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Abstract: UV sensors hold significant promise for various applications in both military and civilian
domains. However, achieving exceptional detectivity, responsivity, and rapid rise/decay times re-
mains a notable challenge. In this study, we address this challenge by investigating the photodetection
properties of CdS thin films and the influence of surface-deposited gold nanoparticles (AuNPs) on
their performance. CdS thin films were produced using the pulsed laser deposition (PLD) technique
on glass substrates, with CdS layers at a 100, 150, and 200 nm thickness. Extensive characterization
was performed to evaluate the thin films’ structural, morphological, and optical properties. Pho-
todetector devices based on CdS and AuNPs/CdS films were fabricated, and their performance
parameters were evaluated under 365 nm light illumination. Our findings demonstrated that re-
ducing CdS layer thickness enhanced performance concerning detectivity, responsivity, external
quantum efficiency (EQE), and photocurrent gain. Furthermore, AuNP deposition on the surface of
CdS films exhibited a substantial influence, especially on devices with thinner CdS layers. Among the
configurations, AuNPs/CdS(100 nm) demonstrated the highest values in all evaluated parameters,
including detectivity (1.1 × 1012 Jones), responsivity (13.86 A/W), EQE (47.2%), and photocurrent
gain (9.2).

Keywords: UV sensors; Au nanoparticles; CdS thin films; photodetection; pulsed laser deposition

1. Introduction

The demand for highly efficient and responsive UV sensors has grown significantly in
recent years due to their wide-ranging applications in the military and civilian sectors. UV
sensors are vital in various fields, including environmental monitoring, industrial processes,
and biomedical diagnostics. Ultraviolet (UV) radiation, while instrumental for its antibac-
terial properties that promote human health by eradicating pathogenic microorganisms,
can pose significant health risks. Prolonged exposure to UV radiation is associated with
detrimental health outcomes such as an increased risk of skin cancer, the development of
cataracts, and the suppression of immune system functions. This duality underscores the
importance of accurately monitoring UV radiation levels, a task for which UV sensors are
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essential [1–3]. These sensors transform UV light into electrical signals, a process facilitated
by photodiodes or photoresistors. Photodiode-based UV sensors are characterized by
their ability to generate an electric current in response to light exposure. This current,
proportional to the intensity of the incident light, is converted into a measurable output,
either digital or analog, reflecting the level of UV light.

In contrast, photoresistor UV sensors operate based on the principle of light-induced re-
sistance change. While these sensors offer less precision than their photodiode counterparts,
they are suitable for applications requiring essential light detection, such as determining
the presence or absence of light or gauging relative light intensities in specific environ-
ments [4,5]. However, achieving exceptional responsivity and rapid response/recovery
times remains a noteworthy challenge. This has motivated extensive research efforts to
explore novel materials and device architectures that can enhance the performance of UV
sensors [6,7].

CdS has emerged as a promising semiconductor material for optoelectronic devices
and detectors thanks to its exceptional properties, such as a direct bandgap (∼2.4 eV), excel-
lent transport characteristics, and high refractive index [8–14]. The performance of CdS thin
film-based devices is influenced by film thickness, grain size, and morphology [15,16]. CdS
thin films have been extensively explored for their optoelectronic properties, and various
nanostructures such as thin films [17], nanowires [18], nanobelts [19], and nanoribbons [20]
have been developed to improve their photodetector performance. Various fabrication
methods such as sputtering [21], vacuum evaporation [22], electrodeposition [23], chemical
bath deposition [24–26], spray pyrolysis [27,28], chemical vapor deposition [29], metalor-
ganic chemical vapor deposition (MOCVD) [30], and pulsed laser deposition (PLD) [31–33]
have been employed to produce high-quality CdS thin films. In recent years, the PLD
technique has garnered significant attention for delivering sophisticated, high-quality com-
pound semiconductor thin and ultrathin films and embedding nanoparticles (NPs). In this
technique, the stoichiometry of the target is preserved in the growing film due to the fast
temperature rise (>1011 K s−1) produced by a high-power laser that ablates each component
of the target materials simultaneously [34]. With a highly well-regulated deposition rate,
the composition of the used target is promptly transmitted to the substrate, which is a
significant benefit of the PLD system [35,36]. Furthermore, in PLD, thin film formation can
occur under various reactive conditions, such as different ambient gases or vacuum [32],
which can influence film characteristics, although the specific effects of these conditions
were not the primary focus of our current investigation. Other factors to consider are laser
power and frequency [37], ambient gas pressure [38], and substrate temperature [39]. Our
group has made notable contributions to this field with a series of studies [40–42].

Moreover, the development of nanomaterials, particularly NPs, has garnered sig-
nificant attention due to their distinct properties and potential for enhancing various
applications. NPs offer unique characteristics that differ from their bulk counterparts,
making them highly promising for optoelectronic devices. In particular, metallic NPs
have been extensively studied for their localized surface plasmon resonance (LSPR) effect,
which can significantly enhance the optical properties of materials. The LSPR phenomenon,
arising from the collective oscillation of conduction electrons in NP, allows for efficient
light absorption and scattering. This property has been successfully harnessed to enhance
the performance of photodetection devices, offering new avenues for achieving improved
responsivity, sensitivity, and overall device performance [37,43]. In line with these advance-
ments, this study explores the incorporation of Au nanoparticles (AuNPs) on CdS thin
films to leverage the LSPR effect and enhance the photodetection properties of the devices.

Our review of the existing literature has identified individual studies that address the
influence of film thickness on photodetector properties, notably by Makhdoumi et al. [44],
as well as investigations into the effects of doping on the photosensing characteristics of
CdS photodetectors [9,45,46]. Despite these contributions, our analysis indicates a lack
of comprehensive research that synergistically examines the effects of both plasmonic
material deposition and film thickness on CdS photodetectors. In particular, the interde-
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pendent impact of plasmonic material deposition in conjunction with variations in CdS
film thickness on photosensing performance has not been thoroughly explored. Therefore,
this study aims to bridge this gap by providing a detailed investigation into how these
combined factors influence the photosensitive properties of CdS photodetectors. In light
of this, this study focuses on developing high-quality CdS/glass and AuNPs/CdS/glass
nanostructure thin films with different thicknesses (100, 150, and 200 nm) of the CdS layer.
These films were fabricated employing the PLD technique on glass substrates. In the ambit
of this investigation, a systematic nomenclature has been adopted for the various samples
under examination to facilitate clarity and precision in discourse. Specifically, cadmium
sulfide (CdS) thin films with 100 nm, 150 nm, and 200 nm are designated as S1, S2, and
S3, respectively. Correspondingly, the samples comprising gold nanoparticles (AuNPs)
deposited on CdS thin films of identical thicknesses are labeled as S4 (100 nm), S5 (150 nm),
and S6 (200 nm). The morphology, structure, and optical/photoluminescence properties of
thin films were thoroughly examined. CdS-based photodetector devices were fabricated,
and their performance characteristics, including I-V characteristics, response/recovery
time, responsivity (R), photosensitivity, detectivity (D*), and external quantum efficiency
(EQE), were systematically evaluated in correlation with specific parameters. Therefore,
the investigation focused on analyzing the impact of varying CdS thin film thickness and
the influence of Au nanoparticles (AuNPs) on their photodetection performance. Detailed
discussions regarding these aspects were provided to gain a comprehensive understanding
of the photodetection behavior. Through this study, we establish a nuanced understand-
ing of the interplay between nanoscale architecture and photodetector efficacy, offering
valuable insights that may guide future innovations in photodetector technology.

2. Materials and Methods
2.1. Materials

The primary materials used to fabricate thin films during this study included cadmium
sulfide (CdS) and gold (Au), which were integral to our experimental setup. The CdS target,
essential for developing the CdS thin films, was a disc of 5 cm diameter with a purity of 5N
(99.999%), sourced from Sigma Aldrich (St. Louis, MO, USA). This target was employed
to deposit CdS layers onto pre-cleaned glass substrates. Similarly, for the deposition
involving gold, a 5 cm diameter target of gold with a purity of 5 N was procured from
Sigma Aldrich. Silver (Ag) Conductive Adhesive Paste, obtained from Nanografi (Ankara,
Türkiye), was also used to establish electrical contacts. The actual device in our study is
based on two parallel electrodes designed from Ag that are 3 mm in width and 1 cm in
length. Meanwhile, the total area of the sample has the dimensions of 1 × 1.5 cm2.

2.2. Deposition Technique

Thin films were grown using a custom-built PLD system developed by our group [47],
in combination with a Continuum Minilite II Nd: YAG Laser (Singapore) delivering photons
at a fundamental 1064 nm wavelength operating in pulsed mode with five ns pulse duration
at a 10 Hz repetition rate as in Figure S1a (Supplementary Materials). A neutral density
filter regulated the laser energy. Substrate and target were placed on rotor-controlled
rotating holders to ensure homogeneous plasma generation and avoid substrate damage.
This resulted in a uniform thin film growth. All experiments were performed at ambient
temperature in a vacuum chamber with a 5 × 10−7 mbar background pressure. The system
design is described in our previous work [37]. In the deposition technique employed for
both CdS and AuNPs/CdS thin films, the thickness of the films was precisely controlled
by modulating the duration of the deposition process, ensuring specific and uniform film
characteristics as per our experimental requirements. The sample thickness was verified
using a Filmetrics F20 Thin Film Analyzer (Filmetrics, San Diego, CA, USA), demonstrating
a deviation of approximately 1 nm.
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2.3. Synthesis of CdS Thin Films

The synthesis of CdS thin films involved the ablation process of the target material
by laser irradiation, utilizing a cadmium sulfide (CdS) target. The laser beam’s energy
per pulse was carefully controlled at 12 mJ at the filter–lens interface to ensure optimal
ablation. Before the deposition process, the distance between the target and the substrate
was meticulously set to 75 mm.

2.4. Synthesis of AuNPs/CdS Thin Film

The synthesis of AuNPs involved the ablation process of the gold target by laser
irradiation on the previously produced CdS thin films. The deposition process of AuNPs
thin films on glass substrates using PLD was once diagnosed/optimized and reported [37,38].
In this investigation, AuNPs were deposited onto CdS samples using a 20 mJ laser beam
with a 20 min exposure duration. Before experimentation, the target–substrate distance was
set to 50 mm during AuNPs deposition.

2.5. Device Fabrication

The silver paste was used to synthesize metallic contacts on the front side of the
fabricated thin films (See Figure S2). The samples of Ag/(S1 or S2 or S3)/glass and Ag/(S4
or S5 or S6)/glass devices are covered in this study. AuNPs/S1, AuNPs/S2, and AuNPs/S3
are denoted as S4, S5, and S6, respectively.

2.6. Characterization

The structural and phase parameters of CdS and AuNPs/CdS films were analyzed
using an X-ray diffractometer (Panalytical Empyrean, Malvern Panalytical, Worcestershire,
UK) equipped with CuKα radiation (λ = 1.5405 Å, 40 kV, 100 mA). The device was set
with a step size of 0.01 and a 2θ range of 10◦–80◦ to perform the analysis. A ZEISS
GeminiSEM 500 (Oberkochen, Germany) field emission scanning electron microscope (FE-
SEM) with an Electron High Tension (EHT) of 1.00 Kv and a Working Distance (WD) of
4.6 nm was employed to analyze surface morphology. The optical absorption spectra were
measured using a UV-Vis spectrophotometer (JASCO, V-670 Spectrophotometer, Tokyo,
Japan) covering a wavelength range from 200 to 2000 nm. Electrical current–voltage (I–V)
and optoelectronic measurements were conducted using a source meter under a 365 nm UV
light lamp, enabling the assessment of the electrical properties of the thin film sample. The
light was directed towards the device’s front side, as illustrated in the schematic diagram
presented in Figure 1. Photoresponse measurements were taken under a bias voltage of
5.0 V with an ON-OFF cadence of 1 s for 12 s.
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3. Results and Discussions
3.1. XRD Analysis

According to the XRD pattern illustrated in Figure 2, it is evident that all CdS and
AuNPs/CdS thin films exhibit a polycrystalline structure at room temperature without the
application of heat treatment. The diffraction peaks identified at 2θ = 24.91◦, 26.65◦, 28.29◦,
36.70◦, 43.77◦, and 62.73◦ angles correspond to the (100), (002), (101), (102), (110), and
(104) planes, respectively, indicating a hexagonal phase structure of the thin films. Among
these, the (102) and (110) orientations exhibit higher peak intensities, suggesting a preferred
directional growth of particles along these planes due to their lower surface energy, a
phenomenon that is in agreement with the existing literature [48–52]. This preferred
orientation is attributed to the stacking sequence of close-packed Cd planes, with S atoms
occupying tetrahedral interstitial sites, emphasizing the significance of these dominant
orientations in the crystal growth process [53]. Enhancing our understanding further, the
bombardment of the CdS surface with gold nanoparticles, mainly observed in the thinner
CdS thin film (sample S4), demonstrates a unique interaction. This process facilitates a
rearrangement of surface atoms, seeking stable states through forming additional bonds,
which is more pronounced in samples with enhanced surface-to-volume ratios like S4. The
zoomed-in view of the XRD pattern focusing on the (102) direction (Figure 2b) showcases
differences in peak intensity and crystallinity among the samples, with S4 exhibiting the
best crystalline quality.
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Figure 2. X-ray diffraction (XRD) patterns of samples S1 to S6. (a) Overall XRD patterns of samples
S1 to S6, showcasing the crystalline structure of each sample. (b) Zoomed-in view of the XRD pattern
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The crystalline sizes of thin films are calculated with the following Scherrer equation:

D = 0.94λ/βcosθ (1)

where the D, λ, β, and θ parameters are the crystalline size, the wavelength of X-ray, the
fullwidth at half-maximum of diffraction peak, and the Bragg diffraction angle, respectively.
Table 1 presents the XRD characteristics of CdS and AuNPs/CdS thin films (samples S1–S6),
including the values for Full Width at Half Maximum (FWHM) and the average values for
crystallite size (D) and crystallite density (δ). Our analysis aligns with the methodology
outlined in Rahmi et al.’s study [54]. According to XRD, Au doping improved the crystal
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structure of the CdS thin film. In particular, the crystal structure of the S1 was enhanced by
Au doping. So, Au atoms replaced Cd atoms since the ionic radius of Au+(151 Å) is more
significant than that of Cd2+ (0.97 Å), and the size of the crystal has increased [37,55–57]. As
the grain size increased, the number of grain boundaries decreased. Thus, it is passivized
by the trap located between the grain boundaries. This enhanced the diffusion of minority
charge carriers and increased the lifetime. Therefore, photoexcited charges contribute to the
performance of the photodetector while not being affected much by defects and traps [58–61].

Table 1. X-Ray diffraction characteristics of samples S1–S6.

Sample 2 Theta (Degree) FWHM D (nm) δ

(Lines/m2) hkl

S1

24.91 - - - 100
26.65 0.434 19.65 ± 1.78 3 × 1015 002
28.29 - - - 101
36.70 0.377 23.15 ± 0.64 2 × 1015 102
43.77 0.512 17.47 ± 2.69 3 × 1015 110
62.73 0.580 16.75 ± 1.49 4 × 1015 104

Mean 19.25 ± 1.29 3 × 1015

S2

24.91 0.539 15.77 ± 1.45 4 × 1015 100
26.65 0.355 24.03 ± 0.12 2 × 1015 002
28.29 0525 16.30 ± 1.84 4 × 1015 101
36.70 0355 24.58 ± 1.70 2 × 1015 102
43.77 0.683 13.09 ± 0.68 6 × 1015 110
62.73 0.603 16.12 ± 0.74 4 × 1015 104

Mean 18.31 ± 1.69

S3

24.91 0.617 13.77 ± 1.67 5 × 1015 100
26.65 0.372 22.93 ± 0.30 2 × 1015 002
28.29 0.552 15.30 ± 1.93 4 × 1015 101
36.70 0.428 20.43 ± 2.10 2 × 1015 102
43.77 0.972 9.20 ± 2.17 1 × 1016 110
62.73 - - - 104

Mean 16.33 ± 2.02 4 × 1015

S4

24.91 - - - 100
26.65 0.695 12.27 ± 2.20 7 × 1015 002
28.29 - - - 101
36.70 0.298 28.69 ± 1.08 1 × 1015 102
43.77 0.486 18.40 ± 2.17 3 × 1015 110
62.73 0.538 18.07 ± 0.38 3 × 1015 104

Mean 19.36 ± 1.85 3 × 1015

S5

24.91 0.501 16.96 ± 0.23 3 × 1015 100
26.65 0.354 24.09 ± 0.37 2 × 1015 002
28.29 0.578 14.81 ± 1.28 5 × 1015 101
36.70 0.382 22.85 ± 0.65 2 × 1015 102
43.77 0.578 11.15 ± 1.34 8 × 1015 110
62.73 0.788 - - 104

Mean 17.97 ± 0.16 3 × 1015

S6

24.91 0.486 17.39 ± 2.24 3 × 1015 100
26.65 0.394 21.65 ± 1.61 2 × 1015 002
28.29 0.565 15.15 ± 0.99 4 × 1015 101
36.70 0.350 24.94 ± 0.24 2 × 1015 102
43.77 0.565 15.83 ± 1.07 4 × 1015 110
62.73 0.551 17.64 ± 2.04 3 × 1015 104

Mean 18.77 ± 1.22 3 × 1015
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The crystalline density of thin films [62,63] is determined by Equation (2):

δ =
1

D2 (2)

According to Table 1, sample S4 contains the lowest dislocation density because the
defects and traps in the ultrathin film were slightly reduced by depositing Au nanoparticles
onto the surface of the S1 thin films [64].

3.2. FESEM Surface Morphology Analysis

This study has used the PLD technique to prepare thin films based on CdS (cadmium
sulfide) and AuNPs/CdS (gold nanoparticles/cadmium sulfide). These films were pre-
pared at different thicknesses and characterized their surfaces using field-emission scanning
electron microscopy (FESEM), as shown in Figure 3. FESEM images revealed detailed and
high-resolution morphology of thin films, showing densely distributed particles. Our quan-
titative analysis using ImageJ 1.52a has revealed a significant presence of highly organized
nanoparticles on the CdS film surface in Figure S3. On the surface of the CdS film, it has
been shown that highly organized NPs cover the entire surface. All thin films exhibited
small grains with spherical particles (indicated by arrows). However, due to differences
in surface energy, some particles tended to cluster together or agglomerate. The surface
particles were more prominent in the case of S1, which had a low thickness and a relatively
short deposition period. As deposition periods increased to S2, an additional material
layer filled the porous surface areas. A similar behavior was observed for S6, where the
thickness of the film was even greater. Interestingly, S1 showed smaller particles on the
surface, which could potentially enhance its light-harvesting capabilities compared to the
thicker thin films.

When AuNPs (gold nanoparticles) were deposited, it was noticed that the surface
morphology of sample S4 appeared smoother. We did not observe large agglomerations; the
particles were well distributed across the entire surface. Similar effects were also observed
for S5 and S6 samples. It is worth mentioning that the thickness of AuNPs remained con-
stant throughout the deposition process, which was achieved by using a rotating substrate
holder to ensure better uniformity. The formation of small agglomerations can be attributed
to the fact that the substrate temperature was maintained at room temperature during
the deposition. These observations align with similar effects that have been previously
reported [37]. While the materials differ, the morphological deposition-induced impact,
such as grain coalescence and surface texturing due to secondary phase formation, exhibit
analogous behavior.
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3.3. Optical Analysis

Understanding the electronic structure of CdS thin films is crucial for investigating
the photodetection mechanism exhibited by these films. The absorbance spectra shown
in Figure 4 include samples S1–S6. The presence of electron–phonon or exciton–phonon
interactions may contribute to the appearance of an absorption edge at the bandgap energy.
Notably, all film compositions demonstrate interband transitions at around 530 nm, with
a blueshift observed in the band edge as CdS layer thickness increases. Additionally,
it is noteworthy that thinner samples, such as S1 and S4, exhibit higher absorbance in
UVA regions. This high absorbance in the UVA range is particularly significant for UV
photodetection applications, as it enhances the sensitivity of thin films to detect and respond
to ultraviolet radiation. Moreover, incorporating a refractive metallic Au layer causes only
a minimal decrease in absorption, indicating the plasmonic effect of Au, which can be
further exploited to enhance the overall photodetection performance.
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Figure 4. UV–Vis absorbance spectra of samples S1 to S6.

The bandgap energy gap (Eg) of the films was determined using the Tauc equation
(αhυ) = A

(
hυ− Eg

)n. The resulting plots illustrating the energy gaps are presented in
Figure 5. By extrapolating the linear portion of the plots on the x-axis, the energy gaps
of thin films were estimated to be approximately 2.24 eV, 2.45 eV, and 2.46 eV for S1, S2,
and S3, respectively. Similarly, the energy gaps for S4, S5, and S6 were approximately 2.19
eV, 2.45 eV, and 2.46 eV. The band gap of thin films increases with an increase in the CdS
layer’s thickness.

Nanomaterials 2024, 14, x FOR PEER REVIEW 9 of 18 
 

 

minimal decrease in absorption, indicating the plasmonic effect of Au, which can be fur-
ther exploited to enhance the overall photodetection performance. 

 
Figure 4. UV–Vis absorbance spectra of samples S1 to S6. 

The bandgap energy gap (𝐸) of the films was determined using the Tauc equation (αhυ) = A൫hυ − E൯୬. The resulting plots illustrating the energy gaps are presented in Fig-
ure 5. By extrapolating the linear portion of the plots on the x-axis, the energy gaps of thin 
films were estimated to be approximately 2.24 eV, 2.45 eV, and 2.46 eV for S1, S2, and S3, 
respectively. Similarly, the energy gaps for S4, S5, and S6 were approximately 2.19 eV, 2.45 
eV, and 2.46 eV. The band gap of thin films increases with an increase in the CdS layer’s 
thickness. 

Furthermore, in the case of S4, the bandgap was narrower compared to S4. This phe-
nomenon can be ascribed to the influence of Au nanoparticles, where their presence in-
duces higher impurity levels within the valence band, consequently causing a reduction 
in the bandgap. This reduction is primarily associated with the surface plasmon resonance 
(SPR) effect [65,66]. However, for thicker CdS films, the impact of SPR on the bandgap is 
negligible. 

  
Figure 5. Tauc plots showing band gaps for samples (a) S1, S2, and S3, and (b) S4, S5, and S6.

Furthermore, in the case of S4, the bandgap was narrower compared to S4. This phe-
nomenon can be ascribed to the influence of Au nanoparticles, where their presence induces
higher impurity levels within the valence band, consequently causing a reduction in the
bandgap. This reduction is primarily associated with the surface plasmon resonance (SPR)
effect [65,66]. However, for thicker CdS films, the impact of SPR on the bandgap is negligible.
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3.4. Photoelectrical Properties

The photodetection performance of CdS and AuNPs/CdS configurations (samples
S1–S6) was thoroughly investigated by characterizing their current–voltage (I–V) features
in dark and UV illumination. The samples were exposed to light from a UV halogen lamp
with 365 nm, and the I-V features were recorded from −5 to +5 volts. Figure 6a,b showcase
the I-V behavior of the S1–S6 photodetectors in dark and illuminated conditions. Notably,
all films exhibited remarkable UV light detection capabilities.
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The measured dark currents (Id) at a bias voltage of 5.0 V were found to be approx-
imately 3.97 µA, 1.94 µA, 0.98 µA, 2.67 mA, 2.06 µA, and 1.25 µA for the S1, S2, S3, S4,
S5, and S6 thin films, respectively. Notably, the dark current exhibited a significant im-
provement when the thickness of the CdS layer decreased. Furthermore, the influence of
AuNPs on the thinner CdS layer (S1) resulted in a notable enhancement in the dark current.
Specifically, the S4 sample demonstrated the highest level of Id, reaching approximately
2.67 mA at a bias voltage of 5.0 V.

The time-dependent photoresponse of Ag/CdS/Ag and Ag/AuNPs/CdS/Ag pho-
todetector devices (samples S1–S6) to UV light pulses (0.3 mW/cm2) was investigated to
examine the temporal behavior. The photoresponse of the devices was analyzed for one
cycle at 5.0 V, as depicted in Figure 7a,b. The rise and decay times were determined to
be 61–85 ms and 65–87 ms, respectively. Notably, the S1-based device exhibited a faster
temporal photoresponse than the S2- and S3-based photodetector devices. This can be
attributed to the increased thickness of CdS thin films, which results in a longer transit time
for the charge carriers to reach the electrodes.

Conversely, incorporating plasmonic NPs in the thinner CdS layer (S1) led to a notable
enhancement in the response speed. Specifically, sample S4 demonstrated shorter rise and
decay times. This enhancement can be attributed to hot carriers on the Fermi surface of Au
NPs. However, thicker CdS layers, including Au NPs, reduced the overall photoresponse
of the device. This reduction can be attributed to the localized surface plasmon resonances
generated by the plasmonic nanoparticles, which enhance light absorption and increase
charge carrier recombination near the nanoparticle surfaces. The increased recombination
rate ultimately diminishes the overall photoresponse of the device.
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The photodetector parameters such as responsivity (R), detectivity (D*), external
quantum efficiency (EQE), and photocurrent gain (G) play a crucial role in understanding
the influence of CdS layer thickness and the deposition of AuNPs on the CdS layer. These
parameters were calculated using the following expressions [67–69]:

R =
IPh

P × S
(3)

D* = R

√
S

2eId
(4)

EQE = R
hc
eλ

(5)

G =
IPh(ION)

Id (IOFF)
(6)

In Equations (3)–(6), the variable P signifies the power output of the illumination source.
The symbol S is employed to denote the active surface area of the device under investigation.
λ denotes the illumination wavelength, which is precisely 532 nm. The constants c, h, and e
correspond to the fundamental physical quantities: the speed of light in a vacuum, Planck’s
constant, and the elementary charge, respectively. Within this framework, Id and IPh are
designated to represent the dark current and the photocurrent, respectively.

The results of these parameters were obtained under a bias voltage of 5.0 V and are
presented in Figure 8a. Remarkably, CdS layer thickness and the deposition of AuNPs on
the CdS layer exhibited similar effects on all evaluated parameters.
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The investigated parameters exhibited an increasing trend as the CdS layer thickness
decreased. The impact of AuNPs on these parameters was found to be dependent on the
thickness of the CdS layer. In the case of the thinner film (S1), the presence of AuNPs
resulted in a notable enhancement in all evaluated parameters. However, as the thickness
of the CdS layer increased, the effect of AuNPs became less remarkable. Consequently, the
S4 configuration demonstrated the highest values across all studied parameters, including
a responsivity of 13.86 A/W, a detectivity of 1.1 × 1012 Jones, an EQE of 47.2%, and a
photocurrent gain of 9.2.

The rise and decay times of the photodetectors (PDs) S1 to S6, operating at a bias of
5.0 V, are illustrated in Figure 8b. The rise τR (response) time holds significant importance
in photodetectors as it signifies the duration required for the device to detect variations
in light intensity and generate an output signal. τR is particularly critical in applications
that demand swift detection and response, such as optical communication systems and
high-speed imaging. A shorter τR enables the photodetector to rapidly respond to changes
in light intensity, facilitating faster and more accurate measurements. Conversely, the
decay τD (recovery) time denotes the period required for the photodetector to return to
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its original state after exposure to a light signal. The reduction in CdS layer thickness
leads to a decrease in both the response and recovery times. The incorporation of AuNPs
has a substantial effect on reducing τR and τD, especially in the case of the thinner CdS
film (S1). However, as the CdS layer thickness increases, the influence of AuNPs becomes
less significant. Consequently, sample S4 exhibits faster rise (τR = 61.68 ms) and decay
(τD = 75.74 ms) times, aligning with the expected outcomes.

Previous studies have highlighted the importance of developing cost-effective and
uniformly deposited CdS thin films to enhance the performance of photodetector devices.
A comprehensive examination of the existing literature on photodetector devices based
on CdS materials is presented in Table 2. However, this study proposes a novel approach
to address these challenges by utilizing a simple pulsed laser deposition (PLD) system.
This method enables the fabrication of CdS thin films with a surface-deposited plasmonic
layer of Au nanoparticles (AuNPs). Notably, the focus is specifically on the thinner CdS
layers, as they exhibit remarkable improvements in the performance of photodetectors
(PDs). Consequently, this approach holds significant potential for enhancing the overall
performance of PD devices.

Table 2. Comparison of device performance: current device vs. previous studies on CdS thin
film-based photodetectors.

Device λ (nm) R (A/W) D*(Jones) EQE (%) τR (ms) τD (ms) Refs.

Current study (S4) 365 13.86 1.1 × 1012 47.19 61.68 65.74 This work
CdS thin film 532 18.8 20.9 × 1010 61 200 500 [70]

5 wt.% CdS: Pr thin film 532 2.71 6.9 × 1010 628.86 90 170 [45]
1 wt.% CdS: Sm thin film 532 1.01 2.21 × 1012 256 138 120 [46]
5 wt.% CdS: Eu thin film 532 0.614 1.38 × 1012 143 85 106 [9]

CdS core-Au/MXene 254 8.6 × 10−2 1.34 × 1011 - >103 >103 [71]
PPy/CdS QDs 850 3.8 × 10−3 2.1 × 1016 560 - - [72]

CdS: Ga/Au/SiO2/Si 510 8 - - 0.095 0.29 [73]
CdS nanobelts 488 2 × 102 - 520 0.137 0.379 [74]
CdS nanowires 470 0.43 2.58 × 1011 - 300 400 [75]

CdS: Ag/Si thin film 551 0.43 2.58 × 1010 91.42 - - [76]
p-Si nanowires/n-CdS 900 0.82 1.21 × 1012 - 203 429 [77]

CdS thin film 405 4.21 - 1.29 × 1012 267 277 [17]

Our investigation highlights film thickness’s critical role in defining CdS thin films’
photodetection properties. The balance between light absorption, carrier dynamics, and
surface effects is pivotal in optimizing photodetector performance. This study contributes
to a deeper understanding of these relationships, providing a foundation for future research
aimed at tailoring thin-film photodetectors for specific applications, thereby advancing the
field of photodetection technology.

In this study, a significant limitation is our inability to fabricate CdS thin films with
thicknesses below 10 nm. This constraint could impact the extrapolation of our findings
to ultrathin film applications, where different physical phenomena might become more
pronounced. Additionally, the scope of our investigation was confined to specific conditions
of thin film synthesis and deposition. While these conditions were carefully selected to
optimize the performance of the CdS-based photodetectors, they might not cover the
full range of scenarios encountered in diverse practical applications. Recognizing these
limitations is crucial for accurately interpreting our results and identifying areas for future
research to expand the applicability of our findings.

4. Conclusions

In this research, we have systematically investigated the enhancement of photode-
tection properties in CdS-based devices, achieved through the precise fabrication of CdS
thin films utilizing the pulsed laser deposition (PLD) technique. A distinctive aspect of
our study is the comprehensive characterization of these films’ morphological, struc-
tural, and optical properties, affirming their aptness for high-efficiency photodetection
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applications. Integrating plasmonic gold nanoparticles (AuNPs) on the surface of CdS
films constitutes a significant innovation in our work, leading to marked improvements
in device performance, especially in thinner CdS layers. This study pioneers in demon-
strating how reducing the thickness of CdS layers can synergistically interact with the
surface-deposited AuNPs to substantially enhance key performance parameters, includ-
ing detectivity, responsivity, external quantum efficiency (EQE), and photocurrent gain.
Notably, the configuration of AuNPs with the thinnest CdS layer (S4) exhibited the most
pronounced enhancements, underscoring the critical role of nanoscale interactions in
photodetector efficiency. A novel contribution of our research is elucidating the surface
plasmon resonance (SPR) effect induced by AuNPs, which is pivotal in augmenting the
photodetection capabilities of the CdS films.

Further, we provide new insights into how the physical thickness of the CdS layers
and the incorporation of AuNPs substantially influence the photodetector’s response and
recovery times. Our findings reveal that thinner CdS layers and the presence of AuNPs con-
tribute to faster response and recovery times, parameters crucial for applications requiring
rapid detection and response. This aspect of our study demonstrates the technical feasibility
and adds to the growing knowledge of optimizing photodetector device response times.
The application of the PLD technique for the large-scale fabrication of CdS thin films with
surface-deposited AuNPs, as presented in our work, opens new avenues in developing
high-performance UV photodetection devices. The methodology proposed herein offers
promising prospects for designing and fabricating efficient and responsive photodetectors.
Our research significantly contributes to the field of CdS-based photodetectors by empha-
sizing the influence of film thickness and the incorporation of plasmonic AuNPs on device
performance. The presented results contribute to advancing photodetection technology
and lay a foundation for future studies. The insights gained from our work provide a
valuable framework for further optimization of device parameters and for exploring novel
materials and device architectures in photodetection. In conclusion, this study advances
the current understanding of CdS-based photodetectors and presents a promising pathway
for developing advanced photodetection devices. Future research building upon these
findings has the potential to propel the field of photodetection toward new technological
frontiers, thereby making a significant impact in both scientific and practical domains.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/nano14050416/s1, Figure S1: The used PLD system; Figure S2: Photographic
image of CdS thin film sample with silver (Ag) electrodes; Figure S3: Frequency distribution of nanopar-
ticle sizes for samples S1–S6, labeled (a–f) respectively. This histogram represents the uniformity in
particle sizes as determined by ImageJ analysis, which provides information on the surface distribution
of nanoparticles; Figure S4: UV-visible absorption spectra for gold nanoparticles deposited with an
energy of 20 mJ at room temperature for different deposition times.
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