habituation effects by including a break halfway through the 
experiment and by offering the participants the opportunity 
to take more breaks if needed.

Data Analysis

During the experiment, we recorded the positions, velocities, 
and accelerations of all the vehicles (frequency: 100 Hz). 
We also recorded the gas throttle input of the participants’ 
vehicle.

Excluded Trials

In this study we only consider left-turn trials in which the 
indicated decision corresponded to the decision that was 
actually executed. We therefore excluded all changes of 
mind (situations in which the participant carried out a differ-
ent decision than indicated), as well as the trials in which the 
participants did not indicate their decision (no button press). 
In 3.4% of all the decisions, changes of mind were present, 
of which in 83.9% of the cases the participant indicated a 
“go” decision and performed a “wait” decision. In 2.2% of 
all decisions, no button press was present. In 83.33% of these 
cases participants performed a “go” decision.

Metrics

The dependent variables in this study were the decision out-
come (“go”/”wait”), the response time (RT), and the confi-
dence. In addition, we assessed the relationship between the 
reported confidence and action dynamics by analyzing the 
velocity of the participants’ vehicle and the distance to the 
centre of the intersection while executing the turn.

Decision Outcome, Response Time, and Confidence

We instructed participants to report their decision as soon 
as they decided by pressing one of the two designated but-
tons on the steering wheel. We defined response time as the 
time between the moment the oncoming vehicle appeared in 

participant’s field of view and the moment one of the buttons 
was pressed.

We measured the level of confidence participants had in 
their decision by presenting them with the question “How 
confident were you in your decision? Give a rate on a scale 
of 1 to 5”. We posed the question after the turn was per-
formed, at a distance of ten meters from the centre of the 
intersection, in order to minimise the interruption of the 
driving task. Participants had to provide the confidence judg-
ment before they could resume the driving task.

Action Dynamics

In order to analyse how the response time and decision con-
fidence are reflected in the subsequent driving behavior, we 
investigated the action dynamics (sampling rate, fs, 100 Hz) 
related to the execution of the turn: the velocity profile and 
the distance to the centre of the intersection. The veloc-
ity profile during the turn described the absolute velocity 
(meters/second) of the participants’ vehicle over time. In 
all analyses of the velocity profile, we used the initial throt-
tle operation moment as the zero-point in time in order to 
negate the effect of the response time on action dynamics. 
As the duration of the turn execution varied strongly within 
and across participants, we only analyzed the velocity pro-
files until the cutoff point (tcutoff), defined as 0.75-percen-
tile of the turn execution duration (calculated separately for 
“go”, tcutoff = 3.24 s, and “wait” trials, tcutoff = 6.11 s).

To analyse the relation between confidence and the 
velocity profile, we used the following trial-level metrics: 
the maximum absolute velocity value during a trial, the 
signed average deviation from the individual mean  (DMindiv, 
Eq. (1)), the signed average deviation from the group mean 
 (DMgroup, Eq. (2)), and the root mean square deviation from 
the individual mean  (RMSDindiv, Eq. (3)).

Given a velocity vector y = (y1,...,yNt) of length Nt,

The signed deviations from the mean (Eq. (1) and Eq. (2)) 
and the root mean square deviation (Eq. (3)) indicate how 
the velocity profile of a given trial deviates from the average 
trial. We computed the deviation from the individual mean 
(Eq. (1)) and root mean square deviation by comparing the 

(1)DMindiv =

∑Nt

i=1
(yi − �decision

indiv
)

Nt

(2)DMgroup =

∑Nt

i=1
(yi − �decision

group
)

Nt

(3)DMindiv =

����
∑Nt

i=1

�
yi − �decision

indiv

�2

Nt
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velocity profile of the trial with the individual participant’s 
average velocity profile in all trials with the correspond-
ing decision outcome (“go”/”wait”). At the same time, the 
deviation from the group mean (Eq. (2)) quantifies the dif-
ference of the velocity profile in a trial to the groupaveraged 
velocity profile calculated over all participants. We included 
mean deviations from both individual and group means to 
better distinguish within-participant effects from effects due 
to individual differences.

The main advantage of using (signed) deviations from 
the mean  (DMindiv and  DMgroup) is that they provide an indi-
cation of the extent and the direction of deviation. These 
metrics, however, level out positive and negative values of 
the deviation. The root mean square deviation prevents this, 
but does not provide an indication of the direction of the 
deviation, thereby complementing the signed average devia-
tion metrics.

The distance to the centre of the intersection is defined 
as the distance (in meters) between the middle point of the 
ego vehicle and the centre of the intersection. When a par-
ticipant made a proper turn and drove over the middle of the 
intersection, the distance to the center would thus be close 
to zero. However, in some trials participants did not make 
the full-turn and steered sharply to the left, and thus cut 
the corner, resulting in a greater distance from the center 
of the intersection. For the analyses of the distance to the 
centre of the intersection, we used the same metrics as for 
the velocity profile (calculated using the same alignment and 
cutoff time points) with the exception of using the minimum 
absolute value rather than the maximum value. The latter 
metric allowed us to capture corner-cutting behavior during 
the turn execution.

Statistical Analysis

We analyzed the relationships between the dependent and 
independent variables using mixed-effects models, using 
random intercepts or slopes per participant (ID) to account 
for between-participant differences. All statistical analysis 
were performed in MATLAB R2020a using the generalized 
linear mixed effects model fitglme and linear mixed effects 
model fitlme functions. In models including decision as a 
predictor, “go” was used as a reference class.

We used the following models for decision, response 
time, and confidence, respectively:

(4)decision ∼ distance + TTA + (1|ID )

(5)RT ∼ decision ∗ (distance + TTA) + (decision|ID )

(6)
confidence ∼ decision ∗ (RT + distance + TTA) + (decision|ID )

To investigate the relationship between the action dynam-
ics metrics and confidence, we used linear mixed-effects 
models with the following structure:

Hypotheses

Decision Behavior and Response Times

We expected to observe a positive relation between the time-
to-arrival and distance gap conditions and the probability of 
“go” decision (Hypothesis 1.1, H1.1), and a positive rela-
tion between the response time and the time-to-arrival (but 
not distance (Zgonnikov et al., 2022)) for both decisions 
(H1.2). These hypotheses are based on the previous studies 
of left-turn and overtaking gap acceptance decisions which 
found that the probability of accepting the gap as well as the 
response times are affected by the perceptual information 
capturing the time-to-arrival and distance gap (Sevenster 
et al., 2023; Zgonnikov et al., 2022, 2024).

Effect of Time‑to‑Arrival and Distance Gap on Confidence

Earlier research has shown that confidence judgments relate 
to the available perceptual evidence towards a decision, 
and follows the “x”-pattern: confidence increases with the 
strength of the evidence for decisions consistent with that 
evidence, and decreases with the strength of the evidence 
if the decision goes against the evidence (Fleming & Daw, 
2017; Yeung & Summerfield, 2012). Based on this, we 
hypothesised that confidence positively relates to the time-
to-arrival and the distance gap of the oncoming vehicle in 
“go” decisions, and that it negatively relates to these fac-
tors in “wait” decisions (H2.1). Intuitively, a larger time-to-
arrival and distance gap give the driver more time and space 
to perform the left-turn in front of the oncoming vehicle, and 
therefore are hypothesized to result in greater confidence 
when the gap is accepted. However, if the driver rejects the 
gap despite its large size, the confidence in that decision is 
expected to be low.

Relationship Between Confidence and Response Time

Earlier confidence research has consistently revealed nega-
tive relationship between response times and confidence 
across trials: the longer participants take to make the deci-
sion, the lower their confidence is (Pleskac & Busemeyer, 
2010). We therefore hypothesized that response time will be 
negatively related to confidence across trials (H3).

(7)metric ∼ confidence ∗ decision + (1|ID )
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Relationship Between Confidence and Action Dynamics

Most studies of confidence have so far used paradigms that 
provide little data beyond decision outcomes and response 
times. However, more dynamic paradigms capturing continu-
ous trajectories of decision execution are becoming increasingly 
popular in decision-making research, including tracking mouse 
cursor (Freeman, 2018; Schulte-Mecklenbeck et al., 2017), 
reaching (Song & Nakayama, 2009; Wispinski et al., 2020), and 
full body movements (Zgonnikov et al., 2019). Such paradigms 
have begun to unveil the link between confidence and action 
dynamics as expressed in hand movements (Berg et al., 2016; 
Dotan et al., 2018, 2019). Following these studies, we expected 
that confidence in our paradigm will be related to the action 
dynamics of turn execution. In particular, we hypothesised:

• In “go” decisions, a positive relation between confidence 
on the one hand and the maximum velocity (H4.1a) and 
average deviation from the mean velocity (H4.2a) on the 
other hand. Furthermore, we hypothesised a negative 
relation between confidence and minimum distance to the 
center of the intersection (H4.1b) and average deviation 
from the mean distance (H4.2b). Here, we expected the 
participants to drive more confidently (e.g., with higher 
speed and following a straighter path) when executing 
higher-confidence “go” decisions.1

• A negative relation between confidence on the one hand 
and the root mean square deviation of the velocity pro-
file (H4.3a) and distance to the centre of the intersection 
(H4.3b) on the other hand. In other words, we expected 
participants to deviate stronger from their typical behavior 
in trials where they reported lower confidence. • a weaker 
relation between confidence and the action dynamics 
measures in “wait” decisions compared to “go” decisions 
(H4.4). The rationale for this is that execution of the turn 
immediately follows the “go” decisions but is separated 
from “wait” decisions by several seconds of inaction.

Experiment: Results

Decision Behavior and Response Times

We found that the drivers’ decision behavior (Fig. 3, Table 1) 
and response times (Fig. 4A, Table 2) were influenced by the 
time-to-arrival and distance gap of the oncoming vehicle.

As expected (H1.1), we found that probability of mak-
ing a “go” decision increased with time-to-arrival (t = 9.2, 
p = 1.7e-19) and distance gap (t = 19.1, p = 4.5e-73).

We did not find evidence for a difference in mean response 
times between “go” and “wait” decisions (b =  − 0.2,p = 0.55). 
Response times in both “go” and “wait” decisions increased 
with TTA and distance gap (Fig. 4A, Table 2). For “go” deci-
sions, response times were positively affected by the time-
to-arrival (b = 0.12,t = 4.0,p = 6.5e − 05) and the distance gap 
(b = 0.007,t = 4.4,p = 9.9e − 06). We found no evidence that 
the effect of time-to-arrival was different in “wait” decisions 
(b = 0.013,t = 0.29,p = 0.77), but there was an additional posi-
tive effect of the distance gap on “wait” response times (b = 0.0
11,t = 4.6,p = 5.5e − 06) compared to “go” response times. (The 
detailed analyses of the mixed-effects models can be found 
in online supplementary information, Appendices A and B.)

We found that “go” response times we measured using 
button presses are moderately correlated with the response 
time suggested by the throttle input (r = 0.28,p = 1.6e − 15), 
the measure that was previously suggested as a proxy meas-
ure of “go” response times (Zgonnikov et al., 2022, 2024). 
However, in our data the latter often indicated deflated 

Fig. 3  Group-averaged (solid lines) and individual participants’ 
(dashed lines) probabilities of “go” decision as a function of the time-
to-arrival and distance gap to the oncoming vehicle. Error bars repre-
sent 95% CI over n = 17 individual participants’ mean values

Table 1  Coefficients of the logistic regression describing the relation 
between the decision outcome and the TTA and distance gap (Eq. 4)

“Wait” decisions were coded as 0, “go” decisions as 1

Estimate Std. error t-score p-value

(Intercept) −2.175 0.1562 −13.93 1.336e-41
TTA 0.1860 0.02031 9.157 1.659e-19
Distance 0.01940 0.001016 19.09 4.508e-73

1 When testing H4.2a and H4.2b, we used average deviation from 
individual mean values (Eq. 1) as the main metric of interest; in addi-
tion, we analyzed deviation from group mean values (Eq. 2) to high-
light potential effects due to individual differences between partici-
pants.
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response times due to participants starting to press the 

throttle even before the could see the oncoming vehicle (see 
online supplementary information, Appendix C).

In short, we found that for both decision outcomes, 
response times were positively affected by the time-to-arrival 
(consistent with H1.2) as well as the distance gap (contrary to 
H1.2). In addition, the distance gap influenced the response 
time more for “wait” decisions than for “go” decisions.

Confidence

Effect of Time‑to‑Arrival and Distance Gap on Confidence

Our results indicate that confidence reported in “wait” deci-
sions was significantly higher compared to “go” decisions 
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Fig. 4  Group-averaged and individual mean A) response times, 
and B) confidence judgments for the two decision outcomes 
(“go”/”wait”) depending on the time-to-arrival and distance gap to 

the oncoming vehicle. Error bars represent 95% CI over n = 17 indi-
vidual participants’ mean values

Table 2  Results of the linear mixed-effects regression analysis describ-
ing the effect of the TTA and distance gap on the response time (Eq. 5)

“Go” was the reference category for the decision variable; the coef-
ficients for the wait decisions represent additional effects with respect 
to the effects on “go” decisions

Estimate Std. error t-score p-value

Intercept 0.3325 0.2522 1.318 0.1876
TTA 0.1225 0.03059 4.005 6.502e-05
Distance 0.007318 0.001651 4.434 9.934e-06
Wait decision −0.2091 0.3488 −0.5996 0.5489
Wait decision: TTA 0.01251 0.04327 0.2892 0.7725
Wait decision: Distance 0.01073 0.002353 4.560 5.525e-06
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(b = 10.3,t = 15,p = 1.6e − 48); furthermore, in both decisions 
confidence depended on the time-to-arrival as well as the 
distance gap (Table 3, Fig. 4B).

For “go” decisions, the results displayed a positive rela-
tion between confidence on the one hand and the time-to-
arrival (b = 0.74,t = 12,p = 1.8e − 32) and distance gap (b = 
0.034,t = 10,p = 1.85e − 23) on the other hand.

For “wait” decisions, we observed, relative to “go” deci-
sions, a negative relation between confidence and respectively 
the time-to-arrival (b =  − 1.1, t =  − 13,p = 5.2e − 37) and 
the distance gap (b =  − 0.04, t =  − 9.3, p = 7.1e − 20). Post-
hoc comparisons revealed that this relative effect resulted 
in negative net effect of the time-to-arrival (b =  − 0.38, 
F = 40, p = 3.9e − 10) and distance gap (b =  − 0.011, F = 9.5, 
p = 0.0021) on confidence in “wait” decisions. These findings 
indicate that the relation between confidence on the one hand 
and the time-to-arrival and the distance gap of the oncoming 
vehicle on the other is positive for “go” decisions and nega-
tive for “wait” decisions (consistent with H2.1).

Relationship Between Response Time and Confidence

We observed negative correlation between the response time 
and confidence (r =  − 0.27, p = 1.3e − 27) across all decisions. 
Mixed-effects regression (Eq. 6) confirmed this negative rela-
tionship for “go” decisions (b =  − 0.74, t =  − 8.6, p = 2.84e − 17, 
see also Table 3). Furthermore, we observed no significant dif-
ferences in the relationship of the response time and confidence 
between “go” and in “wait” decisions (b = 0.13, t = 1.3, p = 0.2). 
Altogether, these findings substantiate the hypothesis that 
response time and confidence are negatively correlated (H3).

Relationship Between Confidence and Velocity Profile

Visual inspection of group-averaged velocity profiles in “go” 
trials suggested that in higher-confidence trials, participants 

seemed to exhibit higher maximum velocities (Fig. 5A). 
However, statistical analyses controlling for individual dif-
ferences in baseline metric values demonstrated that there 
was no evidence for a relationship between maximum veloc-
ity and confidence (“go” trials: b = 0.1, t = 1.2, p = 0.22; rela-
tive slope in “wait” trials: b =  − 0.13, t =  − 1.2, p = 0.22). 
Similarly, there was no evidence for a relationship between 
confidence and average deviation from the individual mean, 
as well as RMSD (see online supplementary information, 
Appendix E). At the same time, there was a weak posi-
tive relation between the deviation from the group mean of 
the velocity profile and confidence in “go” trials (b = 0.11, 
t = 2.2, p = 0.03), the effect that was not significantly differ-
ent in “wait” trials (b =  − 0.09, t =  − 1.4, p = 0.16).

Taken together, these analyses suggest no evidence for 
an underlying relationship between confidence and velocity 
profile within participants (contrary to H4.1a, H4.2a, and 
H4.3a2); yet participants who were more likely to report 
higher confidence levels also exhibited slightly higher veloc-
ities in “go” decisions.

The latter finding, however, should be interpreted with 
caution, given the relatively small effect size.

Relationship Between Confidence and Distance 
to the Centre of the Intersection

Dynamics of mean distance over time (Fig. 5B) indicates 
a possible negative relation between confidence and the 
minimum distance to the intersection centre. Similar to 
the velocity profiles, this could be because higher con-
fidence judgments are associated with more pronounced 
corner-cutting behavior within or across participants. 
Mixedeffects regression analyses confirmed a relation-
ship between reported confidence and the distance to 
the centre of the intersection (see online supplementary 
information, Appendix E). Specifically, in “go” decisions, 
confidence was associated with increased corner-cutting 
behavior, i.e. had a negative relation with the minimum 
distance to intersection centre (b =  − 0.17, t =  − 3.9, 
p = 8.5e − 5) as well as with the deviation from the group 
mean (b =  − 0.11, t =  − 2.4, p = 0.015) and RMSD from 
the individual mean (b =  − 0.07,t =  − 2.7, p = 0.006), 
although there was no evidence for its relationship with 
the signed average deviation from the individual mean 
(b =  − 0.04, t =  − 1.1, p = 0.28). These effects (except 
for the latter one) were significantly different in “wait” 
decisions. Post-hoc comparisons highlighted the lack of 

Table 3  Results of linear mixed-effects regression analysis of the 
effect of the response time, distance gap, and TTA on confidence 
judgments for different decision outcomes (Eq. 6)

The reference class in the regressions are the “go” decisions; the fixed 
effects coefficients for “wait” decisions are relative to the “go” deci-
sion coefficients

Estimate Std. error t-score p-value

Intercept  − 2.277 0.4975  − 4.576 5.126e-06
TTA 0.7413 0.06104 12.14 1.830e-32
Distance 0.03361 0.003304 10.17 1.465e-23
RT  − 0.7411 0.08663  − 8.554 2.841e-17
Wait decision 10.26 0.6763 15.17 1.599e-48
Wait decision: TTA  − 1.123 0.0886  − 13.06 5.231e-37
Wait decision: Distance  − 0.04432 0.004790  − 9.253 7.133e-20
Wat decision: RT 0.1349 0.1055 1.279 0.2013

2 Testing whether relationship between confidence and velocity 
profiles was weaker in “wait” decisions compared to “go” decisions 
(H4.4) was not meaningful due to the lack of evidence of such rela-
tionships in “go” decisions in the first place.
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evidence for a relationship between confidence reported 
in “wait” decisions and minimum distance from the centre 
of the intersection (b =  − 0.73, F = 0.41, p = 0.52), aver-
age deviation from its group mean (b =  − 0.64, F = 2.5, 
p = 0.12), and RMSD from the individual mean (b = 0.06, 
F = 1.5, p = 0.23).

Overall, our analyses of the vehicle trajectories fol-
lowing a decision confirmed that for “go” decisions, the 
minimum distance but not average distance to the inter-
section centre related negatively to confidence within par-
ticipants (consistent with H4.1b but contrary to H4.2b). 
This finding hints towards more pronounced corner-cutting 
behavior after high-confidence “go” decisions. In addi-
tion, the results highlight increased variability in turning 
trajectories after lower-confidence decisions (consistent 
with H4.3b).

Finally, our analyses suggest that action dynamics after 
“wait” decisions are not related to reported confidence 
levels, which is in line with H4.4 that decision confidence 
mainly affects “go” decisions.

Cognitive Process Modelling of Confidence 
Judgments

To elucidate the cognitive processes underlying the response 
times and confidence judgments observed in our experiment, 
we tested four potential confidence models (Fig. 6). In this 
research we aim to investigate which modelling paradigm 
does describe and explain confidence judgements in a 

driving task the best. In the literature, decisions and accom-
panied confidence judgements are modelled by using one 
evidence accumulator (Yeung & Summerfield, 2012) as well 
as by using two competing evidence accumulators describ-
ing both potential decision outcomes (Zylberberg et al., 
2012). Moreover, we investigate to what extent allowing for 
post-decision evidence accumulation contributes to the per-
formance of the considered models (Fleming & Daw, 2017; 
Murphy et al., 2015).

All four models considered are grounded in the evidence 
accumulation frame work, but differ in their assumptions 
about the underlying decision-making mechanism (drift-
diffusion model (Ratcliff & McKoon, 2008) vs. race model 
(Bogacz et al., 2006)) and the confidence judgment process 
(post-decision accumulation vs. judgment based on evidence 
accumulated prior to decision).

Decision‑Making Models

Both candidate decision-making models were based on a 
previously suggested model of left-turn gap acceptance 
(Zgonnikov et al., 2022). This model is a variant of the 
drift–diffusion model (Ratcliff & McKoon, 2008) which 
assumes that the decision-making process can be conceptu-
alized as noisy evidence accumulation

where x(t) is the decision variable at time t, W is the stochas-
tic Wiener process, and α(g(t) − θcrit) is the rate of evidence 

(8)dx(t) = �(g(t) − �crit)dt + dW

Fig. 5  Group-averaged means values over time of participant’s vehi-
cle A) velocity, and B) distance to the centre of the intersection. 
For visualization purposes, trials were grouped in three equal-sized 
bins according to the reported confidence level (within decision out-
comes); each line represents 1/3 of all “go”/ “wait” trials. Shaded 
areas denote 95% confidence intervals. Statistical analyses of action 

dynamics measures (Appendix C) suggested that the observed rela-
tionship between velocity profile and confidence is due to individual 
differences while the relationship between the distance to the center 
of the intersection and confidence persisted when controlling for indi-
vidual differences
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accumulation. The parameter α ≥ 0 indicated the influence 
of the perceptual information on the evidence accumula-
tion process relative to the noise. The model assumed that 
the rate of evidence accumulation is proportional to the dif-
ference between the generalized gap g(t) between the two 
vehicles and the critical value of the generalised gap θcrit ≥ 0. 
The generalized gap g(t) was hypothesized to be a linear 
combination of the time-to-arrival and the distance gap to 
the oncoming vehicle

with β ≥ 0 characterizing the relative contribution of the dis-
tance gap relative to the time-to-arrival.

The moment in time when x reaches one of the deci-
sion boundaries (± b(t)) is defined as the response time; the 
upper boundary corresponds to the decision to accept the 
gap (“go”) and the lower boundary represents the decision to 
reject the gap (“wait”). The boundaries were assumed to be 
collapsing with the time-to-arrival of the oncoming vehicle:

(9)g(t) = TTA(t) + �d(t)

where parameters b0 > 0, k ≥ 0 and τ ≥ 0 indicated respec-
tively the boundary scale parameter, the sensitivity of the 
boundary to the time-to-arrival, and the characteristic time-
to-arrival value at which the boundary is equal to ± 1

2
b0 . 

Finally, the model accounted for possible perceptual and 
(motor) response delays via a normally-distributed non-
decision time

with mean µND ≥ 0 and standard deviation σND ≥ 0.
In this paper, we propose two modified versions of the 

baseline model: the driftdiffusion model (Fig. 7A) and the 
race model which describes the decision-making process 
with two independent accumulators (Fig. 7C). Both pro-
posed models describe the decision process with generalized 
gap-dependent collapsing boundaries.

(10)b(t) =
b0(

1 + e−k(TTA(t)−�)
)

(11)tND = N
(
�ND, �ND

)

Fig. 6  Four tested confidence models derived from combining two 
candidate decision-making mechanisms (drift–diffusion model or 
race model) and two different time points of determining the confi-

dence judgment (at the moment of making the decision or after accu-
mulating additional evidence). CT: confidence judgment time, RT: 
response time
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Drift–Diffusion Model

The baseline model assumed that the decision boundaries 
collapse with the time-toarrival, which was based on the 
observations of Zgonnikov et al. (Zgonnikov et al., 2022) 
that response time increased with time-to-arrival but not 
distance. In our study however, we found that response 
time also increased with the distance to the oncoming 
vehicle. In order for the model to be able to exhibit such 
behavior, we assumed that the decision boundary collapses 
not with the time-to-arrival, but with the generalized gap 
(which incorporates both time-to-arrival and distance 
gap):

where g(t) is described by Eq. (9).

(12)b(t) = ±
b0(

1 + e−k(g(t)−�crit)
)

Besides the decision boundary, all the other compo-
nents of the baseline model were retained for the modified 
drift–diffusion model. This model has seven free param-
eters (α, β, θcrit, b0, k, µND, σND).

Race Model

The race model (Fig. 7C) included two independent com-
peting decision variables, xgo and xwait, which are responsi-
ble for the decision outcome (Bogacz et al., 2006; Gold & 
Shadlen, 2007; Kiani et al., 2014). The dynamics of both 
decision variables are based on the same perceptual evidence 
(the generalized gap g(t), see Eq. (9))

(13)dxgo(t) = �go
(
g(t) − �crit

)
dt + dWgo

(14)dxwait(t) = �wait
(
g(t) − �crit

)
dt + dWwait

A

B

C

D

Fig. 7  Illustration of the four tested models. In each panel, the red dot 
indicates the decision moment (RT) and the green dot indicates the 
moment in time the confidence judgment is made (CT). The green 

arrow represents the value of the confidence variable Vc that is used 
for the computation of the confidence judgment (Eq. 17)
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Here, we assumed that the drift rate α could differ 
between the two accumulators while the parameters β and 
θcrit defining the generalized gap g(t) and its characteristic 
value, respectively, remain the same for the two accumula-
tors. The reasoning underlying this assumption is that “go” 
decisions involve more risk and therefore could require more 
efficient accumulation of evidence, while the drivers’ per-
ception of the generalised gap is likely to be independent 
from the decision.

In the decision boundary, the scale parameter b0 as well 
as the collapse rate k were also assumed to be different for 
“go” and “wait” accumulators

The non-decision time was assumed to be the same as in 
the baseline model (Eq. (11)), and was identical for the two 
accumulators. Overall, our race model has ten free param-
eters (αgo, αwait, � , �crit , b

go

0
 , bwait

0
 , kgo , kwait , µND, σND).

Confidence Models

The different confidence models were based on the two alter-
native accounts of how evidence accumulation is used in con-
fidence judgments. The first account states that the amount of 
evidence accumulated at the time the decision is made deter-
mines the confidence judgment (Boundy-Singer et al., 2022; 
Kiani et al., 2014; Meyniel et al., 2015). The second account 
argues that confidence judgments instead invoke accumulat-
ing additional evidence post-decision (Desender et al., 2022; 
Murphy et al., 2015; Pleskac & Busemeyer, 2010; Yeung & 
Summerfield, 2012). We explored possible combinations of 
these two accounts of confidence judgment time with the two 
candidate decision models, as defined in the previous section. 
This resulted in four potential confidence models (Fig. 6).

The four tested confidence models shared the basic prem-
ise that the evidence accumulation process responsible for 
the decision-making process also plays role in confidence 
judgments. In all models, the confidence judgment c was 
hypothesized to be a linear function of the confidence vari-
able Vc(t) evaluated at the confidence judgment time (CT)

Here, the intercept cdec
0 and the sensitivity parameter 

cdec
1

> 0 map the decision variable to the confidence rating 

(15)bgo(t) =
b
go

0(
1 + e−k

go(g(t)−�cirt)
)

(16)bwait(t) =
bwait
0(

1 + e−k
wait(g(t)−�cirt)

)

(17)c = cdec
0

+ cdec
1

Vc(CT)

scale (in the case of our experiment, 1 to 5). Both of these 
parameters depend on the decision, reflecting our finding 
that for “go” decisions, confidence judgments are differently 
biased and influenced in a different manner by perceptual 
information than for “wait” decisions.

The four models differed in the manner in which they 
queried the evidence accumulation process to determine the 
confidence variable Vc(t) and the moment at which the con-
fidence variable is queried (CT).

Confidence Variable Vc(t)

Models 1 and 2 were based on the drift–diffusion model and 
models 3 and 4 were based on the race model; the underlying 
decision model determined the manner in which the confi-
dence variable Vc(t) was calculated.

The drift–diffusion model-based confidence models 
(model 1 and 2) had one decision variable denoting the rela-
tive evidence (Fig. 7B). These models hypothesized that the 
confidence variable is equal to the absolute value of this 
relative evidence (Vc(t) =|x(t)|), or alternatively

The race-model-based confidence models (model 3 and 
4) used two accumulators, and posited that the confidence 
judgment depends on the value of the evidence accumulated 
towards the non-chosen (alternative) option (Fig. 7D). For 
these models, the confidence variable was defined as the 
negative value of the alternative evidence accumulator

Confidence Judgment Time

Models 1 and 3 assumed that the confidence judgment is 
made based on the values of the decision variable(s) at the 
time the decision is made, whereas models 2 and 4 allowed 
for post-decision evidence accumulation.

The models without post-decision evidence accumulation 
(models 1 and 3) assumed that the confidence response time 
is equal to the response time

This implies that the same value(s) of the evidence 
accumulator(s) are used for both the decision-making pro-
cess and for the confidence judgment. For the drift–diffusion 
model, this implies that confidence relates to the value of the 
decision boundary at the response time. As in the underlying 
drift–diffusion model the decision boundary collapses with 

(18)Vc(t) =

{
x(t) if decision = “Go”

−x(t) if ecision = “Wait”

(19)Vc(t) =

{
−xwait(t) if decision = “Go”

−xgo(t) if decision = “Wait”

(20)CT = RT
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time, the confidence in model 1 depends on the response 
time (Kiani et al., 2014). For the race model, this is not 
the case as the losing accumulator defines the confidence 
variable Vc(t). Hence, in model 3, confidence depends on 
the evidence accumulated by the losing accumulator at the 
response time.

The models with post-decision evidence accumulation 
(models 2 and 4), the evidence accumulation process con-
tinues for τ > 0 s after the decision is made

As a result, the value(s) of the evidence accumulator(s) 
used for the decision making differ(s) from the value(s) used 
for confidence judgments. This means that in models 2 and 
4 the confidence judgments depend on the evidence accu-
mulated by the single accumulator (model 2) or the losing 
accumulator (model 4) at τ seconds after the response time.

Model Fitting

We used a two-stage approach for model fitting (see online 
supplementary information, Appendix F for details). First, 
we fitted the decision model parameters (α, β, b0, k, µND, 
σND, and θcrit) to the decision outcome and response time 
data, following the weighted least squares approach (Rat-
cliff & Tuerlinckx, 2002; Zgonnikov et al., 2022). Second, 
using the baseline decision model parameters fitted in the 
first stage, we fitted the confidence model parameters (sen-
sitivity, c1 and bias, c0) using the root mean square error of 
model confidence outputs. For both stages of model fitting, 
“fmincon” function of MATLAB R2020a was used to find 
the best-fitting parameters.

For the confidence models that involved post-decision evi-
dence accumulation, we did not include the parameter τ in 
the second model fitting stage. The reason for this was that 
changes in this parameter did not substantially affect model 
behavior (see online supplementary information, Appendix 
F). In both models with post-decision accumulation we hence 
used τ = 1 s as inter-judgment time. To put things in perspec-
tive, the average duration of making the turn (time between the 
first moment of seeing the oncoming vehicle and giving the 
confidence judgment) was 3.06 s (SD = 0.498) for “go” deci-
sions and 6.26 s (SD = 1.092) for “wait” decisions.

Results

We found that both the DDM and the race model had simi-
lar performance in fitting the experimentally observed deci-
sions and response times (Fig. 8, Table 4). The race model 
performed slightly better in terms of WLS, although this 
should be taken with caution given a larger number of free 
parameters in this model (10 in race model vs 7 in DDM).

(21)CT = RT + �.

The fitted parameters of the race model show that the 
drift rate α was slightly higher for the “go” accumulator, 
as compared to the “wait” accumulator. Conversely, the 
baseline boundary b0 was higher for the “wait” accumulator 
compared to “go”, indicating that a larger amount of evi-
dence needed to be accumulated to make a “wait” decision. 
Finally, the decision boundary was collapsing slightly faster 
(as indicated by a larger value of parameter k) for the “wait” 
accumulator, as compared to the “go” accumulator.

Fitting of two candidate confidence models for each 
baseline decision models demonstrated that experimentally 
observed confidence ratings were more consistent with rat-
ings produced after additional evidence accumulation rather 
than ratings measured at the time of the decision (Fig. 9, 
Table 5). The additional evidence accumulation in particular 
improved the ability of the models to capture confidence 
judgments in “wait” decisions, for both the race model as 
well as the DDM.

This finding substantiates the account of confidence judg-
ments being based on post-decision evidence accumulation 
(Fleming & Daw, 2017; Murphy et al., 2015; Yeung & Sum-
merfield, 2012).

Furthermore, we observed that the confidence judgment 
process was best described using the dynamic drift–diffu-
sion decision model (model 2). This implies that confidence 
judgments are better described by one evidence accumula-
tor accounting for both decision outcomes, instead of two 
independent evidence accumulators for both decisions as 
described by the race model.

Altogether, our modelling results indicate that observed 
confidence judgments were most consistent with the 
drift–diffusion model that allows for post-decision evidence 
accumulation.

Discussion

Previous studies of simple perceptual and preferential tasks 
provided evidence that the cognitive processes responsible 
for decisions and confidence judgments are closely related 
to each other (Kepecs & Mainen, 2012; Kiani & Shadlen, 
2009; Pouget et al., 2016; Zylberberg et al., 2012). How-
ever, computational underpinnings of confidence judgments 
in dynamic real-life tasks have remained unclear. Here we 
aimed to address this gap, focusing on left-turn gap accept-
ance decisions by human drivers.

Relation to Previous Work

Response Times in Gap Acceptance Decisions

Response time has been long established as a key metric in 
decision-making research, providing a basic measure of the 
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time course of the decision-making process (Luce, 1991). We 
found a positive relation between response time on the one hand 
and the distance gap and time-to-arrival on the other hand. 
These findings are consistent with the previous literature that 
reported such positive relationships in similar decisions during 
left turns across path (Zgonnikov et al., 2022, 2024), overtak-
ing (Mohammad et al., 2023; Sevenster et al., 2023), merging 
(Zgonnikov et al., 2023), and lane changing (Yan et al., 2023).

Empirical Studies of Confidence

Earlier studies of confidence in simple perceptual decisions 
have universally reported that a higher quality as well as a 
higher quantity of evidence towards a chosen option result 
in higher confidence judgments (Kiani et al., 2014; Murphy 
et al., 2015; Yeung & Summerfield, 2012). In the context of 
our task, this means that for example, the combination of a 
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Fig. 8  Decision outcomes (A, C) and response times (B, D) produced by the drift–diffusion model (A, B) and the race model (C, D). Error bars: 
95% CI

Table 4  Fitted parameters of the 
drift–diffusion and race decision 
models; WLS: mean weighted 
least squares error (Ratcliff & 
Tuerlinckx, 2002)

WLS α β b
0

k �ND �ND �crit

DDM 1.53 1.12 0.109 1.41 0.396 1.51 0.140 14.0
Race 1.45 Go:1.20

Wait:1.14
0.100 Go:1.22

Wait:1.35
Go:0.398
Wait:0.438

1.49 0.120 13.3
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large time-to-arrival and a large distance gap should result in 
higher-confidence “go” decisions than e.g. a combination of 
a large time-to-arrival and a small distance gap. The results 
confirmed that in conditions with larger time-to-arrival and 
distance to the oncoming vehicle, participants reported 
higher confidence in “go” decisions and lower confidence 
in “wait” decisions.

This corresponds to the commonly observed “folded 
X-pattern” in perceptual decisions (Drugowitsch, 2016; Kep-
ecs & Mainen, 2012; Sanders et al., 2016). Furthermore, the 

negative relation we found between confidence and response 
time is also in accordance with earlier confidence research, 
which argued that less (qualitative) evidence towards a deci-
sion results in a longer duration of evidence accumulation 
before making a decision, which results in a reduced amount 
of confidence (Kiani et al., 2014; Pleskac & Busemeyer, 
2010). Our findings thus connect the domain of driver deci-
sion making to previous findings in the basic empirical lit-
erature on confidence.

Among the existing applied work on driver decision mak-
ing, the studies most related to this paper are the ones that 
studied drivers’ certainty (or, alternatively, uncertainty) in 
gap acceptance decisions in lane changes (Yan et al., 2015, 
2016, 2023), narrow passages (Miller et al., 2022), and over-
taking (Leitner et al., 2023). While closely related, the con-
cepts of confidence and certainty are however fundamentally 
distinct, with known dissociations between them (Peterson 
& Pitz, 1988; Pouget et al., 2016). Our findings are generally 
consistent with the patterns of certainty judgments observed 

Fig. 9  Confidence judgments produced by the four candidate models

Table 5  Performance of the four tested confidence models: RMSE 
relative to the confidence ratings measured in the experiment

DDM Race model

CT = RT Model 1: 0.403 Model 3: 0.258
CT = RT + τ Model 2: 0.107 Model 4: 0.274
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in previous studies of driver behavior (Leitner et al., 2023; 
Miller et al., 2022; Yan et al., 2015, 2016, 2023), although 
the manner in which (un)certainty is analyzed in the litera-
ture complicates a direct comparison. Specifically, in this 
line of research, (un)certainty has been analyzed as a func-
tion of kinematic variables (such as TTA) disregarding the 
decision outcome. This obscures the functional relationship 
between the evidence in a given option and the (un)certainty 
judgments in decisions in favor of that option: “the key prop-
erty of confidence is that it is choice dependent” (Pouget 
et al., 2016). By addressing this issue, as well as testing spe-
cifically for dissociations previously reported for perceptual 
decisions (Peterson & Pitz, 1988), future work can clarify 
the relationship between certainty and confidence in driver 
decision making.

The main focus of this work is on subjective confidence 
reports, which continue to be a cornerstone of the funda-
mental literature on confidence. More recently, post-deci-
sion response trajectories have been suggested as a alterna-
tive measure of confidence (Berg et al., 2016; Dotan et al., 
2018). These trajectories could hypothetically provide a less 
intrusive and more dynamic alternative to traditional confi-
dence measures. However, existing studies on the relation-
ship between confidence and action dynamics have relied 
on highly specialized tasks that were specifically designed 
to probe this relationship. Our driving task offered us a 
unique opportunity to investigate how confidence relates to 
postdecision action dynamics (namely, vehicle trajectories) 
in a naturalistic setting. We found evidence for a relation-
ship between confidence and some of the action dynam-
ics measures (e.g., corner-cutting behavior) but not others 
(e.g., velocity). This suggests that potential “leakage” of 
confidence into post-decision behavior in naturalistic driver 
behavior is real but nuanced; follow-up studies measuring 
both subjective confidence reports and full driving tra-
jectories in other driving tasks can further illuminate this 
relationship.

Cognitive Process Modelling of Confidence Judgments

We showed that the cognitive process responsible for con-
fidence judgments can be modelled with the same evidence 
accumulator that is used to model the decisionmaking pro-
cess when accounting for additional evidence accumula-
tion. In order to translate the present evidence expressed 
by the evidence accumulator into a confidence judgment, 
we defined two additional confidence model parameters 
that describe the sensitivity towards the present evidence 
and the confidence bias. These additional model parameters 
can potentially be related to the two main factors that deter-
mine someone’s metacognitive ability: the metacognitive 
sensitivity representing the reliability or accuracy, and the 
metacognitive bias which can be described as the calibration 

(Fleming & Lau, 2014). This can be used to explain the 
observed differences between individuals, something that 
may be of interest for future research.

Our modelling results are consistent with previous 
research by Zylberberg et al. (Zylberberg et al., 2012) who 
found that post-decision confidence is more strongly affected 
by positive evidence in favour of the made decision than by 
the negative evidence in favour of the alternative decision 
in a simple perceptual task. More generally, our results con-
tribute to the body of evidence that implicate post-decision 
evidence accumulation as a mechanism contributing to 
confidence judgments (Hellmann et al., 2023; Pleskac & 
Busemeyer, 2010; Yeung & Summerfield, 2012). We tested 
four candidate models, each of which was adapted from pre-
vious research; in that sense, our study did not yield any 
insights into previously unknown confidence mechanisms. 
Instead, our original contribution lies in evaluating the basic 
computational accounts of confidence in a close-to-real-life 
driving setting (something that hasn’t been addressed in 
driver behavior literature so far). At the same time, more 
intricate models have recently been proposed which are yet 
to be tested in such settings (Atiya et al., 2019; Fleming & 
Daw, 2017; Hellmann et al., 2023); we see this as yet another 
important direction for future work.

Limitations

One of the key trade-offs in our experiment design was 
the decision reporting procedure. In our study, we used an 
explicit decision reporting procedure (participants were 
asked to press a button when the decision was made). This 
allowed us to measure response times in “wait” decisions 
and model the decision process as a two-choice task rather 
than one-choice task (Ratcliff & Van Dongen, 2011). The 
downside of this procedure is that this could have poten-
tially broken down the decision process in two stages (first 
reporting the decision then executing it), possibly affecting 
non-decision times. To prevent this, we instructed the par-
ticipants to report the decision while driving and allowed 
them to get used to this procedure during practice trials. As 
a result, the decision execution was minimally affected by 
the requirement to press the button to report the decision.

Moreover, we measured confidence in this study with 
post-decision self-reports. The main advantage of using a 
self-report-based measurement method is that confidence 
judgments are directly measured (Kepecs & Mainen, 2012). 
However, the disadvantage of this method, which has not 
been taken into account in this study, is that measurement 
errors and strategic biases can cause distortion in the meas-
urement (Kepecs & Mainen, 2012). For example, partici-
pants may not be willing to give an honest confidence judg-
ment because of perceived expectations. Furthermore, we 
only measured confidence after the performance of the turn. 
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This makes it difficult to judge whether participants’ reflec-
tion on their turn execution affected the confidence rating, 
despite the fact that we asked to report the confidence they 
initially had when making the the decision. We opted for 
using post-turn confidence judgements to be able to investi-
gate the relation between driving behavior and confidence. 
Alternatively, if confidence was reported immediately after 
the decision, the task would be disrupted too much, prevent-
ing us from investigating driving behavior during the turn.

Our modelling results suggest that participants were not 
able to do so, showing that confidence judgments were best 
explained when taking into account additional evidence accu-
mulation. In other words, participants continued evidence 
accumulation after the decision was made which affected 
their retrospective confidence judgment. Further research 
could make a comparison between self-reported confidence 
at the decision response time and self-reported confidence 
at the end of the turn to provide further insight on this issue.

The results of this study demonstrated that the confidence 
of a driver in leftturn gap accepting decisions is affected 
by the time-to-arrival and distance gap of the oncoming 
vehicle, besides individual differences. We made use of the 
aggregate data for the regression analysis and allowed for 
individual differences with random intercepts. However, we 
did not investigate or account for the causes of these indi-
vidual differences in our cognitive modelling, as the number 
of recorded decisions per participant was not sufficient for 
individual parameter fitting. Earlier research has shown that 
individual differences can be caused by differences in self-
concept, the level of metacognitive skills, the level of skills 
and (the amount of) experience (Chua & Solinger, 2015; 
Händel et al., 2020; Kruger & Dunning, 1999).

For the reason of simplicity, we assumed in our post-
decision evidence accumulation confidence models that the 
drift rate remains the same after the decision has been made. 
However, it can be questioned to what extent this assumption 
is true. For instance, one may argue that the contribution of 
new perceptual evidence reduces after the decision is made, 
especially in “go” decisions because the driver does not 
observe the relevant perceptual information anymore. Fol-
low-up research could explore how the evidence accumula-
tion after the decision has been made can best be described.

Lastly, the two-stage model fitting approach we adopted 
rested on the assumption that the decision-making and con-
fidence-judgment parts of the model are independent from 
each other, and therefore could be fitted to the data in a 
sequential manner. This allowed us to perform model fit-
ting in time-efficient way, but has a risk of missing model 
parameter combinations which might not necessarily stem 
from the best-fit decision model yet provide a better fit to the 
overall data. This limitation could be addressed in future by 
fitting the models to decision outcome, response times, and 
confidence data simultaneously.

Implications

Better understanding of human cognition can lead to better 
human–machine interaction (Flemisch et al., 2008; Schür-
mann & Beckerle, 2020) and contribute to safe and efficient 
intelligent transportation systems (Markkula et al., 2018). 
We believe that our findings in particular can help improve 
driver assistance systems and automated vehicles which 
could utilize the insight into driver confidence for more 
personalized automation (Yan et al., 2016, 2017), which in 
turn can help improve road safety. More fundamentally, our 
study exemplifies how real-world tasks can be translated into 
controlled experimental paradigms, providing a new kind of 
testbed for theories and models developed in basic science 
using distilled tasks (Boag et al., 2023; Maselli et al., 2023). 
We believe such cross-pollination between fundamental cog-
nitive science and real-world behavior will both enrich theo-
retical developments and enable new applications.

Conclusions

The study addressed the relation between confidence and the 
time-to-arrival and distance gap of the oncoming vehicle, the 
decision response time, and the action dynamics of the per-
formed turn. We investigated to what extent confidence judg-
ments can be captured by four simple cognitive models which 
have as a premise that confidence and decisions are based on 
the same evidence accumulation process. We conclude that: • 
time-to-arrival and distance gap to the oncoming vehicle affect 
the confidence judgments of left-turning drivers. In particular, 
confidence in “go” decisions is positively related to the time-
to-arrival and the distance gap. Confidence in “wait” decisions 
relates negatively to the time-to-arrival and distance gap.

• Confidence relates negatively to the response time 
regardless of the decision outcome. • velocity profile 
during the turn and the distance to the centre of the inter-
section relate to the confidence of the participant. Partici-
pants who were more confident in their decision drove 
in general faster during the turn. For “go” decisions, low 
confidence judgments appeared to be associated with 
corner-cutting behavior.

• Participants’ reported confidence in left-turn gap accept-
ance/rejection decisions can best be explained by an 
extended drift–diffusion model in which confidence judg-
ment is based on post-decision evidence accumulation.
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