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Abstract

This report explores the differences in implementations of homotopy type theory
using different definitions of finite sets. The expressive ability of homotopy theory is
explored when using the newly established definition and implementation of Kuratowski
finite sets. This implementation is then compared to that when using the previously
established definition and implementation of Bishop finite sets in homotopy type theory.

The implementation of finite sets in homotopy type theory is a topic of extensive
research. Recent advances have come up with an implementation of Kuratowski-finite
sets which promises to be more general and flexible than previously established imple-
mentations of finite sets via Bishop-finite sets and enumerated types.

This paper will explore examples of types that satisfy Kuratowki-finite notions of
finite sets, but not Bishop-finite notions. Through these examples, it will be proven
that Kuratowski-finite notions are strictly more flexible than Bishop-finite notions.
It will then be proven that by using Kuratowski-notions, the familiar computations
involving sets can be used in the same way as with Bishop-finite sets; there is no loss
in computational facilities.

1 Introduction
Currently, tools such as Coq are used to automatically verify proofs under the basis of
type theory, proposed by Martin-Löf as an alternative to set theory[1]. Unfortunately, the
foundational principles of type theory are troublesome to translate into the programming
language of automated proof assistants[2]. Homotopy type theory (henceforth refered to as
"HoTT") which uses constructive foundations, was proposed by Vladimir Voevodsky as an
alternative to standard ZFC set theory[3].

The mathematical foundations of HoTT are a development of intuitionistic Martin-Löf
type theory that employs higher inductive types, henceforth referred to as "HIT"s, and the
univalence axiom[2]. The univalence axiom relates the concept of equality in mathematical
propositions to the concept of equivalence in homotopy theory. Under the univalence axiom,
isomorphic structures are treated as equals[4]. HIT’s, meanwhile, are similar to inductive
types, but allow for path constructors as well as point constructors[12]. A simple example
of a higher inductive type is the circle, which is defined by a simple point constructor for
the base of the circle, and a path constructor describing the loop which begins and ends at
the base to create the circle S1[5]

Induct ive S1 : Type :=
| base : S1

| loop : base = base

Figure 1: The constructor for circles as a higher inductive type

In essence, HoTT explains not only that "A = B" but also how to get from A to B,
while in standard set theory this would have to be defined additionally[6]. This approach
promises to make mathematical proofs easier to translate into computer programs, allowing
for more complex proofs to be checked automatically. The development and research of
HoTT is done with the objective of (among others) making mathematical proofs to be more
easily verified by computers.

If HoTT aims at providing a system for reasoning, its application to different mathe-
matical structures must be developed further. The application of HoTT to finite sets and
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finite types is a topic of ongoing research. As of the writing of this paper, there is no for-
mally accepted and established method for defining finite sets within HoTT that provides
the computational facilities and the proof principles expected of finite sets - such as union
and cardinality operations, and extensional equality for sets[7].

Different approaches to implementing finite sets in HoTT have been explored[7]. In
constructive mathematics, there are different forms of defining finite sets[8]. The most well
known is the definition that a set is finite if it is equivalent to a canonical finite set {0, ...,
n} for some natural number n[9]. This definition of finite sets was popularized by Bishop,
and is referred to as "Bishop-finite". However, using the Bishop-finite notion of finite sets
has computational limitations. Canonical finite sets require the underlying type to have
decidable equality [10], meaning two instances of the type are either equal or not equal. In
HoTT, this is not always the case. This limits how flexible the notion is when used to define
finite sets.

A 2018 paper by van der Weide et al. [7] explores the possibility of instead using the
notion of Kuratowski-finiteness. The Kuratowski-finite notion of finite sets denotes that a
type is finite if there exists a Kuratowski-finite subset of the type that contains all instances
of said type. Although similar at face This approach is inspired by topos theory, and van
der Weide’s paper claims this notion to be more general and flexible than that of Bishop-
finiteness, as Kuratowski-finiteness does not require the underlying type to have decidable
equality, and instead only requires decidable mere equality [7], which is further explained in
section 3.2.

This paper will compare the computational scope of implementations between the Bishop-
finite notion and the Kuratowski-finite notion implementations (from van der Weide et al.[7])
of finite sets in HoTT. As HoTT is developed, it is crucial that the computational facilities of
finite sets are provided by HoTT implementations. The research question being investigated
is "What is the difference in HoTT implementations when using Kuratowski-finite notions
of finite sets versus Bishop-finite notions?"

This paper is structured as follows:

• Section 2 covers definitions of terminology and some fundamental aspects of different
finite set notions

• Section 3 evaluates examples of types that prove that the notions of finite sets are not
equivalent; that is, examples that are covered by Kuratowski-finite notions but not
Bishop-finite notions

• Section 4 establishes the scope of each notion in-depth, along with the difference in
each

• Section 5 explores the implications of the differences between the notions to HoTT im-
plementations by showing what an actual implementation of Kuratowski-finite notions
would look like

• Section 6 includes concluding statements and suggests where future research into the
field should be directed

2 Definitions
HoTT is a refinement of constructive set theory, and in constructive mathematics there is
more than one way of stating that a set has a finite number of elements[8]. In this paper,
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the two main notions of finiteness explored are that of Bishop-finiteness (henceforth referred
to as "B-finiteness") and Kuratowski-finiteness (henceforth referred to as "K-finiteness").
K-finite and B-finite sets over some type A will be denoted K(A) and B(A), respectively.

2.1 Bishop-finite sets
The most straightforward and intuitive way to establish that a set is finite is to simply
count the elements in the set: an approach which leads to the notion of B-finiteness, the
most well-known notion of finiteness. A type A is B-finite if there is a natural number n
such that A is merely equivalent to a canonical cardinal of size n[9]. Formally, the type A
is B-finite if it satisfies the proposition isBf(A), where[7]:

Definition 2.1:

isBf(A) := Σ(n : N), ||A ≃ [n]||
B-finiteness has been studied previously in the setting of HoTT, and the notion has been

formalized[11]. The constructs using the B-finite notion are limited in that B-finiteness can
be restrictive. The first issue is that B-finite types are not, in general, closed under disjoint
union[7]. Furthermore the definition of B-finiteness depends on finding mere-equivalence of
a set over type A to finite cardinals, such as [n] = {0, ..., n− 1}[9]. This can be problematic
because all finite-cardinals have decidable equality[13], meaning all B-finite sets must have
decidable equality as well. Within the context of HoTT, a constructive approach, this is
rather restrictive, as decidable equality is not guaranteed for many types. As is explored in
section 3, some types which are in fact finite unfortunately do not have decidable equality[7],
which has led researchers to search for other notions of finite sets which prove to be more
flexible.

2.2 Kuratowski-finite sets
The notion of K-finiteness was proposed by Kuratowski as a replacement for B-finiteness,
promising to be more flexible and general [14]. At the risk of oversimplifying, a type is
considered K-finite if there is some finite set that contains all instances of said type. Formally,
the type A is K-finite if it satisfies isKf(A), where[7]:

Definition 2.2:

isKf(A) := Σ(X : K(A)),Π(a : A), a∈X
In the paper by van der Weide et al., the K-finite set is defined as a higher inductive

type[7]:

Higher Induct ive Type K(A) :=
1 | ∅ : K(A)
2 | {·} : A → K(A)
3 | ∪ : K(A) → K(A) → K(A)
4 | n l : Π(x : K(A)), ∅ ∪ x = x
5 | nr : Π(x : K(A)), x ∪ ∅ = x
6 | idem : Π(x : A), {x} ∪ {x} = {x}
7 | a s soc : Π(x, y, z : K(A)), x ∪ (y ∪ z) = (x ∪ y) ∪ z
8 | com : Π(x, y : K(A)), x ∪ y = y ∪ x
9 | trunc : Π(x, y : K(A)),Π(p, q : x = y), p = q
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Figure 2: The constructor for K-finite as a higher inductive type. Note the numbers on the
leftmost side indicate only line numbers, and do not form part of the constructor

The first three lines of the type are point constructors, indicating that the empty set is
K-finite (line 1), as are singletons (line 2), and the rule that the union between a K-finite set
and another K-finite is also K-finite (line 3). Lines 4 onward are path constructors, a unique
feature of higher inductive types. Line 4 and 5 indicate the union between a set and the
empty set is identical to the original set. Line 6, 7, and 8 are paths between points and refer
to basic rules of sets, such as associative and commutative laws. Line 9, however, is unique
to HoTT; trunc is a function between two paths that forces K(A) to be a HSet. Simply put,
a HSet is a set where all paths between two points are equal. Note that in HoTT, the terms
"HSet" and "set" are often used interchangeably[15].

2.3 Similarities between finite set notions
Before comparing the differences between these two notions of finiteness, it is crucial to
explore their similarities. Firstly, it must be noted that all B-finite types are also K-finite,
although further sections will show that the inverse is not true in general. This can be
intuitively determined from the analysis of the constructor of K(A) in Figure 2 - it is clear
that any set X which satisfies isBf(X) can be built from successive unions of singletons. A
formal proof is provided by van der Weide et al.[7]

It is interesting to note that the two notions of finiteness are equivalent to each other if
the underlying type has decidable equality. A type having decidable equality implies that
any two objects of the type are either equal or not equal. Formally, a type A has decidable
equality if and only if it satisfies hasDecEq(A) where:

Definition 2.3:

hasDecEq(A) := Π(a, b : A), (a = b) + (a ̸= b)

In classical mathematics, where the Law of Excluded Middle (LEM) is assumed, this is
evidently always true. Two objects are either equal or not equal. However, this is only true
assuming LEM - which is not necessarily the case in HoTT. Without the LEM, there are in
fact types which do not have decidable equality - that is, it is mathematically impossible to
determine whether two instances of the type they are equal or not.

3 Example types analysis
In order to explore the difference between K-finite and B-finite notions, we will explore
examples of types that fit K-finite notions of finiteness but not B-finite.

3.1 Example type study: Real numbers
Perhaps the simplest example can be found in the real numbers, R. The classical real num-
bers - that is, the set1 containing both rational and irrational numbers - do not have decidable
equality, and representations of real numbers often rely on approximating them towards a
rational number[17]. The non-decidability of real numbers is generally well known, and an

1The word "set" here is used informally. In fact, as they are classically defined, the real numbers are not
a set at all[2]
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intuitive explanation describes how, in an effective topos2, a real number is represented by
a Turing machine that computes arbitrarily good rational approximations; attempting to
establish an equality between two of these types would clearly not be computable. However,
consider a set X with only one real number contained, {x} for some x ∈ R. By definition
this singleton has only one element, yet it cannot be considered a finite set by the B-finite
notion - since B-finite types require decidable equality in the underlying type.

Despite being a singleton (a set with a single inhabitant), by B-finite notions of finite
sets, the singleton set is in fact not considered finite if the underlying type does not have
decidable equality. This is not only very counter-intuitive, but also problematic when trying
to reason about such a set. Set operations cannot be performed on such a set while assuming
finiteness, despite the set having only one inhabitant. This is what led to the idea of K-
finiteness being used as the notion of finiteness in HoTT. Under K-finiteness, the singleton
set is always finite by definition, which is much less constraining. More examples of types
which meet the K-finite but not B-finite notions will be explored to better understand the
non-equality between the two.

3.2 Example type study: Circles
Such types that do not have decidable equality without assuming LEM include the circle,
the constructor for which is shown in Figure 1. A paper by Shulman et al. [5] goes in depth
into the fundamental group of the circle in HoTT. The loop in the constructor cannot be
algorithmically compared, meaning the circle type lacks decidable equality. Furthermore, it
can be proven that the circle type S1 is not a B-finite set.

First, let it be established that if X is a B-finite set, then all singleton subobjects of
it must be B-finite[7]. Knowing that a B-finite set is equivalent to canonical finite set
{0, ..., n} for some n ∈ N, this is a rather intuitive conclusion; any singleton subset {x} of
a B-finite set X contains a single instance of a type with decidable equality (as implied by
the encapsulating set X being B-finite itself) and the singleton is therefore equivalent to set
{0, ..., n} where n = 0 (i.e. singleton set {0})3.

The singleton sub-object of the circle type S1 is not B-finite, however, due to the circle
lacking decidable equality. From this fact, we can therefore conclude that the circle type
S1 is not a B-finite set. It can be further proven that S1 is actually not a set at all. First,
consider the identity type commonly used in HoTT. It has a single constructor refl of type
Π(x : A), (x = x). This identity type plays a crucial role in all of HoTT[16], but here we will
use it to prove that the circle type S1 is not a set. to borrow a proof from the Homotopy
Type Theory book[2]: If loop = reflbase, then we could use some x : A and p : x = x to
create a function

f : S1 → A

for any type A, with f being f(base) :≡ x and f(loop) := p. This would lead to the
following equation:

p = f(loop) = f(reflbase) = reflx

However, for this equation to stand, A has to be a set. Since A represents an arbitrary type,
this equation then implies that every type is a set, which is definitively untrue[2]. This leads
to the conclusion that loop ̸= reflbase.

2At the risk of egregiously oversimplifying the concept, a topos is best understood here as "a context
under which one does mathematics"

3A formal proof is provided by van der Weide et al.[7]
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Despite not having decidable equality (and therefore not being B-finite), the circle type
S1 does have what is referred to by van der Weide et al.[7] as decidable mere equality. Decid-
able mere equality is similar to decidable equality, but has truncation on the two equalities.
Formally, the type A has decidable mere equality if and only if it satisfies hasMereDecEq(X)
where:

Definition 3.1:

hasMereDecEq(X) := Π(a, b : A), ||a = b||+ ||(a ̸= b)||

the circle type S1 does have decidable mere equality[7], and this can be used to prove that
S1 is a K-finite type. For X = {base} (a singleton containing only base)4 , path induction
on S1 shows Π(x : S1), x ∈ {base} using the truncation ||base = base||. Using the same
truncation, x = base is a mere proposition5 - that is, a type where all inhabitants are equal
[2]. From this proof that the type S1 is contained in a singleton, it is shown that S1 is by
definition K-finite, as the K-finite notion of finite sets includes singletons by definition.

Furthermore, we now have a more useful example of K-finite and B-finite types not being
equal. The circle type S1 is encapsulated in a singleton, making it K-finite, but is not B-
finite due to the lack of decidable equality. From the two proofs, we can come to a general
conclusion: types which are not sets, but are encapsulated in singletons, are K-finite, but
not B-finite. This notion can be further explored by examining the 2-sphere.

3.3 Example type study: 2-Spheres
The 2-sphere higher inductive type S2 follows from the circle type, with a point base S2

and a 2-dimensional path.

Induct ive S2 : Type :=
| base : S2

| s u r f 2 : reflbase = reflbase in base = base

Figure 3: The constructor for circles as a higher inductive type[2]

It is important to note that the path surf2 : reflbase = reflbase contains reflbase, how-
ever, this does not imply that circles within the 2-sphere have decidable equality. The
reflbase reference is not equivalent to the loop path which is found in the constructor for
circles. Similar to the circle type S1, the 2-sphere type S2 also does not have decidable
equality, and this can be shown with a similar proof to that for S1: If surf2 = reflreflbase2

,
then we could use some x : A and p : x = x to create a function

f : S2 → A

for any type A, with f being f(base2) :≡ x and f(loop) := p. This would lead to the
following equation:

p = f(surf2) = f(reflbase2) = reflx

However, for this equation to stand, A has to be a set. Since A represents an arbitrary type,
this equation then implies that every type is a set, which is definitively untrue[2]. This leads
to the conclusion that loop ̸= reflbase.

4Curly brackets in this paper are used to explicitly indicate sets and their contents. In particular, curly
brackets containing a single item a, as in {a} indicate a singleton containing a

5Referred to as a HProp in van der Weide et al.[7]
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Similar to the circle, the 2-sphere is also a K-finite type. The mere equality of the circle
can be raised in dimension to the sphere as well. We can prove that hasMereDecEq(S2)
through a similar method: Assume a singleton with X = {base}, path induction on S2

shows Π(x : S2), x ∈ {base2} using the same truncation of ||base = base|| used for circles,
but working downwards from the dimension of surf2. The 2-sphere contains its own equality
of ||base2 = base2|| from surf2, as reflbase = reflbase is itself built upon base = base. The
truncation of ||base2 = base2|| allows us to contain all base2 instances into the singleton
X = {base}, proving the 2-sphere to be contained in a singleton - and therefore K-finite.
Like the real numbers and the circle, the 2-sphere is a K-finite type that is not B-finite.

3.4 Example type study: n-Spheres
Notice the pattern of circles/spheres having a base point, and an equality between base.
The circle has an equality from base to base in loop, while the sphere has an equality from
reflbase2 to reflbase2 in surf2, which can be interpreted as a higher-dimensional loop. From
the definition of the circle type S1 and the 2-sphere type S2, we can therefore reason about
a definition of spheres in a more general level in higher dimensions - the n-spheres, as in, a
sphere at the n dimension.

Firstly, just like the circle had a base S1 and the sphere had a base S2, the n-sphere
will have a base point Sn. Note that point bases Sn are simply a point in space, but at the
n dimensional level. The loop is not as trivial to generalize to higher dimensions, but we
can reason about an n-loop with an equality Ωn(Sn,basen) creating the sphere itself. The
notion behind this definition is that of a "dependent n-loop", with each loop an equality
building upon the previous dimension loop[2].

The n-sphere Sn also does not have decidable equality, and this can be shown with a
similar proof to that for S1 and S2. Every Ωn(Sn,basen) will be built upon the equality
between Ωn−1(Sn−1,basen−1). By repeated path induction on Ωn to Ωn−1, it will always
reduce to a path base = base, as found in S1. By this reasoning, any n-dimensional sphere
can be proven to have non-decidable equality through the same reasoning of loop ̸= reflbase

used in section 3.4.
Similarly, by reducing Ωn(Sn−1,base) to get base = base by repeated path induction,

we can truncate ||base = base|| to prove that the base in Sn will always have Π(x : Sn), x ∈
{base} for any n ∈ N, such that any n-sphere can be contained in a singleton.

From this we can conclude that any n-sphere is not B-finite, because they lack decidable
equality. They are K-finite, however, as they can all be contained within a singleton.

4 Comparison
We can now begin to establish the difference between B-finite and K-finite notions in a more
intuitive way.

Let us establish two functions. Firstly, K(A) implies that some given type A is K-finite,
while B(A) implies that a type is B-finite. From section 2.3, it is established that all B-finite
types are K-finite. From this fact, and the functions isBf and isKf from sections 2.1 and
2.2 respectively, we can formally establish:

Proposition 4.1:

Π(A : Type), isBf(A) ⇒ isKf(A)
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Meaning that B-finiteness implies K-finiteness. Through exploring the examples in section
3, it has been established that there are types which are K-finite but not B-finite

Proposition 4.2:

Σ(A : Type), isKf(A)× ¬isBf(A)

Another way to say this is that the set of B-finite types is a proper subset of the set of
K-finite types. The examples explored in section 3 (R, Circles, 2-Spheres, n-Spheres) were
those which are K-finite, but not B-finite. For these types, the method to prove they were
K-finite but not B-finite was to reduce the type to a singleton. Essentially, the examples we
are looking for is those types A where a singleton containting {a} for some a ∈ A. From
analysis of the example types, the method used was to prove the the type is contained
within a singleton (which is K-finite by definition), and then prove the singleton is not
B-finite. B-finiteness requires decidable equality in the underlying type, and to reduce a
type to a singleton we require decidable mere equality. Recall the functions hasDecEq and
hasMereDecEq from sections 2.3 and 3.2 respectively, which represent decidable equality
and mere decidable equality. Stating that a type can be reduced to a singleton, but that
it is not decidably equal, is therefore equivalent to the type being K-finite but not B-finite.
For any given type A, we can declare:

Proposition 4.3:

Π(A : Type), isKf(A)× ¬isBf(A) ≃ hasMereDecEq(A)× ¬hasDecEq(A)

From the analysed examples, types such as R and Sn do not have decidable equality, but
do have decidable mere equality.

Given the examples studied, we can now begin to explore actual implications of these
differences. Firstly let us define subobjects for B-finiteness and K-finiteness. The K-finite
subobject is already defined in figure 2 as K(A); in order to define a B-finite subobject, we
need to define the notion of a mere proposition, or HProp[7]. A type A is an HProp if it
satisfies isHProp(A) where

Definition 4.1:

isHProp(A) := Π(x, y : A), x = y

An intuitive way to understand this is isHProp(A) implies all inhabitants of A are equal.
The type HProp itself will therefore be defined as

Definition 4.2:

HProp := Σ(A : Type), isHProp(A)

Let us furthermore define a subobject P : A → HProp. This object is B-finite if the subset
Σ(x : A), P (x) is also B-finite. The intuition behind defining this type is so we can create
a B-finite subobject for B-finiteness, the same way we have K(A) as K-finite subobjects for
K-finite types. This B-finite subobject is defined as[18]

Proposition 4.4:

Σ(X : A → HProp), isBf(X)

B-finite objects will be referred to as B(A) as a B-finite equivalent of K(A).
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From these definitions we can begin to compare how set operations differ between B(A)
and K(A) subobjects. If we are to use K-finite notions rather than B-finite notions of
finiteness in HoTT, then K(A) should possess the same computational functions on finite
sets that we expect from B(A). The strategy for this will be to build up the two types in a
similar way as done in Figure 2; beginning with the empty set ∅, proceeding to the singleton
{·}, then defining behaviour for union operation ∪, intersection operation ∩, and finally the
(decidable) member function ∈d.

Let us establish that empty set ∅ is both K(A) and B(A). The empty set satisfies
isBf(∅), since the empty set is a canonical set with cardinality 0. It is also K-finite, as this
is defined in the constructor for K(A).

Next, the singletons. Any singleton is K(A) by definition, as the singleton it is a point
constructor in the K(A) HIT. However, for a singleton to be B(A), the underlying type must
not have higher paths[18]; as in, it must satisfy isSet where

Definition 4.3:

isSet(A) := Π(x, y : A),Π(p, q : x = y), p = q

alternatively, an equivalent definition[15] is

Definition 4.4:

isSet(A) := Π(x : A),Π(p : x = x), p = idx

where idx is the identity type for x. Notice none of the examples explored in section 3 satisfy
isSet. The real numbers R, the circle S1, and the n-spheres Sn, lack decidable equality and
are not sets at all.

The decidable membership function must be established for both K(A) and B(A). Note
that unlike equality, which in the case of K(A) is not necessarily decidable, the membership
function must always be decidable. That means:

Proposition 4.3:

Π(X : B(A)),Π(a : A), (a ∈ X) + (a /∈ X)

Proposition 4.4:

Π(X : K(A)),Π(a : A), (a ∈ X) + (a /∈ X)

Let us take a simple function to carry out the membership function on a set, where {A}
denotes a set containing members of type A:

1 de f ∈d (a : A, X : K(A)) : Boolean :=
2 f o r (x in X ) :
3 i f ( x == a ) :
4 re turn true ;
5 re turn f a l s e ;

Figure 3: Decidable membership function ∈d. Note the numbers at the beginning of each
line denotes only the line number, and are not part of the pseudocode function

Notice the equality function in line 3. In order to decide whether an object is a mem-
ber of a set, it is required to equate the object to the members of the set. With decidable
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equality, this is very straightforward - meaning B(A) ensures functionality of the member-
ship function. However, mere decidable equality alone is actually enough to carry out the
membership function[18], as the truncated equality (as found in mere decidable types) is
enough to establish membership. This means that, since K(A) has (or rather, requires)
hasMereDecEq(A), the membership function can be carried out for any K(A). There is,
therefore, no loss of functionality in the decidable membership function when using K(A)
instead of B(A).

The union operation ∪ is more complex. K(A) is closed under union by definition (see
figure 2). B(A), however, is not. This is rather counter intuitive, as any two B(A) are each
equivalent to some canonical finite set [n] for some n ∈ N. Say we have two sets X,Y : B(A),
where |X| = n and |Y | = m. It is reasonable to assume that a union between the sets would
result in a set with cardinality of n + m − |X ∩ Y |; however, as has been established, the
cardinality of the set is not the only factor in determining finiteness when using B(A). Take
a simple pseucode function for ∪, using the funciton ∈d from figure 3:

1 de f ∪(X : K(A), Y : K(A)) : K(A) :=
2 var Z = X ;
3 f o r (y in Y ) :
4 i f ¬(y ∈d X ) :
5 Z = Z ∪ {y} ;
6 re turn Z ;

Figure 4: Union function ∪. Note the numbers at the beginning of each line denotes only
the line number, and are not part of the function

Notice the usage of ∈d in line 4. In order to conduct a union operation, we necessarily
require the decidable membership predicate ∈d. This means that for the union operation
to be carried out, we are under the same restrictions as we are for the ∈d function; that is,
decidable equality is required for B(A), and only mere decidable equality for K(A).

Finally, the intersection operation ∩ on K(A) and B(A). Take a simple intersection
function:

1 de f ∩(X : K(A), Y : K(A)) : {A} :=
2 var Z = ∅ ;
3 f o r (x in X ) :
4 i f (x ∈d Y ) :
5 Z = Z ∪ x
6 return Z ;

Figure 5: Intersection function ∩. Note the numbers at the beginning of each line denotes
only the line number, and are not part of the function

In line 4, as with the ∪ function, the intersection function also requires ∈d.
It follows from reasoning that with using K(A) there is no loss of set functionality

compared to using B(A). That is, any set operation which can be done on B(A) can also
be done on K(A), with the difference that the underlying type only requires decidable mere
equality. The simple conclusion to draw from this is that K(A) is strictly more flexible than
B(A) when it comes to operating on sets.
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5 implementation
One of the ways in which to gauge the implications of using K(A) is to implement a list
type using K(A) and evaluate the functions. Let us call this K(A) implementation of a list
L(A). Transforming K(A) into a list is fairly straightforward. One of the ways to do so is
through this simple example of a function F : K(A) → L(A), with which we can prove any
K(A can be converted into a list:

de f F(K : K(A)) : L(A) :=
var L = nil ;
f o r (x in K ) :

L : : : x ;
r e turn L ;

Figure 6: Function F for that returns a list given a K(A). Note that nil denotes an empty
list, and ::: is the list concatenation function

We can prove that L(A) is equivalent to K(A) by showing a bijection between the two
types. We already have F : K(A) → L(A), so now let us define the inverse function
F−1 : L(A) → K(A):

de f F−1(L : L(A)) : K(A) :=
var X = ∅ ;
f o r (a in L ) :

X = X ∪ {a} ;
r e turn X ;

Figure 7: Function F−1 that returns a set K(A) given a list L(A). Note that {a} denotes a
singleton containing only element a.

The other functions defined for sets K(A) in figures 3, 4, 5 are very straightforward to
apply to lists, requiring only simple changes in typing. The decidable membership function
∈d in figure 3 requires only a trivial type change from K(A) to L(A):

de f ∈d (a : A, X : L(A)) : Boolean :=
f o r (x in X ) :

i f ( x == a ) :
r e turn true ;

r e turn f a l s e ;

Figure 8: Function ∈d (a : A, X : L(A)) : Boolean
The union function in figure 4:

de f ∪(X : L(A), Y : L(A)) : L(A) :=
var Z = X ;
f o r (y in Y ) :

i f ¬(y ∈d X ) :
Z = Z ::: y ;

r e turn Z ;

Figure 9: Function ∪(X : L(A), Y : L(A)) : L(A)

and the intersection function in figure 5:
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de f ∩(X : L(A), Y : L(A)) : L(A) :=
var Z = n i l ;
f o r (x in X ) :

i f (x ∈d Y ) :
Z = Z ::: x

re turn Z ;

Figure 10: Function ∩(X : L(A), Y : L(A)) : L(A)

The K(A) finite set definition is actually very convenient to work with, as it is easily con-
vertible back and forth from an abstract set type to a list type L(A).

6 Conclusion
In section 2 it was established that all B-finite sets are also K-finite, meaning that the K-
finite notions is at least as flexible as the B-finite notions. In section 3, by exploring different
examples of types within HoTT, it was established that there are types which form provably
K-finite sets, but do not satisfy B-finite notions of finiteness. The K-finite notion is therefore
strictly more flexible than the B-finite.

The implications of this research is that within HoTT, the K-finite notions of finiteness
provide a more flexible and intuitive definition of finiteness within sets. When using HoTT,
we should be able to reason about finite sets with the same intuition that we do outside of
HoTT; that is, a set with a limited number of elements.

In the opinion of the author, the K(A) is also more intuitive to understand from the HIT
definition. Further research in the field should focus on using the K(A) as a construction
outside of HoTT, and explore its usefulness in a classical mathematics standpoint. The
concept of a finite set being built up from a base cases ∅ and {•} and built up from union
operations is more intuitive to understand than the standard B(A) definition of finite sets,
in which even some singletons are not considered finite.

Further research is also required to formally define a general definition of K(A) types
that do not satisfy B(A). These types are interesting in that they behave differently in the
context of HoTT versus in classical mathematics.

7 Responsible Research
There are no major ethical concerns for this research project, as the project was based
on pure mathematics and no experiments were carried out. HoTT as a foundation for
mathematics can be used in proof-checking algorithms; however, this paper did not employ
the use of any software. As such, ethical issues of reproducing experimental results, having
code available, etc. do not apply.

Where they are used, the theorems of other research papers are clearly referenced such
that credit is given to the responsible researchers.
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