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Minimising Missed and False Alarms: A Vehicle Spacing based
Approach to Conflict Detection

Yiru Jiao, Simeon C. Calvert, and Hans van Lint

Abstract— Safety is the cornerstone of L2+ autonomous
driving and one of the fundamental tasks is forward collision
warning that detects potential rear-end collisions. Potential
collisions are also known as conflicts, which have long been
indicated using Time-to-Collision with a critical threshold to
distinguish safe and unsafe situations. Such indication, however,
focuses on a single scenario and cannot cope with dynamic
traffic environments. For example, TTC-based crash warning
frequently misses potential collisions in congested traffic, and
issues false alarms during lane-changing or parking. Aiming
to minimise missed and false alarms in conflict detection, this
study proposes a more reliable approach based on vehicle
spacing patterns. To test this approach, we use both synthetic
and real-world conflict data. Our experiments show that the
proposed approach outperforms single-threshold TTC unless
conflicts happened in the exact way that TTC is defined, which
is rarely true. When conflicts are heterogeneous and when the
information of conflict situation is incompletely known, as is the
case with real-world conflicts, our approach can achieve less
missed and false detection. This study offers a new perspective
for conflict detection, and also a general framework allowing for
further elaboration to minimise missed and false alarms. Less
missed alarms will contribute to fewer accidents, meanwhile,
fewer false alarms will promote people’s trust in collision
avoidance systems. We thus expect this study to contribute to
safer and more trustworthy autonomous driving.

Index Terms— Advanced Driving Assistance System, For-
ward Collision Warning, collision avoidance, conflict detection,
vehicle spacing patterns

I. INTRODUCTION

The common concern of driving safety is one of the

imperative aspects in the development of Advanced Driving

Assistance Systems (ADAS). To prevent accidents and miti-

gate crash severity, collision avoidance systems (CAS) play

a critical role. In general, CAS encompasses two proactive

components: forward collision warning (FCW) which alerts

drivers to imminent collisions, and automatic emergency

braking (AEB) which initiates corrective actions such as

braking or steering when the driver fails to respond timely.

The effectiveness of both FCW and AEB hinges on the

accurate detection of conflicting vehicular interactions, which

potentially entail collisions.

Conflict detection leverages data collected from various

sensors such as radar, lidar, and cameras. In the past two

decades, real-time road user detection and tracking have

been the predominant challenge in CAS [1], and substantial
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research efforts have been devoted to this task [2–4]. Along

with the rapidly evolving advances in computer vision, con-

stant improvements have been made on object detection and

tracking [5,6]. Nowadays, these techniques are extensively

employed in current intelligent cars.

With increasingly accurate localisation of other road users,

forward conflicts can be indicated using the surrogate safety

measure, Time-to-Collision (TTC). TTC is one of the most

effective and broadly used indicators for rear-end collisions

[7–10]. It estimates how much time remains until a collision

between two vehicles following each other [11,12]. As an

continuous variable, TTC has been used to assess pedestrian-

vehicle interaction risk [13,14], vehicular collision risk [15–

17], and safe autonomous driving [18,19]. When applied to

collision warning, TTC needs to be discretised with critical

thresholds in order to distinguish un(safe) situations. More

specifically, a TTC value shorter than the critical threshold

indicates high enough risk of a collision. Such a threshold

determines when CAS should issue emergency warnings and

intervene if the driver does not take action [20].

While threshold-based detection is straightforward and

computationally efficient, it often falls short in dealing with

dynamic traffic environments and more complex driving in-

teractions [21]. For example, when vehicles maintain similar

speeds in relatively dense traffic, the TTC between them is

very large and suggests a low risk of collision. There then

may be missed alarms, as traffic fluctuations can propagate

and pose unexpected hazards. For another example during

lane-changes, vehicles may exhibit short TTC values that

indicate a high risk of crash. However, such alarms can be

false as the drivers of the interacting vehicles often anticipate

each others’ actions and would not perceive an imminent

threat. As such, threshold-based conflict detection can yield

inconsistent reliability across different driving conditions.

Reliable conflict detection requires minimising missed and

false alarms, which remains a challenge. According to an

analysis of the consumer complaints about safety-relevant

ADAS failures [22], more than 30% of complaints are about

AEB and FCW, and over 75% of these complaints are about

missed and false alarms. Missed alarms overlook dangerous

scenarios and can preclude intervention opportunities, while

false alarms might trigger distracting or even disruptive

driver responses [23,24]. In addition, many studies have

found that false alarms may diminish drivers’ trust and

compliance with the assistance systems [25–27]. Frequent

incorrect alarms violate drivers’ expectations about system

warnings, and hence undermine their behavioral adaptation

to ADAS.
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Therefore, there is an increasing need for a more reliable

method to detect conflicts and prevent collisions. In this

paper, we provide a new approach to minimising missed and

false detection of conflicts. With preliminary experiments,

we will demonstrate that this method is characteristic of

• data-driven detection based on vehicle spacing patterns;

• adjustable balance between missed and false alarms;

• adaptive-tuning to varying traffic scenarios and driver

preferences.

II. METHODS

A. Indication of conflicts

An interaction between two vehicles can be indicated as

safe or unsafe based on the information gathered about this

scenario. An unsafe interaction is a conflict1. For a scenario

at time t with a vehicle i and another vehicle j, a set of

variables can describe this scenario and be denoted by Xt
ij =

{xt
i,x

t
j ,x

t
E}. Here xt

i and xt
j respectively encapsulate the

motion of vehicles i and j, and xt
E is about the physical

environment such as weather and road conditions. We can

process the information Xt
ij as represented in Equation (1):

Xt
ij = {stij , θtij}, (1)

where stij is the spacing between vehicles i and j, and

θtij encodes the conflict situation where this scenario occur.

Generally, a smaller value of stij suggests a higher likelihood

that vehicles i and j are in a conflict and a collision could

happen. A critical spacing s∗ is then required to determine

whether vehicles i and j are close enough to be considered as

a conflict. As formulated in Equation (2), C(Xt
ij) indicates

the scenario Xt
ij as a conflict (abbreviated as c) or a non-

conflict (nc) by comparing stij and s∗, where s∗ depends on

the specific situation captured by θtij .

C(Xt
ij) = C(stij , s

∗|θtij)
{

c, if stij ≤ s∗(θtij),

nc, otherwise.
(2)

Existing conflict indicators (of which most are surrogate

safety measures) can all fit in this expression. For example,

TTC is typically calculated by assuming no change in move-

ment of the interacting vehicles, i.e., the drivers are unable

to react in time. This assumption considers the relative speed

between vehicles as the only condition so that θtij = Δvtij .

In this case, given a threshold TTC∗, the critical spacing

s∗ = ΔvtijTTC∗. Time headway (THW) is another widely

used conflict indicator [7]. Let vehicle j follow vehicle

i, THWt
ij = stij/v

t
j thus θtij = vtj . Then the speed of

the following vehicle j becomes the condition considered.

Given a threshold THW∗, equivalently, the critical spacing

is vtjTHW∗.

1Here we consider car-following and thus one-to-one interaction. Multiple
vehicles can be considered in other interaction scenarios

B. Probability of missed and false alarms

Under a specific interaction situation θ, conflict detection

is a binary classification based on vehicle spacing s and a

critical threshold s∗. The probability distributions of spacing

s respectively of conflicts and non-conflicts may overlap,

as illustrated in Fig. 1. Therefore, determining the critical

spacing s∗ involves a trade-off between missed and false

alarms. Missed alarms misclassify unsafe scenarios as safe

(false negatives) and false alarms misclassify safe scenarios

as unsafe (false positives). Generally, smaller s∗ leads to

fewer false alarms and more missed alarms. In contrast,

larger s∗ reduces missed alarms but increases false alarms.

Fig. 1. Illustration of the trade-off between missed and false alarms.

Considering the spacing between two vehicles as a random

variable S, we can estimate the probability of missed alarm

and missed alarm when considering a spacing s as the critical

threshold. As presented in Equations (3), PMA(s) denotes the

conditional probability of missed alarms (false negatives) and

PFA(s) denotes the conditional probability of false alarms

(false positives). In this context of conflict indication, a

positive means S ≤ s and a negative means S > s; a true

event is a conflict (c) and a false event is a non-conflict (nc).{
PMA(s) = P (S > s|c)
PFA(s) = P (S ≤ s|nc)

(3)

Given p(A|B) = p(AB)/p(B) in Bayes’ theorem and

p(AB̄) = p(A)−p(AB) in set theory, we transform PMA(s)

into Equation (4) and PFA(s) into Equation (5), where smax

is a large enough value of spacing and will be specified in

Section II-D.

PMA(s) = P (S ≤ smax|c)− P (S ≤ s|c) (4)

PFA(s) =
P (S ≤ s, nc)

P (S ≤ smax, nc)

=
P (S ≤ s)− P (S ≤ s|c)p(c)

P (S ≤ smax)− P (S ≤ smax|c)p(c)
(5)

Equations (4) and (5) include two cumulative probabilities,

which can be estimated from data. One is of S and we denote

its probability density function as f(x) in Equation 6. The

other is of S in conflict, and we denote its probability density

function as g(x) in Equation 6.⎧⎪⎨
⎪⎩
f(x) =

d

dx
P (S ≤ x)

g(x) =
d

dx
P (S ≤ x|c)

(6)

Summarising these derivations, when using s as the critical

spacing to distinguish safe and unsafe scenarios, the proba-

bility of missed and false alarms are computed according to
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Equation (7).⎧⎪⎪⎪⎨
⎪⎪⎪⎩

PMA(s) =

∫ smax

s

g(x)dx,

PFA(s) =

∫ s

0
f(x)dx− k

∫ s

0
g(x)dx∫ smax

0
f(x)dx− k

∫ smax

0
g(x)dx

,

(7)

where k = p(c) can be counted as the conflict frequency.

C. Spacing patterns between vehicles

Computing PMA(s) and PFA(s) needs the two spacing

distributions f(x) and g(x). In this study, we use Gaussian

kernel density estimation (KDE)2 to give a preliminary

demonstration.

For a certain interaction situation θ, let s be the set of

stij , of which the corresponding θtij ∈ θ; we then denote the

subset of s in conflict by sc. To estimate f(x), we apply

Gaussian KDE to the samples s1, s2, . . . , sn in s. Similarly,

to estimate g(x), we apply Gaussian KDE to sc.

D. Minimising missed and false alarms

Based on the estimated probabilities of missed alarms

and false alarms, we can optimise a critical spacing as in

Equation (8). The parameter α is the weight on minimising

missed alarms and 1 − α on false alarms. This makes the

optimisation weigh between less missed alarms or less false

alarms. As a result, a reliable critical spacing s∗ should

minimise the balanced probability of false negatives and

false positives. We call this method missed and false alarm

minimisation, which can be abbreviated as MFaM.

s∗ = argmin
0≤s≤smax

αPMA(s) + (1− α)PFA(s) (8)

Fig. 2 gives an example of applying MFaM, where

PMA(s) and PFA(s) are estimated based on real spacing

samples. As s increases, the probability of missed alarms

decreases and the probability of false alarms increases. Then

various s∗(θ) can be obtained by minimising the weighted

sum of PMA(s) and PFA(s) given different α.

Fig. 2. An example of minimising missed and false alarm probability.

A proper value for smax is necessary in the Equations (7)

and (8). In Equation (7), smax determines the range within

which PMA(s) and PFA(s) are normalised to the interval

[0,1]. In Equation (8), smax sets the searching range for s∗.

Although smax approaches ∞ in theory, a range is important

2We applied the function “gaussian kde” from the python library “scipy”
with default arguments.

to facilitate computation in practice. In this study, we take

the maximum between two values, as shown in Equation (9).

smax = max{max sc, argmax
s

f(s)} (9)

The first value in Equation (9) is the maximum of conflict

spacing sc. This ensures that all the occurred conflicts are

considered. The second value is the most probable spacing

in s. The spacing maintained between vehicles is based on

drivers’ perception and preferences. Therefore, we assume

that the most frequently maintained spacing is safe enough

for most drivers.

III. EXPERIMENTS

This study introduces a new approach, MFaM, aiming

for more reliable conflict detection. To demonstrate this ap-

proach, we conduct experiments with both synthetic conflicts

and real-world conflicts.

A. Synthetic conflicts

We used a subset called Freeway-B of the CitySim dataset

[28] to generate synthetic conflicts. Freeway-B comprises tra-

jectories collected on a 725-m segment of a 6-lane road (three

lanes per direction). The movements of 6,555 vehicles in a

duration of 0.57 hours were recorded at a frequency of 30 Hz.

The average flow was approximately 1,917 veh/hour/lane.

This is indicative of congested traffic that is more likely to

yield conflicts than fee-following traffic. In total 3,082 car-

following pairs were extracted from the dataset.

Existing studies in conflict detection often assume conflicts

as when TTC values falling below a critical threshold, to

name a few, see [29–31]. However, relying solely on relative

speed (as assumed by TTC) to determine whether a conflict

occurs is inadequate, especially when the absolute speed

is slow. In this paper, we define three types of conflicts

for a more comprehensive comparison to demonstrate our

approach. As outlined in Table I, we let type I and type

II conflicts be conditioned by relative speed only, but ad-

ditionally consider the absolute speed of following vehicles

for type III conflicts. For type I conflicts, we set a uniform

threshold to distinguish unsafe scenarios homogeneously;

while we use various thresholds for defining type II and type

III conflicts heterogeneously.

B. Real-world conflicts

For real-world conflict data, we reconstructed trajectories3

from the 100-Car Naturalistic Driving Study’s time-series

data [32]. The data was collected during an instrumented-

vehicle study conducted in the Northern Virginia / Washing-

ton, D.C. area in early 2000s [33]. The instrumentation was

designed to be unobtrusive, study participants were given no

special instructions, and experimenters were not present.

From the data collection, an event database was compiled

consisting of 68 crashes and 760 near-crashes which were

manually reviewed and annotated. With the time-series pro-

file for each event, containing radar and accelerometer data

3We open source this reconstruction at https://github.com/
Yiru-Jiao/Reconstruct100CarNDSData
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TABLE I

CONFLICT DETERMINATION FOR TEST EXPERIMENTS

Conflict type
Conditions (θ)

Threshold (m)

Relative
speed (m/s)

Follower
speed (m/s)

I Δv > 0 s ≤ 3Δv

II
Δv > 5 s ≤ 2.5Δv
2 < Δv ≤ 5 s ≤ 3Δv
0 < Δv ≤ 2 s ≤ 3.5Δv

III

Δv > 5 s < 2.5Δv

2 < Δv ≤ 5
v > 25 s ≤ 3.5Δv
10 < v ≤ 25 s ≤ 3Δv
v ≤ 10 s ≤ 2.5Δv

0 < Δv ≤ 2
v > 5 s ≤ 0.5v
2 < v ≤ 5 s ≤ 0.3v
1 < v ≤ 2 s ≤ 0.6

spanning 30s before the event and 10s after the event, we

reconstructed bird’s eye view trajectories for the vehicles

involved in these events. Not all of the events can be recon-

structed due to the missing values, inaccuracy of sensing, and

the lack of a ground truth; matching the conflicting vehicle

among the detected vehicles in each event is neither trivial.

Eventually, we obtained 219 car-following near-crashes of

which vehicle trajectories are properly reconstructed and

conflicting vehicles are matched.

With the two conflict datasets, we apply MFaM under

varying weights for missed and false alarms, and then

compare the detection results with those obtained using TTC

with a range of critical thresholds. The next section will

present and discuss the results.

IV. RESULTS AND DISCUSSION

Our experiments assume that the only known information

of conflict situation θ is relative speed. This aligns with

the assumption of TTC-based detection. By doing so, dif-

ferent synthetic conflict types allows for comparisons under

different levels of information completeness and conflict

heterogeneity. The detection of type I conflicts represents

the detection of homogeneous conflicts with complete infor-

mation of conflict situation; the detection of type II conflicts

then represents that of heterogeneous conflicts with complete

information of conflict situation; and the detection of type III

conflicts represents the cases where incomplete information

is known and the conflicts are heterogeneous. From type I to

type III, these synthetic conflicts were designed to simulate

more realistic and complex conflicts. At the end, we will

demonstrate the detection of real-world conflicts.

A. Detection of synthetic conflicts

Fig. 3 shows the detection of type I conflicts using TTC

and MFaM. A total number of 21,885 type I conflict mo-

ments are defined utilising a uniform TTC* (critical threshold

of TTC) of 3 seconds. This criterion makes the conflict

situation θ include solely the relative speed between a vehicle

and its preceding vehicle, which is completely considered

in conflict detection. With increasing values of TTC* and

the weight assigned for missed alarms (α), there are fewer

missed alarms and more false alarms. Remarkably, both

missed alarms and false alarms reach 0% when TTC* is

precisely 3 seconds. In contrast, MFaM does not have such

an optimal point. When the weight for missed alarms is larger

than 0.2, there are very few missed alarms and the rate of

false alarms is also low.

Fig. 3. Type I conflict detection using TTC and MFaM.

The detection of type II conflicts, as shown in Fig. 4,

shows similar patterns as of detecting type I conflicts. The

26,912 conflict moments are also conditioned by relative

speed only, however, are defined using varied critical thresh-

olds. For these heterogeneous conflicts, implementing MFaM

leads to a very similar tendency of increasing false alarms

while reducing missed alarms as observed in type I conflict

detection. In contrast, when using TTC, both trends of more

false alarms and fewer missed alarms with increasing TTC*

are slower than in type I conflict detection. Furthermore,

there is no longer an optimal TTC* where both missed

alarms and false alarms reach 0%.

Fig. 4. Type II conflict detection using TTC and MFaM.

The challenge of reliable conflict detection is intensified

with the 34,203 type III conflict moments, as displayed in

Fig. 5. The detection is characterised by conflict hetero-

geneity and incomplete information on conflict situation.

Regardless of the magnitude of TTC*, more than 69.36%
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conflict moments are missed if using TTC. Conversely,

MFaM manages to detect nearly all (99.69%) conflict mo-

ments, although this is at the expense of a heightened rate

of false alarms.

Fig. 5. Type III conflict detection using TTC and MFaM.

B. Trade-off between missed and false alarms
Observing the detection results of these three types of

conflicts, there exists an inherent trade-off between missed

alarms and false alarms. This trade-off is particularly sig-

nificant when the conflict situation are incompletely known.

Fig. 6 illustrates the trade-off curves for detecting the three

types of synthetic conflicts, where optimal performance is

indicated by the proximity to the origin (0%, 0%). Next,

we will first analyse the effectiveness of MFaM across

homogeneous (type I) and heterogeneous (type II) conflicts.

Then we will compare its performance when the information

of conflict situation is completely known (type II) or only

partially known (type III).

Fig. 6. Trade-off between miss rate and false rate in conflict detection.

1) Homogeneous vs. heterogeneous conflicts: Both the

detection of type I and type II conflicts have complete in-

formation on conflict situation available. Comparing the sub-

figures of type I and type II in Fig. 6, it is evident that MFaM

demonstrates robust effectiveness across homogeneous and

heterogeneous conflicts, while TTC does not. For homoge-

neous conflicts (type I), TTC can ascertain the precise critical

threshold, thereby achieving (0, 0) rates of missed and false

alarms. In contrast, heterogeneous conflicts (type II) preclude

the identification of a single critical threshold applicable to

TTC. Conflicts, in reality, are heterogeneous due to factors

such as dynamic traffic environments and diverse human

driving styles. For this reason, robust detection of conflicts

requires managing the heterogeneity of conflicts.

2) Complete vs. incomplete information: While both type

II and III conflicts are heterogeneous, the detection of type

II conflicts considers complete information and the detection

of type III conflicts operates with only partial information

of conflict situation. In the sub-figure of detecting type II

conflicts in Fig. 6, MFaM can reach a commendable balance

of low missed and false alarms. This outperforms TTC,

which has comparable performance to MFaM only when the

miss rate is around 15%. In the sub-figure of type III conflict

detection where the information is incompletely known,

MFaM’s curve consistently outperforms TTC. Nevertheless,

neither TTC nor MFaM attains low rates of missed and false

alarms due to information insufficiency.

C. Detection of real-world conflicts

As presented in Fig. 7, the detection results of the real-

world conflicts in 100-Car data resembles the detection of

type III synthetic conflicts. Around 41.28% conflict moments

cannot be detected if using TTC. In contrast, MFaM can

detect around 98.80% of them, but still, along with a high

rate of false alarms. The trade-off curves of this real-world

conflict detection, at the right of Fig. 7, also show similar

trends as the detection of type III synthetic conflicts: MFaM

consistently outperforms TTC.

Fig. 7. Real-world conflict detection using TTC and MFaM.

Real-world conflicts are heterogeneous and the informa-

tion on conflict situation in detection is always imperfect,

which, however, significantly influences the detection effec-

tiveness. Despite the lack of information, MFaM can detect

the highest possible number of actual conflicts at the expense

of an increased rate of false alarms. To reduce false alarms

while preserving minimised missed alarms, it is important

to include multi-source information for conflict detection in

future studies.

V. CONCLUSION

This study presents a new approach to more reliable

conflict detection, which minimises the estimated probabili-

ties of missed and false detection based on vehicle spacing

patterns. We abbreviate this method as MFaM representing

Missed and False alarm Minimisation. Through comparative

experiments of applying MFaM and TTC on both synthetic

and real-world conflicts, hereby we summarise the main

features:
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• MFaM secures a better balance between missed and

false alarms compared to TTC in detecting heteroge-

neous conflicts, both the synthetic and real-world ones;

• MFaM surpasses TTC in accurately identifying true

conflicts, especially when the information of conflict

situation is incomplete;

• MFaM is flexible to be extended given various ve-

hicle spacing patterns. For example, it can be used

to develop user-adaptive collision warning given that

drivers perceive different levels of collision risk and

react differently to automatic warnings.

Beyond the approach itself, the importance of the informa-

tion considered in conflict detection is particularly notable.

If given limited information of conflict situation, we argue

that there is a trade-off curve between missed and false

alarms that constrain any algorithms for conflict detection.

Nevertheless, this requires further exploration. Our future

research will include utilising more effective information

of conflict situation and developing adaptive algorithms

that can account for varying response patterns of drivers.

These developments will enhance the reliability of ADAS

collision warning, contributing to safer and more trustworthy

autonomous driving.
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