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Chapter 1 Introduction  
 

“There is a tide in the affairs of men.  
Which, taken at the flood, leads on to fortune;  
Omitted, all the voyage of their life 
Is bound in shallows and in miseries.  
On such a full sea are we now afloat,  
And we must take the current when it serves, 
Or lose our ventures.”  

- William Shakespeare (Julius Caesar: Act-IV, Scene-III) 

 

1.1 Introduction 
The proper management and maintenance of public utility infrastructures 
is vital to economic prosperity. These infrastructures consist of networks 
of assets and are often managed by organizations using an asset 
management approach. Successful asset management is heavily 
dependent on information, requiring large amounts of quality data. This 
data is managed in asset management data infrastructures (AMDIs). More 
and more, new technologies such as the Internet of Things (IoT) are 
becoming available and are being adopted by asset managers to provide 
the required data. However, adopting IoT in asset management 
organizations is a non-trivial undertaking. Design solutions that guide 
asset managers in understanding asset management through IoT are 
needed to ensure that asset managers continue to be supplied with the 
right information at the right time. This research therefore seeks to 
improve our understanding of asset management through IoT adoption 
and we ask what the benefits and risks of IoT are for asset management. 
There is only limited research on AMDIs and models which improve 
understanding of asset management through IoT are missing. Therefore, 
we aim to improve our understanding of asset management through IoT 
by describing a model of AMDIs which accommodates IoT adoption.  

The underlying premise of this research is derived from the Duality 
of Technology theory (Orlikowski, 1992), suggesting that IoT will 
introduce unexpected changes within asset management. The dual nature 



Introduction 

2 
 

is that the introduction of IoT as a technology introduces unexpected 
changes to the people, business processes and the organization, which 
then, in turn, may also lead to developments in the technology. Second, 
we acknowledge the complexity of AMDIs and view AMDIs as Complex 
Adaptive Systems (CAS). On the basis of the insights provided by duality 
of technology theory and CAS theory, we develop a model of AMDIs which 
improves understanding of asset management through IoT and provides 
actionable insights into previously unforeseen changes so that asset 
managers are able to take appropriate action as the AMDI evolves.  

This chapter is structured as follows: section 1.1 introduces the 
research; sections 1.2 and 1.3 discuss the societal and scientific impact 
of the research; section 1.4 discusses the research drivers; sections 1.5 
and 1.6 discuss the research objective and the research questions; and 
section 1.7 shows how this dissertation is organized. The reader should 
note that parts of this chapter have been published in: Brous, Janssen & 
Herder, (2018) "Internet of Things adoption for reconfiguring decision-
making processes in asset management", Business Process Management 
Journal. 

1.1.1 Problem Statement 

Infrastructure supports all forms of modern living and is vital for creating 
economic prosperity, but is often taken for granted until something fails 
(Herder, de Joode, Ligtvoet, Schenk, & Taneja, 2011). Furthermore, 
environmental stresses, such as climate change or socio-demographic and 
financial constraints, introduce complexity to infrastructure management 
(Herder et al., 2011). In order to ensure that the management of essential 
infrastructure is able to withstand these stresses, an overarching view of 
infrastructure networks throughout the entire asset lifecycle is required. 
More and more, organizations are looking to asset management to 
provide this overview (Koronios, Lin, & Gao, 2005). Asset management 
views infrastructure management as an asset lifecycle, providing the 
foundation for a coordinated approach to managing the infrastructure in 
its entirety (Mehairjan, 2017). It ensures that essential infrastructure 
receives appropriate investment and attention and has the appropriate 
resilience to meet new challenges.  

According to ISO 55000 (2014), an asset is an “item, thing or 
entity that has potential or actual value to an organization”. The term, 
“asset” in this paper refers to physical public utility infrastructure assets. 
Asset management is important for the management of infrastructure 
industry as the success of an asset management organization often 
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depends on its ability to use and manage its assets efficiently (Koronios 
et al., 2005).  

However, asset management requires large amounts of data to 
drive decision-making. Data-driven decision-making in asset 
management means preventing unwanted events and making decisions 
based on analytical models. Rapid technological advancement in sensor-
based data collection techniques enables us to gather an ever-increasing 
amount of detailed and relevant data. Adopting IoT in order to increase 
these capabilities can increase the potential for improving performance at 
all levels, but expectations and pitfalls also increase exponentially. Data 
mining (the search for statistical connections in databases), for example, 
has already been embraced by several sectors such as marketing, medical 
care, ICT and finance (Linoff & Berry, 2011), but its implementation in the 
asset management arena is so far limited. Asset management 
organizations are beginning to develop sensor-based data collection, but 
the maturity of the sector in IoT adoption is low, despite the wide-spread 
expectation that IoT may provide a variety of benefits for asset 
management processes. For example, water management organizations 
require a better understanding of the added value that data-driven 
analytical methods could represent for them, and seek a knowledge base 
to guide them in implementing data-driven decision-making in asset 
management (Bessler, Savic, & Walters, 2003).  

Due to the steady increase in the numbers of sensors in networks, 
more and more opportunities are becoming available to employ data-
driven decision-making to answer questions of relevance to the asset 
management sector. For example, geospatial data-mining can be used to 
assess hidden relationships of the crisis and environmental pollutions, 
sources, causes and amount of pollutions to take necessary measures for 
environmental protection (Karimipour, Delavar, & Kinaie, 2005). 
However, there are a number of challenges that need to be overcome in 
order for asset managers to be able to fully trust the data being generated 
by IoT. It is insufficient to only implement an IoT solution and expect 
asset managers to trustingly adopt the results and change their decision 
making processes without protest (Can Duzgun, 2017; Spiegeler, 2017). 
For example, asset managers need to be able to understand the data in 
their possession. Furthermore, the development of many modern public 
utility infrastructure assets began many years ago and the data on these 
assets may be incomplete or provide conflicting reports.  

The information challenges faced by asset management 
organizations (such as poor data quality) are increased by the fact that 
organizations have often changed significantly over time, leading, for 
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example, to a highly complex system architecture. Many organizations 
have lost the ability to fully understand how their assets contribute to the 
delivery of their value streams. In addressing asset performance in one 
area, it is not possible to know how that will affect asset performance 
elsewhere or across the system as a whole. Analytics is also often 
hindered by data availability and data quality. How asset management 
organizations respond to these data quality challenges determines their 
own effectiveness, and the effectiveness of the infrastructures they 
manage. For example, adverse effects of data-driven asset management 
are often related to the lack of capability within the organization to 
efficiently manage their IT infrastructure. The issue of data-driven asset 
management is becoming more complex as data systems in asset 
management organizations develop toward distributed, cloud-based data 
environments in which data is stored in different places across different 
platforms.  

Asset management through IoT can provide a multitude of benefits 
to asset management organizations, but it also introduces new risks and 
challenges. For example, it is now possible to automatically monitor 
overloading by freight trucks, and to automatically send fines to 
offenders, but this capability also raises the need for data privacy and 
data security solutions to protect the privacy rights of citizens. This ethical 
question not only requires a technological solution, but also requires a 
legal framework to provide guidelines and enforce accountability of 
compliance. With accountability comes the need for governance of the 
data as well as strong data policies and data management processes. This 
often requires knowledge and organizational structures that may not be 
immediately available in an organization. Fulfilling this need often requires 
structural changes to the organization. In addition, organizational 
structures sometimes block the gaining of benefits. The dual nature of IoT 
suggests the necessity of organizational change to be able to reap the full 
benefits of IoT adoption. 

As such, in order to manage infrastructure assets successfully, 
having data about assets over their entire lifecycle is of paramount 
importance (Lin, Gao, Koronios, & Chanana, 2007). For this, a data 
infrastructure that captures the data representing the infrastructure is 
needed, as shown below in Figure 1-1. In Figure 1-1 we see that not only 
do asset management organizations need to develop data about their 
physical assets (within their AMDIs), but that the data also needs to be 
managed in keeping with the management of the assets themselves. 
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Figure 1-1: The relationship between asset management and data infrastructures 

All AMDIs have a unique character and behave differently. This 
makes it difficult to implement AMDIs in different environments and 
achieve similar outcomes (Grus, Crompvoets, & Bregt, 2010). AMDIs have 
been identified as CAS (Grus et al., 2010), and using a CAS lens can help 
us to identify and better understand the key characteristics of data 
infrastructures (Brous, Overtoom, Herder, Versluis, & Janssen, 2014). 
According to Auyang (1999), CASs are often built from individual agents 
which adapt as they interact with each other and their environment. 
Conceptualizing AMDIs as CAS means that it is possible to gain a better 
understanding of their relevant dependencies (Janssen & Kuk, 2006). 
Conceptualization as CAS acknowledges that it is impossible to exert a 
hierarchical control over complex systems of organizations and projects 
spanning multiple levels and jurisdictions. Instead, one must take into 
account the various typical characteristics of CAS (Herder, Bouwmans, 
Dijkema, & Stikkelman, 2008). This uncertainty and the level of 
complexity suggest that AMDIs should be designed to perform acceptably 
over a larger class of situations than was anticipated by their designers 
(Sussman, 2007). Because AMDIs are complex, there is an 
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interrelationship between their sociological and technical dimensions, and 
it is difficult to track cause-and-effect relationships. The dynamic 
sociological and technological interrelations between agents and the 
components of AMDIs are therefore hard to predict and control. 

1.1.2 Relevance 

Public utility infrastructure is developed over many years, and decisions 
regarding this infrastructure have to be made in the midst of a good deal 
of uncertainty regarding the future (Herder et al., 2011). There are many 
variables that may change over the course of time such as technological 
advances, political shifts, or changing stakeholder and economic 
fluctuations. These complexities have only increased over the course of 
time, greatly increasing the risks involved such as spiraling costs, or 
system failure (Herder et al., 2011). More and more, modern asset 
management organizations are relying on data and information to help 
them make decisions in order reduce these risks, improve efficiency and 
achieve their business objectives (Herder et al., 2011). As such, new 
technologies such as IoT are gaining wide popularity and attention as 
asset managers seek new ways to gather the data required to be able to 
optimize asset management processes. 

The implications of applying data-driven asset management to 
managing infrastructure shows why it has become important for asset 
management organizations to incorporate successful data management 
techniques and processes to ensure consistent, reliable service delivery. 
For example, if decision-making is based on data of poor quality, then 
there is a high risk that the decision being made may be flawed, leading 
to re-work and damage to an organization’s reputation.  

Many asset management organizations are faced with limited 
financial and human resources that must be directed at maintaining and 
renewing infrastructure, and dealing with changes in demand (Herder et 
al., 2011). For example, the challenges faced by water management 
organizations in meeting their statutory responsibilities are well known. 
Water management organizations often struggle to fulfil their asset 
management obligations as set out by the European Water Framework 
Directive. As such, mature levels of data management are becoming 
essential for successful asset management, and can help strengthen the 
development and operation of public utility infrastructure networks and 
the services provided to the community to ensure long-term 
sustainability. As data management and data governance matures, asset 
managers are beginning to leverage IoT techniques to provide more 
visibility into existing infrastructure and greater predictability into 
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potential changes (Brous, Janssen, Schraven, Spiegeler, & Duzgun, 
2017). In this way, the organization may gain greater productivity across 
all of its assets and can begin to manage infrastructures in a more 
cohesive manner. Data-driven asset management is increasingly 
expected to drive business processes; either by increasing productivity or 
finding opportunities through data analysis that were previously unknown 
(Brous, Janssen, & Herder, 2018). 

1.1.3 Developments 

Public utility infrastructure systems, such as water management systems, 
provide many of the services that are vital to the functioning, and security 
of society, and managing these assets effectively and efficiently is critical 
(Tien et al., 2016). As such, more and more extensive ranges of physical 
and social sensors to detect damage and monitor capabilities are being 
introduced into many of these systems. The goal behind the introduction 
of the sensors is to gain a greater understanding of and control over the 
performance and quality of assets (Aono, Lajnef, Faridazar, & 
Chakrabartty, 2016; Tien et al., 2016). IoT refers to the increasing 
network of physical objects that feature an IP address for internet 
connectivity and the communication that occurs between these objects 
and other Internet-enabled devices and systems (Hounsell, Shrestha, 
Piao, & McDonald, 2009; Ramos, Augusto, & Shapiro, 2008). IoT makes 
it possible to monitor and control the physical world from a different 
location to that of the physical object, allowing many physical objects to 
act in unison, through means of ambient intelligence (Ramos et al., 2008).  

Technology and society influence each other in many ways, and 
analytical efforts to treat these as distinct conceptual units are 
increasingly being called into question (Boos, Guenter, Grote, & Kinder, 
2013). A structured approach to the interaction of human and technology 
such as described by the duality of technology theory (Orlikowski, 1992) 
is therefore proposed in this research as being necessary to gain an 
understanding of the sociological and technical interrelations between 
agents and technological components of AMDIs which are enabled by IoT. 
The duality of technology theory (Orlikowski, 1992) describes technology 
as assuming structural properties whilst being the product of human 
action. Actors physically construct technology in a social context, and 
attach different meanings to it, and technology develops from the ongoing 
interaction of human choices and institutional contexts (Orlikowski, 
1992).  

IoT adoption in asset management organizations is expected to 
bring many benefits, but may also introduce risks of possible future 
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consequences that go beyond the intended. The duality is that the gaining 
of some technological benefits might also have unintended social effects 
on the organization. For example, IoT allows organizations to develop and 
improve services that cannot be provided by isolated systems. However, 
the organizational structure might be impacted as the technology forces 
changes to asset management business processes. 

As IoT is further adopted, it is seen by many as very likely that 
asset management will be able to leverage the data and insights that IoT 
provides (Andersen, Christiansen, Crainic, & Grønhaug, 2011; Hua, 
Junguo, & Fantao, 2014; Lee, 2014). IoT covers a range of technologies, 
and asset management platforms could possibly drill down into not only 
server, storage and networking infrastructures, but also monitoring 
devices, sensors and even mobile and wearable systems. Many asset 
management organizations are exploring IoT technology as a way to solve 
their increasingly complex challenges. (Hua et al., 2014; Lee, 2014).  

In order to increase trustworthiness of data, data governance has 
recently received widespread attention from practitioners as organizations 
are becoming increasingly serious about the notion of “data as an asset”. 
Many academic sources (e.g. Fruehauf, Al-Khalifa, Coniker, & Grant 
Thornton, 2015; Khatri & Brown, 2010; Otto & Weber, 2011; Wende & 
Otto, 2007; Wende, 2007) follow the information governance definition of 
Weill & Ross (2004) and define data governance as “specifying the 
framework for decision rights and accountabilities to encourage desirable 
behavior in the use of data” (Wende, 2007, p. 418). 

Figure 1-2 below shows that data governance may play an 
important role in coordinating the changes to AMDIs when IoT is adopted 
in asset management organizations. 

 

 

Figure 1-2: The role of data governance in AMDIs 
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Data governance is about coordinating data management - 
identifying the decisions regarding data that need to be made and who 
should be making them. However, principles for data governance that 
deal with specific issues regarding the coordination of IoT data within 
asset management are missing. Data governance principles provide 
insight into how the integration process of IoT into asset management 
may be effectively coordinated.  

1.2 Societal Contribution of the Research 
The societal relevance of the research becomes clear when the 
opportunities provided and the threats of missing opportunities are 
viewed. Efficient and cost effective development and coordination of data 
infrastructural elements can be regarded as a potential source of 
competitive advantage. In 2014, the then Vice President of the European 
Commission, Neelie Kroes, argued that data is crucial for the economic 
development of the European Union, citing a possible yearly market of 
€27 billion within the EU alone (Herder et al., 2011). Being able to align 
and utilize the available data with current and future requirements can 
have an immediate impact on the performance of asset management 
organizations. Large-scale data gathering and analytics are quickly 
becoming a new frontier of competitive differentiation (Herder et al., 
2011), and organizations tasked with managing large scale, public utility 
infrastructure are increasingly looking to data to drive their asset 
management decision making processes. This data is created and 
managed within AMDIs. However, integrating IoT data sources into 
existing asset management data infrastructures is a complex undertaking. 
The major contribution to society that this research brings is to develop a 
model of AMDIs that improves understanding of asset management 
through IoT and helps asset management organizations to mitigate risks 
and achieve the expected benefits of IoT adoption.  

IoT data can be used in many ways, such as determining one’s 
position or sensing the temperature to ensure that gauges are configured 
correctly and that temperatures remain within accepted norms. IoT can 
benefit asset management organizations by providing enough quality data 
to generate the information required to help asset managers make the 
right decisions at the right time. IoT also makes it possible to access 
remote sensor data and to monitor and control the physical world from a 
distance, allowing many physical objects to act in unison, through means 
of ambient intelligence. However, despite these apparent benefits, the 
current adoption of IoT remains low and expected benefits are often not 
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achieved. Technology and society influence each other in many ways, and 
approaches which treat these separately are increasingly being called into 
question. To achieve the expected benefits of asset management through 
IoT, a pragmatic approach to the interaction of human and technology is 
therefore required. This research improves understanding of asset 
management through IoT by investigating and describing elements and 
behaviors of AMDIs which accommodate IoT data sources and suggests 
practical approaches to reduce the risks that IoT adoption imposes. As 
such, the elements and behaviors of AMDIs are described in this research 
in a model of AMDIs which accommodate IoT.  

Understanding technology as continually being socially and 
physically constructed requires discriminating between human activity 
that affects technology, and human activity that is affected by technology. 
This research defines requirements for effective and sustainable 
development of AMDIs in asset management organizations and suggests 
that the inherent complexity of AMDIs requires data governance which 
encourages desirable behavior in the use of data. Because there is a 
dependence on interactions between elements of AMDIs, the ability to 
coordinate the management of data is essential to their development.  

In essence, the societal impact of this research is that it addresses 
the need to improve understanding of asset management through IoT, to 
help achieve benefits of IoT adoption in AMDIs and to mitigate risks by 
describing a model of AMDIs which accommodates IoT. The model also 
outlines principles and guidelines for data governance in asset 
management organizations to help guide coordination of IoT data 
management in AMDIs. The inherent complexity of adopting a data driven 
approach to asset management requires an effective data governance 
strategy to ensure data quality, manage expectations, build trust and 
integrate IoT data in AMDIs.  

1.3 Scientific Contribution of the Research 
This research shows that IoT will introduce a variety of changes to asset 
management. Application of Duality of Technology theory (Orlikowski, 
1992), confirms the dual nature of asset management through IoT. Many 
studies on asset management through IoT tend to focus on a single 
dimension such as organizational factors, as organizational factors are 
often thought to be the main drivers of innovation adoption in 
organizations (Subramanian & Nilakanta, 1996). However, IoT both 
enables and constrains asset management. This dual influence has not 
yet been recognized in studies that attempt to determine whether IoT 
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adoption has “positive” or “negative” effects on asset management. 
Orlikowski's (1992) framework allows us to recognize that IoT necessarily 
has both restricting and enabling implications for asset management 
organizations. Which implication dominates may depend on a variety of 
factors, including the autonomy, capability, actions and motives of the 
actors implementing and using IoT, as well as the organizational context 
within which IoT is adopted (Orlikowski, 1992). It is assumed that IoT has 
much potential for asset management, however, evidence of how IoT 
impacts the asset management organization remains largely anecdotal. 
Expected benefits of IoT in asset management may introduce unexpected 
risks and, as suggested by the duality of technology (Orlikowski, 1992), 
IoT may become part of the structures which constrain individual actions. 
For example, adopting IoT for access control to public transportation may 
improve efficiency, but removing the human element of conductors in 
trains and busses may introduce unexpected risks such as increased 
incidences of vandalism, requiring new organizational structures to 
mitigate these risks. There is a need to address the potentially 
unanticipated impacts of IoT adoption (Ma, Wang, & Chu, 2013; Neisse, 
Baldini, Steri, & Mahieu, 2016) and to systematically investigate the 
impact of IoT on asset management (Haller, Karnouskos, & Schroth, 
2009). This research fills that gap by undertaking a systematic review of 
expected benefits and unexpected risks of asset management through IoT 
and conducting exploratory case studies to fill the gaps in the current 
knowledge base. 

This research also builds on the work of research into data 
infrastructures as CAS (Grus et al., 2010; Hanseth & Lyytinen, 2004; 
Hanseth, Monteiro, & Hatling, 1996; Little, 2003; Ottens, Franssen, 
Kroes, & Van De Poel, 2006), with special regard to IoT its effect on 
traditional asset management. Because of their socio-technical constructs 
(de Man, 2006; Grus et al., 2010; Hanseth et al., 1996) we follow Grus 
et al. (2010) and adopt the perspective that AMDIs are complex, adaptive 
systems which by their very nature accommodate multi-actor 
involvement. As such, this research extends the body of knowledge of 
information science by describing a CAS framework to investigate the 
AMDI phenomenon. Researchers have increasingly approached physical 
infrastructures as being CAS, but although physical infrastructures are 
often approached as CAS, their underlying AMDIs hardly are. AMDIs are 
complex socio-technical systems and there is a need to understand how 
AMDIs evolve and adapt to new, disruptive technologies such as IoT 
(Haller, Karnouskos, & Schroth, 2009). For example, adoption involves 
more than a decision to implement IoT, but also includes the staff’s 
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acceptance and initiation of their individual processes of accepting the 
innovation (Frambach & Schillewaert, 2002). An important omission in the 
identification of phases of adoption (Damanpour & Schneider, 2006) is 
that of the end-state and post-adoption. This research fills this gap by 
including the end-state and post-adoption phases of asset management 
through IoT in the investigation. Attention is also necessarily given to the 
process leading to acceptance of IoT. This research therefore investigates 
how current asset management organizations are responding to IoT 
through the development of an AMDI model that accommodates IoT.  

When faced by change, actors may anticipate the consequences of 
their actions and develop rules to adapt to these consequences. There is 
a need to investigate these rules in the AMDI and research how they affect 
the asset management organization and how they are interpreted as data 
governance (Thompson, Ravindran, & Nicosia, 2015). This research 
extends the body of knowledge surrounding data governance in asset 
management by being the first to investigate the phenomenon of data 
governance within asset management organizations and how data 
governance may coordinate data management in an IoT setting. Because 
there is a dependency on interactions between technical and social 
elements, the ability to coordinate the management of data is essential 
to asset management through IoT. Coordination emphasizes two methods 
for the improvement of data flows: the coordination of activities, and the 
coordination of commitments (Janssen, 2001). Although scant attention 
has been paid to coordination of data management in asset management 
organizations, there have been several calls within the scientific 
community for more systematic research into data governance and its 
impact on the information capabilities of asset management (Fruehauf et 
al., 2015; Hashem et al., 2015; Otto, 2011a). Little evidence has been 
produced so far indicating what actually has to be organized by data 
governance and what data governance processes may entail (Otto, 
2011a). Most research into data governance until now has focused on 
structuring or organizing data governance. Evidence is scant as to what 
data governance entails (Fruehauf et al., 2015; Hashem et al., 2015). The 
principles of data governance in asset management we present in this 
research attempt to fill this gap. 

1.4 Research Drivers, Concepts and Definitions 
This section presents the background of the various domains, theories 
and concepts relevant for this research. In section 1.4.1 we discuss asset 
management and asset management organizations; in section 1.4.2. we 
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discuss data and information; in section 1.4.3. we discuss AMDIs; in 
section 1.4.4 we discuss IoT; in section 1.4.4 we discuss data governance; 
and in section 1.4.5 we discuss adoption of IoT. 

1.4.1 Asset Management and Asset Management 

Organizations 

Infrastructure networks are networks of assets that serve defined 
communities where the system as a whole is intended to be maintained 
indefinitely to a specified level of service by the continuing replacement 
and refurbishment of its components. One of the most important features 
of infrastructure networks is the degree of inter-dependency, not only 
within a particular asset network, but also from one network to another 
(Hastings, 2010; Volker, Altamirano, Herder, & van der Lei, 2011). The 
failure of one component within a network may undermine the ability of 
other networks to perform. For example, a water main burst may disrupt 
traffic on a city street. According to Hastings (2010), the goal of 
infrastructure asset management is to cost effectively maintain a service 
at a certain level, by managing the assets for present and future uses. 

The basis of asset management is to be able to apply technical and 
financial judgement and sound management principles to decide which 
assets are required to meet business objectives, to acquire those assets 
and to maintain those assets throughout their entire lifecycle, including 
their disposal. Asset management gives an organization the knowledge 
and tools to develop and maintain the infrastructure under its 
management (The Institute of Asset Management, 2011). Figure 1-3 
below shows how asset management fits into the asset management 
organization according to the ISO 55000 standard. ISO 55000 is an 
international standard covering management of physical assets. ISO 
55000 (https://www.iso.org/obp/ui/#iso:std:iso:55000:ed-1:v2:en) 
defines asset management (AM) as the “coordinated activity of an 
organization to realize value from assets”. AM is also understood to be 
“the set of activities of a business objective associated with: identifying 
what assets are needed; identifying funding requirements; acquiring 
assets; providing logistic and maintenance support systems for assets; 
and disposing or renewing assets so as to effectively and efficiently meet 
the desired objective” (Hastings, 2010 p. 6). 
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Figure 1-3: Managing Assets and the Organization: ISO 55000, clauses 3.2.4, 3.3.1, and 
3.4.3  

The objective of AM is to ensure the infrastructure functions safely, 
effectively and efficiently, given the constraints of the costs involved 
(Mohseni, 2003). AM is therefore essentially a matter of understanding 
risk, followed by developing and applying the correct business strategy, 
and the right organization, process and technology models to solve the 
problem (Mohseni, 2003). In this research we follow ISO 55000’s 
definition of AM as being the “coordinated activity of an organization to 
realize value from assets”.   

 

 

Maximizing value and minimizing risk are important drivers for 
optimization of the asset portfolio and system (Volker et al., 2011). Asset 
management organizations should have AM as a primary process. For this 
research, we define an asset management organization as an organization 
tasked with managing and maintaining public utility infrastructure and 
which recognizes AM as a primary process. 

 

Definition 1.1: asset management is the coordinated activity of an 
organization to realize value from assets. 
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The activities associated with AM are: identifying what assets are 
needed, identifying funding requirements, acquiring assets, providing 
logistic and maintenance support for assets and disposing or renewing 
assets (Hastings, 2010). These activities provide the scope for this 
research. According to (Mehairjan, 2017), from a business point of view, 
AM has the following goals: 

• Balance cost, performance and risk, 
• Align capital and operational spending decisions and corporate 

objectives and 
• Make fact-based and asset data-driven decisions. 

AM is widely argued in the literature as an umbrella subject which can 
encompass many aspects for the management of asset intensive 
industries (Mehairjan, 2017). In this research, AM is described in the 
context of infrastructures or physical AM. 

1.4.2 Data and Information 

The term “data” is often used in everyday terminology to refer to either 
raw data or to information (Khatri & Brown, 2010; Lin et al., 2007; Wende 
& Otto, 2007). According to Ackoff (1971), data are symbols that 
represent the properties of objects and events, whereas information 
consists of processed data, the processing directed at increasing its 
usefulness. A complication is that from an information systems 
perspective, data and information can both take digital forms and, in 
these forms, are often, in practice, collectively referred to as data. For 
example, in an IoT environment, sensors such as temperature gauges 
make observations or measurements about an object or its environment, 
which may be registered in a system and is often referred to as raw data. 
This data can also often be enriched with other descriptors that help 
identify an object or thing, or, the environment, infrastructure, system, 
or network in which the sensors, object or thing can be found. An example 
of this would be a name given to a person or object. In this research we 
follow Ackoff (1971), and define data as symbols which represent the 
measure or description of objects or events.  

Definition 1.2: an asset management organization is an organization 
tasked with managing public utility infrastructure. 
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Data is often described in a data model. A data model organizes 
elements of data and standardizes how they relate to one another. For 
instance, a data model may specify that the data element representing a 
person be composed of a number of other elements which, in turn, 
represent the height and weight of the person or the color of their eyes 
etc. (Moody & Shanks, 1994). Data is typically designed by breaking 
things down into their smallest parts that are useful for representing data 
relationships. For example, a customer may include a list of contacts. Each 
contact may contain an address. Data is typically stored in logical 
“objects” such as a table in a database. According to The Open Group, a 
data object is “a passive element suitable for automated processing” 
(http://pubs.opengroup.org/architecture/archimate2-doc/chap04.html, 
accessed 2017).  

For information to be gained from data, context is required. This 
contextual data is gained from data that describes the data that is being 
created, often referred to as “metadata”. Often, metadata also provides 
data about the sensor itself or about the object or thing that is being 
sensed.  Metadata is often defined as data about data (Bargmeyer & 
Gillman, 2000; Khatri & Brown, 2010). As such, we must also recognize 
that metadata is also data. According to Khatri & Brown (2010), metadata 
describes what the data is about and allows us to describe and interpret 
the data. As such, metadata can also be stored and managed in a 
database, often called a registry or repository (Bargmeyer & Gillman, 
2000).  Khatri & Brown (2010, p. 150) describe different types of 
metadata as being “physical, domain independent, domain-specific, and 
user metadata”. These different types of metadata ensure the discovery, 
retrieval, collation and analysis of data. According to Khatri & Brown 
(2010, p. 150), physical metadata includes information about the 
“physical storage of data”; domain-independent metadata includes 
“descriptions such as the creation or modification of data and the 
authorization, audit and lineage information related to the data”; and user 
metadata includes “annotations that users may associate with data items 
or collections” (Khatri & Brown, 2010, p. 150).  

 

Definition 2.1: Data are symbols representing measures or 
descriptions of objects or events. 

 

http://pubs.opengroup.org/architecture/archimate2-doc/chap04.html
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Figure 1-4 below shows that information can be gained by 
combining data (from the registration of observations, measurements, 
decisions or transactions) with metadata (data which provides context).  

 

 

Figure 1-4: The relationship between data elements and information 

In this research we follow Huang, Lee, & Wang (1999) and 
distinguish “information” from data by referring to information as data put 
in a context.  

 

 

In practice, information is often stored within data stores such as 
data warehouses (Holmes et al., 2014) and visualized in the form of 
reports. The buildup of this information over time becomes knowledge 
which is also often stored digitally within knowledge management 
systems (Lin, 2014). The lines of responsibility may often become blurred 
as multiple users combine multiple data sources and data types to create 
multiple information products. 

Definition 2.3: Information is data that has been put into context. 

 

Definition 2.2: Metadata is a description of a data object and the data 
elements stored within it. 
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1.4.3 Asset Management Data Infrastructures (AMDIs) 

Modern usage of the term “infrastructure” concerns the necessary 
economic and organizational foundation of a highly developed economy, 
especially with regards to networks of assets that are provided by the 
state (Buhr, 2003). Networked infrastructures are believed to be complex 
socio-technical systems and their complexity shows in the physical 
networks, and in the actor networks, as well as the combination of the 
two (Herder et al., 2008). Various forms of infrastructures are dealt with 
in Information Systems (IS) literature. Information infrastructures have 
been defined as “a shared, evolving, heterogeneous installed base of 
information technology capabilities among a set of user communities 
based on open and/or standardized interfaces” (Hanseth & Lyytinen, 
2004, p. 213). Information infrastructures offer a shared resource for 
delivering and using information services in a community. However, this 
definition is insufficient with regards to data infrastructures due to the 
focus on information technology (IT) assets and the lack of attention for 
the content within the systems, the interaction of communities between 
themselves and with the information infrastructure itself. IT systems 
enable the automation of data infrastructures just as technological 
advances enable the development of physical infrastructures.  

Another type of IS infrastructure, Spatial Data Infrastructure (SDI) 
is often used to denote to the relevant base collection of technologies, 
policies and institutional arrangements that facilitate the availability of 
and access to spatial data (Nebert, 2004). Grus et al. (2010) have shown 
that SDI, as CAS, evolve. The focal point of the SDI concept is facilitating 
the interaction between spatial data and people. A SDI can therefore be 
seen as a sociotechnical assembly rather than only a technical tool (de 
Man, 2006). SDI is an initiative intended to create an environment in 
which all stakeholders can co-operate with each other and interact with 
technology (Rajabifard & Williamson, 2001). For this research, we follow 
the reasoning of spatial data infrastructures and define data 
infrastructures as being a shared, heterogeneous, set of resources 
capable of evolving and therefore of being continuously able to provide 
data required by organizations. 

 

 

Definition 3.1: a data infrastructure is a shared, evolving, 
heterogeneous, set of resources capable of providing the data and 
metadata required to fulfil the information requirements of 
organizations for their information needs. 
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Including the discussion on asset management organizations, we 
define an AMDI as shared, evolving, heterogeneous, sets of resources 
capable of providing the data and context required to fulfil the information 
requirements of asset management organizations. 

 

 

Managing physical infrastructure assets often means balancing 
complex uncertainties (Volker et al., 2011). Physical infrastructure assets 
have long life spans, no resale value, include passive elements; are built 
in agile conditions, inside evolutionary, widely distributed, networked 
systems, and have anonymous users which are not necessarily the 
owners, managers or operators (Volker et al., 2011). These uncertainties 
are often mirrored in AMDIs. As a unique asset, data can be affected by 
a broad range of outside influences at indiscriminate moments in time. 
The end users of data are often anonymous, and the data owners often 
have little control over their use or production (Redman, 2008). Data also 
multiplies exponentially in evolutionary, networked and widely distributed 
systems.  It is because of this that it is exceptionally difficult for asset 
management organizations to effectively manage their data. Data 
systems are complex (Redman, 2008) and many disciplines must be 
coordinated in order to ensure that data becomes a useful entity. 
Traditional information systems architecture has tended to focus on 
developing infrastructures that attend to specific needs and focus on 
specific processes. 

1.4.4 IoT 

According to Miorandi, Sicari, De Pellegrini, & Chlamtac (2012), IoT builds 
on three pillars, related to the ability of objects (or “things”) which are 1. 
identifiable, 2. can communicate and 3. are able to interact, either 
amongst themselves or with other entities or end-users in the network. 
Miorandi et al. (2012) defines “smart” objects (or things) as entities that 
have a physical embodiment and a set of associated physical features, 
and which have a minimal set of communication functionalities, such as 
the ability to be discovered and to accept incoming messages and reply 
to them. Furthermore, Miorandi et al. (2012) believes that smart objects 

Definition 3.2: an AMDI is a shared, evolving, heterogeneous, set of 
resources capable of providing the data and metadata required to fulfil 
the information requirements of asset management organizations. 
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should be associated with at least one human readable name and one 
computer readable address. The smart object should also possess some 
basic computing capabilities such as matching an incoming message to a 
given footprint and should also possess means to sense physical 
phenomena (e.g., temperature, light, electromagnetic radiation level) or 
to trigger actions having an effect on the physical reality (actuators). 

IoT has a number of characteristics which should be born in mind 
when defining the scope of IoT. According to Patel & Patel (2016), a 
fundamental characteristic of IoT is that it displays interconnectivity in 
that things can be interconnected through communication infrastructures. 
Miorandi et al. (2012) describes this characteristic as ubiquitous data 
exchange through proximity wireless technologies. According to Miorandi 
et al. (2012), wireless communications technologies play a prominent role 
in IoT as it enables smart objects to become networked. Patel & Patel 
(2016) believe that IoT is capable of providing thing-related services 
within certain constraints such as privacy and semantic consistency. And 
Miorandi et al. (2012) considers the importance that entities in IoT can be 
identified and are provided with short-range wireless communications 
capabilities. However, as everyday objects become connected to a global 
information infrastructure, scalability issues arise at different levels 
(Miorandi et al., 2012). According to Patel & Patel (2016), the number of 
devices that need to be managed and that communicate with each other 
will be at least an order of magnitude larger than the devices connected 
to the current Internet.  As such, the management of the data generated 
and their interpretation for application purposes is critical (Miorandi et al., 
2012; Patel & Patel, 2016). This relates to semantics of data, as well as 
to efficient data handling. Patel & Patel (2016) believe that the devices in 
IoT are heterogeneous, being based on different technologies, and 
Miorandi et al. (2012) expects devices to present very different 
capabilities from the computational and communication standpoints. 
According to Patel & Patel (2016), connectivity enables network 
accessibility and compatibility, the capability of accessing and consuming 
data. But Miorandi et al. (2012) believes that the complexity and 
dynamics that many IoT scenarios will likely present calls for distributing 
intelligence in the system, making smart objects able to autonomously 
react to a wide range of different situations. Nodes in IoT may organize 
themselves autonomously into transient ad hoc networks, providing the 
basic means for sharing data and for performing coordinated tasks. As 
such, IoT also has the characteristic of dynamism as the state or number 
of devices changes dynamically. According to both Miorandi et al. (2012) 
and Patel & Patel (2016), security is an important aspect of IoT, and IoT 
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should be designed for privacy and security. Figure 1-5 below summarizes 
the general characteristics of IoT. 

 

 

Figure 1-5: Characteristics of IoT 

In this manner, IoT describes a wide range of interoperating 
technologies in which objects which are equipped with sensors, 
specifically designed software or other digital systems, are connected to 
the Internet and/or other networks, with a specific purpose in mind. How 
data is acquired, analyzed and combined into information value chains 
and benefits is key to IoT adoption success. As such, the true value of IoT 
may lay in the ways it enables to leverage entirely new sources and types 
of data for entirely new business models, insights, forms of engagement, 
way of living and societal improvements.  

The term “Internet of Things” is not new, purportedly in use since 
1997, and a wide variety of definitions exist. For example, Atzori et al. 
(2010 p. 1) define IoT as “a network of physical objects that are able to 
communicate digitally over the internet”, and the Institution of Electrical 
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and Electronic Engineers (IEEE) have, in the past, defined IoT as “a 
network of items, each embedded with sensors, which are connected to 
the Internet” (IEEE, 2014 p. 6).  
 

 
According to Xia, Yang, Wang, & Vinel (2012), IoT will increase the 

ubiquity of the Internet by integrating every object for interaction via 
embedded systems. This will enable a highly distributed network of 
objects communicating with human beings as well as other objects. For 
example, in the Netherlands, sensors installed in buoys in a countrywide 
network of sensors monitor the water levels in Dutch rivers and in the 
North Sea. The system automatically sends reports to the storm surge 
barriers such as the “Maeslantkering” and to their managers if water levels 
exceed the defined thresholds.  Early predictions of rising water levels can 
be made and the storm surge barriers can be automatically closed to 
prevent major flooding. Also, utilities and independent power providers 
can reduce operating expenditure and cut costs associated with 
maintenance and labor through real-time fault monitoring capabilities 
provided by IoT, improving day-to-day grid effectiveness and capacity 
planning with detailed reporting & intelligence. 

In addition, combining information from devices and other systems 
using expansive analysis, may provide new insights for managers of public 
utility infrastructure. For example, it is possible to embed wireless sensors 
within concrete foundation piles to ensure the quality and integrity of a 
structure. These sensors can provide load and event monitoring for the 
projects construction both during and after its completion. This data, 
combined with data from load monitoring sensors designed to measure 
weights of freight traffic, may provide managers of physical infrastructure 
with new insights as to the maintenance requirements of the 
infrastructure. According to Moreno, Santa, Zamora, & Skarmeta (2014), 
IoT is a vision towards a situation where “things“ are provided with 
enough intelligence to communicate with each other without human 
intervention. Moreno et al. (2014) believes that the number of IoT-
enabled nodes is expected to grow substantially, and as such the 
heterogeneous nature of implementations demands effective IoT 
deployments that ensure proper interoperability and reliability of network 
infrastructures. Ubiquitous sensing enabled by Wireless Sensor Network 
technologies cuts across many areas of modern day living (Gubbi, Buyya, 

Definition 4.0: Internet of Things is a network of items, each 
embedded with sensors, which are connected to the Internet. 
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Marusic, & Palaniswami, 2013). Gubbi et al. (2013) believes that IoT 
provides the ability to measure, infer and understand environmental 
indicators, and the proliferation of these devices in a communicating–
actuating network creates the IoT wherein sensors and actuators blend 
seamlessly with the environment around us, and the information is shared 
across platforms in order to develop a common operating picture.  

IoT is an umbrella term, comprising various technologies and at 
the same time part of a broader technological picture. The IoT enables 
innovation through a combination of, amongst others, remote sensing, 
real-time data transport and processing, data and analytics, artificial 
intelligence, machine learning, cloud and edge computing, business 
process optimization, people, and robotics. 

1.4.5 Data Governance 

IoT data can provide new insights to help organizations face challenges, 
but the data must be of sufficient quality in order to be acted upon (Otto, 
2013; Wende, 2007). Too much data can create “noise” which detracts 
van the quality of the information. A widely adopted definition of high 
quality data is data that is “fit-for-use” (Strong, Lee, & Wang, 1997; 
Wende & Otto, 2007). Using the definition provided by Strong et al. 
(1997), the characteristics of high-quality data have intrinsic, 
accessibility, contextual, and representational aspects. This also means 
that usefulness and usability are important aspects of quality (Dawes, 
2010; Strong et al., 1997). Having data infrastructures which produce 
data of a quality that is aligned to the needs of the organization is 
therefore essential for asset management organizations which rely on 
data-driven decision-making processes (Al-Khouri, 2012). According to 
Wende & Otto (2007), companies need data quality management that 
combines business-driven and technical perspectives in order to respond 
to strategic and operational challenges demanding high-quality corporate 
data. As such, many organizations see data governance as a way to 
manage data quality (Otto, 2011b).  According to Otto (2011b), the value 
of data depends on its quality.  

According to Otto (2011b), data governance is based on the idea 
of data as being an organizational asset. Data governance defines 
mandate and responsibilities with regards to data management. As such, 
data governance demands binding guidelines and rules for data quality 
management (Otto, 2011b). Otto (2011b) therefore defines data 
governance as a “framework for assigning decision-related rights and 
duties in order to be able to adequately handle data as a company asset” 
(Otto, 2011b, p. 46). This suggests a simplistic causal relationship 
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between data governance elements. However, the variety and complexity 
of relationships between these and other important elements, such as 
ensuring compliancy to external regulations, suggests that this definition 
is incomplete. As such, the field of data governance remains in its infancy 
and many scientific sources follow the information governance definition 
of Weill & Ross (2004) and define data governance as “specifying the 
framework for decision rights and accountabilities to encourage desirable 
behavior in the use of data” (Khatri & Brown, 2010 p. 148). Khatri & 
Brown (2010) follow Weill & Ross (2004) and differentiate between 
“governance” and “management”. According to Khatri & Brown (2010), 
“governance” refers to what decisions must be made to ensure effective 
management, whilst “management” involves making and implementing 
decisions. By way of example, Khatri & Brown (2010) include establishing 
who in the organization holds decision rights for determining standards 
for data quality in governance, whilst explaining that management 
involves determining the actual metrics employed for data quality. For 
example, according to Dawes (2010), stewardship demands that data be 
managed as a resource that has organizational, jurisdictional, or societal 
value across purposes and over time. As such, mature data governance 
processes protect data from damage, loss, or misuse, and makes 
information “fit for use”. For example, Khatri & Brown (2010) and Dawes 
(2010) show that data and metadata standards govern how data elements 
are described, defined and represented. Khatri & Brown (2010) have 
developed a framework for decision domains for data governance as seen 
below in Figure 1-6. However, criticism for following the IT driven 
definition comes from Otto & Weber (2011) who believe that that data 
quality management is not fully comparable to IT management because 
of the business perspective involved. As such, data governance and IT 
governance are also not fully comparable. Nevertheless, Otto & Weber 
(2011) believe that IT governance research pursues similar objectives and 
although Otto & Weber’s (2011) proposed contingencies (and their 
impact) lack validation in the context of data governance, research on 
contingencies influencing IT governance models may be used as starting 
point for the contingency research on data governance. 
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Figure 1-6: Decision Domains for Data Governance (Khatri & Brown, 2010 p. 149) 

In this research we view AMDIs as CAS, and, as such, suggest that 
data governance provides the rules for behavior within the AMDI. In the 
light of these criticisms, we define data governance as specifying the 
framework for decision rights and accountabilities to encourage desirable 
behavior in the use of data (Khatri & Brown, 2010), ensures that data is 
aligned to the needs of the organization (Dawes, 2010), monitors and 
enforces compliancy to policy (Thompson et al., 2015), and ensures a 
common understanding of the data throughout the organization (Otto, 
2011b). 

 

 

1.4.6 Adoption of IoT 
Adoption of innovations, “the decision to proceed with a full or partial 
implementation of an evidence-based practice” (Wisdom, Chor, 
Hoagwood, & Horwitz, 2014, p. 2), is a complex process. According to 
Wisdom et al. (2014, p. 2), understanding this process “may provide 
insights for the development of strategies to increase the uptake of IoT in 
asset management organizations”. Adoption often begins with the 
recognition that a need exists and the decision to proceed with the 
implementation of the solution (Wisdom et al., 2014). However, adoption 
involves more than a decision to implement IoT, but also includes the 
staff’s acceptance of the innovation (Frambach & Schillewaert, 2002). 
Rogers (1995), views acceptance of innovations as diffusion, being a 

Definition 5.0: Data governance specifies the framework for decision 
rights and accountabilities to encourage desirable behavior in the use 
of data, ensures that data is aligned to the needs of the organization, 
monitors and enforces compliancy to policy, and ensures a common 
understanding of the data throughout the organization. 
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process through which an innovation is communicated over time within a 
social system.  

IS adoption research in other areas such as ERP (e.g. Al-Mashari, 
2003; Buonanno et al., 2005; Chang, Cheung, Cheng, & Yeung, 2008) 
suggest that adoption of innovative technology requires intense efforts 
focusing on both technological and business sides of the implementation. 
These cases suggest that innovative technology such as IoT may structure 
the organization and people involved, the duality (Orlikowski, 1992) being 
that adopting IoT means accepting changes to processes and 
organizational structures, but also to people’s mindsets – how they view 
and trust the IoT system and the data. Damanpour & Schneider (2006) 
have identified three phases of adoption, namely: initiation, decision to 
adopt and implementation. This research focuses primarily on the 
implementation end-state, namely a successful implementation of IoT and 
its acceptance within the asset management organization, but attention 
is also necessarily given to the process leading to acceptance of IoT. 

According to Damanpour & Schneider (2006), the adoption of 
innovation basically means that the innovation is new to the people or 
organization who are adopting it.  Damanpour & Schneider (2006) believe 
that organizations implement innovations to create change so that the 
unit may maintain or improve its level of performance. Therefore, we view 
adoption of IoT in asset management organization as IoT being new to 
the asset management organization and being implemented as a means 
of creating change in the organization so that it maintains or improves its 
level of performance or effectiveness. 

 

1.5 Research Objective 
Asset management organizations need data to achieve their business 
goals, but the traditional approach of providing disparate systems for each 
information requirement is no longer adequate Kwon et al. (2016). IoT 
has the potential to provide the necessary data. However, improving 
understanding of asset management through IoT means discovering how 
AMDIs are able to accommodate these new sources of data. 

Definition 6.0: Adoption of IoT in asset management organization is 
the new implementation and acceptance of IoT within the asset 
management organization as a means of creating change aimed at 
improving the level of performance or effectiveness of asset 
management. 
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Data is often used for a variety of information needs in asset 
management processes, and asset management organizations are often 
data-rich environments due to the need for data to make informed 
decisions regarding the management and development of physical 
infrastructures. Data-rich asset management organizations have AMDIs. 
What is still unclear is what exactly an AMDI is and how it looks like. 
Previous research has mostly focused on either “Information 
Infrastructures” (Byrd & Turner, 2000; Hanseth & Lyytinen, 2004; 
Hanseth et al., 1996), which is generally confined to the IT capabilities of 
the system, or “Spatial Data Infrastructures” (Grus et al., 2010; Nebert, 
2004; Rajabifard & Williamson, 2001) which is limited to infrastructures 
of spatial data. There has been little or no research into AMDIs, whether 
at organizational, regional or international levels, even though the 
maintenance and development of the data infrastructure shares many 
elements with the physical world. AMDIs are different from other 
information infrastructures in various ways, including: 

• Asset management data have longer lifecycles than the systems 
that store the data. 

• Users and uses are becoming invisible to the data provider. 
• It is no longer clear what the exact functional and quality 

requirements of the data should be. The use of the data varies 
over time and it is hard to predict how the data will be used and 
what data is required.  

• Data is increasingly becoming available from new, largely 
unregulated sources such as IoT. 

What is not known is what the characteristics of an AMDI are or how the 
individual elements interact and behave. In order to enable asset 
management through IoT we need to understand the modern asset 
management landscape and how IoT adoption may affect this landscape.  

AMDIs are complex socio-technical systems and their complexity 
shows in the physical networks, and in the actor networks, as well as the 
combination of the two (Herder et al., 2008). Data infrastructures 
represent information about physical reality, and as reality changes, 
AMDIs might also be subject to change. For example, improving 
understanding of asset management through IoT requires identifying 
potential and experienced benefits and risks of asset management 
through IoT.  

IoT adoption can both enable and constrain asset management 
processes. It is assumed that IoT has much potential for asset 
management, however, the impact of IoT on asset management has not 
yet been investigated systematically and remains largely anecdotal. 
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Expected benefits of IoT for asset management may introduce 
unexpected risks (Brous & Janssen, 2015a) and, as suggested by the 
duality of technology (Orlikowski, 1992), IoT may become part of the 
structures which constrain individual actions. For example, adopting IoT 
for access control to public transportation may improve efficiency, but 
removing the human element of conductors in trains and busses may 
introduce unexpected risks such as increased incidences of vandalism, 
requiring new organizational structures to mitigate these risks. Because 
there is a dependence on interactions between technical and social 
elements, the ability to coordinate the management of data is essential 
to asset management through IoT. Considering the preceding discussion, 
our research objective is formulated as follows: 

 

 
As discussed above, we intend to achieve this objective through 

the design of a model of an AMDI that improves understanding of asset 
management through IoT, and facilitates communication between 
stakeholders in the asset management organization. To gain the 
knowledge required to achieve the objective and to be able to build the 
model, we developed five research questions to guide the research. 
Section 1.6 below discusses these research questions further. 

1.6 Research Questions 
To be able to design an AMDI model which accommodates IoT we desire 
to know what the elements are which enable a data infrastructure for 
asset management organizations. Traditionally, data collection, 
transformation and analysis processes are often done by hand but the 
adoption of IoT means that the data management process is becoming 
more and more automated. Many infrastructures are now fitted with 
sensors and industrial automation is becoming more accepted. IoT is 
influencing traditional AMDIs, forcing them to evolve in unexpected ways. 
From a duality perspective, asset management organizations that choose 
to adopt IoT should pay attention to both the adoption of technology as 
to the social impact this adoption causes, as IoT implementations may 
also bring with them unintended consequences such as the misuse of 
surveillance or telecom data which disregards personal privacy, or the use 
of sensor data which provides insight into issues other than those for 
which the sensor was placed in the first place. IoT might provide a variety 

The research objective is to develop a model of AMDIs that 
improves understanding of asset management through IoT. 
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of benefits for asset management, but when embedded in existing 
structures the benefits might not be accomplished or might even result in 
distinct disadvantages.  

IoT can benefit asset management organizations by providing 
enough quality data to generate the information required to help asset 
managers make the right decisions at the right time (Brous & Janssen, 
2015b). For example, IoT can be used to collect data to determine the 
position and length of traffic jams, and to redirect traffic or offer 
alternative multi-modal forms of transport by using location sensors and 
analyzing traffic flow. This information can be used to provide valuable 
information regarding the development of road smoothness and fraying 
asphalt. However, IoT can also affect the asset management organization 
in unexpected ways. Automating processes often necessarily leads to 
changes to organizational structures and cultures as tasks previously 
performed by people become automated, whilst other tasks and 
responsibilities which previously did not exist become apparent (Brous & 
Janssen, 2015a). Furthermore, achieving the benefits of asset 
management through IoT also requires accounting for a variety of risks. 
For example, sensors might not work or might emit the wrong signals, 
resulting in annoyance for the public and reducing their trust in the system 
and damaging the reputation of the organization. This leads us to our first 
research question which we separate into three parts: 

 

 

As discussed above, the objective of the research is to develop a 
model of AMDIs that improves understanding of asset management 
through IoT adoption. Achieving the research objective requires defining 
the scope and domain of the research. Defining AMDIs not only defines 
the scope of the knowledge obtained by identifying the specific domain 
wherein the knowledge applicable is, but also ensures that there is clarity 
with regards to the phenomenon under study, the AMDI. It is therefore 
important to define the characteristics of an AMDI. Data infrastructures 
represent information about physical reality. As reality changes, AMDIs 

RESEARCH QUESTION 1:  
How can IoT improve asset management? 

 
1a. How can IoT be used in asset management? 
1b. What are the expected benefits of asset management through 

IoT? 
1c. What are the risks posed by asset management through IoT? 
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might also be subject to change. Therefore, we are interested in 
understanding how an AMDI is affected when faced with IoT. It is 
important to understand what the elements of AMDIs are. The CAS lens 
helps us to identify and better understand the characteristics and the 
behavior of AMDIs affected by IoT adoption. All real-world objects share 
two characteristics: they all have state and behavior 
(http://pubs.opengroup.org/architecture/archimate2-doc/chap02.html).  
For example, dogs have state (name, color, breed, hungry) and behavior 
(barking, fetching, wagging tail). From an asset management perspective, 
although perhaps seemingly more passive than dogs, bridges (for 
example) also have state (size, height, condition) and behavior (load-
bearing, vibration etc.). Furthermore, objects can often be de-composed 
into smaller objects (components) which are necessarily related. 
Identifying the state, behavior and relationships of real-world objects is 
therefore important for understanding how the whole may change and 
develop over time. We therefore wish to know what the parts 
(components) of AMDIs are, but also to understand how the sum of the 
parts may react to the introduction of IoT. We thus arrive at our second 
research question which we separate into two parts and reads as follows: 

 

 

Once we defined the scope and boundaries of the knowledge we 
intend to obtain, we wish to establish a knowledge base, composed of 
existing findings, which builds a foundation for the research. This 
foundation helps guide us with the scientific contribution of the research, 
driven by underlying theories. Theories are important elements in 
designing artefacts (Pries-Heje & Baskerville, 2008), especially when used 
as external theories in design for the purpose of insuring that work 
practices and technology remain correlated and synergistic. Pries-Heje & 
Baskerville (2008) have identified that there are differing opinions about 
what constitutes design theories for information technology artefacts. For 
example, Walls, Widmeyer, & Sawy (1992) demonstrate that design 

RESEARCH QUESTION 2: 
What are the elements and behaviors of AMDIs that enable asset 
management through IoT? 

 
2a. What are the elements of AMDIs that enable asset management 

through IoT? 
2b. What are the behaviors of AMDIs that enable asset 

management through IoT? 
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theories have both a product component and a development process 
component. Each draw upon kernel theories that enable designers to 
evaluate whether the product and its development process satisfy the 
design theory. Also, Goldkuhl (2004) specifies a need for multiple 
grounding of design theories, and Markus, Majchrzak, & Gasser (2002) 
use theories to explain the “means–ends” relationship as a practical, 
prescriptively causal, mechanism to justify design components. In this 
research we assume that the characteristics of AMDIs play important roles 
in the decisions made regarding IoT adoption, and at the start of the 
research we did not know which elements should be incorporated in an 
AMDI model nor what the expected behavior of AMDIs would be when 
adopting IoT.  

We argue that an AMDI is not only a list of parts, but is a linked 
and complex whole. Following Miller & Page (2009), purely listing the 
elements of a data infrastructure would therefore reduce its complexity, 
meaning that AMDIs, whilst being complicated, are not necessarily 
complex. We argue that the coordination of dependencies between the 
elements of AMDIs make a significant contribution to their complexity and 
that AMDIs are CAS.  

As CAS, AMDIs have schema which, in this research is identified 
within AMDIs as data governance. It is necessary to identify not only the 
elements of AMDIs, but also how data governance coordinates data 
management within AMDIs. This research shows that data governance 
includes several important elements, and successful data governance 
requires the development of a number of artefacts, but also the execution 
of a number of activities which ensure the proper creation, management, 
distribution and use of quality data. For example, ensuring that there is 
no confusion between a bank account and a sales account requires specific 
definitions of the two which are included in the business rules within the 
information systems and are actively managed by data stewards during 
discussions between the finance and sales departments. This leads us to 
our third research question which reads as follows: 

 

 

Asset management is often conceptualized as being process-
oriented (Lin et al., 2007). The asset management process itself is 

RESEARCH QUESTION 3: 
What are the elements of data governance in AMDIs that enable asset 
management through IoT? 
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complex, and involves a number of disciplines. Furthermore the asset 
lifecycle can span a long period of time (Steed, 1998). At every step in 
the process, asset management needs to collaborate with other business 
processes, in order to effectively manage the network (Lin et al., 2007). 
The cost and complexity of managing physical assets demands 
considerable planning to identify appropriate solutions and evaluate 
investment opportunities. The asset management process itself is data 
centric as assets need to be tracked throughout their lifecycle (Lin et al., 
2007a). As such, the asset management process requires substantial 
amounts of data to be collected throughout all stages of a typical asset’s 
lifecycle. This data needs to be maintained for many years to be able to 
identify long-term trends. The process also uses this data to plan and 
schedule asset maintenance, rehabilitation, and replacement activities. 
Ensuring the availability of the data requires the complex synergy of social 
and technical aspects. Ottens et al. (2006) describe socio-technical 
systems as including technical and social elements and their relationships. 
According to Ottens et al. (2006), traditional systems engineering practice 
tend to view social elements as being purely contextual. Ottens et al. 
(2006) believe that social elements should also be considered as being 
integral to the system. It is therefore not sufficient to only describe the 
technical and actor elements of the AMDI, but it is also important to 
include the social elements as well, and to describe the mechanisms 
connecting these variables. This is because designing a system is more 
than simply assembling the elements (Auyang, 1999). With the inclusion 
of social elements, the variety of relations between the elements 
increases considerably. There has been little research into AMDIs and 
models which include the technological and social aspects of AMDIs and 
improve our understanding of asset management through IoT are 
missing. This leads us to our fourth research question which reads as 
follows: 

 

 

Modelling AMDIs and the influence of data governance on their 
development provides insight into how AMDIs evolve when IoT is 
introduced so that appropriate measure may be taken to ensure that 
AMDIs continue to serve the goals and objectives of the asset manager. 
A model of AMDIs is developed within the defined boundaries of the 

RESEARCH QUESTION 4: 
What does a model of an AMDI that accommodates IoT look like? 
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explanatory case studies. As will be discussed in Chapter 3, due in part to 
the real-time nature of the data, IoT can provide asset management 
organizations with many benefits such as improved forecasting, planning, 
reduction of costs, predictive maintenance and improved efficiency and 
effectiveness of reactions to events. However, these benefits are often 
difficult to realize as many organizations are not yet equipped to handle 
and interpret the data. We therefore investigate how IoT changes 
business processes and, as will be discussed in Chapter 2, the usability of 
the AMDI model. This leads us to our fifth research question which reads 
as follows: 

 

  

To summarize, the objective of this research is to develop a model 
of AMDIs that improves understanding of asset management through IoT. 
We begin the research by defining the typical characteristics of AMDIs. 
Building on the relationships within the AMDI as CAS, we investigate how 
AMDIs adapt and evolve as IoT is adopted within the AMDI, asking what 
the benefits and unexpected risks of asset management through IoT may 
be from a duality of technology perspective. The requirements gathered 
whilst answering these questions lead us to understand that coordination 
of developments in the AMDI should take place within the scope of data 
governance, however, it is unclear what the principles of data governance 
in relation to IoT adoption are, which leads us to research question 3. 
Once we incorporate the principles of data governance in AMDIs into the 
AMDI model, we evaluate the usability of the model with test cases which 
occur outside of the parameters set by the exploratory case studies. 

1.7 Outline of the Dissertation 
Figure 1-7 below shows how the dissertation is structured. Chapter 2 of 
the dissertation goes into detail as to how the research was conducted, 
what methods were followed and what the underlying research philosophy 
is. Chapter 2 discusses the research philosophy and strategy and 
introduces the main artefact that is created by this research. An important 
section of Chapter 2 deals with the research methods followed, including 
the methods followed in the literature review and briefly introduces the 
various cases under study in this research. 

RESEARCH QUESTION 5:  
How does the AMDI model improve understanding of asset 
management through IoT? 
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Figure 1-7: Outline of the dissertation 

Chapter 3 sets the base of knowledge on which this research 
further builds by performing a systematic review of literature surrounding 
IoT adoption in AMDIs. Chapter 4 presents a discussion of the results of 
the exploratory case studies. The results of the literature review and the 
exploratory cases form the body of knowledge required to build the model 
of AMDIs for improving understanding of asset management through IoT, 
the design of which is described in Chapter 5. Chapter 6 presents a 
description of the model and Chapter 7 presents an evaluation of the 
model based on a discussion of the results of the test case studies used 
to evaluate the model. Chapter 8 presents conclusions to be drawn over 
the research, reflects on the applicability of the model and makes 
suggestions for further research.
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Chapter 2 Research Design 
 

“The fault, dear Brutus, is not in our stars,  
But in ourselves, that we are underlings.” 

- William Shakespeare (Julius Caesar, Act I, Scene II) 

 

2.1 Introduction 
In Chapter 1 we introduced the problem and defined a framework of 
research questions which guide us in achieving our objective of developing 
a model of AMDIs that improves understanding of asset management 
through IoT. We discussed the dual nature of asset management through 
IoT and we discussed the necessity of viewing AMDIs as CAS. In this 
Chapter we describe our chosen approach to answering the research 
questions and we describe our approach to designing a model of AMDIs.  

The accommodation of IoT in AMDIs can be seen as a “wicked” or 
ill-structured problem (Checkland, 1981; Simon, 1973) as, while AMDIs 
can appear durable for a time, they are constantly evolving and adapting 
to changing social needs. Furthermore, simply implementing IoT in asset 
management does not necessarily lead to its acceptance by asset 
managers (Can Duzgun, 2017; Spiegeler, 2017). Ill-structured problems 
have various problem components such as varying stakeholders and 
organizational, technological, and content components. In addition, the 
“solution” may often lie in different places such as business rules, network 
structures or technologies, and different solutions may also be required 
at different times. For example, infrastructures appear stable only when 
oppositional tendencies are brought into proximity through reflection or 
interaction (Ford & Backoff, 1988; Tilson, Lyytinen, & Sorensen, 2010). 
This requires involving a variety of contradictory elements, and there is 
often a temptation to simplify the truth which may conceal complex 
interrelationships. To avoid this temptation, it is necessary to follow a 
disciplined strategy and to be guided by a defined research philosophy. In 
the following section, section 2.2, we discuss our research philosophy and 
the approach used in this research. In section 2.3 we discuss the literature 
review methodology and in section 2.4 we discuss the case study 
methodology. Section 2.5 summarizes the chapter. 
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2.2 Research Philosophy and Approach 
This research has been conducted from a constructivist perspective which 
advocates that knowledge is constructed in the mind of the learner 
(Bodner, 1986). In other words, learners construct understanding and 
look for meaning, trying to find regularity and order in the events of the 
world even in the absence of complete information (Watzlawick, 1980). 
The reason for choosing the constructivist philosophy is because IoT 
technology is relatively new, and IoT has not yet been widely adopted by 
asset management organizations. As such, all cases of asset management 
through IoT have included an adoption period wherein the adopting 
organization has been forced by means of trial and error to learn the best-
fit methods. Furthermore, this research also follows the design science 
paradigm in which the researcher takes an active part in the investigation 
by creating an artefact which itself may influence the research 
environment. During the design phase of the research, the researcher is 
forced to construct understanding and look for meaning in the cases, often 
in the absence of complete information. As such, we argue that the 
constructivist perspective is valid as not only are asset managers 
themselves forced by the disrupting technology of IoT which is in constant 
development to actively develop and learn from the world around them in 
order to be able to achieve their goals, but the design paradigm of the 
research also requires the researcher to construct knowledge. 

To avoid simplifying complex interrelationships within AMDIs, we 
were forced to seek a good enough solution based on maintaining 
equilibrium around acceptable conditions. Simon (1996) refers to this 
search for solutions as “satisficing”, settling for choices that satisfy the 
problem definition at a certain point in time. It is therefore important that 
problem-solving processes be implemented so that the best possible 
solution is achieved within pre-established limits. With this in mind, 
information infrastructures researchers have increasingly adopted the 
design science research approach to understand and solve ill-structured 
problems within the information systems research domain (Hevner & 
Chatterjee, 2010). Utilizing design science within this research provided 
us with a scientific research framework for structuring the AMDI by 
investigation, proscribing a “satisficing” solution and evaluating this 
solution.  

Design science focuses on rigorously building and examining 
artefacts that serve human purposes (March & Smith, 1995). Building and 
assessing artefacts is the core of design science (Hevner, March, Park, & 
Ram, 2004; Orlikowski & Iacono, 2001). Design science is technology-
oriented and artefacts are assessed against criteria of utility and value 
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(March & Smith, 1995). An artefact is something that is “artificial”, or in 
other words, constructed by humans, as opposed to occurring naturally 
(Simon, 1996). Nevertheless, for the purposes of design science, the 
artefact must have some purpose. Utility is important in that the artefact 
must be designed to solve a specific problem and in this manner, advance 
knowledge. This requires building knowledge about the environment 
within which the artefact is being used as fulfilment of a purpose or 
adaptation to a goal involves a relation between the purpose, the 
character of the artefact and the environment in which the artefact 
performs (Simon, 1996).  

The problem this research is attempting to “satisfice” is improving 
the understanding of asset management through IoT. The artefact 
created in the research is the model of AMDIs. We therefore define our 
design objective as follows: 
 

 

The model of the AMDI satisfices the problem by describing how 
AMDIs can accommodate IoT, improving understanding of asset 
management though IoT and providing insights for asset managers into 
the expected benefits and related risks of asset management through IoT. 
We follow the framework of (Hevner et al., 2004) who have articulated a 
research framework centered on designing and building innovative IT 
artefacts. This framework, illustrated in Figure 2-1 below, demonstrates 
that the environment, knowledge base and evaluation of the artefact 
surround and connect with the development of the artefact. 

Figure 2-1 shows there are three interdependent issues which are 
addressed by adhering to three research cycles. The three interdependent 
issues are: the environment, the design research (or the development of 
the artefact), and the knowledge base. The three cycles which connect 
these issues are: the relevance cycle, the design cycle, and the rigor cycle.  

The rigor cycle develops the research project by providing past 
knowledge to ensure its innovation (Hevner, 2007). Whilst the relevance 
cycle is more concerned with utility, the rigor cycle focusses on truth. It 
is the rigor cycle of design science that separates design science from 
design practice. According to Hevner (2007), research rigor in design 
science is achieved by the researcher’s selection and application of the 
appropriate theories and methods for constructing and evaluating the 

The design objective of this research is to develop a model of AMDIs 
which accommodates IoT. 
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artefact. This is embodied within the research in the form of the 
knowledge base. 

 

Figure 2-1: Design Science Research Cycles (Hevner, 2007) 

According to Simon (1996), design science research desires to 
improve the environment by introducing new and innovative artefacts and 
the processes for building these artefacts. The relevance cycle ensures 
utility of the artefact. Therefore, design science research often begins “by 
identifying and representing opportunities and problems in an actual 
application environment” (Hevner & Chatterjee, 2010 p. 17). In this 
research the rigor cycle is embodied by the definitions and drivers 
described in Chapter 1, the research design (Chapter2) and the literature 
review (Chapter 3). The literature review, together with the definitions 
and drivers builds the scientific platform on which this research is based 
and discusses the scientific state of the art, whilst the exploratory case 
studies explore the current experience and expertise of asset 
management organizations. 
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The relevance cycle provides the requirements as inputs, and 
defines the acceptance criteria for testing the results. It is therefore 
important within the relevance cycle to ensure familiarity of the 
environment within which the research takes place. The environment 
defines the problem space (Simon, 1996) and refers to people, 
organizations and their technologies and infrastructures. This research 
investigates the impact of IoT on asset management. The environment of 
asset management, the asset management organization, is an integral 
part of the AMDI. This means that we need to thoroughly describe the 
environment, the asset management organization, in order to place this 
research in context, define the scope of the research and identify the 
utility of the research as well as identify the acceptance criteria. As such, 
the relevance cycle is embodied in this research by the requirements 
gathered during the literature review (Chapter 3) and the exploratory case 
studies (Chapter 4). 

The central Design Cycle iterates between the building and testing 
the design artefacts. The artefact created by the research is a model of 
AMDIs that accommodates IoT. The model is described in Chapter 6 and 
is built based on the requirements gathered during the relevance cycle. 
The model is evaluated by means of test case studies in Chapter 7.  

2.3 Literature Review Methodology 
Following Webster & Watson (2002), the literature review was developed 
concept centrally. During the reading phase, we compiled a matrix of 
concepts into which the literature was grouped. According to Denyer & 
Tranfield (2009), the aim of analysis of literature is to break down 
individual studies into constituent parts. An important purpose behind this 
activity being to analyze consistency of interpretation and definitions 
(Webster & Watson, 2002). We therefore followed the recommendations 
of Wallace & Wray (2016), Kitchenham (2004) and Denyer & Tranfield 
(2009) and collated the literature according to a series of questions as 
listed below: 

• What are the general details of the study? 
• What type of study is this? 
• What are the broad aims of the study? 
• In which context was the study conducted? 
• What are the key findings? 

Context is important in a systematic review (Denyer & Tranfield, 2009) so 
we grouped the key concepts of AMDIs according to focus areas identified 
within the broad aims of the study. In the literature, theoretical precepts 
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are often discussed, but there are few systematic accounts of the adoption 
of IoT in AMDIs in practice or how these concepts emerge, or what the 
implication of adopting these concepts may be. Therefore, the second step 
was to conduct explorative case studies to gain a deeper understanding 
of the manifestation of AMDIs in a real world, public utility infrastructure, 
asset management through IoT setting.  

2.4 Case Study Research 
More and more, the attention of information systems researchers has 
been drawn to social issues associated with the development and use of 
technology (Darke, Shanks, & Broadbent, 1998). As previously discussed, 
AMDIs are highly complex due to the social nature of the phenomenon. 
The design of data infrastructures in asset management organizations is 
too complex to emulate in an artificial setting and to study using objective 
research instruments. The research therefore uses case study research 
which is a qualitative research method particularly suited to researching 
contemporary phenomena that cannot be separated from the 
environment they are embedded in (unlike laboratory experiments, for 
example) and that have not been scientifically studied to a large extent 
so far (Benbasat, Goldstein, & Mead, 1987; Yin, 2009). Case study 
research is a widely used qualitative research method in information 
systems research, and is well suited to understanding the interactions 
between information technology-related innovations and organizational 
contexts (Orlikowski & Baroudi, 1991).  

The research design follows the case study methodology proposed 
by Yin (2009). According to Yin (2009), the design of case study research 
includes: 

• the research questions 
• the unit of analysis 
• the propositions for research 
• the logic which links the data to the propositions 
• the criteria for interpreting the findings.  

It is not only generalization that presents challenges when adopting the 
case study methodology; the reliability aspect should also be taken into 
consideration. Reliability refers to the demonstration that the operation of 
a study, such as the data collection procedures, can be repeated with the 
same results (Yin, 2009). Yin (2009) recommends employing a well 
thought out research protocol to ensure reliability. According to Yin 
(2009), a case study protocol is a formal document which describes the 
set of procedures involved in the collection of data for a case study. The 
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protocol used in this research follows the advice from Yin (2009) and 
includes the problem statement, a delineation of the unit of analysis, the 
steps (including the altering of the steps) to be taken, the procedures for 
contacting key informants and making field work arrangements, 
reminders for implementing and enforcing the rules for protecting the 
privacy of human subjects, a detailed line of questions, and a preliminary 
outline for the final case study report. 

2.4.1 Answering the Research Questions 

The research necessarily seeks to answer the research questions as 
discussed and defined in Chapter 1. As such, we do not discuss these 
further in this section. However, we do wish to explain where and how the 
research answers the questions posed. Figure 2-2 below shows how the 
research was phased to include the three research cycles of Design 
Science. 
 

 

Figure 2-2: The phases and design science cycles of this research 

As depicted in Figure 2-2, the research followed 5 phases through 
the 3 design science cycles. Phase 1 made up the research design. Phase 
2 and 3 included the literature review and exploratory case studies 
respectively. Phases 2 and 3 were completed iteratively, as suggested by 
the Design Science paradigm, in the form of cycles in which the literature 
review and exploratory case studies completed the answers to Research 
Questions 1, 2, and 3. As such, the exploratory case studies are driven 
by Research Questions 1, 2, and 3 which serve to provide input for the 
requirements of the AMDI that enables IoT adoption. 

Answering the first three research questions provided us with the 
requirements needed to develop the design propositions and design 
principles which drive the AMDI model design which was created during 
Phase 4. The design and build of the AMDI model formed the answer to 
Research Question 4 which asks what an AMDI looks like. Research 
Question 5 asks if the developed AMDI model improves understanding of 
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asset management through IoT, and this question is answered in phase 5 
of the research which tests the model by means of explanatory test cases.  

2.4.2 Unit of Analysis and Case Selection 

The phenomenon under study is the development of AMDIs which 
accommodate IoT. AMDIs can occur at many levels and therefore it is 
important to define the unit of analysis of this research. There have been 
a good number of initiatives at international level, such as the 
Infrastructure for Spatial Information in the European Community 
(INSPIRE), at the national level, such as the National Spatial Data 
Infrastructure of the United States, and at the inter-organizational level, 
such as the Maritime Single Window initiative. However, despite these 
initiatives, little attention has been given to AMDIs within the participating 
organizations themselves. Data is created within organizations, mostly to 
fulfil the needs of the organization itself, not external users. AMDIs 
operating above the organizational level are forced to rely upon the 
goodwill of the participating organizations whereas AMDIs within the 
organization serve a distinct and definable purpose. Based on the research 
questions, we therefore define the unit of analysis as AMDIs within asset 
management organizations. 

Whilst the literature review provides us with a base of theoretical 
knowledge, it is important to gain a deeper understanding of the AMDIs 
in real-world cases in which the boundaries of the case are well defined 
(Yin, 2009). The next step in the design of the case study is therefore the 
choice of cases. Whilst single cases are recommended where the case 
represents a critical test of existing theory, or where the case is a unique 
event, or where the case serves a revelatory purpose, a limited number 
of case studies may be more successful with regards to theory formulation 
and testing (Yin, 2009). Using more than one case study provides us with 
the opportunity to build the theory irrespective of an organization, which 
improves the argument for generalization. The evidence from multiple 
cases is often considered more compelling and the research more robust 
(Herriott & Firestone, 1983). We therefore decided to employ multiple 
case studies for this research. Each case is selected so that it predicts 
similar results through literal replication. The cases selected in this 
research all have asset management as their primary process. Within this 
research, we initially assumed that there are more than one asset 
management organization and those organizations face similar 
challenges.  

Concerning the number of cases to be studied, we were necessarily 
limited by the constraints of time and budget, but a minimum number of 
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cases was considered crucial to ensure validity. Since the multiple-case 
studies approach does not rely on representative sampling logic, the 
typical criteria regarding sample size was deemed to be irrelevant (Yin, 
2009). Instead, sample size was determined by the number of cases 
required to reach saturation, that is, data collection until no significant 
new findings are revealed (Patton, 2002). The cases were selected to 
encompass instances in which IoT adoption in AMDIs are likely to be 
found. As such, we focused on organizations that are tasked with 
maintaining infrastructure which has major significance to Dutch society.  

A number of variables which may affect how asset management 
organizations adopt IoT in asset management were identified at the start 
of the research: 

• Culture 
• Organization type: Public or Private? 
• Organization type: is it an asset management organization? 
• Organizational size 
• Geographical coverage of the infrastructure network 
• Asset management domain 

According to Wisdom et al. (2014), as adopting organizations operate 
within their contexts and outside environments, socio-political factors can 
influence adoption of innovative technologies. Therefore, culture and 
organizational type were considered to be factors affecting asset 
management through IoT. Theoretical models of user behavior are not 
universally applicable because each country has its own unique cultural 
characteristics (Hsu, Tien, Lin, & Chang, 2015). Furthermore, Wisdom et 
al. (2014) believe that external policy and regulation may be positively 
associated with adoption of new technologies (e.g. Aarons, Hurlburt, & 
Horwitz, 2011). As such, we took steps to ensure internal validity by 
avoiding cultural and legal variations through investigating only not-for-
profit (government or semi-government) organizations in the 
Netherlands. 

The variables originate from the assumption that actions are 
needed at sectorial level. According to Trequattrini, Shams, Lardo, & 
Lombardi (2016), although regulations regarding the introduction and 
governance of the AMDI are important, self-regulation should also not be 
underestimated. With regards to defining the extent of the domain within 
which the results of the research remain valid, we determined that the 
cases should be taken from varying sub-domains within the asset 
management sector as well as from varying levels of geographic coverage 
of the infrastructure network being managed. We did this to ensure 
diversity and external validity through replication logic (Eisenhardt, 1989; 
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Yin, 2009), in which each case serves as a distinct experiment that stands 
on its own as an analytic unit. The sub-domains of the asset management 
sector were surface water management, ground water management, road 
management and electricity management. The levels selected were the 
national, regional and local levels respectively. Three organizations tasked 
with maintaining their nation’s infrastructure was determined to be the 
minimum required to achieve saturation. 

Any use of multiple-case designs should follow replication logic to 
guarantee external validity. For this reason, we defined the following 
criteria which were used to select the different cases defined in Table 2-1 
below: 
 

Table 2-1: Criteria used to define the case selection 

Number Criteria Reason for Criteria 

1. The case must occur within a distinct 
organization.  

Construct validity: Unit of 
Analysis is at the organizational 
level 

2. The primary processes of the 
organization must be focused on the 
management of significant 
infrastructure. 

Construct validity: Unit of 
Analysis is encompassed by the 
asset management domain 
dealing with significant 
infrastructure assets. 

3. The case environment should be “data-
rich”. This means that the organization 
should produce, manage and maintain 
at least 5 large datasets as well as a 
more than twenty small to medium data 
sets which support the asset 
management process. 

Construct validity: Unit of 
analysis is the AMDI and thus 
needs to be present within the 
organization. 

4. The AMDI must include at least one 
example of IoT adoption. 

Construct validity: Phenomena 
under study is the enablement 
of IoT adoption in AMDIs and 
thus IoT adoption needs to be 
present within the organization. 

5. The case should occur within The 
Netherlands. 

Internal validity: Literal 
replication to deal with possible 
confounding influences of 
culture. 

6. The organization should be of type 
government or semi-government 
(majority shareholders should be 
government). 

Internal validity: Literal 
replication to deal with possible 
confounding influences brought 
about by commercial interests. 
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Number Criteria Reason for Criteria 

7. Cases should occur at varying 
geographic coverage levels. 

External validity: Theoretical 
replication to define the domain 
to which the findings of the 
study can be generalized – are 
the results valid for all levels?  

8. Cases should occur in varying asset 
management domains. 

External validity: Theoretical 
replication to define the domain 
to which the findings of the 
study can be generalized – are 
the results valid throughout the 
asset management domain? 

9. The organization must be willing to 
cooperate with researchers and must be 
willing to provide access to the 
information required for the research. 

Reliability: The research must 
feasibly be carried out and 
should be repeatable. 

 

The initial case studies were of an exploratory nature, in other 
words, they aim at laying the foundation for pertinent hypotheses or 
propositions for further inquiry. The exploratory cases selected were all 
located in The Netherlands, within the context of asset management 
concerning infrastructure in the water management domain. The case that 
was chosen at the national level was the automatic measurement of 
hydrological data in Dutch Waters, “Landelijk Meetnet Water”, (LMW), a 
mission critical data infrastructure for the management of Dutch 
waterways. The case chosen at the regional level was the Decision 
Support System for Main Pumping Stations (BOS), a mission critical 
system for the management of main pumping stations at the Delfland 
Water Authority. The case chosen at the local level was the automatic 
monitoring of ground water levels in the Municipality of Rotterdam. 
Gauges have been placed in throughout the Rotterdam polders to 
constantly measure the groundwater levels. Table 2-2 below presents an 
overview of the cases chosen. 

 

Table 2-2: Explorative case overview 

Case 
Number 

Case Study 
Name 

Organization Level Organization 
Type 

Domain 

1. National 
Water 
Measurement 
Network 

Rijkswaterstaat National Central 
government 

Surface 
Water 
management 

2. BOS Water Authority 
Delfland 

Regional Regional 
government 

Surface 
Water 
management 
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Case 
Number 

Case Study 
Name 

Organization Level Organization 
Type 

Domain 

3. Ground Water 
Measurement 

Municipality of 
Rotterdam 

Local Local 
government 

Ground 
Water 
management 

 

We needed to be able to assess the model in environments other 
than those defined in the exploratory case criteria. In the first test case 
at the national level, we studied a use case within the same organization 
as the first exploratory case, however, in a different asset management 
domain. In this case, we wished to investigate whether the model 
remained valid for domains other than water management. Our first test 
case was the automatic measurement of the weight of vehicles over the 
Dutch National Highways, “Weigh-In-Motion” (WIM), occurring in the 
domain, road management. In our second and third test cases at the 
regional and local level, we also wished to investigate whether the model 
remained valid in organizations other than government organizations. We 
therefore chose uses cases within a utilities company, Stedin. Our second 
test case (case 5) is Smart Meters, a smart energy system test. The third 
test case (case 6) is that of Hoog Dalem, smart management of energy 
in a local setting. Table 2-3 shows an overview of the test cases chosen. 
 

Table 2-3: Overview of the Test Cases 

Case 
Number 

Case 
Study 
Name 

Organization Level Organization 
Type 

Domain 

4. Weigh-In-
Motion 

Rijkswaterstaat National Central 
government 

Road 
management 

5. Smart 
Meters 

Stedin Regional Regulated 
Industry 

Energy 
management 

6. Hoog 
Dalem 

Stedin Local Regulated 
Industry 

Energy 
management 

 

2.4.3 Developing the Propositions 

In exploratory cases, Yin (2009) concedes that no elaborated propositions 
can be specified beforehand (in contrast to descriptive and explanatory 
case studies). Nevertheless, Yin (2009) stipulates that case studies be 
purpose-oriented, in other words, that there has to be a preliminary 
conceptual framework guiding the exploration. This research uses Duality 
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of Technology (Orlikowski, 1992) and CAS as preliminary conceptual 
frameworks to guide the exploration, assuming that AMDIs are CAS and 
that management organizations initiate asset management through IoT 
in order to achieve expected benefits. Due to the limited amount of 
scientific knowledge regarding AMDIs, the initial case studies were of an 
exploratory nature, aimed at laying the foundation for propositions used 
to develop the AMDI model.  

The results of the literature review and exploratory case studies 
provided the requirements for the development of the design propositions 
in the following way. In answer to research question 1, duality of 
technology was used as a guiding framework to determine the perspective 
used to describe the AMDI. From this perspective, the exploratory cases 
were analyzed and stakeholder requirements which improve 
understanding of asset management through IoT were listed.  

Next, CAS theory was used as a guiding framework to determine 
the perspectives used to describe the functional elements and behavioral 
behaviors of the AMDI. From these perspectives, the exploratory cases 
were analyzed and requirements which deal with the elements and 
behaviors of the AMDIs were listed.  

Once the requirements of the AMDI model were known, design 
propositions were derived based on the need to improve understanding 
of asset management through IoT. The requirements and the design 
propositions formed the basis for the design principles which drive the 
design of the AMDI model and which are tested within the test case 
studies which are of an explanatory nature. 

2.4.4 The Logic Linking the Data to the Propositions 

Triangulation of uses of IoT in AMDIs found within the literature with those 
found in the cases was made by listing the uses of IoT found in literature 
and comparing these to the uses of IoT exposed in the interviews and 
internal documentation. Duality of technology (Orlikowski, 1992) was 
used to drive the initial views of the exploratory cases, directing the 
development of stakeholder requirements which focus on the use of IoT 
to improve asset management. There were several iterations throughout 
the research as the literature and cases introduced new uses of IoT in 
asset management. When researchers take an explorative approach, they 
start with a set of observations and then they move from those 
experiences to a more general set of propositions about those 
experiences. Therefore, due to the inherently explorative approach to the 
initial stage of the research, the “requirements” phase of the relevance 
cycle, we began by collecting data relevant to the impact of IoT on AMDIs. 
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Similarly to the development of requirements regarding uses of IoT 
in asset management, the characteristics of data infrastructures as CAS 
found in literature were listed and compared with the evidence of data 
infrastructure characteristics pertaining to IoT adoption found in the case 
study analysis. There were several iterations throughout the research as 
the literature and cases introduced new data infrastructure 
characteristics. Triangulation of characteristics of AMDIs found within the 
literature was made by listing AMDI characteristics found in internal 
documentation and comparing these to the AMDI characteristics exposed 
by the interviews.  

Once a substantial amount of data had been collected, we stepped 
back to get a bird’s eye view of the data. At that stage, we looked for 
patterns in the data, and iteratively began developing our theory to 
explain the patterns. We did this by listing the elements and behaviors of 
AMDIs according to the relevant asset management processes to get a 
sense of how AMDIs are affected by IoT adoption. In this way, we 
determined the requirements of an AMDI that improves understanding of 
asset management through IoT adoption.  

Following this process also allowed us to iteratively identify the 
functional elements of AMDIs and link them to the uses of IoT in asset 
management. Linking the functional elements of AMDIs to the uses of IoT 
in asset management led us to the development of the design 
propositions. 

The design propositions (together with the requirements) form the 
basis for the design principles of the AMDI model and are considered in 
this research to be the propositions driving the test case studies. 

Table 2-4 below summarizes the logic linking the data with the 
propositions associated with each research question. 

 

Table 2-4: The logic linking the data with the propositions associated with each research 
question 

Propositions Logic 

Propositions related to 
research question 1 

Triangulation of uses of IoT in AMDIs found within the 
literature with those found in the cases was made by 
listing the uses of IoT found in literature and comparing 
these to the uses of IoT exposed in the interviews and 
internal documentation. 
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Propositions Logic 

Propositions related to 
research question 2 

Triangulation of elements and behaviors of AMDIs found 
within the literature was made by listing AMDI 
characteristics found in internal documentation and 
comparing these to the AMDI characteristics exposed in 
the interviews. 
 

Propositions related to 
research question 3 

Triangulation of characteristics of data governance in 
AMDIs found within the literature was made by listing 
data governance characteristics found in internal 
documentation and comparing these to the data 
governance characteristics exposed in the interviews. 
 

Propositions related to 
research questions 4 and 5 

Pattern matching by listing the agents, data and 
technology of AMDIs according to the relevant asset 
management processes. 
Pattern matching by describing the environments of 
AMDIs and how they affect the development of the AMDI. 
Pattern matching by listing the data governance of AMDIs 
according to the relevant asset management processes. 
Pattern matching by listing the behaviors of AMDIs 
according to the relevant asset management processes. 

 

2.4.5 The Criteria for Interpreting the Findings 

In design science, it is important that a distinction is made between the 
empirical part and the design part of the research (March & Smith, 1995). 
According to March & Smith (1995), the design sciences are assumed to 
be able to add to, or replace, an existing part of reality. This means that 
although attention must be paid to the internal consistency of the 
research, “external validity” cannot be fully stated in advance of practical 
application. Instead, March & Smith (1995) believe that external validity 
may be achieved after implementation by assessing the design, the 
criteria being whether the implementation works according to pre-
established specifications, and whether there is an improvement in 
comparison to the previous situation. Also, this research follows the case 
study methodology as outlined by Yin (2009), and when doing case 
studies an important strategy for interpreting findings is to identify and 
address rival explanations. Addressing such rivals becomes a criterion for 
interpreting the findings. We therefore focus on three main tests in this 
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research. First, we examine the validity of the case studies for 
investigating the phenomena of asset management through IoT. Second, 
this research seeks to develop a model of AMDIs which improves 
understanding of asset management through IoT adoption and, as such, 
we also wish to test the usability of the model. Third, we test the design 
propositions. 

 
Test 1: 
The validity test of the case studies, test 1, is performed on all the case 
studies on the basis of the criteria for case selection outlined in section 
2.4.2 above. 

 
Test 2: 
Following (Bots & Sol, 1987), evaluation of the model through test case 
studies suffices to test the usability of the model. In this research we 
follow Rubin & Chisnell (2008, p. 4) and define usability as “the absence 
of frustration in using it”. In other words, “the user can do what he or she 
wants to in the way that he or she wants to do it, without hindrance, 
hesitation or questions” (Rubin & Chisnell, 2008, p.4). Rubin & Chisnell 
(2008) suggest that “usefulness”, “effectiveness”, “efficiency”, 
“learnability” and “satisfaction” are important criteria when evaluating a 
product. The criteria we have defined to determine the usability of the 
model for enhancing our understanding of asset management through IoT 
and improving communication of the system details between stakeholders 
follow the recommendations of Rubin & Chisnell (2008), and are defined 
in Table 2-5 below. 
 

Table 2-5: Criteria for testing the usability of the model. 

Number Criteria Reason for Criteria 

1. Each part of the model should be filled 
for the specific case. 

Construct validity:  
Effectiveness – all necessary parts 
of the AMDI should be present 
otherwise the model is 
overcomplicated. 

2. All parts of the AMDI for the specific 
case should fit into the model. 

Construct validity:  
Effectiveness - if parts of the 
infrastructure exist which do not 
logically fit into the model than 
the model is incomplete. 
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Number Criteria Reason for Criteria 

3. The user should be able to read and 
understand the entire model within the 
time limits of a two hour workshop. 

Internal validity: 
Efficiency - the user should be 
able to map out the system using 
the model in a reasonable amount 
of time. 

4. The user should be able to work with 
the model after a short explanation 
lasting no more than 15 minutes. 

Internal validity: 
Learnability - the user should be 
able to use the model easily with 
minimal time and effort needed to 
learn to use the model. 

5. The words used to describe the model 
by the user should be generally 
positive. 

Internal validity: 
Satisfaction - the user’s 
perceptions, feelings and opinions 
of the model should be positive. 

 

As the goal is to improve understanding of asset management 
through IoT, attention is given in the case studies to the asset 
management process before IoT adoption. Traditional asset management 
processes are described and compared with asset management processes 
after implementation. Therefore, with regards to our third test, the criteria 
for testing the design propositions rests on how IoT has changed asset 
management processes in the cases with regards to the following possible 
rival explanations which were identified during the design phase of the 
research: 

• Technical differences 
• Organizational differences 
• People differences 

Our model is intended to improve understanding of asset management 
through IoT. We therefore investigate what is required in order for asset 
management through IoT to be successful, describing the elements and 
behaviors of AMDIs and describing the schema of AMDIs (which is 
interpreted as data governance). These elements, behaviors and 
characteristics provide the input required to build the model of the AMDI 
which accommodates IoT. 
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Test 3: 
The aim is to develop a model of an AMDI which improves understanding 
of asset management through IoT. As such the criteria for interpreting 
the results of the test cases and determining the success of the model in 
improving understanding of asset management through IoT rests on an 
examination of the proofs of the design propositions as described in 
Chapter 5 and discussed in the test case study results (see Chapter 7) 
with regards to possible “craft” and “real-world” rivals as suggested by 
Yin (2009, p. 141). These criteria are outlined in detail in Chapter 7. 

2.5 Reflections on the Research Design 
We seek to improve understanding of asset management through IoT. 
The research aims to achieve this objective by describing a model of 
AMDIs which accommodates IoT adoption. The model is meant to enhance 
our understanding of asset management through IoT and facilitate 
communication between stakeholders. This research is conducted from a 
constructivist perspective as all cases of IoT adoption in asset 
management have included an adoption period wherein the adopting 
organization has been forced by means of trial and error to learn the best-
fit adoption methods. “Improving” means making something better, and 
so we also make the conscious choice of using the design science 
philosophy, with the goal of achieving a satisfactory result. Another 
principal choice is the use of case studies as the research method.  

The choices of philosophy, approach and methodology have 
inherent limitations which means that there are threats to the validity of 
the results as well as restrictions on statistical generalization which also 
means that we must rely on analytical generalization. To gain an overview 
of how IoT affects asset management, we need to identify the various 
characteristics of AMDIs. We conduct an extensive literature review and 
perform three explorative case studies utilizing a variety of instruments 
to collect primary and secondary data. The literature review and 
explorative cases provide the design requirements for building a model of 
an AMDI which accommodates IoT. We then evaluate the validity and 
generalizability of our model, whether our model improves understanding 
of asset management though IoT by means of explanatory test case 
studies. 

Constructivism is often criticized due to its tendency towards 
epistemological relativism (Liu & Matthews, 2005). To avoid giving a one-
sided, biased representation of this study’s findings and to deal with the 
criticisms on constructivist research, various measures are taken by the 
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researcher. First, different perspectives were examined. For instance, we 
not only focused our literature review on the identification of uses and 
benefits of IoT in asset management, but also on the risks that adoption 
of IoT brings to asset management. Furthermore, we interviewed people 
working in asset management from different levels of the organization, 
including the strategic, tactical and operational levels, and we employed 
multiple data gathering techniques. In order to counteract the impact of 
epistemological relativism, we included case studies from organizations 
working at different levels, namely national, regional and local, and from 
different domains, namely, water management, road management and 
energy management. Furthermore, the exploratory case studies were 
conducted over a period of 18 months which helped insure that the results 
depicted more than a “snapshot in time”.  

Second, the process that led from data gathering to findings and 
conclusions was made as transparent as possible, and various measures 
were taken to allow for future replication of the study so that further 
generalizations are made possible. For example, a case study protocol 
was developed for the elicitation of AMDI requirements in the exploratory 
case studies and for the testing of the model in the test cases. 
Furthermore, implementation guidelines were developed in order to 
provide asset managers in the test cases with concrete implementation 
methods of the model. In the interviews, both arguments for and against 
adoption of IoT were identified and described. We tried to reduce the 
researcher bias by involving multiple interviewers and including group 
workshops with external observers who had not been involved in the 
research before. 

In order to ensure representativeness, validity and generalization 
of results, this research employs a multiple case study approach with 
numerous sources of evidence through replication logic. Three exploratory 
case studies are explored over a period of two years to identify AMDI 
requirements. The cases were selected to reflect multiple levels of 
organizations within a physical asset management domain. Multiple data 
capture methods were utilized in order to effectuate triangulation of 
results and in all cases the researcher was given wide-ranging access to 
documentation and personnel. Three test cases are selected which occur 
in different asset management areas to those investigated in the 
exploratory cases.
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Chapter 3 Literature Review 
 
“He reads much; he is a great observer,  
and he looks quite through the deeds of men.” 

- William Shakespeare (Julius Caesar: Act-I, Scene-II) 
 

3.1  Introduction 
In Chapter 2 we described our approach to answering the research 
questions. The research questions guide us in confirming the dual nature 
of IoT and the necessity of viewing AMDIs as CAS so that we may be able 
to develop a model of AMDIs which improves understanding of asset 
management through IoT. In Chapter 3 we seek to develop a knowledge 
base of asset management through IoT on which we can build. This 
Chapter therefore takes the form of a systematic literature review.  

According to Webster & Watson (2002), a methodological review 
of past literature is important for any academic research, and they criticize 
the Information Systems (IS) field for having very few theories and 
outlets for quality literature review. A lack of proper literature reviews has 
hindered theoretical and conceptual progress in information systems 
research (Levy & Ellis, 2006; Webster & Watson, 2002). This literature 
review therefore follows the method proposed by Webster & Watson 
(2002) and Kitchenham (2004), as described in Chapter 2 and attempts 
to systematically analyze and synthesize literature and advance the 
knowledge base of AMDI research. Our research objective is to develop a 
model of AMDIs that improves understanding of asset management 
through IoT. We therefore need to understand how asset management 
can be affected by IoT adoption – what are the benefits, and what are the 
risks of asset management through IoT? There is only limited research on 
AMDIs, and models for improving understanding of asset management 
through IoT are missing. Therefore, we aim to improve understanding of 
asset management through IoT by describing a model of AMDIs which can 
accommodate IoT adoption. We also need to understand what the 
characteristics of AMDIs are, and how they may be modelled. This we 
need to do in order to be able to model the coordination of the various 
elements contributing to successful asset management through IoT 
through means of data governance. As such, the literature review also 
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serves to help us understand what data governance in an asset 
management setting entails.  

3.2 Methodology 
Asset managers are increasingly looking to adopt IoT to automate public 
utility infrastructure asset management processes and provide the data 
required for data-driven decision-making. But although more and more 
data is becoming available through IoT, not all organizations are equipped 
to handle this data. IoT data is collected, stored and analyzed within data 
infrastructures, but adoption of IoT in asset management is a difficult and 
complex process and expected benefits are often not achieved. Therefore, 
a main objective of this literature review is to learn and understand how 
IoT may affect asset management – what are the potential benefits and 
risks to asset management of IoT?  

3.2.1 Research Questions 

To achieve the expected benefits of IoT adoption in asset 
management, a pragmatic approach to the interaction of human and 
technology is required. The adoption of IoT technology in asset 
management is a product of human actions and these actions determine 
the actual benefits to be gained. This is the reason why duality of 
technology theory is important to this research. A systematic study to 
create an overview of expected and perceived benefits and risks of IoT 
adoption in asset management through review of literature is presented 
in the research. The results confirm the duality that the ongoing adoption 
of IoT in asset management produces unexpected social changes that lead 
to structural transformation within the asset management organization. 
As seen below in Figure 3-1, the literature review helps us, in part, to 
answer Research Question 1, which asks how IoT can improve asset 
management? 

Achieving expected benefits and avoiding unknown risks of asset 
management through IoT requires an awareness of the elements and 
behaviors of AMDIs and the ability to coordinate the changes and 
processes required. Therefore, a second objective of this literature review 
is to learn and understand what AMDIs are and how they behave. AMDIs 
represent information about physical reality. As reality changes, AMDIs 
might also be subject to change, but although physical infrastructures are 
often approached as CAS, the underlying AMDIs hardly are. Studying 
AMDIs as CASs has significant implications for our understanding of them 
and a CAS lens will help us to identify and better understand their key 
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elements and behaviors. As such, the literature review helps us, in part, 
to answer Research Question 2 which asks what are the elements and 
behaviors of AMDIs that enable asset management through IoT?  

 

 

Figure 3-1: The relationship of the literature review to the research questions 

This question helps us determine what the elements and behaviors 
of an AMDI are. Accepting AMDIs as CASs also means we need to 
understand the consequences for their development. One such 
consequence is that AMDIs, as CAS, are coordinated by schema. We 
identify the schema of AMDI as being embodied by data governance. 
Many asset management data management issues are often caused by a 
lack of data governance - the exercise of authority, control, and shared 
decision making over the management of AMDIs. Data governance 
provides organizations with the ability to ensure that data is managed 
appropriately, and that AMDIs can provide the right people with the right 
information at the right time. Despite its importance for coordinating data 
management, data governance has received scant attention by the 
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scientific community. Research has focused on data governance 
structures and there has been only limited attention given to the 
characteristics of data governance in an asset management setting. Using 
a CAS lens, this research derives a framework of data governance 
characteristics for the adoption of IoT in asset management. 
Characteristics provide insight into the goals of data governance, and 
viewing data governance through a CAS lens provides insight into how 
these goals may be achieved. As such, the literature review also helps us, 
in part, to answer Research Question 3 which asks what are the elements 
of data governance in AMDIs that enable asset management through IoT? 
This question helps us determine what the schema (data governance) of 
an AMDI, as CAS, entails. 

3.2.2 Search Process 

The search process entailed a digital search of the databases Scopus, Web 
of Science, IEEE explore, and JSTOR, using keywords relevant to the 
research question under discussion. The databases were selected because 
they include peer reviewed articles from a wide range of journals and 
conferences which accept academic papers related to information and 
data infrastructures in the asset management domain. The limited 
number of databases used may be a concern, as relevant papers may 
have been inadvertently omitted. We then performed a manual forwards 
and backwards search to identify relevant research that had not appeared 
in the initial searches until saturation was achieved. The final selection of 
papers was made using the following inclusion and exclusion criteria: 
 
Inclusion 
Peer-reviewed articles on the following topics, published between Jan 1st 
2000 and June 30th 2016, were included: 

• Use of IoT in AM: 
The keywords “infrastructure”, “IoT” or “Internet of Things”, 
“data”, and “use” returned 324 hits.  

• Benefits of IoT for AM: 
The keywords “infrastructure”, “IoT” or “Internet of Things”, and 
“benefits” returned 98 hits 

• Barriers preventing the implementation of IoT in AM: 
The keywords “infrastructure”, “Internet of Things” (or “IoT”), 
“impediments” or “barriers” or “risks” returned 67 hits. 

• Elements and behaviors of AMDIs as CAS 
The keywords “infrastructure”, “IoT” or “Internet of Things”, and 
“elements” or “characteristics” returned 76 hits. 
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• Elements of Data Governance 
The keywords “data governance” and “principles” returned 17 hits. 

 
Exclusion 
After the manual forward and backward search, articles were excluded 
based on whether or not they included a theoretical discussion on the use 
or implementation of IoT generated data in asset management decision-
making. 

3.2.3 Data Collection 

The data extracted from each study were: 
• The source (journal or conference) and full reference. 
• Main topic area. 
• Summary of the study including the main research questions and 

the answers. 
• Research question/issue. 

3.2.4 Outline of the Literature Review 

The reader should note that parts of this chapter have been published in: 
Brous, Janssen, Herder (2018), "Internet of Things adoption for 
reconfiguring decision-making processes in asset management", Business 
Process Management Journal, https://doi.org/10.1108/BPMJ-11-2017-
0328. Section 3.2 discusses the potential uses of IoT in AMDIs. Parts of 
this section were published in the proceedings of the 2nd International 
Conference on Internet of Things, Big Data and Security (Brous et al., 
2017). Sections 3.3 and 3.4 discuss the potential benefits and risks of IoT 
adoption in AMDIs respectively. Parts of these sections were published in 
the proceedings of the IFIP Conference on e-Business, e-Services and e-
Society, in the proceedings of the 14th IFIP Electronic Government 
(EGOV) and 7th Electronic Participation (ePart) Conference (Brous et al., 
2015b), and in the proceedings of the 15th International Conference on 
Electronic Business. Section 3.5 summarizes these benefits and risks. 
Section 3.6 discusses AMDIs as CAS. Parts of this section were published 
in the proceedings of Complex Adaptive Systems 2014 (Brous et al., 
2014), Complex Adaptive Systems 2015 (Brous et al. 2015c), and 
Complex Adaptive Systems 2016 (Brous et al., 2016a). Section 3.7 
discusses the role of data governance in AMDIs. Parts of this section were 
published in the proceedings of the 15th IFIP Electronic Government 
(EGOV) and 8th Electronic Participation (ePart) Conference (Brous et al., 
2016b). Section 3.8 summarizes the literature review. 

https://doi.org/10.1108/BPMJ-11-2017-0328
https://doi.org/10.1108/BPMJ-11-2017-0328
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3.3 Uses of IoT in Asset Management 
In this section we review and discuss literature with regards to how IoT is 
used in asset management as asked by research question 1a, “How can 
IoT be used in asset management?”. 

Infrastructure systems consist of many different types of assets 
that could have long life cycles. Infrastructure assets need to be 
maintained to ensure their optimal value over their entire (long) life cycles 
(Hassanain, Froese, & Vanier, 2003). Asset management helps asset 
management organizations realize value from infrastructure assets whilst 
balancing financial, environmental and social costs, risks, quality of 
service and performance related to assets (ISO 55000, 2014). As early as 
2001 there were already many software tools for asset management 
(Hassanain et al., 2003; Vanier, 2001), and since then many data 
formats, data sources and pools of unstructured data have become 
available over the years. At a high level, asset management tooling should 
at minimum provide the following functionality (Hassanain et al., 2003; 
Vanier, 2001): 

• Identification of assets  
• Identification of performance requirements  
• Assessment of asset performance  
• Plan maintenance  
• Manage maintenance operations  
• Life-cycle costing analysis  
• Life-cycle analysis and long-term service-life prediction 
• Central repository for asset information 

The explosive growth in data is due to a number of different enabling and 
driving technologies such as the widespread roll-out of fixed and mobile 
internet; the development of ubiquitous computing and the ability to 
access networks and computation in many environments (Kitchin, 2014).  
It is expected that IoT will be used in a variety of ways related both to the 
real-time measurement of the quality of assets and analyses of data as to 
trend analysis of historical data over time to reduce maintenance costs 
(Brous & Janssen, 2015b). The variety of using IoT enables further 
understanding of the conditions and factors for effective and sustainable 
adoption of new data sources. Following from that, we focus on the review 
of theoretical discussions in the relevant articles on the varied ways in 
which IoT is used. 

In asset management and information technology (IT) research, 
an accepted and suitable way to review literature is through the distinction 
of three levels: strategic/political, tactical and operational (Ackoff, 1971; 
Ivanov, 2010). In this research we differentiate these levels based on the 
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time frame the decisions associated with each level: strategic 3-5 years, 
tactical 1<3, and operational <1 years. This distinction is also recognized 
in asset management literature via the roles of asset owner, asset 
manager and service provider (Woodhouse, 1997; Volker et al. 2012; 
CROW, 2017). In correspondence to this distinction, Table 3-1 
summarizes the expected strategic, tactical and operational uses of IoT 
found in literature. The review reveals three expectations of IoT data. 
First, the literature expects that it will change performance measurement 
of infrastructure services, like applying statistical learning (Archetti, 
Giordani and Candelieri, 2015).  Second, IoT data is expected to change 
the perception of infrastructure services, like perceiving sudden changes 
in temperature by which a fire could be detected (Hentschel, Jacob, 
Singer, & Chalmers, 2016) and the deterioration of the quality of assets 
over time (Brous, Janssen, Schraven, Spiegeler, & Duzgun, 2017). Finally, 
IoT data is expected to change improvement processes, for example 
through self-organizing resource planning.  In the next sections, we 
discuss these uses of IoT.  

3.3.1 Expected Strategic Uses of IoT Data in Asset 

Management 

Decision support services include support for management at the tactical 
and strategic levels. IoT services are knowledge intensive and require 
collection of appropriate data contents, data analysis and reporting 
(Backman & Helaakoski, 2016). As such, statistical learning and network 
science is expected to play a critical role in converting data resources into 
actionable knowledge (Archetti et al., 2015). Due to increasing pressure 
on budgets and personnel as well as increased utilization of public utility 
infrastructure, public AM organizations increasingly need to intelligently 
manage their infrastructure with fewer resources (Rathore, Ahmad, Paul, 
& Thikshaja, 2016). By managing and analyzing various IoT data, it 
should be possible to create new services to achieve an efficient and 
sustainable infrastructure (Backman & Helaakoski, 2016; Hashi et al., 
2015). IoT may bring an improved understanding of complex processes 
which is expected to help improve the efficiency of transport management 
and infrastructure services, and help with effective reporting (Kothari et 
al., 2015). Rathore et al. (2016) believe that smart management of traffic 
systems with the provision of real-time information to the citizen based 
on the current traffic situation should enhance the management 
performance of public AM organizations. Furthermore, improved 
granularity of trend analysis resulting from IoT data may help public AM  
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Table 3-1: Overview of expected uses of IoT data found in literature 

Level IoT data expected 
to change 
performance 
measurement of 
infrastructure 
service 

IoT data expected to 
change perception of 
infrastructure 
service 

IoT data expected 
to change 
improvement 
processes of 
infrastructure 
service 

Strategic 
use of IoT 
data 

Decision support 
services (trend 
analysis) (Aono et al., 
2016) 
Reporting (Backman & 
Helaakoski, 2016; 
Kothari, Boddula, 
Ramaswamy, & 
Abolhassani, 2015) 

Communication of long 
term planning and 
strategic choices 
(Backman & 
Helaakoski, 2016) 
Improve perceived 
optimization of services 
(Sadeghi, Wachsmann, 
& Waidner, 2015)  

Encourage proactive 
processes (Aono et 
al., 2016) 
Encourage self-
organization (Sadeghi 
et al., 2015) 
Determine strategic 
changes to 
infrastructure 
(Backman & 
Helaakoski, 2016) 

Tactical 
use of IoT 
data 

Cost management 
(Aono et al., 2016; 
Archetti, Giordani, & 
Candelieri, 2015) 
Time management 
(Aono et al., 2016) 
Planning (Archetti et 
al., 2015) 
Post-events 
evaluations (Hashi et 
al., 2015; Tao, Ling, 
Guofeng, Hongyong, & 
Quanyi, 2014) 

Communication of 
short term planning 
and actions (Archetti et 
al., 2015) 
Improve perceived 
quality of services 
(Archetti et al., 2015) 
Public enactment (Tien 
et al., 2016)  

Enable directed 
procedures (Aono et 
al., 2016) 
Enable efficient 
recovery (Tien et al., 
2016) 
Control event 
occurrence (Parkinson 
& Bamford, 2016; 
Tao et al., 2014)  
Improve utilization of 
existing infrastructure 
(Hentschel et al., 
2016; Koo, Piratla, & 
Matthews, 2015) 

Operational 
use of IoT 
data 

Improve efficiency of 
monitoring (Ahlborn et 
al., 2010) 
Improve quality of 
monitoring (Hentschel 
et al., 2016; Phares, 
Washer, Rolander, 
Graybeal, & Moore, 
2004)  
Improve operational 
decision-making 
(Neisse et al., 2016) 
Improve productivity 
(Hentschel et al., 
2016) 

Communication of 
operational activities 
(Hentschel et al., 2016)  
Improve perceived 
quality of delivery 
(Ahlborn et al., 2010) 

Improve efficiency of 
operations (Zhang et 
al., 2015) 
Improve effectiveness 
of operations (Neisse 
et al., 2016) 
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organizations in being proactive with maintenance, reducing the chances 
of catastrophic failure (Aono et al., 2016). IoT may also be used to 
improve service optimization through self-organization (Sadeghi et al., 
2015). Self-organizing systems that optimize themselves with regard to 
resource availability and consumption may enable optimization according 
to usage and de-centralized long-term support (Sadeghi et al., 2015). 

3.3.2 Expected Tactical Uses of IoT Data in Asset 

Management 

IoT infrastructure could potentially be used to reduce costs in terms of 
time and money (Aono et al., 2016), as traditional methods of inspecting 
infrastructure, such as highway structures and bridges, for damage are 
often reactive in nature and require significant amounts of time and use 
of costly equipment. Aono et al. (2016) suggest that an infrastructure-
monitoring network could be used to quickly assess damage to 
infrastructure so that maintenance procedures could be directed to areas 
that need immediate attention. In this way, IoT may play a significant role 
in the channeling and transmission of data through efficient use of 
technology (Sakhardande, Hanagal, & Kulkarni, 2016). 

IoT is expected to be able to provide users with information on 
costs, time, environmental impact and perceived quality of services 
(Archetti et al., 2015). When IoT data becomes available regarding a 
particular hazard, there may be opportunities to control hazard 
occurrence and recover using these data sources (Parkinson & Bamford, 
2016; Tao et al., 2014) and trigger analysis with events that affect 
measurement, such as repair or maintenance (Hentschel et al., 2016; Koo 
et al., 2015). By specifying events (Hashi et al., 2015; Tao et al., 2014), 
it should be possible to obtain a set of data before and after an event to 
be used for analysis and evaluations, taking the effect of the event into 
consideration. It is also expected that IoT will improve the utilization of 
existing infrastructure (Hentschel et al., 2016; Koo et al., 2015). For 
example, Koo et al. (2015) suggest that an automated system condition 
monitoring based on IoT including leak detection can optimizing water 
supply, production, and water consumption.  

IoT may enable more effective and efficient AM planning according 
to variations in user preferences (Archetti et al., 2015) by providing 
decision support functionalities which identify and address criticalities in 
public utility infrastructure. Archetti et al. (2015) give the example that 
commuters may use socially aware and collective intelligence based on 
functionalities of IoT to make individually informed mobility decisions. 
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However, for this to be realized, the collected data must have significance 
for operations and services such as inventory, usage, environmental 
management, and events. Also, quality of the information must be 
considered with regards to multiple aspects and dimensions. IoT data 
should be “fit-for-use” (Backman & Helaakoski, 2016; Cao et al., 2016). 
For example, closures of bridges that are part of major transportation 
arteries tend to be major events. These events often result in “tweets” 
that point to the same incident (Tien et al., 2016), which if analyzed 
correctly may improve service efficiency and enable more effective 
recovery. 

3.3.3 Expected Operational Uses of IoT Data in Asset 

Management 

In order to keep infrastructure such as bridges safe and functioning, 
regular inspections to determine the condition of the asset are a necessity 
(Ahlborn et al., 2010; Neisse et al., 2016). For example, traditional 
inspections of bridges are usually visual assessments by trained personnel 
where all the asset’s component conditions are observed once every three 
to six years, and are summarized into one report (Phares et al., 2004). 
After the inspection is done, asset managers must decide what 
maintenance interventions are needed based on these inspection reports. 
However, as is shown by Kallen & van Noortwijk (2005), inspection 
reports of bridges can be biased by subjective judgements of the experts 
or by lack of information. This can eventually result in inaccurate 
statements which may lead to the failure to perform maintenance or 
unnecessary maintenance activities (Phares et al., 2004).  

IoT data may make it possible to remotely observe the condition 
of objects and thereby enhance the available information on the condition 
of public infrastructure (Ahlborn et al., 2010). IoT data is expected to 
allow users to monitor current environmental conditions affecting the 
asset. Event processing should be able to support individual, complex 
events if these events are defined by individual users for localized events 
(Hentschel et al., 2016). Examples given by Hentschel et al. (2016) are 
sudden increases in sound, light and temperature, which could indicate a 
fire or an explosion. Hentschel et al. (2016) expect that when an event is 
triggered alarms could be issued.  

Environmental factors such as temperature and air quality can 
have significant effects on productivity (Hentschel et al., 2016). Smart 
assets may be able to monitor status parameters, analyze this data and 
reach some conclusions, considering at the same time tensions such as 
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cost and efficiency with regards to environment preservation (Moreno et 
al., 2014). As such, IoT data is also expected to play a role in increasing 
public safety and security (Neisse et al., 2016) through, for example, 
active road safety, emergency vehicle warning or collision risk warning.  

IoT data is expected to be leveraged for increased efficiency in 
various public service applications such as inspection schedules, public 
facility management, urban infrastructure maintenance, intelligent 
transportation services, and emergency situation monitoring (Zhang et 
al., 2015). By enabling individuals and organizations to share real time 
data, IoT may enable appropriate data services to the consumers (Kothari 
et al., 2015). The expectation is that IoT will be used for key decision 
making in operational activities. It is expected that IoT will be used in a 
variety of ways related both to the real-time measurement and analysis 
of data as to trend analysis of historical data over time (Brous & Janssen, 
2015b). Following Ivanov (2010), we list the benefits and risks of IoT 
adoption in asset management according to strategic/political, tactical 
and operational divisions. In the following section, the expected benefits 
of IoT adoption are explored, followed by a discussion of the expected 
risks of IoT adoption. 

3.4 Expected Benefits of Asset Management Through 

IoT 
The main enabling factor for IoT adoption in AM is the combination and 
integration of several technologies such as identification and tracking 
technologies, sensor networks, communication protocols, (Atzori et al., 
2010), Radio Frequency Identification technology, Electronic Product Code 
technology, and ZigBee technology (Chen & Jin, 2012). Cameras and 
microphones can be used to collect evidence when there is a robbery or 
a riot and devices can measure the concentration of fine particles. As 
such, sensors can be used for enabling public safety and compliance to 
regulations for example. In this way it may provide a more effective 
control mechanism (Atzori et al., 2010; Chui, Löffler, & Roberts, 2010; 
Chen & Jin, 2012; Gubbi et al., 2013; Boulos & Al-Shorbaji, 2014).  

According to Boos et al. (2013), IoT applications generally allow 
automation of data capture, making manual data capture unnecessary. 
IoT results in a large amount of big data. Literature shows that this might 
have two important benefits for AM. Firstly, making data and information 
available to the public greatly improves organizational transparency 
(Castro, 2008a). Increased openness and transparency helps ensure 
proper oversight and reduces waste. Secondly, enabling consumer self-
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service in this way can empower citizens and business to take decisions 
through better access to information by making use of the vast amount 
of data collected by IoT and the collective wisdom of the crowds (Hounsell 
et al., 2009; Fleisch, 2010; Atzori et al., 2010; Chen & Jin, 2012; Gubbi 
et al., 2013; Boulos & Al-Shorbaji, 2014).  

Fleisch (2010) identifies seven value drivers for the IoT which 
result in potential business benefits: 1. The simplified manual proximity 
trigger increases job satisfaction, empowers the public by enabling 
consumer self-service, reduces labor costs and improves data quality (Bi, 
Da Xu, & Wang, 2014); 2. The automatic proximity trigger reduces fraud 
related costs, process failure costs, and labor costs; 3. the automatic 
sensors trigger helps improve service quality by providing individual and 
prompt process control, increasing process efficiency and effectiveness; 
4. Automatic product security reduces cost of process failure due to fraud, 
reduces the cost of process security and helps increase consumer trust; 
5. Simple, direct user feedback improves service efficiency and 
effectiveness by helping processes become more accurate, more flexible, 
and faster; 6. extensive user feedback improves trust by enabling new 
forms of public contact, providing new communication opportunities and 
supporting additional service revenues; 7. mind changing feedback allows 
for the identification of trends, and enables new services (Fleisch, 2010). 

Chui et al. (2010) define two broad categories for IoT applications, 
“Information and Analysis” and “Automation and Control”. In Information 
and Analysis, decision-making services are improved by receiving better 
and more up to date information from networked physical objects which 
allows for a more accurate analysis of the current status-quo with regards 
to tracking, situational awareness, and sensor-driven decision analytics. 
IoT technologies can cost effectively collect data about work processes 
without time consuming physical counts (Boos et al., 2013). In 
Automation and Control, outputs received from processed data and 
analysis are acted upon to improve efficiency, effectiveness and to enforce 
compliancy. 

Haller et al. (2009) draw on the work of Fleisch, Sarma, & Subirana 
(2006) and identify two major paradigms from which business value can 
be derived: real-world visibility, and business process decomposition. 
Sensors make it possible for a public organization to better know what is 
happening in the real world. In business process decomposition, the 
decomposition and decentralization of existing processes increases 
service flexibility and service effectiveness, allows better decision making 
and can lead to new revenue streams (Bi et al., 2014; Haller et al., 2009). 
Eventually, the capability of IoT to inform and automate can subsequently 
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lead to a transformation of existing business processes (Boos et al., 
2013). 

The benefits of IoT technologies for AM are primarily derived from 
the availability of more granular information which is automatically 
collected and readily shareable soon after it is generated (Harrison, 2011; 
Vesyropoulos & Georgiadis, 2013). This provides better analysis of track 
and trace information, and helps balance supply and demand (Harrison, 
2011). According to Lytras, Mathkour, Abdalla, Yáñez-Márquez, & De 
Pablos (2014), the capacity of any object to be considered as a peer of 
fully operational data, and as a potential receiver and transmitter of 
critical information is critical for the realization of more advanced business 
scenarios. Figure 3-2 below summarizes the potential benefits of IoT for 
asset management. 

 

 

Figure 3-2: Possible benefits of IoT for asset management  

In short, IoT can deliver a variety of benefits related both to the 
real-time measurement and analyses of sensor data efficiency of services, 
improved effectiveness of services, and improved flexibility of services as 
to trend analysis of historical data over time.  

3.5 Expected Risks of Asset Management Through IoT 
Organizations are increasingly turning to IoT as new sources of data, 
derived from continuously monitoring a wide range of things within a 
variety of situations, becomes available. However, there are several 
technological and regulatory challenges that need to be addressed. Scarfo 
(2014) believe that the most important of them are related to data 
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ownership, security, privacy and sharing of information. Disclosure of user 
data could reveal sensitive information such as personal habits or personal 
financial information. Unauthorized access to this information can 
severely impact user privacy (Hummen, Henze, Catrein, & Wehrle, 2012; 
Fan, Wang, Zhang, & Lin, 2014; Skarmeta, Hernandez-Ramos, & Moreno, 
2014). Data produced by IoT devices can be combined, processed and 
analyzed, creating additional insights, so it is important to allow access to 
data generated by other IoT devices, whilst preventing the unauthorized 
access and misuse of this information (Skarmeta et al., 2014). However, 
as the IoT becomes more widespread, new security issues become evident 
(Ortiz, Lazaro, Uriarte, & Carnerero, 2013). Whilst these technologies 
have been widely investigated for traditional technologies such as 
relational databases, so far there are no convincing solutions for providing 
fine-grained access control. This hinders the uptake of IoT in applications 
dealing with sensitive data (Hummen et al., 2012; Fan et al., 2014; 
Harris, Wang, & Wang, 2015).  

A lack of policies and regulations regarding IoT can also greatly 
impede the implementation and application of IoT in AM. Organizations 
need to develop policy and regulations and position themselves carefully 
within this arena (Stephan et al., 2013; Yazici, 2014; Harris et al., 2015). 
In this regard, organizations should consider the role they play in enabling 
IoT development. Market forces of supply and demand can play 
substantial roles in the success or failure of IoT (Wiechert, Thiesse, 
Michahelles, Schmitt, & Fleisch, 2007; Misuraca, 2009; Qiao & Wang, 
2012; Fan et al., 2014). The internal mechanism of explosive growth is 
that the whole networking industry chain achieves linkage development 
between supply and demand (Qiao & Wang, 2012), but there is a danger 
that AM may miss this linkage development due the chain of IoT industry 
being blocked by a tactical risks such as a lack of technology 
breakthroughs, standards bottlenecks and cost risks (Qiao & Wang, 
2012). 

According to Zeng, Guo, & Cheng (2011) home appliances, for 
example, are usually directly integrated whilst RFIDs are indirectly 
integrated through a RFID reader with an embedded server. It is not 
uncommon for a system to utilize both methods. However, IoT adoption 
for asset management purposes often requires that many devices be 
integrated with the existing Internet. These devices can be technologically 
highly diverse, presenting interoperability challenges. The heterogeneity 
at the device level is, in this way, a serious impediment to IoT adoption 
in AM (Zeng et al., 2011). This is especially complex as consumers of data 
are also heterogeneous. Furthermore, different applications might 
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implement disparate data processing or filtering. Zeng et al. (2011) 
believe that it is these heterogeneity traits of the overall system that make 
the design of a unifying framework and the communication protocols a 
very challenging task, especially with devices with different levels of 
capabilities. This is underlined by Qian & Che (2012) as they determine 
that searching in IoT requires a methodology of architecture design of 
search engines as designing an appropriate search engine for IoT is non-
trivial.  

According to a number of researchers, the success of user-centric 
services based on IoT technology depends greatly on the willingness of 
people to share their information (Fan et al., 2014; Kranenburg et al., 
2014; Nam & Pardo, 2014; Zeng et al., 2011). Kranenburg et al. (2014) 
believe that this willingness is predominantly dependent on the perception 
of people: the perceived trust and confidence in IoT and the perceived 
value that the IoT generates for them. The greater the trust of users in 
the IoT, the greater their confidence in the system and the more willing 
they will be to participate. A lack of trust in the system can be a strong 
impediment to the effectiveness of IoT in AM. 

Operational risks include human capital issues such as difficulty in 
employing qualified personnel, lack of specialists, and personnel skill 
shortage to operate new applications (Speed & Shingleton, 2012; Yazici, 
2014), as well as insufficient IoT oriented training and educational 
activities (Harris et al., 2015). There is also a reluctance to change or to 
learn new technology as a barrier (Pedro M. Reyes & Patrick Jaska, 2007; 
Speed & Shingleton, 2012; Reyes, Li, & Visich, 2012; Yazici, 2014). Reyes 
et al. (2012) includes calculating the return on investment and the 
payback period in this category. Many researchers also cite high 
development and implementation costs as an important impediment to 
the implementation and application of IoT in AM (Qiao & Wang, 2012; Fan 
et al., 2014; Nam & Pardo, 2014; Yazici, 2014; Harris et al., 2015). A fully 
functional IoT system based on RFID technology can be substantial. By 
way of example, Yazici (2014) quotes Wal-Mart’s vendors as having spent 
US$1 to US$3 million on a RFID implementation. 

Operational risks also include technical issues such as limitations 
in information technology (IT) infrastructural capabilities (Wiechert et al., 
2007; Prasad et al., 2011; Zeng et al., 2011; Hummen et al., 2012; Fan 
et al., 2014; Kranenburg et al., 2014; Scarfo, 2014; Yazici, 2014), and 
data management (Blackstock & Lea, 2012; Gilman & Nordtvedt, 2014; 
Stephan et al., 2013). According to Scarfo (2014), the main technological 
challenges include architecture, energy efficiency, security, protocols and 
quality of service. An important enabler for the IoT is to permit others to 



Literature Review 

70 
 

access and use the things that have been published publicly on the 
internet. It should be possible for users to make use of things that others 
have shared and to make use of things in their own applications, perhaps 
in ways unanticipated by the owner of the thing (Blackstock & Lea, 2012). 
This requirement means we need a sophisticated set of mechanisms to 
publish and share things and ways to find and access those things 
(Blackstock & Lea, 2012). Qian & Che (2012) also describe search locality, 
scalability and real-time processing as strong barriers to IoT 
implementation. According to Qian & Che (2012), existing searching 
techniques are based on remote information sharing and often fail to 
effectively support local search of physical objects. Figure 3-3 below 
summarizes the potential risks of asset management through IoT. 

 

 

Figure 3-3: Possible risks of IoT adoption in asset management organizations 

In short, asset management through IoT faces a variety of risks 
related to the proper use, such as privacy and security, for example, as 
well as proper management of the data collected by the vast number of 
interconnected things.  

3.6 Summary of Expected Benefits and Risks of Asset 

Management Through IoT 
Initial research on IoT adoption tended to focused on the potential 
benefits of IoT adoption, but more recent debates have increasingly 
stressed that IoT adoption may also introduce potential risks to the 
organization (Castelnovo, Misuraca, & Savoldelli, 2015; van Waart, 
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Mulder, & de Bont, 2015). Van Waart et al. (2015) go so far as to suggest 
that deploying IoT technologies to increase efficiency of public services 
such as public transportation, traffic management, or energy 
management does not necessarily lead to an increased well-being of 
citizens. By way of example, van Waart et al. (2015) cite Hollands' (2008) 
differentiation between cities that focus om IoT purely for economic 
prosperity and those that seek to become sustainable and inclusive. From 
an asset management perspective, Hollands (2008) argues that cities 
should pay close attention to societal needs, and not necessarily rely on 
IoT to automatically manage public assets without direction, as this 
requires new organizational structures in the use of information 
technology by businesses, government, communities, and the public. 
Table 3-2 below summarizes the potential benefits and risks of IoT 
adoption in relation to examples found in the literature as answer to 
Research Question 1. 

 

Table 3-2: Expected organizational benefits and potential risks of asset management 
through IoT 

Context Expected 
Benefits 

Literature 
Examples 

Potential Risks Literature 
Examples 

Strategic Improved 
forecasting and 
trend analysis 

(Chui et al., 2010; 
Harrison, 2011) 

Data privacy 
conflicts 

(Fan et al., 2014) 

 Promoting 
transparency 

(Gubbi et al., 
2013; Hounsell et 
al., 2009) 

Data security 
breaches, 
Lack of sufficient 
legal frameworks 

(Harris et al., 
2015; 
Kranenburg et 
al., 2014; Scarfo, 
2014; Stephan et 
al., 2013) 

 Citizen 
empowerment 

(Boulos & Al-
Shorbaji, 2014; 
Coetzee & 
Eksteen, 2011) 

Conflicting market 
forces 

(Misuraca, 2009; 
Qiao & Wang, 
2012) 

Tactical Improved 
planning with 
regards to 
management and 
maintenance 

(Hounsell et al., 
2009) 

Lack of 
acceptance of IoT  

(Gilman & 
Nordtvedt, 2014; 
Speed & 
Shingleton, 2012) 

 More efficient 
regulations 

(Hounsell et al., 
2009) 

Difficult 
interoperability 
and integration 
 

(Blackstock & 
Lea, 2012; 
Wiechert et al., 
2007) 
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Context Expected 
Benefits 

Literature 
Examples 

Potential Risks Literature 
Examples 

 More efficient 
enforcement of 
regulations 

(Chui et al., 2010; 
Gubbi et al., 2013) 

Lack of trust (Kranenburg et 
al., 2014; Zeng et 
al., 2011) 

 Reduction of 
costs, 

(Bi et al., 2014; 
Haller et al., 2009) 

High 
implementation 
costs 

(Nam & Pardo, 
2014; Qiao & 
Wang, 2012) 

 New revenue 
streams  

(Fleisch, 2010; 
Vesyropoulos & 
Georgiadis, 2013) 

  

Operational Improved 
efficiency of 
services 
 

(Boulos & Al-
Shorbaji, 2014; 
Hounsell et al., 
2009) 

Lack of sufficient 
knowledge 
regarding IoT  

(Speed & 
Shingleton, 2012; 
Yazici, 2014) 

 Improved 
effectiveness of 
services 
 

(Boulos & Al-
Shorbaji, 2014; 
Hounsell et al., 
2009) 

Data quality 
issues 

(Hummen et al., 
2012; Prasad et 
al., 2011; 
Stephan et al., 
2013)  

 Improved 
flexibility of 
services 

(Boulos & Al-
Shorbaji, 2014; 
Hounsell et al., 
2009) 

IT infrastructural 
limitations 

(Hummen et al., 
2012; Wiechert 
et al., 2007) 

 

The literature tends to emphasize the assumed benefits of IoT 
without providing empirical evidence. Furthermore, the risks were often 
risks that might occur during implementation, and little attention has been 
given to long term consequences of IoT adoption in organizations. These 
aspects need to be investigated and are dealt with in the exploratory case 
studies in Chapter 4. The expected benefits and potential risks of asset 
management through IoT provide insight into how IoT may change asset 
management. However, achieving these benefits and mitigating potential 
risk requires an understanding of the characteristics of AMDIs and how 
AMDIs may react to new technologies such as IoT. The following section, 
section 3.6 investigates the elements and behaviors of AMDIs, and 
discusses how AMDIs, as CAS, may be modelled. 

3.7 Elements and Behaviors of AMDIs 
AMDIs have been identified as CAS and their complex nature is the reason 
for the difficulties encountered in trying to understand and assess them 
(Grus et al., 2010). As such, modelling AMDIs is a complex undertaking. 
For example, it is difficult to attribute success or failure to one or more 
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concrete factors. In other words, because AMDIs are complex it is difficult 
to track cause-and-effect relationships. Traditional approaches to 
modelling behaviors of large systems through reductionism have often 
failed to analyze complex levels and fully describe behavior (Haghnevis & 
Askin, 2012). Reductionism is the study of behaviors of large systems by 
decomposing the system into components, and analyzing system 
behavior by aggregating component behaviors (Haghnevis & Askin, 
2012). Moreover, the dynamic and uncertain relations between the AMDI 
elements are hard to predict and control.  

All AMDIs have a unique character and behave differently. This 
makes it difficult to implement data infrastructures in different 
environments in the same way and with the same outcomes (Grus et al., 
2010). As such, Jennings (2001) argue that analyzing, designing, and 
implementing complex software systems as a collection of interacting, 
autonomous agents affords a number of significant advantages over 
traditional methods. For example, Jennings (2001) shows that agent-
oriented decompositions are an effective way of partitioning the problem 
space of a complex system, whilst the key abstractions of the agent-
oriented mindset are a natural means of modeling complex systems. 
Furthermore, Jennings (2001) argue that the agent-oriented philosophy 
for modeling and managing organizational relationships is appropriate for 
dealing with the dependencies and interactions that exist in complex 
systems.  

Viewing data infrastructures as CAS means that decision-makers 
may understand better the dependencies involved (Janssen & Kuk, 2006), 
acknowledging that exerting a hierarchical and tight control over complex 
systems spanning multiple levels is impossible. Instead, one must take 
into account the various typical characteristics of CAS (Herder et al., 
2008). 

CASs are often described as systems of interactive, mutually 
interdependent, individual elements which merge over time into coherent 
forms, adapting and organizing themselves without any singular entity 
deliberately managing or controlling them (Holland, 1992). CASs are 
dynamic systems which are able to adapt within and evolve with a 
changing environment (Chan, 2001). Schools of fish provide us with a 
good example of a CAS. Even when shoaling, individual fish continually 
adapt to changes in their environment by adapting the distance between 
themselves and predators. Individual fish follow simple rules and interact 
with others to form a cohesive and dynamic whole designed to combat 
the threat that the predator poses. In such cases, CASs can be used to 
explain how the system-level response is affected by individual action. As 
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such, Chan (2001) believes that change should be seen as a co-evolution 
of all the related elements within the system, rather than as being an 
adaptation to a separate environment.  

Despite the plethora of examples used by researchers to describe 
what a CAS is, there appears to be little agreement as to an exact 
definition and what the characteristics of a CAS should be. For example, 
Wallis (2008) deconstructs twenty versions of CAS theory related to the 
management science discipline and concludes that the variety of 
definitions is result of the situation of the definitions in different research 
fields. In this research our focus is on data infrastructures. We follow Grus 
et al. (2010), whose research field is spatial data infrastructures, and we 
use the definition given by Barnes et al. (2003, p. 276): CASs can be 
defined as, “open systems in which different elements interact 
dynamically to exchange information, self-organize and create many 
different feedback loops, relationships between causes and effects are 
nonlinear, and the systems as a whole have emergent properties that 
cannot be understood by reference to the component parts”. 

CAS elements are sets of system physicalities that together make 
CASs different from other systems. Similarly, CAS behaviors are the 
distinctive collection of functions and operations that make CAS behavior 
unique. Functional behavior being the behavior required to achieve a 
purpose and operational behavior being how the CAS achieves a purpose. 
Few researchers have made this distinction when defining CAS 
characteristics in the information systems domain, and there have been 
a number of calls for attention to this topic (Grus et al., 2010; Janssen & 
Kuk, 2006). The contribution of this research is to clarify the 
characteristics of CASs with regards to data infrastructures by cataloguing 
them according to their elements or behaviors. Table 3-3 and Table 3-4 
below show the findings of the review. 

 

Table 3-3: Elements of CAS theory by authors relevant to AMDIs 

Elements Literature 

Components (Grus et al., 2010; Haghnevis & Askin, 2012; Rupert, 
Rattrout, & Hassas, 2008; Sutherland & van den Heuvel, 
2002) 

Agents (Bollinger & Dijkema, 2012; Brown, Furneaux, & 
Gudmundsson, 2011; Cherinka, Miller, & Smith, 2005; Choi, 
Nazareth, & Jain, 2010; Furneaux, Brown, & Gudmundsson, 
2008; Khouja, Hadzikadic, Rajagopalan, & Tsay, 2008; Kim & 
Kaplan, 2006; Rupert, Rattrout, & Hassas, 2008; Sherif & 
Xing, 2006) 
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Elements Literature 

Schema (Choi, Nazareth, & Jain, 2010; Furneaux, Brown, & 
Gudmundsson, 2008; Grus et al., 2010; Janssen & Kuk, 
2006; Janssen, Chun, & Gil-Garcia, 2009; Khouja, 
Hadzikadic, Rajagopalan, & Tsay, 2008; Rupert, Rattrout, & 
Hassas, 2008; Sherif & Xing, 2006; Sutherland & van den 
Heuvel, 2002) 

Dynamic, rugged environments (Choi, Nazareth, & Jain, 2010; de Man, 2006; Kim & Kaplan, 
2006; Merali, 2006; Sherif & Xing, 2006) 

 

Table 3-4: Behaviors of CAS theory by authors relevant to AMDIs 

Behaviors Literature 

Dynamism (Cherinka, Miller, & Smith, 2005; Choi, Nazareth, & Jain, 
2010; Eoyang & Berkas, 1999; Grus et al., 2010; Hanseth & 
Lyytinen, 2010; Janssen & Kuk, 2006; Khouja, Hadzikadic, 
Rajagopalan, & Tsay, 2008; Kim & Kaplan, 2006; Merali, 
2006; Rupert, Rattrout, & Hassas, 2008; Sutherland & van 
den Heuvel, 2002) 

Connectivity (Choi, Nazareth, & Jain, 2010; Man, 2006; Eoyang & Berkas, 
1999; Haghnevis & Askin, 2012; Janssen & Kuk, 2006; 
Janssen, Chun; Khouja, Hadzikadic, Rajagopalan, & Tsay, 
2008; Kim & Kaplan, 2006; Merali, 2006; Rupert, Rattrout, & 
Hassas, 2008; Sherif & Xing, 2006; Sutherland & van den 
Heuvel, 2002) 

Adaptation (Bollinger & Dijkema, 2012; Brown, Furneaux, & 
Gudmundsson, 2011; Cherinka, Miller, & Smith, 2005; de 
Man, 2006; Furneaux, Brown, & Gudmundsson, 2008; Grus 
et al., 2010; Haghnevis & Askin, 2012; Janssen & Kuk, 2006; 
Janssen, Chun, & Gil-Garcia, 2008; Khouja, Hadzikadic, 
Rajagopalan, & Tsay, 2008; Kim & Kaplan, 2006; Merali, 
2006; Rupert, Rattrout, & Hassas, 2008; Sherif & Xing, 
2006; Sutherland & van den Heuvel, 2002) 

Emergence (Bollinger & Dijkema, 2012; Brown, Furneaux, & 
Gudmundsson, 2011; Cherinka, Miller, & Smith, 2005; 
Eoyang & Berkas, 1999; Furneaux, Brown, & Gudmundsson, 
2008; Hanseth & Lyytinen, 2010; Janssen & Kuk, 2006; 
Janssen, Chun, & Gil-Garcia, 2008; Khouja, Hadzikadic, 
Rajagopalan, & Tsay, 2008; Kim & Kaplan, 2006; Merali, 
2006; Rupert, Rattrout, & Hassas, 2008) 

 

3.7.1 Elements of AMDIs 

CASs consist of relatively stable and simple components (Grus et al., 
2010; Haghnevis & Askin, 2012; Rupert et al., 2008; Sutherland & van 
den Heuvel, 2002), building blocks which are the constituent parts of the 
system. The overall behavior of a CAS emerges from the activities of 
lower-level components. This emergence is the result of an organizing 
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force that can overcome a variety of changes to these components 
although, typically, a complex system will die when an essential 
component is removed (Miller & Page, 2009). Brous, Overtoom, Herder, 
Versluis, & Janssen (2014) have identified three essential components of 
data infrastructures, namely data, people and technology. Technology can 
also be further separated into hardware, the collection of physical 
components that constitute an information system, and software, that 
part of an information system that consists of computable instructions. 
People and, increasingly, technology are impacting the data infrastructure 
through agency. An agent is something or somebody that “can be viewed 
as perceiving its environment through sensors, and acting upon that 
environment through actuators” (Gong, 2012, p. 75). When people or 
things act (or react) to an environment, that environment can be changed 
in unexpected ways (Brous & Janssen, 2015a).  

Generally, actors perform activities according to a schema, or 
shared rules which are embodied by norms, values, beliefs, and 
assumptions (Choi, Dooley, & Rungtusanatham, 2001). But when internal 
or external actors act, the environment in which data infrastructures exist 
may change often and quickly, forcing the data infrastructure to evolve 
and adapt to these changes. Figure 3-4 below depicts the relationships 
between the elements of AMDIs. This section continues by further 
discussing each these elements of data infrastructures in brief. 
 

 

Figure 3-4: Relationships between elements of AMDI  
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Data has long been recognized as a core component of information 
systems and has been generally defined as the measure or description of 
objects or events (Checkland & Holwell, 1997; Kettinger & Li, 2010). The 
term “data” is often used in everyday terminology to refer to either raw 
data or to information (Khatri & Brown, 2010; Lin et al., 2007; Wende & 
Otto, 2007). In fact there is an important difference between the two 
(Kettinger & Li, 2010). As such, the scope of data infrastructures is 
difficult to define. The term, “data” is often distinguished from 
“information” by referring to data as raw data, and referring to 
information as data put in a context or data that has been processed 
(Huang et al., 1999; Price & Shanks, 2005).  

The inherent challenge with these definitions occurs when data and 
information is registered and digitalized. From an IS perspective, data, 
and information can both take digital forms and, in these forms, are often, 
in practice, collectively referred to as data. For example, in an IoT 
environment, sensors such as temperature gauges make observations or 
measurements about an object or its environment, which may be 
registered in a system and is often referred to as raw data. This data can 
also often be enriched with other descriptors which help identify an object 
or thing, or, the environment, infrastructure, system or network in which 
the sensors, object or thing can be found. An example of this would be a 
name given to a person or object. In practice, these identifiers are often 
referred to as “master data” (Otto, 2012; Vilminko-Heikkinen, Brous, & 
Pekkola, 2016). Data can also enter a data infrastructure as the 
description of an event, such as commercial credit card purchases, stock 
market trades, or HTTP requests to a web server. This type of data is 
often known as “transactional data” (Bester, 2016). 

But for information to be gained from all this data, context is 
required. This contextual data is gained from data which describes the 
data that is being created, often referred to as “metadata”. Often, 
metadata also provides data about the sensor itself or about the object or 
thing that is being sensed. Metadata is often defined as data about data 
(Bargmeyer & Gillman, 2000; Khatri & Brown, 2010). As such, we must 
also recognize that metadata is also data. According to Khatri & Brown 
(2010), metadata describes what the data is about and provides a 
mechanism for a concise and consistent description of the representation 
of data, thereby helping interpret the meaning or “semantics” of data. As 
such, metadata can also be stored and managed in a database, often 
called a registry or repository (Bargmeyer & Gillman, 2000).  Khatri & 
Brown (2010) describe different types of metadata as being physical, 
domain independent, domain-specific, and user metadata which play roles 
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in the discovery, retrieval, collation and analysis of data. According to 
Khatri & Brown (2010), physical metadata includes information about the 
physical storage of data; domain-independent metadata includes 
descriptions such as the creation or modification of data and the 
authorization, audit and lineage information related to the data; and user 
metadata includes annotations that users may associate with data items 
or collections.  

Information can be gained by combining data (from the 
registration of observations, measurements, decisions or transactions) 
with metadata (data which provides context). In practice, this information 
is often stored in within data stores such as data warehouses (Holmes et 
al., 2014) and visualized in the form of reports. The build-up of this 
information over time becomes knowledge which is also often stored 
digitally within knowledge management systems (Lin, 2014). The lines of 
responsibility may often become blurred as multiple users combine 
multiple data sources and data types to create multiple information 
products.  

Technology within data infrastructures is required to manage 
connected data resources. This technology must support the data 
management process (Thomas et al., 1994). The general problem of 
retrieval faced by data analysts is that a vast quantity of data is available, 
but the nature, quality, structure, type, and precise location are often not 
known (Nebert, 2004; Roberts et al., 2006; Thomas et al., 1994). 
Furthermore, development issues incurred by legacy and heterogeneous 
systems drive the need for interoperability.  According to Yue, Sun, Li, 
Rehman, & Yang (2015, p. 1298) the primary value of IoT is “the sharing 
of information between things and things or between people and things”. 
Yue et al. (2015, p.1299) summarize the basic characteristics of things as 
“comprehensive perception”, “reliable transmission” and “intelligent 
processing”. Comprehensive perception is described as including 
observations or measurements “by using perception, acquisition and 
measurement technology” (Yue et al., 2015, p.1299). Reliable 
transmission means ensuring that the objects have access to information 
networks and can realize reliable information interaction and sharing 
through communications networks. Intelligent processing is described as 
the analysis of sensor data by using a variety of intelligent computing 
technology, to “achieve intelligent decision-making and control” (Yue et 
al., 2015, p. 1299). As such, data infrastructures are increasingly being 
migrated to cloud solutions whereby service providers provide the hard 
and software necessary to manage the data resources (Vaquero, Rodero-
Merino, Caceres, & Lindner, 2008). According to Vaquero et al. (2008), 
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infrastructure providers manage a large set of computing resources, such 
as storing and processing capacity and are able to split, assign and 
dynamically resize these resources to build ad-hoc systems as demanded 
by customers. This is commonly known as the Infrastructure as a Service 
(IaaS) scenario (Mell & Grance, 2011). Cloud systems can also provide 
the software platform where systems run on. This is known as Platform 
as a Service (PaaS) (Mell & Grance, 2011; Vaquero et al., 2008). Finally, 
there are services which run applications.  An example of this is the online 
alternatives of typical office applications such as word processors. This 
scenario is often called Software as a Service (SaaS) (Mell & Grance, 
2011; Vaquero et al., 2008). 

In a CAS, multiple agents often interact with one another in large 
variety of ways. Agents are entities that have the ability to intervene 
meaningfully in the course of events (Choi et al., 2001). Data 
infrastructures include people as agents. People are seen as a key element 
in data infrastructures as people are responsible for the decision making, 
design, implementation, and use of the data infrastructure (Anderies, 
Janssen, & Ostrom, 2004; Grus et al., 2010; Rajabifard, Feeney, & 
Williamson, 2002). With regards to people, knowledge management is of 
utmost importance (Ure et al., 2009). Local knowledge is often central to 
the ongoing maintenance of data, particularly in the face of unanticipated 
and unpredictable changes in local context and practice (Ure et al., 2009) 
as people have a direct influence on the role of organizational culture 
within data infrastructures, and effective data infrastructures are 
developed and applied around commonly felt needs (de Man, 2006). 
Significantly, artificial intelligence is becoming more and more prevalent 
in service oriented environments, especially in the form of software 
commonly known as “bots’ (Gianvecchio, Xie, Wu, & Wang, 2011). As 
such, artificial intelligence and robotics as agents are beginning to play an 
important role in the development of data infrastructures as more and 
more infrastructure management processes become automated. Agents 
have varying degrees of connectivity with other agents, through which 
information and resources can flow. They possess schema that determine 
the states and rules of their behavior (Choi et al., 2001). 

Schema refers to shared rules which are embodied by norms, 
values, beliefs, and assumptions (Choi et al., 2001). That agents use rules 
to make decisions is reflected in the notion that agents have frames of 
reference or schemata by which they interpret and evaluate information 
(Furneaux et al., 2008). Roles and rules are agreements which help 
agents define meaning, as, according to Cherinka et al. (2005), CASs can 
have competing stakeholders and competing schemata. The agreements 
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that prove to be the most resilient are the ones that are ultimately 
accepted (Cherinka et al., 2005). The schema of AMDIs is embodied by 
data governance. According to Khatri & Brown (2010), data governance 
refers to what decisions must be made to ensure effective management 
and use of data (decision domains) and who makes the decisions (locus 
of accountability for decision making. For example, data governance 
includes establishing who in the organization holds decision rights for 
determining standards for data quality. Data Governance is discussed 
further in detail in section 3.7 below. 

An AMDI, as CAS, “both reacts to and creates the environment it 
is operating in” (Choi et al., 2001, p. 355). In this way, an AMDI is 
inseparable from its environment. A CAS and its environment interact and 
create new realities. The environment forces changes in the CAS, which 
in turn induces changes in the environment. Choi et al. (2001) explain 
this phenomenon with the example of a team. As team members come 
closer together, they become more removed from their environments. 
The fitness a system can attain in the environment may be represented 
by a “landscape” in which possible states are represented by hills or peaks 
(Choi et al., 2001; Sherif & Xing, 2006). The highest point in this 
landscape may be considered the optimal state for the system. When 
individual components contribute in different ways, the optimal state 
becomes difficult to find (Choi et al., 2001). A system is a set of 
interrelated elements (Ackoff, 1971), and most systems are nested within 
other systems and many systems are systems of smaller systems 
(Janssen & Kuk, 2006). A system of systems is a collection of task-
oriented systems that pool their resources and capabilities to create a 
new, more complex system which offers more functionality and 
performance than simply the sum of the constituent systems. While the 
individual systems constituting a system of systems can be very different 
and operate independently, their interactions typically expose and deliver 
important emergent properties (Gorod, Sauser, & Boardman, 2008).  

3.7.2 Behaviors of AMDIs  

CAS behavior emerges when many of its components interact. The whole 
of the system is different from the sum of its parts (Eoyang & Berkas, 
1999) which means that CASs cannot be sufficiently analyzed by looking 
at components separately. The greater the variety within the system, the 
stronger it is (Janssen & Kuk, 2006). For example, combining data 
between multiple systems can create greater insights than simple analysis 
on single systems. CASs rely on ambiguity, paradox and contradictions to 
create new possibilities. The diversity of skills and strategies of agents 
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within an AMDI ensures its dynamic adaptive behavior (Rupert et al., 
2008). For example, it is difficult for a single agent to evolve and become 
more useful in an isolated context (Sutherland & van den Heuvel, 2002). 
The relationships are complicated and massively entangled because the 
components are numerous and highly interrelated (Eoyang & Berkas, 
1999). Also, AMDIs, just as many CASs, are driven by many 
interdependent variables, and behavior is often influenced by a wide 
variety of factors. Variables are often nonlinear and discontinuous, often 
having a changing level of influence over time. Non-linearity is the 
property in which there is a disproportionate response to change (Khouja 
et al., 2008; Rupert et al., 2008). As such, AMDIs, as CASs, are dynamic. 
Change in an AMDI is driven by the number of agents, their own rules of 
behavior and the interdependence between the agents and their 
environments (Eoyang & Berkas, 1999; Rupert et al., 2008). According to 
Choi et al. (2001), a complex system will balance between order and 
disorder. This balance point allows the system to maintain order while 
also reacting to changes in the environment. Once an AMDI reaches the 
state of being good enough, it will trade off efficiency with greater 
effectiveness (Janssen & Kuk, 2006).  

Evolution is “a process of change and agility for the whole system” 
(Haghnevis & Askin, 2012, p. 520). In a CAS, agents are interconnected 
so that the behavior of an agent is influenced by the behavior of other 
agents in the system. As one agent evolves, so does the other (Haghnevis 
& Askin, 2012). This process is often referred to as “co-evolution” (Choi 
et al., 2001; Furneaux et al., 2008; Janssen et al., 2009). At a macro-
level, AMDIs exist within their own environments, and they are also part 
of that environment. As their environments change, AMDIs need to 
change to ensure a good fit with their environments. However, as they 
change they also enforce changes in their own environments in a 
continuous, reciprocal process of evolution (Janssen et al., 2009). 
Adaptation can be described as change to the system which is the result 
of experience (Holland, 1992). CASs are capable of adjusting to external 
influences (Cilliers, 2002; Grus et al., 2010; Rotmans & Loorbach, 2009) 
and an AMDI will change constantly because of the continuous 
interactions and interdependence between its agents and its environment 
(Rupert et al., 2008). 

Behavior in an AMDI is influenced by the simultaneous and parallel 
actions of agents within the system, causing behaviors to emerge. In 
other words, new structures, patterns, and properties arise without being 
externally imposed on the system (Choi et al., 2001; Hanseth & Lyytinen, 
2010; Janssen et al., 2009). In this regard, macroscopic properties of an 
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AMDI arise from the heterogeneity of its elements and its relevant 
properties (Merali, 2006). The system displays a set of properties that is 
distinct from those displayed by any subset of its elements.  

Aggregation is the behavior by which agents form groups that in 
turn can recombine to a higher level leading to the complex system 
(Rupert et al., 2008) - it is the basis for identity (Bollinger & Dijkema, 
2012; Brown et al., 2011; de Man, 2006). According to Sutherland & van 
den Heuvel (2002), there are two important modes of aggregation in 
AMDIs: (1) objects and (2) components. Forming components from 
objects and forming systems from components is higher-level 
aggregation. Meta-agents such as an enterprise, are formed of 
aggregates of lower agents such as systems which are formed of 
aggregates of components, which are formed of aggregates of objects 
(Sutherland & van den Heuvel, 2002). Cilliers (2002) defines self-
organization as a process whereby systems develop complex structures 
from simple beginnings under the influence of the external environment 
and the intrinsic “memory” of the system (Grus et al., 2010). Agents, 
learn and adapt to actions of other agents (Albino, Carbonara, & 
Giannoccaro, 2005) which results in the structure and dynamics of an 
AMDI (Furneaux et al., 2008). In an AMDI, there is often no centralized 
control mechanism, and order emerges as agents develop own rules as 
suggested by Rupert et al. (2008). Formal order is not externally imposed 
from outside of the AMDI, but rather emerges from interactions between 
agents (Stacey, 1995). In this regard, AMDI models are inherently multi-
level as the order is seen as an emergent property which results from 
lower levels of aggregate behavior as suggested by (Anderson, 1999).  

3.7.3 Conclusions 

This literature review provides a new insight into the characteristics of 
AMDIs as CAS. Key components of AMDIs are data, agents, technology. 
The schema, which we have been able to identify as data governance, 
defines the “rules of the game”, which defines how components interact. 
Part of this schema is how components of AMDIs can be coordinated. 
Coordination can be accomplished by mechanisms including self-
organization, coordination by feedback, coordination by plan (direct 
supervision; mutual adjustment; standardization) and contracting for 
allocation of resources. The environment(s) in which the AMDI finds itself 
also impacts how elements interact and how AMDIs develop. As such, we 
can see that AMDIs are dynamic. They evolve and adapt to changing 
environmental factors and requirements. Furthermore, the degree of 
complexity of AMDIs can result in a massive number of objectives and 
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constraints causing over-specification, which precludes a realistic design. 
Therefore, it is important to define and delineate the AMDI as best as 
possible in order to be able to develop a workable model. Essentially, the 
ambition of the AMDI model will be to map the AMDI into the various 
functions, objectives and constraints as suggested by (Weijnen et al., 
2008). 

3.8 Towards Elements of Data Governance in Asset 

Management 
As discussed in section 3.6, we identify data governance as embodying 
the schema of AMDIs. As such, data governance defines how the 
components of AMDIs (data, technology, agents) interact. But, as yet, 
little is known of data governance in asset management. Asset 
management organizations are facing increasing challenges to the 
management of their infrastructure assets (like banks, roads, and 
bridges), technological advances, political shifts, changing stakeholders, 
or economic fluctuations. Many asset management organizations 
routinely store large volumes of data in an attempt to find ways to 
improve efficiency and effectiveness of their AM processes through data-
driven decision-making (Brynjolfsson, Hitt, & Kim, 2011; Dimitris 
Bertsimas & Aurélie Thiele, 2006). However, many organizations find it 
difficult to manage their data. Thompson (2011) believe that these 
difficulties may often be attributed to the lack of data governance. 
Therefore we need to understand what data governance is and what 
design principles should be followed when designing AMDI models. In this 
way, this section helps us answer Research Question 3. 

Data governance specifies the framework for decision rights and 
accountabilities to encourage desirable behavior in the use of data (Khatri 
& Brown, 2010), ensures that data is aligned to the needs of the 
organization (Dawes, 2010), monitors and enforces compliancy to policy 
(Thompson et al., 2015), and ensures a common understanding of the 
data throughout the organization (Otto, 2011b). New sources of data, 
originating from sources such as social media and IoT, can provide new 
insights to help organizations face these challenges. But data must be of 
sufficient quality in order to be acted upon (Otto, 2013; Wende, 2007) 
and too much data can create “noise” which detracts van the quality of 
the information. A widely adopted definition of high quality data is data 
that is “fit-for-use” (Strong et al., 1997; Wende & Otto, 2007). Using the 
definition provided by Strong et al. (1997), the characteristics of high-
quality data have intrinsic, accessibility, contextual, and representational 
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aspects. This also means that usefulness and usability are important 
aspects of quality (Dawes, 2010; Strong et al., 1997). Having AMDIs 
which produce data of a quality that is aligned to the needs of the 
organization is therefore essential for asset management organizations 
which rely on data-driven decision-making processes (Al-Khouri, 2012).  

However, design principles for implementing and operationalizing 
data governance in asset management organizations are missing, and 
many organizations are struggling with the coordination of their data 
management activities. This section fills this gap by systematically 
investigating concepts related to asset management data governance and 
defines characteristics of data governance in asset management 
organizations.  According to Otto (2011c), data governance aims at 
maximizing the value of data assets in enterprises. When IoT data is 
governed in order to meet business needs, the value obtained by the 
organization is amplified and revenue is increased (Malik, 2013). For 
example, smart meters, capturing electric- and gas-usage data every few 
minutes benefits the consumer as well as the provider of energy. IoT 
allows utility companies to intelligently match supply with demand and 
offer consumers incentives to change usage patterns and behaviors. With 
active governance of IoT data, isolation of faults and quick fixing of issues 
can prevent systemic energy grid collapse (Malik, 2013). According to 
Otto (2011a), the main business goals of data governance are to ensure 
compliance, enable decision-making, improve customer satisfaction, 
increase operational efficiency, and support business integration. 
Improving operational efficiencies and reduction of direct and indirect 
costs is of interest to managers across industries (Tallon, 2013). Table 
3-5 below summarizes the main organizational goals of data governance. 
 

Table 3-5: Organizational goals of data governance 

Goal Literature Examples 

Increase revenue (Brous & Janssen, 2015b; D. Otto, 2011; Tallon, 
2013) 

Increase value (Malik, 2013; Otto, 2011a; D. Otto, 2011) 

Reduce cost (Brous & Janssen, 2015b; Malik, 2013; Tallon, 2013) 

Reduce complexity (Malik, 2013; D. Otto, 2011) 

Reduce risk (Malik, 2013; Otto, 2011a; D. Otto, 2011; Tallon, 
2013) 

Ensure compliance (Brous & Janssen, 2015b; Malik, 2013; Otto, 2011a) 

Enable decision-making (Brous & Janssen, 2015b; Otto, 2011a) 
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Goal Literature Examples 

Improve confidence (Brous & Janssen, 2015b; Otto, 2011a) 

Improve operational 
effectiveness 

(Brous & Janssen, 2015b; Otto, 2011a) 

Improve operational efficiency (Brous & Janssen, 2015b; Malik, 2013; Otto, 2011a) 

 

IoT can provide continuous data emitted by embedded 
environmental sensors, and the monitoring and analysis of this data can 
provide insights for infrastructure managers into possible operational 
improvements and reduction of waste (Malik, 2013). Malik (2013) also 
suggests that alternative goals of data governance of IoT data are to help 
manage complexity and support risk management and compliance efforts. 
According to Brous & Janssen (2015b), governing IoT data can also 
promote confidence and improve the effectiveness and flexibility of 
service provision. 

3.8.1 Concepts of Data Governance in Asset 

Management 

This research follows the method of principle derivation recommended by 
Bharosa & Janssen (2015). Data governance principles are a set of 
statements that describe the basic doctrines of data governance (Dyché, 
2007). This paper follows the definition of Bharosa & Janssen (2015, p. 
472) who define principles as “normative, reusable and directive 
guidelines, formulated towards taking action by the information system 
architects”. In their Architecture Framework (TOGAF), The Open Group 
lists five criteria that distinguish a good set of architecture principles: 
understandable, robust, complete, consistent and stable. Van Bommel, 
Hoppenbrouwers, Proper, & van der Weide (2006) believe that the 
underlying tenets should be quickly understood by individuals throughout 
the organization and according to Khatri & Brown (2010), principles 
should be supported by a rationale and a set of implications. A robust 
principle should enable good quality decisions to be made, and 
enforceable policies and standards to be created. According to The Open 
Group, architecture principles define the underlying general rules and 
guidelines for the use and deployment of resources and infrastructures 
across the enterprise. They should be consistent among the various 
elements of the enterprise, and form the basis for making future 
decisions, as opposed to requirements which are in natural conflict with 
all other requirements in their attempt to claim common resources (Gilb, 



Literature Review 

86 
 

1997). Principles should be designed to capture prescriptive and directive 
guidelines that can be used to design systems within the framework of 
requirements and constraints (Bharosa & Janssen, 2015). As such, 
principles may be used to define a framework for coordination of activities 
(Crowston, 1997).  

Following Bharosa & Janssen (2015), we started with identifying a 
long list of data governance dimensions in literature. The literature review 
follows the concept-centric methodology proposed by Webster & Watson 
(2002). As the review is concept-centric, the sources were grouped 
according to concept. Webster & Watson (2002) recommend the 
compilation of a concept matrix as each article is read. This concept-
matrix is depicted below in Table 3-6.  
 

Table 3-6: Long list of data governance key concepts 

Concept Literature 
examples 

 Concept Literature 
Examples 

Accountability  (Felici, Jaatun, 
Kosta, & 
Wainwright, 
2013; Kim et al., 
2014; Thompson 
et al., 2015) 
 

 Compliance  (Al-Khouri, 2012; 
Alofaysan, 
Alhaqbani, 
Alseghayyir, & 
Omar, 2014; 
Smallwood, 2014; 
Thompson et al., 
2015) 

Decision rights  
 

(Otto, 2011a; 
Smallwood, 2014; 
Thompson et al., 
2015; Wende & 
Otto, 2007) 

 Policy 
enforcement  
 

(Power & Trope, 
2006; Tallon, 
2013; Trope, 
Power, Polley, & 
Morley, 2007) 

Balanced roles  
 

(Al-Khouri, 2012; 
Hripcsak et al., 
2014; Smallwood, 
2014) 

 Due diligence  
 
 

(Bruening & 
Waterman, 2010; 
Hripcsak et al., 
2014; Smallwood, 
2014) 

Stewardship  (Dawes, 2010; 
Hripcsak et al., 
2014; Thompson 
et al., 2015) 

 Openness  
 

(Felici et al., 
2013; Kim et al., 
2014) 

Ownership  (Griffin, 2010; 
Thompson et al., 
2015; Tupper, 
2011) 
 

 Security  (Felici & Pearson, 
2015; Hripcsak et 
al., 2014; Kim et 
al., 2014) 
 

Separation of 
duties  

(Malik, 2013)  Measuring data 
quality  

(Hripcsak et al., 
2014; Khatri & 
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Concept Literature 
examples 

 Concept Literature 
Examples 

 Brown, 2010; Kim 
et al., 2014) 

Separation of 
concern  
 

(Malik, 2013)  Privacy  (Al-Khouri, 2012; 
Coleman, Hughes, 
& Perry, 2009; 
Felici et al., 2013) 

Improved 
coordination of 
decision making   

(Otto, 2011b; 
Smallwood, 2014; 
Tallon, 2013) 

 Shared data 
commons  
 

(Al-Khouri, 2012; 
Coleman et al., 
2009; Otto, 
2011b, 2013; 
Tallon, 2013) 

Meeting business 
needs  
 

(Alofaysan et al., 
2014; Dawes, 
2010) 

 Use of standards  
 

(Otto, 2011b; 
Thompson et al., 
2015) 

Aligning business 
and IT  
 

(Panian, 2010)  Metadata 
management  
 

(Khatri & Brown, 
2010; Otto, 
2011b) 

Developing data 
strategy  
 

(Khatri & Brown, 
2010; Malik, 
2013; Otto, 
2011b; Tallon, 
2013) 

 Standardized data 
models  
 

(Otto, 2011b; 
Thompson et al., 
2015) 

Defining data 
quality  

(Alofaysan et al., 
2014; Hripcsak et 
al., 2014; Kim et 
al., 2014) 

 Standardized 
operational 
processes  
 

(Otto, 2011b; 
Thompson et al., 
2015) 

Reducing error of 
use  
 

(Coleman et al., 
2009; Otto, 2013; 
Wende & Otto, 
2007) 

 Facilitates 
communication  

(Malik, 2013; 
Otto, 2011b; 
Tallon, 2013) 

Effective policies 
and procedures  

(Griffin, 2010; 
Hripcsak et al., 
2014; Smallwood, 
2014; Wende, 
2007) 

   

 

Following the recommendations of Bharosa & Janssen (2015) for 
principle generation, the long list of concepts seen in Table 3-6 was 
reduced to a short list as seen below in Table 3-7. The articles were 
categorized based on the types of variables examined, a scheme that 
helps to define the topic area.  
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Table 3-7: Concept matrix showing the elements of data governance in asset management 
in relation to goals and key concepts 

Elements of Data 
Governance 

Goals Key Concepts 

Organizational Capability Improve operational 
effectiveness 
Enable decision-making 

Decision rights 
Balanced Roles 
Stewardship 
Separation of duties and 
concern 
Improved coordination of 
decision making 

Alignment Increase revenue 
Increase value 
Reduce cost 

Meeting business needs 
Aligning business and IT 
Developing data strategy 
Defining data quality 
requirements 
Reducing error of use 
Effective policies and 
procedures 

Clarification Reduce complexity 
Improve operational 
efficiency 

Shared data commons 
Use of standards 
Metadata management 
Standardized data models 
Standardized operational 
processes 
Facilitates communication 

Compliance Reduce risk 
Ensure compliance 
Improve confidence 

Accountability 
Policy enforcement 
Due diligence 
Privacy 
Openness 
Security 
Data quality monitoring 

 

By focusing on the formal goals of data governance which we 
identified as independent variables, we could identify the dependent 
variables which we defined as the long list of concepts in Table 3-6. We 
grouped the long list of key concepts according to intervening variables 
which we identified as the short list of principles which appear in more 
complex causal relationships. As shown in Figure 3-5 below, four elements 
related to the goals of data governance were identified in the literature, 
namely: organizational capability, alignment, clarification and 
compliance.  
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Figure 3-5: Concepts of Data Governance in Asset Management 

The following sections discuss the short list of data governance 
principles as described in the literature from a coordination theory 
perspective. We begin the discussion with the concept, “Organizational 
capability”, as this is traditionally the approach taken by most researchers 
and practitioners. But it is insufficient to only describe roles and 
responsibilities, as many organizations remain unaware of the task and 
activities that need to be performed by these roles. Therefore we continue 
the discussion with the concept, “Alignment”, which describes how data 
governance should ensure that data meets the needs of the asset 
management organization. But there is often a tension between meeting 
the needs of the organization and ensuring compliance to laws and 
regulations. As such the third element we discuss is that of “Compliance”. 
Yet all of the above elements can only apply if the organization is aware 
of what they have and how the data landscape appears. As such, we 
conclude the discussion with the element, “Clarification”, as data 
governance should ensure that the organization has a common 
understanding of the data in its possession and a clear view of its data 
landscape. 

3.8.2 Organizational Capability 

Many researchers agree that data governance has an organizational 
dimension (Khatri & Brown, 2010; Otto, 2013; Wende & Otto, 2007). For 
example, Wende & Otto (2007) believe that data governance specifies the 
framework for decision rights and accountabilities to encourage desirable 
behavior in the use of data. The first organizational dimension of Otto 
(2013) relates to an organization’s goals. Formal goals measure an 
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organization’s performance and relate to maintaining or raising the value 
of a company’s data infrastructures (Otto, 2013). Functional goals refer 
to the tasks an organization has to fulfil and are represented by the 
decision rights defined such as the definition of data quality metrics, the 
specification of metadata, or the design of a data architecture and a data 
lifecycle (Weber, Otto, & Österle, 2009). Otto's (2013) second 
organizational dimension is the organizational form, such as the structure 
in which responsibilities are specified and assigned, and the process 
organization. Issues are addressed within corporate structures (Wende & 
Otto, 2007). The data governance model is comprised of roles, decision 
areas, main activities, and responsibilities (Wende & Otto, 2007). 
However, the organization of data governance should not be seen as a 
“one size fits all” approach (Wende & Otto, 2007). Decision-making bodies 
need to be identified for each organization, and data governance must be 
institutionalized through a formal organizational structure that fits with a 
specific organization (Malik, 2013). Decision rights indicate who arbitrates 
and who makes those decisions (Dyché, 2007). According to Dawes 
(2010), “stewardship” focuses on assuring accuracy, validity, security, 
management, and preservation of information holdings.  

In the past, organizations have generally tended to assign 
accountabilities for data mostly to IT departments (Wende & Otto, 2007). 
Organizations have thereby ignored critical organizational issues (Wende 
& Otto, 2007). Data governance is a complex undertaking and many data 
governance initiatives in public organizations have failed in the past. As 
such, the organization of data governance should not be a “one size fits 
all” approach and data governance must be institutionalized through a 
formal organizational structure that fits with a specific organization. Data 
governance should also ensure that data is aligned with the needs of the 
business. This includes ensuring that data meets the necessary quality 
requirements. Ensuring alignment can take the form of defining, 
monitoring and enforcing data policies (internal and external) throughout 
the organization. Establishing and enforcing policies regarding the 
management of data is important for an effective data governance 
practice. According to Dawes (2010), policies reflect societal choices 
about how data should be handled. Policies reflect strong values attached 
to data sources and content as well as access to and participation in the 
marketplace of ideas. By applying principles, an organization treats data 
as an object of policy, that is, data itself is the subject of policy making 
(Dawes, 2010). Policy provides broad general guidance and helps to 
regulate data processes. But governing data appropriately is only possible 
if it is properly understood what the data to be managed means, and why 
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it is important to the organization (Brous, Herder, & Janssen, 2016). The 
wide variety of data formats, protocols and data types drive the need for 
interoperability through standardization. Standards are “an agreed upon 
set of rules that are established by an authority” (Mathew, Ma, & 
Hargreaves, 2008, p. 3). Despite the plethora of standards, many 
researchers (Grus et al., 2010; Mathew et al., 2008; Rajabifard et al., 
2002) believe that they play an important role in data infrastructures. The 
endorsement of standards allows them to be widely implemented, 
improving interoperability and supporting the data process. Within the 
data management process, knowledge about work processes 
encompasses knowledge about the key processes within the data 
management process: collection of raw data, storage and maintenance of 
data, and user retrieval and manipulation of data (Ballou, Madnick, & 
Wang, 2003; Strong et al., 1997; Wang, Lee, Pipino, & Strong, 1998). 
Knowledge about work performance is knowledge about producing high-
quality data from data production processes. 

Otto's (2013) third organizational dimension consists of a 
transformation process on the one hand and organizational change 
measures on the other. As such, mutual adjustment and standardization 
become important organizational coordination mechanisms (Mintzberg, 
1993). Malik (2013) indicates the need to establish clear communications 
and patterns that would aid in handling policies for quick resolution of 
issues, and Thompson et al. (2015) show that coordination of decision 
making in data governance structures may be seen as a hierarchical 
arrangement in which superiors delegate and communicate their wishes 
to their subordinates, who in turn delegate their control. But Grus et al. 
(2010) believe that competition in the sector may force organizations to 
change their organizational models.  

3.8.3 Alignment 

Data governance should ensure that data meets the needs of the business 
(Panian, 2010). A data governance program must be able to demonstrate 
business value, or it may not get the executive sponsorship and funding 
it needs to move forward (Smallwood, 2014). Describing the business 
uses of data establishes the extent to which specific policies are 
appropriate for data management. According to Panian (2010), if used 
correctly, data can be a reusable infrastructure as data is a virtual 
representation of an organization's activities and transactions and its 
outcomes and results. Data governance should ensure that data is 
“useful” (Dawes, 2010). According to Dawes (2010), information should 
be helpful to its intended users, or should support the usefulness of other 
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disseminated information. However, while asset management 
organizations may want to achieve the goals of data governance in theory, 
they often have difficulty justifying the effort unless it has a practical, 
concrete impact on the business (Panian, 2010).  Data governance also 
provides the framework for addressing complex issues such as improving 
data quality or developing a single view of the customer at an enterprise 
level (Panian, 2010). Wende & Otto (2007) believe that a data quality 
strategy is therefore required to ensure that data management activities 
are in line with the overall business strategy. The strategy should include 
the strategic objectives which are pursued by data quality management 
and how it is aligned with the company’s strategic business goals and 
overall functional scope. Data quality is considered by many researchers 
to be an important metric for the performance of data governance (Khatri 
& Brown, 2010; Otto, 2011b; Wende & Otto, 2007).  

3.8.4 Compliance 

Data governance includes a clearly defined authority to create and enforce 
data policies and procedures (Wilbanks & Lehman, 2012). Panian (2010) 
states that establishing and enforcing policies and processes around the 
management data is the foundation of an effective data governance 
practice. Delineating the business uses of data, data principles establish 
the extent to which data is an enterprise wide infrastructure, and thus 
what specific policies are appropriate (Khatri & Brown, 2010). According 
to Malik (2013), determination of policies for governance is typically done 
in a collaborative manner with IT and business teams coming together to 
agree on a framework of policies which are applicable across the whole 
organization. Tallon (2013) regards data governance practices as having 
a social and, in some cases, legal responsibility to safeguard personal data 
through processes such as “privacy by design”, whilst Power & Trope 
(2006, p. 471) suggest that risks and threats to data and privacy require 
diligent attention from organizations to prevent “bad things happening to 
good companies and good personnel”. Mechanisms need to be established 
to ensure organizations are held accountable for these obligations through 
a combination of incentives and penalties (Al-Khouri, 2012) as, according 
to Felici et al. (2013), governance is the process by which accountability 
is implemented. In such a manner, accountability can unlock further 
potential by addressing relevant problems of data stewardship and data 
protection in emerging in data ecosystems. According to Winograd & 
Flores (1986), most human coordination occurs in a cycle of requesting, 
making and fulfilling commitments between people. John (1962) believes 
that most things that people say are not simply propositions of truth or 
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falsehood, but are attempts by the speaker to do something. The change 
in status through commitments and formations of new identities are often 
overlooked and we are often surprised by new social institutions and 
identities when they arise such as the working together of teams in which 
the components look the same as in previous friendships, but where new 
commitments implicitly rule. Changing commitments may have a 
significant impact on the interaction of elements within data 
infrastructures. 

3.8.5 Clarification 

According to Smith (2007), governing data appropriately is only possible 
if it is properly understood what the data to be managed means, and why 
it is important to the organization. Data understanding is essential to any 
application development, data warehousing or services-oriented-
architecture effort. Misunderstood data or incomplete data requirements 
can affect the successful outcome of any IT project (Smith, 2007). Smith 
(2007) believes that the best way to avoid problems created by 
misunderstanding the data, is to create an enterprise data model (EDM) 
and that creating and developing an EDM should be one of the basic 
activities of data governance. Attention to business areas and enterprise 
entities should be the responsibility of the appropriate data stewards who 
will have the entity-level knowledge necessary for development of the 
entities under their stewardship (Smith, 2007). To ensure that the data is 
interpretable, metadata should be standardized to provide the ability to 
effectively use and track information (Khatri & Brown, 2010). This is 
because the way an organization conducts business, and its data, changes 
as the environment for a business changes. As such, Khatri & Brown 
(2010) believe that there is a need to manage changes in metadata as 
well. Data governance principles should therefore reflect and preserve the 
value to society from the sharing and analysis of anonymized datasets as 
a collective resource (Al-Khouri, 2012). Coordination manages 
dependencies between activities (Malone & Crowston, 1990). These 
dependencies arise from the mutual use of common objects to carry out 
a task (Malone & Crowston, 1990). Thus, communication is necessary for 
coordinating processes. For instance, actors performing interdependent 
activities may have conflicting interests. Political processes are ways of 
managing them. This perspective is upheld by the view that coordination 
is the management of dependencies between decision processes that 
allocate scarce resources among actors.  
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3.9 Summary of Chapter 3 
Currently, organizations are experimenting with new data sources and 
there is a general expectation that IoT will provide significant added value 
to AM decision making. Organizations can effectively and sustainably 
adopt these new data sources in their AM decision making if the data that 
is measured can monitor the important factors of the asset itself. 
However, although IoT provides many benefits the use of the technology 
is a product of human actions and these actions determine the actual 
benefits to be gained.  

The literature review answers, in part, Research Question 1 by 
providing a systematic insight into the uses of IoT in asset management 
and the expected and achieved benefits of IoT for asset management 
organizations. Table 3-8 below summarizes how IoT adoption may change 
asset management, answering, in part, research question 1. 

 

Table 3-8: Summary of how IoT adoption can change asset management 

Uses of IoT in Asset Management Improvements to Asset Management 

IoT data expected to change performance 
measurement of infrastructure service 

Improved forecasting and trend analysis 

IoT data expected to change perception of 
infrastructure service 

Improved transparency 
Improved citizen empowerment 

IoT data expected to change improvement 
processes of infrastructure service 

Improved planning with regards to 
management and maintenance 
More efficient regulations 
More efficient enforcement of regulations 
Reduction of costs 
New revenue streams 
Improved efficiency of services 
Improved effectiveness of services 
Improved flexibility of services 

 

The literature review shows that expected benefits range from the 
strategic to the operational level. Specifically benefits can be attributed to 
improved efficiency, effectiveness and flexibility of services; reduction of 
costs; improved citizen empowerment; improved organizational 
transparency; more efficient enforcement of regulations; improved 
planning and forecasting; and improved health and safety measures. But 
there may also be risks to the asset management organization that can 
go beyond the accomplishment of the intended benefits. Specifically risks 
can be attributed to data privacy issues, data security issues, weak or 



Literature Review 

95 
 

uncoordinated data policies, weak or uncoordinated data governance, and 
conflicting market forces, costs, interoperability and integration issues, 
acceptance of IoT, and trust related issues, a lack of sufficient knowledge 
regarding IoT, IT infrastructural limitations, and data management issues. 
It is clear that IoT will have a major impact on asset management in the 
future and will bring a variety of benefits at all levels, but IoT adoption 
can have unforeseen social risks for the organization which go beyond the 
intended. Many of the issues which occur are interrelated; for example, 
interoperability and integration issues have a direct impact on costs and 
on trust in the systems, but many issues can also be resolved with 
sufficient knowledge and capabilities within the organization.   

In this research elements of AMDIs are viewed from a CAS 
perspective. In this way, the literature review goes some way to helping 
us answer Research Questions 2, and 3. As seen in Table 3-9 below, 
AMDIs consist of components (Haghnevis & Askin, 2012), which are 
embodied by data, technology and agents. Agents (Janssen & Verbraeck, 
2005) interact with one another within a certain schema (Choi et al., 
2001). Schema refers to shared rules which are embodied by norms, 
values, beliefs, and assumptions.  In this research we identify the schema 
within which agents interact as being embodied by data governance. 
Theoretically, data governance describes the processes, and defines 
responsibilities. Data managers then work within this framework. Four 
key elements of data governance were identified during the literature 
review: 1. Organizational capability; 2. Alignment; 3. Compliance; 4. 
Clarification. Table 3-9 below shows the elements of AMDIs, answering, 
in part, Research Questions 2 and 3. 

 

Table 3-9: Summary of the elements of AMDIs as CAS 

Elements of AMDIs 

Components Agents Schema –  
Data Governance 

Environments 

Data 
Technology 
People 

Individuals 
Teams 
Departments 
Divisions 
Organizations 

Organizational 
capability 
Alignment 
Compliance 
Clarification 

Physical asset 
infrastructure 
Organizational 
culture 
Organizational 
structure 
Political/legal 
environment 
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AMDI behavior emerges because many of the simple components 
interact simultaneously. The whole of the system is different from the sum 
of its parts which means that AMDIs cannot be adequately analyzed by 
examining their parts separately. Furthermore, AMDIs, as CASs, are 
dynamic, and because of the number of agents, their interdependence, 
and their openness to external influences, changes constantly and 
discontinuously. AMDIs are able to adapt to external influences and an 
AMDI will change constantly because of the continuous interactions and 
interdependence between its agents and its environment. In an AMDI, 
there is often no centralized control that dictates the system’s overall 
behavior. Order emerges as agents govern their own rules of behavior 
and adapt to their environment. According to Janssen et al. (2009), AMDIs 
display connectivity as the ways agents in AMDIs connect and relate to 
each other is critical to understanding the system. Table 3-10 below 
summarizes the behaviors of AMDIs, partly answering research question 
2. 

 

Table 3-10: Summary of the behaviors of AMDIs CAS 

Behaviors of AMDIs 

Dynamism Emergence Adaptation Connectivity 

In constant 
development (i.e. 
addition of IoT 
sensors to the 
network, or changes 
to data models) 
Complicated and 
entangled 
relationships (i.e. 
large numbers of 
data integrations, 
and difficult to define 
data ownership) 

Combining data 
between systems 
creates greater 
insights than 
analysis on single 
systems.  
Constant 
exchange of 
information and 
needs leading to 
emerging 
capabilities 
Aggregation of 
objects and 
components 
Order emerges 
through agent 
interaction 

Adaption in use of 
systems due to 
continuous interactions 
and interdependence 
between agents and 
environment 
Adaptations in AMDI 
structure due to 
experience  
Adaptations in structure 
due to changes in 
environment 
Adaptations in 
environment due to 
changes in the AMDI 

Integration of 
multiple 
systems 
(system of 
systems) 
Connectivity 
between objects 
and agents 
Interaction 
between agents 
Data integration 
between 
disjointed 
systems 

 
In Chapter 4 the results of the exploratory cases are presented 

from three architectural viewpoints. The literature review directs the 
exploratory cases as real world IoT implementations are examined in 
order to understand: how, and if, theoretical, expected, benefits of IoT 
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are achieved by asset management organizations; how the AMDIs have 
been structured and how the AMDIs have adapted to the new techniques; 
and how the asset management organizations leverage data governance 
to coordinate changes to the AMDI.
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Chapter 4 Exploratory Case 

Studies 
 
“All his faults observed, 
Set in a note-book, learn’d, and conn’d by rote.” 

- William Shakespeare (Julius Caesar, Act-IV, Scene-III) 

 

4.1 Introduction 
In Chapter 3 we discussed, by means of a systematic literature review, 
the dual nature of asset management through IoT and the necessity of 
viewing AMDIs as CAS when adopting IoT in asset management. The 
literature review showed that IoT has many benefits for asset 
management, but often introduces unexpected changes and risks to the 
organization which need to be mitigated. This provided us with a 
knowledge base on which we are able to build our theory that a model of 
AMDIs can improve understanding of asset management through IoT, 
provide actionable insights and predict previously unforeseen changes to 
asset management organizations when adopting IoT. The literature 
review also reveals gaps in our knowledge base which we attempt to fill 
in this Chapter by means of exploratory case studies. For example, little 
research is available regarding data governance in an asset management 
setting and it is unclear what data governance in asset management 
entails. 

Due to the limited amount of scientific knowledge with regard to 
AMDIs and asset management through IoT, the initial case studies are of 
an exploratory nature and aim at laying the foundation for pertinent 
propositions for further inquiry. In exploratory cases, Yin (2009) concedes 
that no elaborated propositions can be specified beforehand, but instead 
suggests that case studies be purpose-oriented, with a preliminary 
conceptual framework guiding the exploration. As such, the explanatory 
cases outlined in this research rely on two main theories, Duality of 
Technology theory and CAS theory respectively, as conceptual 
frameworks.  
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A single, comprehensive model is often too complex to be 
understood and communicated in its most detailed form, showing all the 
relationships between the various business and technical components. We 
need to represent the AMDI in a way that is manageable and 
comprehensible for a range of business and technical stakeholders. A 
widely used approach is to partition the architecture into a number of 
separate but interrelated views, each of which describes a separate aspect 
of the architecture. Collectively, the views describe the whole system. 
According to The Open Group, architecture views are representations of 
the overall architecture that are meaningful to one or more stakeholders 
in the system which help to verify that the system will address their 
concerns. In this research we investigate the AMDI by assessing the case 
studies using three views, namely:  

1. From a practice perspective: IoT provides benefits for asset 
management, but also introduces unexpected risks which impacts 
the organization and, in turn, the technology itself. 

2. From a CAS perspective: AMDIs are complex systems composed 
of elements and behaviors which need to be identified. 

3. From a data governance perspective: AMDIs follow rules according 
to a schema which we identify as data governance. 

According to the Open Group (accessed 2017:  
http://www.opengroup.org/public/arch/p4/views/vus_intro.htm), 

a view is specified by means of a viewpoint, which prescribes the 
concepts, models, analysis techniques, and visualizations that are 
provided by the view. A view is what you see, and a viewpoint is where 
you are looking from. A viewpoint is a collection of patterns for 
constructing one type of view. It defines the guidelines, and principles for 
constructing its views. An architect is confronted with many different 
types of stakeholders and concerns and often bases the viewpoint on 
purpose and content. In this research, the initial case studies are of an 
exploratory nature and aim at laying the foundation for pertinent 
propositions. We therefore choose an overview abstraction level based on 
the introductory viewpoint. The exploratory cases are used to generate 
the initial theory which, following the design science framework is used to 
define requirements and build the artefact, in this research the AMDI 
model. Duality of Technology theory and CAS are used to develop a 
framework of views for guiding the exploratory case studies, as seen 
below in Figure 4-1.  
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Figure 4-1: Relationship of the Views to the Research Questions 

Duality of Technology theory is used to guide the investigation into 
the effects of asset management through IoT. In this research we take 
the introductory (purpose), overview (content) viewpoint. This means 
that we summarize the business, application and technology layers with 
the purpose of making design choices visible. The reader should note that 
parts of this chapter have been published in: Brous, Janssen, Herder, 
(2018) "Internet of Things adoption for reconfiguring decision-making 
processes in asset management", Business Process Management Journal, 
https://doi.org/10.1108/BPMJ-11-2017-0328. 
 

Duality of Technology: Overview 

Duality of technology (Orlikowski, 1992) describes technology as 
assuming structural properties whilst being the product of human action. 
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As such, technology is created by actors in a social context, and socially 
constructed by actors by attaching different meanings to it, and thus, 
technology results from the ongoing interaction of human choices and 
institutional contexts (Orlikowski, 1992). Orlikowski (1992) explains that 
previous research studies in the fields of technology and organizations 
have focused on the views that technology is either an objective, external 
force that has a deterministic impact on organizational properties such as 
structure, or that human action is an aspect of technology whereby 
technology is an outcome of strategic choice and social action. Orlikowski 
(1992) suggests that both models are incomplete, and proposes a 
reconceptualization of technology that takes both perspectives into 
account, proposing a structuration model of technology by exploring the 
relationship between technology and organizations, based on Giddens’ 
(1976), ”Theory of Structuration”. Giddens (1976) recognizes that 
“human actions are both enabled and constrained by structures, yet that 
these structures are the results of previous actions” (Orlikowski, 1992, 
p.404).  

Orlikowski (1992) identifies technology as being the product of 
human action, while it also assumes structural properties. Furthermore, 
technology is physically constructed by actors working in a given social 
context and socially constructed by actors through the different meaning 
they attach to it. According to Orlikowski (1992), understanding 
technology as continually being socially and physically constructed 
requires discriminating between human activity which affects technology, 
and human activity which is affected by technology. Figure 4-2 below 
depicts the structural relationship between organizations, human agents 
and technology. 
 

 

Figure 4-2: Structuration model of technology (Orlikowski, 1992) 
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Research in the sociology of technology suggests that the evolution 
of new applications is a process of social interaction between multiple 
agents (Allen, 2003). According to Orlikowski (1992), agency refers to 
capability not intentionality, and action taken by actors may have 
unintended consequences. Orlikowski (1992) premises that technology is 
created and changed by human action, however technology is also used 
by humans to accomplish some action, which is what Orlikowski (1992) 
calls the Duality of Technology. Orlikowski's (1992) second premise is that 
technology is interpretively flexible. However interaction of technology 
and organization is a function of the different actors and the socio-
historical contexts implicated in its development and use. According to 
Leonardi (2013), the duality of technology model is important as a 
waypoint to Orlikowski's (2000) practice lens. Leonardi (2013) believes 
that, having already conceptualized technology use as a constitutive 
feature of structure in its own right, Orlikowski (2000) introduced the 
development of the practice lens, the “technology-in-practice,” which 
Orlikowski (2000, p. 405) defined as “a particular structure of technology 
use”.  As such, Leonardi (2013) argues that the practice lens tends to hide 
patterns of technology use into particular “technologies-in-practice” as 
people tend to interpret how technology could help them achieve their 
goals. Leonardi (2013) also criticizes the practice lens for offering an 
overly socialized view of technology. Leonardi's (2013) critique is based 
on the idea that people choose to use technology in a certain way. As 
such, the technologies themselves “are only peripheral players that are 
subject to the whims of their users” (Leonardi, 2013, p. 64). By way of 
example, (Leonardi, 2013, p. 64) cites Orlikowski (2000) as arguing that 
that “even though technologies have certain physical or digital properties 
that transcend specific contexts of use, users have the option to choose 
other options with the technology at hand, opening up the potential for 
innovation, learning, and change”. Leonardi (2013) argues that 
technology-in-practice is therefore only a set of norms governing when, 
why, and how to use a technology in a specific setting. 

Duality of Technology Theory (Orlikowski, 1992) suggests that IoT 
adoption may provide operational, tactical and strategic benefits to the 
asset management organization which may trigger unexpected changes 
to the environments in which the AMDI operates. These changes may 
then, in turn, initiate new evolutions and adaptions to the AMDI which 
constrain the actions of asset managers. Also, changes to the asset 
management organization due to internal and external social constructs 
(such reorganizations of departments) or physical changes (such as a 
change in the organization’s location) may force evolutions or adaptions 
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to the AMDI, which, in turn, may trigger further changes to the physical 
constructs of the asset management organization. This leads us to our 
first view which reads as follows: 
 

 

An AMDI, as CAS, both reacts to and creates the environment it is 
operating in. CAS theory as a framework is used as the logic which links 
the data from the exploratory case studies to the investigation into 
characteristics of AMDIs and the related data governance (schema), and 
serves as guidance for the interpretation of findings. 
 

CAS: Overview 

We are surrounded by complex worlds, composed of multitudes of 
elements, which make them hard to model and difficult to understand. 
Despite the plethora of examples used by researchers to describe what a 
CAS is, there appears to be little agreement as to an exact definition and 
what the characteristics of a CAS should be. For example, Wallis (2008) 
deconstructs twenty versions of CAS theory related to the management 
science discipline and concludes that the variety of definitions is result of 
the situation of the definitions in different research fields. In this research 
our focus is on data infrastructures. We follow Grus et al. (2010), whose 
research field is spatial data infrastructures, and we use the definition 
given by Barnes, Matka, & Sullivan (2003, p. 276) who define CASs as, 
“open systems in which different elements interact dynamically to 
exchange information, self-organize and create many different feedback 
loops, relationships between causes and effects are nonlinear, and the 
systems as a whole have emergent properties that cannot be understood 
by reference to the component parts”.  

Complexity arises when the dependencies among the elements 
become important. In such a system, removing one element destroys 
system behavior to a further extent than what may be expected. 
Complexity is therefore a deep property of the system (Miller & Page, 
2009). A complex system will die when an essential element is removed. 
But despite this fragility, complex systems can also exhibit an unusual 
degree of robustness to less radical internal changes. The behavior of 

View 1. Practice perspective: IoT provides benefits for asset 
management, but also introduces unexpected risks which impacts the 
organization and, in turn, the technology itself. 
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many complex systems arises from the activities of lower-level 
components. This is the result of a very powerful organizing force that can 
overcome a variety of changes. But if the changes are too extreme, then 
the systems’ behavior as we know it will collapse (Holland, 1992). This is 
particularly the case when there is a dependence on interactions between 
elements. The resulting anticipation can cause major changes in the 
behavior of the system, even when the anticipated situation does not 
arise. Because the individual parts of a complex adaptive system are 
continually revising their rules for interaction, each element is forced to 
adapt to the changing behavior of the other elements. In this way, CAS 
continue to evolve, and steadily exhibit new forms of emergent behavior. 
A complicating factor which contributes to the difficulty in defining 
characteristics of CASs is that characteristics can be divided into physical 
elements and behaviors. CAS elements are sets of system physicalities 
that together make CASs different from other systems. Similarly, CAS 
behaviors are the distinctive collection of functions and operations that 
make CAS behavior unique. Functional behavior being the behavior 
required to achieve a purpose and operational behavior being how the 
CAS achieves a purpose. As such, gaining useful information from IoT 
data for asset management purposes requires combining data 
registrations that have a sufficient level of quality with metadata that also 
has a sufficient level of quality. IoT adoption in asset management 
requires the interaction of agents across the strategic, tactical and 
operational levels. Also, Information Technology provides the capability 
of the AMDIs to perceive, process and transmit data and is an important 
enabler of IoT adoption in asset management. This leads us to our second 
view which reads as follows: 
 

 

Schema refers to shared rules which are embodied by norms, 
values, beliefs, and assumptions (Choi et al., 2001). The schema of AMDIs 
is embodied by data governance. Data governance organizes the 
management of IoT data and defines roles and responsibilities of agents 
in AMDIs. There is no “one-size-fits-all” approach to structuring data 
governance, and coordination of data management is often performed 
using formal and informal coordination mechanisms. Data governance 
aligns the supply of IoT data with the needs of asset managers and 
ensures that IoT data is useful to the asset management organization, 

View 2. CAS perspective: AMDIs are complex systems composed of 
elements and behaviors which need to be identified. 
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ensuring the provision of the right data to the right people at the right 
time. Data governance clarifies IoT data and ensures a shared view of the 
data throughout the asset management organization and across 
organizational silo’s. Data governance also ensures compliance of IoT data 
with internal and external laws, regulations and policies affecting the 
asset management organization. This leads us to our third view which 
reads as follows: 
 

 

Using the above views as starting points, the exploratory cases 
allow us insight into how AMDIs evolve and adapt to specific situations. 
The exploratory case studies focus specifically on asset management 
organizations in the water management domain. The following section 
begins with a short introduction to the cases under study. The 
introductions serve to introduce the context and develop the case 
introductions from chapter 2. The rest of the chapter reads as follows: 
first the cases are introduced one after the other, LMW (RWS), BOS 
(Water Authority Delfland), and Ground Water Measurement (Municipality 
of Rotterdam) respectively, then the next sections discuss each of the 
three views in turn, following the same format as the introduction: first 
discussing the national AMDI (LMW, RWS), then the regional AMDI (BOS, 
Water Authority Delfland), and then the local AMDI (Ground Water 
Measurement, Municipality of Rotterdam). At the end of each section the 
cases are compared according to the formats described at the beginning 
of each section. 

4.2 Approach and General Descriptions 
The exploratory cases were chosen as being representative of 
organizations at the national, regional and local levels respectively, in 
compliance with the principles outlined in Chapter 2. The structure of the 
exploratory case study descriptions in section 4.3 is as follows: 

1. Stakeholder overview 
2. IoT System overview 
3. Asset management process before adoption 
4. IoT system usage and asset management process after IoT 

adoption. 

View 3. Data governance perspective: AMDIs follow rules according to 
a schema which we identify as data governance. 



Exploratory Case Studies 

107 
 

The various structures of each of the views are presented in the 
introduction of each section. The cases are described in the following 
order: National (RWS), Regional (Water Authority Delfland), and, finally, 
Local (Municipality of Rotterdam). At the end of the section, a comparison 
of the cases is provided. 

The protocol used in the case studies includes a variety of data 
collection instruments. The use of multiple research instruments is 
encouraged to ensure construct validity through triangulation, made 
possible by multiple data collection methods which, as argued by 
(Eisenhardt, 1989), provide a stronger substantiation of our constructs 
and hypotheses. Triangulation means taking different angles towards the 
studied object, providing a broader picture and is important to increase 
the precision of empirical research (Runeson & Höst, 2008). At the start 
of the exploratory research, in June 2015, group discussions were held 
with personnel directly involved in the exploratory use cases or who were 
tasked with managing and maintain the systems. Special focus was given 
to expected and experienced benefits as well as expected risks. Between 
October 2015 and June 2017, individual interviews were held with 
personnel in the organizations under study. Internal documentation was 
selected which dealt with issues faced by the adopting projects. All 
interviews were documented in writing. The documents were then 
analyzed and transferred into an integrated case document (one for each 
case). The first versions of this document were then sent to the interview 
participants for feedback and clarification of open points. Once all the 
additional information feedback had been incorporated, the final version 
was reviewed and discussed with the main contacts at the organizations 
under study.   

Table 4-1, Table 4-2, and Table 4-3 below give an overview of the 
sources used in the case studies. 

 

Table 4-1: Data Sources of Case Study 1: National Water Measurement Network 

Data Sources 
Type 

Data Sources  

Interviews June 2015: Group discussion  
Department Head 
Domain Architect 
Service Delivery Manager 
Data Manager 

 October 2015: Individual Interviews 
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Data Sources 
Type 

Data Sources  

Enterprise Architect 
Senior Advisor LMW 
Domain Architect Water Management 
Domain Architect Shipping Management 
Data Manager 

January 2017: Individual interviews 
Strategic Advisor 
Solution Architect 
Process Manager  
Project Manager 
Service Delivery Manager 

Documents https://www.helpdeskwater.nl/onderwerpen/monitoring/landelijk-
meetnet/ 
Evaluatie basismeetnet waterkwaliteit Hollands Noorderkwartier 
Marktconsultatiedocument LMW2-V 1.1 DEF 
Nota van Inlichtingen Marktconsultatie LMW2 V 1.0 
Verslag Marktconsultatie LMW2-V1.0 DEF 

 

Table 4-2: Data Sources of Case Study 2: Decision Support System for Main Pumping 
Stations 

Data Sources 
Type 

Data Sources  

Interviews June 2015 – June 2016: 
Senior Policy Advisor Data Management 
Project Manager Asset Management 
Asset Data Manager 
Manager Asset Management 
Sector Head Policy and Communication 
Manager Water Level Management 

Documents Waterbeheerplan 2016-2021 Delfland 
Proeftuin Fysieke Digitale Delta 
GEGEVENSBEHEER: ‘Basis op orde’ - Plan van Aanpak 
KRW-programma Delfland 2016-2021 
GEGEVENSBEHEERPLAN: (overkoepelend) - Van de gegevens over 
het Watersysteem en Waterkeringen 
Smart Water Management Delfland 
Ontwerp Waterbeheerplan 2016-2021 
Functioneel ontwerp BOS 2.0 
Hoofdlijnenakkoord Gegevensbeheer Watersysteem en Waterketen 
Gegevensbeheer Watersysteem en Waterketen 
Delft-FEWS Gebruikersdagen 14 juni 2016 

 

  

https://www.helpdeskwater.nl/onderwerpen/monitoring/landelijk-meetnet/
https://www.helpdeskwater.nl/onderwerpen/monitoring/landelijk-meetnet/
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Table 4-3: Data Sources of Case Study 3: Ground Water Measurement 

Data Sources 
Type 

Data Sources  

Interviews October 2015: 
Data Manager Base Information 
Program Manager Stedelijk Beheer (City Management) 
Enterprise Architect City Development 
Project Manager IT 
Asset Manager 
Process Manager City Management 
Manager Data Analysis 

Documents Gemeentelijk rioleringsplan: Planperiode 2016-2020 
Waterplan 2 Rotterdam 
Herijking Waterplan 2 Rotterdam 
Maatregelen ter bestrijding van grondwateroverlast in bestaand 
stedelijk gebied 
Organogram gemeente Rotterdam 
Rotterdam en gebiedsgericht grondwaterbeheer 
Uitvoeringsprogramma Water 2015 

 

4.2.1 LMW - Rijkswaterstaat 

The first case, the automatic measurement of hydrological data in Dutch 
Waters, is managed by the Directorate General of Public Works and Water 
Management of the Netherlands, commonly known within The 
Netherlands as “Rijkswaterstaat”. Rijkswaterstaat is often abbreviated to 
“RWS”, and is referred to as such within this research. RWS is part of the 
Dutch Ministry of Infrastructure and the Environment and is responsible 
for the design, construction, management and maintenance of the main 
infrastructure facilities in the Netherlands. This includes the main road 
network, the main waterway network and the main water systems of The 
Netherlands. The state road network constitutes three thousand 
kilometers of highways, one thousand four hundred km of connecting 
roads, two thousand seven hundred and forty-nine viaducts, thirteen 
ecoducts, twenty-two tunnels and seven hundred and forty-three bridges. 
Rijkswaterstaat is very active within information management in The 
Netherlands. They are, for example, responsible for the functional 
management of the national spatial data portals and the development of 
the maritime single window in The Netherlands. Rijkswaterstaat also 
produces and maintains a large amount of data and is a recognized 
authority on the management of large-scale physical infrastructure. The 
Netherlands has a long tradition of water management and, as an area, 
is essentially the most highly managed delta region in the world. 
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Traditional water level management was always performed by hand, sight 
or analogue based measurements in which the asset manager was forced 
to constantly read out the measurements by hand. As such, read outs 
were done during long intervals and then calculated by hand. Decision 
making was often based on experience. The conventional bathymetric 
data sets consist of measurements by means of sonar, photogrammetry 
and laser altimetry and measurements with the WESP (Water and Beach 
Profiler). 

The main system currently used by RWS to manage their national 
water network is the National Water Measurement Network, at RWS 
known as “Landelijk Meetnet Water” (LMW). This is a facility that is 
responsible for the acquisition, storage and distribution of data for water 
resources. The LMW has a long and rich history and was created from the 
merging of three previous existing monitoring networks in the 1990’s: the 
Water Monitoring Network, which monitors inland waterways such as 
canals and rivers; the Monitoring Network North, which monitors North 
Sea oil platforms and channels; and the Zeeland Tidal Waters Monitoring 
Network which monitors the Zeeland delta waterways. As such, LMW is 
about 25 years old but has experienced a number of upgrades in its 
current form, as recently as 2015, especially with regards to data 
transmission and data sharing. LMW has approximately 640 data 
collection points using a nationwide system of sensors. The data is then 
processed and stored in the data center and is made available to a variety 
of systems and users.  

LMW also includes data from third parties, including water data 
from foreign countries and other public organizations within The 
Netherlands such as the shipping and transport industry, logistics, harbor 
management, meteorology, regional and local water management, and 
international water management. LMW has approximately 640 data 
collection points using a nationwide system of sensors. Figure 4-3 and 
Figure 4-4 below show examples of measuring stations used in the LMW 
network. The data is then processed and stored in the data center and is 
made available to a variety of systems and users. 
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Figure 4-3: LMW Measurement Station (RWS, 2017) 

 

 

Figure 4-4: LMW Measurement Station (RWS, 2017) 
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Figure 4-5 below is a screen shot of the interactive water map of RWS in 
which different views of the data can be chosen and viewed across the 
Netherlands. 
 

 

Figure 4-5: Screen shot of the RWS interactive water map  

(https://waterinfo.rws.nl/#!/kaart/waterhoogte-t-o-v-nap/) 

 
As seen in Figure 4-5 above, LMW collects data regarding water 

levels, wind speed, wave heights, water temperature, astronomical tides, 
water currents, salt content etc. This data is aggregated and calculated 
within models to accurately predict water levels and water quality. Based 
on these models, decisions are made to close storm surge barriers, close 
swimming areas, send out messages to shipping etc. As such, we can 
classify LMW services as being collaborative aware services (Gigli & Koo, 
2011), as LMW services are used to make decisions, and based on those 
decisions, to perform an action. LMW services have “terminal-to-terminal” 
communication, as the Maeslant storm surge barrier is completely 
automated based on LMW data, as well as “terminal-to-person” 
communication as LMW data is distributed to multiple parties.  

Measurements include hydrological and meteorological data. 
Meteorological data are collected in close collaboration with the Royal 
Netherlands Meteorological Institute (KNMI). Hydrological data is 
collected concerning the measurement of water levels, flow rate (average 
amount of water in m3/s), wave height and direction, velocity and 
direction and temperature. Also, in some locations water quality is 

https://waterinfo.rws.nl/#!/kaart/waterhoogte-t-o-v-nap/
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measured in order to assess whether the water meets the norms of the 
European Union Water Framework Directive. Meteorological data 
concerning the measurement of wind speed and direction, air temperature 
and humidity, visibility, air pressure and cloud base is also collected. The 
LMW processes sensor information and upgrades this data to qualified 
readings. This data is used for multiple purposes at the strategic, tactical 
and operational levels. For example, hydrological and meteorological data 
is used at the strategic level to identify long term climate change trends 
and is used within the Delta Program of the Netherlands to adopt 
strategies to adapt to and accommodate these climatic changes. The LMW 
provides a complete technical infrastructure for the gathering and 
distribution of water data and delivers the data to various stakeholders 
within and outside RWS such as the Storm Surge Barriers, hydro-
meteorological centers, municipal port companies (among others Port of 
Rotterdam), flood early warning services and other private parties. LMW 
also produces data about the state of objects such as real-time 
information about pump rotation times, lift heights, valve positions, 
operating time and spray times. 

4.2.2 BOS - Water Authority Delfland 

The primary system used by the Water Authority Delfland to manage 
water levels is BOS (Beslissing Ondersteunend Systeem). Water Authority 
Delfland is a Dutch Water Authority (water board), which is responsible 
for water management. It covers the municipalities of Delft, Midden-
Delfland and The Hague, and is located in the province of South Holland. 
It is one of the oldest democratically managed public organizations in The 
Netherlands as it was established in 1289 when William I, Duke of Bavaria 
authorized the "Heemraden of Delft" to manage water and serve as a 
separate court. The organization is led by a “Dyke Duke” (Dijkgraaf), who 
acts as the (non-voting) Chairman of the Board of Governors, which is a 
general board called "verenigde vergadering", consisting of 30 
representatives which are representatives of the inhabitants (21 by direct 
elections), industry (4), owners of open land (mainly farmers - 4) and 
owners of natural habitats (1). The Dijkgraaf also heads the general 
management of the Water Authority as Chairman of the Board of Directors 
in which he has a more direct management role. 

1.4 million people live and work in the area in which Delfland 
operates, and approximately 40,000 businesses are established in an area 
of about 41000 hectares. This makes the Delfland region one of the most 
densely populated and most highly industrialized areas of the 
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Netherlands. Figure 4-6 below depicts a map of the Delfland management 
area. 

 

 

Figure 4-6: Map of the water management area controlled by Water Authority Delfland 
(Water Authority Delfland, 2014)  

The region is also renowned for its intensive glasshouse 
horticulture. The Delfland region is located below sea level and major 
flooding would occur if a dune or dyke should give way. The consequences 
of a collapse in the Delfland region would be felt as far as the Utrechtse 
Heuvelrug. To limit the danger, Delfland maintains the sea and river flood 
defense structures. The primary maintenance of dykes and dams in 
Delfland consists of two components: the seawall and the river flood 
defense structure. Dykes and dams of Delfland must be able to withstand 
a wind-force and water level which, on average and statistically speaking, 
do not occur more than once every 10,000 years. 

Traditional water level measurement was performed using a level 
scale in fresh waterways such as ducts and locks. This was placed during 
construction of the asset and indicates the depth related to the soil 
(usually) a plurality of centimeters. The water level is also displayed 
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relative to the soil, but especially in relation to the Amsterdam Ordnance 
Datum or “Normaal Amsterdams Peil” (NAP). NAP is a vertical datum in 
use in large parts of Western Europe. On maps the depth of the soil 
relative to NAP was usually depicted. With this depth compared to NAP, 
the water depth was thus be calculated, a time consuming and fault 
sensitive process. 

BOS is the decision support system for the main pumping systems 
in control of the Delfland Water Authority. BOS has a rich history at 
Delfland, but received a major upgrade in 2015. The main pumping 
stations regulate the water levels in the Delfland region. Figure 4-7 below 
shows the system of polders managed by the Water Authority Delfland.  
 

 

Figure 4-7: Polder system of Water Authority Delfland (Water Authority Delfland, 2015) 

 
Water Authority Delfland manages approximately 3700km of 

polder ditches, 130 automated polder pumping stations, 20 automated 
inlets, 100 automated weirs, 100 remote level loggers, 86 smaller 
pumping stations, 200 smaller pumping stations (not owned by Delfland), 
circa 3000 fixed weirs and circa 2000 fixed inlets. Figure 4-8 below shows 
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a photograph of an example of a pumping station, in this case the 
Harnaskade pumping station in Delft. 
 

 

Figure 4-8: Harnaskade pumping station, Delft (www.google.com/maps accessed: 2018) 

 

Water management at Water Authority Delfland involves the 
regulation of the water levels in streams, lakes, ditches, moats and 
canals. This is vital for industrial development, agricultural businesses, 
environmental management and recreation. The height at which the water 
level of an area is set depends on the use and function of that area. For 
example, although water levels in wildlife areas often fluctuates, farmers 
tend to prefer a relatively low water level to prevent their land from 
becoming too wet. Figure 4-9 below shows a screen shot of the BOS user 
interface. 

In the BOS process screen, current measurements are displayed 
from Delfland telemetry, supplemented by estimations from the BOS. 
These include inland water levels (upper part of the screen), 
meteorological information (middle block) and volumetric flow rate (lower 
part of the screen). BOS Delfland reads precipitation (from rainwater 
measuring stations) every 15 minutes and water levels on the reservoirs 
(measured at polder mills). In addition, BOS Delfland receives weather 
forecasts from MeteoConsult every 15 minutes via FTP. These are 3 files 
with 1-hour, 3-hour and 24-hour forecasts of precipitation (per hour), 
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wind (per 3 hours) and evaporation (per day). The relevant level manager 
indicates which target level should be used (and at what time should be 
reached) and whether a precipitation protocol is active. BOS Delfland then 
calculates the desired deployment of each reservoir mill for the next 24 
hours and makes a 'request' to the ABB system for use of pumping 
stations for the current time. 
 

 

Figure 4-9: User interface BOS (Aankondiging van een opdracht: BOS 2.0 - 
Hoogheemraadschap van Delfland - Bijlage 7 Functioneel ontwerp BOS 2 0.pdf) 

As such, following (Gigli & Koo, 2011), we can classify BOS services 
as being collaborative aware services, as BOS services are used to make 
decisions, and based on those decisions, to perform an action. BOS 
services have “terminal-to-terminal” communication, as a number of 
pumping mills are automated based on BOS data, as well as “terminal-to-
person” communication as BOS data is also distributed to multiple parties. 

4.2.3 Ground Water Measurement - Municipality of 

Rotterdam 

The third case chosen, at the local level, is that of the automatic 
measurement of ground water levels in the Municipality of Rotterdam. The 
water level in the Rotterdam municipality is monitored via sensors placed 
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in the polders which measure the levels of the groundwater. By combining 
the data collected by these sensors with data from other sensor systems, 
for example weather satellites, it is possible to predict whether there is a 
danger of flooding. Rotterdam is the second-largest city in the 
Netherlands and one of the largest ports in the world. It is the largest port 
in Europe and one of the busiest ports in the world. Starting as a dam 
constructed in 1270 on the Rotte River, Rotterdam has grown into a major 
international commercial center. It has a strategic location at the Rhine-
Meuse-Scheldt delta on the North Sea and is at the heart of a massive 
rail, road, air and inland waterway distribution system extending 
throughout Europe. Figure 4-10 below depicts a map of the area 
controlled by the Municipality of Rotterdam. 
 

 

Figure 4-10: Map of the Municipality of Rotterdam (www.maps.rotterdam.nl) 

The municipality consists of fourteen boroughs which are 
responsible for many activities that previously had been run by the central 
city. These have their own council, chosen by a popular election, but they 
are governed by the central municipal council. Local decisions are made 
at borough level but affairs pertaining to the whole city, such as major 
infrastructural projects, are delegated to the central city council. The 
Municipality of Rotterdam prides itself on a strong economy and an 
attractive residential environment and profiles itself as a ‘water city’. The 
vision of Rotterdam for the future plays an important role in all of its water 
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plans for future development. Three crucial developments face Rotterdam 
municipality in the future. Firstly, higher water levels due to rising sea 
levels form a risk of flooding in areas outside the protection of the dikes 
which requires flood defenses to be reinforced. Secondly, flooding caused 
by increasing rainfall is also expected to form a significant risk in the 
future. Rotterdam officials expect that climate change will mean increased 
amounts of rain falling in short spaces of time. In order to process the 
resulting water, extra provisions will be needed for collection and storage. 
Rotterdam officials estimate that there is already a shortage of around 
600,000 m3 of storage. At least 80 hectares of extra lakes and canals 
would be needed to be able to cope with this shortage by means of open 
water. Thirdly, there are stringent demands to be met on water quality 
(based on the European Framework Directive on Water). Quality profiles, 
based on these requirements, are in the process of being drawn up for all 
stretches of water in the city.  

Traditional water-level monitoring programs depend on the 
operation of a network of observation wells—wells selected expressly for 
the collection of water-level data in one or more specified aquifers. 
Decisions made about the number and locations of observation wells are 
crucial to any water-level data collection program. Water-level monitoring 
programs for complex, multilayer aquifer systems also require 
measurements in wells completed at multiple depths in different geologic 
units. Furthermore, traditional monitoring programs also need to find 
ways to address collection of other types of hydrologic information such 
as precipitation data. As all traditional measurements are done by hand, 
the collection of data over long periods of time can be a time consuming 
and expensive process. 

To assist the strategic objectives of the Municipality of Rotterdam, 
the Rotterdam groundwater measuring system has been recently 
expanded by more than 300 measuring stations and the total number of 
measuring stations has reached circa 2000. Figure 4-11 below shows an 
example of an automatic measuring station. Connecting a measuring tube 
with sensors to the internet makes it possible to read the water levels 
remotely. There is a communication via a computer with the test tube, 
which in Rotterdam often goes through the LoRa network. LoRa is a 
wireless network which is especially useful for small data streams. Due to 
the small size of the messages, the battery tends to last longer than other 
solutions. With this method, water levels can easily be measured and 
read. The measurement data is available on the Internet.  
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Information about groundwater levels is the relationship between 
the actual groundwater status and the reports and complaints about 
(ground) disturbance and loss of water. 
 

 

Figure 4-11: Automatic water level measuring station 
(https://waterwindow.nl/casus/peilbuizen-moeilijk-af-te-lezen) 

In any particular area, development or replacement of sewage is 
generally known to be taken into account, or if the municipality needs 
groundwater facilities such as drainage, IT sewers, watercourse hardening 
and wadi's. As such, we can classify the ground water measuring network 
as being information aggregation services, which refer to the process of 
acquiring data from various sensors, processing the data, and 
transmitting and reporting that data via IoT to the application. The 
sensors in the ground water measuring network work, more or less, one 
way, as information is collected and sent via the network to applications 
for processing. Figure 4-12 below shows a screen shot of the digital map 
with examples of the measuring stations.  

Due to a variety of possible causes, such as above average 
precipitation, soil decomposition, substitution of leaky sewers or excessive 
surface water levels, groundwater levels may rise at certain locations. The 
drainage depth then becomes smaller. Groundwater may penetrate into 
low-lying spaces or cellars, when not waterproof. When working in public 
spaces, such as road or sewer maintenance, the Municipality of Rotterdam 

https://waterwindow.nl/casus/peilbuizen-moeilijk-af-te-lezen


Exploratory Case Studies 

121 
 

often increases the ground level to its original level (the so-called issue 
level). Sometimes this causes flooding in lower lying areas, for example 
in gardens that are not raised by the owner. Public areas can also be 
affected by excessive groundwater levels. Examples of these are freezing 
roads or flooded parks. But the reverse is also possible: if the groundwater 
level is at a lower level, the drainage depth becomes greater. 
 

 

Figure 4-12: Screen shot of the interactive map showing locations of the groundwater 
measuring stations (http://www.gis.rotterdam.nl/rik/rik.html) 

This can be caused, for example, by lowering the surface water 
level in the area, groundwater extraction or leakage of sewers. Fungi can 
affect foundation poles of buildings whose foundations are on wooden 
poles which are partially dry. In case of prolonged dryness, foundations 
(locally) can collapse, resulting in cracking in the walls. Without 
intervention, a property will eventually be lost. This information is 
important for the municipality, but also for citizens and businesses. This 
is especially true for owners of wooden pole foundation buildings, who 
want to know if this foundation is dry. As a result, the data is made 
publicly available digitally on the internet to enable self-service. Sewage 
systems often reduce the water table in densely populated areas where 
rainwater is directly piped into the sewage system as opposed to being 
simply allowed to be absorbed by the soil. Groundwater in Rotterdam is 
managed by an extensive sewage system. Rotterdam has about 2,400 km 
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of gravity sewers, 927 septic tanks and pumps, and more than 300 km of 
vacuum sewers that collect and discharge urban waste water and 
rainwater to the sewage treatment plants (commonly known as 'RWZI' at 
Rotterdam Municipality). The nine RWZIs of the water boards handle 
annually about 80 million m3 of one mixture of urban wastewater, 
rainwater and groundwater. The RWZIs Dokhaven and Kralingseveer 
purify the wastewater of the urban area. A centralized system ensures 
that the effluent water is distributed as evenly as possible between the 
purification centers. The purified effluent is then discharged into the Maas 
river. 

4.2.4 Comparison and Validity of the Exploratory Case 

Studies 

Table 4-4 below shows how the case studies can be compared. The table 
begins by comparing the case studies to the case study criteria discussed 
in Chapter 2 to demonstrate the validity of the case studies.  
 

Table 4-4: Summary and Comparison of the Explanatory Case Studies. 

Criteria Case Studies 

1. The case must 
occur within a 
distinct 
organization. 

RWS Water Authority 
Delfland 

Municipality of 
Rotterdam 

2. The primary 
processes of the 
organization must 
be focused on the 
management of 
significant 
infrastructure. 

Surface water 
management 
(primary rivers, 
canals and 
harbors): system 
of sensors used to 
determine 
variables such as 
surface water 
levels which impact 
the management of 
infrastructure such 
as shipping lanes, 
river bank 
management, 
bridges, and storm 
surge barriers 

Surface water 
management 
(secondary rivers 
and canals): water 
level system used 
to determine 
variables such as 
surface water levels 
which impact the 
management of 
infrastructure such 
as shipping lanes, 
river bank 
management, 
bridges and polder 
management 

Ground water 
management: 
Phreatic measuring 
system used to 
determine variables 
such as surface 
water levels which 
impact the 
management of 
infrastructure such 
as sewerage and 
building 
foundations 
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Criteria Case Studies 

3. The case 
environment should 
be “data-rich”. This 
means that the 
organization should 
produce, manage 
and maintain at 
least 5 large 
datasets as well as 
a more than twenty 
small to medium 
data sets which 
support the asset 
management 
process. 

RWS has more 
than 1000 
datasets, including 
Dutch base 
registrations such 
as the Base 
topography. LMW 
itself includes 
water levels, wind 
speeds, wave 
height, saltation 
levels, 
astronomical tides 

Delfland has more 
than twenty large 
datasets. BOS itself 
includes inland 
water levels, 
meteorological 
information and 
volumetric flow 
levels 

Rotterdam has 
more than twenty 
large datasets, 
including national 
base registrations 
such as large scale 
topography and 
buildings and 
addresses. 

4. The AMDI must 
include at least one 
example of IoT 
adoption. 

LMW 
 
 
Number of 
stations: 
>640 
 
Type of services: 
Collaborative 
aware services 
 
 
Age of System: 
>20 years 
(upgrades from 
2015 include data 
transmission 
upgrades and 
making data 
available via 
webservices) 
 
 
Type of sensors: 
Multiple incl. 
temperature, wind 
speed etc. 
 
Data transmission: 
datacom varieties, 
mostly RJ45 
ethernet, over 
different media, 
incl. DSL, UMTS, 
RAM mobile 

BOS 
 
 
Number of stations: 
>600 
 
 
Type of services: 
Collaborative aware 
services 
 
 
Age of System: 
>20 years 
(upgrades from 
2015 include 
transmission 
upgrades) 
 
 
 
 
 
Type of sensors: 
Precipitation, 
pressure level 
sensors 
 
Data transmission: 
Telemetry, ftp 

Ground Water 
Measurement 
 
Number of stations: 
>2000 
 
 
Type of services: 
Information 
aggregation 
services 
 
Age of System: 
>20 years 
(upgrades and 
revisions from 2016 
include 
transmission 
upgrades and 
making data 
publicly available 
via internet) 
 
Type of sensors: 
Phreatic pressure 
sensors 
 
 
Data transmission: 
Multiple incl. LiDAR, 
GPRS, manual data 
capture 
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Criteria Case Studies 

5. The case should 
occur within The 
Netherlands. 

Case encompasses 
the primary rivers 
and canals of the 
Netherlands and is 
managed by Dutch 
central government 

Case encompasses 
the secondary rivers 
and canals of a 
specific region of 
the Netherlands and 
is managed by 
Dutch regional 
government 

Case encompasses 
the ground water 
levels and 
sewerage network 
of a municipality in 
South Holland, a 
province of the 
Netherlands 

6. The organization 
should be of type 
government or 
semi-government 
(majority 
shareholders should 
be government). 

Type:  
Central 
Government 
 
Stakeholders: 
Asset Managers, 
General public, 
Shipping and 
Transport industry, 
Logistics,  
Harbor 
Management, 
Meteorology,  
Regional and local 
water 
management, 
International water 
management 

Type:  
Regional 
Government 
 
Stakeholders: 
Asset Managers, 
General public, 
Private asset 
owners, 
Industry, 
Agriculture, 
Municipalities, 
Other Water 
Authorities 
 

Type:  
Local Government 
 
 
Stakeholders: 
Asset Managers, 
General public, 
Water Authorities, 
Industry 

7. Cases should 
occur at varying 
geographic 
coverage levels. 

National Regional Local 

8. Cases should 
occur in varying 
asset management 
domains. 

Surface water 
management: 
primary rivers and 
canals 

Surface water 
management: 
secondary rivers 
and canals 

Ground water 
management 

9. The organization 
must be willing to 
cooperate with 
researchers and 
must be willing to 
provide access to 
the information 
required for the 
research. 

RWS provided full 
access to the 
researchers – see 
table 2-4 

Delfland provided 
full access to the 
researchers– see 
table 2-5 

Rotterdam provided 
full access to the 
researchers– see 
table 2-6 

 

Table 4-4 above demonstrates that the case studies comply with 
the criteria as specified in Chapter 2. Furthermore, the data was collected 
according to the case study protocol and was stored in the case study 
database as per the suggestions made by Yin (2009) which established a 
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chain of evidence. The data included multiple sources of evidence and key 
informants reviewed the draft case study report.  As such we may 
conclude that the results of the case studies as summarized in the sections 
below are reliable and valid.  

4.2.5 Summary of IoT Usage 

Table 4-5 below summarizes how IoT is used in the exploratory case 
studies and how IoT adoption has impacted the asset management 
process, and answers Research Question 1a. Table 4-2 also derives 
requirements for the design of the AMDI model. 
 

Table 4-5: Comparison of how IoT is used in the cases and the effect of IoT on the AM 
process –answer to Research Question 1a. 

Attributes Case Studies 
IoT system name LMW BOS Ground Water 

Measurement 
Organization 
Name 

RWS Water Authority 
Delfland 

Municipality of 
Rotterdam 

Technical 
differences: IoT 
adoption changes 
performance 
measurement of 
infrastructure 
service 
 
Derived 
Requirements: 
- The AMDI model 
should provide a 
method to 
document the IoT 
system for future 
reference 
- The AMDI model 
should be loosely 
coupled, following 
the principles of 
linked open data 
 

Adoption of IoT 
has introduced 
more detailed and 
accurate predictive 
analysis for 
management of 
water levels and 
water quality of 
major waterways 
in The 
Netherlands. LMW 
collects, 
aggregates and 
models data to 
accurately predict 
water levels and 
water quality. 
Based on these 
models, decisions 
are made to close 
storm surge 
barriers, close 
swimming areas, 
send out messages 
to shipping etc. 

Adoption of IoT has 
introduced more 
detailed and 
accurate predictive 
analysis for 
management of 
water levels in 
regional 
waterways. BOS 
calculates the 
desired deployment 
of each reservoir 
mill for the next 24 
hours and 
schedules use of 
pumping stations 
for the current 
time. 

Adoption of IoT has 
introduced more 
detailed and 
accurate predictive 
analysis for 
management of 
ground water levels 
for the functioning 
of municipal 
sewerage systems. 
IoT has improved 
the effective 
collection, transport 
and processing of 
rainwater by 
updating current 
precipitation 
information 
combined with the 
ground water 
measuring network 
in a framework for 
balancing the 
collection and 
transport of 
rainwater and 
domestic 
wastewater, which 
allows the 
municipality to 
anticipate and 
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Attributes Case Studies 
IoT system name LMW BOS Ground Water 

Measurement 
prepare for the 
collection and 
disposal of large 
amounts of 
rainwater. 

People Differences: 
IoT adoption 
changes perception 
of infrastructure 
service 
 
Derived 
Requirements: 
- The AMDI model 
should be easily 
shared 
- The AMDI model 
should provide a 
point of reference 
for designers to 
extract system 
specifications for 
IoT adoption in 
asset management 
organizations 
 
 

Adoption of IoT 
has allowed 
greater 
transparency of 
conditions in the 
Dutch waterways 
and an increased 
trust in the 
substantiation of 
decision-making, 
as reported by the 
interviewees. The 
functional 
requirements of 
the LMW are based 
on the information 
needs of the RWS 
primary process. 
However, the data 
is also used by 
other users such 
as: 
-Professional users 
like other 
government 
agencies, 
engineering 
agencies, 
universities and 
professional 
services 
-The general public 
such as sailors, 
surfers, etc. 

Adoption of IoT has 
allowed greater 
transparency of 
conditions in the 
Delfland waterways 
and an increased 
trust in the 
substantiation of 
decision-making as 
reported by the 
interviewees. The 
height at which the 
water level of an 
area is set depends 
on the use and 
function of that 
area. For example, 
although water 
levels in wildlife 
areas often 
fluctuates, farmers 
tend to prefer a 
relatively low water 
level to prevent 
their land from 
becoming too wet. 
BOS allows 
Delfland to 
accurately 
communicate 
reasons for 
decisions regarding 
water levels. 

Adoption of IoT has 
allowed greater 
transparency of 
conditions in the 
municipal sewerage 
systems as, for 
example, when 
working in public 
spaces, such as 
road or sewer 
maintenance, the 
Municipality of 
Rotterdam often 
increases the 
ground level to its 
original level. 
Sometimes this 
causes flooding in 
lower lying areas, 
for example in 
gardens that are 
not raised by the 
owner. As such, IoT 
allows the 
Municipality to 
accurately 
communicate 
reasons for 
decisions regarding 
water levels. 

Organizational 
differences: IoT 
adoption changes 
improvement 
processes of 
infrastructure 
service 
 
Derived 
Requirements: 
 
- The AMDI model 
should adhere to 

IoT adoption has 
allowed asset 
managers access 
to greater levels of 
up-to-data 
information 
regarding the state 
of the Dutch 
National 
waterways and has 
greatly increased 
efficiency in the 
collection of this 

IoT adoption has 
allowed asset 
managers access to 
greater levels of 
up-to-data 
information 
regarding the state 
of the regional 
waterways and has 
greatly increased 
efficiency in the 
collection of this 
data, making the 

IoT adoption has 
allowed asset 
managers access to 
greater levels of up-
to-data information 
regarding the state 
of the municipal 
sewerage systems 
and has greatly 
increased efficiency 
in the collection of 
this data, making 
the decision-making 
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Attributes Case Studies 
IoT system name LMW BOS Ground Water 

Measurement 
conceptual 
modelling best 
practices 
- The AMDI model 
should be 
interoperable 
 

data, making the 
decision-making 
less subjective. For 
example, the 
information about 
the state of objects 
from the LMW 
contains real-time 
information about 
pump rotation 
times, lift heights, 
valve positions, 
operating time and 
spray times. 

decision-making 
less subjective. For 
example, this 
means greater 
insight into which 
preventive 
measures should 
be taken regarding 
water pollution if 
severe rainfall is 
expected.  

less subjective. For 
example, insight 
can be gained on 
how salt intrusion 
occurs in regional 
waters. This insight 
can be compared at 
a later stage with 
data on soil erosion, 
and can improve 
insight into the 
correct salt-limiting 
measures. 

 

The following section describes the first view of the explanatory 
case studies and discusses potential benefits and risks of IoT adoption in 
asset management in answer to Research Questions 1b and 1c. 

4.3 View 1: Practice Perspective 
The structure of the exploratory case study descriptions in section 4.3 is 
as follows: 

• Benefits and risks of IoT as a product of human agency 
• Benefits and risks of IoT as a medium of human agency 
• Benefits and risks of organizational conditions of interaction with 

IoT 
• Benefits and risks of organizational consequences of interaction 

with IoT 
 
The various structures of each of the views are presented in the 

introduction of each section. The cases are described in the following 
order: National (RWS), Regional (Water Authority Delfland), and, finally, 
Local (Municipality of Rotterdam). At the end of the section, a comparison 
of the cases is provided. 

4.3.1 LMW – Rijkswaterstaat 

LWM has greatly improved the efficiency, effectiveness and flexibility of a 
wide variety of public services, as the gathering of this data is centralized 
and each service no longer has to gather the data themselves. However, 
in order to be useful, the data needs to be measured in a standardized 
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way. But conditions at the different measuring stations can be location 
specific. Therefore, to reduce complexity, RWS has had to standardize the 
method of converting raw sensor signals to metrics, including validations 
and conversion calculations. This is an internal RWS standard. LMW has 
also faced serious IT infrastructural limitations as there are various 
aspects that determine the limit of the life span of a measuring station 
such as availability of components, a dependable producer of 
components, the number of suppliers with similar components, life 
expectancy of the components, and maintainability of the software etc. 
These are areas where RWS sees opportunities for consolidation.  

Automating data collection has produced large quantities of high 
quality data which allows RWS and other parties to identify trends over 
time. However, data quality issues have also been experienced. For 
example, salt content is not measured directly but calculated from the 
measured electrical conductivity (Ge) and the temperature (Tw) of the 
water. The current and stored salt content data is used by various 
agencies. For example, by the Hydro Metric Center (HMC) and Applied 
Research Water (TOW) for monitoring and controlling the salt / freshwater 
aquaculture. Ship owners use salt data for determining load capacity and 
depth of ships, lockers and bridge guards, and the data is also used by 
drink water companies, and by water boards for agriculture, etc. In 
addition, the measured data is stored in DONAR (Data Storage, Water, 
Rijkswaterstaat) after validation. DONAR is a large (archived) database 
for the storage of water data. The electrical conductivity and the 
temperature of the water are measured with sensors (inductive 
measuring cell type FSI CTS-C1DH CT). The challenge here is that 
measurements of sensors can be polluted (due to algae growth, etc.) so 
that the signal weakens and reduces the quality of the measurement. To 
ensure reliable measurements these sensors need to be regularly checked 
and cleaned. Pollution of the measurement is (amongst other things) 
dependent on the temperature, light (the season), and the type of water 
(salt or fresh). The duality here is that regular maintenance of the sensor 
network needs to be carried out, work which previously did not exist, and 
which adds to the total cost of ownership of the data. Furthermore, the 
risk exists that incorrect data due to quality issues such as those detailed 
above corrupt the system leading to incorrect actions being taken based 
on incorrect values. 

The centralized gathering of data has greatly reduced the overall 
cost of data collection as a whole, as the data is collected only once by 
one source and shared between partners. The sharing of data as “open 
data” has introduced new revenue streams as businesses are able to 
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provide new services using data created by the LMW network, such as 
developing new models which are used in planning and maintenance or 
to provide services for the maintenance and management of the LMW 
sensors. The duality is that it falls to RWS to bear the total cost of 
ownership of the system, as the data is provided free of charge to all other 
parties as “open data”. According to an RWS official, “because of the 
number of measuring stations and the geographic spread of the sensors, 
implementation and maintenance of the sensor network is a costly affair”. 
LMW enables timely data with regards to the situation in rivers, canals 
and sea via sensors at approximately 640 monitoring sites. Monitoring 
sites are managed and administrated partly by RWS (approximately 300 
physical measurement locations) but also partly by external parties 
(approximately 340 monitoring stations). This means that RWS has to 
maintain departments to perform management and maintenance tasks, 
as well as departments to manage the external parties tasked with 
maintenance of the monitoring stations. The duality is that the system 
has had an integral effect on the organizational structure of RWS, as RWS 
was forced to adopt a splintered approach to maintenance and 
management of the entire system, by outsourcing the maintenance of 
parts of the system and managing parts of the system themselves. This 
is due to a perceived lack of technical knowledge in the market and the 
wide variety of different types of equipment with different coupling 
technologies used by the measuring stations. Furthermore, because of the 
complexity of the system, there are a number of interoperability issues 
and there is a serious lack of knowledge which has forced RWS to continue 
to maintain the system itself. There are at least 30 different types of 
sensors used in the network. There are also several different types of 
external links to other organizations for the exchange of data. 

Water levels in shipping are closely monitored to ensure that ships 
of a certain class are able to traverse the shipping lanes. At periods of low 
water levels, for example, certain classes of ship have too deep a keel and 
would get stuck on the bottom. Also, if the water levels are too high, some 
classes of ships would not be able to pass under bridges. It has happened 
that ship captains misjudge the clearance of the bridge and collide with 
the bridge causing major structural damage. LMW provides detailed, up 
to date data to help prevent this from happening. Clearances are able to 
be judged more finely and regulations can be made more efficient and 
can be more efficiently enforced. The duality is that LMW has changed 
how shipping is managed. RWS now has more control over the water 
levels in the water system and can communicate these levels to captains 
who are able to time their trips more finely. Captains are always ultimately 
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responsible for accidents involving bridges which are too low, but the 
duality is that reliance on IoT data for planning purposes may lead to 
reduced levels of concentration for location specific issues. This case 
shows that legal frameworks may need to be further developed where 
discrepancies arise between communicated water levels based on IoT 
data and actual local water levels. 

This distribution of data greatly improves the transparency of the 
decisions and advice given by RWS such as when to close the storm surge 
barriers or when certain waterbodies are restricted to public access. 
Citizens have been empowered to decide where and when they wish to 
swim in open water, as the water quality of open water bodies is now 
publicized. Figure 4-13 below shows a screen shot of the swimming water 
quality app, developed to empower citizens.  

LMW has greatly contributed to the advanced forecasting of water 
levels and the monitoring of trends. But, LMW also includes data from 
third parties, including water data from foreign countries and other public 
organizations within The Netherlands. RWS is restricted from sharing 
externally created LMW data with other third parties due to requirements 
imposed on them by the participating parties. The LMW measures a wide 
variety of hydrological data such as water levels, flow rates, wave heights 
and directions, flow velocity and direction, and water temperature. LMW 
is a mission-critical network which is vital to the national security of The 
Netherlands. This requires continuous and distributed monitoring and 
management. The duality is that security is of vital importance to the LMW 
system, and RWS has had to ensure that redundancy is built into the 
system wherever possible to ensure continuance of service.  

Storm surge barriers are movable dams in estuaries and 
waterways. They protect sensitive areas from flooding. Storm surge 
barriers are often used to protect harbors, and these need to be closed in 
times of high water. The LMW makes it possible to automate this process 
based on accepted norms and using well tested models, greatly reducing 
the time required to act in emergency situations. The risk is that if LMW 
distributes incorrect data due to either mechanical or human defects, the 
system may erroneously indicate that the storm surge barriers should 
close when this is not necessary, or worse, that the surge barriers should 
not close when it is necessary. Closing a storm surge barrier unnecessarily 
can have enormous economic impact as shipping is unable to offload 
goods according to schedule. 
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Figure 4-13: Screen shot of the swimming water quality app 
(http://www.zwemwater.nl/home) 

If a storm surge barrier does not close when necessary, the 
consequence for The Netherlands may be a national disaster due to 
(potential) widespread flooding. As such, if water levels reach 3 meters 
above Amsterdam ordnance zero, and there is no further intervention, the 
arms of the "Maeslantkering" (Maeslant storm surge barrier) are activated 
automatically. Under normal circumstances, these doors are fully opened, 
so that the ships have access to the port of Rotterdam. The intention is 
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that the barrier should only be closed under exceptional circumstances - 
no more than once or twice every ten years. The doors are stored in 
docks, which lie along both shores.  

4.3.2 BOS – Water Authority Delfland 

The Water Authority Delfland is known as a water board that attaches 
great importance to innovations. In this context, Delfland sees 
opportunities to support and optimize its primary processes by using 
smart IT. Within the water board, a lot of information is gathered on site 
("in the field"), for example by inspectors, subcontractors, and so forth. 
The handling of such work is traditionally done through an administrative 
process and partly by hand. The introduction of modern devices like 
smartphones and tablets, has meant that this process is performed faster 
and more efficiently. In concrete terms, this means greater insight into 
the locations where rainwater storages are located in the Westland area 
and what its effect on water management is. On a more operational level, 
if severe rainfall is expected, water pollution can be limited by taking 
preventive measures, such as premature spraying and premature 
discharge of existing basins, then storing excess rainwater in these 
existing basins. Water Authority Delfland’s ambition is to get more 
information from the already known source data by combining it with 
other available data sources such as IoT data, GIS data and weather 
forecasts or tidal information. Water Authority Delfland has IoT data 
sources for water levels, and a separate database for water quality. A 
separate database is also maintained for the management of assets. 
These databases are semantically linked.  

Delfland employees 'in the field' often arrive at unexpected 
situations on a daily basis, such as faulty equipment, broken installations, 
cracks in dykes, and so forth. But it still often takes a lot of effort to get 
access to the right asset information to able to make judgments on the 
correct course of action. In addition, they have to provide through a fairly 
cumbersome (paper) administrative procedure for repairs. Rapid access 
to data sources in the field can make this process more efficient. But, 
actions taken based on incorrect data may be counterproductive and 
expensive, creating problems for the organization as a whole. Officials at 
the Water Authority Delfland have quoted this risk as being the reason 
why they spend a good deal of time on ensuring that they have a good 
overview of their data landscape. This is important in case of calamities. 
For example, one official at Water Authority Delfland gave an example of 
an instance when a particular water way emptied at rate which astonished 
everyone at the time. When looking at the data, the reason was not 
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immediately obvious, but it eventually became clear that there was an 
open culvert which they did not know existed which was causing the 
drainage. If the asset managers had known that the culvert was there 
they would have thought of this first, but trusting the data in this case led 
them away from the solution.  

To prevent similar cases happening regularly, Water Authority 
Delfland has an extensive data management process operating within the 
organization. Water Authority Delfland focusses on ensuring data quality 
during data creation. Data that is generated automatically through IoT is 
considered of high quality. However, this data often needs to be linked 
with other, static data in order to be able to gain the potential benefits. 
Water Authority Delfland believes that it is necessary to make demands 
on the quality of the data. Officials believe that there are differing levels 
of maturity regarding data quality management. An official quoted data 
quality issues as having negative effects on the budgets of asset 
managers which led to increased levels of effort. This shows duality as 
data quality led to additional roles being defined within the organization 
to manage the data. Water Authority Delfland has an administrative team 
to ensure that the data is in order, and there is political pressure to deliver 
results. The political head of the Water Authority, the “Dyke Duke” is 
quoted by officials as being in favor of a number of drivers including data 
management and that they have therefore embraced an extended work 
plan, including introducing the role of data owner. As such, a great deal 
of time has been spent on managing teams. Also a great deal of 
consultation work has been carried out with a particular look at improving 
cooperation, the example quoted was that of Ijkdijk. The duality is that 
Water Authority Delfland still needs people to validate the data, despite 
the automation of the data collection through the application of sensors. 
In the field, especially in a densely populated area, the asset 
infrastructure is changing constantly, as assets are replaced and renewed 
and these changes need to be reflected and validated in the system to 
ensure that the system reflects the situation on the ground. At Water 
Authority Delfland, this work has been organized in teams, with the idea 
being that teams share responsibility for the data. This team forming (to 
ensure data quality) has had a significant impact on the organizational 
structure due to reorganization, as well as the organizational culture as 
teams become more data oriented.  

The penetration of salt through the Park Locks in Rotterdam on the 
river Schie is a known phenomenon. The main water system (the Nieuwe 
Waterweg) and the Schie (Water Authority Delfland area) merge at the 
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Park Locks. Figure 4-14 below depicts an overview of the Parks Locks as 
seen from the Euromast in Rotterdam. 

 

 

Figure 4-14: Overview of the Parks Locks Seen from the Euromast (Rijksdienst voor het 
Cultureel Erfgoed, 2015) 

By establishing a new regional measurement network and by 
combining (data) in a customized model, insight can be gained on how 
the salt intrusion occurs in regional waters. This insight can be compared 
at a later stage with data on soil erosion, and can also be based on salt-
limiting measures (rinsing, regulation of sluice times, etc.). This case 
shows that adoption of IoT has duality as asset management processes 
need to be restructured based on new insights. As such, Water Authority 
Delfland are also exploring how intelligent handling of information, such 
as how much storage capacity is available in shelter reservoirs, can be 
anticipated, and how to deal with water pollution in a particular area as 
soon as possible. Becoming more data driven has led to deepened 
awareness within Delfland how important it is to connect information and 
data from different data sources. Previously this was limited and only 
possible with great effort. A technical solution has been sought for these 
issues due to the need to connect different databases and systems. 
Delfland can now access, and make available, various data to and from 
their own technical environment. The duality is that implementing this 
ESB and various related projects has also led to more integrated 
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cooperation between the various departments of the Water Authority 
Delfland.  

However, some officials interviewed also suggested that Water 
Authority Delfland may still be distracted from data collection via the Open 
Data principle. In addition to the suspicion that others may use data for 
"reasons other than intended", there is still insufficient assurance as to 
the liability of organization that generates data and provides it to a user. 
As such, this case shows the duality that Water Authority Delfland has 
been structured by technology by developing and implementing a 
standard disclaimer when making their own data available to third parties. 
Officials believe that the reason for not making data available is “because 
of the loss of control over where the data is used or how”. This fear 
decreases as it is known that the situation already exists in some form 
such as with the Dutch National Base Registrations and the knowledge 
that data from third parties may add value. The belief holds that data 
sharing is only useful if users know what data is available and how the 
data adds value to primary processes. 

At Water Authority Delfland, asset management focuses on 
ensuring acceptable risk at a coordinated level. But the feeling expressed 
by some of the interviewees is that “a good deal of knowledge still resides 
in the heads of experts”. The risk being that as the organization ages, it 
becomes harder to quantify this expert knowledge or make it explicit, and 
the organization becomes difficult to manage. Some of the interviewees 
believed that “when asset management is carried out by individuals in this 
way, an attempt is always made to ensure perfection as professionals, by 
nature, take pride in their work”. However, perfection is costly and often 
not always necessary. By becoming more data driven, Water Authority 
Delfland believes that asset management can be approached in a more 
centralized manner in which the risk of failure can be weighed up in a 
more objective manner at a higher system level. The example given was 
that when dredging or planting activities are required, it is also necessary 
to take into account risks of going over budget. The duality is that it is 
necessary to put a more structured maintenance regime into place, but 
this is only possible with high quality data and central information control. 
This case shows that adoption of IoT structures organizations by moving 
the span of control over assets from individual asset managers with high 
levels of local knowledge, to a more centralized, system-based way of 
working. 
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4.3.3 Ground Water Measurement – Municipality of 

Rotterdam 

The municipal sewerage plan sets out the approach for the most urgent 
foundation risk areas (areas with wooden pole foundations, which pose a 
risk of wood rot due to dryness). The ambition in 2016 was to replace 
eighty km of leaking sewage before 2021 in these areas. However, it was 
assessed that this ambition was insufficiently substantiated. It was 
decided that the approach in these areas required more research into the 
relationships between sewerage, groundwater and foundation damage. 
Figure 4-15 below shows a screen shot of the “Foundation Window”, an 
application which shows the risk level of areas in Rotterdam. 
 

 

Figure 4-15: A screen shot of the “Funderingsloket” – an application showing the risk 
levels of wood rot in Rotterdam 
(https://rotterdam.maps.arcgis.com/apps/MapSeries/index.html?appid=e0ff1f373bca4574
a751529c7bc536d7) 

In 2014, the Groundwater Quantity Bill (2011) was evaluated by 
Rotterdam Municipality based on a number of cases (Municipal Sewerage 
Plan 3, 2015). The evaluation showed that the criteria with which 
structural groundwater underload is objectively decided is not yet entirely 
established. The suggestion is that the current criteria for structural 
groundwater pollution cannot be applied in setting-sensitive areas due to 
environmental impacts of, for example, undeveloped buildings. It was 
therefore difficult to determine objectively whether a measure is effective. 
As such, the ground water measuring network has been greatly extended 
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by more than 300 measuring tubes to circa 2000, the data of which is 
available on the internet. It is important to note that Rotterdam 
municipality only manages sensors which have been placed on public land. 
The purpose of expanding this network was to ensure that groundwater 
issues do not become a structural barrier to land use. The data provided 
by the ground water measuring network shows a distinct correlation 
between actual ground water status and the number of reports and 
complaints regarding issues due to surface water fluctuations. The duality 
is that Rotterdam Municipality now works far more proactively by taking 
these issues into account in areas of development or replacement of 
sewage, instead of reactively waiting for complaints. Rotterdam 
Municipality is now also able to communicate more efficiently with the 
public, as well as being able to introduce extra facilities such as extra 
drainage, watercourse hardening and wadi's before disruptions and public 
inconveniences occur. As such the ground water network contributes 
extensively to improving the public perception of Rotterdam. 

Rotterdam has implemented asset management in the municipal 
organization, and because the budgets are limited, more substantiated 
accountability is required and the role of the Government changes. The 
goal being “to make budgets even more effective and to manage assets 
more efficiently”. The latest techniques and models, driven partly by data 
from the ground water network, are used for this. In the words of 
Rotterdam officials, “it is no longer the accepted norm, but the balance of 
risk and cost that determines the decision to repair or replace an asset”. 
This ensures clarity as to the considerations are for a decision. In this 
plan, Rotterdam further fulfills its role as a supporting governing body, 
ensuring empowerment of citizens by encouraging private parties to be 
self-reliant and to take responsibility for mitigation measures in the 
(waste) water chain, such as in the field of drainage and groundwater 
measurement. Rotterdam officials believe that governments are 
becoming increasingly believable, but this believability “is reliant on 
releasing information based on quality data”. Guaranteeing quality of data 
within the Rotterdam data infrastructure is seen by officials as being 
highly complex and reliant on high levels of “missionary work” to ensure 
that awareness of data quality remains high.  At the time of writing, it 
was reported that “no structural insight into the quality of the data was 
being made”. It was felt that at the operational level, people know the 
quality and take action where necessary, but if when people doubt the 
quality of the data, they keep their own registrations, without legacy 
metadata. It was reported that plans were being made to address his in 
a structural way. 
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Using IoT data to drive decision making, the Rotterdam Municipal 
Sewerage Plan attempts to achieve a number of goals. A primary goal is 
urban waste water collection and transportation. Virtually all properties 
on the municipal area of Rotterdam, including the Greenhouses, have 
municipal sewerage or have an individual wastewater treatment system 
(IBA). Owners of houseboats are motivated to connect their houseboats 
to the sewerage system and obtain advice from the municipality. 
According to Rotterdam officials, the planned replacement of free trap 
drainage has also been achieved, using indicators like age, type of 
system, settlements and hydraulic function etc. The duality shown is that 
management and maintenance of the sewerage network is becoming 
increasingly regional or district-oriented. This territorial approach, also 
shows a gradual process of alignment with external parties. 

Another primary objective of the municipal sewerage plan is the 
effective collection, transport and processing of rainwater. The rain radar 
(2015) on the building “Delftse Poort” updates current precipitation 
information, and, combined with the ground water measuring network 
(amongst other sources) in a framework for balancing the collection and 
transport of rainwater and domestic wastewater, allows the municipality 
to anticipate and prepare for the collection and disposal of large amounts 
of rainwater. This case demonstrates duality as one of the applications is 
the "green roofs" stimulus program. Figure 4-16 below depicts an 
example of a “green roof” in Rotterdam. The application of IoT data has 
stimulated about 140,000 m2 of green rooves over the last 5 years. As 
such, IoT data is beginning to structure how Rotterdam develops as a city. 
Furthermore, insight into the hydraulic functioning of the system allows 
Rotterdam municipality to ensure prevention of disruptions due to water 
fluctuations and to ensure security from flooding. Insights provided by the 
data has meant that the sewage system can process the fallen 
precipitation according to the design standards without disruptions due to 
unwanted surface water. Evaluations of extreme precipitation events 
demonstrate the robustness of the system which contributes to a positive 
public perception. IoT adoption has allowed Rotterdam to actively 
communicate with citizens and companies. Active communication means 
that citizens become more empowered by becoming more aware and 
being more involved in planning activities. For example, citizens are being 
motivated to catch rainwater from their rooves. 
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Figure 4-16: “Green Rooves” in Rotterdam  

Attention is paid to making the responsibilities of the citizen 
explicit. For example, citizens receive information based on IoT data about 
the flood risks and the measures that they can take in such a situation. 
This case shows duality as IoT data drives the policy behind the action 
"tiles out, green in”, which encourages citizens to grow their own gardens 
instead of using tiles, and the action against grease and wipes in the 
sewer. IoT adoption drives the provision of information, as well as 
promoting self-reliance and self-responsibility of residents, education, 
innovation and sustainability. 

4.3.4 Summary of View 1 

Table 4-6 below summarizes the benefits of IoT adoption in asset 
management as identified in the three exploratory case studies. In this 
section we compare the exploratory case studies and answer Research 
Question 1b and 1c. 
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Table 4-6: Benefits of IoT and answer to Research Question 1b. 

Concept Case Studies 

 LMW - RWS BOS - Water 
Authority Delfland 

Ground Water 
Measurement – 
Municipality of 
Rotterdam 

Technology 
changes: 
benefits of IoT as 
a product of 
human agency 
 
 

Adoption of IoT has 
improved flexibility, 
effectiveness and 
efficiency of services 
as asset managers 
are now able to 
respond to changing 
conditions at near 
real-time speeds. For 
example, instead of 
having to wait for 
weather reports and 
decide on actions 
subjectively, asset 
managers are now 
able to automate 
processes such as 
closing storm surge 
barriers based on 
analysis of real-time 
data and accurate 
predictive analysis. 

Adoption of IoT has 
improved flexibility, 
effectiveness and 
efficiency of 
services as asset 
managers are now 
able to respond 
timely to changing 
conditions. For 
example, water 
management of 
local reservoirs and 
polders can be 
largely automated 
based on 
combinations of 
real-time and near 
real-time data. 

Adoption of IoT has 
improved flexibility, 
effectiveness and 
efficiency of services 
as asset managers 
now have up-to-date 
information available 
with regards to the 
functioning and 
capacity of the 
sewerage systems 
and are able to 
timely redirect flow 
based on up-to-date 
local ground water 
levels. 

People changes: 
benefits of IoT as 
a medium of 
human agency 
 
 

Adoption of IoT has 
improved 
transparency of 
decision-making and 
citizen empowerment 
by publicizing 
protocols and 
clarifying when and 
how actions are 
taken. For example, 
citizens and 
transport companies 
are now kept up to 
speed as to when 
flooding may occur 
and when storm 
surge barriers may 
be closed or polder 
reservoirs 
intentionally flooded. 

Adoption of IoT has 
improved 
transparency of 
decision-making 
and citizen 
empowerment by 
publicizing protocols 
and clarifying when 
and how actions are 
taken. For example, 
Delfland works 
closely with garden 
farmers and local 
citizens to maintain 
local water levels 
and stakeholders 
are continually 
informed when and 
how actions are and 
should be taken. 

Adoption of IoT has 
improved 
transparency of 
decision-making and 
citizen 
empowerment by 
publicizing protocols 
and clarifying when 
and how actions are 
taken. For example, 
when the 
municipality 
intentionally raises 
ground water levels, 
citizens and industry 
are now informed in 
a timely manner so 
that appropriate 
action may be taken. 
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Concept Case Studies 

 LMW - RWS BOS - Water 
Authority Delfland 

Ground Water 
Measurement – 
Municipality of 
Rotterdam 

Organizational 
changes: 
Benefits related 
to organizational 
conditions of 
interaction with 
IoT 
 
 

IoT adoption has 
forced the 
introduction of 
tightened regulations 
and has greatly 
assisted the 
enforcement of said 
regulations. For 
example, water 
quality can be locally 
controlled and when 
norms are broken, 
the enforcement of 
environmental 
regulations can be 
more easily localized 
and enforced. 

IoT adoption has 
forced the 
introduction of 
tightened 
regulations and has 
greatly assisted the 
enforcement of said 
regulations. For 
example, garden 
farmers and local 
citizens can now be 
held to greater 
responsibility with 
regards to local 
water management, 
freeing up the 
Water Authority to 
concentrate on the 
bigger picture. 

IoT adoption has 
forced the 
introduction of 
tightened 
regulations and has 
greatly assisted the 
enforcement of said 
regulations. For 
example, whilst 
citizens are being 
motivated to catch 
rainwater from their 
rooves, attention is 
paid to making the 
responsibilities of 
the citizen explicit. 
For example, citizens 
receive information 
based on IoT data 
about the flood risks 
and the measures 
that they can take in 
such a situation. 
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Concept Case Studies 

 LMW - RWS BOS - Water 
Authority Delfland 

Ground Water 
Measurement – 
Municipality of 
Rotterdam 

Organizational 
changes: 
benefits related 
to organizational 
consequences of 
interaction with 
IoT 
 
 

IoT adoption has 
benefitted the 
organization by 
improving planning 
and preventing 
unnecessary 
spending, thus 
reducing cost, 
through greatly 
improved trend 
analysis and 
forecasting. For 
example, investment 
in new assets can 
now be made on 
greatly refined data 
which allows greater 
refinement to future 
flooding models due 
to rising sea levels, 
greater precipitation 
etc. 

IoT adoption has 
benefitted the 
organization by 
improving planning 
and preventing 
unnecessary 
spending, thus 
reducing cost, 
through greatly 
improved trend 
analysis and 
forecasting. For 
example, insight 
has been gained on 
how salt intrusion 
occurs in regional 
waters. This insight 
is compared with 
data on soil erosion, 
and now directs 
salt-limiting 
measures such as 
rinsing, regulation 
of sluice times, etc. 

IoT adoption has 
benefitted the 
organization by 
improving planning 
and preventing 
unnecessary 
spending, thus 
reducing cost, 
through greatly 
improved trend 
analysis and 
forecasting. For 
example, insight into 
the hydraulic 
functioning of the 
system allows 
Rotterdam 
municipality to 
ensure prevention of 
disruptions due to 
water fluctuations 
and to ensure 
security from 
flooding. Insights 
provided by the data 
has meant that the 
sewage system can 
process the fallen 
precipitation 
according to the 
design standards. 

 

Table 4-7 below summarizes the risks of IoT adoption in asset 
management as identified in the three exploratory case studies. 
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Table 4-7: Risks of IoT and answer to Research Question 1c. 

Concept Case Studies 

 LMW - RWS BOS - Water 
Authority Delfland 

Ground Water 
Measurement – 
Municipality of 
Rotterdam 

Technology 
changes: 
Risks of IoT as a 
product of 
human agency 

IoT adoption 
presents a risk to AM 
as difficult 
interoperability and 
integration and 
IT infrastructural 
limitations can cause 
data quality issues 
which may affect the 
quality of predictive 
analysis. For 
example, 
measurements of 
sensors can be 
polluted (due to 
algae growth, etc.) 
so that the signal 
weakens and 
reduces the quality 
of the measurement. 
To ensure reliable 
measurements these 
sensors need to be 
regularly checked 
and cleaned. 

IoT adoption 
presents a risk to AM 
as difficult 
interoperability and 
integration and 
IT infrastructural 
limitations can cause 
data quality issues 
which may affect the 
quality of predictive 
analysis. For 
example, IoT data 
often needs to be 
linked with other, 
static data in order to 
be able to gain the 
potential insights, 
but there are differing 
levels of maturity 
regarding data quality 
management at Delfland, 
and differing levels of data 
quality which reduces the 
reliability of the insights. 

IoT adoption 
presents a risk to 
AM as difficult 
interoperability and 
integration and 
IT infrastructural 
limitations can 
cause data quality 
issues which may 
affect the quality of 
predictive analysis. 
For example, No 
structural insight 
into the quality of 
the data is being 
made. People have 
an idea of the 
quality and take 
action where 
necessary, but when 
people doubt the 
quality of the data, 
they keep their own 
registrations, 
without legacy 
metadata. 

People changes: 
Risks of IoT as a 
medium of 
human agency 

IoT adoption 
presents a risk to AM 
as issues such as 
data quality can 
cause a lack of trust 
and a lack of 
acceptance of the 
results of IoT. For 
example, if LMW 
distributes incorrect 
data, the system 
may erroneously 
indicate that the 
storm surge barriers 
should close when 
this is not necessary, 
or worse, that the 
surge barriers 
should not close 
when it is necessary. 

IoT adoption 
presents a risk to AM 
as issues such as 
lack of sufficient 
knowledge can cause 
a lack of trust and a 
lack of acceptance of 
the results of IoT. 
For example, it is 
difficult to determine 
objectively whether a 
measure is effective 
as the criteria with 
which structural 
groundwater 
underload is 
objectively decided is 
not yet entirely 
established. The 
suggestion is that the 

IoT adoption 
presents a risk to 
AM as issues such 
as data quality can 
cause a lack of trust 
and a lack of 
acceptance of the 
results of IoT. For 
example, citizen 
trust in local 
government is 
reliant on releasing 
information based 
on quality data, but 
guaranteeing quality 
of data within the 
Rotterdam data 
infrastructure is 
seen by officials as 
being highly 
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Concept Case Studies 

 LMW - RWS BOS - Water 
Authority Delfland 

Ground Water 
Measurement – 
Municipality of 
Rotterdam 

Closing a storm 
surge barrier 
unnecessarily can 
have enormous 
economic impact as 
shipping is unable to 
offload goods 
according to 
schedule which 
would severely 
impact the trust that 
people place in the 
system. 

current criteria for 
structural 
groundwater 
pollution cannot be 
applied in setting-
sensitive areas due 
to environmental 
impacts of, for 
example, 
undeveloped 
buildings. 

complex and reliant 
on high levels of 
“missionary work” 
to ensure that 
awareness of data 
quality remains 
high. 

Organizational 
changes: 
Risks related to 
organizational 
conditions of 
interaction with 
IoT 

IoT adoption 
presents a risk to AM 
as issues such as a 
lack of clarity with 
regards to decision-
making frameworks 
can create 
uncertainty as to 
what data may or 
may not be used and 
what the 
organizational 
consequences are 
for non-compliancy. 
For example, RWS 
maintains an open 
data policy, but is 
restricted from 
sharing externally 
created LMW data 
with other third 
parties due to 
requirements 
imposed on them by 
the participating 
parties. This creates 
tension as it is not 
always clear which 
data falls under the 
open data policy and 
which not. 

IoT adoption 
presents a risk to AM 
as issues such as a 
lack of clarity with 
regards to decision-
making frameworks 
can create 
uncertainty as to 
what data may or 
may not be used and 
what the 
organizational 
consequences are for 
non-compliancy. For 
example, Delfland 
may still be 
distracted from data 
collection via the 
Open Data principle 
due to the suspicion 
that others may use 
data for purposes for 
which it is not 
meant. There is still 
insufficient assurance 
as to the liability of 
Delfland with regards 
to data use by third 
parties. 

IoT adoption 
presents a risk to 
AM as issues such 
as a lack of clarity 
with regards to 
decision-making 
frameworks can 
create uncertainty 
as to what data may 
or may not be used 
and what the 
organizational 
consequences are 
for non-compliancy. 
For example, it is 
difficult to 
determine 
objectively whether 
a measure is 
effective as the 
current criteria for 
structural 
groundwater 
pollution cannot be 
applied in setting-
sensitive areas due 
to environmental 
impacts of, for 
example, 
undeveloped 
buildings. 
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Concept Case Studies 

 LMW - RWS BOS - Water 
Authority Delfland 

Ground Water 
Measurement – 
Municipality of 
Rotterdam 

Organizational 
changes: 
Risks related to 
organizational 
consequences of 
interaction with 
IoT 

IoT adoption 
presents a risk to AM 
as issues such as 
high implementation 
costs can be a 
deterrent for 
innovation. For 
example, it falls to 
RWS to bear the 
total cost of 
ownership of the 
LMW system, 
although the data is 
provided free of 
charge to all other 
parties as “open 
data”. Because of 
the number of 
measuring stations 
and the geographic 
spread of the 
sensors, 
implementation and 
maintenance of the 
sensor network is a 
costly affair. 

IoT adoption 
presents a risk to AM 
as issues such as 
high implementation 
costs can be a 
deterrent for 
innovation. For 
example, rapid 
access to data 
sources from the 
field and data from 
the outside location 
can make the AM 
process more 
efficient at Delfland, 
but actions taken 
based on incorrect 
data may be 
counterproductive 
and expensive, 
creating problems for 
the organization as a 
whole. 

IoT adoption 
presents a risk to 
AM as issues such 
as high 
implementation 
costs can be a 
deterrent for 
innovation. For 
example, as 
municipal budgets 
are limited, more 
substantiated 
accountability is 
required and the 
role of the 
Government 
changes. 

 

4.4 View 2: CAS Perspective 
The structure of the exploratory case study descriptions in this section is 
as follows: 

1. Components of AMDIs 
2. Data Governance 
3. Environments of AMDIs 
4. Behaviors of AMDIs 

The various structures of each of the views are presented in the 
introduction of each section. The cases are described in the following 
order: National (RWS), Regional (Water Authority Delfland), and, finally, 
Local (Municipality of Rotterdam). At the end of the section, a comparison 
of the cases is provided. 
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4.4.1 LMW - Rijkswaterstaat 

LMW demonstrates evolution as the current system was created by 
merging three previous existing, but separate monitoring networks: the 
Water Monitoring Network, which monitors inland waterways such as 
canals and rivers; the Monitoring Network North, which monitors North 
Sea oil platforms and channels; and the Zeeland Tidal Waters Monitoring 
Network which monitors the Zeeland delta waterways. LMW also includes 
data from third parties, including water data from foreign countries and 
other public organizations within The Netherlands. LMW is a mission-
critical network which is vital to the national security of The Netherlands. 
This requires continuous and distributed monitoring and management. 
Security is therefore of vital importance to the LMW system, and RWS has 
ensured that redundancy is built into the system wherever possible to 
ensure continuance of service. As such this case shows the importance 
and complexity of managing and being aware of the rugged environments 
in which LMW is operating. 

The complexity of LMW consists of, amongst others, the technical 
and organizational elements below. The network intelligence system is 
part of a mission critical circuit. Data is continuously measured and 
distributed. There is a rollout of local LMW functions at a large number of 
measurement locations where conditions may be location-specific. There 
is a tension between existing RWS sensors and external data 
requirements, on the one hand, and internal and external systems on the 
other. LMW operates on centralized software on virtual servers 
(VMWARE). RWS uses the following standard building blocks: Mule ESB, 
for the Mission Critical Chain Distribution Layer, and Ultimo which 
supports the configuration management of LMW, the building block, 
datacom for the Central LAN – WAN, Local data combination. LMW as a 
solution is encompassed within the Water domain architecture of RWS and 
is modular. In order to prevent trend failure, the method of converting 
raw sensor signals to measured values, including validations and 
conversion calculations, is prescribed in the RWS Internal (RMI) standard. 
The following requirements are important for RWS: reliability of sensor 
data; system availability (99.5%); level of effort for scalability of 
performance of the solution; product sustainability (functional technology 
and application management); degree of install-ability of local LMW 
features; automated testability of the chain, for both correct and incorrect 
situations.  

There is also a high level of organizational complexity. It is 
required that the delivery of measurement data is guaranteed during the 
execution of any changes. There is a coordination of work between 
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different parties, for example, for the deployment of local LMW functions 
at the measurement locations it is necessary to include the services of the 
manager of the LMW Management and Maintenance Measurement 
Locations. Other organizational complexities include the fact that the RWS 
Technical Application Management (TAB Team) is forced to perform all 
development work in the production environment. System building blocks 
are managed by various external parties; and environments for testing 
and acceptance of new software are managed by an external party. 
Furthermore, the RWS CIV operates under certain quality assurance 
situations, including remote control of the supplier, with the most 
important management tool being a quality system of delivery.  

The environment in which LMW operates is important as LMW 
provides a complete technical infrastructure for the gathering and 
distribution of water data and delivers the data to various stakeholders 
within and outside RWS such as the Storm Surge Barriers, hydro-
meteorological centers, municipal port companies (among others Port of 
Rotterdam), flood early warning services and other private parties. As 
such, LMW monitors a wide variety of large water systems, from the North 
Sea and Wadden Sea to large rivers and canals such as the Maas and the 
Amsterdam-Rijn Canal. The monitoring system is therefore spread over a 
wide geographical area and monitoring stations can be found in the water, 
on land and on drilling platforms.  

The cultural and political environment of RWS is also important, as 
attitude and behavior have a large impact on the development and quality 
of the system being maintained. Due to political and economic forces, 
RWS has undergone a large transition over the last ten years and has 
implemented an agency model, whereby much of the maintenance of the 
systems and the assets have be outsourced to external contractors. This 
has also been accompanied by an internal structural change in the 
organization whereby many people have been asked to change work 
locations and new teams have been formed. Business activities have been 
centralized, and the new business model has led to a number of 
reorganizations within the executive boards. As such, transparency and 
open communication within LMW as well as short lines of communication 
needed to be rediscovered. Attitude and behavior therefore remain 
underexposed. According to a number of interviewees, “some LMW 
processes were adjusted too quickly”. Interviewees suggested that 
“smaller contracts and a number of facility tasks should may have been 
better positioned with the line managers”. A lot of employees in business 
management came after centralization in a new workplace a customer 
focused approach was not always as well developed. But, still, the culture 
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of RWS has, for many years, been characterized by a desire to get things 
done and a certain pride in maintaining quality. As such, the culture at 
RWS is “to constantly strive to provide reliable management information, 
transparency, clear management lines and one central system”. The 
traditional separation between engineer, manager and accountant is no 
longer visible. Departmental and district managers and project managers 
are fully responsible for content and budget. Transparency has now been 
implemented by clustering small projects, which simplifies control. 

Water levels in shipping are closely monitored to ensure that ships 
of a certain class can traverse the shipping lanes. At periods of low water 
levels, for example, certain classes of ship have too deep a keel and would 
get stuck on the bottom. Also, if the water levels are too high, some 
classes of ships will not be able to pass under bridges. It has happened 
that ship captains misjudge the clearance of the bridge and collide with 
the bridge causing major structural damage. LMW provides, detailed, up 
to date data to help prevent this from happening. Clearances can be 
judged more finely and regulations can be made more efficient and can 
be more efficiently enforced.  

LMW is a mission-critical registration. An Enterprise Architect at 
RWS called LMW one of the RWS core registrations. In the words of the 
Enterprise Architect, “if an organization is commissioned by RWS to build 
an asset, you would like to know where the asset objects are exactly, 
because they will be maintained by us in the future. We did not always 
receive that data automatically in the past. A contractor was required to 
send the bill to the RWS Purchasing Department. Sometimes the data 
needed for maintenance had to be collected after the project was 
completed."  

Being a core registration, LMW provides RWS with operational 
efficiencies. LMW improves efficiency by reducing time in searching for 
the right dataset. LMW reduces the risk that data is hidden in the wrong 
file, reducing the risk of duplications, or incompleteness of data. At the 
time of writing, RWS was completing a project which mapped data 
registrations to the relevant business processes.  

LMW also enables timely data with regards to the situation in 
rivers, canals and sea via sensors at approximately 640 monitoring sites. 
Monitoring sites are managed and administrated partly by RWS 
(approximately 300 physical measurement locations) but also partly by 
external parties (approximately 340 monitoring stations). The locations 
measured include hydrological and meteorological data. Conditions at the 
different measuring stations can be location specific. Meteorological data 
are collected in close collaboration with the Royal Netherlands 
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Meteorological Institute (KNMI). Hydrological data concerning the 
measurement of water levels, flow rate (average amount of water in 
m3/s), wave height and direction, velocity and direction and temperature. 
Also, in some locations water quality is measured in order to assess 
whether the water meets the norms of the European Union Water 
Framework Directive. Meteorological data concerning the measurement of 
wind speed and direction, air temperature and humidity, visibility, air 
pressure and cloud base is also collected. The LMW processes sensor 
information and upgrades this data to qualified readings. This case shows 
emergence as agents (people) within RWS have had to overcome massive 
interoperability issues presented by the technology used by standardizing 
the method of converting raw sensor signals to metrics. There are at least 
30 different types of sensors used in the network. There are also several 
different types of external links to other organizations for the exchange 
of data, as well as large variety, volume and speeds of the data being 
collected. This is an internal RWS standard. By standardizing the method 
of converting raw sensor signals to metrics, including validations and 
conversion calculations LMW also displays dynamism, connectivity and 
adaptation. 

4.4.2 BOS – Water Authority Delfland 

Water Authority Delfland manages a complex water management system 
which includes a large number of assets. In order to gain benefits from 
IoT adoption, Water Authority Delfland has had to ensure that the quality 
of their master asset data system is of a sufficient quality to be able to 
link it to sensor based data. This has required significant levels of 
coordination to discover, document and implement data quality 
requirements. The Polder telemetry system contains all data and reads 
values via an OPC server from the ABB system and also alerts ABB values. 
The ABB system (800XA) is the telemetry system of the bosom mills. The 
ABB system reports continuous values via an OPC server to other 
systems, such as current flow rate (Q), alarm status, artwork status 
(KWan / off = Q> 0). Also, the signal can actively control the bosom mills 
from ABB to BOS; This is entered by the service provider. The OPC server 
is managed by ABB. BOS Delfland reads precipitation levels every 15 
minutes and water levels on the bosom (measured at polder mills). In 
addition, BOS Delfland receives weather forecasts at MeteoConsult every 
15 minutes via FTP. These are 3 files with 1-hour, 3-hour and 24-hour 
forecasts of precipitation (per hour), wind (per 3 hours) and evaporation 
(per day). The responsible level manager indicates which target level 
should be used (and at what time should be reached) and whether a 
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precipitation protocol is active; BOS then calculates the desired 
deployment of bosom mills every 15 minutes for the next 24 hours and, 
via the OPC server, sends a "request" for the ABB system for deployed 
ground for the current moment. Centrale storage is NETAPP FAS3140 in 
HA/cluster mode. 

The complexity lies in the coordination of agents (people), and 
technology, as there are mixed ideas with regards to the responsibilities 
surrounding data management. Most interviewees reported conflicting 
ideas regarding roles and responsibilities. Often work is done ad hoc or, 
in the words of one official, through "data heroes". This is not experienced 
as being efficient. An example given is the creation of assets in the system 
when an error is found. It appears uncertain as to who should correct the 
data in the different systems, and often the work is done twice by 
"heroes", which often leads to differences in the various information 
systems. This has led to a lack of trust in the data. For example, officials 
reported that “reparations to the assets which have been made during the 
week, which need to picked up by another team over the weekend, need 
to be reflected in the data and the second team needs to be able to trust 
the data provide by the first team”. As such, Water Authority Delfland has 
found it necessary to keep systems and registrations at a sufficient level 
of quality. But according to Water Authority Delfland officials the data 
management of the water system and the water chain is not yet 
completely mature and asset managers sometimes find it difficult to carry 
out its core tasks in an adequate and efficient manner. By establishing 
the strategic agreement “Water System and Water Chain”, Delfland has 
committed to improving and maintaining data management. This case 
shows emergence in the following way: during the first quarter of 2013, 
Delft operated under the central direction of a Data Coordinator. But, as 
of September 1, 2012, an interim data coordinator was appointed to 
bridge the intermediate period until the data coordinator was in office. 
Team leaders began a "start-up”, learning by regularly evaluating and, 
among other things, making inventories of the available data and making 
practical arrangements for delivering data for processing in the IRIS 
database and handling mutations in the data. Team leaders reported the 
bottlenecks they encountered, such as time, capacity and money, for 
which temporary practical solutions could be found. 

According to officials at Water Authority Delfland, the data 
administrators discuss the information requirements with users in the 
primary processes, and decide on the data needs based on these 
discussions. Water Authority Delfland has made giant strides in the 
maturity of their data management processes, and there is an overriding 
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goal to continually make data “smarter”, but the feeling expressed by a 
number of interviewees was that there are still many chances for 
improvement. The desire expressed by data managers was not 
necessarily to manage the asset objects themselves but instead to focus 
on managing the data entity, and to then act as a monitoring agent 
whereby maintenance work is outsourced to external parties. According 
to officials, Water Authority Delfland is still monitoring the asset object at 
a local level. If something changes to the object, they often do not feel 
the need to update the data, however, reports were made that this 
situation is improving greatly as people are becoming more aware of the 
need for data quality as improvements to asset management emerge 
through the use of data driven decision making. As such, effective 
communication is identified as being of importance to ensure that the data 
is made available and used to improve asset management processes. 

Improved communication towards the citizen is also reported as 
being desirable. Data managers at Water Authority Delfland cite the 
example that complaints from citizens help to improve data quality. As 
such, participation from agents in the environment of the AMDI can have 
positive effects on the quality of the data. For example, if a permit (or 
denial of a permit) is questioned or objected to, it is important to be able 
to prove the correctness of the decision, which can only be done based 
on the data. IoT adoption has helped Water Authority Delfland to improve 
their asset management processes, but this improvement has had to 
emerge as people begin to trust the data.  

IoT adoption has also helped Water Authority Delfland to empower 
citizens through opening the data to public use, and improving the ability 
of public citizens to notify Water Authority Delfland of discrepancies in 
current and past situations. This shows that the AMDI displays 
connectivity and dynamism. For example, in the Westland area, Water 
Authority Delfland makes resources available to farmers but the farmers 
manage the water flow and quality themselves. As such, Water Authority 
Delfland does not have physical control over the management of the 
assets, but maintain the supervision of the farmers through data analysis.  

Water Authority Delfland officials recognize that releasing IoT data 
as open data is important for innovation, but the feeling is that it is hard 
to predict what the innovations may bring. Water Authority Delfland has 
a registry map (“leggerkaart”) that shows all the water bodies managed 
by Water Authority Delfland. This is a legally binding document. But, 
conversely, Water Authority Delfland also has registers for permits that 
do not fit the official registry. It has happened that the official registry 
had to be adapted based on a separate agreement which meant that a 
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permit was given for the wrong area. Whilst quoting this example, officials 
also mentioned that awareness is greatly improved, but it remains a 
challenge to ensure that teams are sufficiently resourced and have access 
to the right knowledge. It remains a challenge to coordinate the teams, 
and much work is often based on collegiality. It was stated that data 
management is not seen as being exciting work by asset managers, but 
as awareness grows as to the potential benefits of IoT adoption, more and 
more improvements emerge within the asset management process. 

4.4.3 Ground Water Measurement – Municipality of 

Rotterdam 

Asset management activities at Rotterdam Municipality aim at controlling 
risk of facilities and systems failure. The maintenance and replacement 
plans are focused on reducing reduce risks to an acceptable level. All 
facilities for urban wastewater, storm water runoff and groundwater are 
analyzed using this method. By analyzing cause, consequence and failure 
mechanisms and quantifying these risks based on corporate values, 
insight is created as to the correct solution or management measure. 
Prioritization then takes place based on the severity of the risk and added 
value of the control measure. The functioning of the Rotterdam sewage 
system is initially theoretically determined. The starting point is rainfall 
with an intensity which occurs once every 2 years. Variables such as 
climate change, urban development, new construction and asset 
replacements are included. The calculations show how the system is 
expected to function, how much water the system can handle and how 
many flooding situations are theoretical possible. This case shows 
emergence as instruments to model the flow of rain water across the 
street and to portray the possible effects of measures are being 
developed. The calculations also describe environmental performance in 
each area, or how large the theoretical waste emission from the mixed 
sewage system is on surface water. This data is used by the water boards 
to test whether the theoretical waste emission from an overflow may 
cause issues for the water quality of urban water bodies. Rotterdam 
compares theoretical functioning with real-time sensor data. This 
comparison clarifies whether the theoretical calculations give a sufficiently 
accurate view of the system. Also, inspection data provides valuable 
information about the actual functioning of the sewage system. 
Complaints and notifications, inspection data and measurement data are 
combined to provide a complete picture of the actual functioning of the 
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sewage system. As such, this case shows how the improvement of asset 
management through IoT adoption emerges over time. 

Waste water drainage inspections provide a comprehensive picture 
of the stability, drainage and water-tightness of the sewage system. 
Rotterdam municipality uses this information to plan repair and 
replacement work. There are two inspection methods: global (with video) 
or detailed (with driving camera). Evaluation of the inspections of gravity 
sewers takes place on the basis of the Dutch Standard NEN3398 
(European Standard NEN-EN 13508-2). Since 1987, a total of about 67% 
of the gravity system has been inspected by means of well video 
inspection. Detailed inspections help determine the risk-driven approach. 
For asset management, detailed and up-to-date information is required 
about the state and operation of the entire system. The Exchange of 
Information Act (WION) obliges Rotterdam Municipality to maintain a 
current and complete database of sewage facilities. These serve to 
support and substantiate all executive tasks and management tasks. The 
most important tasks that the municipality performs for this purpose 
include periodically updating revision data (replacement and repair of 
sewerage, new construction and demolition). In addition to the 
requirements of the WION, the municipality currently maintains the 
sewage management database by entering and cleaning inspection data, 
and entering data in the management database with regards to wear and 
tear, outlets and boundaries of areas of measurement etc. During the 
planning period, Rotterdam municipality officials review how current and 
complete the sewage management database is and plans are made to 
further improve quality. In addition, Rotterdam stores data on the quality 
(inspection data) of the asset. This data is used by Rotterdam Municipality 
for multiple analyses, including the extent of possible early replacement 
of sewers. The facilitation and standardization of availability and access 
to data is becoming increasingly important, especially in the increasing 
cooperation in the waste water chain. Residents increasingly ask for 
insight into, for example, groundwater. Rotterdam provides information 
on the facilities for wastewater, rainwater and groundwater via the 
Internet and this data is linked to developments for efficient data 
management and system management. 

Rotterdam municipality is a highly complex data infrastructure. 
The complexity can be found in the myriad of dependencies and 
integrations between systems which are managed by different teams and 
in different domains. Careful planning is therefore required during 
development. With regards to planning, Rotterdam Municipality employs 
enterprise architects who work in horizontal domains across departmental 
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silo’s, but planning is also done in vertical domains by domain architects. 
Each domain strives to achieve the same level of quality in their 
information plans. This is done on a yearly basis. Eventually all project 
plans flow out of the year plan and are managed by the portfolio planner. 
Project prioritization is done based on the business plans which are 
developed by the business in the primary processes. Rotterdam officials 
state that a major challenge is ensure cohesion for individual domains. As 
such, all architects are members of the architectural board. Domain 
architects develop the architectures for their own domains and provide 
direction for the service providers of their particular domain. A challenge 
quoted by the domain architects is that “it is important to ensure that 
service providers are able to provide continuity of service whilst systems 
and data are being upgraded”. The architecture board meets weekly in 
order to avoid system failure and ensure that all dependencies are 
accounted for. 

4.4.4 Summary of View 2 

This section compares the case studies with respect to view 2, and 
answers Research Question 2. Table 4-8 below summarizes the elements 
of AMDIs as identified in the three exploratory case studies. Table 4-8 
also derives requirements for the design of the AMDI model. 
 

Table 4-8: Elements of AMDIs and answer to research question 2a 

Concept Case Studies 

LMW - RWS BOS - Water 
Authority 
Delfland 

Ground Water 
Measurement – 
Municipality of 
Rotterdam 

Components    

Data 
 
Derived 
Requirements: 
 
-The AMDI model 
should describe all 
forms of IoT data 
included in the AMDI 
- The AMDI model 
should describe all 
forms of metadata of 
IoT data in the AMDI 

Multiple 
measurement data 
(e.g.): 
-water temp. 
-water depth 
-wave height 
-wind speed 
 

Realtime 
measurements 
from Delfland 
telemetry, 
Measurements 
(e.g.): 
-water levels,  
-met-information 
-flow rates 

Measurements 
indicate the 
groundwater 
level relative to 
NAP.  
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Concept Case Studies 

LMW - RWS BOS - Water 
Authority 
Delfland 

Ground Water 
Measurement – 
Municipality of 
Rotterdam 

Technology 
 
Derived 
Requirements: 
 
- The AMDI model 
should describe the 
technical 
infrastructure which 
enables the AMDI 
- The AMDI model 
should describe the 
application landscape 
which enables the 
AMDI 
 

Multiple sensor and 
messaging types 
(e.g.) 
RJ45 Ethernet, 
across different 
media, such as 
DSL, UMTS, RAM 
mobile.  
  

Values read via a 
server from the 
telemetry system 
of the water mills  

Automatic 
pressure sensors 
consist of an 
electronic 
pressure sensor 
coupled to a data 
logger, which 
registers the 
measured 
hydrostatic 
pressure at a 
given frequency.  

Agents 
 
Derived 
Requirements: 
 
- The AMDI model 
should describe the 
human and 
organizational agents 
driving the AMDI  
- The AMDI model 
should describe the 
technological agents 
driving the AMDI 
 

Multiple agents and 
varying levels (e.g.) 
-International orgs. 
-National orgs. 
-Internal divisions. 

Multiple agents and 
varying levels 
(e.g.) 
-Meteorology orgs. 
-Internal 
departments 

Multiple agents 
and varying 
levels (e.g.) 
-Meteorology 
orgs. 
-Internal 
departments 
 

Data Governance 
(see view 3 for in-
depth analysis) 
 
 

Contract forming 
between IT org. and 
Water Management 
org. Water 
Management org. is 
data owner 
 

Self-governing 
operational data 
management via 
data managers and 
IT department. 

Self-governing 
operational data 
management via 
data managers 
and IT 
department. 
 

Environments 

Physical 
 
Derived 
Requirements: 
- The AMDI model 
should describe the 
physical environment 

-Very large area 
(country-wide) 
-Multiple large 
waterway types -
Seas, Large and 
small rivers, canals 
etc. 
 

-Large area 
(multiple 
municipalities) 
-Multiple small 
waterway types 
such small and 
medium canals, 
and small rivers 

-Middle-large 
area  
-Mostly sewerage 
systems 
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Concept Case Studies 

LMW - RWS BOS - Water 
Authority 
Delfland 

Ground Water 
Measurement – 
Municipality of 
Rotterdam 

within which the 
AMDI is located 
- The AMDI model 
should describe how 
the physical 
environment affects 
the AMDI 
 

 

Cultural 
 
Derived 
Requirements: 
- The AMDI model 
should describe the 
cultural environment 
within which the 
AMDI is located 
- The AMDI model 
should describe how 
the cultural 
environment affects 
the AMDI 
 

Transparent, “get 
things done” 
attitude, but also 
adjustment to new 
ways of working and 
new organizational 
structures which 
blurs lines of 
responsibility.  

The flexibility and 
robustness 
required realize the 
necessary 
adjustments has 
proved to be a core 
quality. 

Rotterdam is 
known as a city 
with a “don’t just 
talk, but get the 
job done” 
attitude.  

Political 
 
Derived 
Requirements: 
 
- The AMDI model 
should describe the 
political environment 
within which the 
AMDI is located 
- The AMDI model 
should describe how 
the political 
environment affects 
the AMDI 

Move towards 
agency forming 
whereby much of the 
maintenance work is 
outsourced, causing 
necessary changes to 
ways of working.  

Delfland operates 
largely 
independently, but 
budget and 
strategic policy is 
set by the elected 
officials. 

Move towards 
agency forming 
whereby much of 
the maintenance 
work is 
outsourced, 
causing 
necessary 
changes to ways 
of working. 
Budget and 
strategic policy is 
set by the 
elected officials. 

 

Table 4-9 below summarizes the behaviors of asset management 
data structures as identified in the three exploratory case studies. Table 
4-9 also derives requirements for the AMDI model design. 
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Table 4-9: Behaviors of AMDIs and answer to research question 2b 

Concept 
(Literature) 

Case Studies 

Dynamism 
 
Derived 
Requirements: 
 
- The AMDI model 
should 
accommodate 
dynamism of 
elements within 
the AMDI 
 

LMW – RWS 
The number of agents, their interdependence, and their openness 
to external influences, changes constantly and discontinuously. 
Constant change in LMW is driven by the number of agents, their 
association with their own rules of behavior and the 
interdependence between the agents and their environments. For 
example, as RWS moves towards agency forming and 
restructures the organization accordingly, management and 
maintenance of the system is more and more outsourced, and 
new techniques are introduced. 

BOS - Water Authority Delfland 
The number of agents, their interdependence, and their openness 
to external influences, changes constantly and discontinuously. 
Constant change in BOS is driven by the number of agents, their 
association with their own rules of behavior and the 
interdependence between the agents and their environments. For 
example, IoT adoption has also helped Delfland to open the data 
to public use, improving the ability of public citizens to notify 
Delfland of discrepancies in current and past situations. In the 
Westland area, Delfland makes resources available to farmers but 
the farmers manage the water flow and quality themselves. 

Ground Water Measurement – Municipality of Rotterdam 
The number of agents, their interdependence, and their openness 
to external influences, changes constantly and discontinuously. 
Constant change in BOS is driven by the number of agents, their 
association with their own rules of behavior and the 
interdependence between the agents and their environments. For 
example, Rotterdam Municipality has a highly complex data 
infrastructure. The complexity can be found in the myriad of 
dependencies and integrations between systems which are 
managed by different teams and in different domains. 

Connectivity 
 
Derived 
Requirements: 
 
The AMDI model 
should 
demonstrate 
connectivity  
 

LMW – RWS 
The diversity of skills, strategies and rules of different agents 
within LMW means that it is difficult for a single agent to become 
more useful in an isolated context, so there is a constant 
exchange of information and needs between the components and 
the actors in the system. The relationships are complicated and 
massively entangled because the components are numerous and 
highly interrelated. For example, the network intelligence system 
is part of a mission critical circuit. Data is continuously measured 
and distributed. There is a rollout of local LMW functions at a 
large number of measurement locations where conditions may be 
location-specific. There is a tension between existing RWS sensors 
and external data requirements, on the one hand, and internal 
and external systems on the other. 

BOS - Water Authority Delfland 
The diversity of skills, strategies and rules of different agents 
within BOS means that it is difficult for a single agent to become 
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Concept 
(Literature) 

Case Studies 

more useful in an isolated context, so there is a constant 
exchange of information and needs between the components and 
the actors in the system. The relationships are complicated and 
massively entangled because the components are numerous and 
highly interrelated. For example, data administrators discuss the 
information requirements with users in the primary processes, 
and decide on the data needs based on these discussions, but 
Delfland still needs people to validate the data, despite the 
automation of the data collection through the application of 
sensors. In the field, especially in a densely populated area, the 
asset infrastructure is changing constantly, as assets are replaced 
and renewed and these changes need to be reflected and 
validated in the system to ensure that the system reflects the 
situation on the ground. 

Ground Water Measurement – Municipality of Rotterdam 
The diversity of skills, strategies and rules of different agents 
within the groundwater measurement network means that it is 
difficult for a single agent to become more useful in an isolated 
context, so there is a constant exchange of information and needs 
between the components and the actors in the system. The 
relationships are complicated and massively entangled because 
the components are numerous and highly interrelated. For 
example, project prioritization is done based on the business 
plans which are developed by the business in the primary 
processes, but Rotterdam officials state that it is a major 
challenge to cohesion for individual domains. 

Adaptation 
 
Derived 
Requirements: 
 
- The AMDI model 
should 
accommodate 
adaptations within 
the AMDI 
 

LMW – RWS 
The adaptive behavior of LMW is the result of a strategy which 
combines exploration to maintain diversity, and exploitation to 
reinforce promising tracks. For example, business activities have 
been centralized, and the new business model has led to a 
number of reorganizations within the executive boards. As such, 
transparency and open communication within LMW as well as 
short lines of communication needed to be rediscovered. 
 

BOS - Water Authority Delfland 
The adaptive behavior of BOS is the result of a strategy which 
combines exploration to maintain diversity, and exploitation to 
reinforce promising tracks. For example, Delfland team leaders 
began a "start-up”, learning by regularly evaluating and, among 
other things, making inventories of the available data and making 
practical arrangements for delivering data for processing in the 
IRIS database and handling mutations in the data. Team leaders 
reported the bottlenecks they encountered, such as time, capacity 
and money, for which temporary practical solutions could be 
found. 

Ground Water Measurement – Municipality of Rotterdam 
The adaptive behavior of the groundwater measurement network 
is the result of a strategy which combines exploration to maintain 
diversity, and exploitation to reinforce promising tracks. For 
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Concept 
(Literature) 

Case Studies 

example, Rotterdam compares theoretical functioning with real-
time sensor data. This comparison clarifies whether the 
theoretical calculations give a sufficiently accurate view of the 
system. Also, inspection data provides valuable information about 
the actual functioning of the sewage system. Complaints and 
notifications, inspection data and measurement data are 
combined to provide a complete picture of the actual functioning 
of the sewage system. 

Emergence 
 
Derived 
Requirements: 
 
- The AMDI model 
should 
accommodate 
emergence of 
behaviors within 
the AMDI 

LMW – RWS 
In the LMW system, order emerges as agents govern their own 
rules of behavior and adapt to their environment. Formal order is 
not externally imposed from outside of LMW, but rather emerges 
from interactions between agents. For example, agents (people) 
within RWS have had to overcome massive interoperability issues 
presented by the technology used by standardizing the method of 
converting raw sensor signals to metrics. There are at least 30 
different types of sensors used in the network. There are also 
several different types of external links to other organizations for 
the exchange of data, as well as large variety, volume and speeds 
of the data being collected. 

BOS - Water Authority Delfland 
In the BOS system, order emerges as agents govern their own 
rules of behavior and adapt to their environment. Formal order is 
not externally imposed from outside of BOS, but rather emerges 
from interactions between agents. For example, if a permit (or 
denial of a permit) is questioned or objected to, it is important to 
be able to prove the correctness of the decision, which can only 
be done based on the data. IoT adoption has helped Water 
Authority Delfland to improve their asset management processes, 
but this improvement has had to emerge as people begin to trust 
the data. 

Ground Water Measurement – Municipality of Rotterdam 
In the Groundwater measurement system, order emerges as 
agents govern their own rules of behavior and adapt to their 
environment. Formal order is not externally imposed from outside 
of the measurement system, but rather emerges from 
interactions between agents. For example, instruments to model 
the flow of rain water across the street and to portray the 
possible effects of measures are being developed. The 
calculations also describe environmental performance in each 
area, or how large the theoretical waste emission from the mixed 
sewage system is on surface water. This data is used by the 
water boards to test whether the theoretical waste emission from 
an overflow may cause issues for the water quality of urban water 
bodies. 
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4.5 View 3: Data Governance Perspective 
The structure of the exploratory case study descriptions with regards to 
view 3 is as follows: first the data management organization is discussed, 
then the alignment mechanisms, then the compliancy mechanisms and 
finally the clarification mechanisms. The cases are described in the 
following order: National (RWS), Regional (Water Authority Delfland), 
and, finally, Local (Municipality of Rotterdam). At the end of the section, 
a comparison of the cases is provided. 

4.5.1 LMW - Rijkswaterstaat 

According to a RWS Domain Architect, RWS wants to work in a process-
oriented manner. If RWS invests well in all processes, RWS does its job 
well. As such, all development work at RWS is performed under 
architecture and a domain architect has been allocated to each process. 
There are three architect roles defined to shape the architecture. 
Enterprise Architects monitor the global RWS architecture; Domain 
Architects focus on a specific process; and Solution Architects focus on 
projects and describe the concrete solutions. RWS architects believe that 
the data frame should be implemented at a project level, so that the 
solution architect can take care of the actual implementation. Domain 
architects are at the center of the process. All domain architects have 
been assigned to the process-oriented departments, in the case of LMW 
that would be Water Management. The Department of Data Collection and 
Analysis (IGA) manages all data for all processes. There is an architecture 
meeting, chaired by the enterprise architects, where all processes are held 
together that overlook the entire organization. The Department of 
Strategy and Policy also has the task of implementing works under 
architecture. There must be a coherent whole of applying the data frames 
across all domains. If something goes wrong, the CIO can intervene. 

LMW used to be one department within RWS that was responsible 
for the entire management chain, but is now divided into 10 or 12 
departments, for example "Sensors" and "DataCom". Several of the 
interviewees at RWS noticed that “communication between departments 
is very difficult, which means that problem management can become 
problematic as finding the right people involved can be difficult”. RWS 
therefore decided to include an extra role in the management chain – the 
process director. The process director has a (virtual) team of people 
around them from each separate department. As such, data management 
and functional management falls under their control. RWS also has a 
Quality and Configuration department that checks the data quality 
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according to the validation rules. In the past, managing the LMW assets 
was performed by RWS, but since July 1 2015, the management of the 
assets was conducted under System-Based Contract Management (i.e., 
all maintenance work was outsourced). There are weekly operational 
planning meetings and monthly tactical planning meetings. 

With regards to LMW, users submit their wishes and requirements 
to the Water, Traffic and Environment (WVL) Department. For example, 
with regards to managing a new lock, the prevailing water levels are 
usually requested. WVL submits such a request to the Central Information 
Department (CIV) with the question: can you offer that service? The 
development services department of the CIV will then assess the request. 
If it is decided that LMW is the best source, LMW will give an in-depth 
advice to the requester about what is necessary to be able provide this 
data. WVL annually formulates a Program of Requirements which states 
exactly what RWS needs to deliver, with what quality and what 
availability, and the Process Director ensures that the chain is managed 
in such the way as RWS can offer it. As way of example, one of the 
interviewees cited an example of the nautical administrator in the region 
who might say, "I want to have a channel there”, or, "The channel must 
be wider or deeper". This requires a change to the network. The Large 
Projects Department (GPO) is ordered to realize this. However, RWS also 
wants to keep the data on the network up to date, so the nautical 
administrator in the region needs to modify the data, or create an 
assignment. The interviewee stated that “at RWS, data ownership must 
be where data is created”. Often, there may be the realization that one is 
responsible for the data, but there is often an indication that there is no 
budget or there are not enough people to perform the task.  

Once the service has been developed, the Quality and 
Configuration department then assesses whether the data RWS provides 
complies with the quality requirements. The Program of Requirements is 
updated every year. WVL's questionnaire team then validates the 
requirements: “are they still required, is the quality still good?” This 
supplements the Program of Requirements and extends it. This approach 
also makes it possible to better match the delivered frequency and 
precision of data to the current needs of data carriers. This provides room 
for differentiation in deploying measurement stations. Another step 
further is the 'lighter' execution of the measuring systems. RWS considers 
the LMW system to be very well maintained. From the perspective of the 
Process Director, RWS is more inclined to maintain the existing layout 
and, if necessary, apply patches to keep the system running, rather than 
introduce innovations. 
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LMW is engaged in the collection of water data from rivers and the 
North Sea (water levels, wave height, wave direction, chloride levels, 
oxygen, etc.). The data is used within RWS, but also by external parties, 
for example by the Royal Dutch Meteorological Institute (KNMI), and by 
municipal port companies. The purpose of LMW is to formulate 
expectations and, among other things, make decisions about opening and 
closing of doors and for water level management. RWS has a well-
developed data access network which allows access to users based on 
open standards. Although it creates and manages its metadata locally, 
RWS also makes use of external facilities to publish its data. For example, 
RWS uses the National Spatial Data metadata library, National Geo-
Register (NGR) to publish and find its spatial data. Other data types are 
generally stored in specialized systems such as digital libraries for images 
and digital photography. The metadata for these data types is created, 
stored and searched within the system itself. There are also several 
different types of external links to other organizations for the exchange 
of data. With regards to its data, RWS has implemented a variety of open 
standards in order to maintain compliance to external policies and 
directives, but they have also implemented de facto, industrial standards 
where necessary. The implementation of open standards appears to be 
driven by compliancy constraints, whereas the implementation of 
industrial standards appears to be driven by performance necessity. For 
example, as LMW is a mission-critical network which is vital to the national 
security of The Netherlands, continuous and distributed monitoring and 
management is required. As security is of vital importance to the LMW 
system, RWS has ensured that redundancy is built into the system 
wherever possible to ensure continuance of service.  

The distribution of data greatly improves the transparency of the 
decisions and advice given by RWS such as when to close the storm surge 
barriers or when certain waterbodies are restricted to public access. 
Citizens have been empowered to decide where and when they wish to 
swim in open water, as the water quality of open water bodies is now 
publicized. LMW has greatly contributed to the advanced forecasting of 
water levels and the monitoring of trends. But, LMW also includes data 
from third parties, including water data from foreign countries and other 
public organizations within The Netherlands. RWS is restricted from 
sharing externally created LMW data with other third parties due to 
requirements imposed on them by the participating parties.  
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4.5.2 BOS – Water Authority Delfland 

At Water Authority Delfland, data management is generally 
operationalized within the department “Data Management”. This 
department provides the tools that facilitate the data management 
process. These products are realized and coordinated by the data 
coordinator. The data is managed (partly) by the data administrators. The 
data service desk also shares some data management responsibilities. 
The data service desk publishes data reports on errors and changes. The 
service desk also maintains guidelines for data usage: where can you find 
what, what do you do in certain situations, etc. In addition, the service 
desk maintains the data dictionary (unambiguous definitions), the 
development calendar and manages manuals and protocols. 

The data development calendar is an instrument that provides 
insight into what data is being collected. The data administrator 
determines which developments can be matched and combined. 
Employees are required to report all developments and report them on 
the development calendar, so developments can be combined and 
planned more efficiently. Part of the development calendar is the 
“Recovery Protocol” and the “Program of Requirements”. The “Inventory 
Protocol” describes how the data development process works, who needs 
to be included, how the development calendar works, and where results 
should be submitted, etc. The Requirements Program contains the 
measurement parameters, formats, and the technical requirements to be 
used when measuring data. The data dictionary contains the definitions 
of the data from the minimum set. In addition, various specifications of 
objects and features are included. The data administrators determine the 
contents of the data dictionary. Delfland’s data dictionary includes, as far 
as possible, the national standards (including Aquo and DAMO). In 
addition to internal policies, the frameworks are formed by National and 
European rules and standards, such as the National Base Registrations 
(e.g. BGT), Inspire, and the European Water Directive. These frameworks 
are described in the Data Management Plan and are monitored by the 
data coordinator. At Water Authority Delfland, the main role of the data 
owner is to ensure that data management is implemented according to 
plan and to facilitate data management activities, enabling budget and 
resources. Once budget decisions have been made at the strategic level, 
the role of tactical management is to coordinate data management 
activities and to achieve data (quality) requirements. Challenges 
acknowledged by officials at Water Authority Delfland include identifying 
the correct data owner. The same data sources are often used and 
maintained within different primary processes, and a clear data owner is 
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not always obvious. This makes releasing budget and capacity for data 
management activities sometimes difficult. 

The main role of the tactical data manager is to translate strategic 
goals into operational activities and objectives. As such, many of the 
operational data management activities at Water Authority Delfland are 
organized within projects. Within the projects, roles are divided between 
the data manager, the data administrator and the data owner. The 
difference between the data owner and the data administrator is that the 
data owner is often a tactical line manager, and has a coordinating role, 
whereas the data administrator is operational and manages the data 
itself. As such, the data management function at Water Authority Delfland 
is reasonably self-governing. Tactical managers tend to have a shared 
responsibility and divide the responsibilities amongst themselves. 
Interviewees report that there is quite some fragmentation with regards 
to data management across the organization, but that issues are normally 
resolved amongst the managers in a collegial, team fashion. In the words 
of a Water Authority Delfland manager, “Data is created across the whole 
organization and so the process requires people from throughout the 
organization to get involved and take responsibility. The polder model, 
with coordination, works well!” Tactical line managers at Water Authority 
Delfland rely on the professionalism of their staff and once they have 
provide the process format and have mapped the dependencies tactical 
managers are confident that the process runs to a high level of quality.  

4.5.3 Ground Water Measurement – Municipality of 

Rotterdam 

Rotterdam Municipality has a systematic data governance structure in 
place. Administration of digital maps as data (registrations) and systems 
for automated distribution to internal and external clients is performed by 
the Department of City Development at Rotterdam Municipality. The data 
management process is coordinated by a process manager whose 
responsibility includes the data registration within his or her portfolio. The 
process manager manages effects of changes to registries (data), 
changes to the delivery systems and changes to the client applications. 
The process manager is not responsible for the management of the base 
registrations (such as the large scale topography, “BGT”), but organizes 
the coordination of product quality. For example, bus stops used to be 
registered in GIS systems as lines and planes, but are now registered as 
points. This has consequences for the client applications. As portfolio 
holder, the process manager indicates requirements, with costs, for the 
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annual development plan. Interviewees reported that processes tend to 
be kept small and informal which allows processes to flow better. Data 
management projects are often differentiated in three groups: 1) Group 
preparation; 2) Group business processes; and 3) Group communication 
to clients.  

A lack of efficient communication is reported as being a long 
standing issue. According to Rotterdam officials, “communication used to 
be unidirectional, from the provider to the user which often led to 
frustrations”. But interviewees report that “the introduction of user groups 
has improved the situation considerably”. When errors or complaints are 
reported by the users, the process manager does an initial check to clarify 
the cause of the issue, as once the fault is reported to ICT, the process 
becomes formalized. However, this process is not experienced as being 
an optimal solution and it does not have a standardized solution procedure 
as it relies on a best effort mentality. For example, if the process manager 
is absent, problems may arise. Interviewees suggested that there is 
pressure on capacity and processes are often not documented. Much of 
the local knowledge remains with individuals which can cause disruptions 
if the individual is not present. As such, problem management is often 
reactive. But despite the lack of overall data management framework, the 
process felt to be relatively stable. The groups are small which allows for 
fast reaction times.  

Although governance is in place, interviewees did report that 
“discussions regarding systems or changes to the data can be challenging 
due to a silo mindset”. Changes in the data can have significant effects 
on processes and clients, with dissatisfied users as the result. When 
changes are required to data systems, asset managers address proposals 
to “City Development”, and policy employees at ‘City Development’ make 
estimations of the potential impact on the systems. Final responsibility for 
prioritization and acceptance of changes lies with the Director of City 
Development. The CIO is responsible for developing the data strategy, 
but a number of interviewees remarked that “little true effect of the data 
strategy was felt at the operational level due to multiple management 
layers between the CIO at the strategic layer and the operational layer”. 
As such, current proposed changes are often much smaller than those 
previously made. For example, recent reorganizations have centralized 
data management, but previously data management was fragmented in 
management regions with little central control over information. Local 
knowledge of the data was at a premium which meant that local asset 
managers were able to receive exactly what they wanted, whenever they 
wanted it. Centralizing data management meant that asset managers 
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needed to conform to generic processes which has led to dissatisfaction 
in certain situations.  

Data managers at Rotterdam Municipality believe that the data is 
of a high quality, although there are sometimes differences in the details 
and how people interpret the data. Interviewees reported that “there was 
a high level of awareness of data quality needs at Rotterdam Municipality 
which meant that operational checks are performed constantly during 
operations in an informal way and people assume individual responsibility 
for the data”. For example, quality checks on data are made partly by own 
personnel, and partly external hires. There is an existing format for quality 
inspections, including subjective scales. However, subjective scales can 
differ depending on the inspector, and as such, data quality management 
remains relatively reactive, with a number of interviewees expressing the 
desire to be able to quantify data quality to be certain of the quality of 
the data they are managing. In the words of one interviewee, “I want to 
able to measure the quality of the data without physically going to the 
assets. What is poor data? It is a luxury to be able to send people to check 
if data corresponds to reality. For geometry we are dependent on ‘base 
information’, and enrichment with digital communication data when 
changes occur.” 

The changes mentioned above include changes to the asset 
infrastructures performed by subcontractors. Officials at Rotterdam 
Municipality believe that subcontractors often prefer to pay fines than to 
provide the data about the replaced or renovated asset. Inspections of 
data provided by subcontractors remain informal, although with the 
inclusion of service level agreements which include provisions for data 
such as a data delivery agreement, informal lines are beginning to 
dissipate. However, trust (in the professionalism of co-workers and 
contractors) is an important part of the data management process. People 
remain uncertain of their responsibilities, but trust each other to get the 
job done. 

4.5.4 Summary of View 3 

This section compares the case studies with respect to view 3, and 
answers Research Question 3. Table 4-10 below compares the three 
exploratory case studies. Table 4-10 also derives requirements for the 
AMDI model design. 
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Table 4-10: Comparison of the data governance of the case studies and answer to 
research question 3 

Data Governance 
Concept  

Case Studies 

Organizational 
capability 
 
Derived 
Requirements: 
 
- The AMDI model 
should describe the 
ownership and 
stewardship of data 
within the AMDI 
- The AMDI model 
should improve 
coordination of 
decision making 
with regards to data 
management 
 

LMW – RWS 
Organization of data management at LMW improves coordination 
of decision-making by separating duties and concern through 
the balancing of roles and definition of decision rights. For 
example, all development work at RWS is performed under 
architecture and a domain architect has been allocated to the 
LMW process. There are three architect roles defined to shape 
the LMW architecture. Enterprise Architects monitor the global 
architecture; Domain Architects focus on specific processes in 
LMW; and Solution Architects focus on projects and describe the 
concrete solutions. 

BOS - Water Authority Delfland 
Organization of data management at BOS improves coordination 
of decision-making by separating duties and concern through 
the balancing of roles and definition of decision rights. For 
example, at Delfland data management is generally 
operationalized within the department “Data management”. This 
department provides the tools that facilitate the data 
management process. These products are realized and 
coordinated by the data coordinator. The data is managed 
(partly) by the data administrators. The data service desk also 
shares some data management responsibilities. The data service 
desk publishes data reports on errors and changes. The service 
desk also maintains guidelines for data usage: where can you 
find what, what do you do in certain situations, etc. In addition, 
the service desk maintains the data dictionary (unambiguous 
definitions), the development calendar and manages manuals 
and protocols. 

Ground Water Measurement – Municipality of Rotterdam 
Organization of data management at Rotterdam improves 
coordination of decision-making by separating duties and 
concern through the balancing of roles and definition of decision 
rights. For example, Rotterdam Municipality has a systematic 
data governance structure in place. Administration of digital 
maps as data (registrations) and systems for automated 
distribution to internal and external clients is performed by the 
Department of City Development at Rotterdam Municipality. The 
data management process is coordinated by a process manager 
whose responsibility includes the data registration within his or 
her portfolio. The process manager manages effects of changes 
to registries (data), changes to the delivery systems and 
changes to the clients. 

Alignment 
 
Derived 
Requirements: 
 

LMW – RWS 
Developing a data strategy and defining data quality 
requirements helps LMW meet business needs by reducing error 
of use and establishing effective policies and procedures. For 
example, With regards to LMW, users submit their wishes and 
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- The AMDI model 
should align 
business data needs 
with data 
capabilities provided 
by the AMDI 
- The AMDI model 
should include 
processes to 
develop a data 
strategy 
 

requirements to the Water, Traffic and Environment (WVL) 
Department. WVL then submits a request to the Central 
Information Department (CIV) to fulfill the requirement. The 
development services department of the CIV will then assess the 
request. If it is decided that LMW is the best source, LMW will 
give an in-depth advice to the requester about what is necessary 
to be able provide this data. WVL annually formulates a Program 
of Requirements which states exactly what RWS needs to 
deliver, with what quality and what availability, and the Process 
Director ensures that the chain is managed in such the way as 
RWS can offer it. Once the service has been developed, the 
Quality and Configuration department then assesses whether the 
data RWS provides complies with the quality requirements. 

BOS - Water Authority Delfland 
Developing a data strategy and defining data quality 
requirements helps BOS meet business needs by reducing error 
of use and establishing effective policies and procedures. For 
example, The BOS Requirements Program contains the 
measurement parameters, formats, and the technical 
requirements to be used when measuring data. The data 
dictionary contains the definitions of the data from the minimum 
set. In addition, various specifications of objects and features 
are included. The data administrators determine the contents of 
the data dictionary. The Delfland’s data dictionary includes, as 
far as possible, the national standards (including Aquo and 
DAMO). 

Ground Water Measurement – Municipality of Rotterdam 
Due to a lack of effective policies and procedures, Rotterdam 
has challenges with meeting needs. When errors or complaints 
are reported by the users, the process manager does an initial 
check to clarify the cause of the issue, as once the fault is 
reported to ICT, the process becomes formalized. However, this 
process is not experienced as being an optimal solution and it 
does not have a standardized solution procedure as it relies on a 
best effort mentality. For example, if the process manager is 
absent, problems may arise. There is pressure on capacity and 
processes are often not documented. Much of the local 
knowledge remains with individuals which can cause disruptions 
if the individual is not present. As such, problem management is 
often reactive. 

Compliance 
 
Derived 
Requirements: 
 
- The AMDI model 
should define 
accountability with 
regards to data 
management and 
data use 
- The AMDI model 
should help enforce 

LMW – RWS 
Enforcing policy and ensuring accountability through due 
diligence helps LMW protect citizen privacy and the security of 
the system, whilst allowing RWS to open the data to the general 
public. For example, as LMW is a mission-critical network which 
is vital to the national security of The Netherlands, continuous 
and distributed monitoring and management is required. As 
security is of vital importance to the LMW system, RWS has 
ensured that redundancy is built into the system wherever 
possible to ensure continuance of service. 

BOS - Water Authority Delfland 
Enforcing policy and ensuring accountability through due 
diligence helps BOS protect citizen privacy and the security of 
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policies regarding 
data management 

the system, whilst allowing Delfland to open the data to the 
general public. For example, employees are required to report all 
developments and report them on the development calendar, so 
developments can be combined and planned more efficiently. 
Part of the development calendar is the “Recovery Protocol” and 
the “Program of Requirements”. The “Inventory Protocol” 
describes how the data development process works, who needs 
to be included, how the development calendar works, and where 
results should be submitted, etc. 

Ground Water Measurement – Municipality of Rotterdam 
At Rotterdam, changes in the data can have significant effects 
on processes and clients, with dissatisfied users as the result. 
When changes are required to data systems, asset managers 
address proposals to “City Development”, and policy employees 
at ‘City Development’ make estimations of the potential impact 
on the systems. Final responsibility for prioritization and 
acceptance of changes lies with the Director of City 
Development. 

Clarification 
 
Derived 
Requirements: 
 
- The AMDI model 
should develop a 
shared data 
commons 
- The AMDI model 
should standardize 
operational 
processes 
 

LMW – RWS 
Good metadata management and standardized data models and 
operational processes facilitates communication by ensuring a 
shared data commons. For example, RWS has implemented a 
variety of open standards in order to maintain compliancy to 
external policies and directives, but they have also implemented 
de facto, industrial standards where necessary. The 
implementation of open standards is driven by compliancy 
constraints, whereas the implementation of industrial standards 
appears is driven by performance necessity. 

BOS - Water Authority Delfland 
Good metadata management and standardized data models and 
operational processes facilitates communication by ensuring a 
shared data commons. For example In addition to internal 
policies, the frameworks used within BOS are formed by National 
and European rules and standards, such as the National Base 
Registrations (e.g. BGT), Inspire, and the European Water 
Directive. These frameworks are described in the Data 
Management Plan and are monitored by the data coordinator. 

Ground Water Measurement – Municipality of Rotterdam 
Good metadata management and standardized data models and 
operational processes facilitates communication by ensuring a 
shared data commons. For example data managers at 
Rotterdam Municipality believe that the data is of a high quality, 
although there are sometimes differences in the details and how 
people interpret the data. Interviewees reported that there was 
a high level of awareness of data quality needs at Rotterdam 
Municipality which meant that operational checks are performed 
constantly during operations in an informal way and people 
assume individual responsibility for the data. 
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4.6 Conclusions 
From a design science approach, the exploratory case studies combined 
with the literature review form the foundation of the knowledge base from 
which requirements for the artefact are defined. This chapter outlines and 
describes the three exploratory case studies from three different vantage 
points, or views. The first case study, at a national level, was that of water 
management at Rijkswaterstaat utilizing the National Water Measuring 
Network (LMW). The second case study, at a regional level, was that of 
water management at the Water Authority Delfland, utilizing the decision 
support system, BOS. The third case study, at a local level, was that of 
water management at the Municipality of Rotterdam, utilizing the ground 
water measuring network. The first view taken of each of the case studies 
was that improving achieving the expected benefits of asset management 
through IoT often carries unexpected risks. The second view taken of each 
case was that the asset management through IoT emerges through the 
complex interaction of data, agents, and technology. The third view taken 
of each case study was that asset management through IoT requires 
coordination of the complex interaction of agents, data and technology by 
means of data governance.  

The exploratory case studies show that adoption of IoT has driven 
an explosive growth in data. Within the three case studies IoT is used in 
asset management in a variety of ways related both to the real-time 
measurement of the quality of assets and analyses of data as to trend 
analysis of historical data over time to reduce maintenance costs. This 
research shows that IoT data may be used at the strategic, tactical and 
operational levels of asset management. The results of the case studies 
also demonstrate that the three expectations of how IoT will affect asset 
management identified in the literature review are also revealed in the 
field. IoT has been seen to change performance measurement of 
infrastructure services, due to, for example, predictive analytics. Second, 
IoT adoption changes the perception of users of infrastructure services of 
how asset management organizations perform, like the deterioration of 
the quality of assets over time. Finally, IoT has been seen to change 
improvement processes, for example through self-organizing resource 
planning. The case studies also demonstrate that automation of data 
capture makes manual intervention unnecessary and results in a large 
amount of data. Making this data publicly available as in the LMW case 
enables organizational transparency, helping to ensure proper oversight 
and reducing waste. The exploratory cases show that enabling self-service 
in this way empowers asset managers to make data driven decisions by 
making use of the vast amount of data available to them. As such, the 
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cases show that IoT makes it possible for an asset management 
organization to be more situational aware, increasing service flexibility 
and service effectiveness and driving business transformation processes. 
In essence, the benefits of asset management through IoT are derived 
from the timely availability of large amounts of data which is automatically 
collected and readily shareable. However, the exploratory cases also show 
that both technological and organizational challenges need to be 
addressed to order to be able to achieve the benefits that IoT adoption 
can bring. The cases reveal that important risks of asset management 
through IoT are related to data ownership, security, privacy and sharing 
of information. Disclosure of user data could reveal sensitive information 
such as personal habits or personal financial information and unauthorized 
access to this information can severely impact user privacy. For example, 
ground water data can have negative impacts on housing prices. As such, 
the exploratory case studies demonstrate that the lack of convincing 
solutions for access control hinders the adoption of IoT in applications 
when dealing with sensitive data. As such the results of the case studies 
complete the answer to research question 1 which asks how can IoT 
improve asset management?  

The exploratory cases confirm that AMDIs consist of relatively 
stable and simple components. This research has identified three essential 
components of AMDIs, namely data, agents and technology. The 
exploratory case demonstrate that the largest benefits of IoT adoption in 
asset management are provided by the data generated by IoT, but the 
cases also underline the importance of metadata to provide context and 
thus make the usable as information. This implies that proper metadata 
maintenance is essential if asset management organizations are to gain 
full benefits from IoT. The exploratory cases also underline the fact that 
technology is an important enabler of AMDIs and can be further separated 
into hardware, the collection of physical components that constitute an 
information system, and software, that part of an information system that 
consists of computable instructions. The exploratory cases also show that 
these classifications can be further refined to explicitly define layers of 
technology which can be used by architects to design the technological 
systems.   

However, the exploratory cases also show that agents are explicitly 
essential for successful IoT adoption in asset management. People are 
seen as a key element in AMDIs as people are responsible for the decision 
making, design, implementation, and use of the data infrastructure. But 
significantly, artificial intelligence is becoming more and more prevalent 
in service oriented environments as witnessed by the intelligence of the 
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LMW system. This implies that artificial intelligence and robotics as agents 
are beginning to play an important role in the development of data 
infrastructures as more and more infrastructure management processes 
become automated.  

This simultaneous interaction of agents, data and technology 
within the cases has forced an emergent behavior. For example, 
combining data between multiple systems in the LMW has created greater 
insights than simple analysis on a single system would have. The diversity 
of skills, experiments, strategies and rules of different agents within the 
exploratory case studies have ensured their dynamic adaptive behavior 
which was observed over time. The case studies therefore show that 
AMDIs, as CASs, are dynamic, and because of the number of agents, their 
interdependence, and their openness to external influences, changes 
constantly and discontinuously. As such the results of the case studies 
complete the answer to research question 2 which asks what are the 
elements and behaviors of AMDIs that enable asset management through 
IoT?  

The exploratory case studies confirm the identification of data 
governance as embodying the schema of AMDIs. Data governance is 
shown in the exploratory cases as defining how the components of AMDIs 
(data, technology, agents) interact. The cases show that data governance 
specifies the framework for decision rights and accountabilities to 
encourage desirable behavior in the use of data, ensures that data is 
aligned to the needs of the organization, monitors and enforces 
compliancy, and ensures a common understanding of the data throughout 
the organization. The exploratory case studies demonstrate that new 
sources of data, originating from IoT, provide new insights to help asset 
management organizations face ever changing challenges. But the case 
studies also demonstrate that data must be of sufficient quality in order 
to be acted upon and too much data can create “noise” which detracts 
van the quality of the information. Having AMDIs which produce data of a 
quality that is aligned to the needs of the organization is essential for 
asset management organizations which rely on data-driven decision-
making processes.  As such the results of the case studies complete the 
answer to research question 3 which asks what are the elements of data 
governance in AMDIs that enable asset management through IoT?
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Chapter 5 Design of the AMDI 

Model 
 

“What you have said, 
I will consider; what you have to say 
I will with patience hear; and find a time 
Both meet to hear and answer such high things.” 

- William Shakespeare (Julius Caesar: Act-I, Scene-II) 
 

5.1 Introduction 
In Chapter 4 we presented the results of three exploratory case studies 
in which asset management through IoT plays a central role. The 
exploratory case studies confirm the duality of IoT in asset management 
and also confirm the necessity of viewing AMDIs as CAS when adopting 
new technologies such as IoT. The results of the case studies fill important 
gaps in our knowledge base such as, for example, the insight that IoT 
adoption makes it possible for an asset management organization to be 
more situational aware, increasing service flexibility and service 
effectiveness and driving business transformation processes, but, at the 
same time, also introduces risks related to data ownership, security, 
privacy and sharing of information which force changes to the asset 
management organization. In this way, the case studies provide us with 
the requirements needed to be able to design a model of AMDIs so that 
these previously unforeseen risks and changes can be accommodated. 

The main goal of this Chapter is therefore to define the 
requirements, design propositions and design principles which constrain 
the design of the AMDI. These are tested in Chapter 7 according to tests 
defined in Chapter 2, section 2.4.5. Requirements define what the 
designed model will eventually look like, and, as such, completes the 
answers to Research Questions 1 through to 3, as well as partially 
answering Research Question 4. According to Buede (2009), the 
requirements for a system set up standards and measurement tools for 
judging the success of the system design. As such, the requirements 
defined below act as input for judging the success of the AMDI model in 
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improving asset management. These requirements are assessed in 
Chapter 7 in the test cases. Sections 5.2, 5.3, and 5.4 define the 
requirements of the AMDI model. Figure 5-1 below shows that, having 
expanded the knowledge base through exploratory case studies in 
Chapter 4 to fill knowledge gaps identified in the literature review 
(Chapter 3), Chapter 5 introduces the relevance cycle in which the 
requirements of the AMDI model are defined based on the findings from 
the rigor cycle. 

 

 
 

Figure 5-1: The stage in the research in which requirements are defined 

‘Build’ and ‘evaluate’ are important issues in design science (March 
& Smith, 1995). ‘Build’ refers to the development of constructs, models, 
methods and artefacts, whereas ‘evaluate’ refers to the development of 
criteria and the assessment of the output's performance against those 
criteria (Osterwalder, 2004). Osterwalder (2004) interprets this by 
suggesting that constructs, models, methods and artefacts are built to 
perform a specific task and then become the object of study, which must 
be evaluated. A proposition is a declarative statement of a concept (Avan 
& White, 2001) which in this research is used to develop a model of the 
AMDI. In effect, the model is the result of a set of propositions which 
outline the elements and their relationships. Section 5.5 describes the 
design propositions used in this research to develop the AMDI model in 
Chapter 6 which is evaluated in the test cases in Chapter 7. Building on 
the foundation provided by the propositions, design principles are further 
defined at a more detailed level to provide scope and direction for the 
design. Design principles can be defined as “normative, reusable and 
directive guidelines, formulated towards taking action by the information 
system architects” (Bharosa & Janssen, 2015 p. 472). Section 5.6 
describes the design principles used in this research to develop the AMDI 
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model. Figure 5-2 below shows the relationship between the 
requirements, the propositions and the principles.  

 

 
 

Figure 5-2: The relationship between the requirements, propositions and principles 

Figure 5-2 above shows that the requirements and propositions 
are essentially the result of the exploratory case study analysis. The 
requirements define the practical side of the design whereas the 
propositions move the theory development forward. The design principles 
are based on the requirements and the propositions and provide a detailed 
scope and direction for the model build. The design and implementation 
of effective data management policies need to be informed by a holistic 
understanding of the system components, their complex interactions, and 
how they respond to various changes. The model of AMDIs integrates 
different elements into a unified framework. Because there are many 
different model types, section 5.5 discusses and describes the modelling 
approach used in this research, and the modelling choices that affect the 
model design which provides a partial answer to Research Question 4. 
Figure 5-3 below shows how this Chapter has been structured and the 
design approach used.  

 

 
Figure 5-3: Structure of Chapter 5. 
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Chapter 5 begins by outlining the model requirements as identified 
in the literature review and the exploratory case studies. Motivated by the 
requirements, this Chapter then identifies design propositions and design 
principles which provide input for the AMDI which is described in Chapter 
6. Chapter 5 concludes by describing the modelling approach adopted by 
this research providing the background for the AMDI model. 

5.2 Requirements of the AMDI Model 
According to (Davis, 2005, p. 3), a requirement is an “externally 
observable characteristic of a desired system”. Buede (2009) believes that 
requirements are at the foundation of the systems engineering process. 
For example, requirements “enable the engineers of systems to partition 
the design problem into components that can be worked in parallel while 
maintaining design control” (Buede, 2009 p. 151). Because we can focus 
on the “generally observable characteristics” of the model as being a 
combination of elements and behaviors we must agree with Buede (2009 
p. 151) in that there is value in having a structure for various types of 
requirements. According to Buede (2009), if the requirements are listed 
in random order in a requirements document, it is difficult to be sure that 
a given requirement is not addressed multiple times in that single 
requirements document. In this research we therefore follow Davis (2005) 
and Buede (2009) and cluster the first set of AMDI model requirements 
according to the “use” of the model in enabling IoT adoption in asset 
management. In this case, the AMDI fills a particular need. These clusters 
of requirements are often referred to as either “shareholder 
requirements” (Buede, 2009) or, more commonly, “stakeholder 
requirements”. In this research these types of requirements are referred 
to as stakeholder requirements. As described in Chapter 1, the primary 
objective of this research is to develop a model of AMDIs that improves 
asset management in asset management organizations by 
accommodating IoT adoption. According to Sokolowski & Banks (2010), 
the added value of models lie with the communication and conveyance of 
the fundamental principles and basic functionality of the system which it 
represents. Therefore, following Sokolowski & Banks (2010), the 
stakeholder requirements of our model are focused on facilitating 
communication of IoT system details between stakeholders in an asset 
management environment and providing a means for collaboration 
between agents in the asset management organization. 

Another type of requirements are often referred to as “system 
requirements” (Buede, 2009). Following Sokolowski & Banks (2010), the 
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system requirements identified in this research are focused on enhancing 
our understanding of the socio-political and technical IoT system 
requirements in an asset management environment. System 
requirements generally consist of “component” requirements, and 
“behavior” requirements (Buede, 2009). 

• Component Requirements: Requirements indicating necessary 
components and schema.  

• Behavioral System Requirements: Requirements indicating 
desired behavior. In this case the AMDI should perform according 
to particular patterns.  

Section 5.3 deals with requirements related to IoT usage in asset 
management (stakeholder requirements). Sections 5.4 and 5.5 deal with 
requirements related to the system (components, schema and 
environment) of AMDI’s. Section 5.6 deals with behavioral requirements 
related to behaviors of AMDIs. The requirements are tested in Chapter 7 
according to the test criteria defined in Chapter 2 section 2.4.5. 

5.3 Stakeholder Requirements Facilitating 

Communication  
The results of the exploratory case studies suggest that enabling effective 
knowledge management, sharing and collaboration between domains and 
divisions at all levels of the organization as well as between government 
and citizens is essential to enabling IoT adoption in asset management 
organizations. Traditionally this knowledge sharing is based on historical 
data in which past performance of systems can be analyzed in order to 
identify lessons learned. Documenting the knowledge gained is essential 
to facilitating communication of the IoT system. For example, RWS staff 
suggested that documentation of the LMW and WIM systems was 
invaluable in communicating requirements during tender processes. This 
leads us to the first stakeholder requirement which reads as follows: 1. 
The AMDI model should provide a method to document the IoT system 
for future reference. 

The exploratory case studies back up suggestions made by (Chen 
& Jin, 2012) that collecting information accurately and in real time allows 
managers to exploit resources reasonably, reduce production costs, 
improve the ecological environment, and improve products. In business 
process decomposition, the decomposition and decentralization of existing 
business processes increases implies not only real-world data flows to the 
business processes so that they can optimize their execution, but also the 
capability to delegate functionality to devices. This may allow for more 
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system flexibility in which the system is better able to react to dynamic 
changes (Spiess, & Karnouskos, 2007). As such, it is important to identify 
system specifications such as functionality requirements of delegated 
functionalities. For example, the sensing of water levels and the 
transmission of these values to a storage facility via the internet.  This 
leads us to our second stakeholder requirement which reads as follows: 
2. The AMDI model should provide a point of reference for designers to 
extract system specifications for IoT adoption in asset management 
organizations. 

Making information available to the public greatly improves 
government transparency (Castro, 2008b). Increased openness and 
transparency helps ensure proper oversight and reduces government 
waste. For example, making ground water levels openly accessible in 
Rotterdam allows insight into the effects of local maintenance on water 
levels which may affect housing foundations. Public accessibility requires 
ensuring interoperability, suggesting that IoT systems be loosely coupled, 
a design in which each of the system components have little or no 
knowledge of the definitions of the other separate components. For 
example, with the coupling of classes, interfaces, data, and services. This 
allows the extensibility of the model meaning that appropriate ontologies 
may be linked to the AMDI. This leads us to our third stakeholder 
requirement which reads as follows: 3. The AMDI model should be loosely 
coupled, following the principles of linked open data. 

As discussed in the exploratory case studies, facilitating 
communication of the IoT system configuration can improve service 
optimization through self-organization. For example, when real-time IoT 
information is made available, service providers operating in the 
Rotterdam Municipality are able to take the initiative in providing 
measures to guard against damage caused by rising or falling ground 
water levels. Self-organizing systems that optimize themselves with 
regard to resource availability and consumption may enable optimization 
according to usage and de-centralized long-term support (Sadeghi et al., 
2015). This leads us to our fourth stakeholder requirement which reads 
as follows: 4. The AMDI model should be easily shared. 

Due to increasing stresses on budgets and personnel as well as 
increased utilization of public utility infrastructure, public AM 
organizations increasingly need to intelligently manage their 
infrastructure with fewer resources (Rathore et al., 2016). Facilitating 
communication of IoT systems may bring an improved understanding of 
complex processes which is expected to help improve the efficiency of 
management and infrastructure services (Kothari et al., 2015). The 
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exploratory case studies all demonstrate that IoT systems generally have 
large amounts of interfaces and that data needs to be shared between 
multiple applications in various formats. As such, there are often a 
number of agents who are required to work on various parts of IoT 
system. Adopting an easily recognizable way of working is therefore 
essential for facilitating communication of the system configuration. This 
leads us to our fifth stakeholder requirement which reads as follows: 5. 
The AMDI model should adhere to conceptual modelling best practices. 

Operational barriers to IoT adoption in asset management include 
technical issues such as limitations in information technology (IT) 
infrastructural capabilities (Zeng et al., 2011). According to Scarfo 
(2014), the main technological challenges include architecture, energy 
efficiency, security, protocols and quality of service. An important enabler 
for the IoT is to permit others to access and use the things that have been 
published publicly on the internet. For example, the LMW network of RWS 
makes use of a multitude of different technologies and protocols. 
Overcoming these issues is critical to being able to leverage IoT to 
improve asset management. This leads us to our sixth stakeholder 
requirement which reads as follows: 6. The AMDI model should be 
interoperable. 

Table 5-1 below summarizes the stakeholder requirements 
facilitating communication of IoT system details between stakeholders in 
an asset management organization. 

 

Table 5-1: Stakeholder requirements facilitating communication of IoT system details 
between stakeholders in an asset management organization 

Requirement Literature 

1. The AMDI model should provide a method to document 
the IoT system for future reference 

(Chen & Jin, 2012) 

2. The AMDI model should provide a point of reference for 
designers to extract system specifications for IoT adoption in 
asset management organizations 

(Spiess, & Karnouskos, 
2007) 

3. The AMDI model should be loosely coupled, following the 
principles of linked open data 

(Castro, 2008b) 

4. The AMDI model should be easily shared (Sadeghi et al., 2015) 

5. The AMDI model should adhere to conceptual modelling 
best practices 

(Kothari et al., 2015) 

6. The AMDI model should be interoperable (Zeng et al., 2011) 
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5.4 Component Requirements Enhancing 

Understanding  
The following sections outline the component requirements which improve 
understanding of AM though IoT. 

5.4.1 Component Requirements: Component 

Implementation 

The component requirements for dealing with component implementation 
can be focused on types of components used by IoT. Requirements 
regarding implementation of data, technology and agents will be 
discussed in this section.  

 
Data 
Data has long been recognized as a core component of information 
systems and has been generally defined as the measure or description of 
objects or events (Checkland & Holwell, 1997; Kettinger & Li, 2010). The 
term “data” is often used in everyday terminology to refer to either raw 
data or to information (Khatri & Brown, 2010; Lin et al., 2007; Wende & 
Otto, 2007). In fact there is an important difference between the two 
(Kettinger & Li, 2010). The term, “data” is often distinguished from 
“information” by referring to data as raw data, and referring to 
information as data put in a context or data that has been processed 
(Huang et al., 1999; Price & Shanks, 2005). Perhaps the largest disrupting 
factor of IoT adoption lies in the fact that data is being created faster, in 
greater quantities and with greater levels of variation as we see in all the 
cases. Data is provided real time to systems and people so that 
information becomes instantly available and can be quickly acted upon. 
This leads us to our seventh requirement which reads as follows: 7. 
Provides means to describe IoT data included in the AMDI. 

For information to be gained from all this data, context is required. 
This contextual data is gained from data which describes the data that is 
being created, often referred to as “metadata”. Often, metadata also 
provides data about the sensor itself or about the object or thing that is 
being sensed.  Metadata is often defined as data about data (Bargmeyer 
& Gillman, 2000; Khatri & Brown, 2010). As such we must also recognize 
that metadata is also data. According to Khatri & Brown (2010), metadata 
describes what the data is about and provides a mechanism for a concise 
and consistent description of the representation of data, thereby helping 
interpret the meaning or “semantics” of data. According to Khatri & Brown 
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(2010), physical metadata includes information about the physical 
storage of data; domain-independent metadata includes descriptions such 
as the creation or modification of data and the authorization, audit and 
lineage information related to the data; and user metadata includes 
annotations that users may associate with data items or collections. The 
cases show that metadata is proven to be an important factor in data 
sharing as re-use becomes only possible if the user is aware of the 
characteristics of the data provided. This leads us to our eighth 
component requirement which reads as follows: 8. Provides means to 
describe all forms of metadata of IoT data in the AMDI. 

 
Technology 
Technology within data infrastructures is required to manage connected 
data resources. This technology must support the data management 
process (Thomas et al., 1994). The general problem of retrieval faced by 
the data analysts is that a vast quantity of data is available, but the 
nature, quality, structure, type, and precise location are often not known 
(Nebert, 2004; Roberts et al., 2006; Thomas et al., 1994). Furthermore, 
development issues incurred by legacy and heterogeneous systems drive 
the need for interoperability.  According to Yue et al. (2015) the core of 
IoT lies with the sharing of information between things and things or 
between people and things. Yue et al. (2015) summarize the basic 
characteristics of things as comprehensive perception, reliable 
transmission and intelligent processing. Comprehensive perception 
includes the acquisition of observations or measurements by using 
perception, acquisition and measurement technology such as RFID, two-
dimensional code and sensors, etc. Reliable transmission includes 
ensuring that the objects have access to information networks and can 
realize reliable information interaction and sharing through 
communications networks. Intelligent processing is the analysis of sensor 
data by using a variety of intelligent computing technology, to achieve 
intelligent decision-making and control (Yue et al., 2015). For example, 
the RWS LMW case demonstrates that critical infrastructure such as the 
Maeslantkering storm surge barrier can only be possible if the 
technological infrastructure can be relied upon. This leads us to our ninth 
component requirement which reads as follows: 9. Provides means to 
describe the technical infrastructure which enables the AMDI. 

AMDIs are increasingly being migrated to cloud solutions whereby 
service providers provide the hard and software necessary to manage the 
data resources (Vaquero et al., 2008). According to Vaquero et al. (2008), 
infrastructure providers manage a large set of computing resources, such 
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as storing and processing capacity and are able to split, assign and 
dynamically resize these resources to build ad-hoc systems as demanded 
by customers. This is commonly known as the Infrastructure as a Service 
(IaaS) scenario (Mell & Grance, 2011). Cloud systems can also provide 
the software platform where systems run on. This is known as Platform 
as a Service (PaaS) (Mell & Grance, 2011; Vaquero et al., 2008). Finally, 
there are services which run applications.  An example of this is the online 
alternatives of typical office applications such as word processors. This 
scenario is often called Software as a Service (SaaS) (Mell & Grance, 
2011; Vaquero et al., 2008). As such, data can only be turned into 
information on an application platform, be it a spreadsheet or a 
specifically designed mobile “app”. An example taken form the case 
studies can be seen in the “zwemwater.nl” app. This leads us to our tenth 
component requirement which reads as follows: 10. Provides means to 
describe the application landscape which enables the AMDI. 

 
Agents 
In a CAS, multiple agents often interact with one another in large variety 
of ways. Agents are entities that have the ability to intervene meaningfully 
in the course of events (Choi et al., 2001). Data infrastructures include 
people as agents. People are seen as a key element in data infrastructures 
as people are responsible for the decision making, design, 
implementation, and use of the data infrastructure (Anderies et al., 2004; 
Grus et al., 2010; Rajabifard et al., 2002). With regards to people, 
knowledge management is of utmost importance (Ure et al., 2009). Local 
knowledge is often central to the ongoing maintenance of data, 
particularly in the face of unanticipated and unpredictable changes in local 
context and practice (Ure et al., 2009) as people have a direct influence 
on the role of organizational culture within data infrastructures, and 
effective data infrastructures are developed and applied around 
commonly felt needs (de Man, 2006). The cases demonstrate the 
complexity of the agency formed in different organizations. This means 
that there can be no “one-size-fits-all” model, but that implementations 
should be tailored to meet specific needs. This leads us to our eleventh 
component requirement which reads as follows: 11. Provides means to 
describe the human and organizational agents driving the AMDI. 

Significantly, artificial intelligence is becoming more and more 
prevalent in service oriented environments, especially in the form of 
software commonly known as “bots’ (Gianvecchio et al., 2011). As such, 
artificial intelligence and robotics as agents are beginning to play an 
important role in the development of data infrastructures as more and 
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more infrastructure management processes become automated. Agents 
have varying degrees of connectivity with other agents, through which 
information and resources can flow. They possess schema that determine 
the states and rules of their behavior (Choi et al., 2001) as seen in the 
automation of storm surge barriers and pumping stations based on rules 
driven by the data. This leads us to our twelfth component requirement 
which reads as follows: 12. Provides means to describe the technological 
agents driving the AMDI. 

 
Summary 
Table 5-2 below summarizes the component requirements dealing with 
component implementation of IoT. 

 

Table 5-2: Component requirements dealing with component implementation of IoT 

Requirement Source 

7. Provides means to describe all forms of IoT data included in 
the AMDI 

(Huang et al., 1999) 

8. Provides means to describe all forms of metadata of IoT data 
in the AMDI 

(Khatri & Brown, 
2010) 

9. Provides means to describe the technical infrastructure 
which enables the AMDI 

(Yue et al., 2015) 

10. Provides means to describe the application landscape which 
enables the AMDI 

(Vaquero et al., 
2008) 

11. Provides means to describe the human and organizational 
agents driving the AMDI  

(Choi et al., 2001) 

12. Provides means to describe the technological agents driving 
the AMDI 

(Gianvecchio et al., 
2011) 

5.4.2 Component Requirements: Data Governance 

Implementation 

The component requirements for dealing with component implementation 
can be focused on types of components used by IoT. Requirements 
regarding implementation of organizational capability, alignment, 
clarification and compliance will be discussed in this section.  

 
Organizational Capability 
Many researchers agree that data governance has an organizational 
dimension (Khatri & Brown, 2010; Otto, 2013; Wende & Otto, 2007). For 
example, Wende & Otto (2007) believe that data governance specifies the 
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framework for decision rights and accountabilities to encourage desirable 
behavior in the use of data. Decision-making bodies need to be identified 
for each organization, and data governance must be institutionalized 
through a formal organizational structure that fits with a specific 
organization (Malik, 2013). Decision rights indicate who arbitrates and 
who makes those decisions (Dyché, 2007). According to Dawes (2010), 
“stewardship” focuses on assuring accuracy, validity, security, 
management, and preservation of information holdings. For example, in 
the RWS LMW case, the ownership of the data lies with the Water 
Management Division, whilst Stewardship of the data and the system is 
delegated to the Central Information Division. As such the Water 
Management Division is responsible for defining the requirements of the 
data, and the Central Information Division is responsible for ensuring 
these requirements are met. This leads us to our thirteenth component 
requirement which reads as follows: 13. Provides means to describe the 
ownership and stewardship of data within the AMDI (including decision 
rights), whilst balancing the roles of agents, separating duties and 
concern of agents within the AMDI. 

Malik (2013) indicates the need to establish clear communications 
and patterns that would aid in handling policies for quick resolution of 
issues, and Thompson et al. (2015) show that coordination of decision 
making in data governance structures may be seen as a hierarchical 
arrangement in which superiors delegate and communicate their wishes 
to their subordinates, who in turn delegate their control. The RWS case 
demonstrated a clearly defined contract type coordination approach, but 
all the cases leant strongly on self-organization and mutual adjustment 
through standardization. This leads us to our fourteenth component 
requirement which reads as follows: 14. Provides means to improve 
coordination of decision making with regards to data management. 

 
Alignment 
Data governance should ensure that data meets the needs of the business 
(Panian, 2010). A data governance program must be able to demonstrate 
business value, or it may not get the executive sponsorship and funding 
it needs to move forward (Smallwood, 2014). Describing the business 
uses of data establishes the extent to which specific policies are 
appropriate for data management. According to Panian (2010), if used 
correctly, data can be a reusable infrastructure as data is a virtual 
representation of an organization's activities and transactions and its 
outcomes and results. The cases showed that most of the data 
requirements were defined in the component requirements provided in 
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the technical documentation. However, it was clear that this was often a 
missing factor and attention was drawn to this by a number of 
interviewees in the cases. This leads us to our fifteenth component 
requirement which reads as follows: 15. Provides means to align business 
data needs with data capabilities provided by the AMDI, including the 
definition of data quality requirements. 

Data governance also provides the framework for addressing 
complex issues such as improving data quality or developing a single view 
of the customer at an enterprise level (Panian, 2010). Wende & Otto 
(2007) believe that a data quality strategy is therefore required to ensure 
that data management activities are in line with the overall business 
strategy. The strategy should include the strategic objectives which are 
pursued by data quality management and how it is aligned with the 
company’s strategic business goals and overall component scope. Data 
quality is considered by many researchers to be an important metric for 
the performance of data governance (Khatri & Brown, 2010; Otto, 2011b; 
Wende & Otto, 2007). All the cases showed evidence of a specific data 
strategy which needed to followed. Although not necessarily called such, 
the documentation provided direction within specific documents as to the 
data strategy to be followed. This leads us to our sixteenth component 
requirement which reads as follows: 16. Provides means to include 
processes to develop a data strategy, including effective policies and 
procedures with regards to data management. 
 
Clarification 
Attention to business areas and enterprise entities should be the 
responsibility of the appropriate data stewards who will have the entity-
level knowledge necessary for development of the entities under their 
stewardship (Smith, 2007). To ensure that the data is interpretable, 
metadata should be standardized to provide the ability to effectively use 
and track information (Khatri & Brown, 2010). This leads us to our 
seventeenth component requirement which reads as follows: 17. Provides 
means to develop a shared data commons, including standards. 

Data governance principles therefore reflect and preserve the 
value to society from the sharing and analysis of anonymized datasets as 
a collective resource (Al-Khouri, 2012). Coordination manages 
dependencies between activities (Malone & Crowston, 1990). These 
dependencies arise from the mutual use of common objects to carry out 
a task (Malone & Crowston, 1990). Thus, communication is necessary for 
coordinating processes. This leads us to our eighteenth component 
requirement which reads as follows: 18. Provides means to standardize 
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operational processes and facilitate communication regarding data 
activities. 

 
Compliance 
Mechanisms need to be established to ensure organizations are held 
accountable for these obligations through a combination of incentives and 
penalties (Al-Khouri, 2012) as, according to Felici et al. (2013), 
governance is the process by which accountability is implemented. In such 
a manner, accountability can unlock further potential by addressing 
relevant problems of data stewardship and data protection in emerging in 
data ecosystems. This leads us to our nineteenth component requirement 
which reads as follows: 19. Provides means to define accountability with 
regards to data management and data use. 

According to Malik (2013), determination of policies for governance 
is typically done in a collaborative manner with IT and business teams 
coming together to agree on a framework of policies which are applicable 
across the whole organization. Tallon (2013) regards data governance 
practices as having a social and, in some cases, legal responsibility to 
safeguard personal data through processes such as “privacy by design”, 
whilst Power & Trope (2006) suggest that risks and threats to data and 
privacy require diligent attention from organizations to prevent “bad 
things happening to good companies and good personnel” (Power & 
Trope, 2006, p. 471).  This leads us to our twentieth component 
requirement which reads as follows: 20. Provides means to enforce 
policies regarding data management and data use, including ensuring 
data privacy and data security. 

 
Summary 
Table 5-3 below summarizes the component requirements dealing with 
Data Governance of IoT data. 

 

Table 5-3: Requirements dealing with Data Governance of IoT data. 

Requirement Source 

13. Provides means to describe the ownership and stewardship 
of data within the AMDI (including decision rights), whilst 
balancing the roles of agents, separating duties and concern of 
agents within the AMDI 

(Wende & Otto, 
2007) 

14. Provides means to improve coordination of decision making 
with regards to data management 

(Malik, 2013) 



Design of the AMDI Model 

187 
 

Requirement Source 

15. Provides means to align business data needs with data 
capabilities provided by the AMDI, including the definition of 
data quality requirements 

(Panian, 2010) 

16. Provides means to include processes to develop a data 
strategy, including effective policies and procedures with 
regards to data management 

(Panian, 2010) 

17. Provides means to develop a shared data commons, 
including standards 

(Khatri & Brown, 
2010) 

18. Provides means to standardize operational processes and 
facilitate communication regarding data activities 

(Al-Khouri, 2012) 

19. Provides means to define accountability with regards to 
data management and data use 

(Felici et al., 2013) 

20. Provides means to enforce policies regarding data 
management and data use, including ensuring data privacy and 
data security 

(Malik, 2013) 

 

5.4.3 Component Requirements: Environmental Effects 

on AMDIs 

A data infrastructure, as CAS, both reacts to and creates the environment 
it is operating in (Brous et al., 2014; Choi et al., 2001). In this way, a 
data infrastructure is inseparable from its environment. The component 
requirements for dealing with managing environmental effects on AMDIs 
can be focused on types of environments in which IoT is implemented. 
Requirements regarding the physical environment, the cultural 
environment, and the political environment will be discussed in this 
section.  
 
Physical 
With regards to AMDIs, there is no separation between a system and its 
environment and change should be seen in terms of co-evolution with 
regards to all the related elements within the system (Chan, 2001). This 
leads us to our twenty-first component requirement which reads as 
follows: 21. Provides means to describe the physical environment within 
which the AMDI is located. 

Because one should not separate the AMDI from its environment, 
it is difficult to attribute success or failure to a particular factor and 
tracking cause-and-effect relationships is hard. All data infrastructures 
are unique in character and behavior. This makes it difficult to standardize 
data infrastructure implementation (Grus et al., 2010). This leads us to 
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our twenty-second component requirement which reads as follows: 22. 
Provides means to describe how the physical environment affects the 
AMDI. 

 
Cultural 
The physical environment forces changes in the CAS, which in turn 
induces changes in the physical environment. (Choi et al., 2001) explain 
this phenomenon with the example of a team. As team members grow 
more cohesive, they collectively become more distant from the outside 
environment, and vice versa. This leads us to our twenty-third component 
requirement which reads as follows: 23. Provides means to describe the 
cultural environment within which the AMDI is located. 

Such interdependencies ensure environments are very dynamic 
requiring systems to adapt and evolve to ensure fitness to their 
environment. This leads us to our twenty-fourth component requirement 
which reads as follows: 24. Provides means to describe how the cultural 
environment affects the AMDI. 

 
Political 
According to Thompson et al. (2015), technical solutions are often 
implemented without consideration for the wider governance framework. 
This leads us to our twenty-fifth component requirement which reads as 
follows: 25. Provides means to describe the political environment within 
which the AMDI is located. 

Thompson et al. (2015) believe that a successful solution should 
be fitted to the unique organizational context. The cases support Weber 
et al. (2009) and Thompson et al. (2015) in that there can be no “one-
size fits-all” in this regard. This leads us to our twenty-sixth component 
requirement which reads as follows: 26. Provides means to describe how 
the political environment affects the AMDI. 

 
Summary 
Table 5-4 below summarizes the component requirements dealing with 
managing environmental effects on AMDIs. 
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Table 5-4: Requirements dealing with managing environmental effects on AMDIs 

Requirement Source 

21. Provides means to describe the physical environment within 
which the AMDI is located 

(Chan, 2001) 

22. Provides means to describe how the physical environment 
affects the AMDI 

(Grus et al., 2010) 

23. Provides means to describe the cultural environment within 
which the AMDI is located 

(Choi et al., 2001) 

24. Provides means to describe how the cultural environment 
affects the AMDI 

(Choi et al., 2001) 

25. Provides means to describe the political environment within 
which the AMDI is located 

(Thompson et al., 
2015) 

26. Provides means to describe how the political environment 
affects the AMDI 

(Thompson et al., 
2015) 

5.4.4 Behavioral Requirements  

The requirements for dealing with behaviors of AMDI’s can be focused on 
types of behaviors which AMDIs exhibit. Requirements regarding the 
dynamism, connectivity, adaptation, and emergence of AMDIs will be 
discussed in this section. 
 
Dynamism 
The diversity of skills, experiments, strategies and rules of different 
agents within a CAS ensures its dynamic adaptive behavior (Rupert et al., 
2008). For example, it is difficult for a single agent to evolve and become 
more useful in an isolated context (Sutherland & van den Heuvel, 2002), 
so there is a constant exchange of information and needs between the 
components and the actors in the system (Grus et al., 2010). For 
example, RWS works with a so called “Domain Team” which is made up 
of a group of people with a number of different skills, including 
architecture, business analysis and technical management etc. This leads 
us to our twenty-seventh requirement which reads as follows: 27. 
Accommodates dynamism of elements within the AMDI. 
 
Connectivity 
The results of the cases suggest that AMDIs should have feedback loop 
mechanisms (Grus et al., 2010) which enable the system to use its own 
output to adjust its inputs and processes. For example, RWS and Delfland 
actively encourage the public to critically review the data provided by their 
IoT systems and report any discrepancies which may be caused by, for 
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example in the LMW case, contamination of the sensors, requiring 
maintenance and reconfiguration. This leads us to our twenty-eighth 
requirement which reads as follows:  28. Demonstrates connectivity of 
elements within the AMDI. 
 
Adaptation 
AMDIs are able to adjust and adapt themselves to external influences 
(Cilliers, 2002; Grus et al., 2010; Rotmans & Loorbach, 2009) and an 
AMDI will change constantly because of the continuous interactions and 
interdependence between its agents and its environment (Rupert et al., 
2008). For example, both Delfland and Rotterdam encourage the active 
participation of citizens in the management and development of the IoT 
infrastructure. This has led to a diversity of sensor types, meaning that 
the networks have had to adapt to be able to accommodate multiple data 
protocols. This leads us to our twenty-ninth requirement which reads as 
follows: 29. Accommodates adaptations within the AMDI. 

 
Emergence 
As suggested by Merali (2006), macroscopic properties of an AMDI arise 
from the heterogeneity of its elements and its relevant properties. The 
system displays a set of properties that is distinct from those displayed 
by any subset of its elements. For example, in order to gain the full benefit 
of their systems, asset managers throughout the cases have had to learn 
to use and trust the data, meaning that, in part, asset managers have 
themselves needed to become data experts. For example, at Rotterdam, 
instruments to model the flow of rain water across the street and to 
portray the possible effects of measures are being developed. The 
calculations also describe environmental performance in each area, or 
how large the theoretical waste emission from the mixed sewage system 
is on surface water. This leads us to our thirtieth requirement which reads 
as follows:  30. Accommodates emergence of behaviors within the AMDI. 

 
Summary 
Table 5-5 below summarizes the behavioral requirements dealing with 
managing environmental effects on AMDIs. 
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Table 5-5: Behavioral requirements for dealing with behavioral effects on AMDI’s 

Requirement Source 

27. Accommodates dynamism of elements within 
the AMDI 

(Rupert et al., 2008) 

28. Demonstrates connectivity of elements within 
the AMDI 

(Grus et al., 2010) 

29. Accommodates adaptations within the AMDI (Rotmans & Loorbach, 2009) 

30. Accommodates emergence of behaviors within 
the AMDI 

(Hanseth & Lyytinen, 2010) 

 
On the basis of these requirements, section 5.5 defines the design 

propositions used to guide the research and the design of the model in 
Chapter 6. 

5.5 Design Propositions 
Having defined the requirements which need to be met by the AMDI 
model, in this section we generate propositions for the design of the AMDI 
model. The views used to describe the exploratory case studies not only 
provide us with requirements of the AMDI model, but also with design 
propositions. We acknowledge that CAS theory demands a complex 
interaction between elements, however, for analytical purposes we 
choose to “freeze” the elements and view each element as separate 
variables. According to Denyer, Tranfield, & Aken (2008), design 
propositions are “templates” which can be used to develop solutions for a 
class of problems. As such, design propositions, whilst not offering 
complete solutions, do offer input for the design of particular solution 
(Denyer et al., 2008). In order to develop the design propositions, we 
analyzed the requirements as read in section 5.4 taking in to consideration 
the views of the exploratory case studies. The requirements are drawn 
from the literature review in Chapter 3 and the case study analysis in 
Chapter 4. As seen in Figure 5-4 below, we conclude that three key 
functional elements may improve asset management and facilitate IoT 
adoption in AMDIs, namely “Components”, “Data Governance” and the 
“Environments”. The functional elements are proposed based on the 
criteria that: 

• The functional elements cover as many of the requirements as 
possible 
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• The functional elements are accepted due to already existing 
research. For our purposes we included research in domains other 
than asset management. 

With respect to the views describing the exploratory case studies, we 
group the different elements of AMDIs into the main functional element, 
“Components” which occur within “Environments” and we view “Data 
Governance” as the schema which directs these constructs. 

 

 
 

Figure 5-4: Functional elements of IoT AMDIs 

The propositions are described according to the potential impact 
the functional elements (as exposed in the answers to research questions 
2 and 3) may have on the improvement of understanding of asset 
management through IoT as discussed in response to research question 
1, namely, performance analysis, expectation management, and 
infrastructure service processes. Figure 5-5 below demonstrates how the 
functional elements relate to the expected improvements to asset 
management due to potential structural changes to the AMDI as identified 
in of the exploratory case studies. The elements of AMDIs (component, 
data governance and environments) as described in views 2 and 3 of the 
exploratory case studies introduce changes to the organization, as 
suggested by the duality of IoT (Orlikowski, 1992), which result in 
improvements to understanding of asset management through IoT as 
described in view 1 of the exploratory case studies. 
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Figure 5-5: The relationship between elements and expected improvements to asset 
management. 

The following sections discuss the propositions which deal with the 
relationship between the functional elements of the IoT enabled AMDI and 
its uses as described in Figure 5-5 above, linking these elements with the 
value of modelling AMDIs improve understanding of asset management 
though IoT. 

5.5.1 Functional Element – Components 

AMDIs consist of relatively stable and simple components (Grus et al., 
2010; Haghnevis & Askin, 2012; Rupert et al., 2008; Sutherland & van 
den Heuvel, 2002) which are the constituent parts of the system. The 
overall behavior of an AMDI emerges from the activities of lower-level 
components although, typically, an AMDI will die when an essential 
component is removed (Miller & Page, 2009). Brous et al. (2014) have 
identified three essential components of data infrastructures, namely 
data, agents and technology. Technology can also be further separated 
into hardware, the collection of physical components that constitute an 
information system, and software, that part of an information system that 
consists of computable instructions. People and, increasingly, technology 
are impacting the data infrastructure through agency. An agent is 
something or somebody that “can be viewed as perceiving its environment 
through sensors, and acting upon that environment through actuators” 
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(Gong, 2012, p. 75). This brings us to our first design proposition which 
reads as follows: 

 
Design Proposition 1: Configuring the elements of AMDIs to 
accommodate IoT adoption improves understanding of asset 
management through IoT. 

 
The first component of AMDIs is data, which has long been 

recognized as a core factor in information systems and has been generally 
defined as the measure or description of objects or events (Checkland & 
Holwell, 1997; Kettinger & Li, 2010). Data infrastructures necessarily 
include data. The term “data” is often used in everyday terminology to 
refer to either raw data or to information. In fact there is an important 
difference between the two (Kettinger & Li, 2010). Data are facts about 
objects, subjects or events within or without the organization. These facts 
generally involve the condition of the object or subject or refer to a 
transaction involving that object or subject. Data only becomes 
information once it is given context and presented in a form that people 
are able to understand. For example, although it is clear that a great deal 
of data is being produced, managed and maintained, asset managers 
within Water Authority Delfland observed that they often do not receive 
the data that they require because the data is produced by 
(sub)contractors who produce only the data that they themselves require. 
Also, data that is produced is often “locked” into systems as, for example, 
logging files. Retrieving the data for objectives other than those originally 
defined can be difficult and time consuming. Also, at Rijkswaterstaat, data 
is produced in order to achieve certain goals. It very much depends on 
the goals of the parties producing the data as to which data is being 
produced and how.  

The second component, technology within data infrastructures is 
required to manage connected data resources. This technology must 
support the data process (Thomas et al., 1994). The general problem of 
retrieval faced by the data analysts is that a vast quantity of data is 
available, but the nature, quality, structure, type, and precise location are 
often not known (Nebert, 2004; Roberts et al., 2006; Thomas et al., 
1994). Furthermore, development issues incurred by legacy and 
heterogeneous systems drive the need for interoperability. 
Rijkswaterstaat has a well-developed data access network which allows 
access to users based on open standards. Although it creates and 
manages its metadata locally, Rijkswaterstaat also makes use of external 
facilities to publish its data. For example, Rijkswaterstaat uses the 
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National Spatial Data metadata library, National Geo-Register (NGR) to 
publish and find its spatial data. Other data types are generally stored in 
specialized systems such as digital libraries for images and digital 
photography. The metadata for these data types is created, stored and 
searched within the system itself.  

A third component of AMDI are the agents. Agents are seen as a 
key element (Anderies et al., 2004; Grus et al., 2010; Rajabifard et al., 
2002) in AMDIs as agents are responsible for the decision making, design, 
implementation, and use of the data infrastructure. Without agents, the 
AMDI would have no function, nor would it evolve. Knowledge 
management is of utmost importance for agency (Ure et al., 2009). Local 
knowledge is often central to the ongoing maintenance of data, 
particularly in the face of unanticipated and unpredictable changes in local 
context and practice (Ure et al., 2009). Furthermore, people have a direct 
influence on the role of organizational culture within data infrastructures 
(de Man, 2006). de Man (2006) believes that effective data infrastructures 
are developed and applied around commonly felt needs. For example, 
Rijkswaterstaat employees appear to be the driving force behind the 
success of their AMDI. Despite major reorganizations over the last few 
years and large budget cuts, Rijkswaterstaat has a culture of “getting 
things done”. Workarounds and quick fixes are often made at a local level 
in order to ensure that the system continues to function. This shows that 
local knowledge is central to the ongoing maintenance of data within the 
Rijkswaterstaat. 

5.5.2 Functional Element – Data Governance 

Data governance is about coordinating data management - identifying the 
fundamental decisions regarding data that need to be made and who 
should be making them. Coordination is a process in which agents engage 
in order to ensure a community of individual agents act in a coherent 
manner (Hyacinth S. Nwana, 1996). The restricted availability of 
resources in asset management data infrastructures can cause conflict 
and this conflict demands coordination. In a world where resources for 
data management are constantly under review and limitations are a 
matter of course, competing for resources may be a major driver for the 
adoption of IoT in infrastructure management, but may also contain 
challenges. This leads us to our second main design proposition which 
reads as follows: 

 
Design Proposition 2: Implementing data governance improves 
understanding of asset management through IoT. 
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The organization of data governance should not be seen as a “one 

size fits all” approach (Wende & Otto, 2007). Instead, decision-making 
bodies need to be identified for each individual organization, and data 
governance must be institutionalized through a formal organizational 
structure that fits with a specific organization (Malik, 2013). Decision 
rights indicate who arbitrates and who makes those decisions (Dyché, 
2007). According to Dawes (2010), “stewardship” focuses on assuring 
accuracy, validity, security, management, and preservation of information 
holdings. As such we have observed that all three case studies utilized 
differing forms of organization and placed ownership and stewardship in 
different places. For example, RWS was very specific in stating that 
ownership of the data lay with the Water Management Division of RWS, 
whilst stewardship of the data and the systems lay with the Central 
Information Division. Rotterdam Municipality on the other hand placed 
ownership and stewardship together in one single department.  

Data governance should ensure that data meets the needs of the 
business (Panian, 2010) and data governance programs must be able to 
demonstrate business value (Smallwood, 2014). Describing the business 
uses of data establishes the extent to which specific policies are 
appropriate for data management. According to Panian (2010), if used 
correctly, data can be a reusable infrastructure as data is a virtual 
representation of an organization's activities and transactions and its 
outcomes and results. As such, data governance should ensure that data 
is “useful” (Dawes, 2010). According to Dawes (2010), information should 
be helpful to its intended users, or should support the usefulness of other 
disseminated information. For example, the sensor data collected by the 
Water Authority Delfland is directly used by the pumping stations to 
automate water level management and the data collected by the LMW 
system at RWS is used for a multitude of uses, including water 
management and automating storm surge barrier processes.  

According to Smith (2007), governing data appropriately is only 
possible if it is properly understood what the data to be managed means, 
and why it is important to the organization. Data understanding is 
essential to any application development, data warehousing or services-
oriented-architecture effort and misunderstood data or incomplete data 
requirements can affect the successful outcome of any asset management 
project (Smith, 2007).  Smith (2007) believes that the best way to avoid 
problems created by misunderstanding the data, is to create an enterprise 
data model (EDM) and that creating and developing an EDM should be 
one of the basic activities of data governance. For example, RWS has done 
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much work to develop a set of core-registrations which make up the 
enterprise data model. However, all three case studies identified a lack of 
clarity with regards to the total data landscape as being a debilitating 
factor with regards to system development.  

Data governance includes a clearly defined authority to create and 
enforce data policies and procedures (Wilbanks & Lehman, 2012). Panian 
(2010) states that establishing and enforcing policies and processes 
around the management data is the foundation of an effective data 
governance practice. Delineating the business uses of data establishes the 
extent to which data is an enterprise wide infrastructure, and thus what 
specific policies are appropriate (Khatri & Brown, 2010). Mechanisms need 
to be established to ensure organizations are held accountable for these 
obligations through a combination of incentives and penalties as 
governance is the process by which accountability is implemented. For 
example, sensors which are placed or owned on private property may by 
subject to rules and regulations regarding privacy set out by the General 
Data Protection Regulation (GDPR).  

5.5.3 Functional Element – Environments 

A third element in the AMDI is the environment. An AMDI, as CAS, both 
reacts to and creates the environment it is operating in (Brous et al., 
2014; Choi et al., 2001). In this way, an AMDI is inseparable from its 
environment and dynamic, emergent realities are created through 
interaction. As suggested by Orlikowski (1992) the environment forces 
changes in the AMDI, which in turn induces changes in the environment. 
For example, the LMW measurement network was originally three 
separate networks. The insights provided by the three separate systems 
demonstrated the need to manage the national water ways in a holistic 
way and the necessity to have a national view of the water systems, 
causing the three measuring networks to be integrated into one network. 
When people or things act (or react) on an environment, that environment 
can be changed in unexpected ways (Brous & Janssen, 2015a). This brings 
us to our third design proposition which reads as follows: 

 
Design Proposition 3: Configuring AMDIs to accommodate cultural, 
physical and political environments improves understanding of asset 
management through IoT. 

 
When internal or external actors act, the environment in which 

data infrastructures exist may change often and quickly, forcing the data 
infrastructure to evolve and adapt to these changes. Environmental 
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characteristics may refer to the sector within which the organization 
operates, or may represent cultural, political or physical conditions 
(Wejnert, 2002). In our AMDI model, we include three relevant 
environmental factors of cultural, physical and political environments 
within the asset management sector.  

5.6 Design Principles 
Section 5.5 provided the design propositions. These propositions help 
describe design assumptions on a high level of abstraction and are used 
to identify specific principles for the design of the AMDI model. This 
section provides detailed principles that are used for the design of the 
AMDI model. Van Bommel et al. (2006) argue that steering the overall 
enterprise development within a large organization requires constraining 
the design space through the definition of principles. According to the 
TOGAF architecture framework, “Principles are general rules and 
guidelines, intended to be enduring and seldom amended, that inform and 
support the way in which an organization sets about fulfilling its mission” 
(The Open Group). They are fundamental norms, rules, or values that 
represent what is desirable and positive for a person, group, organization, 
or community, and help in determining the rightfulness or wrongfulness 
of actions. Principles are more basic than policy and objectives, and are 
meant to govern both. Design principles, in particular, are “normative and 
directive guidelines” (Bharosa & Janssen, 2015) which aid the architect in 
the actions that need to be taken. 

In the previous sections we describe the practical requirements 
which were assimilated by analysis of the exploratory case studies, and 
we propose that understanding and communicating the elements 
(components, data governance and environments) of AMDIs positively 
influence understanding of asset management through IoT. In this 
research we focus on two groups of design principles, namely: 1. 
principles which facilitate communication of the AMDI design, and 2: 
principles which enhance our understanding of asset management 
through IoT.  
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5.6.1 Design Principles Which Facilitate Communication 

of the AMDI Design 

Table 5-5 outlines the design principles as derived from the requirements 
and the design propositions with regards to facilitating communication of 
the AMDI design. The principles are observationally derived by analyzing 
the requirements with regards to the design propositions as seen in table 
5-5 below. The principles are numbered. The table shows the relationship 
of the principles to the requirements and the propositions. 

 

Figure 5-6: Design principles which facilitate communication of the AMDI design. 

Requirements Propositions Derived Design Principles 

1. The AMDI model 
should provide a 
method to document 
the IoT system for 
future reference 

[1-3] with respect 
to communication 

1. The model is available in widely 
accepted open formats. 
2. The model can be edited, stored 
and recovered for future reference. 

2. The AMDI model 
should provide a point 
of reference for 
designers to extract 
system specifications for 
IoT adoption in asset 
management 
organizations 

[1-3] with respect 
to communication 

3. The model illustrates and simulates 
the basic components of AMDIs and 
their interrelationships. 
4. The model combines object-
oriented and agent-oriented 
perspectives, addressing the socio-
technical complexity of infrastructure 
systems. 

3. The AMDI model 
should be loosely 
coupled, following the 
principles of linked open 
data 

[1-3] with respect 
to communication 

5. The model is extendable where 
necessary. 
6. The model includes existing, widely 
accepted ontologies. 

4. The AMDI model 
should be easily shared 

[1-3] with respect 
to communication 

7. The model uses open, widely 
accepted modelling schemas and 
ontology languages. 

5. The AMDI model 
should adhere to 
conceptual modelling 
best practices 

[1-3] with respect 
to communication 

8. The model follows W3C modelling 
specifications. 

6. The AMDI model 
should be interoperable 

[1-3] with respect 
to communication 

9. The model uses open web 
standards. 
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5.6.2 Design Principles Which Enhance Our 

Understanding of AM Through IoT 

In this section the principles that guide the design of data governance 
mechanisms in the AMDI model are described. Table 5-6 below describes 
the design principles which enhance our understanding of AM through IoT. 
The data governance principles are numbered, and the numbering 
continues from the numbering of the component principles. 

 

Table 5-6: Design Principles Which Enhance Our Understanding of AM Through IoT 

Requirements Propositions Derived Design Principles 

7. Provides means to 
describe all forms of IoT 
data included in the AMDI 

[1] 10. The model describes metadata 
and its relationship to IoT related 
data. 
11. The model describes IoT related 
registrations and their relationships. 

8. Provides means to 
describe all forms of 
metadata of IoT data in the 
AMDI 

[1] 12. The model describes the different 
forms of metadata and their 
relationships to IoT data. 

9. Provides means to 
describe the technical 
infrastructure which enables 
the AMDI 

[1] 13. The model describes hardware 
related to IoT and their relationships. 
14. The model describes software 
related to IoT and their relationships. 

10. Provides means to 
describe the application 
landscape which enables the 
AMDI 

[1] 15. The model describes required IoT 
related application components and 
their relative functions in the 
architecture. 

11. Provides means to 
describe the human and 
organizational agents 
driving the AMDI  

[1] 16. The model describes the roles of 
people as agents in the AMDI, their 
relationships and behavior. 
17. The model describes 
organizational groups as agents in the 
AMDI, their relationships and 
behavior. 

12. Provides means to 
describe the technological 
agents driving the AMDI 

[1] 18. The model describes bots and 
robots as technological agents in the 
AMDI, their relationships and 
behavior. 

13. Provides means to 
describe the ownership and 
stewardship of data within 
the AMDI (including decision 
rights), whilst balancing the 
roles of agents, separating 

[2] 19. The model describes the 
organization of data governance. 
20. The model describes the loci of 
data provenance. 
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Requirements Propositions Derived Design Principles 

duties and concern of 
agents within the AMDI 

14. Provides means to 
improve coordination of 
decision making with 
regards to data 
management 

[2] 21. The model describes appropriate 
coordination mechanisms positively 
associated with IoT adoption. 

15. Provides means to align 
business data needs with 
data capabilities provided by 
the AMDI, including the 
definition of data quality 
requirements 

[2] 22. The model describes artefacts and 
relationships which ensure that IoT 
related data meets the necessary 
requirements to align with the 
requirements of the business. 

16. Provides means to 
include processes to develop 
a data strategy, including 
effective policies and 
procedures with regards to 
data management 

[2] 23. The model includes a data 
strategy as object, and describes 
processes to develop and implement 
the strategy. 

17. Provides means to 
develop a shared data 
commons, including 
standards 

[2] 24. The model describes the use of 
standards to align IoT data and 
technology with the needs of the asset 
management organization. 

18. Provides means to 
standardize operational 
processes and facilitate 
communication regarding 
data activities 

[2] 25. The model uses standardized data 
management frameworks to describe 
data management activities related to 
IoT processes. 

19. Provides means to 
define accountability with 
regards to data 
management and data use 

[2] 26. The model describes objects which 
monitor compliancy to norms, policies, 
laws and regulations 

20. Provides means to 
enforce policies regarding 
data management and data 
use, including ensuring data 
privacy and data security 

[2] 27. The model describes a set of data 
management artefacts designed to 
assist business administration and 
protect company assets. 

21. Provides means to 
describe the physical 
environment within which 
the AMDI is located 

[3] 28. A description of the physical 
environment is an integral part of the 
AMDI. 

22. Provides means to 
describe how the physical 
environment affects the 
AMDI 

[3] 29. The model assimilates potential 
effects of the physical environment on 
the AMDI. 
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Requirements Propositions Derived Design Principles 

23. Provides means to 
describe the cultural 
environment within which 
the AMDI is located 

[3] 30. A description of the cultural 
environment is an integral part of the 
AMDI. 

24. Provides means to 
describe how the cultural 
environment affects the 
AMDI 

[3] 31. The model assimilates potential 
effects of the cultural environment on 
the AMDI. 

25. Provides means to 
describe the political 
environment within which 
the AMDI is located 

[3] 32. A description of the political 
environment is an integral part of the 
AMDI. 

26. Provides means to 
describe how the political 
environment affects the 
AMDI 

[3] 33. The model assimilates potential 
effects of the political environment on 
the AMDI. 

27. Accommodates 
dynamism of elements 
within the AMDI 

[1-3] with 
respect to 
understanding 

34. The model assimilates dynamic 
change in relationships, behavior and 
individuals into its design. 

28. Demonstrates 
connectivity of elements 
within the AMDI 

[1-3] with 
respect to 
understanding 

35. Every object has a significant 
relationship with at least one other 
object in the model. 

29. Accommodates 
adaptations within the AMDI 

[1-3] with 
respect to 
understanding 

36. The model is configurable and 
reconfigurable to assimilate specific, 
local requirements. 

30. Accommodates 
emergence of behaviors 
within the AMDI 

[1-3] with 
respect to 
understanding 

37. The model is configurable and 
reconfigurable to assimilate 
unforeseen behavioral changes of local 
agents. 

 

5.7 Conclusion 
In this chapter we partially answered Research Question 4 which asks 
what does a model of an AMDI that accommodates IoT look like? We posit 
that AMDIs are composed of data, technology and agents, and that these 
components are directed and coordinated by data governance. IoT is used 
within asset management to improve performance analysis, improve 
expectation management and improve infrastructure service processes. 
Modelling the AMDI improves understanding of asset management 
through IoT by communicating and conveying the fundamental principles 
and basic functionality of the AMDI, as well as enhancing our 
understanding of the infrastructure, providing a point of reference for 
designers to extract system specifications, and providing a means to 
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document the infrastructure for collaboration efforts and future reference 
(Sokolowski & Banks, 2010). We began the chapter by defining the 
requirements of the AMDI model. We identified three types of 
requirements to which the AMDI model should conform, namely: 
stakeholder requirements, component requirements and behavior 
requirements. Stakeholder requirements and component requirements 
should be seen as more functional requirements, whereas behavioral 
requirements are considered to be non-functional requirements. After 
listing and analyzing the requirements, we derived three main 
propositions: 1. Configuring the elements of AMDIs to accommodate IoT 
improves understanding of asset management through IoT; 2. 
Implementing data governance improves understanding of asset 
management through IoT; and 3. Configuring AMDIs to accommodate 
cultural, physical and political environments improves understanding of 
asset management through IoT. Based on the derived propositions we 
then further derived more specific design principles which drive the model 
development. The requirements, together with the design propositions 
and design principles partially answers Research Question 4. The model 
is described in Chapter 6.
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Chapter 6 The AMDI Model 
 

“Therefore, good Brutus, be prepared to hear; 
And since you know you cannot see yourself 
So well as by reflection, I, your glass, 
Will moderately discover to yourself 
That of yourself which you yet know not of.” 

- William Shakespeare (Julius Caesar, Act-I, Scene-II) 
 

6.1 Introduction 
In Chapter 5 we described the requirements, principles and propositions 
which guide and constrain the development of the AMDI model. These 
requirements, principles and propositions are the result of insights 
provided by the literature review and exploratory case studies into the 
duality of IoT adoption and the need to view AMDIs as CAS. For example, 
the literature review and the exploratory case studies show that IoT can 
provide asset management with many varied benefits, but can also 
introduce unexpected risks, forcing unforeseen changes. Based on the 
requirements, principles and propositions described in Chapter 5, in this 
Chapter we describe our model of an AMDI which accommodates IoT and 
which is designed to improve understanding of asset management 
through IoT. Compliance to the requirements and design principles is 
made explicit in the summaries in section 6.1.5, section 6.3.4, section 
6.4.5 and section 6.5.1. These summaries refer to the level of compliance 
to the design principles. For compliance to the requirements please refer 
to sections 5.6.1 and 5.6.2. 

Asset managers have struggled over the years to develop IoT 
systems which produce data they can trust, and asset data is regularly 
observed to be lacking in quality, to be “noisy” (embedded within 
significant amounts of meaningless data), or to be missing the required 
detail (S. Lin, Gao, & Koronios, 2006). Addressing this issue requires an 
holistic approach (Brous et al., 2014) which describes the sociological as 
well as the technological components. As such, the goal of this chapter is 
to describe and explain the AMDI itself and by doing so to complete the 
answer to Research Question 4: What does a model of an AMDI that 
enables IoT look like? Figure 6-1 below shows the stage of the research 
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in which the model build occurs. Having built the knowledge base from a 
review of literature and exploratory case studies, requirements, 
propositions and principles were developed in the relevance cycle. In this 
Chapter we transition to the design cycle in which the build and evaluation 
of the model occur. Figure 6-1 shows that the build and evaluation phases 
are iterative. Before testing, the model was built according to the 
requirements defined by the relevance cycle to level of detail which was 
deemed appropriate. Chapter 6 describes the final build of the model, 
however, the model was adjusted slightly during the test phase of the 
research based on insights provided by the test cases. These adjustments 
are discussed in Chapter 7 where the test cases are described.  

 

 
 

Figure 6-1: The stage of the research in which the model building occurs 

The socio-technical complexity of infrastructure systems calls for 
the combination of object-oriented and agent-oriented perspectives. We 
therefore adopt the “cross-over” modelling technique (Weijnen et al., 
2008). We utilize the autonomous characteristics of agent-based systems 
in this research to develop an agent based conceptual model of IoT AMDIs 
for infrastructure management. Agent-based systems provide a 
decentralized solution based on centralized decision making. This gives 
the system a high degree of flexibility and robustness (Jennings, 2001).  

The conceptual model described in this research aims at helping 
asset managers understand the nature of data infrastructures in an IoT 
adoption environment (Sokolowski & Banks, 2010). By modelling data 
infrastructures, we can illustrate and simulate the basic components of 
data infrastructures and their interrelationships. The combination of data 
infrastructure elements and their behaviors make up our agent-based 
conceptual model. In this chapter we discuss the functional elements of 
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the AMDI model as identified in the literature review (chapter 3) and the 
exploratory case studies (chapter 4). As discussed in chapter 5, the 
knowledge repository used for the model is the domain ontology. Section 
6.2 of this chapter discusses how the functional elements are modelled. 
Section 6.3 of this chapter describes how the components (data, 
technology and actors) are modelled and section 6.4 describes the 
schema (data governance). In Section 6.5 describes how the different 
environments are modelled. Section 6.6 describes the implementation 
guidelines and discusses how the model may be used in asset 
management organizations. Section 6.7 concludes the chapter by 
summarizing the chapter. 

6.1.1 Modelling Approach 

Generally speaking, the most powerful models attempt to minimize the 
semantic gap between the units of analysis and the constructs present in 
the modelling approach (Janssen & Verbraeck, 2005). But, with 
modelling, it is also important to reduce complexity by eliminating 
unnecessary detail in order to highlight the essence of the problem 
(Curtis, Kellner, & Over, 1992; Janssen & Verbraeck, 2005). According to 
Weijnen et al. (2008), the socio-technical complexity of infrastructure 
systems calls for the combination of object-oriented and agent-oriented 
perspectives. The “cross-over” modelling technique (Weijnen et al., 2008) 
forces the modeler to consider problems from the agent perspective, 
whilst providing insight into the relationship between agents. Therefore, 
we follow Janssen & Verbraeck (2005) as well as the ideas of agent 
architectures developed for MAS by Jennings (2001) and develop an agent 
architecture using object orientation. Object oriented environments 
require communication between objects (Janssen & Verbraeck, 2005). 
Implementing an agent within an object orientation requires developing 
the objects as agents to enable an agent to comply with the common 
characteristics of agents, such as autonomy, communication, and 
behavior to either react on the environment or to deliberately perform an 
action (Janssen & Verbraeck, 2005). According to Janssen & Verbraeck 
(2005) an agent-based model should ensure that all modeled entities 
meet the characteristics that make up an autonomous agent. Our model 
breaks up the AMDI into reusable, logical parts but does not pose a 
limitation to the extensibility of an element. 
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6.1.2 The AMDI Ontology 

We have chosen to use open standard technologies as they are widely 
accepted. This helps ensure sustainability of the model and allows us to 
utilize other accepted and popular linked open data ontologies (Jain, 
Hitzler, Sheth, Verma, & Yeh, 2010). Another advantage of using open 
standard technologies are the numerous supporting development 
environments and tooling available which helps us avoid vendor lock-in. 
In order to ensure interoperability we selected the World Wide Consortium 
(W3C) standards and recommended Semantic Web technologies 
(Horrocks, 2008). According to Horrocks (2008), semantic web 
technologies enable the creation of data stores on the Internet, build 
vocabularies and write rules for handling data. In this section we apply 
related W3C Semantic Web technologies to describe the AMDI model. 

6.1.3 Modelling Language 

The model is built using the Resource Description Framework (RDF) as 
specified by the World Wide Web Consortium (W3C). RDF is a framework 
for conceptual description or modeling of data (Hayes & Gutierrez, 2004). 
The RDF data model is based upon the idea of making statements about 
resources in the form of subject–predicate–object expressions, known as 
triples (Hayes & Gutierrez, 2004; McBride, 2001). The subject denotes 
the resource, and the predicate denotes traits or aspects of the resource, 
and expresses a relationship between the subject and the object. A 
collection of RDF statements intrinsically represents a labeled, directed 
multi-graph. According to Harth & Decker (2005), this should make an 
RDF data model better suited to knowledge representation than other 
data model types. RDF data is still often used in relational databases as 
“triple stores”. 

RDF is a way of recording information about resources (Powers, 
2003). As such, the RDF schema (RDFS) imposes very loose constraints 
on vocabularies whereas an ontology language adds additional constraints 
that increase the accuracy of implementations of a vocabulary and allow 
additional information to be inferred about the data (Powers, 2003). 
According to Gruber (1993, p. 199), an ontology is “an explicit 
specification of a conceptualization”. As such, an ontology formally defines 
a common set of terms that are used to describe and represent a domain 
(Heflin, undated). Essentially, the ontology is the definition of the 
business rules associated with a vocabulary (Powers, 2003). According to 
Heflin, ontologies make knowledge reusable by encoding knowledge in a 
domain and also across domains. Although it is theoretically possible to 
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develop an ontology/vocabulary using just RDFS, this research 
incorporates ontological elements from the Web Ontology Language 
(OWL) effort being developed by the World Wide Web Consortium (W3C). 
As such, we follow the W3C specifications and address four specific 
concepts with our AMDI model, namely: 

• Classes (general things) in the many domains of interest 
• The relationships that can exist among things 
• The properties (or attributes) those things may have 
• Constraints on relationships between the classes and their 

properties 
OWL and its current ongoing version OWL 2 is an ontology 

language for the Semantic Web with formally defined meaning (W3C OWL 
Working Group, n.d.). OWL 2 describes the domain in terms of classes, 
individuals, properties, datatypes and values, and, in broad terms, 
consists of axioms and facts that describe the domain. OWL 2 uses 
Internationalized Resource Identifiers (IRIs) as names for classes, 
individuals, properties and datatypes. Collectively these names are known 
as entities, which, together with data values, make up the building blocks 
of OWL 2 ontologies (W3C OWL Working Group, n.d.). In this research we 
adopt the view that Classes are a group of resources with similar 
characteristics. In the AMDI model, as in RDF and OWL, every class is 
associated with a set of individuals. The base class “owl:Thing” is a built-
in class representing the set of all individuals. Individuals represent actual 
objects from the domain. There are three distinct types of properties: 
object properties which are used to relate one individual to another; data 
properties which are used to relate an individual to a data value; and 
annotation properties which are used to add information, such as 
comments, to individuals, classes or properties. 

The ontology developed by this research is built using Protégé, a 
free, open-source ontology editor and framework for building intelligent 
systems developed by Stanford University. Protégé is a Java-based 
ontology editor which provides the mechanisms to create ontologies and 
allows the user to save the ontologies as plain text or as JDBC-accessible 
data-stores and as RDF/XML. 

6.1.4 Reasoner 

The model was corrected in an iterative manner using the HermiT 
reasoner build 1.3.8.413. HermiT is reasoner for ontologies written using 
the Web Ontology Language (OWL). HermiT was used during the build of 
the ontology to determine whether or not the ontology was consistent, for 
example by identifying subsumption relationships between classes. The 
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reasoner was run at regular intervals during the build (for example when 
external ontologies were coupled to the AMDI) to ensure consistency 
throughout the ontology. HermiT was chosen as it is a publicly-available 
OWL reasoner based on a “hypertableau” calculus which provides much 
more efficient reasoning than other algorithms, greatly improving 
performance and accuracy. Furthermore, HermiT uses direct semantics 
and passes all OWL 2 conformance tests for direct semantics reasoners. 

6.1.5 Open Linked Data 
As discussed above, there are a number of ontology representation 
languages available, and using the linked open data approach we are able 
to extend the model where necessary to include existing ontologies. This 
has various advantages such as aiding interoperability, increasing 
credibility of the schema, and improving ease of development (Archer, 
Loutas, & Goedertier, 2013). In this research we utilize a variety of linked, 
open ontologies which are discussed as and when they are used. To search 
for ontologies, we relied on ontology libraries such as the DAML Ontology 
Library (http://www.daml.org/ontologies) 
and the OBO (http://obo.sourceforge.net) which are a listing of knowledge 
resources (Noy, Rubin, & Musen, 2004). We intend to utilize the ontology 
metadata such as keywords that describe the topic of ontology content, 
to build an ontology library where users submit ontology metadata, search 
for existing ontologies against requirements, and view interrelationships. 
OWL2 is currently the most popular ontology representation language 
(Heiyanthuduwage, Schwitter, & Orgun, 2014). As such, RDF/OWL2 
provides us with the framework and language for our model. For example, 
OWL2 provides us with built-in properties for generic classes. The 
properties of OWL2 are divided in to three disjoint sets, namely object 
properties, data properties and annotation properties. Object properties 
relate one individual to another, for example, the object property 
buy:boughtAt may be used to relate a packet of milk to a store. Data 
properties relate an individual to a data value, as in, the data property 
buy:euroPrice may be used to relate a packet of milk to specific euro value 
(e.g. €2,50). Annotation properties are simple comments which may be 
added to provide clarity to the class or even the property or ontology 
itself. We have named our ontology “IoTAMDI” and the ontology has the 
ontology prefix: 
@prefixIoTAMDI: https://github.com/paulbrous/IoTAMDI 

  

http://www.daml.org/ontologies
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Following the linked open data (LOD) concept (Heath & Bizer, 
2011), our ontology is loosely coupled with, and makes use of, other 
ontologies, including: 
@prefix foaf: http://xmlns.com/foaf/0.1/  
@prefix cube: http://purl.org/linked-data/cube#  
@prefix org: http://www.w3.org/ns/org#  
@prefix owl http://www.w3.org/2002/07/owl#  
@prefix rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#  
@prefix rdfs http://www.w3.org/2000/01/rdf-schema#  
@prefix xml http://www.w3.org/XML/1998/namespace  
@prefix xsd http://www.w3.org/2001/XMLSchema# 

 
Complete descriptions of each of these ontologies can be found at 

the above links.  

6.1.6 Summary of the Model Design Approach  

Table 6-1 below summarizes how the model complies with the design 
principles which facilitate communication of the AMDI design as described 
in section 5.6 and as discussed above. The numbers in the table refer to 
the relevant design principle described in section 5.6. 

 

Table 6-1: A summary of how the model complies with the design principles which 
facilitate communication of the AMDI design. 

Design Principle How the model complies with the principle 

1. The model is available in 
widely accepted open 
formats. 

The model is readable as text or graphic format using 
widely available open source applications such as 
Protégé. 

2. The model can be edited, 
stored and recovered for 
future reference. 

The model is easily transferable using a variety of 
techniques, including download on request, is version 
controlled, and can be edited with a wide variety of text 
or graphic based editors. 

3. The model illustrates and 
simulates the basic 
components of AMDIs and 
their interrelationships. 

The model follows the W3C specifications and address 
four specific concepts with our AMDI model, namely: 
- Classes (general things) in the many domains of 
interest 
- The relationships that can exist among things 
- The properties (or attributes) those things may have 
- Constraints on relationships between the classes and 
their properties 

4. The model combines 
object-oriented and agent-
oriented perspectives, 

The model employs a combination of object-oriented and 
agent-oriented perspectives and develops an agent 
architecture using object orientation. 
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Design Principle How the model complies with the principle 

addressing the socio-
technical complexity of 
infrastructure systems. 

5. The model is extendable 
where necessary. 

The model follows the linked open data approach and we 
are able to extend the model where necessary to include 
existing ontologies. 

6. The model includes 
existing, widely accepted 
ontologies. 

The model’s ontology is loosely coupled with, and makes 
use of, other widely accepted ontologies such as FOAF 
and CUBE. 

7. The model uses open, 
widely accepted modelling 
schemas and ontology 
languages. 

The model’s ontology is loosely coupled with, and makes 
use of, other widely accepted schema’s such as RDFS 
and XSD. 

8. The model follows W3C 
modelling specifications. 

The model uses open standards and widely accepted 
W3C formats, being built in RDF/OWL format. 

9. The model uses open 
web standards. 

The model uses open standards and widely accepted 
W3C formats, being built in RDF/OWL format. 

 

6.2 Modelling the Main Functional Elements of the 

AMDI 
As discussed in chapter 5, The main elements of the AMDI are the 
components, data governance and environments. In this section we show 
how these elements form the basis of the AMDI model. We define the 
AMDI itself as the class owl:Thing. The classes with the Internationalized 
Resource Identifiers (IRIs) owl:Thing and owl:Nothing are available in 
OWL2 as built-in classes with predefined semantics: 

• The owl:Thing represents the set of all individuals. 
• The owl:Nothing represents the empty set. 

RDFS gives a name for the relationship between some specific class 
and its more general superclass: 'subClassOf' (rdfs:subClassOf). As such, 
all the AMDI functional elements are, essentially, subclasses of the main 
class owl:Thing, as seen below in Figure 6-2.  
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Figure 6-2: The main elements of the IoT AMDI model and their relationships 

As seen above in Figure 6-2, the owl:Thing class has been given 
the annotation property <rdfs:label>AMDI</rdfs:label>.  owl:Thing 
embodies the AMDI but is displayed with the label “AMDI”. All the above 
main classes have be given the object properties iotamdi:Constrains and 
iotamdi:Enables which indicate the relationship between the classes. The 
object property iotamdi:Constrains indicates that a class constrains the  
other classes in its range. The object property iotamdi:Enables indicates 
that a class enables the other classes in its range. 

Following the Duality of Technology theory (Orlikowski, 1992), we 
notice that technologies, as a product of agents, are enabled and 
constrained by agents, and that data governance includes the conditions 
of interaction with technology. We extend the Duality of Technology 
theory as we notice that the environments in which the infrastructure can 
be found can also constrain or enable the components and the data 
governance. Thus the owl:Thing class is also given the object properties: 
iotamdi:AdaptsToChangeFrom, which indicates that the object is capable 
of adapting to changes occurring in other classes in its range; 
iotamdi:EmergentBehaviorInResponseTo, which indicates that this class 
displays emergent behavior in response to changes in other classes; 
iotamdi:IsConnectedTo, which indicates that this class displays 
connectivity; and iotamdi:IsDynamic, which indicates that this class is 
capable of changing dynamically. 

The individual subclasses and their main relationships are 
discussed in the following sections. We begin in section 6.3 with the 
subclass, iotamdi:Component which has, in turn, sub-classes 
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iotamdi:Data, iotamdi:Technology and foaf:Agent. The reader may notice 
that the sub-class “agent” makes use of the Friend-of-a-Friend (FOAF) 
ontology (“FOAF Vocabulary Specification,” n.d.). According to the FOAF 
Vocabulary Specification, FOAF provides a basic "dictionary" of terms for 
talking about people and the things they make and do. The “Agent” class 
is the class of agents, or in the words of the FOAF Specification, “things 
that do stuff”. A well-known subclass is Person, representing people, but 
other kinds of agents may include Organization and Group. The Agent 
class is useful where Person is overly specific, such as with chatbots or 
robots. 

In Section 6.4 we discuss the subclass, iotamdi:Environment, 
which has the subclasses iotamdi:Physical, iotamdi:Cultural and 
iotamdi:Political. In section 6.5 we discuss the sub-class 
iotamdi:DataGovernance which has the sub-classes iotamdi:Align, 
iotamdi:Clarify, iotamdi:Organize, and iotamdi:Comply.  

6.3 Modelling the Components of the AMDI 
In this section we show how these components are related to the 
component class and how they relate to each other at this level of the 
model. The iotamdi:Component class is the class of physical or virtual 
objects  which make up the sum of the AMDI. As seen below in Figure 
6-3, the class iotamdi:Component has subclasses iotamdi:Data, 
iotamdi:Technology and foaf:Agent. 

 

 
 

Figure 6-3: The iotamdi:Component class and its subclasses. 
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Following the Duality of Technology theory (Orlikowski, 1992), we 
notice that technologies, as a product of agents, are influenced by agents, 
but that also, technologies extend an influence on agents and the way 
they behave . We extend the Duality of Technology theory as we notice 
that data has a similar relationship with technology and agents, both 
exerting influence on them and being a product of technology and agents. 
As such we have assigned the object property iotamdi:uses and foaf:made 
to the agent class, and the object property iotamdi:influences to all three 
subclasses. The property iotamdi:uses indicates that this class uses 
classes in its range for a particular purpose. The property foaf:made 
indicates something that was made by this agent. The property 
iotamdi:influences indicates that this class has an influence on the classes 
in its range. 

The following sections describe the subclasses of the super-class 
iotamdi:Component. 

6.3.1 Data 

Data have long been recognized as a core factor in IS and data 
infrastructures, and have been generally defined as the measure or 
description of objects or events (Brous et al., 2014; Checkland & Holwell, 
1997; Grus et al., 2010; Kettinger & Li, 2010). As discussed in Chapter 
1, in our model we follow Ackoff (1971), and define data as symbols which 
represent the measure or description of objects or events. These data 
elements as components of data infrastructures are encapsulated in the 
data class as seen below in Figure 6-4. 

 

 
Figure 6-4: The iotamdi:Data class and its sub-classes, iotamdi:Metadata and 
iotamdi:Registration. 
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 As seen above in Figure 6-4, the iotamdi:Data class has the 
subclasses iotamdi:Metadata and  iotamdi:Registration.  As discussed in 
Chapter 1, metadata is a description of a data entity.  The 
iotamdi:Metadata class has the object property, “Describes”. The 
“Describes” property is a relationship between metadata and the data that 
the metadata describes. As such, the “Describes” property has the range 
“Data” (and its subclasses). The “Describes” property has the domain, 
“Metadata”, i.e. having this property implies being a metadata entity, and 
every value of this property is a metadata entity. Figure 6-5 below depicts 
the iotamdi:Metadata class and its subclasses. 

 

 
Figure 6-5: The iotamdi:Metadata and its sub-classes 

As seen above in Figure 6-5, the iotamdi:Metadata class has the 
subclasses:“iotamdi:PhysicalMetadata”, 
iotamdi:DomainSpecificMetadata”, “iotamdi:UserMetadata”, and 
“iotamdi:DomainIndependentMetadata”. 

The class iotamdi:PhysicalMetadata includes information about the 
physical storage of data (Khatri & Brown, 2010). Data properties of this 
class include, for example:  

dc:Format, 
iotamdi:MediaType,  
iotamdi:digitalOrigin. 
The class iotamdi:DomainIndependentMetadata includes generic 

descriptions such as the creator or modifier of data as well as 
authorization and lineage information related to the data (Khatri & Brown, 
2010). Data properties of this class include, for example: dcterms:Title, 
dcterms:Subject, dcterms:Language, dcterms:Description. Note that use 
is made of the Dublin Core Ontology (http://purl.org/dc/elements/1.1 and 

http://purl.org/dc/elements/1.1
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http://purl.org/dc/terms/) to extend the data properties of this class. 
Dublin Core is a moderately small ontology for describing generic 
metadata which is divided into 2 vocabularies: DC elements and DC 
terms. “DC elements” contains 15 properties. “DC terms” contains 22 
classes and 55 properties. 

The class iotamdi:DomainSpecificMetadata provides a set of 
mappings from a representation language to concepts in the real world 
(Khatri & Brown, 2010). For example, geospatial metadata is a type of 
metadata that is applicable to objects that have are associated with some 
position on the surface of the globe. Data properties of this class include, 
for example:  

iotamdi:SpatialResolution,  
iotamdi:TemporalResolution,  
iotamdi:CoordinateReferenceSystem.  
The class iotamdi:UserMetadata includes annotations that users 

may associate with data entities. Such annotations can, for example, 
capture user preferences and usage history (Khatri & Brown, 2010). The 
class iotamdi:UserMetadata include user attributes (such as user 
preferences) that do not impact a user's core functionality. Data 
properties of this class include, for example: foaf:name, foaf:lastName, 
iotamdi:NumberofViews, iotamdi:Reviewed.  

As seen in Figure 6-5 above, the iotamdi:Data class includes the 
subclass iotamdi:Registration class. The iotamdi:Registration class 
defines what is generally known as data i.e., as discussed in Chapter 1, 
the symbols representing measures or descriptions of objects or events. 
Figure 6-6 below depicts the iotamdi:Registration class which consists of 
the subclasses iotamdi:Description and iotamdi:Measurement. 

 

 
Figure 6-6: The iotamdi:Registration class and its subclasses. 
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The iotamdi:Registration class includes the object property 
iotamdi:Represents, which defines the relationship between a registration 
and the object or event it is representing. 

The class iotamdi:Description defines the symbols used register 
descriptions of objects or events. This class consists of the subclasses 
iotamdi:Identification and iotamdi:Observation. The class 
iotamdi:Identification defines the symbols used to uniquely identify an 
object or event. This class includes the object property iotamdi:Identifies 
which defines the relationship between the identifier and the object or 
event to be identified. Data properties of this class include, for example: 
iotamdi:GUID, and iotamdi:SystemID. 

The iotamdi:Observation class defines the symbols used to register 
observations and sensations of objects or events. This class includes the 
object property iotamdi:IsObservationOf, which indicates that the 
symbols represent observations of an object or event. This object 
property has the sub-properties of: 1. iotamdi:IsAudioOf, which indicates 
that the symbols represent audio of an object or event; 2. 
iotamdi:IsVisualizationOf, which indicates that the symbols represent 
visualizations of an object or event such as video or images; 3. 
iotamdi:IsChemicalOf which indicates that the symbols represent the 
chemical compositions of an object or event; and 4. iotamdi:IsTouchOf 
which indicates that the symbols represent the physical impact of an 
object or event such as, for example, pressure, level of hardness, or level 
of roughness. 

The iotamdi:Measurement class defines the symbols used register 
measurements of objects or events. This class includes the object 
property iotamdi:IsMeasurementOf, which indicates that the symbols 
represent measurements of an object or event. This object property is 
extendable to include, for example, sub-properties such as 
iotamdi:IsTemperatureOf, which indicates that the symbols represent the 
temperature of an object or event, or iotamdi:IsLengthOf, which indicates 
that the symbols represent the length of an object or event.  

6.3.2 Technology 

The technology class encapsulates the collection of Information 
Technology (IT) artifacts, hardware and software, used in the production 
of data or services or in the accomplishment of objectives, such as data 
analysis or data management. Creating and managing a business driven 
IT involves decisions based on a sound understanding of an organization’s 
strategic context (Broadbent & Weill, 1997). IT has led many 
organizations to imagine a world of leveraged knowledge, but whilst IT 
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has inspired this vision, it in itself cannot bring it into being (Lesser, 
Fontaine, & Slusher, 2009). In the AMDI model, IT is regarded as an 
important enabler of AMDIs. The iotamdi:Technology class and its 
subclasses, iotamdi:Hardware and iotamdi:Software is depicted in Figure 
6-7 below. 

 

 
Figure 6-7: The iotamdi:Technology class and its subclasses. 

The iotamdi:Technology class defines the collection of IT artefacts, 
hardware and software used in the production of data or services or in the 
accomplishment of objectives such as data management or data analysis. 
This class has two main subclasses, iotamdi:Software and 
iotamdi:Hardware.  

The iotamdi:Software class defines a set of instructions or 
programs instructing computers within the IoT system to do specific tasks. 
Software is a generic term used to describe computer programs. The 
iotamdi:Software class has the subclasses iotamdi:Algorithm, 
iotamdi:Application, and iotamdi:Platform. The iotamdi:Platform class 
defines a group of technologies that are used as a base upon which 
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applications are developed. Computers use specific central processing 
units (CPUs) that are designed to run specific machine language code. In 
order for the computer to run software applications, the applications must 
be in that CPU’s binary-coded machine language. As such, IoT platforms 
both enable and constrain IoT applications. The iotamdi:Application class 
defines any program, or group of programs, that is designed for the end 
user. Applications run on platforms. The iotamdi:Algorithm class defines 
a process or set of rules to be followed in calculations. Algorithms run 
within applications. 

The iotamdi:Hardware class defines the physical parts or 
components of an IoT system. As the hardware that is used within IoT 
systems also determines the software used the class iotamdi:Hardware 
includes the object properties iotamdi:ConstrainCompute, which indicates 
that the class constrains computation, and iotamdi:EnableCompute, 
which indicates that the class enables computation. The 
iotamdi:Hardware class has the subclasses iotamdi:Perception,  
iotamdi:Transmission, and, iotamdi:Processing. The iotamdi:Perception 
class includes hardware used for the acquisition of observations or 
measurements by using perception, acquisition and measurement 
technology such as RFID, two-dimensional code and sensors, etc. The 
iotamdi:Transmission class defines the class of hardware that ensures 
that IoT objects have access to information networks and can realize 
reliable information interaction and sharing through communications 
networks. The iotamdi:Processing class defines the class of hardware than 
enables the analysis of sensor data to achieve intelligent decision-making 
and control. 

6.3.3 Agents 

As seen below in Figure 6-8, in our model all independent actors are 
viewed as agents. Agents are encapsulated within the agent class, which 
can be extended to include a wide variety of types of agents. We adopt 
Janssen & Verbraeck's (2005) definition of an agents and define the 
foaf:Agent class as autonomous, goal driven entities that are able to 
communicate with other agents and whose behavior is the consequence 
of their (1) observations, their (2) knowledge and their (3) interactions 
with other agents (Janssen & Verbraeck, 2005).  
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Figure 6-8: The agent class, its subclasses and relationships. 

Changes to data infrastructures are structural changes that require 
the interaction of agents around both technical changes to the data 
infrastructure, as well changing social values as drivers of change. For 
example, whilst the rules of the system may be set at the higher levels, 
by the relevant governance bodies, it often comes down to individuals to 
interpret and implement these policies at the operational level. As such, 
the foaf:Agent class has the subclasses foaf:Group, foaf:Person, 
foaf:Organization, iotamdi:Bot and iotamdi:Robot. The definitions of the 
foaf subclasses can be found at “http://xmlns.com/foaf/spec/”. The 
iotamdi:Bot  subclass defines agents which are software applications that 
run automated tasks over the Internet. As such this class is also 
equivalent to the iotamdi:application class. The subclass is a machine 
capable of carrying out a complex series of actions automatically. 

In many multiple agent architectures, complexity is generally 
reduced and problems are decomposed, with sub-problems being 
assigned to specific agents (Janssen & Verbraeck, 2005). The greater 
problem is in this way resolved including multiple agents. Our model 
follows this line of thinking as each agent has a role to play in the 
implementation of the data infrastructure, based on their position within 
the organization and the underlying processes. We thus further develop 
the agent-based model by examining the characteristics of agents with 
regards to the underlying schema as described by the data governance 
class. The data governance class helps to define the nature of agents, as 
well as shaping the behavior and interactions of agents. Agents are always 
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situated in an environment. They receive inputs related to the states of 
their environment, and they act on the environment. Data governance 
provides the guidelines which guide the actions of the agents. An agent’s 
behavior is often viewed as a manifest of intelligence (Russell & Norvig, 
1995). The behavior is modeled in terms of the tasks that need to be 
accomplished given its position (Janssen & Verbraeck, 2005; Zambonelli, 
Jennings, & Wooldridge, 2001). According to Janssen & Verbraeck (2005), 
behavior is dependent on the circumstances, and as a result modeled 
agents should be able to have various types of behavior. The behavior of 
the agents dictates which technology is implemented and which data is 
developed. This behavior also dictates how the data and the technology 
are maintained.  

6.3.4 Summary of Model Compliance: Component 

Principles  

Table 6-2 below summarizes how the model complies with the design 
principles which enhance our understanding of the AMDI design as 
described in section 5.6 with regards to the components of the AMDI. The 
numbers in the table refer to the relevant design principle described in 
section 5.6. 

 

Table 6-2: How the model complies with the design principles which enhance our 
understanding of the AMDI design with regards to the components of the AMDI.  

Design Principle How the model complies with the principle 

10. The model describes 
metadata and its 
relationship to IoT related 
data. 

See figure 6-3: The iotamdi:Data class and its sub-
classes, iotamdi:Metadata  

11. The model describes 
IoT related registrations 
and their relationships. 

See figure 6-3: The iotamdi:Data class and its sub-
classes, iotamdi:Registration and figure 6-5: The 
iotamdi:Registration class and its subclasses. 
 

12. The model describes 
the different forms of 
metadata and their 
relationships to IoT data. 

See figure 6-4: The iotamdi:Metadata and its sub-classes 
 

13. The model describes 
hardware related to IoT 
and their relationships. 

See figure 6-6: The iotamdi:Technology class and its 
subclasses. 
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Design Principle How the model complies with the principle 

14. The model describes 
software related to IoT 
and their relationships. 

See figure 6-6: The iotamdi:Technology class and its 
subclasses. 
 

15. The model describes 
required IoT related 
application components 
and their relative functions 
in the architecture. 

See figure 6-6: The iotamdi:Technology class and its 
subclasses. 
 

16. The model describes 
the roles of people as 
agents in the AMDI, their 
relationships and behavior. 

See figure 6-7: The foaf:Agent class, its subclasses and 
relationships. 
 

17. The model describes 
organizational groups as 
agents in the AMDI, their 
relationships and behavior. 

See figure 6-7: The agent class, its subclasses and 
relationships. 

18. The model describes 
bots and robots as 
technological agents in the 
AMDI, their relationships 
and behavior. 

See figure 6-7: The agent class, its subclasses and 
relationships. 
 

 

6.4 Modelling Data Governance 
The data governance class determines the behavior of the agent and how 
the agent chooses to organize their activities. The data governance class 
is depicted below in Figure 6-9. Data governance is a complex 
undertaking. Because data governance directs the actions of agents in 
AMDIs, it is insufficient to describe the totality of data governance only in 
specific data governance classes. Data Governance properties can also be 
found in a number of object properties which occur in other classes, such 
as foaf:Role which has the domain foaf:organization and range 
foaf:Agent. 
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Figure 6-9: The iotamdi:DataGovernance class, its subclasses and relationships. 

In the literature and exploratory cases studies we have noticed 
that principles of data governance should include the data management 
function and assigning roles and responsibilities, ensuring alignment with 
business needs, ensuring compliance, and ensuring clarification of how 
the data infrastructure has been set up, including definition of terms etc. 
(Brous et al., 2016). As such, the main subclasses of the 
iotamdi:DataGovernance class include: 
 iotamdi:DGOrganizationalCapability, which is the class of artefacts 
required to ensure organization of data governance in a particular 
organization; ioamdi:DGAlignment, which is the class of artefacts which 
align data with business needs; iotamdi:DGCompliancy, which is the class 
of artefacts which ensure that data is compliant with policy, laws and 
directives; and iotamdi:DGClarification which is the class of objects which 
ensure clarity over the data landscape within the AMDI. 

6.4.1 Organizational Capability 

As seen below in Figure 6-10, the class,  
iotamdi:DGOrganizationalCapability includes the subclasses: 
iotamdi:CoordinationMechanism and iotamdi:DataManagementProcess.  
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Figure 6-10: The class, iotamdi:DGOrganizationalCapability its subclasses and relationships 

An important object property which has 
iotamdi:DGOrganizationalCapability in its domain includes 
iotamdi:Organizes which indicates that this class defines the rules for 
organizing the AMDI. The object property iotamdi:Organizes includes the 
subproperty iotamdi:Structures, which indicates that the class structures 
the data governance organization, and the subproperty foaf:Role which 
assigns roles such as iotamdi:Ownership and iotamdi:Stewardship to 
agents.  

The class iotamdi:CoordinationMechanism defines the coordination 
mechanisms used to manage data in an organization and includes the 
subclasses: iotamdi:SelfOrganization which is the coordination 
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mechanism whereby AMDIs are able to adjust and adapt themselves to 
both external and internal influences (Grus et al., 2010); 
iotamdi:Feedback in which AMDIs can use its own output to adjust its 
inputs and processes (Grus et al., 2010); iotamdi:Contracting in which 
activities are divided into subtasks that can be performed by specialist 
agents (Nwana et al., 1996); and iotamdi:Planning in which involves 
planning to coordinate activities that have yet to be executed (March & 
Simon, 1958). 

The class iotamdi:DataManagementProcess defines the data 
management processes used to manage data through the AMDI and 
includes “the business function that develops and executes plans, policies, 
practices, and projects that acquire, control, protect, deliver and enhance 
the value of data” (International & Earley, 2011). The professional 
organization, The Data Management Association International (DAMA), 
has, besides data governance, defined 10 overriding data management 
processes: Data Architecture Management, Data Quality Management, 
Metadata Management, Document and Content Management, Data 
Modelling and Design, Data Security Management, Data Warehousing and 
Business Intelligence Management, Reference and Master Data 
Management, Data Storage and Operations Management, and Data 
Integration and Interoperability Management. These processes are 
reflected in the classes: iotamdi:DataArchitectureManagement which 
includes the “method of design and construction of an integrated data 
resource that is business driven, based on real-world subjects as 
perceived by the organization, and implemented into appropriate business 
environments.” (International & Earley, 2011). This class also includes the 
process of data modelling and design; 
iotamdi:DataQualityManagement which includes the “process of ensuring 
that the development effort will result in the desired product” 
(International & Earley, 2011); iotamdi:MetadataManagement which 
includes “processes that create, control, integrate, access and analyze 
metadata repositories to allow for easier access” (International & Earley, 
2011); iotamdi:DocumentAndContentManagement which includes 
managing “data found outside of standard structured databases” 
(International & Earley, 2011); iotamdi:DataSecurityManagement which 
includes “the prevention of unauthorized access to a database and its 
data, and to applications that have authorized access to databases” 
(International & Earley, 2011);  
iotamdi:DataWarehousingAndBusinessIntelligenceManagement which 
includes the “operational, administrative and control processes that 
provide access to Business Intelligence data and support to knowledge 
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workers engaged in reporting, query and analysis” (International & 
Earley, 2011); iotamdi:ReferenceAndMasterDataManagement which 
includes “ensuring consistency with a ‘golden version’ of data values” 
(International & Earley, 2011);  
iotamdi:DataStorageAndOperationsManagement, which includes 
providing “support from data acquisition to purging” (International & 
Earley, 2011); and  
iotamdi:DataIntegrationAndInteroperabilityManagement which includes 
managing “how data is selected, transformed and flows across databases” 
(International & Earley, 2011). 

6.4.2 Alignment 

Data governance should also ensure that data is aligned with the needs 
of the business. As such, the class iotamdi:DataGovernance includes the 
subclass iotamdi:DGAlignment, which, as seen below in Figure 6-11  
includes objects which ensure that data meets the necessary 
requirements to align with the requirements of the business. 

 

 
Figure 6-11: The iotamdi:DGAlignment class, its subclasses and relationships 
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 As seen above in Figure 6-11, the class iotamdi:DGAlignment 
includes the subclasses: iotamdi:BusinessRequirement, which includes 
the business requirements used to define data capabilities; and 
iotamdi:BusinessRule, which includes the business rules used to define 
the functional framework of the data. The reader should note that this 
class originally was composed of sub-classes defining the different types 
of business rules, however, during the test phase these classes were 
deemed to be unworkable. 

6.4.3 Compliance 

Ensuring compliance means defining, monitoring and enforcing data 
policies (internal and external) throughout the organization. Figure 6-12 
below depicts the class iotamdi:DGCompliance, its subclasses and 
relationships. 

 

 
Figure 6-12: The class iotamdi:DGCompliance, its subclasses and relationships. 

Establishing and enforcing policies regarding the management of 
data is important for an effective data governance practice. A data 
strategy directs the data management organization, and the data audit 
monitors and controls the compliancy of the organization. As such, the 
iotamdi:DGCompliancy class includes the subclasses: iotamdi:DataPolicy, 
which includes an organization's set of data management artefacts 
designed to assist business administration and protect company assets; 
iotamdi:DataStrategy, which is “a business plan for leveraging and 
enterprise’s data assets to maximum advantage” (International & Earley, 
2011); and iotamdi:DataAudit, which is “a formal and official verification 
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of quality and conformance to requirements, regulations, standards 
and/or guidelines” (International & Earley, 2011). Important object 
properties related to the iotamdi:DGCompliancy class include: 
iotamdi:Controls which indicates that the object monitors compliancy to 
norms, policies, laws and regulations; iotamdi:Regulates, which indicates 
that the object defines the actions required to comply to norms, policies, 
laws and directives; and iotamdi:Directs, which indicates that the object 
gives direction to the AMDI. 

6.4.4 Clarification 

But governing data appropriately is only possible if it is properly 
understood what the data to be managed means, and why it is important 
to the organization (Brous et al., 2016). As such, Figure 6-13 below 
depicts the iotamdi:DGClarification class and its subclasses. 

 

 
Figure 6-13: The iotamdi:DGClarification class, its subclasses and relationships. 

As can be seen in Figure 6-13 above, the iotamdi:DGClarification 
class by definition clarifies data, and as such is equivalent to metadata. 
However, the iotamdi:DGClarification also describes other components of 
the AMDI and therefore includes the AMDI in its range. The 
iotamdi:DGClarification class includes the subclasses: iotamdi:Lineage, 
which includes objects which clarify the data and other components of the 
AMDI; iotamdi:DataModel, which includes a description of elements of 
data and standardizes how they relate to one another and to properties 
of the real world entities; and the subclass iotamdi:Standard, which 
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includes objects that standardize components and relationships of the 
AMDI. Important object properties of the iotamdi:DGClarification class 
include:  iotamdi:Clarifies which indicates that the objects clarify the 
components of the AMDI – note that iotamdi:Clarifies is equivalent to the 
object property iotamdi:Describes; iotamdi:MaintainsDescendency, which 
indicates that the object maintains lineage of data; iotamdi:Models, which 
indicates that the object models (an aspect of) the AMDI; and 
iotamdi:Standardizes, which indicates that the object standardizes (an 
aspect of) the AMDI. 

6.4.5 Summary of Model Compliance: Data Governance 

Principles 

Table 6-3 below summarizes how the model complies with the design 
principles which enhance our understanding of the AMDI design regards 
to data governance. The numbers in the table refer to the relevant design 
principle described in section 5.6. 

 

Table 6-3: How the model complies with the design principles which enhance our 
understanding of the AMDI design regards to data governance 

Design Principle How the model complies with the principle 

19. The model describes 
the organization of data 
governance. 

See Figure 6-10: The class, iotamdi:DGOrganization its 
subclasses and relationships. 
 

20. The model describes 
the loci of data 
provenance. 

The object property iotamdi:Organizes includes the 
subproperty iotamdi:Structures, which indicates that the 
class structures the data governance organization, and the 
subproperty foaf:Role which assigns roles such as 
iotamdi:Ownership and iotamdi:Stewardship to agents. 

21. The model describes 
appropriate coordination 
mechanisms positively 
associated with IoT 
adoption. 

The class iotamdi:CoordinationMechanism defines the 
coordination mechanisms used to manage data in an 
organization and includes a number of subclasses 
describing the various coordination mechanisms positively 
associated with IoT adoption. 

22. The model describes 
artefacts and 
relationships which 
ensure that IoT related 
data meets the necessary 
requirements to align 
with the requirements of 
the business. 

See Figure 6-11: The iotamdi:DGAlignment class, its 
subclasses and relationships. 
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Design Principle How the model complies with the principle 

23. The model includes a 
data strategy as object, 
and describes processes 
to develop and implement 
the strategy. 

The iotamdi:DGCompliancy class includes the subclass: 
iotamdi:DataStrategy, which is “a business plan for 
leveraging and enterprise’s data assets to maximum 
advantage” (International & Earley, 2011); 

24. The model describes 
the use of standards to 
align IoT data and 
technology with the 
needs of the asset 
management 
organization. 

See Figure 6-13: The iotamdi:DGClarification class, its 
subclasses and relationships, including the sub-class 
iotamdi:Standard 
 

25. The model uses 
standardized data 
management frameworks 
to describe data 
management activities 
related to IoT processes. 

The class, iotamdi:DGOrganization includes subclasses and 
relationships which are derived from best practices as 
described by the Data Management Association (DAMA). 

26. The model describes 
objects which monitor 
compliancy to norms, 
policies, laws and 
regulations 

The iotamdi:DGCompliancy class includes the subclasses: 
iotamdi:DataPolicy, which includes an organization's set of 
data management artefacts designed to assist business 
administration and protect company assets; 

27. The model describes 
a set of data 
management artefacts 
designed to assist 
business administration 
and protect company 
assets. 

See the class iotamdi:Controls which indicates that the 
object monitors compliancy to norms, policies, laws and 
regulations; iotamdi:Regulates, which indicates that the 
object defines the actions required to comply to norms, 
policies, laws and directives; and iotamdi:Directs, which 
indicates that the object gives direction to the AMDI. 

 

6.5 Modelling the Environments 
Although data governance should be recognized as the schema which 
guides actors operating within and acting on the data infrastructure, it 
should also be recognized that data governance should be practiced in 
accordance with the environments within which the data infrastructure 
finds itself. As such, the organization of data governance should not be a 
“one size fits all” approach and the data governance organizational 
structure should fit with a specific organization. Figure 6-14 below depicts 
the environment class which often influences the boundaries, form and 
evolution of data infrastructures. 
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Figure 6-14: The iotamdi:Environment class, its subclasses and relationships 

According to de Man (2006), the goals of data infrastructures are 
to facilitate and coordinate exchange, sharing, accessibility, and use of 
data and encompass complexes of interacting institutional, organizational, 
technological, human, and economic resources. The potential of data 
infrastructures to facilitate access to, and sharing and communication of, 
spatial data may be subject to existing cultural, political and societal 
factors (de Man, 2006). For example, actors may want to maintain their 
powerful positions and prevent others from direct access to the data 
infrastructure. Taken a step further, Kim & Kaplan (2006) believe that the 
weak “cause-and-effect” exchanges seen within data infrastructures may 
be due to the interpretation of context. Actors are therefore non-passive. 
A data infrastructure is thus more than a series of socio-technical 
interactions, but is made up of actors forced to act on a changing 
landscape (R. M. Kim & Kaplan, 2006). As such, as seen above in figure 
6-3-5, the class iotamdi:Environment includes the subclasses: 
iotamdi:PhysicalEnvironment, which includes the sum of the tangible 
things in the area within which the AMDI occurs; 
iotamdi:CulturalEnvironment, which includes beliefs, practices, customs 
and behaviors that are found to be common to all agents operating within 
the AMDI; and iotamdi:PoliticalEnvironment, which includes governing 
objects which affect the operations of the AMDI. Important object 
properties within the environment domain include iotamdi:Influences 
which indicates that the environment influences how the object may 
behave. 
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6.5.1 Summary of Model Compliance: Environment 

Principles 

Table 6-4 below summarizes how the model complies with the design 
principles which enhance our understanding of the AMDI design as 
described in section 5.6 with regards to the components of the AMDI. The 
numbers in the table refer to the relevant design principle described in 
section 5.6. 

 

Table 6-4: How the model complies with the design principles which enhance our 
understanding of the AMDI design with regards to the environments of the AMDI.  

Design Principle How the model complies with the principle 

28. A description of the 
physical environment is 
an integral part of the 
AMDI. 

The subclass iotamdi:PhysicalEnvironment, includes the sum 
of the tangible things in the area within which the AMDI 
occurs. 

29. The model 
assimilates potential 
effects of the physical 
environment on the 
AMDI. 

The object property iotamdi:Constrains indicates that the 
subclass iotamdi:PhysicalEnvironment constrains the  other 
classes in its range. The object property iotamdi:Enables 
indicates that this class enables the other classes in its 
range. 
The object properties: iotamdi:AdaptsToChangeFrom, 
indicates that the object iotamdi:PhysicalEnvironment causes 
changes occurring in other classes in its range; 
iotamdi:EmergentBehaviorInResponseTo, indicates that the 
object iotamdi:PhysicalEnvironment causes changes 
occurring in other classes in its range; 

30. A description of the 
cultural environment is 
an integral part of the 
AMDI. 

The subclass iotamdi:CulturalEnvironment includes beliefs, 
practices, customs and behaviors that are found to be 
common to all agents operating within the AMDI. 

31. The model 
assimilates potential 
effects of the cultural 
environment on the 
AMDI. 

The object property iotamdi:Constrains indicates that the 
subclass iotamdi:CulturalEnvironment constrains the  other 
classes in its range. The object property iotamdi:Enables 
indicates that this class enables the other classes in its 
range. 
The object properties: iotamdi:AdaptsToChangeFrom, 
indicates that the object iotamdi:CulturalEnvironment causes 
changes occurring in other classes in its range; 
iotamdi:EmergentBehaviorInResponseTo, indicates that the 
object iotamdi:CulturalEnvironment causes changes 
occurring in other classes in its range; 

32. A description of the 
political environment is 
an integral part of the 
AMDI. 

The subclass iotamdi:PoliticalEnvironment includes governing 
objects which affect the operations of the AMDI. 
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Design Principle How the model complies with the principle 

33. The model 
assimilates potential 
effects of the political 
environment on the 
AMDI. 

The object property iotamdi:Constrains indicates that the 
subclass iotamdi:PoliticalEnvironment constrains the  other 
classes in its range. The object property iotamdi:Enables 
indicates that this class enables the other classes in its 
range. 
The object properties: iotamdi:AdaptsToChangeFrom, 
indicates that the object iotamdi:PoliticalEnvironment causes 
changes occurring in other classes in its range; 
iotamdi:EmergentBehaviorInResponseTo, indicates that the 
object iotamdi:PoliticalEnvironment causes changes 
occurring in other classes in its range; 

6.6 Summary: Modelling Behaviors 
Table 6-5 below summarizes how the model complies with the design 
principles which enhance our understanding of the behavior of the AMDI. 
The numbers in the table refer to the relevant design principle described 
in section 5.6. 

 

Table 6-5: A summary of how the model complies with the design principles which 
enhance our understanding of the behaviors of the AMDI. 

Design Principle How the model complies with the principle 

34. The model assimilates 
dynamic change in 
relationships, behavior 
and individuals into its 
design. 

The owl:Thing class is given the object property 
iotamdi:IsDynamic, which indicates that this class is 
capable of changing dynamically. 
 

35. Every object has a 
significant relationship 
with at least one other 
object in the model. 

The owl:Thing class is given the object property 
iotamdi:IsConnectedTo, which indicates that this class 
displays connectivity. Each object in the model has a 
significant relationship with a superclass which leads 
ultimately to the superclass owl:Thing 
 

36. The model is 
configurable and 
reconfigurable to 
assimilate specific, local 
requirements. 

The owl:Thing class is given the object property 
iotamdi:AdaptsToChangeFrom, which indicates that the 
object is capable of adapting to changes occurring in other 
classes in its range. 
 

37. The model is 
configurable and 
reconfigurable to 
assimilate unforeseen 
behavioral changes of 
local agents. 

The owl:Thing class is given the object property 
iotamdi:EmergentBehaviorInResponseTo, which indicates 
that this class displays emergent behavior in response to 
changes in other classes. 
 

 



The AMDI Model 

235 
 

6.7 Implementation Guidelines 
This section outlines guidelines for implementation of the IoT AMDI model, 
which include the rationale, and policy, procedures, and standards for the 
use in asset management organizations. Modeling is a common process 
within IT. Organizations which produce and review data models before 
moving forward with system development may benefit by identifying and 
resolving some of the issues before implementation as well as developing 
mature sets of requirements.  

6.7.1 Use 

The AMDI model will primarily be of interest to asset managers wishing 
to adopt IoT for asset management purposes. The intent of the AMDI 
model is to ensure that the understanding of the asset management 
system is as complete as possible, and to provide a way to communicate 
this knowledge to all stakeholders. 

The AMDI model is a conceptual model which includes standardized 
diagrams and descriptions of the AMDI objects and their relationships. 
The AMDI model allows asset managers to anticipate and understand 
problems which may arise in the adoption of IoT for asset management 
purposes. The model may also be used to aid the development and 
maintenance of IoT systems in asset management organizations. 

6.7.2 Personalization 

As discussed in the literature review of chapter 3, there can be no “one-
size-fits-all” solution to a wicked problem such as understanding asset 
management through IoT (Weber et al., 2009). As such, the AMDI model 
presented in this research should be “personalized” to fit each particular 
organization. The AMDI model presented in this research is at the 
conceptual level and is extendable in that classes and subclasses can be 
added or removed according to local needs. The model also represents 
classes and object properties, and does not pay close attention to data 
properties or individuals. This allows the local implementation to be 
configured to the local situation. As such, attention during implementation 
should be paid to the following when using this model in real world 
situations. 

 
Standard Notation 
In this research the notation is constrained by the use of RDF and the 
presentation possibilities allowed by Protégé. Because the number of 
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objects in the AMDI model cannot be clearly shown on one page, the 
model has been split into object groups. An object group has a business 
coherence, and may be relatively distant from other entities. This 
grouping allows for scalability and flexibility in the model. Names for the 
objects should be meaningful and should not conflict with other object 
names. All objects have instances. As such, the first sentence of the object 
definition describes a noun with phrases which summarize the meaning 
of the object, and typical examples are included where possible. This 
allows the reader to understand the rationale for the object.  

6.7.3 Governance 

The adoption process should outline how the logical and physical models 
are produced and reviewed during the development of systems. Data 
governance responsibilities outline the persons or organizational roles 
responsible for each object group. The intent of the AMDI model is to 
document a common understanding of the data to be stored and delivered 
in the data infrastructure.  

 
Model Planning 
At the start of the adoption program, broad requirements for the minimum 
viable product should be established. The number and size of logical 
models which flow out the conceptual AMDI should be determined and the 
appropriate standards should be identified. The model planning session 
should be held early in the program, well before formal requirements are 
resolved.  

 
Model Reviews 
A review should be scheduled once a significant number of logical models 
has been created. The review should look at how the models meet the 
standards, and document any issues which may impact the rest of the 
organization. The model should be approved when identified deviations 
from standards have been corrected. An appropriate issue management 
system should be incorporated. 

6.8 Summary 
This chapter presents a model of AMDIs which is designed to enhance our 
understanding of asset management through IoT and to facilitate 
communication between stakeholders. As such this chapter completes the 
answer to research question 4 which asks what does a model of an AMDI 
that accommodates IoT look like? The model makes use of the RDF 
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framework and is based on the principles developed in Chapter 5. The 
design principles are based on requirements gathered during the 
literature review (chapter 3) and the exploratory case studies (chapter 4) 
and the design propositions. In this chapter we described the AMDI model 
providing class diagrams for entity display groups. A complete summary 
of the classes of the AMDI model can be found in Appendix A. The reader 
should note that only classes particular to the AMDI model are 
summarized in Appendix A. The reader should refer to the relevant 
ontology (see section 6.1) for descriptions of classes described in other 
ontologies. The model is tested using cases in Chapter 7. These test cases 
follow the method of personalization and operationalization as described 
above in section 6.6.
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Chapter 7 Test Cases 
 

“For my part, I have walked about the streets, 
Submitting me unto the perilous night, 
And, thus embraced, Casca, as you see, 
Have bared my bosom to the thunder-stone; 
And when the cross blue lightning seemed to open 
The breast of heaven, I did present myself 
Even in the aim and very flash of it.” 

- William Shakespeare (Julius Caesar: Act-I, Scene-III) 
 

7.1 Introduction 
In Chapter 6 we described a model of AMDIs which accommodate IoT. 
The AMDI model is designed on the basis of three design propositions. We 
arrived at these propositions through means of a literature review and 
three exploratory case studies in which we confirmed the duality of IoT in 
asset management organizations and the necessity of viewing AMDIs as 
CAS when adopting IoT. To summarize the propositions, we propose that 
the components, data governance and environments of the AMDI will 
improve understanding of asset management though IoT. The model 
described in Chapter 6 therefore is designed to improve our understanding 
of asset management through IoT. 

Investigating whether the model improves our understanding of 
asset management through IoT requires testing its efficacy. In this 
Chapter, we therefore test the usability of the AMDI model and the 
usefulness of the model. Figure 7-1 below shows that the test cases were 
performed once the model was deemed to be of a suitable quality. In the 
course of the test cases, input was received from the participants and re-
worked into the model. An example of this is the removal of specific types 
of business rules from the model. Our tests are conducted within the 
context of three test case studies. According to Yin (2009), the use of 
case study research in performing evaluations is derived from the desire 
to gain an in-depth examination of a phenomena within its real-world 
context. In this way, case study evaluations are able to capture the 
complexity of the case, and should be able to attend to contextual 
conditions (Yin, 2009). As such, the main objective of this chapter is to 
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answer the final research question, RQ 5: how does the AMDI model 
improve understanding of asset management though IoT? We answer this 
question by means of three tests: 

1. First, we test the validity of the case studies with regards to the 
criteria for case study selection (see Table 2-1). The results of 
this test can be found in Table 7-5.  

2. Second, we test the usability of the model (see Table 2-5). The 
results of this test can be found in Table 7-7.  

3. Third, we test the design propositions. Essentially, this test is an 
extension of test two, in that these tests test the usefulness of 
the model. Usefulness is often viewed as being a characteristic of 
usability (Rubin & Chisnell, 2008). The criteria used for this test 
are described in Table 7-1 below. The results of this test can be 
found in Table 7-7. 

 

 
Figure 7-1: Stage of the research wherein the test cases occur 

Testing the design propositions required describing the case 
studies in terms of the model, and discussing these results with subject 
matter experts in the asset management organizations. We asked the 
subject matter experts what insights the model could give us with regards 
to anticipating changes to technology, organization and people. We then 
collated these results, and related them to the design propositions using 
the logic described in Chapter 2.  

This chapter reads as follows: first the method used to describe 
the case studies is described and explained in section 7.2. In sections 7.3, 
7.4 and 7.5 the three exploratory cases are introduced one by one. 
Section 7.3 describes the Weigh-in-Motion (WIM) case which is national 
and managed by RWS. Section 7.4 describes the Smart Meter case which 
is regional and managed my Stedin. Section 7.5 describes the Hoog Dalem 
case which is local and managed by Stedin. Section 7.6 discusses the 
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results of the tests and draws conclusions about the usability of the model. 
Section 7.7 summarizes this chapter. 
 

Table 7-1: Test 3 - The criteria for testing the usefulness of the model 

Number Criteria Reason for Criteria 

1. The model should demonstrate that 
adoption of IoT in asset 
management is a result of specific 
influences and not the result of 
chance circumstances only. 

Internal validity: Usefulness 
Testing the null hypothesis. 

2. The model should provide 
actionable insights into the influence 
of people on asset management 
through IoT. 

Internal validity: Usefulness 
Testing Design Proposition 1:  
Configuring the elements of AMDIs 
to accommodate IoT adoption 
improves understanding of asset 
management through IoT. 

3. The model should provide 
actionable insights into the influence 
of technical innovation 
characteristics on asset 
management through IoT. 

Internal validity: Usefulness 
Testing Design Proposition 1: 
Configuring the elements of AMDIs 
to accommodate IoT adoption 
improves understanding of asset 
management. 

4. The model should provide 
actionable insights into the influence 
of data governance on asset 
management through IoT. 

Internal validity: Usefulness 
Testing Design Proposition 2:  
Implementing data governance 
improves understanding of asset 
management through IoT. 

5. The model should provide 
actionable insights into the influence 
of socio-political environments on 
asset management through IoT. 

Internal validity: Usefulness 
Testing Design Proposition 3: 
Configuring AMDIs to accommodate 
cultural, physical and political 
environments improves 
understanding of asset 
management through IoT. 

 

7.2 Approach of the test cases  
Following the suggestions of Yin (2009), as part of the larger evaluation, 
each case described in this chapter describes more closely the entities 
(classes) described in the model. This is done by identifying so-called 
“individuals” for each of the sub-classes which allows us to flesh out the 
model for a particular case and describe the relationship between the 
entities, offering an explanation of the relationships between the entities 
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and demonstrating how the cases worked to produce their individual 
desired outcomes.  

The case studies are described in the following way. First a short 
description of the case is given so that the reader is aware of the context 
and the desired outcomes of each individual case. Then the case is 
described according to its components (data, technology and agents), 
with a description of the individuals depicted in the model. Then the cases 
are described in terms of data governance (schema) as described in 
Chapter 6. Finally each case is described in terms of the environments in 
which each case can be found. The cases are described in the following 
order: first Weigh-in-Motion, then Smart Meter, and finally Hoog Dalem. 

In order to prepare the organization for the case study research 
project, both Stedin and RWS were provided with information material 
outlining the objectives of the project. Following the advice of (Yin, 2009), 
multiple data sources were used. RWS and Stedin allowed the researchers 
unrestricted access to subject matter experts and internal documentation 
for all the cases. This helped ensure the construct validity of the case 
studies (Yin, 2009). Participants were selected on the basis that they were 
intimately involved in the project as early adopters. Participants were 
selected from three levels in the organization, namely the strategic, 
tactical and operational. The cases were investigated over a period of 
eighteen months for RWS and six months for Stedin. In accordance with 
accepted recommendations on case study research (Yin, 2009), multiple 
sources were used for data collection. At the start of the research, in June 
2015, group discussions were held at RWS with personnel directly 
involved in the implementation project or who were tasked with managing 
and maintain the systems. In January 2017, individual interviews were 
held with RWS personnel during the implementation process. Workshops 
were held at Stedin between June 2017 and January 2018. The 
participants were asked to evaluate the correctness of the model and 
provide feedback as to the usability of the model. During the workshops, 
insights provided by the model were noted and collated across the case 
studies with a view to testing the usefulness of the model. These insights 
were then listed in relation to the design propositions. All workshops were 
documented in writing. 

For all three cases, internal documentation was selected which 
dealt with issues faced by the adopting projects. The documents were 
then analyzed and transferred into an integrated case document (one for 
each case). The first versions of this document were then sent to the 
interview participants for feedback and clarification of open points. Once 
all the additional information feedback had been incorporated, the final 
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version was reviewed and discussed with the main contacts at RWS and 
Stedin. Triangulation of data found within the cases was made by listing 
individuals found in internal documentation and comparing these to the 
suggestions exposed in the interviews. There were several iterations 
throughout the research as the cases introduced new individuals. Table 
7-2, Table 7-3, and Table 7-4 show the data sources used in the three 
test case studies. 

During the test case studies, the researcher not only observes, but 
also becomes involved in the theory application and the testing of 
improvements. Following Janssen, (2001), evaluation in this context 
means that data was gathered on opinions of the developed model. As 
our interest was in testing the usability of the model, once the necessary 
content data had been collected, we organized 1 hour workshops in which 
we worked with the subject matter experts in the organization to assess 
the model for the specific cases. We then gathered opinions from the 
subject matter experts regarding the usability of the model and the 
insights obtained during the completion of the model. 
 

Table 7-2: Data Sources of Case Study 4: Weigh-In-Motion 

Data Sources 
Type 

Data Sources  

Interviews June 2015: Group discussion 
Division Head 
Project manager 
Data manager 
Functional manager 

 October 2015: Individual Interviews 
Enterprise Architect 
Program Manager Data Management 
Coordinator Data Management and Data Quality 
Data Manager 
Domain Architect Infrastructure Management 
Project Manager BIM 

January 2017: Individual interviews 
Program Director 
Business Analyst 
Project Manager 
Service Delivery Manager 
Project Manager 
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Data Sources 
Type 

Data Sources  

Documents A3 Weigh in Motion 03-10-2013 versie 3 
Wegwijzer Wegbeheer 2005-2010 
Handboek vast onderhoud 
Brochure assetmanagement binnen Rijkswaterstaat 
Aspecten van beheer 
https://www.rijkswaterstaat.nl/over-
ons/nieuws/nieuwsarchief/p2014/10/Informatiesysteem-spoort-
overbeladen-trucks-op.aspx 
TNO (2013) Beladingsgraden vrachtverkeer WIM 

 

Table 7-3: Data Sources of Case Study 5: Smart Meters 

Data Sources 
Type 

Data Sources  

Interviews June – December 2017: 
Enterprise Architect 
Information Manager Assets 
Data Manager 
Project Manager Smart Data  
Senior Advisor Asset Management 
Senior Advisor Risk Analyst 

Documents Geplaatste slimme meter 
handleiding_slimme_meter_communicatie_landis (1) 
profielen Elektriciteit 2018 versie 1.00.csv 
profielen elektriciteit versie 1.00 readme.docx 
Verslag profielen 2018 versie 1.00.pdf 
https://www.stedin.net/slimme-meter 

 

Table 7-4: Data Sources of Case Study 6: Hoog Dalem 

Data Sources 
Type 

Data Sources  

Interviews Enterprise Architect 
Information Manager Smart Energy 
Data Manager 
Project Manager Smart Data Management 
Senior Advisor Asset Management 
Senior Policy Advisor 

Documents Eindrapport Hoog Dalem DEF 
USEF The Framework Implemented - Implementation Guidelines 
USEF The Framework Implemented - Installation Manual 
USEF The Framework Implemented - System Architecture 
USEF PrivacySecurityGuideline_3nov15 
USEF TheFrameworkSpecifications_4nov15 
Final Report Hoog Dalem - v0.9 - 24-11-2017 

https://www.rijkswaterstaat.nl/over-ons/nieuws/nieuwsarchief/p2014/10/Informatiesysteem-spoort-overbeladen-trucks-op.aspx
https://www.rijkswaterstaat.nl/over-ons/nieuws/nieuwsarchief/p2014/10/Informatiesysteem-spoort-overbeladen-trucks-op.aspx
https://www.rijkswaterstaat.nl/over-ons/nieuws/nieuwsarchief/p2014/10/Informatiesysteem-spoort-overbeladen-trucks-op.aspx
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For the evaluation test cases, we also wanted to gather opinions 

from the people involved in the development and application (the design 
process) of the test cases. This was done by means of unstructured 
interviews and observations. The reasons for choosing unstructured 
interviews and observations was because the number of people involved 
in the design process was low, and because we were particularly 
interested in the arguments behind the evaluations. This form of data 
collection is particularly susceptible to bias due to the intrinsic influences 
of the researcher and other parties involved. Also, the number of persons 
actively involved in the design process is not high. Therefore, to validate 
our findings, we also needed to collect the evaluations of persons not 
directly involved with the development and application of the model. This 
was achieved by eliciting the opinions of experts to evaluate the concepts 
behind the model, and by eliciting the opinions of stakeholders. In the 
interest of privacy, the results and observations were anonymized across 
the participants and across the cases. To increase the reliability of the 
case studies, the results of the data collection were organized within the 
case study database. Following Yin's (2003) advice, the database consists 
of two separate collections. The first collection included the data collected 
(evidentiary base) and the second collection included the researcher’s 
reports. 

7.3 Weigh-in-Motion: Rijkswaterstaat 
The first test case, case study number 4, is the WIM system, a national 
network of monitoring points, managed by RWS. The WIM system is one 
of the most advanced overloading measurement systems in the world. In 
the period 2010-2013, RWS built a nationwide network of WIM stations, 
a total of 22 measuring stations. In addition to sensitive sensors, cameras 
are also part of the WIM systems. The WIM network, consisting of 
measuring stations in the road on which the axle loads of heavy traffic is 
weighed, is used to support the enforcement of overloading by helping 
the enforcement agency to select overloaded trucks for weighing in a 
static location. 

At present, RWS estimates that at least 15 percent of freight traffic 
on the Dutch national road network is overloaded. Overloading of heavy 
vehicles causes road pavement structural distress and a reduced service 
lifetime (Bagui, Das, & Bapanapalli, 2013). Effectively reducing 
overloading reduces the damage to the road infrastructure, lengthening 
the road’s lifetime and reduces the frequency of maintenance. The 



Test Cases 

246 
 

damage to pavements and installations by overloaded trucks in 2008 was 
estimated to be at least 34 million euros per year. In addition, the extra 
maintenance required creates a significant amount of traffic disruptions. 
These disruptions are estimated to cost several million euros per year. 
The ambition of RWS is to increase the operational efficiency and 
effectiveness of the approach to overloading and thus reduce 
maintenance costs. Traditional enforcement of laws and regulations 
regarding overloading involved the use of physical measuring stations. 
This included manual checks by the police in which many vehicles were 
selected where overloading was suspected but uncertain. This often led 
to unnecessary inconvenience to citizens as vehicles were often stopped 
unnecessarily. It was also suspected that “many carriers could avoid these 
stations by choosing alternative routes whilst retaining their economic 
gain”. In response, RWS has created a national network of 10 monitoring 
points, the “Weigh in Motion” (WIM) network. Figure 7-2 below shows the 
position of the main WIM stations in the Dutch highway system. 

 

 
Figure 7-2: Map of the Main WIM Measuring Stations in The Netherlands 
(https://www.ilent.nl/documenten/publicaties/2013/11/08/overzicht-weegpunten-in-
nederland accessed: 29-11-2017) 
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7.3.1 Components: Data 

Data on overloaded vehicles on the road are automatically sent from WIM 
to the Real-Time Monitor (RTM) web application which processes, stores 
and publishes the data of all weigh points. Sensors measure the axle loads 
of passing trucks and loops to measure the speed and length. Cameras 
above the road register the license plates and Kemler plates (hazard 
labels). The risk class and a substance identification number are stated 
on an orange, rectangular sign. The Risk Identification Number (GEVI), 
also known as the Kemler number or code, is always stated above the 
substance identification number. The symbols in the risk code largely 
correspond with the substance classes. WIM metadata is made available 
as part of the “Area” file periodically supplied to the National Georegister 
(NGR) by RWS. The metadata is supplied in open standard format as 
specified by the Open Geographic Consortium (OGC). Figure 7-3 below 
depicts the WIM AMDI from a data perspective. 
 
 

 
Figure 7-3: The WIM AMDI from a data perspective 

Based on this data, the Inspectorate for the Living Environment 
and Transport (ILT) is able to perform supervision and enforcement 
actions on overloaded vehicles in near-real time (within 10 seconds), 
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improving the overall flexibility of the services as ILT and RWS can decide 
where and when offenders are controlled. The network provides access to 
information about the actual load of the main road, and about peak times 
when it comes to overloading. This provides RWS and ILT with the ability 
to collect information concerning the compliance behavior of individual 
carriers as, in addition to sensors, cameras are also part of the WIM 
systems. Via camera footage, the ILT can identify the license plates of 
vehicles that are overloaded and therefore the detect owner and / or 
licensee and address. The strategy being to tackle overloading by 
integrating roadside enforcement along with targeting carriers according 
to behavior based on the information from the system.  

7.3.2 Components: Technology 

An enforcement chain is a mission critical system, where accuracy and 
reliability are essential. RWS faces and has faced a variety of impediments 
and challenges during the implementation and maintenance of the WIM 
network with regards to accuracy and reliability of the data. Configuration 
of the system is a delicate process. The WIM system can differentiate 
between the vehicle and the load, but not all vehicles weigh the same. 
Not all number plates are placed in the same place on the vehicle, and 
not all drivers have the same driving style. It is necessary to be able to 
account for drivers who drive very close to other vehicles, or those who 
change lanes during inspection (and thus have wheels in two different 
lanes). The configuration is closely monitored, but, according to an RWS 
official, “a structured learning cycle with regards to data quality is still 
required”. Some sources have questioned whether “the reliability of the 
data is sufficiently well equipped” and some interviewees raised questions 
about the quality of the data. According to an RWS official, “the quality of 
the data needs to be quantified, and solving data quality issues is incident 
driven”. RWS project managers also cited several technological challenges 
“due to IT infrastructure limitations which needed to be overcome, and 
which no single market partner could supply at the time”. IoT generates 
large amounts of data and this data needs to be processed near to real 
time so that inspectors can quickly identify trucks for roadside inspection. 
Data from each WIM station are sent via the National Traffic Information 
and Communications Network, RWS’s internal roadside data 
communication network. The WIM Management Tool (WIM Beheer Tool) 
supports management of the WIM sites.  

The WIM Data Access System is an interface for collecting vehicle 
data directly from the sites. The WIM roadside systems perform several 
data processing activities, which include isolating license plate images 
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from raw camera images, analyzing axle/vehicle weight measurements, 
filtering data using predefined threshold or business rule limits, 
integrating static weight data to perform quality checks for WIM system 
calibration, and producing vehicle registrations. The data can be accessed 
through WIM monitors via laptop computers and remote, secure access 
to support real-time preselection of noncompliant vehicles. RWS’s internal 
data communication network allows for integration of the data with other 
internal databases, including a pavement management database 
(Winfrabase) and the database maintained by the Transport Inspectorate. 
Figure 7-4 below depicts the WIM IoT AMDI from a technology 
perspective. 

 

 
Figure 7-4: The WIM AMDI from a technology perspective 
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Data can be accessed directly through the RWS Intranet. RWS’s Business 
Intelligence reporting tool allows RWS personnel to extract personalized 
WIM data reports, nonfiltered or filtered according to vehicle size, vehicle 
weight, vehicle weight compliance status (i.e., compliant/noncompliant), 
vehicle class, or other, depending on need. 

7.3.3 Components: Agents 

To maintain their asset management data system, RWS has developed a 
data management organization which implements and enforces uniform 
data entry and data management protocols and processes. This data 
management organization encompasses a wide variety of agents. Within 
the data management process, there are many different organizational 
levels, each level and each link in the information chain acting as an agent 
in the process. For example, divisions of RWS are organized according to 
geographic location, and each division is an independent agent. Each 
independent division implements standardized processes in their own 
way, and each individual advisor, in his turn, can act independently. As 
an organization, RWS contracts out a good deal of the data entry to 
external contractors, who in turn are also agents. This means that RWS 
does not always have full control of the data entry process. Figure 7-5 
below depicts the main agents in the WIM AMDI. 

RWS personnel extract personalized WIM data reports according 
to their requirements. A small staff is responsible for managing and 
maintaining the WIM data management system. A part of their duties is 
to provide data to RWS colleagues. RWS’s Centre for Transport and 
Navigation relies on this data to conduct research and analyses and offer 
policy recommendations to the Ministry of Infrastructure and The 
Environment. National Police personnel at a mobile enforcement site 
receive real-time data and video information. The officer at the mobile 
enforcement site contacts on-road colleagues to intercept the overloaded 
vehicle and escorts it to the mobile weighing station for further inspection 
by an Inspector from the Transport Inspectorate. Onsite, the truck’s 
individual axles are weighed using static scales and modest registration 
and safety checks are performed. Importantly, the inspection process is 
still performed manually, no robotic agents were revealed during the 
research. 
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Figure 7-5: The WIM AMDI from an agent perspective 

7.3.4 Data Governance 

RWS is looking more and more towards an integral approach to managing 
the entire network of assets. According to a RWS official, “an integral 
approach to managing the network of assets helps us know better the 
quality that we desire from the performance of the assets.” As such, the 
Information Delivery Specification (IDS) is a part of the contract between 
RWS and the contractor in which the data transfer is specified. This 
contract document guarantees a uniform exchange of information on 
structures between the different partners. RWS has formally accepted the 
contract method as the coordination mechanism of choice. Also, planning 
through the implementation of yearly portfolio plans is an important 
coordination mechanism. But depending on the level of organization and 
independence of the agent, other, less formal coordination mechanisms 
such as self-organization and feedback have also become important 
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behavioral tools. Figure 7-6 below depicts the organizational capabilities 
of WIM data governance. 

 
 

Figure 7-6: Organizational capabilities of the WIM AMDI 

Stakeholder requirements of WIM have been carefully described 
by RWS and can be described as the development of an axle load 
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measuring system that can be used as a measure for direct enforcement 
of overloading. The enforcement of overloading is carried out by the 
National Police and the Traffic Inspectorate. According to RWS, Weigh-In-
Motion in combination with Video is an “efficient tool for standing and 
preventive approaches to overloading enforcement”. The disadvantage 
remains that this method is still very labor intensive because the static 
(stationary) considerations remain necessary. Similarly, component and 
behavioral requirements are also captured in multiple documents but can 
be summarized as follows: 

• Detecting a vehicle 
• Measuring the dynamic axle loads by multiple sensors 
• Predicting the static axle pressures and the mass of the vehicle 

on the basis of the dynamic measurements 
• Determining whether there is overloading on the basis of the 

vehicle type. 
• Filtering out possible incorrect measurements  

Figure 7-7 below depicts the alignment aspects of data governance in the 
WIM AMDI. 
 

 
Figure 7-7: Alignment aspects of data governance in the WIM AMDI 

The ability to detect overloaded trucks is based on data and it is 
possible to ensure owners of the carriers and load are also identified and 
thus enforce regulations at source. With regards to improving planning 
and maintenance, RWS’s strategy was to outsource the operational side 
of WIM to external contractors which meant that divisions which 
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previously did the work of weighing and monitoring vehicles needed to be 
reorganized to do other work. RWS initially outsourced the management 
of the system. However, RWS has since rescinded that decision due to 
clashes in planning with other processes such as traffic management. 
According to a RWS Director, “in order to effectively manage the 
technology, it is important to have sufficient mandate to manage the 
entire chain”. Managing only the technology or parts of the system 
produces inefficiencies and can disrupt other processes, such as traffic 
management, if the overview of the system is not considered when 
planning maintenance. Figure 7-8 below depicts the clarification aspects 
of data governance in the WIM AMDI. 

 

 
Figure 7-8: Clarification aspects of data governance in the WIM AMDI 

RWS and the Transport Inspectorate have been able to improve 
the efficiency of regulations as they are able to perform administrative 
enforcement through administrative fines for repeat offenders which are 
far in excess of the penalties for individual offenders. WIM can 
differentiate between the load and the vehicle. It is possible to identify 
not only the transporter, but also the owner of the load. Enforcement of 
regulations is therefore greatly improved. One of the initial challenges of 
the WIM project was the definition of the service and the identification of 
possible solutions. Initial proof of concepts used a combination of 
intermediate products to approximate the final solution. According to 
officials, “this led to several interoperability and integration issues which 
needed to be overcome”.  
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Figure 7-9 below depicts the compliance aspects of data 
governance in the WIM AMDI. RWS noticed that the adoption of WIM has 
led to new products being offered by companies who may not necessarily 
be established partners of RWS and to the loss of old products being 
offered by more established partners. This has led to new streams of 
revenue for private parties. New revenue streams for the government also 
became clear as, according to RWS officials, implementing WIM has “led 
to a higher chance of catching actual offenders and better effectiveness 
of controls”. The duality of achieving new revenue streams is that, not 
only implementation costs, but also maintenance costs of the WIM 
network are high as the sensors often come loose in the asphalt and the 
repair of the damage is very expensive. 

 
 

 
Figure 7-9: Compliance aspects of data governance in the WIM IoT AMDI 

7.3.5 Environments 

Innovation was required in order to be able to ensure the required 
precision of the data required. Tensions arose as to where responsibility 
for innovation lay. Being a public sector organization, RWS did not wish 
to give market advantage to a single private sector party, but was also 
unwilling to develop the innovation internally. Introducing new technology 
to the market empowered citizens to develop new products and created 
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new business opportunities. But the duality was that a RWS Director 
expressed concern about “the impact of the adoption of WIM by RWS on 
the private sector and conflicting market forces which WIM has 
introduced”. As there are few private organizations capable of 
implementing WIM, if RWS would provide innovation opportunities to a 
single party, this would have provide that party with an unfair market 
advantage.  The RWS Director explained that “it is important to develop 
a procurement strategy with regards to IoT adoption”. In this case, 
cooperation with the universities was sought to develop the required 
innovation. With the help of universities in the Netherlands, a proof of 
concept was developed, the results of which were made publicly available. 
Figure 7-10 below depicts the WIM AMDI from an environmental 
perspective. 

 

 
Figure 7-10: The WIM IoT AMDI from an environmental perspective 

The conflicting market forces created by the new demand has 
meant that RWS needed to rethink their approach to framework 
agreements with established parties. There are different perceptions of 
the level of ambition pursued by the WIM project. The WIM function has 
gradually changed from being a tool used to apprehend offenders to being 
a tool used for digital inspection. Analysis of the stored measurement data 
shows patterns, improving forecasting and trend analysis. There is 
obviously something wrong with vehicles that are frequently flagged in 
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the system. That may be a reason to perform roadside inspections in a 
subsequent inspection or to visit the parent company for an inspection. 
The duality attached to the gain provided by being able to identify 
offenders, is the necessity for ensuring data privacy and data security. 
Any images or other data created by the system which are made publicly 
available need to ensure anonymity. Furthermore, security of the data is 
of vital importance due to the importance of being able to prove offence. 
It must not be possible in any way to tamper with the “evidence” provided 
by the data. It is not yet possible to entirely automate the enforcement 
process, as physical testing is still required to legally prove overloading. 
The Dutch legal system does not yet fully trust WIM to provide legally 
conclusive evidence with regards to overloading. An RWS official 
suggested that “as an instrument to help roadside enforcement WIM 
works well, but there are difficulties in using WIM to legally prove 
offence”. A new legal framework is required before this system is legally 
acceptable in The Netherlands. 

7.4 Smart Meters: Stedin 
Our second test case, case 5 – Smart Meters is the management of energy 
distribution through the use of smart energy meters. The smart meter is 
a new generation meter. It is digital and registers and stores energy 
consumption automatically. Meter readings are automatically forwarded 
to the energy supplier. A smart meter records usage of electricity and/or 
gas in intervals and communicates that information at back to the utilities 
company. Smart meters gather data for remote reporting. Smart Meters 
looks at the management of energy distribution by a distributed system 
operator, in this case, Stedin, through the utilization of the Smart Meter.  

Stedin manages and develops energy (electricity and gas) 
networks in the Rotterdam and Utrecht regions. They are responsible for 
the electricity and gas connections from the high voltage and high 
pressure networks to homes and businesses up to the gas and electricity 
meters installed at site. Stedin also does the maintenance and repair of 
the grid, remedies malfunctions and takes care of the installation of new 
connections. As such, the smart meter is used in asset management to 
determine capacity and breakages in the electrical grid. Stedin has noticed 
the trend towards reducing CO2 emissions by switching to electricity as 
the primary source of energy. Stedin believes that a smart electrical grid 
that better balances the supply and demand of energy is an important link 
to improving the energy grid so that it can be used more efficiently and 
that energy supply can remain affordable. 
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 Stedin is a regulated organization, meaning that although not 
officially a government organization, it does have a monopoly which 
means that charges are regulated and the organization is monitored by 
the Consumer and Market Authority. Figure 7-11 below depicts the area 
in which Stedin is operating smart meters. Stedin has connected the gas 
meter (wireless or with a cable) to the electricity meter, and, as such, 
both meters can be read remotely. The smart electricity meter has a 
communication module that transmits both the meter readings for 
electricity and gas. The smart meter is an important link in the smart 
energy grid by provides insight into the energy flows, such as where more 
energy may be needed or where disruptions occur.  

 

 
Figure 7-11: The regional areas managed by Stedin with Smart Meters 
(https://www.stedin.net accessed: 2018) 
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7.4.1 Components: Data 

In addition to expected data such as energy usage levels, other forms of 
data are also made available through the smart meter. The smart meter 
display shows when a grid operator has communicated with the meter 
and what data has been removed from the meter. There are specific laws 
regarding remote readable measuring devices. The end-user is the legal 
owner of the data, and as such can check the meter read out in 
accordance with agreements with the service operator. For example, the 
end-user has the possibility to check that the service operator does not 
read out more measurement data than is allowed. The meter also stores 
a description indicating whether the meter readings are to be transmitted 
to the network operator or not, and if yes, how many meter readings have 
been transmitted. This 'logbook' is stored for a year in the smart meter. 
The log data can be read out locally by the end-user or by engaging a 
customer expert. Figure 7-12 below depicts the Smart Meter AMDI from 
a data perspective. 

 

 
Figure 7-12: The Smart Meter AMDI from a data perspective 

In an electricity meter different types of data are stored and 
transmitted. To be able to clearly distinguish the data, it is divided into 6 
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categories: 1. Data of interest for the management of the meter; 2. Data 
of interest for the management of the electricity network; 3. Meter 
readings of the electricity meter; 4. Meter readings of the gas meter; 5. 
minute values of the electricity meter + interval data; and 6. Hourly 
values of the gas meter + interval data. According to a Stedin official, “the 
network operator is, by law not allowed to receive all of the available 
meter data”. This has been legally determined. However, according to a 
Stedin official, “in special cases strict agreements about this are made 
with the end-user”, and data needed for the technical management of the 
meter and the management of the electricity network “may be used by 
the network operator and read out without permission from the end-user”. 

7.4.2 Components: Technology 

The smart meter is a digital meter whose positions are transmitted to the 
energy supplier and the grid operator. The smart meter measures power 
consumption, but it also transmits gas meter readings. The smart meter 
transmits to the energy supplier or network operator at the following 
moments: 

• 1x per year for the preparation of the annual accounts. 
• 6x per year for a consumption and cost overview. 
• In case of a possible switch to another supplier or relocation. 
• If necessary, for management or maintenance of the energy 

network. 
“Smart” refers to the ability of the meter to communicate. This 

allows meter readings to be transmitted. Stedin can then share this data 
with energy suppliers. The meter also allows the end-user to return self-
generated energy to the grid, without needing an extra meter to measure 
the generated energy.  

In 2015 Stedin started using its own wireless communication 
network, code-division multiple access (CDMA), although transmission is 
also still largely done through the General Packet Radio Service (GPRS) 
standard. According to a Stedin official, “the new wireless communication 
network forms the basis for further 'upsizing' of the energy grids which 
can shorten and possibly prevent energy failures”. An additional 
advantage of CDMA is that this network is independent of other networks 
and Stedin is able to tailor it to meet their current and future standards.  

The CDMA network focuses on machine-to-machine data 
communication. The network is open to various smart grid applications: 
from sensor to switch, and the data is managed with an internally 
developed application known as the Meter Front End (MFE). According to 
a Stedin project manager, "with our central readout system MFE we read 
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smart meters and provide meter and measurement data to customers and 
market parties - in the regulated domain … We have radically modified 
this system, which enables us to handle the increasing traffic flow more 
efficiently and simply." The CDMA data connection is called the 'P3 port' 
and the computer server of the network operator where the data is 
collected is the 'P4 port'. The 'P1 port' is a (telephone) plug connection on 
the smart meter which is made available to the end-user to be able to 
connect an energy consumption manager via that connection. The 'P2 
port' is the connection between the gas meter and the smart meter. The 
gas meter itself is not a smart meter, but a modern gas meter is required 
to allow the smart meter to read and transmit gas consumption. Figure 
7-13 below depicts the Smart Meter AMDI from a technology perspective. 

 

 
Figure 7-13: The Smart Meter AMDI from a technology perspective 

Stedin has recently upgraded their MFE application. According to 
Stedin, the reason for improving and adapting the Meter Front-End (MFE) 
system was related to improving efficiency and effectiveness through 
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predictive analysis. According to a Stedin official, "we expect to use about 
600,000 smart meters (electricity and gas) to go to about 4 million smart 
meters over a period of 5 years, leading to a huge increase in data and 
meter communication requests and thus to an increasing system load”. 

7.4.3 Components: Agents 

The phasing in of the new smart meter is a large scale operation. Stedin 
engineers have been installing the new meters according to a phased 
program. Stedin still receives more than 20 million meter readings from 
energy suppliers and Independent Service Providers every month on 
already installed smart meters. But there is a significant increase in data 
requests via the smart meter. All Dutch citizens have a legal right to a 
smart meter, but also have the right to refuse the meter. According to the 
Stedin technicians, “the administrative process of installing smart meters 
is less error-prone than traditional meters as, in addition to the simplified 
installation, the barcodes of both meters are also easier to scan”. Stedin 
has introduced a new sub-organization, the Smart Meter Operations 
Center (SMOC) in order to gain further insight into the data outage of the 
smart meter, through the combination of skills from a variety of 
departments. The SMOC monitors all installed smart meters with 
dashboards. Stedin has insight into the status of the underlying metering 
chain processes on a daily basis, which has an impact on the reading of 
the smart meter. The monitoring also helps to identify outages more 
quickly, and Stedin is able to respond more proactively to prevent 
negative customer impact. SMOC involves the Smart Data, Meter Asset 
Management, Large Scale Connections (GSA), Meter Cabinet & 
Connections (M&A), IT and Telecom departments. Figure 7-14 overleaf 
depicts the Smart Meter AMDI from an agent perspective. 

Market parties also use meter readings for invoicing and for energy 
insight, smart allocation and dynamic delivery rates. Meter data is also 
used for other applications, for example when determining faults in the 
grid and identifying contract-free connections. This then requires an even 
higher security of supply and reliability of measurement and metering 
data. According to a Stedin official, "we contribute to a sustainable energy 
transition and cost savings for the end customer. In addition, it is our 
ambition to be the best grid operator in the Netherlands when it comes to 
supplying reliable data to market parties … First of all, it is our job to get 
the highest possible P4 score. The P4 score means reading out the smart 
meter. We ensure that the right data from the Smart Meter reaches the 
energy suppliers and independent service providers and they then ensure 
that the customer gets insight into this. In order to get that P4 score as 
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high as possible, there must therefore be as little as possible a drop in 
data from the smart meter. That is why we monitor these meters 
continuously and are quick to act when something goes wrong." 

 

 
Figure 7-14: The Smart Meter AMDI from an agent perspective 

Stedin data analysts are developing innovative data services. 
Based on many different data, Stedin creates smart combinations that 
they then use for a variety of purposes. The aggregated data from the 
smart meter is made available throughout the organization so that Stedin 
is able to improve process improvements and save costs – attention is 
given to protecting citizens’ privacy rights in accordance with legal 
requirements. For example, Stedin is developing data applications to 
reduce faults and malfunctions. A fault can be in the network, but also in 
the meter cabinet of an end-user. Traditionally, technicians always 
physically went to the address to assess the situation, but the smart meter 
now allows Stedin to assess the fault remotely. As such, a Stedin official 
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suggested that “asset managers need to become more data aware, and 
data scientists should be intimate with the asset management process”.  

7.4.4 Data Governance 

According to a Stedin official, “the end-user owns the data and is 
able to view information regarding a variety of data transmissions about 
all types of readings by the network manager”. The end-user is able to 
connect an energy consumption manager to their smart meter to monitor 
their personal energy consumption. This connection can be done directly, 
in the form of a device, or indirectly, by giving permission to a third party 
(independent service provider) to read out their smart meter. 
Consumption can then be tracked live via an app or on a website. Energy 
suppliers may view the data from a smart meter only after explicit consent 
from the end-user. They must report to the service operator that they 
have this permission before they can access to the end-user’s meter 
readings. Figure 7-15 overleaf depicts the organizational capabilities of 
the Smart Meter AMDI. In the Netherlands, strict rules apply when it 
comes to privacy and security. These are laid down in the Personal Data 
Protection Act and in the Privacy and Security Requirements of Grid 
Management in the Netherlands. Stedin complies with these laws and 
regulations. The meter readings that are visible are secured according to 
regulations. Meter readings are visible to the end-user, the network 
operator and the energy supplier. No-one else has access to this data, 
unless the end-user (data owner) expressly consents to this. The smart 
meter has also been extensively tested and secured against intrusion 
attempts and hackers. According to a Stedin official, “the security of the 
smart meter is comparable to that of internet banking”. All smart meters 
meet the legal safety requirements so that unauthorized people cannot 
access the data. 
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Figure 7-15: Organizational capabilities of Data Governance in the Smart Meter AMDI 

Requirements for the Dutch infrastructure for smart meters are 
specified in the NTA8130 standard and the Dutch Smart Meter 
Requirements (DSMR) specification. The DSMR was created in a European 
tender aimed at developing new products and services. Besides all Dutch 
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Service Operators (united in Netbeheer Nederland), engineering firms and 
suppliers of measurement systems were also participants in the definition 
of the requirements. Figure 7-16 below depicts the alignment aspects of 
the smart meter AMDI. 

 

 
Figure 7-16: Alignment aspect of Data Governance in the Smart Meter AMDI 

All the data is stored on the meter itself for a year. Stedin generally 
receives data with categories 1 to 4. Legal directives suggest that meter 
data may only be used for the following purposes:  

• The annual overview and consumption overviews (6x per year).  
• If an end-user switches from energy supplier or relocates. 
• The maintenance of the energy network. 

A Stedin official admitted that “it is very tempting to use large data 
techniques to link large datasets to each other and to search for 
correlations”, but they also underlined the importance of “well thought-
out policies that working with privacy-sensitive data requires”. For the 
Stedin official it is important to be able to clearly demonstrate that “you 
have a goal with the data you use”. For every use case on the Data Lake, 
Stedin carries out a so-called privacy impact assessment (PIA). Stedin is 
constantly looking for the balance between shielding data and equipping 
colleagues with the right data. This is because analyzing data is not only 
reserved for data scientists of the CDO office. Analysts throughout the 
organization may be given access to the data lake where necessary. 
Stedin has a data analytics community where colleagues from different 
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business units come together to discuss how they can help each other 
with data and analysis. Figure 7-17 below depicts the clarification aspects 
of the smart meter AMDI. 

 

 
Figure 7-17: Clarification aspects of Data Governance in the Smart Meter AMDI 

Net managers in The Netherlands must adhere to a code of conduct 
when processing personal data. This is supervised by the Authority for 
Consumers and Markets and the Dutch Data Protection Authority. There 
has been a lot of discussion about the privacy aspects of the smart meter 
in The Netherlands. When the meter transmits data, usage data becomes 
available to parties other than the end-user who has been identified as 
the owner of the data. The data connection with the smart meter itself 
has been subjected to hack-sensitivity testing by the Digital Security 
section of the Radboud University. These tests showed that the connection 
is well secured. The Consumers' Association does, however, call for a clear 
code of conduct for network operators, energy suppliers and PES 
(independent service providers, for example the provider of a 
consumption manager). At the moment, different codes of conduct apply 
to different parties. For example, according to a Stedin official, “it is not 
always easy to find out who can view data from the smart meter under 
which conditions”. Figure 7-18 below depicts the compliance aspects of 
the smart meter AMDI. 
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Figure 7-18: Compliance aspects of Data Governance in the Smart Meter AMDI 

Due to past fraudulent activities, Stedin performs careful controls 
of whether the service providers have checked the identity of the 
applicant, so that an end-user’s identity is not misused. However, it is still 
recommended by Stedin officials that end-users “perform their own 
controls of the companies involved in managing energy consumption data 
on a third party basis and how the company treats the data”.  

7.4.5 Environments 

Stedin has begun an information point in the Ommoord district in 
Rotterdam due to the number of complaints that came in during the offer 
of the smart meter in this district. In this regards, personal contact with 
the residents has proved necessary. Stedin sees the information point as 
a test case to investigate whether an information point is a channel that 
they would want to use more often during the large-scale offer of the 
smart meter (GSA). The information point, near a busy shopping center, 
is staffed by external hosts six days a week. They have received training 
from colleagues from the department GSA and Meter and Connection and 
are well versed in the capabilities and functionality of the smart meter. 
The information point staff are supervised by colleagues from GSA, 
Meterkast and Connection, Front Office, Supplier Desk and Smart Data. 
With the sharp increase in the number of customers with smart meters, 
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Stedin expects data traffic to increase substantially in the coming years. 
Figure 7-19 below depicts the Smart Meter AMDI from an environmental 
perspective. 

 

 
Figure 7-19: Environmental aspects of the Smart Meter AMDI 

In order to minimize complications in the market processes due to 
de-regulation, a Stedin official indicated that “components have been 
implemented in phases via regular sector releases”.  

7.5 Smart Energy Grid Hoog Dalem: Stedin 
Our third test case, case 6 - Hoog Dalem Smart Energy, is also managed 
by the Stedin Group. 32 households are participating in the smart energy 
system test in the All-Electric district of Hoog Dalem in Gorinchem. Hoog 
Dalem is a residential area within the Dutch city of Gorinchem in South 
Holland. The Hoog Dalem residential area is interesting due to the large 
number of the houses that have been fitted with solar panels, meaning 
that the residents are less dependent on electricity from the national and 
regional grids. It is therefore an all-electric area, and, unusually for the 
Netherlands, there is no gas network. A number of houses are also fitted 
with a battery system for electrical storage. Furthermore, every house in 
the district is heated by a heat pump. The Hoog Dalem project makes use 
of the Universal Smart Energy Framework (USEF). Figure 7-20 below 
depicts an overview map of the area of the Hoog Dalem area. 
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Figure 7-20: A map of the Hoog Dalem area (www.google.com/maps accessed: 2018) 

The heat pumps and the return of self-generated electricity means 
a greater demand for capacity from the electricity network. In fact, 
according to a Stedin official, “bottlenecks may occur in the regional grid 
when a whole district implements solar paneling”. To avoid this, service 
operators require innovate methods to capture renewable energy flows, 
as installing more or heavier power cables is considered an expensive and 
inefficient solution. As such, it is important to investigate other 
possibilities such as electricity storage and the efficient coordination of 
supply and demand made possible through IoT. Many of the Hoog Dalem 
residents have solar panels, a battery, and a measuring and control 
system in the meter cabinet as well as access to a web interface. With 
this web interface residents have insight into their data, and the energy 
usage of household objects such as, for example, the dishwasher, fridge 
or washing machine. Figure 7-21 below depicts the IoT system in relation 
to a specific household. 
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Figure 7-21: The Hoog Dalem Smart In-Home Energy System (Adapted from: “Eindrapport 
Hoog Dalem DEF”) 

The smart in-home system mentioned above is connected via a 
gateway to a separate IT environment. The market roles have been 
implemented in a single ICT environment, to reduce costs and to avoid 
possible connectivity issues regarding data traffic between different 
environments.  

7.5.1 Components: Data 

The smart in-home energy system includes all the measurement points 
required to maintain the system. The system ensures that it is possible to 
program the smart appliances to work during daylight hours when energy 
is available from the solar panels, however, the focus lies with the impact 
on the stored energy in the batteries. Figure 7-22 below depicts the AMDI 
model extended and personalized to include class “individuals” used in the 
Hoog Dalem case. 

 

1: Solar Panels 

2: Heat Pump 

3: Smart Meter 

4: Battery 

5: Smart Appliance 

6: Web interface 

7: USEF 
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Figure 7-22: The Hoog Dalem AMDI model from a data perspective 

Measurement points in the Hoog Dalem IoT system include: 
• Electricity exchange with the grid 
• Use of the heat pump 
• Electricity use of smart appliances 
• Electricity production of the solar panels 
• Electricity exchange, charge and discharge of the batteries 

Congestion points have limited capacity for transporting electricity and 
when these values are exceeded the Grid Safety Analysis ‘fails’. The 
UncontrolledLoad is defined for the (virtual) congestion point, being the 
transformer all houses are connected to. Virtual, because the actual 
capacity is substantially more than the capacity configured. In addition, 
other houses are connected to the same transformer, but these are 
ignored. It contains a forecast for the next day of average power in 15 
minute time steps. The production limit is the maximum net production 
(PVLoad-UncontrolledLoad) that will occur at the congestion point. This 
also is a forecast of average power in 15 minutes time steps.  
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7.5.2 Components: Technology 

As seen in Figure 7-23 below, the reference implementation contains 
software packages for the market rolls in the form of pluggable business 
components (PBCs). At Hoog Dalem, the market roles are implemented 
in a single ICT environment, according to a Stedin official, “to reduce costs 
and avoid possible communication issues with regards to the data traffic 
between different environments”.  

 

 
Figure 7-23: The Hoog Dalem AMDI model from a technology perspective 

At Hoog Dalem, the general pluggable business components 
(PCBs) were replaced by components that fit within the desired 
functionalities of the project. The PCB layer enables a third party to plug 
in custom business logic in a workflow process step. The workflow layer 
provides an implementation of the processes and business services, 
specifically the processes defined by the market-based coordination 
mechanism (MCM). The service layer provides the operational data stores 
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required to realize the application components, such as a reliable set of 
communication capabilities, and logging and monitoring.  

Electricity meters register the electricity consumption used as well 
as the returned electricity. The meters automatically report the meter 
readings. With regards to transmission, the Hoog Dalem case uses 
General Packet Radio Service (GPRS), a packet oriented mobile data 
service on the global system for mobile communications (GSM). The 
reference implementation is delivered with a component that delivers data 
for PBCs, currently for demo purposes only. This component is the PBC 
Feeder that delivers the required input data for separate PBC 
implementations.  

7.5.3 Components: Agents 

The Hoog Dalem Energy Project was carried out by Stedin with a number 
of partners. 32 households also took part in the case as a practical 
research into a future energy system. Figure 7-24 below outlines the main 
stakeholders and agents taking part in this case study. 
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Figure 7-24: The Hoog Dalem IoT AMDI model from an agent perspective 

The Hoog Dalem case includes 3 main groups of agents which 
include the prosumer, the aggregator and the DSO. The prosumer is an 
end-user of energy who also produces energy. In this case, the household 
owner, and as such, the group, “prosumer”, is made up of the individual 
households. The aggregator is a new role in the energy distribution 
system in The Netherlands and is defined as an organization that bundles 
the energy supply services. All new roles used in the Hoog Dalem pilot 
project were filled in by the consortium partners. Other important 
organizations in the supplier category are the Balance Responsible Parties 
(BRP) and the Transmission System Operator (TSO). BRPs provide their 
E-programs the day before, the TSO checks whether or not the E-
programs are correct. The measuring is performed by the DSO. 

7.5.4 Data Governance 

Hoog Dalem follows the USEF specification, with special regards to the 
framework specifications. According to a Stedin official, “USEF defines 
individual roles and responsibilities, how agents should interact, and how 
they can benefit by doing so”. Figure 7-25 below depicts the 
organizational aspects of data governance in the Hoog Dalem AMDI. As 
seen in Figure 7-25, various coordination mechanisms are defined within 
the framework. The MCM is designed to optimize the market in time, 
capacity and power. From a more technical perspective, the messaging 
system works on a contract-based approach, using a point-to-point 
integration between the different actors exchanging messages between 
each other as well as a synchronous message exchange mechanism. The 
performed validations are shown in the common inbound message flow 
sequence diagram. The results of these validations are returned to the 
sender. The synchronous message exchange is realized by using REST 
over https. Hoog Dalem have also adopted further data management 
processes as outlined in the USEF documentation. For example, the data 
architecture and data management guidelines are described in the system 
architecture and privacy and security guidelines documents. The reader 
should note that only example individuals are presented in Figure 7-25 
due to space constraints.  

Stakeholder requirements of the Hoog Dalem AMDI are outlined in 
use cases. The Market-based Coordination Mechanism (MCM) defines how 
the different stakeholders active in the MCM should behave and interact. 
However, according to a Stedin official, “it was discovered that not all 
relevant aspects are specified by USEF. An example of this is that USEF 
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does not specify how an aggregator optimizes its portfolio or how an 
aggregator determines how much flexibility is available where and when”. 

 

 
 

Figure 7-25: Organizational capability aspects of data governance in the Hoog Dalem 
AMDI.  
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Figure 7-26 below depicts the main alignment individuals in the Hoog Dalem AMDI.  

 

 
Figure 7-26: Alignment aspects of data governance in the Hoog Dalem AMDI 

Functional requirements are outlined in the USEF Implementation 
Guidelines. Behavioral requirements are outlined in the Installation 
Manual of the USEF Framework. These behavioral requirements include 
prerequisites, instructions for starting and stopping the USEF 
environment, configuration guidelines, guidelines for resolving participant 
information, and guidelines for uploading data. Similarly, a wide variety 
of business rules, including which libraries are in use, naming 
conventions, as well as glossaries and definitions have been adopted from 
the USEF specifications. Figure 7-27 overleaf depicts the clarification 
aspects of data governance in the Hoog Dalem IoT AMDI.  

Similarly to the alignment aspects of data governance, the Hoog 
Dalem project largely adopts clarification aspects as outlined in the USEF 
Framework specifications, and the USEF Implementation guidelines. For 
example, the data models are outlined in detail in the Framework 
Specifications (Message Transport and Descriptions). Messages consist of 
XML, use UTF-8 encoding, and are validated against the schema 
corresponding to the specification version implemented by a participant. 
Message types can be differentiated using the name of their root node.  
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Figure 7-27: Clarification aspects of data governance in the Hoog Dalem AMDI 

There are three levels of compliance used by Hoog Dalem: 1. 
protocol, 2. process, and 3. service compliance. Protocol compliance deals 
with the syntax and semantics of messages. Process compliance considers 
the processes in and interactions amongst the roles. Finally, service 
compliance deals with the validation whether a service provider is capable 
of providing the flexibility service according to the contractual 
arrangements.  

In the Hoog Dalem project, protection of privacy & security is 
viewed as an ongoing task. According to a Stedin official, “privacy 
measures will need to evolve over time in order to deal with changing 
societal trends, whereas security measures will need to evolve over time 
in order to mitigate increasingly sophisticated hacking techniques”. Figure 
7-28 below depicts the compliance aspects of data governance in the 
Hoog Dalem AMDI. 

7.5.5 Environments 

The Hoog Dalem area offers a high standard of living. The area has access 
to necessary amenities such as shops, schools and care. Hoog Dalem can 
be described as spacious living amidst greenery and water in the 
atmosphere of the Dutch Waterline with child-friendly, safe 
neighborhoods and with nearby facilities. Hoog Dalem consists of four 
sub-areas: De Donken (which has already been largely built), Center Hoog 
Dalem, Het Lint and De Eilanden. Each area has its own informal culture 
and has a different type of housing. Hoog Dalem as a residential area is 
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still under construction, but when completely finished, will have about 
1,400 homes and a shopping center. 
 

 
Figure 7-28: Compliance aspects of data governance in the Hoog Dalem AMDI. 

The demographics of the area (https://www.parlement.com based on 
figures from the Central Bureau of Statistics) suggest that the area has a 
lower than average number of residents per square meter than the rest 
of the Netherlands, with a high proportion of professionals between the 
ages of 45 and 65 and a high proportion of teenagers. It is a residential 
area with established families with higher incomes. http://www.buuurt.nl 
(based on figures from the Central Bureau of Statistics) suggests that the 
average house price in Hoog Dalem is around €500.000.- which is higher 
than average in the Netherlands. According to http://www.buuurt.nl, the 
political preference of residents in the area is that of conservative-liberal 
parties, with an obvious preference for business focused parties such as 
the Volkspartij voor Vrijheid en Democratie (VVD). According to research 
conducted by Stedin in the area (Hoog Dalem report: “Eindrapport Hoog 
Dalem DEF”), there is clearly a dominant segment in the Hoog Dalem 
district in which more than 95% of the residents of the district attach 
great value to a pleasant living environment and a house in which superior 
comfort is provided. Technology plays an important part in this role. 
Figure 7-29 below depicts the environments in which the Hoog Dalem IoT 
AMDI is located. 
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Figure 7-29: Environments in the Hoog Dalem AMDI. 

According to Stedin, “this group strongly believes that technology 
makes life easier or more comfortable”. According to Stedin, “this group 
makes up an average of 23% of the total Dutch population, demonstrating 
a large disproportion for Hoog Dalem”. Stedin suggests that “this extreme 
can partly be due to the fact that the neighborhood is new and that there 
is still little data available”. Another possible explanation provided by 
Stedin is that “the district contains many relatively large and expensive 
houses, with an innovative heating system”. Stedin believes that such 
houses “may attract residents who are interested in technology and that 
for, these people, comfort may more be important than cost”. 

7.6 Discussion 
This section discusses the results of the test case studies. The goal of the 
test case studies was to test the usability of the AMDI model for improving 
understanding of asset management though IoT. As such we first discuss 
the validation of the test case studies themselves for their 
appropriateness with regards to the generalization of the research. The 
test case studies are therefore validated in section 7.6.1 against the 
criteria for case selection (see Table 2-1). After discussing the validation 
of the case studies, we discuss the usability of the model against the 
criteria for model validation in section 7.6.2. Finally we discuss the results 
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of the tests of the design propositions with regards to the usefulness of 
the model. 

7.6.1 Test 1: Validation of the Test Case Studies 

Table 7-5 below shows how the case studies are validated. The table 
compares the case studies to the case study criteria discussed in Chapter 
2.  

Table 7-5: Validation of the Test Case Studies. 

Criteria Case Studies 

1. The case must 
occur within a 
distinct 
organization. 

Case: WIM 
Org.: RWS 

Case: Smart Meters 
Org.: Stedin 

Case: Hoog Dalem 
Org.: Stedin 

2. The primary 
processes of the 
organization must 
be focused on the 
management of 
significant 
infrastructure. 

Road management 
(national 
highways): 
IoT system used to 
determine 
overloading of 
vehicles which has 
a direct influence 
on distresses in 
porous asphalt 
including rutting, 
raveling and 
reduced skid 
resistance 

Grid management 
of middle tension 
electrical grids: 
IoT system used to 
determine capacity 
and breakages in 
the middle tension 
electrical grid  

Grid management 
of low tension 
electrical grids: 
IoT system used to 
determine capacity 
and breakages in 
the low tension 
electrical grid 

3. The case 
environment should 
be “data-rich”. This 
means that the 
organization should 
produce, manage 
and maintain at 
least 5 large 
datasets as well as 
a more than twenty 
small to medium 
data sets which 
support the asset 
management 
process. 

RWS has more 
than 1000 
datasets, including 
large datasets such 
as large scale 
topography base 
registration as well 
as many large 
datasets such as 
the National Road 
Data (NWB) 

Stedin has more 
than twenty large 
datasets, including 
large datasets such 
as the asset data 
related to the gas 
and electricity 
networks and data 
generated by the 
smart meters 
themselves 

Stedin has more 
than twenty large 
datasets, including 
large datasets such 
as the asset data 
related to the gas 
and electricity 
networks and data 
generated by the 
smart meters 
themselves 
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Criteria Case Studies 

4. The AMDI must 
include at least one 
example of IoT 
adoption. 

Number of 
stations: >15 
 
Type of services: 
Collaborative 
aware services 
 
 
Age of System: 
>18 years  
 
Type of sensors: 
See figure  
 
Data transmission: 
VICNet (cable) 

Number of stations: 
>500 000 
 
Type of services: 
Information 
aggregation 
services 
 
Age of System: 
>4 years  
 
Type of sensors: 
Electricity meter 
 
Data transmission: 
GPRS, CDMA 
(wireless) 

Number of stations: 
>20 
 
Type of services: 
Collaborative aware 
services 
 
 
Age of System: 
>4 years  
 
Type of sensors: 
Electricity meter 
 
Data transmission: 
GPRS (wireless) 

5. The case should 
occur within The 
Netherlands. 

Case encompasses 
the national 
highways of the 
Netherlands and is 
managed by 
central government 

Case encompasses 
the electrical grid of 
the regions of 
South Holland and 
Utrecht in the 
Netherlands 

Case encompasses 
the electrical grid of 
a neighborhood in 
Gorinchem, a city in 
the Netherlands 

6. The organization 
should be of type 
government or 
semi-government 
(majority 
shareholders should 
be government). 

Type:  
Central 
Government 
 
Stakeholders: 
Asset Managers, 
General public, 
Industry, 
Municipalities, 
Provinces 
 

Type:  
Semi-Government 
(majority 
shareholders are 
municipalities) 
 
Stakeholders: 
Asset Managers, 
General public, 
Private asset 
owners, 
Industry, 
Agriculture, 
Municipalities, 

Type:  
Semi-Government 
(majority 
shareholders are 
municipalities) 
 
Stakeholders: 
Asset Managers, 
General public, 
Private asset 
owners, 
Municipalities, 

7. Cases should 
occur at varying 
geographic 
coverage levels. 

Level: National Level: Regional Level: Local 

8. Cases should 
occur in varying 
asset management 
domains. 

Road 
management: 
National Highways 

Mid-tension 
electrical grid 
management 

Low tension 
electrical grid 
management 
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Criteria Case Studies 

9. The organization 
must be willing to 
cooperate with 
researchers and 
must be willing to 
provide access to 
the information 
required for the 
research. 

RWS provided full 
access to the 
researchers– see 
table 7-1 

Stedin provided full 
access to the 
researchers– see 
table 7-2 

Stedin provided full 
access to the 
researchers– see 
table 7-3 

 
Table 7-5 above demonstrates that the case studies comply with 

the criteria as specified in Chapter 2. Furthermore, the data was collected 
according to the case study protocol and was stored in the case study 
database as per the suggestions made by Yin (2009) which established a 
chain of evidence. The data included multiple sources of evidence (see 
tables 7-1, 7-2 and 7-3). In order to guard against investigator bias, 
interviews were conducted by several different interviewers. The results 
were then discussed within the group and with other colleagues, and key 
informants from the various organizations were given the opportunity to 
review the draft case study report. In light of these arguments we argue 
that the results of the case studies, as discussed in the sections below, 
may be considered to be reliable and valid within the research domain. 

7.6.2 Test 2: Usability of the AMDI Model 

Due to privacy concerns we do not refer to the specific cases or persons 
in the following sections.  

Criteria 1 and criteria 2 for interpreting the findings are aimed at 
determining the construct validity of the model itself. Is the model 
overcomplicated or, conversely, incomplete? Appendix C shows that 
individuals for most of the object classes could be found in all three of the 
test cases. Important exceptions include physical and domain specific 
metadata. Thorough discussions with subject matter experts in the test 
cases as well as discussions with colleague researchers were unable to 
determine extraneous object classes at the secondary level of the model. 
As such, we believe that the model is compliant with criteria 1 and 2 and 
that the model is valid for the test cases. It is worth noting, however, that 
in some object classes further classification at lower levels is potentially 
possible. An example of this lies with the business rules. It is potentially 
possible to further classify different types of business rules such as 
constraints, derivations, facts and definitions. We did not include this level 
of classification in the model as none of the case studies (exploratory or 
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test) provided evidence in which examples of all of these classifications 
could be found. Although many interviewees assured us that individual 
business rules were of paramount importance, with especial regard to 
definitions of data, it would appear that a highly disciplined documentation 
of business rules as suggested by Feldstein & Glasgow (2008) is not 
necessarily of major influence on asset management through IoT. In asset 
management, the teams dealing with the data are often small with a core 
of highly skilled subject matter experts who are familiar with the data. 
This may also be the reason that some metadata individuals were unable 
to be discovered by the research team. As such, the business rule insight 
suggests that people factors such as awareness and levels of knowledge 
and skill (Aarons et al., 2011; Graham & Logan, 2004) may have a larger 
influence on IoT adoption in asset management than other factors. 

Criteria 3 suggests that the user should be able to complete the 
model for specific situations within the time limits of a two hour workshop. 
A major barrier to achieving this criteria was the availability of experts 
with an all-encompassing view of the case. The AMDI model has a broad 
scope, which means that very few people are able to work with the model 
in its entirety alone. This is also one of the strengths of the model in that 
it brings people from different subject areas together to discuss and view 
the infrastructure from different perspectives. However, achieving the 
situation whereby all required individuals were in one room at the same 
time was challenging. We therefore made the decision to work with 
smaller groups on sections of the model as opposed to working with a 
larger group in one sitting. Working with individuals or smaller groups in 
time periods of one hour, we gathered enough data to complete the model 
in the allotted time period. The completed models were then confirmed 
by all the participants through the contact person. The fact that the 
models were completed in multiple sittings should be taken into account 
when considering the results due to the potential for incorrect 
interpretations and bias. The total time taken to complete the model was 
monitored to a precision of 15 minutes.  

Criteria 4 suggests that the model should be reasonably easy to 
use, in that the model should be relatively self-explanatory. As such, the 
researcher allocated 15 minutes per session to the explanation of the 
model and the required actions of the participants. Check questions were 
asked as to whether or not the participant understood how the model 
worked and what was required of them. The model was presented to the 
users by means of a whiteboard, or as a digital print version of the model 
as a presentation. The participants were then asked to verify the model 
by verifying the identified individuals. Using the results of the 
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interviews/workshops, the researcher then formally completed the model 
in Protégé and confirmed the findings with the contact persons. None of 
the participants reported difficulties in understanding the model or what 
was required of them, but some explanation was required as to the 
definition of an “individual”. Differing interpretations of what an individual 
is led to slight differences in levels of detail between the case studies.  

Criteria 5 suggests that the participants should feel positively 
about using the model. In other words, users should feel comfortable 
using the model and should want to use it. The response to the model by 
the participants was, in general, positive. This feeling of positivity was 
expressed in a number of ways during the test cases. For example, with 
regards to learning, one participant who works in a senior advisory role 
suggested that they had “learned new things about their own system” 
from the model. Other participants responded that the model provided an 
overview, and “gave them a helicopter view of the system” which helped 
to understand how the parts of the system which they were working with 
were connected to products and services performed by other 
departments. With regards to the use of the model for planning purposes, 
participants suggested that the model was a “handy planning tool” which 
project managers could use to reduce the risk that critical actions were 
missed and to map out a workable roadmap. Less positive remarks 
included feedback that it was sometimes difficult to include individuals in 
the model, as although the respondents acknowledged that the individuals 
were important, they were not immediately certain as to the exact 
individuals for their case. The participants suggested that this was not the 
fault of the model, but of the maturity of the system under study. 

 

Table 7-6: Summary of the results of Test 2: the usability of the model 

Criteria Results of the Test Case Studies 

RWS: WIM Stedin: Smart 
Meters 

Stedin Hoog 
Dalem 

1. Individuals for 
each object class 
should be present 
in the case. 

All classes were 
populated with 
individuals. 

All classes were 
populated with 
individuals. 

All classes were 
populated with 
individuals. 

2. All individuals 
present in the class 
should logically fit 
into an object class 
in the model. 

No extraneous 
individuals were 
discovered. 

No extraneous 
individuals were 
discovered. 

No extraneous 
individuals were 
discovered. 
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Criteria Results of the Test Case Studies 

RWS: WIM Stedin: Smart 
Meters 

Stedin Hoog 
Dalem 

3. The user should 
be able to read and 
understand the 
entire model within 
the time limits of a 
two hour 
workshop. 

2 rounds of 
interviews/workshops 
were required to 
complete the model. 
Interviews lasted 1 
hr. 
Total average time 
per group: <2 hours 

2 rounds of 
interviews/worksho
ps were required to 
complete the 
model. 
Interviews lasted 
<1 hr. 
Total average time 
per group: 1.5 
hours 

2 rounds of 
interviews/worksho
ps were required to 
complete the 
model. 
Interviews lasted 1 
hrs. 
Total average time 
per group:2 hours 

4. The user should 
be able to work 
with the model 
after a short 
explanation lasting 
no more than 15 
minutes. 

Users reported no 
difficulties in 
understanding how 
the model should be 
completed. Some 
explanation was 
required with regards 
to the interpretation 
of an individual. 

Users reported no 
difficulties in 
understanding how 
the model should 
be completed. 
Some explanation 
was required with 
regards to the 
interpretation of an 
individual. 

Users reported no 
difficulties in 
understanding how 
the model should 
be completed. 
Some explanation 
was required with 
regards to the 
interpretation of an 
individual. 

5. The terms used 
to describe the 
model by the user 
should be generally 
positive. 

Reactions: positive – 
most reactions 
concerned the 
overview that the 
model created. 

Reactions: positive 
– especially with 
regards to the 
completeness and 
cohesion of the 
model 

Reactions: positive 
– especially with 
regards to applying 
the model to 
specific 
improvement 
projects 

 

7.6.3 Test 3: Usefulness of the AMDI Model  

This section describes the results of the tests on usefulness and answers 
research question 5. Research question 5 asks: How does the AMDI model 
improve understanding of asset management through IoT? Answering this 
question through the use of test case studies involves a discussion of the 
usefulness of the AMDI model as described in section 7.1. Included in the 
discussion of the usefulness of the model is a discussion of the proofs of 
the design propositions. 

Criteria 1 of the usefulness test (Table 7-1), testing the null 
hypothesis (Yin, 2009), tests if the AMDI does not improve understanding 
of asset management through IoT organizations as IoT adoption occurs 
by chance only. Improving understanding of asset management through 
IoT adoption was observed in 3 different exploratory case studies and 3 
test case studies and has been discussed at length in literature. The case 
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studies were studied independently of each other and in all the cases we 
were able to observe that IoT adoption had significant impact on 
traditional asset management processes and occurred due to a result of 
specific needs and interventions (see Chapter 4). This is also in line with 
other studies which describe adoption of innovative technologies (Aarons 
et al., 2011; Feldstein & Glasgow, 2008). We therefore argue that we may 
reject the null hypothesis. 

 
Tests on Design Proposition 1 
Criteria 2 (Table 7-1) provides the criteria for testing the first part of 
design proposition 1 and states that the AMDI model should provide 
actionable insights into the influence of people asset management 
through IoT. Adoption theoretical frameworks identify key people 
characteristics that are positively associated with adoption of new 
technologies, including skills and experience, knowledge of applying an 
innovation, and general fit with adopter characteristics such as learning 
style and tolerance of ambiguity (Solomons & Spross, 2011). Application 
of the AMDI model shows that agents have a particularly large influence 
on asset management through IoT, and adoption readiness is of 
paramount importance for successful adoption. For example, interviewees 
at Stedin mention great importance being placed on the learning agility 
of Stedin employees, and RWS has a mature reward system whereby 
employees are financially rewarded for ideas with an innovation 
component. This is in line with Greenhalgh et al. (2004) and Solomons & 
Spross (2011), who suggest that assessment of attitudes toward change, 
endorsing a holistic approach towards quality improvement, and utilizing 
a reward system are positively associated with adoption of new 
technologies. However, application of the AMDI model also shows that 
people in asset management business processes need to learn new skills 
to be able to understand and interpret IoT data. Interviewees reported 
that asset managers are required to be “much more data aware than 
before, and the line between the data scientist and the asset manager is 
becoming much thinner”. For example, both Stedin and RWS have 
developed a “Data-Lab” alongside already available risk analysis teams in 
which dedicated data scientists work with asset managers in an holistic 
quality improvement process as suggested by Solomons & Spross (2011). 
Both Stedin and RWS identify a lack of data science skills as major 
stumbling blocks in asset management through IoT and the Data 
Governance Officers at both organizations have initiated training 
programs designed to improve data awareness and analytics skills within 
the organization. Results of the test cases suggest that a successful 
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method (employed by both Stedin and RWS) to improve skills and 
awareness of IoT is that of development of communities of practice. This 
is in line with the suggestions of Greenhalgh et al. (2004), who suggest 
that social ties within and outside an organization, extensiveness, and 
quality of such networks are positively associated with adoption of new 
technologies. 

Criteria 3 (Table 7-1) provides the criteria for testing the second 
part of design proposition 1 and states that the model should provide 
actionable insights into the influence of technical innovation 
characteristics on asset management through IoT. Adoption theoretical 
frameworks have characterized adoptable innovations as being clear in 
purpose and simple to use, observable, and transferrable (Oldenburg & 
Glanz, 2008). Data governance should ensure that data is aligned with 
the needs of the business, including ensuring that data meets the 
necessary quality requirements. For example, the level of accuracy and 
timeliness of the data being generated by the WIM is essential for traffic 
warden to be able to react in a timely fashion and with confidence in the 
results. Also, asset managers at Stedin need to have full confidence in the 
results of the smart meters in order to be able to properly balance the 
electricity loads of the mid-tension grid. The results of the test case 
studies show that IoT technology should be clear in purpose and simple 
to use to for asset management through IoT, and the test cases 
demonstrate that the model of AMDIs improves understanding of the 
component parts, in line with Oldenburg & Glanz (2008) who suggest that 
innovations should be observable and transferable. 

According to Feldstein & Glasgow (2008), innovations that are 
coupled with existing processes are more likely to be adopted. The test 
cases show that adoption of IoT allows for more detailed and accurate 
predictive analysis changes for asset management purposes. For 
example, in energy grid management, greater availability of real-time 
data has increased trust in the asset management process and allows for 
greater predictability in risk-based decision-making. This has allowed 
decision-making to become partially automated due to the greater 
certainty as to when and which action needs to be taken. Ensuring 
alignment can take the form of defining, monitoring and enforcing data 
policies (internal and external) throughout the organization. The test 
cases show that ensuring compliance to privacy laws as well as 
maintaining increasingly sophisticated levels of security in IoT adoptions 
is becoming essential to successful asset management. 
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Tests on Design Proposition 2 
Criteria 4 (Table 7-1) provides the criteria for testing design proposition 
2 and states that the AMDI model should provide actionable insights into 
the influence of data governance on asset management through IoT.  
According to Aarons et al. (2011), an organization’s absorptive capacity, 
the capacity to utilize innovative and existing knowledge may have a 
positive influence on adoption of new technologies such as IoT. With 
regards to the test cases, both RWS and Stedin have well-structured 
processes to incorporate new technologies and have developed strong 
relationships with knowledge institutes. For example, WIM was developed 
by RWS in cooperation with technical universities and private knowledge 
institutions. High levels of networks between cooperating organizations 
as enabling factor for the use of IoT in asset management is in line with 
Greenhalgh, Robert, Macfarlane, Bate, & Kyriakidou (2004) who show that 
multiple, informal inter-organizational networks, and general 
interconnectedness among organizations is positively associated with 
adoption of new technologies. 

According to Wisdom et al. (2014), organizational norms, values, 
and cultures are critical to adoption of new technologies in organizations. 
This includes shared professional values (Mendel et al., 2008), and a 
culture of problem-solving (Oldenburg & Glanz, 2008). Application of the 
AMDI model shows that both RWS and Stedin can be characterized as 
having highly professional cultures with a reputation for “getting things 
done” and pride in maintaining high levels of professionalism and 
problem-solving in the face of complex challenges, in line with Oldenburg 
& Glanz (2008). But the test cases also show that this culture of shared 
professional values originates from a network of professionals as opposed 
to a hierarchical structure. At both RWS and Stedin the presence of 
communities of practice was seen as positive influences in the 
dissemination of knowledge regarding asset management through IoT. 
This is in line with Frambach & Schillewaert (2002), who suggest that 
social persuasion and communication from peers within an organization 
help identify with and achieve adoption of new technologies in 
organizations. 

 However, the AMDI model also shows that management support 
positively influences asset management through IoT in the form of 
“championship” and leadership promotion as suggested by Aarons et al. 
(2011) and Feldstein & Glasgow (2008). This is depicted in the data 
governance class in which data governance roles take strategic (data 
owner), tactical (data steward) and operational (data manager) forms. 
For example, the executive management at the Department of Central 
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Information Management at RWS, as data owners, played an important 
role in championing the use of WIM data for asset management, as did 
the Director of Strategy and the Chief Data Officer at Stedin with regards 
to Smart Meter data.  However, a number of interviewees in the test cases 
reported that the distance between senior management and operations 
meant that senior management had eventually little influence on the 
operational use of IoT in the asset management process, in line with the 
suggestions of Backer, Liberman, & Kuehnel (1986) that top-down 
leadership is negatively associated with adoption of new technologies in 
organizations. The suggestion being that tactical and operational 
professionals at RWS and Stedin prefer to “do things their own way”. So 
whilst data owners champion the use of IoT for asset management, it is 
the data stewards and data managers who eventually take the operational 
decisions to implement IoT technology and trust the data. As such, results 
of the test cases suggest that it is inefficient to try to exert a hierarchical 
control over AMDIs and that typical characteristics of CAS should be taken 
into account when adopting IoT in asset management. This is in line with 
Greenhalgh et al. (2004) who suggest that a formalized, centralized 
organizational structure and heavy organizational coordination 
requirements are negatively associated with adoption of new 
technologies. For example, interviewees at Stedin sited “long waiting 
periods and competition with backlog from regular IT service provision” 
as stumbling blocks to asset management through IoT. At Stedin, 
decisions regarding prioritization of resources are made once every 3 
months in a “Big-Room Planning”, in which innovations compete for 
resources with regular service provision requirements. If a particular 
innovation is not accepted in a particular big room planning, another 3 
months are required before a new prioritization can be made.  

However, a compromise should be made, as sound data 
governance is required to ensure that IoT can provide trusted data for 
decision making (Dawes, 2010). Application of the AMDI model shows 
that decision processes have been changed to deal with the real-time 
nature of the data, and reveals that asset managers have had to adapt 
and develop new skills and capabilities to adapt to changing roles and 
changing processes. However, as suggested by Greenhalgh et al. (2004), 
with regards to asset management through IoT, the organization of data 
governance should not be seen as a “one size fits all” approach (Wende & 
Otto, 2007). For example, with regards to Smart Meters and Hoog Dalem, 
prosumers retain ownership of the data whilst Stedin maintains a 
stewardship role, whereas with WIM, RWS has an ownership role and 
performs much of the data management itself. 
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Tests on Design Proposition 3 
Criteria 5 (Table 7-1) provides the criteria for testing design proposition 
3 and states that the model should provide actionable insights into the 
influence of socio-political environments asset management through IoT. 
Adoption theoretical frameworks have identified socio-political and 
external factors that can influence adoption of new technologies 
(Damanpour & Schneider, 2006). Environmental characteristics may refer 
to the sector within which the organization operates, or may represent 
cultural, societal, political or geographical conditions (Wejnert, 2002). In 
our AMDI model, we include three relevant environmental factors of 
cultural, physical and political environments within the asset management 
sector. The three test cases occur at differing levels which allowed us to 
test the influence of urbanization and community size on asset 
management through IoT. According to Damanpour & Schneider (2006), 
urbanization and development around an adopting organization have a 
positive association, as organizations in urban areas tend to have easier 
access to service providers and face more diverse and complex 
environments than those in rural areas (Boyne, Gould-Williams, Law, & 
Walker, 2005). However, the test case on the local level, Hoog Dalem, 
occurs in an area of relatively low level of urbanization, and the regional 
and national level test cases occur throughout areas of varying levels of 
urbanization. And yet the level of IoT adoption in each of the test cases is 
high. What application of the model does reveal throughout all the test 
cases is that all the cases have a high level of environmental complexity 
and are relatively wealthy, having access to high levels of financial and 
other resources. According to Daft, Murphy, & Willmott (2010), greater 
environmental complexity leads to more numerous, specialized and 
interconnected organizational parts, stimulating higher rates of innovation 
and change, and Damanpour & Schneider (2006) show that resources also 
provide local governments of wealthier communities with a greater ability 
to prepare organizational and community members for implementing the 
new programs or services. As such, the results of the test cases show that 
organizational wealth and complexity may have a larger influence on asset 
management through IoT than other factors such as urbanization. This is 
in line with Mendel, Meredith, Schoenbaum, Sherbourne, & Wells (2008) 
who identify financial incentives and reward systems as being necessary 
for successful adoption of new technologies. 

According to Aarons et al. (2011), external policy and regulation 
are positively associated with adoption of new technologies, including 
specific enactment of policies, legislation, or regulations on innovation 
adoption. This is demonstrated in the AMDI model as, for example, the 
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adoption of smart meters in the electrical grid has been driven largely by 
European Union directives. Furthermore, European Union and Dutch law 
also drive data privacy protection regarding the smart meters. However, 
the results of applying the AMDI model to the test cases show that unclear 
or incomplete political and legal frameworks can also hinder asset 
management through IoT, as a number of interviewees responded that 
“much more could be done with the data provided by the smart meters”, 
but uncertainties surrounding the use of smart meter data restricted the 
potential benefits. In the Netherlands a number of households have 
refused the smart meter due to privacy concerns. This shows that the 
political and cultural climate also needs to be a fit if asset management 
through IoT is to be enabled as suggested by Glasgow (2003). Similarly, 
a lack of defining legal frameworks surrounding the use of WIM for 
complete automation of law enforcement means that physical checks still 
need to be made. Based on Glasgow (2003) and the results from our test 
cases, we developed the following model, depicted in Figure 7-30 below. 
Application of the AMDI model shows that political directives can be a 
strong driving force for asset management through IoT, if the legal 
framework is clear and enforceable. 

 

 
Figure 7-30: The influence of political, cultural and physical environments on asset 
management through IoT 

According to Damanpour & Schneider (2006), most studies on 
innovation adoption tend to focus on a single dimension such as 
organizational factors, as organizational factors tend to be deemed to be 
primary determinants of innovation adoption in organizations 
(Subramanian & Nilakanta, 1996). However, application of the model in 
the test cases shows that asset management through IoT is multi-
dimensional, being influenced by factors within several dimensions 
including: environmental; organizational readiness; technical adoption 
characteristics; and people. As such the model provides insight into the 
salient factors of each dimension and their relative explanatory power on 
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asset management through IoT. In this way, the AMDI model enables IoT 
adoption in asset management organizations, improving asset 
management. Table 7-7 below summarizes the answer to research 
question 5: Does the AMDI model enable IoT adoption in asset 
management organizations, improving asset management? 
 

Table 7-7: A summary the evaluation of the AMDI model as enabling IoT adoption in asset 
management organizations and answer to research question 5 

Design 
Proposition 

Evaluation 
Criteria 

Result of the Test Cases 

RWS: WIM Stedin: Smart 
Meters 

Stedin Hoog 
Dalem 

DP 1. 2. The model 
should provide 
actionable 
insights into 
the influence 
of people on 
asset 
management 
through IoT. 
 
Suggested 
Actions: 
- Carry out 
data 
awareness 
programs 

- Develop data 
science 
capabilities 
in the 
organization 

- Develop data 
privacy 
awareness 

Agents have a 
particularly 
large influence 
on asset 
management 
through IoT at 
RWS, and 
adoption 
readiness is of 
paramount 
importance for 
successful 
adoption of IoT 
in AM. To 
mitigate this, 
Data 
Governance 
Officers have 
initiated 
training 
programs 
designed to 
improve data 
awareness and 
analytics skills 
within the 
organization. 

People in 
asset 
management 
business 
processes 
need to learn 
new skills to 
be able to 
understand 
and interpret 
IoT data. 
Stedin has 
identified a 
lack of data 
science skills 
as a major 
stumbling 
blocks in the 
adoption of 
IoT in asset 
management. 

Users of the 
infrastructure 
also need to 
become more 
aware of how 
their data is 
used and how 
their data could 
be used for 
their benefit 
and also in 
violation of 
their privacy. 



Test Cases 

294 
 

Design 
Proposition 

Evaluation 
Criteria 

Result of the Test Cases 

RWS: WIM Stedin: Smart 
Meters 

Stedin Hoog 
Dalem 

DP 1. 
 
Suggested 
Actions: 
- Ensure 
standardization 
of IT systems 
and protocols 

- Implement 
regular 
auditing to 
monitor 
privacy and 
security 
compliance 

3. The model 
should provide 
actionable 
insights into 
the influence 
of technical 
innovation 
characteristics 
on asset 
management 
through IoT. 

IoT technology 
provides more 
detailed and 
accurate 
predictive 
analysis, 
increasing 
trust in the 
asset 
management 
process and 
allowing for 
greater 
predictability 
in risk-based 
decision-
making. 

AM through 
IoT requires 
significant 
(non-trivial) 
changes to 
current 
operational 
systems due 
to the 
multitude of 
standards 
used in the 
industry. 

Ensuring 
compliance to 
privacy laws as 
well as 
maintaining 
increasingly 
sophisticated 
levels of 
security in IoT 
is becoming 
essential to 
successful asset 
management. 

DP 2. 
 
Suggested 
Actions: 
- Develop 
contracts 
between actors 

- Cultivate a 
culture of data 
sharing 

- Formalize 
ownership and 
responsibilities 
for data 

4. The model 
should provide 
actionable 
insights into 
the influence 
of data 
governance on 
asset 
management 
through IoT. 
 
 

Informal data 
governance is 
achieved 
through 
contract 
forming. At 
RWS, a culture 
of shared 
professional 
values 
originates from 
a network of 
professionals 
as opposed to 
a hierarchical 
structure. 

Stedin is in 
the process of 
adopting a 
formal data 
governance 
structure in 
which the DG 
Officers need 
to play a 
coordinating 
role. The 
model gives 
insight as to 
the data 
ownership 
domains, and 
provides a 
framework for 
defining data 
quality 
requirements. 

Application of 
the model 
shows that data 
governance is 
not 
straightforward 
as the data 
owner is a 
client of Stedin 
and not Stedin. 
Application of 
the model 
shows that Data 
Stewards at 
Stedin should 
be aware of 
their 
responsibilities 
towards the 
privacy of the 
data owners. 
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Design 
Proposition 

Evaluation 
Criteria 

Result of the Test Cases 

RWS: WIM Stedin: Smart 
Meters 

Stedin Hoog 
Dalem 

DP 3. 
 
Suggested 
Actions: 
- Develop 
understandable 
strategies and 
clear business 
cases based on 
fact and regard 
for the political 
will.   

5. The model 
should provide 
actionable 
insights into 
the influence 
of socio-
political 
environments 
on asset 
management 
through IoT. 

Application of 
the model 
shows that 
organizational 
wealth and 
complexity of 
environments 
may have a 
larger 
influence on 
AM through 
IoT at RWS 
than other 
factors such as 
urbanization. 
This is an 
important 
insight for 
RWS as RWS 
manages 
highways 
which largely 
occur outside 
of urban areas. 

Application of 
the model 
shows that 
external policy 
and 
regulation, 
including 
specific 
enactment of 
policies, 
legislation, or 
regulations 
have a large 
impact on AM 
through IoT at 
Stedin. 

Application of 
the model 
shows that 
unclear or 
incomplete 
political and 
legal 
frameworks can 
hinder IoT 
adoption in 
asset 
management, 
and that the 
political and 
cultural climate 
needs to be a 
fit. 

 

7.7 Conclusions 
Case study research was used as the methodological approach to evaluate 
the validity and generalizability of the AMDI model within the 
contemporary phenomenon of asset management through IoT. The test 
case studies are of a descriptive nature and aim at describing the case in 
terms of the AMDI model. The objective of this chapter is to answer the 
final research question, RQ 5: how does the AMDI model improve 
understanding of asset management through IoT? The chapter evaluated 
the AMDI model by using the model to describe in detail three IoT cases 
in the asset management environment. The first case described was that 
of highway management to enforce overloading laws, known as Weigh-
in-Motion. The case described was at the national level spread over a wide 
geographical area, and although the number of measuring stations was 
relatively small, the variety of sensors was large. The second case was 
that of the adoption of smart meters to manage a regional energy grid 
(electricity and gas). The third case was similar but looked at the use of 
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IoT to assist the provision of flexible energy sources to a local community, 
Hoog Dalem.  

 
Test1: Validity 
We may conclude that the cases were comparable in that they were all 
IoT adopters in the asset management domain, but the differences in the 
cases also demonstrated that the model was valid for asset management 
organizations and generalizable across organizational levels.  

 
Test 2: Usability 
We may conclude that the AMDI model is usable conform the defined 
criteria. The model has a broad scope, which means that very few people 
are able to work with the model in its entirety alone. However, this may 
also be regarded as one of the strengths of the model in that it brings 
people from different subject areas together to discuss and view the 
infrastructure from different perspectives. However, we acknowledge that 
achieving the situation whereby all required individuals were in one room 
at the same time was challenging. 

 
Test 3: Usefulness 
Design Proposition 1: Components – Results of the test cases also reveals 
that asset management through IoT is multi-dimensional, being 
influenced by factors within several dimensions including: organizational 
readiness; technical adoption characteristics; and people. Application of 
the AMDI model shows that agents have a particularly large influence on 
asset management through IoT, and adoption readiness is of paramount 
importance. The results of the test case studies also show that IoT 
technology should be clear in purpose and simple to use to enable asset 
management through IoT. We therefore conclude that the model 
improves understanding of the component parts of AMDIs. 
 
Design Proposition 2: Data Governance 
Results of the test cases show that ensuring alignment can take the form 
of defining, monitoring and enforcing data policies (internal and external) 
throughout the organization. The test cases show that ensuring 
compliance to privacy laws as well as maintaining increasingly 
sophisticated levels of security in IoT is becoming essential to successful 
asset management. Furthermore, sound data governance is required to 
ensure that IoT can provide trusted data for decision making. Application 
of the AMDI model shows that decision processes have been changed to 



Test Cases 

297 
 

deal with the real-time nature of the data, and managers need to adapt 
and develop new skills and capabilities to be able to interpret the data.  
 
Design Proposition 3: Environments 
Application of the model shows that organizational wealth and complexity 
of environments may have a larger influence on asset management 
through IoT at RWS than other factors such as urbanization, and that 
political directives can be a strong driving force for asset management 
through IoT, if the legal framework is clear and enforceable.
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Chapter 8 Discussion and 

Conclusions 
 
“Why then, lead on. O that a man might know 
The end of this day’s business ere it come! 
But it sufficeth that the day will end, 
And then the end is known. Come, ho! Away!” 

- William Shakespeare (Julius Caesar: Act-V, Scene-III) 
 

8.1 Introduction 
In this research, our objective was to develop a model of AMDIs that 
improves understanding of asset management through IoT. We 
anticipated that IoT adoption introduces unexpected changes within asset 
management and so we applied Duality of Technology theory (Orlikowski, 
1992), confirming the dual nature of IoT in asset management. Second, 
we identified the complexity of AMDIs and confirmed the necessity of 
viewing AMDIs as CAS when introducing new technologies such as IoT. 
On the basis of the insights provided by confirming the duality of IoT in 
asset management and by confirming the necessity of viewing AMDIs as 
CAS, we developed a model of AMDIs which improves understanding of 
asset management through IoT. For example, by explicitly outlining the 
relationship between asset managers as users of IoT and the need for 
building trust in the system through transparency and knowledge 
development, application of the model confirms the belief that, within the 
context of our case studies, asset management organizations with a 
hierarchical organizational structure are less equipped to adopt IoT and 
that a more network-based, organic organizational structure may provide 
a better fit for asset management through IoT as suggested by 
Damanpour & Gopalakrishnan (1998). 

Maintaining public utility infrastructure is a complex process, 
especially when organizations which are tasked with this face increasing 
workloads and ever decreasing budgets. In order to maintain and improve 
services in the face of these constraints, organizations often turn to asset 
management as a way of increasing efficiency and effectiveness. 
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However, effective asset management decision-making requires large 
amounts of quality data, and traditional methods of data collection are 
proving inadequate to meet the current and future information needs of 
asset managers. Instead, more and more, asset management 
organizations are looking to innovations such as IoT to provide the data 
required to drive decision-making. Seamless adoption of IoT in asset 
management is not straightforward, and asset managers are not always 
inclined to trust the data and the information which IoT may provide. 
Furthermore, as a dual technology, the introduction of IoT often 
introduces changes to asset management which are often not entirely 
anticipated. Assuming that the answer to meeting the data needs of asset 
managers may lie with IoT due to the vast amounts of data which IoT 
produces, we therefore wished to improve understanding of asset 
management through IoT. As such, the main objective of the research 
was to develop a model of AMDIs that improves understanding of asset 
management through IoT. 

We developed a framework of research questions which guided us 
in achieving our objective. First we looked at how IoT improves asset 
management and how IoT adoption may affect asset management in 
expected and unexpected ways. We wanted to know how IoT would be 
used in asset management, and what the benefits of asset management 
through IoT are, but also, what potential risks asset management through 
IoT poses. We investigated these questions by first reviewing state of the 
art literature. Our literature review revealed that little systematic research 
had been done on how IoT affects asset management or how IoT data 
should be governed. In the literature review we were able to list potential 
uses, benefits and unexpected risks to the organization which IoT carries. 
The literature review showed that the most important uses of IoT in asset 
management are coupled with the data that IoT produces. Accessing this 
data allows the asset management organization to use it for multiple 
purposes, often unrelated to the original operational purpose. For 
example, Hentschel et al. (2016) suggest that IoT can be used to trigger 
alarms when sudden increases in sound, light and temperature, which 
could indicate a fire or an explosion, occur. This same data could also be 
leveraged for increased efficiency in various public service applications 
such as inspection schedules, public facility management, urban 
infrastructure maintenance, intelligent transportation services, and 
emergency situation monitoring (Zhang et al., 2015). 

However, the literature review also revealed that most of the uses, 
benefits and risks discussed in the literature were expected uses, benefits 
or risks with little factual evidence to back-up the claims. We therefore 
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utilized the case study method to investigate real world examples of asset 
management through IoT to gain systematic evidence of how IoT may 
affect asset management. Three exploratory case studies (LMW, Ground 
Water Levels, and BOS) were performed using the Duality of Technology 
theory and CAS theory as lens as suggested by (Yin, 2009). The 
exploratory case studies confirmed the belief that IoT can improve the 
data-driven capabilities of asset management organizations (Boos et al., 
2013) thereby improving operating performance at varying levels 
throughout the organization (Zhang et al., 2015). For example, LMW 
allows RWS to predict rising water levels with much greater confidence, 
allowing operations such as the closing of important storm surge barriers 
to be automated. But due to the dual nature of IoT, the exploratory case 
studies also showed that asset management through IoT often carries 
unexpected risks, leading to unanticipated changes. For example, the 
diversity in terms of data communication methods and capabilities, 
computational and storage power, energy availability, adaptability, 
mobility, etc. (Zeng et al., 2011), can lead to operational risks such as 
difficulty in employing qualified personnel, lack of specialists, and 
personnel skill shortage to operate new applications (Speed & Shingleton, 
2012; Yazici, 2014), as well as insufficient IoT oriented training and 
educational activities (Harris et al., 2015). This can mean that asset 
management organizations need to invest in new training facilities, and 
that people need to develop new skills, which in turn may lead to new 
insights and developments of the technology. For example, to meet this 
need, RWS has created a data lab, a new department staffed by people 
with specific data science skills. 

Furthermore, the use of CAS theory as lens in our exploratory case 
studies revealed that asset management through IoT is multi-
dimensional, being influenced by factors within several dimensions 
including: environmental; organizational readiness; technical adoption 
characteristics; and people. It became clear that, just like real world asset 
infrastructures, AMDIs are CAS. Introducing innovative technologies can 
therefore have wide ranging effects due to complex relationships between 
infrastructure components and the rules that agents have developed 
during their interactions. For example, coordinating data management at 
Water Authority Delfland has required the organization to identify 
ownership of the data so that roles and responsibilities can be correctly 
allocated. 

As discussed above, our aim was to improve understanding of 
asset management through IoT, so once we understood how IoT may be 
used in asset management and what the effects of IoT adoption may be 
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on the organization and the people involved, we realized that 
understanding and communicating the structure and relationships of 
objects and agents operating within the AMDI would help reduce the risk 
of asset management organizations being confronted with unexpected 
structural changes whilst adopting IoT. We believed that using a design 
science approach to develop a model of AMDIs which accommodates IoT 
would improve the understanding of the impact of IoT on asset 
management, and help communicate predicted changes to the AMDI, thus 
improving understanding of asset management through IoT. We therefore 
designed a model of AMDIs based on the requirements gathered during 
the exploratory case studies, and based on design propositions which form 
the basis of our theory of improving understanding of asset management 
through IoT. In a nutshell, our design propositions propose that 
understanding and communicating the components, data governance and 
environments of the AMDI will bring actionable insights to light which have 
a positive impact on asset management through IoT. 

Following the design science paradigm, we wished to know if our 
model of AMDIs did in fact improve understanding of asset management 
through IoT by enhancing our understanding of the impact of IoT on asset 
management and communicating the effects that IoT adoption may 
introduce. We decided to use the case study method as described by (Yin, 
2009) to test the usability of our model, and to draw conclusions on the 
proofs of our design propositions. Three test case study were investigated 
using the model. Within the context of the test cases the model was tested 
for usability. The design propositions were tested on the basis of 
usefulness of the model, usefulness being a characteristic of usability. In 
other words, we wished to know if the model provided insights into how 
components, data governance and environments affect asset 
management through IoT. The results showed that the model complied 
with the defined criteria as to usability, and also provided insight into 
effects of components, data governance and environments on asset 
management through IoT, proving the propositions. For example, 
application of the model shows that the complexity of AMDIs and the dual 
nature of IoT means that, within the context of the case studies, it is 
inefficient to exert a hierarchical control over AMDIs when adopting IoT in 
asset management. As such, Stedin has begun adopting an agile, organic 
structure meaning that a more networked approach is being taken to 
development which has improved the IoT adoption process. 

As asset management through IoT can be seen as a continuous 
process, conclusions can be drawn with regards to the adoption process 
as well as to the desired end state. Section 8.2 of this chapter summarizes 
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the conclusions presented in this research as answers for each of the 
research questions. Section 8.3 of this chapter reflects on the scientific 
and societal contributions of the research and discussions the implications 
of the conclusions. Section 8.4 discusses the short-comings and 
limitations of the research. Section 8.5 concludes the dissertation by 
discussing a potential research agenda for IoT AMDIs. 

8.2 Conclusions 
This section outlines the conclusions drawn in this research. The 
conclusions are grouped according to the research questions and describe 
conclusions relating to the process implementing asset management 
through IoT and conclusions relating to the desired end-state of asset 
management through IoT. 

8.2.1 Conclusions Relating to Research Question 1 

Because our objective was to develop a model of AMDIs that improves 
understanding of asset management through IoT, we were interested in 
how IoT improves asset management, and how asset management might 
change as a result of these improvements or as a result of the adoption 
of IoT. We therefore anticipated that IoT is a dual technology, but we 
needed to confirm the applicability of Duality of Technology theory 
(Orlikowski, 1992). Furthermore, as physical infrastructure is more and 
more regarded as being CAS, and the AMDI should reflect the physical 
infrastructure it represents, we also wished to confirm the applicability of 
CAS. Our first research question was therefore formulated as follows: how 
can IoT improve asset management? We answered this research question 
in chapters 3 and four by means of a literature review and by investigating 
three exploratory case studies in which we confirmed the duality of IoT 
adoption in asset management and confirmed the necessity of viewing 
AMDIs as CAS when adopting IoT in asset management. In the literature 
review and the exploratory case studies we discussed a number of 
innovation adoption issues related to uses, benefits and risks of asset 
management through IoT. Answering this question also had an intrinsic 
benefit, as according to Solomons & Spross (2011) continuous 
assessment of benefits and risks can have a positive effect on adoption of 
new technologies in organizations.  

 
Process related conclusions: 
The literature review and exploratory case studies show that, within the 
context of the case studies, benefits and unexpected risks to the asset 
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management organization due to IoT adoption can occur at both individual 
and institutional levels and within multiple dimensions of an organization, 
making it difficult to identify specific causal relationships for success or 
failure of asset management through IoT. For instance, when the strategic 
dimension is not emphasized, then important organizational issues are 
also often not addressed. This is reflected in the AMDI model in the 
relationship between the strategic dimension, the data policy and data 
governance alignment. Application of the model shows that a lack of data 
policies in asset management organizations may lead to misalignment of 
goals with mission and priorities. Application of the model in the test case 
studies showed that a data policy outlining the chosen architectural 
directions is important in creating trust in the efficacy of IoT as new 
technology to outperform traditional asset management practices. The 
test case studies show that it is insufficient to merely present asset 
managers with a list of uses and benefits and expect them to 
automatically adopt IoT within the asset management process. Instead, 
there needs to be a specific reason for central adoption of IoT in asset 
management, which, although sounds “obvious”, is not always the case. 
It is not uncommon for organizations to introduce IoT with the idea that 
the application will be found once the technology is available. One of the 
main reasons for the success of WIM, for example, is that the system 
performs its primary duty of monitoring overloading of freight traffic 
extremely well. The IoT implementation needs to resolve a specific issue 
such as being able to automate specific processes based on real-time 
evidence. On the basis of the points raised above, we therefore note that 
the fit of IoT, as new technology, with organizational culture, knowledge, 
current practice, and task performance has a positive influence on asset 
management through IoT within the context of our case studies. As such, 
in line with Aarons et al. (2011) and Feldstein & Glasgow (2008), we 
conclude that, in the context of the case studies, the goodness-of-fit 
between the solution provided by IoT and the needs of the asset 
management organization is critical for asset management through IoT.  

As discussed above, in the exploratory case studies we identified 
trust as being critical to acceptance of IoT in asset management. 
Psychological resistance to IoT can have a strong negative influence on 
the acceptance of IoT by asset managers. Asset managers therefore need 
to be able to trust the system in order to have the confidence to make 
correct decisions at the right time based on secure and correct data. 
However, the case studies also show that asset managers often have an 
inherent distrust of systems over which they have little understanding and 
control. The relationship between the alignment class of data governance 
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and the agent class in the model outlines the relationship between agents 
and trust in the data based on data quality and, as demonstrated in the 
test case studies, underlines the importance of improving data 
management and analysis skills and knowledge amongst asset managers. 
Similarly, the data governance organization class and its relationships in 
the model also underlines how IoT adoption risks in asset management 
are related to security, privacy and data sharing. Insights created by the 
model during the test case studies show the importance of data security 
and privacy by design, as seemingly innocent disclosure of user data could 
reveal sensitive information such as personal habits and unauthorized 
access to this information can severely impact user privacy. As such, data 
produced by IoT devices in asset management can be misused which 
contributes to a severe lack of trust in the IoT systems. We are therefore 
also able to concur with Backer et al. (1986) and we conclude that, within 
the context of the case studies, fostering trust in the system by ensuring 
system and process security is critical for asset management through IoT. 

Interviewees in the exploratory case studies suggested that having 
executive management support was essential for success when 
implementing IoT, as staff felt it important to know that executive 
management saw the development as being a priority and supported the 
decision to move towards a more data-driven format. Management 
support is often stated as being a key success factor for improving 
processes (Feldstein & Glasgow, 2008). From a management perspective, 
improving trust in IoT often can be stimulated by adopting a “champion” 
role, as management support is often seen as being important when 
dealing with adoption of innovations. However, the exploratory case 
studies also show that the engagement of senior leaders in asset 
management organizations is often prioritized, so that implementation 
efforts with lower priority may not receive sufficient attention by lower 
management levels. Reflecting this, application of the model shows that, 
in the context of the case studies, strategic goals related to the adoption 
of IoT should be promoted across all organizational levels and clear 
communication of those goals are important for achieving expected 
benefits. For example, an important class in the model is the data 
governance alignment class which relates the solution provided by IoT to 
specific business requirements, in line with the findings of Feldstein & 
Glasgow (2008). The application of the model in the test cases showed 
that there is value to including representatives from all involved 
departments and that executive management roles are most effective 
when the executive manager assumes a championship role, promoting 
the asset management through IoT as a priority for the organization. We 
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therefore conclude that, within the context of the case studies, 
management support in the form of “championship” and leadership 
promotion positively influences asset management through IoT. 

 
End-state related conclusions: 
However, we have also noticed that, in the exploratory case studies, the 
distance between senior management and operations meant that senior 
management had eventually little influence on the acceptance of IoT by 
asset managers and we suggest that frameworks which focus on this 
aspect of management tend to overlook the negative effects of micro-
management by senior management. In fact, the exploratory case studies 
revealed that, in the context of the case studies, exercising a hierarchical 
control over AMDIs can have a negative influence on achieving benefits 
and being able to mitigate risks due to unexpected changes whilst 
adopting IoT in asset management. As discussed above, as users, asset 
managers need to develop trust in the IoT system before accepting the 
results and recommendations provided by the system and allowing 
themselves to be data-driven. In line with the suggestions of Backer et 
al. (1986) the data governance organization class illustrates that top-
down leadership can be negatively associated with asset management 
through IoT. Application of the model in the test cases showed that staff 
felt most empowered when working in a self-managing format with 
management setting priorities. We therefore conclude that, within the 
context of the cases studies, it is inefficient to exert a hierarchical control 
over asset management through IoT. This is also in line with Greenhalgh 
et al. (2004) who suggest that a formalized, centralized organizational 
structure and heavy organizational coordination requirements are 
negatively associated with adoption of new technologies. 

8.2.2 Conclusions Relating to Research Question 2 

The confirmation of the applicability of CAS to AMDIs provided us with a 
framework for modelling AMDIs. As such, we wished to investigate 
precisely what an AMDI consisted of and what the potential relationships 
were between classes of objects within the AMDI. Research question 2 of 
this research was therefore formulated as follows: what are the elements 
and behaviors of AMDIs that enable asset management through IoT? We 
answered this question in chapters 3 and 4 by means of a literature review 
and 3 exploratory cases studies in which we investigated a number of 
innovation adoption issues related to the socio-political, cultural and 
physical environmental characteristics of AMDIs, IoT system 
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characteristics and people characteristics influencing asset management 
through IoT.  

 
Process related conclusions: 
Environmental characteristics may refer to the sector within which the 
organization operates, or may represent cultural, societal, political or 
geographical conditions (Wejnert, 2002). The results of the case studies 
confirm this and show that asset management organizations with a high 
level of environmental complexity that also have access to high levels of 
financial and other resources are more enabled to adopt IoT. For example, 
although the cultural, political and physical environments in which LMW is 
managed presents unique challenges, RWS continues to manage it to an 
exceptional level of quality. RWS is reported to have access to sufficient 
financial resources, has a broad knowledge base and a strong political 
lobby. Damanpour & Schneider (2006) have shown that urbanization and 
development tend to have a positive effect on adoption of innovations in 
organizations. However, we do not see this trend in this research. As such 
we believe that urbanization itself may be a confounding variable, as 
many urbanized areas may have larger access to financial and other 
resources than most rural areas. However, the two are not necessarily 
mutually exclusive. For example, the cases studies did not necessarily 
occur in urbanized areas, in fact, LMW and Water Authority Delfland can 
arguably be classified as being largely rural. Instead, by including the 
environment class and by describing the relationship this class has with, 
for example, the agent class, our model makes the impact of 
environments on IoT adoption more specific. The application of the model 
in the test cases shows, for example, that Stedin is able to maintain a 
high standard of service in rural and urban areas alike, but focus is often 
placed on service to areas of greater social, economic or political 
importance. Therefore, we agree with Daft et al. (2010) and conclude 
that, within the context of the case studies, greater environmental 
complexity in combination with access to sufficient financial resources 
may stimulate asset management through IoT. 

Many asset management settings resemble non-competitive, 
monopolistic environments, and our case studies were no different. 
According to Herder et al. (2011), this should result in less incentive for 
organizations to quickly absorb best practices than would be expected in 
a competitive setting. However, the exploratory case studies show that 
this trend may be offset by political pressure. For example, as suggested 
by Aarons et al. (2011) in the case studies we noticed that external policy 
and regulation may be positively associated with adoption of new 
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technologies, including specific enactment of policies, legislation, or 
regulations on innovation adoption. In the model this is reflected in the 
relationships between the environment class, the agent class and the data 
class. This is demonstrated in the test case studies by the adoption of 
smart meters in the electrical grid being driven largely by European Union 
Directives. Furthermore, the application of the model in the test case 
studies also shows that unclear or incomplete political and legal 
frameworks can also hinder IoT adoption in asset management. For 
instance the research shows that more could be done with the data 
provided by the smart meters, but uncertainties surrounding the use of 
smart meter data restricted the potential benefits. In the Netherlands a 
large number of households have refused the smart meter due to privacy 
concerns. As such, we agree with Glasgow (2003) and conclude that the 
political and cultural climate needs to fit asset management through IoT.  

 
End-state related conclusions: 
According to Herder et al. (2011), most public utility asset management 
organizations include a variety of actors and stakeholders which may be 
different to most commercial enterprises. This multi-agent setting 
complicates the implementation of innovation as decision-making may 
often involve a long process which could involve political trade-offs and 
stakeholder consultations (Herder et al., 2011). In the exploratory case 
studies it became clear that people related changes wrought about by IoT 
adoption in asset management may be seen in the way people themselves 
have to adapt to new technologies. For example, new capabilities, skill 
sets and new ways of thinking were required within RWS to be able to 
leverage the full benefits of LMW and adopt a data-drive decision-making 
process. It became clear in the exploratory case studies that asset 
managers need to become much more data aware than before, and the 
line between the data scientist and the asset manager is becoming much 
thinner. This is reflected in the model in the agent class and in the 
relationship between the agent class and the data class. Asset managers 
need to have a greater awareness of the possibilities and pitfalls of IoT to 
improve decision-making. Applying the model in the test case studies 
reveals that both Stedin and RWS have developed a “Data-Lab” alongside 
already available risk analysis teams in which dedicated data scientists 
work with asset managers in an holistic quality improvement process as 
suggested by Solomons & Spross (2011). We therefore conclude that, 
within the context of the case studies, improving the level of knowledge 
and awareness of IoT of the asset managers has a positive effect on asset 
management through IoT.   



Discussion and Conclusions 

309 
 

In line with Solomons & Spross (2011), the exploratory case 
studies reveal that when there is no attention to the cultural dimension of 
asset management through IoT, improvement results are not 
acknowledged by the organization, success is not rewarded and 
improvement behaviors do not become embedded in practice. This 
suggests that the ability of tactical staff to observe meaningful results and 
achieve expected benefits is important to implementing and sustaining 
asset management through IoT as suggested by Feldstein & Glasgow 
(2008). The case studies revealed that positive initial results provided by 
IoT which are shared among peers generally promote confidence and self-
efficacy among asset managers and that an adoption program that 
provides early results is important. This is reflected in the model in the 
agent class and its relationship with the data governance organization 
class. Application of the model in the test cases shows that developing 
communities of practice has had a positive influence on the development 
of skills and awareness of IoT. We therefore agree with Greenhalgh et al. 
(2004) and conclude that, within the context of the case studies, 
organized social networks within and outside an asset management 
organization positively influence asset management through IoT. 

The exploratory case studies also show that IoT technology should 
be clear in purpose and be simple to use to enable adoption in asset 
management organizations, in line with Oldenburg & Glanz (2008) who 
suggest that innovations should be observable and transferable. For 
example, in the LMW system, combining information from devices and 
other systems using expansive analysis, has allowed RWS to automate 
existing asset management processes. For example, it is possible to 
combine data from sensors in water monitoring stations with other data 
such as weather data to predict water levels to a sufficient precision that 
automation of major events such as the closing of a storm surge barrier 
is possible. This is reflected in the technology class of the model and its 
relationship with the data class. Application of the model in the test cases 
reveals more detailed and accurate predictive analysis changes in Dutch 
highway management, and has allowed decision-making to become 
partially automated due to the greater certainty as to when and which 
action needs to be taken. We therefore conclude that, in the context of 
the case studies, aligning IoT innovations with existing asset management 
processes has a positive influence on asset management through IoT. 

8.2.3 Conclusions Relating to Research Question 3 

The applicability of CAS as framework for modelling AMDIs meant that we 
were particularly interested in the schema of AMDIs as CAS. During the 
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exploratory case studies we were able to identify the schema of AMDIs as 
data governance which is reflected in the model in the data governance 
parent class. As we saw during the literature review, little research has 
been done on data governance in asset management organizations. We 
therefore needed to expand our knowledge base on data governance in 
asset management through IoT. Research question 3 of this research was 
therefore formulated as follows: what are the elements of data 
governance in AMDIs that enable asset management through IoT? We 
answered this question in chapters 3 and 4 by means of a literature review 
and exploratory case studies in which we investigated concepts of data 
governance which influence asset management through IoT. 

 
Process related conclusions: 
Damanpour & Gopalakrishnan (1998) believe that due to the stability of 
the environments in which they occur, many asset management 
organizations such as public utility organizations have, in the past, tended 
to have a hierarchical or mechanistic organizational form, meaning that 
asset management organizations will adopt innovations infrequently. This 
explains how the rate of IoT adoption in asset management often tends 
to be low. According to Damanpour & Gopalakrishnan (1998), because of 
the stable environments surrounding asset management organizations, 
organizational change usually entails modifications to business processes 
and IT systems, forcing innovations to be incremental and to be designed 
to reuse existing systems in different configurations rather than to create 
new ones.  Herder et al. (2011) believe that asset management 
organizations within the public sector need to be predictable and 
transparent. This may create a hesitation to apply new methods as 
witnessed by the resistance of asset managers to trust data driven 
insights. However, the exploratory case studies show that new challenges 
such as climate change are placing pressures on asset management 
organizations to find new ways to adapt to these challenges. Risks are 
becoming too great to work “on gut feeling” and to react slowly. This is 
reflected in the model in the agent class and its relationships with the data 
governance organization class. Application of the model in the test cases 
reveals that other asset management organizations are having to change 
their organization forms due to similar challenges. According to 
Damanpour & Gopalakrishnan (1998), organizational forms that are most 
effective in adopting innovations include the organic and adhocracy 
organizational forms (Quinn & Hall, 1983). In line with this thinking, 
application of the model shows that the test case studies have begun to 
form inter-functional teams which are being empowered to develop and 
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implement innovations quickly. For example, Stedin has embraced the 
concept of Agile development, in which multi-functional “scrum teams” 
work towards constant improvement of their product. This demonstrates 
a more organic structure in which the organization is designed to be a 
more creative environment with an emphasis on trust. As such, we 
conclude that, within the context of the case studies, adopting a more 
organic organizational structure in which an environment of trust is 
created for inter-functional teams has a positive effect on asset 
management through IoT. 

 
End-state related conclusions: 
However, the case studies also show that a formalized data governance 
structure which is a fit with the specific organization, does need to be 
implemented in order to enable IoT adoption in asset management 
organizations. This is because automating decision-making often incurs 
business process related changes which can be found in aligning complex 
data structures. For example, automating decision-making of water 
pumps with the BOS system at Water Authority Delfland means that 
decision making can be performed at a more strategic, regional level as 
opposed to at the local, operational level. This is reflected in the data 
governance alignment class. As such, as seen in the data governance 
organization class, it is important to ensure that data provenance is well 
organized so that it is clear where responsibilities and accountabilities lie 
throughout the data lifecycle. This may create tension in the organization 
due to a principle agent problem as suggested by Herder et al. (2011) in 
which the one who pays is not always the one who decides and is often 
not the one who benefits from the investment. It is therefore important 
that data provenance is organized in such a way that inter-departmental 
teams are aware of the goals behind IoT adoption so that they understand 
why certain activities need to be performed that may not necessarily have 
a direct influence on their part of the process. For example, when business 
processes become automated, people assume new or different roles and 
people-made decisions are often elevated to more strategical levels. This 
also often means changes in the organization as people are asked to 
perform other tasks in changing social and cultural environments and 
often in changing organizational structures. This is reflected in the model 
in the agent class and the roles the various play within the data 
governance organization class. Application of the model in the test cases 
reveals, for example, that Stedin is required to carry the costs of installing 
and maintaining the smart meters, although the decision was taken at the 
political level. Furthermore, it is the end-user and the energy provider 
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that has the primary benefit of the smart meter implementation. As such, 
with regards to organizational related changes brought about by IoT 
adoption and in agreement with Weber et al. (2009) there is no “one-size-
fits-all” approach to data governance. We therefore conclude that, within 
the context of the case studies, instituting strong data governance 
procedures which align inter-functional teams behind a common goal has 
a positive influence on asset management through IoT. 

8.2.4 Conclusions Relating to Research Question 4 

Once we had developed the knowledge base to a sufficient level, we built 
a model of AMDIs which provides actionable insights into previously 
unforeseen changes within asset management and communicates these 
insights efficiently so that asset managers are able to take appropriate 
action. Research question 4 of this research was therefore formulated as 
follows: what does a model of an AMDI that accommodates IoT look like? 
We answered this question in chapters 5 and 6 by discussing the best 
approach to modelling AMDIs and using the results of research questions 
1, 2 and 3 as input to build the model. 

 
Process related conclusions: 
The case studies show that AMDIs are complex socio-technical systems 
and their complexity shows in the physical networks, and in the actor 
networks, as well as the combination of the two. For example, 
understanding socio-technical complex systems such as the LMW system 
requires knowledge of both the technical and the social systems – taking 
only a technical perspective would result in missing important information 
such as the impact of people on the choice of technology, or the impact 
of the organization structure on how people respond to adoption of IoT.  
This is in accordance with Weijnen et al. (2008), who suggest that the 
socio-technical complexity of infrastructure systems calls for the 
combination of object-oriented and agent-oriented perspectives. As 
suggested by Herder et al. (2008b), modelling the AMDI from either 
purely an actor perspective or from a technical system approach would 
either provide too little opportunity for modelling the reflectivity of the 
actors or would not provide enough detail for a complete design of the 
technical system. This research therefore made use of the “cross-over” 
modelling technique (Weijnen et al., 2008) which forces the modeler to 
consider problems from the agent perspective, whilst providing insight 
into known and unknown variables such as the relationship between 
agents. We therefore developed an agent based model using object 
orientation. Our model breaks up the AMDI into reusable, logical parts but 
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does not pose a limitation to the extensibility of an element. Application 
of the model in the test case studies shows that a combined approach to 
IoT adoption is essential. For example, Stedin is moving towards an 
object-oriented approach to asset management, with the introduction of 
a Stedin Logical Data Model, however, managing the network as a whole 
for energy distribution purposes also requires a separation of object and 
functionality, as whilst individual asset objects can be replaced or 
combined, their functionality seldom varies. As such we therefore argue 
that the AMDI model presented in this research also takes into account 
the typical characteristics of complex system design as put forward by 
Herder et al. (2008b, p. 26), that “design in the context of a socio-
technical system should acknowledge and respect both the physical and 
the social reality and their respective rationalities”. We therefore conclude 
that cross-over modelling improves our ability to model AMDIs as complex 
systems and to better understand asset management through IoT. 

 
End-state related conclusions: 
The exploratory case studies impressed on us the importance of 
interoperability and openness when designing models of AMDIs. For 
example, LMW is a system which uses multiple technologies, all of which 
need to communicate efficiently for the system to work according to 
specification. In the model we therefore chose to use open standard 
technologies to model the AMDI as they are widely accepted. This helped 
ensure sustainability of the model and allowed us to utilize other accepted 
and popular linked open data ontologies. Another advantage of using open 
standard technologies were the numerous supporting development 
environments and tooling available. In order to ensure interoperability we 
selected the World Wide Consortium (W3C) standards and recommended 
Semantic Web technologies. The model is built using the Resource 
Description Framework (RDF) as specified by the World Wide Web 
Consortium (W3C). RDF was originally designed as a metadata model and 
has come to be used as a general method for conceptual description or 
modeling of data. During the design phase of the research, 44 
requirements of AMDIs were identified which improve understanding of 
asset management through IoT. The requirements were clustered 
according to use, system functionality and system behavior. 
Requirements according to use were classified as stakeholder 
requirements. Three main clusters of stakeholder requirements were 
identified. These include, improving performance analysis of 
infrastructure services using IoT, improving expectation management of 
infrastructure services using IoT, and improving infrastructure service 
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processes using IoT. Three main clusters of system component 
requirements were identified, namely, component implementation, data 
governance implementation and managing environmental effects. Four 
main behavioral requirements were identified, namely, dynamism, 
connectivity, emergence and adaptation. The requirements provided us 
with the practical requirements for enabling IoT adoption in asset 
management. Analysis of the case studies also provided us with two main 
propositions which helped us develop the theoretical implications of this 
research. Building on the foundation provided by the requirements and 
the theory proposed by the propositions, design principles were further 
defined at a more detailed level to provide scope and direction for the 
design. 70 component design principles were derived from the design 
propositions. 40 data governance design principles were used to support 
the governance driving the AMDI.  

By modelling the AMDI, we were able to illustrate and simulate the 
basic components of AMDIs and their interrelationships. Application of the 
model in the test case studies showed that the AMDI model is successful 
in depicting the composition of concepts relating to IoT systems within 
asset management organizations. Essentially, application of the model in 
the test cases reveals that the model is a set of statements expressing 
relationships among the functional elements which include the 
technology, data, agents and environments. We conclude that these 
constructs help us understand what the AMDI model looks like. We also 
conclude that these constructs help us to improve understanding of asset 
management through IoT by facilitating early detection and correction of 
system development errors, and improving understanding of the social 
impact of asset management through IoT. 

8.2.5 Conclusions Relating to Research Question 5 

Once we had designed and built the model, we needed to test if the model 
was usable and useful. The test for usefulness essentially tests the design 
propositions outlined in Chapter 5. Research question 5 of this research 
was therefore formulated as follows: how does the AMDI model improve 
understanding of asset management through IoT? We answered this 
question in chapter 7 by analyzing the results of three test case studies. 
During the test case studies we performed three tests. The first test 
validates the test cases against the criteria for case study selection. The 
second test tests the usability of the model against the criteria for usability 
as outlined in chapter 2. As mentioned above, the third test tests the 
design propositions and thus the usefulness of the model for improving 
understanding of asset management through IoT.  
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As discussed in chapter 5, Sokolowski & Banks (2010) suggest that 
the added value of models lie with the communication and conveyance of 
the fundamental principles and basic functionality of the system which it 
represents. As such, following Sokolowski & Banks (2010), our model 
strives to: 

• enhance our understanding of socio-political and technical IoT 
system requirements in an asset management environment, 

• facilitate communication of IoT system details between 
stakeholders in an asset management environment and provide a 
means for collaboration between agents in the asset management 
organization, 

• provide a point of reference for designers to extract system 
specifications for IoT adoption in asset management use cases, 
and, 

• provide a method to document the IoT system for future reference. 
Concluding whether or not the AMDI improves understanding of asset 
management through IoT therefore involves a discussion on the success 
of the model with regards to its compliance with the criteria defined in 
section 2.5.4, with respect to the added value that a model creates as 
suggested by Sokolowski & Banks (2010). 

 
Process related conclusions: 
As discussed above, with regards to the usability of the model, we initially 
wished to determine if the model is either incomplete or overly 
complicated. The test cases demonstrate that individuals for each of the 
object classes could be found. Furthermore, the robustness of the 
research with regards to the case study protocol (see Appendix D), as well 
as in-depth discussions with subject matter experts in the test cases and 
colleague researchers leads us to believe that extraneous object classes 
at the secondary level of the model are not present. However, case studies 
as a research method are inherently limited due to the fact that the 
researcher often has to infer logic based on incomplete data. Future 
research should take these limitations into account.   

The model is built using the Resource Description Framework 
(RDF) as specified by the World Wide Web Consortium (W3C). RDF was 
originally designed as a metadata model and has come to be used as a 
general method for conceptual description or modeling of data (Hayes & 
Gutierrez, 2004). RDF is a way of recording information about resources 
(Powers, 2003). As such, the RDF schema (RDFS) used in the AMDI model 
imposes very loose constraints on its vocabularies whereas the ontology 
developed within the model adds additional constraints that increase the 
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accuracy of implementations of IoT in asset management organizations, 
allowing additional information to be inferred about the IoT system. For 
example, IT systems need to be able to transport, store and analyze large 
amounts of dynamic data at real time. As such, we argue that the model 
is compliant with the usability criteria and we conclude that the AMDI 
model provides a point of reference for designers to extract system 
specifications for asset management through IoT, providing a method to 
document the IoT system for future reference. 

The test cases show that asset management organizations are 
currently experimenting with new data sources and that there is a general 
expectation that IoT will provide significant added value to asset 
management decision making. We identified three main changes to asset 
management decision-making processes due to IoT adoption which are: 
changing performance measurement of infrastructure services; changing 
perception management of infrastructure services; and changing 
improvement processes of infrastructure services. Application of the AMDI 
model shows that IoT adoption provides more detailed and accurate 
predictive analysis for asset management which provides greater 
predictability in risk-based decision-making. Earlier research (e.g. 
Solomons & Spross, 2011) has shown that regular analysis of the benefits 
and risks to innovation adoption has a positive influence on adoption of 
innovations in organizations. We therefore conclude that the AMDI model 
enhances our understanding of socio-political and technical IoT system 
requirements in an asset management environment by providing insight 
into the uses, benefits and risks of IoT for asset management. We thus 
argue that we may disregard the null hypothesis and we conclude that 
asset management through IoT can be modelled as IoT adoption does not 
randomly occur, but rather occurs as a result of specific needs and 
interventions within asset management. 

The results of the exploratory case studies and literature review 
identified a number of socio-political and external factors that can 
influence adoption of new technologies (Damanpour & Schneider, 2006). 
Our AMDI model includes the cultural, physical and political environments 
within the asset management sector. With regards to the physical 
environment, Damanpour & Schneider (2006), believe that urbanization 
and development around an adopting organization have a positive 
association on innovation adoption. However, application of the AMDI 
model shows that having access to high levels of financial and other 
resources rather than urbanization is of particular influence. The 
suggestion being that urbanization is a confounding variable, as although 
there is often a correlation between urbanization and greater levels of 
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financial resources, this is not always a causal relationship. We therefore 
conclude that our model enhances our understanding of socio-political IoT 
system requirements in an asset management environment by 
highlighting the need for access to high levels of financial and other 
resources. This is in line with (Mendel et al., 2008) who identify financial 
incentives and reward systems as being necessary for successful adoption 
of new technologies. 

Application of the AMDI model shows that clear and unambiguous 
policy and regulations have a strong positive relationship with asset 
management through IoT, but that the cultural environment can impact 
this relationship if the policy is unclear or if the political and legal 
frameworks are incomplete. For example, government policy regarding 
the adoption of the smart meter in the Netherlands was directly influenced 
by cultural concerns regarding privacy of the individual. In the 
Netherlands a number of households have refused implementation of the 
smart meter in their homes. This shows that the political environment can 
influence the adoption of innovations in organizations. For example, 
Aarons et al. (2011) show that external policy and regulation are 
positively associated with adoption of new technologies, including specific 
enactment of policies, legislation, or regulations on innovation adoption. 
We therefore conclude that our model enhances our understanding of 
socio-political IoT system requirements in an asset management 
environment by communicating the need for a fit between the political 
and cultural climate and asset management through IoT. 

 
End-state related conclusions: 
The AMDI model improves understanding of asset management through 
IoT by providing insight into the network of actors involved. We have 
already concluded that a culture of shared professional values originates 
from a network of professionals as opposed to a hierarchical structure. 
Furthermore, application of the model shows that the presence of 
communities of practice enables IoT adoption in asset management 
through the dissemination of knowledge regarding IoT. This is in line with 
Frambach & Schillewaert (2002) who suggest that social persuasion and 
communication from peers within an organization help identify with and 
achieve adoption of new technologies in organizations. The AMDI model 
does not disregard the influence of “championship” and leadership 
promotion as suggested by Aarons et al. (2011) and Feldstein & Glasgow 
(2008), but underlines the need for an organic organizational form to 
enable asset management through IoT as previously concluded. We 
therefore conclude that the AMDI model facilitates communication of IoT 
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system details between stakeholders in an asset management 
environment and provides a means for collaboration between agents in 
the asset management organization. Furthermore, we also conclude that 
our model enhances our understanding of socio-political IoT system 
requirements in an asset management environment by providing insight 
into the relationships between actors in the asset management 
organization and how these relationships influence asset management 
through IoT. 

This research has shown that IoT adoption allows asset 
management decision-making to become partially automated due to the 
greater certainty as to when and which action needs to be taken. As such, 
IoT business processes need profound changes to include the IoT 
characteristics in the business processes. For example, asset 
management decision-making processes need to be changed to deal with 
the real-time nature of the data. As such, we have seen that business 
processes for asset management decision-making need to be 
reconfigured to include data governance so decision-makers can interpret 
the limitations and potential of the data and ensure that security and 
privacy is accounted for. Application of the AMDI model shows that 
ensuring appropriate management of the data to ensure compliance to 
laws and regulations is essential to asset management through IoT. Data 
governance is required to ensure that IoT can provide trusted data for 
decision making. However, data governance is not a “one size fits all” 
approach and the AMDI model provides functionality to model data 
governance so that it fits with a specific asset management organization. 
We therefore conclude that our model enhances our understanding of 
socio-political IoT system requirements in an asset management 
environment by providing insight into the business process changes 
required to formalize data governance. Furthermore, we also conclude 
that the model provides means to facilitate communication of the 
necessary changes to the processes required to ensure compliance to 
privacy and security policy and regulations and to align the data products 
of the IoT system with asset management business process requirements.  

Top-down leadership is negatively associated with adoption of new 
technologies in organizations (Backer et al., 1986). As such, application 
of the AMDI model demonstrates that it is inefficient to exert a hierarchical 
control over AMDIs and that typical characteristics of CAS should be taken 
into account when adopting IoT in asset management. Instead, results of 
the test cases show that a more organic organizational structure should 
be utilized for asset management through IoT. The level of complexity 
regarding the inter- and intra-departmental relationships is such that 
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organizational silos can form an serious risk to successful asset 
management through IoT. We therefore conclude that our model 
enhances our understanding of socio-political IoT system requirements in 
an asset management environment by providing insight into the required 
organizational structures of asset management through IoT. Furthermore, 
we also conclude that the model provides means to facilitate 
communication of the importance of these relationships between agents 
within the asset management organization. 

Adoption of IoT requires an IT infrastructure that can facilitate the 
new data sources and requires a good understanding of the data collected 
and its quality aspects. IoT technology should be clear in purpose and 
simple to use. The AMDI model improves understanding of the technical 
component parts of IoT systems in line with Oldenburg & Glanz (2008) 
who suggest that innovations should be observable and transferable. 
Furthermore, previous research has shown that innovations which are 
coupled with existing processes are more likely to be adopted (Feldstein 
& Glasgow, 2008). Application of the AMDI model shows that adoption of 
IoT allows for more detailed and accurate predictive analysis of the 
physical infrastructure, increasing trust in the asset management process 
and allowing for greater predictability in risk-based decision-making. We 
therefore conclude that the asset management model enhances our 
understanding of the technical IoT system requirements in an asset 
management environment by providing an overview of the required 
technical components of IoT systems and how they fit together. 
Furthermore, we conclude that the model provides a point of reference 
for designers to extract system specifications for IoT adoption in asset 
management organizations, and provides a method to document the IoT 
system for future reference. 

Our final discussion looks at how the AMDI model improves 
understanding of asset management through IoT by providing insight into 
people related changes relating to IoT adoption. Application of the model 
shows that people in asset management positions need to learn new skills 
to be able to understand and interpret the data. The culture needs to be 
changed to move from physically based inspections to data driven 
inspection of assets. This is in line with Greenhalgh et al. (2004) and 
Solomons & Spross (2011) who suggest that assessment of attitudes 
toward change, endorsing a holistic approach towards quality 
improvement, and utilizing a reward system are positively associated with 
adoption of new technologies. Adoption readiness is of paramount 
importance for successful asset management through IoT and results of 
the case studies show that a lack of data science skills is major risk to 
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asset management through IoT. We therefore conclude that the AMDI 
model enhances our understanding of people requirements for asset 
management through IoT. 

In this section we have discussed how our AMDI model enhances 
our understanding of the socio-political and technical system 
requirements of asset management through IoT with regards to 
environmental changes, technical changes, organizational changes and 
people changes. Furthermore we have discussed how the model also 
facilitates communication of these changes and the component 
relationships between the various stakeholders. We have shown how the 
model can be used to provide a point of reference for designers to extract 
socio-political and technical system specifications for asset management 
through IoT, and how the model provides a method to document the IoT 
system for future reference. We therefore conclude that the AMDI model 
improves understanding of asset management through IoT. 

8.3 Reflections on the Research 
Having discussed our research conclusions in the previous sections, we 
now take some distance from the collected data and findings and ask the 
question what this research implies and how it contributes to science and 
society. We also reflect on the strengths and limitations of the 
philosophies, methods and approaches used in the research and how 
these methods may have affected the results and our reasoning behind 
the conclusions. Finally we revisit the role of IoT in AMDIs and conclude 
with avenues for further research. 

8.3.1 Reflections on the Research and Design Objectives 

As described in Chapter 1, the primary objective of this research was to 
develop a model of AMDIs that improves understanding of asset 
management through IoT. The fact that IoT adoption improves asset 
management was not assumed, but was investigated further by means of 
a systematic literature review and an analysis of three exploratory case 
studies. “Improvement” of understanding of asset management through 
IoT was investigated by comparing traditional asset management 
processes with asset management processes after IoT adoption has taken 
place. We first looked at how asset managers used IoT to improve the 
efficiency and effectiveness of their decision-making processes, and listed 
the potential and achieved benefits of adopting IoT in asset management. 
However, we were also aware that IoT is a dual technology in that 
although people have developed the technology, IoT also structures the 
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way people and organizations think and behave, which then impacts the 
development and adoption of the technology and so on. Therefore we also 
looked at the potential and experienced unexpected risks of IoT adoption 
in the asset management organization. We were able to conclude that IoT 
adoption changes asset management, and that the IoT adoption process 
in asset management organizations is multi-dimensional. Asset 
management organizations should therefore be aware of the duality of 
IoT during the adoption process if the expected benefits are to be fully 
achieved. 

IoT implementations in asset management organizations rarely, if 
never, occur in a greenfield situation (a situation in which everything is 
started from scratch), but rather need to be accommodated inside of 
already existing AMDIs. We therefore needed to enhance our 
understanding of AMDIs and what is required to be able to accommodate 
IoT within these infrastructures. With this in mind, our research was 
directed to the development of a model of AMDIs which improved 
understanding of asset management through IoT. Because improving 
understanding asset management through IoT is a “wicked” problem, we 
could only hope to satisfice the problem through the design of the model. 
As such, it was logical to employ the Design Science approach in our 
research and in the development of the model. 

The design objective follows the research objective closely, 
although there are semantic differences in that the design objective was, 
essentially, to design a model (of AMDIs which improves understanding 
of asset management through IoT), whereas the research objective was 
to improve understanding of asset management through IoT. In this way 
a successful model design achieves both the design objective and the 
research objective.  

In order to design the model, we needed to understand the 
elements of AMDIs and their behaviors when faced by IoT adoption, and 
we needed to be able to facilitate communication of the model between 
stakeholders in the asset management organization. We took the view 
that AMDIs are CAS and listed the elements and behaviors of AMDIs from 
that perspective. These elements and behaviors were identified from the 
combination of a systematic literature review and the analysis of three 
exploratory case studies. We found that elements of AMDIs included: 
components, data governance and environments. Behaviors of AMDIs 
included: dynamism, connectivity, adaptation and emergence. The AMDI 
model was evaluated by means of three test case studies. The results of 
the test case studies were analyzed against the criteria for model validity 
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and the success of the model in enhancing our understanding of the AMDI 
landscape and its success in facilitating communication.  

We were able to conclude that the model was valid and that it did 
indeed enhance our understanding of asset management through IoT and 
facilitate communication. As such, we argue that the model achieved both 
the research and design objectives. 

8.3.2 Reflections on the Scientific Contribution 

IoT adoption introduces unexpected changes within asset management 
organizations. In this research we applied Duality of Technology theory 
(Orlikowski, 1992) to asset management through IoT, and confirmed its 
dual nature. Second, we acknowledged the complexity of AMDIs and 
confirmed the necessity of viewing AMDIs as CAS when introducing new 
technologies such as IoT. Confirming the duality of technology theory and 
the applicability of CAS theory, meant that we were able to develop a 
model of AMDIs which provides actionable insights into previously 
unforeseen changes within asset management through IoT, helping asset 
managers to take appropriate action before being confronted by changes 
which were unexpected. The important scientific contributions of this 
research are discussed below. 

 
1. Confirmation of the duality of IoT shows that adoption of IoT in asset 

management is multi-dimensional, being influenced by factors within 
several dimensions, meaning that asset managers can and should 
address people and organizational changes parallel to the 
implementation of IoT technology. 

 
Many studies on adoption of new technologies such as IoT tend to 

focus on a single dimension such as organizational factors, as 
organizational factors tend to be deemed to be primary determinants of 
innovation adoption in organizations (Subramanian & Nilakanta, 1996). 
However, a major contribution of this research is to show that asset 
management through IoT is multi-dimensional, being influenced by 
factors within several dimensions including: environmental; 
organizational readiness; technical adoption characteristics; and people. 
As such the AMDI model designed in this research provides insight into 
the salient factors of each dimension and their relative explanatory power 
on asset management through IoT. For example, this research is the first 
to demonstrate that, within the context of our case studies, it is inefficient 
to exert a hierarchical control over AMDIs and that a more organic 
organizational structure should be considered when implementing asset 
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management through IoT. The research also shows that along with 
organizational changes, people changes such as developing knowledge on 
IoT and data science are also essential. Furthermore, there needs to be a 
close fit with the cultural and political environments if asset management 
through IoT is to be successful. 

 
2. The duality of IoT means that asset management through IoT can 

introduce both expected and unexpected changes to asset 
management which can lead to many benefits, but also unexpected 
risks. Understanding the nature of these benefits and risks means that 
asset managers are able to take appropriate mitigating actions. 

 
The belief within many asset management organizations is that IoT 

can be used for a variety of purposes within asset management and can 
provide many benefits to asset management, but much of the current 
literature describes only potential uses and expected benefits of IoT 
without providing real world evidence. As such, this research contributes 
to the body of literature by providing a systematic review of literature and 
evidence of attained benefits for asset management organizations 
through real world examples and case studies, as well as a systematic 
listing of uses of IoT data in asset management organizations. Similarly, 
risks of IoT adoption in asset management are often only described in 
terms of possible risks or barriers. Again, this research has contributed to 
the body of literature through means of a systematic review of risks of 
IoT adoption in asset management as well as providing real world 
evidence of these risks and how organizations have managed these risks. 
This research has shown how the interconnectivity of risks and benefits 
have affected asset management and shows how IoT adoption both 
enables and constrains asset management processes. This dual influence 
had not yet been recognized in studies that attempt to determine whether 
IoT adoption has “positive” or “negative” effects on asset management. 
Orlikowski’s (1992) duality of technology framework allowed us to 
recognize that IoT necessarily has both restricting and enabling 
implications for asset management. As such, this research has extended 
the body of knowledge on duality of technology theory by investigating 
the factors which determine the dominant implication. This research fills 
the need to address the potentially unanticipated impacts of asset 
management through IoT (Neisse et al., 2016) and investigates the 
impact of IoT on asset management in a systematic manner (Haller et al., 
2009). 
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3. Confirmation of the complexity of AMDIs reflects the necessity of 
approaching AMDIs as CAS when introducing new technologies. 

 
This research has been driven by the recent phenomenon of asset 

management through IoT and the subsequent disruptions. The research 
focuses primarily on the use of IoT within asset management with 
particular regard to how IoT can be accommodated within existing AMDIs. 
There has been little research on AMDIs and this research is the first to 
confirm the complexity of AMDIs and describe their components, schema 
and behaviors in terms of CAS. This research shows that elements of 
AMDIs are sets of system physicalities. Furthermore, the research 
determines that behaviors of the AMDI are the distinctive collection of 
functions and operations that make AMDI behavior unique. The elements 
and behaviors together make AMDIs different from other systems. Few 
researchers have made the distinction that AMDIs are CAS when defining 
characteristics of data infrastructures, and there have been a number of 
calls for attention to this topic (Grus et al., 2010; M. Janssen & Kuk, 
2006). As such, this research contributes to the literature on CAS theory 
by describing the characteristics of AMDIs as CAS in terms of elements 
and behaviors. Using a CAS lens has helped us to identify and better 
understand the key characteristics of AMDIs necessary for their 
functioning and dealing with change. 

 
4. Identifying and describing data governance as the schema of AMDIs 

means that the rules governing the changes introduced by asset 
management through IoT can be better understood. 

 
This research has shown that in seeking to adapt to changing 

circumstances, asset managers develop rules that anticipate the 
consequences of certain responses. This research is the first to investigate 
these rules in the asset management domain and is the first to research 
how these rules affect the asset management organization and how they 
are interpreted as data governance, identifying data governance as 
embodying the schema of AMDIs. As such, this research shows that data 
governance defines how the components of AMDIs (data, technology, 
agents) interact. This research is the first to describe data governance in 
asset management organizations, and demonstrates that although there 
is no “one-size-fits-all” solution for data governance, the research shows 
that it is possible to develop a single framework for data governance 
implementation in asset management organizations of different sizes and 
at differing levels. 
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8.3.3 Reflections on the Societal Contribution 

As designers, we also wish to be able to exercise a positive influence on 
the development of AMDIs. Not only do we try to understand how AMDIs 
are affected by IoT adoption, but we also desire to improve understanding 
of asset management through IoT. Large-scale data gathering and 
analytics are quickly becoming a new frontier of competitive 
differentiation (Herder et al., 2011), and this research has shown that 
asset management organizations are increasingly looking to data to drive 
their asset management decision making processes, managed within 
AMDIs. IoT provides new sources of data, derived from continuously 
monitoring a wide range of things within a variety of situations, but this 
research has shown that integrating IoT into existing AMDIs is a complex 
undertaking and organizations require tools to mitigate risk in IoT 
adoption. This research has investigated conditions and factors for 
achieving benefits and suggests approaches to reduce the risks that IoT 
adoption imposes, providing asset management organizations with a 
powerful tool in the form of an AMDI model to be able to develop 
successful strategies when implementing IoT. The important societal 
contributions of this research are discussed below. 

  
1. This research provides asset managers with pre-described conditions 

and factors for effective and sustainable asset management through 
IoT. 

 
IoT solutions in the asset management domain are physically 

constructed by asset managers in an asset management context, and 
result from the ongoing interaction of human choices and institutional 
contexts. As such, the research shows that adopting IoT and integrating 
IoT data into existing AMDIs introduces unexpected risks which cause 
AMDIs to adapt and evolve in unexpected ways. This research provides 
asset managers with pre-described conditions and factors for effective 
and sustainable development of AMDIs which asset managers can use to 
their advantage when moving to adopt IoT in their primary processes. The 
research derives a model of AMDIs for sustainable asset management 
through IoT, outlining principles and guidelines for implementing data 
governance in asset management organizations. The research 
demonstrates that the inherent complexity of adopting a data-driven 
approach to asset management requires an effective data governance 
strategy to ensure data quality, manage expectations, build trust and 
integrate IoT data in AMDIs.  
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2. This research provides structured guidelines as to how changes to the 
AMDI wrought by IoT adoption may be coordinated through data 
governance. 

 
Because there is a dependence on interactions between elements 

of AMDIs, the ability to organize these elements and coordinate their 
interactions is essential to asset management through IoT. As such, this 
research provides structured guidelines as to how IoT adoption may be 
organized through data governance. As asset management organizations 
gradually become more and more data driven, the need for formalized 
data governance is becoming more and more apparent. Having high-
quality, secure data that is compliant with relevant laws and directives 
and is privacy aware is a precondition for analyzing and using IoT data 
and for guaranteeing the value of the data. However, comprehensive 
quality standards and quality assessment methods for IoT data remain 
immature. For asset managers to be able to trust data driven decisions, 
there needs to be increased quality of the data generated by IoT 
connected devices, and the integrity of the data needs to guaranteed as 
it moves through the enterprise to decision makers. IoT data has to be 
trusted. The quality of data driven decisions can only be as good as the 
quality of the data being used to make those decisions, and ensuring that 
data is managed properly and of sufficient quality is vital to asset 
management through IoT. 

 
3. The results of this research suggest that cultural change and 

organizational change should take place parallel to the technical 
changes for asset management through IoT. 

 
The democratization of computing technology through the 

increasing diversity, availability and affordability of sensors and small 
computing devices has meant that more and more asset management 
organizations are looking to adopt IoT to improve their primary processes. 
However, for IoT to become truly transformative in the asset management 
environment a cultural shift as well as technical shift is required. Asset 
management organizations need to change their cultures so that asset 
management through IoT becomes ingrained throughout organization 
rather than being lost in departmental silos. Data needs to be integrated 
and analyzed for actionable insight, so that the right decisions can be 
made by the right people at the right time across many complex asset 
management processes. We therefore suggest that more asset managers 
need to become more at home with data and data analytics. In order for 
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an asset management organization to become truly data driven, asset 
managers need to feel comfortable working with data. On the other hand, 
data analysts and data analysts also need to become more at home with 
asset management processes so that irregularities in the data may be 
more easily identifiable as attributable to activities and events in the 
primary processes, making the data easier to understand.  

 
4. This research provides asset managers with a powerful ontological 

tool for configuring organizational specific AMDIs and assessing 
change requirements for asset management through IoT. 

 
The AMDI model described in this research provides a point of 

reference for designers to extract system specifications for IoT adoption 
in asset management organizations, providing a method to document the 
IoT system for future reference. For example, the results of the 
exploratory case studies and literature review identified a number of 
socio-political and external factors that can influence asset management 
through IoT. The AMDI model described in this research includes the 
cultural, physical and political environments within the asset management 
sector and enhances our understanding of socio-political IoT system 
requirements in an asset management environment by highlighting the 
need for access to high levels of financial and other resources. 

8.3.4 Reflections on IoT in Asset Management 

IoT is introducing a paradigm shift as to how data is accumulated in asset 
management. The increasingly large amounts of sensors being introduced 
in infrastructure networks and their networking provide asset 
management organizations with a central nervous system whereby the 
infrastructure may be managed from multiple perspectives. For example, 
just as with the human central nervous system, the need for extremities 
to react quickly to incidents has introduced the concept of edge 
computing, in which an automatic response is generated at source. Just 
as our internal bodily functions are automatically regulated, so can IoT 
provide the signals required for basic functioning of assets to be 
automated. Furthermore, just as with the human body, the need to learn 
from experiences has also meant that more and more, data from sensors 
is also being transported and stored in central registries where trend 
analysis and machine learning can allow asset management to become 
predictive instead of reactive. Just as we now eat healthier food, take 
vaccines and do sport to maintain a healthy lifestyle and prevent sickness 
and injury based on knowledge we have gained by studying the signals 
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we receive from our bodies, IoT data will allow asset management to 
design cost effective, preventative measures which prolong asset lifetimes 
and improve efficiency and effectiveness of services. Sufficient data points 
which provide usable measurements and which are connected to 
descriptions of assets, combined with advances in data science and 
machine learning will provide asset management with a central nervous 
system that drives automated response where possible and directed 
response where necessary. 

As such, the IoT paradigm shift is driven less by technology and 
more by the data it produces. Although advances in technology are 
required to further enable IoT development, the value proposition of IoT 
adoption remains with the data being produced and the information that 
asset management organizations are able to extract from the data. Data 
produced at source may trigger automated response, and later be 
converted to information from which the organization may learn and 
develop the knowledge required to continually improve their asset 
management processes. Sensors and technology may be replaced, but 
the data remains. Just as the human brain manages the signals it 
receives, learning to manage and use IoT data without creating noise is 
essential. 

8.3.5 Reflections on the Future of Asset Management 

As IoT develops and is further adopted by asset management 
organizations, it is not unthinkable that many asset management 
functions will gradually become more and more automated as 
infrastructures increasingly need to balance functionality and cost. This 
can create a fear that asset managers will become obsolete in the future 
as artificial intelligence begins to take over. This may be so for essential 
functions which can and should be automated, but it is not expected that 
artificial intelligence will take over completely. People will always be an 
integral part of the AMDI as it is not the infrastructure that has needs, but 
people, the ultimate users of the infrastructure. Infrastructure exists to 
fulfill our changing needs, and it is only people who may decide what our 
own needs are. We therefore suggest that the roles currently performed 
by people in asset management will change substantially as IoT becomes 
more pervasive, but the need for human influence will remain. More 
operational decision-making roles may be greatly reduced as IoT data 
allows for automation of reactive processes based on data, however, asset 
management people roles will become more strategic as artificial 
intelligence based on trend data presents strategic options. Strategic 
decisions, although data driven, will always be influenced by 
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developments and external interests such as politics which may fall out of 
the scope of the local AMDI. As such, it may be unwise to rely on artificial 
intelligence to make strategic decisions for us. This being noted, being 
data-driven does also mean that asset managers need to become more 
data aware in order to adapt to changing knowledge requirements for 
their functions. It is clear that data analysis skills are becoming more and 
more important to the asset management process, and asset managers 
can no longer rely on the IT function to provide the knowledge necessary. 
Successful asset managers should and will develop more applied data 
analysis and machine learning skills. 

8.3.6 Reflections on Model Driven Adoption of IoT in 

Asset Management 

Although IoT produces large amounts of data, it would be incorrect to 
suggest that IoT data is structureless. Using models to drive architecture 
in the development of AMDIs ensures that asset management 
organizations develop a complete overview of their data landscapes so 
that they may achieve a complete view of their infrastructures. Allowing 
the wild spread of sensor related data can result in the overdevelopment 
of data in some areas and the underdevelopment in others. In areas 
where IoT does not have a presence, the view of the asset infrastructure 
may become splintered, and conversely and perversely, areas where 
sensors are overpopulated may muddy the waters. Model driven 
architecture also ensures that the development of the system architecture 
is agnostic, being platform independent. This is of vital importance for 
interoperability and the sharing of data between systems. The 
development of systems to serve individual functions is becoming 
untenable as the budgets of IT departments increasingly come under 
pressure. As such, AMDIs can no longer afford to be process oriented in 
which each individual process has its own data collection. To continue with 
the analogy with the human nervous system, asset management 
organizations can no longer afford to have situations in which the left hand 
literally has no idea what the right hand is doing. The infrastructure needs 
to be managed as an integral system, and not as a collection of different 
systems. 

8.4 Research Limitations 
This section describes the limitations of our study. Research limitations 
are discussed with regard to taking a constructivist perspective, adopting 



Discussion and Conclusions 

330 
 

the design science approach, the generalization of the findings from the 
selected cases, and the evaluation of the model using test cases. 

8.4.1 Taking a Constructivist Perspective 

According to (Phillips, 1995), constructivism is to be praised for its 
emphasis on learners’ active participation and the heightened recognition 
given to the social nature of learning. However, (Liu & Matthews, 2005) 
believe that the bad side of constructivism lies in its tendency towards 
epistemological relativism which they believe to be the major challenge 
that constructivists face. Epistemological relativism is the view that 
knowledge is relative to time, place, society, etc. and what counts as 
knowledge depends upon a relationship with one or more of these 
variables. Duality of Technology theory (Orlikowski, 1992) suggests that 
IoT will have an effect on asset management and on asset managers 
themselves. How organizations react to innovations such as IoT can often 
be culturally based. As such, we must acknowledge that the study was 
conducted wholly in the Netherlands, and focused particularly on 
government and semi-government organizations. Furthermore, two of the 
test cases occurred within the same organization, namely, Stedin, and 
one of the test cases occurred in within an organization which had been 
used within the exploratory cases, namely Rijkswaterstaat. Future 
research should therefore take into account the fact that language and 
cultural differences were not assimilated into the model. This places 
question marks against generalization in an international environment or 
in private organizations.  

8.4.2 Limitations of Case Study Research 

According to (Zainal, 2017) the case study method often receives criticism 
in terms of its lack of robustness as a research tool, and the design of 
case studies is therefore of paramount importance. Case study research 
is an approach to studying a social phenomenon and rests on the 
assumption that the case being studied is typical of cases of a certain type 
so that generalizations may be made that will be applicable to other cases 
of the same type. Also, the interaction of the researcher with the 
phenomenon under study means that the possibility of researcher bias is 
always present, as is the potential for differing interpretations. These 
restrictions can lead to a limited potential for generalization and have 
particular implications for data collection and analysis methods and for 
research outcomes (Cavaye, 1996).  
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Furthermore, although case study research is useful as a means of 
studying information systems development and use in the field, there can 
be practical difficulties associated with attempting to undertake case 
studies as a rigorous and effective method of research (Darke et al., 
1998). As with all case studies, this research was limited by time and 
resources, and it is always possible that some information was not 
uncovered, or incorrectly interpreted, which may affect the overall 
findings.  

8.5 Towards an Agenda for IoT AMDI Research 
This chapter has highlighted what has been accomplished in this study, 
and it has also shown that the study has had various unavoidable 
limitations. Furthermore, this research has brought to light a number of 
research areas which remain lacking in maturity. Based on the limitations 
mentioned in section 8.4 of this chapter as well as the identification of 
research areas lacking in maturity, seven recommendations have been 
made for further research. The recommendations address limitations of 
this research as discussed in the previous section. Recommendations 1, 2 
and 3 address limitations of the research occurring due to the 
constructivist perspective, namely generalization limitations with regards 
to culture, time and work area. Recommendations 4 and 5 address 
limitations of the research with regards to the use of case study as 
method, namely the need to investigate in greater detail ways to improve 
trust and usability of IoT in asset management. Recommendations 6 and 
7 address the need for further development of duality of technology 
theory and CAS theory as frameworks to further help us understand the 
digital transition. 

 
Recommendation 1: Extend and generalize the AMDI model to include 
potential international, language or business cultural differences. 

 
The research was conducted wholly in the Netherlands and did not 

have an international scope. Furthermore, only government and semi-
government organizations were included in the case studies. However, we 
have seen that the environment in which an AMDI is located can have an 
important influence on the development of the AMDI, especially in the 
face of a disruptive technology such as IoT. Different cultures may have 
differing views with regards to risk and how to approach IoT adoption in 
the face of the risks posed by this technology. Differing cultures may also 
have varying approaches to organizational change. For example, a 
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relatively young, private startup with corresponding demographic may be 
expected to approach the idea of IoT adoption differently to an established 
organization which is responsible for infrastructures which are critical to 
the nation. Improvement can be achieved by investigating more case 
studies in non-similar situations and by involving more stakeholders such 
as practitioners (mechanics or engineers) working in the primary 
processes. 

For generalization we may consider applying the AMDI model 
presented in this research not just in the public sector, but also in the 
private sector and in organizations outside of the Netherlands. Although 
the AMDI model aims to help asset management organizations in the 
Dutch public sector, companies managing large scale infrastructure either 
under contract or privately (such as mines for example) can also consider 
using it. 

As such the first recommendation suggest the extension and 
generalization of the model in various directions, including international 
case studies or case studies in the private sector. Our model provides a 
structure, but the evolutionary characteristic of CAS is that structure can 
change. Although our model does take evolution and adaption into 
consideration, more research should be conducted into the evolutionary 
nature of AMDIs. As such, our second recommendation reads as follows: 

 
Recommendation 2: Examine the evolving design of the AMDI over time. 

 
Over the course of the research we were made aware of how the 

AMDI evolves as it is adopted and used. However, the further evolution 
of the AMDI was outside the scope of this study. We suggest that future 
research examines how the design of the AMDI is adapted through the 
continued interaction of asset managers with IoT technology. This 
research may help better understand the more behavioral aspects of 
AMDIs so that asset management organizations may be better placed to 
anticipate changes to the AMDI and the organization as a whole. As such, 
the findings may then be used to further improve the AMDI so that further 
benefits of IoT adoption may be achieved. It would be good to investigate 
how this AMDI model may be applicable to other domains and where the 
AMDI model may benefit from experiences in other domains. This leads 
us to our third recommendation which reads as follows: 

 
Recommendation 3: Study to which extent the AMDI model is applicable 
to domains other than asset management. 
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All the case studies focused on identifying and testing 
requirements for the data infrastructure model in asset management, with 
particular regard to water management, road management and energy 
grid management. Moreover, the number of cases was limited to one per 
level. In the first place, some of the requirements may be typical for only 
for certain domains and perhaps less typical for other domains. Future 
research is recommended on studying to which extent requirements are 
specific to certain domains. Furthermore, we expect that the IoT AMDI 
model may be generalizable to areas other than asset management in the 
physical infrastructure asset management domain. We recommend 
investigating in how far the model remains applicable to other types of 
asset management and other types of IoT data infrastructures. For 
example, IoT is expected to transform many industries, such as health 
care and agriculture. We have also seen that evolution is driven by 
innovation, not only in technology, but also in processes. As such, data 
governance is becoming increasingly important for ensuring that data 
provision is aligned with information needs, and that compliance to local 
and international laws and directives is maintained. This brings us to our 
fourth recommendation which reads as follows: 

 
Recommendation 4: Investigate and extend the data governance 
framework to include useable guidelines and tooling for ensuring 
sustainable alignment to business needs and compliance to local and 
international laws and directives. 

 
It is through data governance that data can be organized and 

managed for sustainable use. Effective data governance enables those 
charged with protecting their asset management organizations to manage 
the data, documents, and records they will need to ensure compliance to 
laws and directives. Unorganized and unmanaged data impede 
organizational performance and create legal risks when critical data go 
missing or when data leaks occur, and decisions based on poor quality 
data can have devastating consequences. Efforts to apply data 
governance from the executive level downwards have not always been 
successful due to a lack of organizational interest in an initiative that 
seems distant from the primary processes. Furthermore, politics 
surrounding data governance such as deciding on accountabilities have 
also created obstacles which require design solutions to help asset 
management organizations overcome foreseeable obstacles. As such, we 
have noticed that governance design involves more than only executive 
management support. Data managers, as well as all staff working in the 
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asset management process and supporting staff that manage the involved 
data systems must be engaged in order to ensure compliancy and data 
integrity throughout the data management process. Ensuring data 
integrity also means ensuring protection from malevolent outside 
influences or ill-advised practices. As such, the data governance 
framework should be extended to investigate means of ensuring data 
security throughout the AMDI in the face of evolving technologies so that 
practitioners may have access to tools that ensure sustainable data 
protection throughout the infrastructure. This leads us to our fifth 
recommendation which reads as follows: 

 
Recommendation 5: Investigate and extend the data governance 
framework to include tools for improving trust by ensuring the sustainable 
security and integrity of the route that the data follows from the IoT device 
to the information consumer. 

 
IoT has potential to improve asset management, generate 

efficiencies in asset management organizations, increase safety, save 
costs and create value for asset management organizations. It has also 
changed the way people think about asset related business models and 
how to best support those. AMDIs are often purpose-built to solve specific 
asset management requirements, but the duality of IoT leads to changes 
to asset management organizations which we need to better understand. 
Duality of Technology theory has shown us that changes can occur to the 
organization and to people in the organization, which, in turn, lead to 
changes in the technology. With the advent of machine learning, artificial 
intelligence and technological agents such as bots and robots, it is unclear 
how these new sorts of agents will be affected by IoT adoption. This leads 
us to recommendation 6, which reads as follows: 

 
Recommendation 6: extend the theory of duality of technology by 
investigating the influence of IoT adoption on artificial agents and their 
roles in organizations. 

 
As mentioned above, IoT adoption introduces changes to many 

facets of the data infrastructure, as organizations are increasingly faced 
with a digital transition. This change may occur gradually or suddenly, but 
always comes paired with adaptation and evolution. More knowledge is 
needed to understand the various facets and relationships occurring 
within data infrastructures as complex systems in order to be able to 
better anticipate how change may occur and where. As such, we need to 
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better understand the complexity of data infrastructures and their 
embodiment as CAS. This leads us to recommendation 7, which reads as 
follows: 

 
Recommendation 7: extend CAS theory for data infrastructures by 
investigating how data infrastructures may adapt and evolve during the 
digital transition.
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Summary 
 

Modern economies are supported by large public utility infrastructures. As 
such, the proper management and maintenance of infrastructure is vital 
to economic prosperity. These infrastructures consist of networks of 
assets and are often managed by organizations using an asset 
management approach. Asset management is a discipline for managing 
infrastructure assets. Asset management as a process is highly dependent 
on large amounts of data from which relevant information can be created. 
More and more, new technologies such as IoT are becoming available and 
are being adopted by asset managers to provide the data required to 
acquire the necessary insights in a timely fashion. IoT is a network of 
physical objects that can communicate digitally over the internet. 
However, adopting IoT in asset management organizations (organizations 
tasked with managing and maintaining public utility infrastructure assets) 
is a complex undertaking. Design solutions that improve understanding of 
asset management through IoT are needed to ensure that asset managers 
continue to be supplied with the right information at the right time. Our 
objective was to develop a model of AMDIs that improves understanding 
of asset management through IoT. 

The underlying premise of this research is derived from the Duality 
of Technology theory (Orlikowski, 1992) suggesting that IoT will introduce 
unexpected changes to asset management and we confirm the dual 
nature of IoT in asset management. Second, we acknowledge the 
complexity of AMDIs and view AMDIs as CAS. AMDIs are shared, evolving, 
heterogeneous, set of resources capable of providing the data and context 
required to fulfil the information requirements of asset management 
organizations. On the basis of the insights provided by duality of 
technology theory and CAS theory, we develop a model of AMDIs which 
improves understanding of asset management through IoT. For example, 
the model confirms the belief that hierarchical organizations are less 
equipped to adopt asset management through IoT and that a more 
network-based, organic organizational structure provides a better fit for 
asset management through IoT as suggested by Damanpour & 
Gopalakrishnan (1998). 

In order to achieve our objective we developed a framework of 
research questions which reads as follows: 
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1. How can IoT improve asset management? 
2. What are the elements and behaviors of AMDIs that enable asset 

management through IoT? 
3. What are the elements of data governance in AMDIs that enable 

asset management through IoT? 
4. What does a model of an AMDI that accommodates IoT look like? 
5. How does the AMDI model improve understanding of asset 

management through IoT? 
“Improving” means making something better. As such, answering these 
questions required a strong design component. We therefore adopted the 
Design Science approach as suggested by Hevner (2007). The Design 
Science approach requires multiple iterations within three mutually 
interdependent “cycles”. Building the knowledge base and developing the 
design requirements occur in the rigor cycle and relevance cycles 
respectively. We therefore adopted a two-pronged approach to answering 
questions 1, 2 and 3 which provided us with the knowledge base and 
requirements necessary to be able to answer question 4 through the 
design and build of the model and to be able to test the model and by 
doing so answer question 5. Our two-pronged approach to answering 
questions 1, 2 and 3 was: 

1. The development of the knowledge base through a systematic 
literature review. 

2. The development of the knowledge base through exploratory 
case studies. 

During the design cycle, as more and more knowledge and requirements 
became available through the literature review and the exploratory case 
studies, we were able to add more elements to the model design. Once 
we had reached a point of saturation and the model was considered to be 
sufficient, answering question 4, we tested the model by means of test 
case studies in which we tested the usability and usefulness of the model. 
By doing so we also tested our design proposals, answering question 5 
and thus achieving the research objective. 

The literature review follows the method proposed by Webster & 
Watson (2002) and attempts to systematically analyze and synthesize 
literature and advance the knowledge base of AMDI research. As 
mentioned above, the literature review partly answers research questions 
1, 2 and 3.  

This research uses case study as principle research method, 
following the method proposed by Yin (2009). Two forms of case study 
are used in this research: exploratory case studies; and test case studies. 
Exploratory case studies are used to fill gaps in the knowledge base and 
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complete the answers to research questions 1, 2 and 3 (completing the 
relevance and rigor cycles), and to provide requirements for the build of 
the model and the answer to research question 4. The test case studies 
were used to evaluate the model and answer research question 5 
(completing the design cycle). The table below summarizes the cases 
selected for this research. 
 

Table S-1: Case studies selected for this research 

Case Study Organization Level Case Type 

LMW RWS National Exploratory 

Ground Water Management Municipality of Rotterdam Regional Exploratory 

BOS Water Authority Delfland Local Exploratory 

WIM RWS National Test 

Smart Meters Stedin Regional Test 

Hoog Dalem Stedin Local Test 

 
In exploratory case studies, Yin (2009) suggests using a 

theoretical framework during the investigation. We therefore confirmed 
the applicability of duality of technology (Orlikowski, 1992) theory to 
asset management through IoT, and the necessity of approaching asset 
management as CAS, using these theories as lenses to describe the 
exploratory case studies from varying perspectives. By doing so we were 
able to uncover a number of previously undocumented insights into asset 
management through IoT including: 
Duality of Technology as theoretical framework: 

• Benefits and unexpected risks of IoT for asset management 
organizations as a product of human agency 

• Benefits and unexpected risks of IoT for asset management 
organizations as a medium of human agency 

• Organizational conditions for interaction with IoT in asset 
management 

• Organizational consequences of interaction with IoT in asset 
management 

CAS as theoretical framework: 
• Essential components of AMDIs 
• Characteristic behaviors of AMDIs 
• Concepts of the role of Data Governance in AMDIs 
• Effects of physical, social and political environments on AMDIs 
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As such, the results of the literature review and the exploratory 

case studies meant that we were able to answer research questions 1, 2 
and 3 in the following ways. Firstly, in order to answer research question 
1, we split it into three sub-questions. Research question 1a asked: How 
can IoT be used to improve asset management? We can summarize the 
answer to this question as: 

• IoT improves performance measurement of infrastructure service 
• IoT improves perception of infrastructure service 
• IoT improves improvement processes of infrastructure service 

As important as it was to discover how IoT is being used in asset 
management, and how IoT has changed traditional asset management 
practices, we also needed to understand if these changes had to led to 
provided benefits for asset management. Therefore, we asked the sub-
question: 1b: What are the expected benefits of asset management 
through IoT? We can summarize the answer to this question as: 

• Technology changes: benefits of IoT as a product of human 
agency 

• People changes: benefits of IoT as a medium of human agency 
• Organizational changes: Benefits related to organizational 

conditions of interaction with IoT 
• Organizational changes: benefits related to organizational 

consequences of interaction with IoT 
However, knowing the dual nature of asset management through IoT 
meant that we also needed to understand the unexpected risks brought 
about by IoT adoption in asset management. Therefore we asked the sub-
question: 1c: What are the risks posed by asset management through 
IoT? We can summarize the answer to this question as: 

• Technology changes: Risks related to IoT as a product of human 
agency 

• People changes: Risks related to IoT as a medium of human 
agency 

• Organizational changes: Risks related to organizational 
conditions of interaction with IoT 

• Organizational changes: Risks related to organizational 
consequences of interaction with IoT 

As such, the complete answer to Research Question 1 is the collection of 
answers to questions 1a, 1b and 1c. Studying the uses, benefits and risks 
of IoT adoption helped us understand its dual nature and what changes 
to asset management and asset management organizations may be 
expected due to IoT adoption. It became clear that IoT adoption in asset 
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management is highly complex and modelling AMDIs which can 
accommodate IoT adoption requires a CAS approach. We therefore 
applied CAS theory to the exploratory case studies which gave us a 
framework in which to define the elements of AMDIs and their behaviors. 
We split question 2 into two parts. The first part, question 2a was: What 
are the elements of AMDIs that enable asset management through IoT? 
We can summarize the answer to this question as follows: 

• Components: Data, Technology, Agents 
• Data Governance 
• Environments: Political, Cultural, Physical 

The second part of question 2, question 2b was: 2b: What are the 
behaviors of AMDIs that enable asset management through IoT? We can 
summarize the answer to this question as follows: 

• Dynamism 
• Connectivity 
• Adaptation 
• Emergence 

As such, the complete answer to research question 2 is the collection of 
answers to questions 2a and 2b.  

Following the CAS framework we were aware that components and 
agents operating within the AMDI construct formal and informal rules 
which govern decision-making and interactions. The so-called, “schema” 
of CAS. During the exploratory case studies we were able to identify this 
schema for AMDIs as being data governance. However, we also became 
quickly aware that the knowledge base of data governance is extremely 
thin, and especially so in the context of asset management. Therefore, as 
mentioned above, we asked our third research question as follows: What 
are the elements of data governance in AMDIs that enable asset 
management through IoT? We can summarize the answer to this question 
as follows: 

• Organizational capability 
• Alignment 
• Compliance 
• Clarification 

The insights uncovered by the exploratory case studies led us to three 
main design propositions which helped drive the theoretical contribution 
of the model design. The propositions look at each of the elements within 
the AMDI, namely the components (human and technological), data 
governance (which governs the decision-making and interactions), and 
the influence of the varying types of environments in which the AMDI 
occurs. These propositions were: 
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1. Configuring the elements of AMDIs to accommodate IoT adoption 
improves understanding of asset management through IoT. 

2. Implementing data governance improves understanding of asset 
management through IoT. 

3. Configuring AMDIs to accommodate cultural, physical and 
political environments improves understanding of asset 
management through IoT. 

The design requirements gathered during the exploratory case studies 
helped drive the practical contribution of the model design. During the 
exploratory case studies we were able to analytically derive 30 
requirements from the results of research questions 1, 2 and 3 and 
complete the answer to research question 4 which asks: What does a 
model of an AMDI that accommodates IoT look like? Of the 30 
requirements there were: 

• 6 stakeholder requirements facilitating communication of IoT 
system details between stakeholders in an asset management 
organization. 

• 6 system requirements dealing with component implementation 
of IoT. 

• 8 system requirements dealing with data governance 
implementation. 

• 6 system requirements dealing with managing environmental 
effects. 

• 4 system requirements dealing with behavior of the AMDI. 
Based on the design propositions (as theoretical contribution) and 
requirements (as practical contribution) we derived 30 design principles 
which gave direction to the design of the model, of which: 

• 6 were principles which facilitate communication of the AMDI 
design. 

• 24 were principles which enhance our understanding of the AMDI 
design. 

Further, to complete the answer to research question 4 we are able to say 
that the model uses W3C specifications and addresses four specific 
concepts, namely: 

• Classes (general things) in the many domains of interest. 
• The relationships that can exist among things. 
• The properties (or attributes) those things may have. 
• Constraints on relationships between the classes and their 

properties. 



Summary 

363 
 

Also, the model employs a combination of object-oriented and agent-
oriented perspectives, and follows the linked open data approach. We 
were able to extend the model where necessary to include existing 
ontologies. 

Once we had reached a level of saturation in the design, and the 
build phase of the model was considered complete, as no new information 
was forthcoming, we proceeded to test the model by means of test case 
studies, in answer to research question 5 which asks: How does the AMDI 
model improve understanding of asset management through IoT? The 
model was tested based on its usability and usefulness. Although 
usefulness is often seen as a characteristic of usability, we paid special 
attention to usefulness, as by means of this test we wanted to test the 
robustness of the design propositions. 

With regards to usability, we first looked at the effectiveness of the 
model by considering whether the model was complete, or by contrast, 
overcomplicated. We were able to conclude that no extraneous classes 
could be found nor could we find individuals which did not fit in the existing 
classes. Secondly we looked at the effectiveness of the model by 
monitoring how quickly it took to complete the model for specific 
situations and by looking at the “learnability” of the model, in other words, 
how much time it took for users to learn how to use the model. We also 
looked at the users response to using the model and the level of 
satisfaction of using the model. We were able to conclude that the model 
could be completed in an acceptable amount of time with minimal 
explanation. Also, we were able to note that most users were relatively 
happy with how the model performed. As such, we were able to conclude 
that the model met the technical usability criteria. 

With regards to the usefulness of the model our focus lay with the 
testing of our design propositions. Design proposition 1 was tested by 
looking to see if the model provided actionable insights into the influence 
of people and technology on asset management through IoT. The AMDI 
model showed that agents have a particularly large influence on asset 
management through IoT. As such, asset management organizations 
should enable asset management through IoT by developing awareness 
of the benefits of IoT and providing opportunities for personal 
development in this area. For example, both Stedin and RWS identify a 
lack of data science skills as major barriers in the adoption of IoT in asset 
management and both organizations have initiated training programs 
designed to improve data awareness and analytics skills within the 
organization. The AMDI model also showed that data governance should 
ensure that data is aligned with the needs of the business, including 
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ensuring that data meets the necessary quality requirements. For 
example, the level of accuracy and timeliness of the data being generated 
by the WIM is essential for traffic warden to be able to react in a timely 
fashion and with confidence in the results. 

Design proposition 2 was tested by looking to see if the model 
provided actionable insights into the influence of data governance on 
asset management through IoT.  With regards to the test cases, both RWS 
and Stedin have well-structured processes to incorporate new 
technologies and have developed strong relationships with knowledge 
institutes. For example, WIM was developed by RWS in cooperation with 
technical universities and private knowledge institutions. As such, 
application of the model shows that high levels of networks between 
cooperating agents is an enabling factor for asset management through 
IoT. Also, the AMDI model showed that management support positively 
influences asset management through IoT in the form of “championship” 
and leadership promotion. For example, the executive management at 
the Department of Central Information Management at RWS played an 
important role in championing the use of WIM data for asset management, 
as did the Director of Strategy and the Chief Data Officer at Stedin with 
regards to Smart Meter data.  

Design proposition 3 was tested by looking to see if the model 
provided actionable insights into the influence of socio-political 
environments on asset management through IoT. According to 
Damanpour & Schneider (2006), urbanization and development around 
an adopting organization have a positive association, as organizations in 
urban areas tend to have easier access to service providers and face more 
diverse and complex environments than those in rural areas (Boyne, 
Gould-Williams, Law, & Walker, 2005). However, the AMDI model showed 
that this may not necessarily be the case, as the cases occur in largely 
rural areas. However, we did notice that all the cases have a high level of 
environmental complexity and are relatively wealthy, having access to 
high levels of financial and other resources. According to Daft, Murphy, & 
Willmott (2010), greater environmental complexity leads to more 
numerous, specialized and interconnected organizational parts, 
stimulating higher rates of innovation and change, and Damanpour & 
Schneider (2006) show that resources also provide local governments of 
wealthier communities with a greater ability to prepare organizational and 
community members for implementing the new programs or services. As 
such, application of the AMDI model shows that organizational wealth and 
complexity may have a larger influence on IoT adoption in asset 
management organizations that other factors such as urbanization.  
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As seen in the discussion above, we were able to conclude that the 
asset management model did meet the criteria of providing actionable 
insights for asset managers with regards to IoT adoption in each of the 
propositions, and we therefore argue that the model can be considered 
“useful”. 

Once we had concluded the tests, we then took some distance from 
the research in order to reflect on the findings, and draw conclusions from 
the evidence presented by the research. We began our reflections by 
drawing conclusions on how the process of IoT adoption affects asset 
management and asset management organizations, and then drawing 
conclusions on the desired end-state of IoT adoption affects asset 
management and asset management organizations.  

Applying Duality of Technology theory with regards to research 
question 1 and the process of IoT adoption, helped us to conclude that, 
within the context of our case studies, the goodness-of-fit between IoT 
and the asset management organization is critical for the successful 
adoption of IoT in asset management organizations. For example, the 
importance of people as agents within the AMDI suggests that fostering 
trust in IoT is critical for the improvement of asset management through 
successful adoption of IoT in asset management organizations. 
Furthermore, we also argue that management support in the form of 
“championship” and leadership promotion can positively influence agents, 
and have a positive effect on IoT adoption in asset management 
organizations. As such, we were able to observe a change in traditional 
asset management methods, and, with regards to research question 1 
and the end-state of IoT adoption, we were able to conclude that, within 
the context of the cases studies, it is inefficient to exert a hierarchical 
control over AMDIs when adopting IoT in asset management. This is 
because asset managers need to develop trust in the IoT system before 
accepting the results and recommendations provided by the system and 
allowing themselves to be data-driven. For example, application of the 
model in the test cases showed that staff felt most empowered when 
working in a self-managing format with management setting priorities. 

The application of CAS theory with regards to research question 2 
and the process of IoT adoption, helped us to conclude that, within the 
context of the case studies, environmental complexity in combination with 
access to sufficient resources, rather than urbanization, stimulates higher 
rates of IoT adoption in asset management organizations. Furthermore, 
not only the physical environment is important, but also the political and 
cultural climates fit is important in the enablement of IoT adoption in asset 
management organizations. As such, we can conclude that aligning IoT 
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solutions with existing asset management environments has a positive 
influence on IoT adoption in asset management organizations. With 
regards to research question 2 and the end-state of IoT adoption, we were 
able to conclude that, within the context of the cases studies, a lack of 
awareness of the possibilities and pitfalls of IoT can have a negative 
influence on the adoption of IoT in asset management. We therefore argue 
that asset managers need to improve their knowledge and level of 
awareness of IoT to enable the adoption of IoT in asset management 
organizations, and that organized social networks within and outside an 
asset management positively influence the adoption of IoT in asset 
management organizations. 

With regards to research question 3 and the process of IoT 
adoption, we were able to conclude that, within the context of the case 
studies, the importance of data provenance for IoT infrastructures and 
the persisting requirement for manual intervention suggests the need for 
instituting strong data governance procedures which align inter-functional 
teams behind a common goal. The idea of inter-functional teams suggests 
a change to traditional asset management organizational structures, and 
so, with regards to research question 3 and the end-state of asset 
management through IoT, we were able to conclude that, within the 
context of the cases studies, enabling asset management through IoT 
requires that asset management organizations adopt a more organic 
organizational structure in which an environment of trust is created for 
inter-functional teams. 

Conclusions relating to the first three research questions helped 
shape the design of the AMDI model, but we were also able to take some 
distance from the design process and draw conclusions about the model 
itself and the design process. As such, with regards to research question 
4 and the process of IoT adoption, we were able to conclude that, cross-
over modelling improves our ability to model and understand AMDIs as 
complex systems. The application of CAS theory helped us understand 
how the components of AMDIs interact. As such, with regards to the end-
state, we were able to conclude that relationships among the functional 
elements of AMDIs help us understand what the AMDI model looks like. 
Furthermore, these AMDI constructs also help us understand how the 
model improves understanding of asset management through IoT by 
facilitating early detection and correction of system development errors, 
as well as helping us understand the social impact of asset management 
through IoT. 

Research question 5 asks how does the AMDI model improve 
understanding of asset management through IoT? Our tests of the model 



Summary 

367 
 

in the test case studies demonstrated that the model improves 
understanding of asset management through IoT by providing insights 
into previously unforeseen changes to asset management and the asset 
management organization. We can conclude that the model improves 
understanding of asset management through IoT by: 
 
Process related conclusions: 

• Providing a point of reference for designers to extract system 
specifications for IoT adoption in asset management, providing a 
method to document the IoT system for future reference. 

• Showing that asset management through IoT does not randomly 
occur, but rather occurs as a result of specific needs and 
interventions. 

• Highlighting the need for access to high levels of financial and 
other resources. 

• Communicating the need for a fit between the political and 
cultural climate before implementation can be successfully 
realized. 

• Providing insight into the relationships between actors in the 
asset management organization and how these relationships 
influence asset management through IoT. 

End-state related conclusions: 
• Providing insight into uses, benefits and risks of asset 

management through IoT. 
• Facilitating communication of IoT system details between 

stakeholders in an asset management environment and provides 
a means for collaboration between agents in the asset 
management organization. 

• Enhancing our understanding of people requirements for asset 
management through IoT. 

Of course, whilst drawing these conclusions, we were aware that our 
research has limitations which the reader should be aware of. For 
example, taking a constructivist perspective meant that the research is 
limited in terms of epistemological relativism. For example, the study was 
conducted wholly in the Netherlands and focused only on government and 
semi-government organizations. As such, generalization in an 
international or commercial environment should be approached with 
caution due to the fact that the potential impacts of language, as well as 
national and commercial business culture were not assimilated into the 
model. Furthermore, the research method chosen, case study, also has 
inherent limitations which should not be ignored. Using the case study 
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method means that one should be aware of the potential for differing 
interpretations of the data as well as the possibility that potential, 
important information may not have been discovered, meaning that there 
exists the potential that analysis was made on the basis of incomplete or 
potentially misleading data.  

We therefore made a number of recommendations for further 
research which include addressing potential limitations due to 
epistemological relativism by extending the model to include language, 
and national or business cultural differences as well as examining the 
evolution of the AMDI over time. Addressing the limitations of case study, 
we also recommend investigating and extending the data governance 
framework to include useable guidelines and tooling for ensuring 
sustainable alignment to business needs and compliance to local and 
international laws and directives, as well including useable tools for 
ensuring the sustainable security and integrity of the route that the data 
follows from the IoT device to the information consumer.
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Appendices 

Appendix A: Summary of the AMDI model classes 

 

Table B-1: The classes of the AMDI model 

Class Name Subclass Of (Domain) 
Properties Include: 

Description 

AMDI  IsDynamic  
AdaptsToChangeFrom  
IsConnectedThrough  
EmergentBehaviorIn-
ResponseTo  

Represents the 
AMDI: the sum of 
all its elements. 

Component AMDI Enables  
Constrains  

Represents the sum 
of the components 
of the AMDI. 

Agent Component Uses  
Role 
DataOwner  
Influences  
DataSteward  
DataManager 
 

An agent (e.g. 
person, group, 
software or physical 
artifact). 
Autonomous, goal 
driven entities that 
are able to 
communicate with 
other agents and 
whose behavior is 
the consequence of 
their (1) 
observations, their 
(2) knowledge and 
their (3) 
interactions with 
other agents. 

Robot Agent Uses  
Influences 

A machine—
especially one 
programmable by a 
computer— capable 
of carrying out a 
complex series of 
actions 
automatically 
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Class Name Subclass Of (Domain) 
Properties Include: 

Description 

Data Component DataOwner  
DataSteward  
Aligns  
Models  
Directs  
Enables  
Controls  
Regulates  
Constrains  
Influences  
Describes  
EnablesPerformance- 
Analysis  
EnablesExpectation- 
Management  
EnablesInfrastructure
-ServiceProcesses  

Symbols 
representing 
measures or 
descriptions of 
objects or events. 

Metadata 
(=DGClarification) 

Data Describes A description of a 
data entity. 

Domain-
Independent-
Metadata 

Metadata Describes Includes generic 
descriptions such as 
the creator or 
modifier of data as 
well as 
authorization and 
lineage information 
related to the data. 

DomainSpecific- 
Metadata 

Metadata Describes Provides a set of 
mappings from a 
representation 
language to 
agreed-upon 
concepts in the real 
world. 

PhysicalMetadata Metadata Describes Includes 
information about 
the physical storage 
of data. 
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Class Name Subclass Of (Domain) 
Properties Include: 

Description 

UserMetadata Metadata Describes Includes 
annotations that 
users may 
associate with data 
items or collections; 
such annotations 
can, for example, 
capture user 
preferences and 
usage history. 
Stores user 
attributes (such as 
user preferences) 
that do not impact 
a user's core 
functionality. 

Registration Data Registers  Symbols 
representing 
measures or 
descriptions of 
objects or events. 

Description Registration Describes Symbols 
representing 
descriptions of 
objects or events. 

Identification Description Identifies Symbols used to 
uniquely identify an 
object or event. 

Measurement Registration Measures Symbols 
representing 
measures of objects 
or events. 

Technology Component Influences  
EnablesPerformance- 
Analysis  
EnablesExpectation- 
Management 
EnablesInfrastructure
-ServiceProcesses 

The collection of 
Information 
Technology (IT) 
artifacts, hardware 
and software, used 
in the production of 
data or services or 
in the 
accomplishment of 
objectives, such as 
data analysis or 
data management. 

Hardware Technology EnableCompute  
ConstrainCompute 

The physical parts 
or components of 
an IT system. 
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Class Name Subclass Of (Domain) 
Properties Include: 

Description 

Intelligent-
Processing 

Hardware Processes 
Decides 

A variety of 
intelligent 
computing 
technology, used to 
achieve intelligent 
decision-making 
and control 

Perception Hardware Perceives Includes hardware 
used for the 
acquisition of 
observations or 
measurements by 
using perception, 
acquisition and 
measurement 
technology such as 
RFID, two-
dimensional code 
and sensors, etc. 

Transmission Hardware Transmits Includes hardware 
that ensures that 
the objects have 
access to 
information 
networks and can 
realize reliable 
information 
interaction and 
sharing through 
communications 
networks. 

Software Technology Instructs 
EnablesData-
Management 
ConstrainsData-
Management 

A set of instructions 
or programs 
instructing a 
computer to do 
specific tasks. 
Software is a 
generic term used 
to describe 
computer 
programs. 

Algorithm Software EnablesIntelligent-
Processing 
Constrains-
Intelligent-Processing 

A process or set of 
rules to be followed 
in calculations. 
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Class Name Subclass Of (Domain) 
Properties Include: 

Description 

Application Software EnablesIntelligent-
Processing 
Constrains-
Intelligent-Processing 

An application is 
any program, or 
group of programs, 
that is designed for 
the end user. 

Platform Software Enables-Transmission  
Constrains-
Transmission 
EnablesPerception 
Constrains-Perception 

A platform is a 
group of 
technologies that 
are used as a base 
upon which 
applications are 
developed. 

DataGovernance AMDI Enables  
Constrains  

Represents the 
Schema of the 
asset management 
data infrastructure: 
shared rules which 
are embodied by 
norms, values, 
beliefs, and 
assumptions 

DGAlignment Data-Governance Aligns Objects used to 
align business 
needs with data. 

Business-
Requirement 

DGAlignment BRRequires  Specifications which 
once delivered, 
provide value. 

Shareholder-
Requirement 

Business-
Requirement 

BRRequires Clusters of IoT 
“use” in asset 
management. 

System-
Requirement 

Business-
Requirement 

BRRequires Clusters of 
functional and 
behavioral 
requirements. 

Functional-
Requirement 

System-
Requirement 

BRRequires Clusters of 
component 
requirements. 

NonFunctional-
Requirement 

System-
Requirement 

BRRequires Clusters of 
behavioral 
requirements. 

BusinessRule DGAlignment Constrains 
Defines 

Rules that define or 
constrain some 
aspect of business. 

DGClarification 
(=Metadata) 

Data-Governance Clarifies Objects used to 
ensure clarification 
of Data 
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Class Name Subclass Of (Domain) 
Properties Include: 

Description 

DataModel DGClarification Models an abstract model 
that organizes 
elements of data 
and standardizes 
how they relate to 
one another and to 
properties of the 
real world entities. 

Lineage DGClarification Maintains-
Descendency  

The path that a 
data attribute 
travels between 
systems, and the 
alterations made 
during that journey. 

Standard DGClarification Standardizes  Objects that 
provide 
requirements, 
specifications, 
guidelines or 
characteristics that 
can be used 
consistently to 
ensure that 
materials, products, 
processes and 
services are fit for 
their purpose. 

DGCompliance Data-Governance Constrains Objects which 
ensure compliancy 
of data to policy, 
laws and directives. 

DataAudit DGCompliance Controls A formal and official 
verification of 
quality and 
conformance to 
requirements, 
regulations, 
standards and/or 
guidelines. 

DataPolicy DGCompliance Regulates An organization's 
set of data 
management 
objects designed to 
assist business 
administration and 
protect company 
assets. 
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Class Name Subclass Of (Domain) 
Properties Include: 

Description 

DataStrategy DGCompliance Directs A business plan for 
leveraging and 
enterprise’s data 
assets to maximum 
advantage. 

DGOrganizational- 
Capability 

Data-Governance Organizes  
Structures  

Objects required to 
ensure organization 
of data governance 
in a particular 
organization. 

Coordination-
Mechanism 

DGOrganization Coordinates The coordination 
mechanism(s) used 
to manage data in 
an organization. 

Contracting Coordination-
Mechanism 

Contracts A coordination 
mechanism that 
divides activities 
into subtasks that 
can be performed 
by specialist 
agents. 

Feedback Coordination-
Mechanism 

Signals A coordination 
mechanism that 
enables a process 
to use its own 
output to adjust its 
inputs and 
subprocesses. 

Planning Coordination-
Mechanism 

Plans A coordination 
mechanism that 
creates a detailed 
proposal for doing 
or achieving 
something. 

SelfOrganization Coordination-
Mechanism 

Organizes A coordination 
mechanism 
whereby processes 
are able to adjust 
and adapt 
themselves to both 
external and 
internal influences. 
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Class Name Subclass Of (Domain) 
Properties Include: 

Description 

DataManagement-
Process 

Organization Manages The business 
function that 
develops and 
executes plans, 
policies, practices, 
and projects that 
acquire, control, 
protect, deliver and 
enhance the value 
of data. 

DataArchitecture-
Management 

Data-
Management-
Process 

Designs Objects used for 
the design and 
construction of an 
integrated data 
resource that is 
business driven, 
based on real-world 
subjects as 
perceived by the 
organization, and 
implemented into 
appropriate 
business 
environments. 

DataIntegration-
And- 
Interoperability-
Management 

Data-
Management-
Process 

Integrates Objects that 
determine how data 
is selected, 
transformed and 
flows across 
databases. 

DataQuality 
Management 

DataManagement
-Process 

Controls Objects that ensure 
that the 
development effort 
will result in the 
desired product. 

DataSecurity- 
Management 

DataManagement
-Process 

Secures Objects that 
prevent 
unauthorized 
access to a 
database and its 
data, and to 
applications that 
have authorized 
access to 
databases. 
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Class Name Subclass Of (Domain) 
Properties Include: 

Description 

DataStorage-And-
Operations-
Management 

DataManagement
-Process 

Store 
Create 
Read 
Update 
Delete 

Objects that 
provide support 
from data 
acquisition to 
purging. 

Data-
WarehousingAnd-
Business-
Intelligence-
Management 

DataManagement
-Process 

Analyzes 
Presents 

Operational, 
administrative and 
control objects that 
provide access to 
Business 
Intelligence data 
and support to 
knowledge workers 
engaged in 
reporting, query 
and analysis. 

DocumentAnd-
Content-
Management 

DataManagement
-Process 

Store Object that manage 
data found outside 
of standard 
structured 
databases. 

Metadata-
Management 

DataManagement
-Process 

Create 
Control 
Integrates 
Analyzes 

Objects that create, 
control, integrate, 
access and analyze 
metadata 
repositories to allow 
for easier access. 

ReferenceAnd-
MasterData-
Management 

DataManagement
-Process 

Controls Objects that ensure 
consistency with a 
‘golden version’ of 
data values. 

Environment AMDI Enables  
Constrains 

Represents the 
total surroundings 
or conditions in 
which the AMDI 
occurs. 

Cultural-
Environment 

Environment Enables  
Constrains 

Objects that 
represent a set of 
beliefs, practices, 
customs and 
behaviors that are 
found to be 
common to all 
agents operating 
within the AMDI. 
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Class Name Subclass Of (Domain) 
Properties Include: 

Description 

Physical-
Environment 

Environment Enables  
Constrains 

The sum of the 
tangible objects in 
the area within 
which the AMDI 
occurs 

Political-
Environment 

Environment Enables  
Constrains 

Governing objects 
which affect the 
operations of the 
AMDI. 
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Appendix B: The Object Properties of the AMDI Model 

 

Table B-2: The object properties of the AMDI model 

Object 
Property 
Name 

Subclass Of Domain 
Classes 

Range 
Classes 

Description 

AdaptsTo-
Change-From 

 AMDI Component 
Environment 
Data-
Governance 

Indicates that the 
object is capable of 
adapting to changes 
occurring in other 
classes in its range. 

Aligns  DG-
Alignment 

AMDI Indicates that data 
meets the necessary 
requirements to align 
with the 
requirements of the 
business. 

Analyzes  Metadata-
Management 
Algorithm 
DataWare-
housingAnd-
Business-
Intelligence 

Data Indicates that the 
object is capable of 
analyzing data. 

Clarifies  DG-
Clarification 

AMDI 
Data 

Indicates that the 
object clarifies the 
entity. 

Maintains-
Descendency 

Clarifies Lineage Data Indicates that the 
object maintains 
lineage 

Models Clarifies Data-
Modelling- 
AndDesign 
DataModel 

AMDI Indicates that the 
object is capable of 
modelling. 

Standardizes Clarifies Standard AMDI Indicates that the 
object provides a 
standard. 
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Object 
Property 
Name 

Subclass Of Domain 
Classes 

Range 
Classes 

Description 

Constrains  Cultural-
Environment 
DG-
Compliancy 
Data-
Governance 
Political-
Environment 
Component 
BusinessRule 
Software 

Data-
Governance 
Component 
Environment 
AMDI 

Indicates that the 
object constrains 
activities. 

Constrains-
Compute 

Constrains Hardware Software 
Data 

Indicates that the 
class constrains 
computation. 

Controls Constrains DataQuality- 
Management 
Metadata-
Management 
Reference-
And 
Masterdata-
Management 
DataAudit 

AMDI 
Data 

Indicates that the 
object monitors 
compliancy to norms, 
policies, laws and 
regulations. 

Regulates Constrains DataPolicy AMDI Defines the actions 
required to comply to 
norms, policies, laws 
and regulations. 

Decides  Intelligent-
Processing 

AMDI Indicates that the 
object is capable of 
making an intelligent 
decision 

Describes  Metadata 
Description 

AMDI 
Data 
Registration 
Metadata 
Measuremen
t 

Indicates that the 
object describes 
another object or 
activity. 

Directs  Data-
Strategy 

AMDI Indicates that the 
property gives 
direction. 

Emergent-
BehaviorIn-
ResponseTo 

 AMDI Component 
Data-
Governance 
Environment 

Indicates that this 
object displays 
emergent behavior in 
response to changes 
in other objects. 
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Object 
Property 
Name 

Subclass Of Domain 
Classes 

Range 
Classes 

Description 

Enables  Data-
Governance 
Software 
Environment 
Component 

AMDI 
Environment 
Data-
Governance 
Component 

Indicates that the 
object is capable of 
enabling another 
object. 

Enable-
Compute 

Enables Hardware Data Indicates that the 
class enables 
computation. 

Enables-
Expectation-
Management 

Enables Data 
Technology 
Agent 

Agent Indicates that the 
object is capable of 
enabling expectation 
management. 

Enables-
Infrastructure-
Service-
Processes 

 Data 
Technology 

AMDI Indicates that the 
object is capable of 
managing connected 
data resources. 

Enables-
Coordination-
OfProcesses 

Enables-
Infrastructure
Service-
Processes 

Data 
Technology 

AMDI Indicates that the 
object is capable of 
enabling coordination 
of processes. 

Enables-
Industrial-
Automation 

Enables-
Infrastructure
Service-
Processes 

Data 
Technology 

AMDI Indicates that the 
object is capable of 
enabling industrial 
automation. 

EnablesInfra-
Usage 

Enables-
Infrastructure
Service-
Processes 

Data 
Technology 

AMDI Indicates that the 
object is capable of 
enabling usage of 
infrastructure. 

EnablesPolicy-
Development 

Enables-
Infrastructure
Service-
Processes 

Data 
Technology 

AMDI Indicates that the 
object is capable of 
enabling policy 
development. 

Enables-
Performance-
Analysis 

Enables-
Infrastructure
Service-
Processes 

Data 
Technology 

AMDI Indicates that the 
object is capable of 
enabling performance 
analysis. 

EnablesData-
Management 

Enables Software Data Indicates that the 
object is capable of 
enabling data 
management 
processes. 

Enables-
Perception 

EnablesData-
Management 

Platform Data Indicates that the 
object is capable of 
enabling perception 
processes. 
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Object 
Property 
Name 

Subclass Of Domain 
Classes 

Range 
Classes 

Description 

Enables-
Processing 

EnablesData-
Management 

Application 
Algorithm 

Data Indicates that the 
object is capable of 
enabling data 
processing. 

Enables-
Transmission 

EnablesData-
Management 

Platform Data Indicates that the 
object is capable of 
enabling transmission 
of data. 

Identifies  Identification AMDI Indicates the object 
or event which is 
identified. 

Influences  Environment 
Component 
Data-
Governance 

AMDI Indicates that this 
object has an 
influence on the 
objects in its range. 

Instructs  Software Hardware Indicates that the 
object is capable of 
instructing a 
computer to perform 
a specific task. 

IsConnected-
Through 

 AMDI Environment 
Component 
Data-
Governance 

Indicates that this 
object displays 
connectivity. 

IsDynamic  AMDI Environment 
Component 
Data-
Governance 

Indicates that this 
object is capable of 
changing 
dynamically. 

Manages  Data-
Management 
Process 

Data Indicates the object 
is capable of 
managing data. 

Create Manages Metadata-
Management 
DataStorage
And- 
Operations-
Management 

Data Indicates that the 
object is capable of 
creating data. 

Delete Manages DataStorage
And- 
Operations-
Management 

Data Indicates that the 
object is capable of 
deleting data. 

Designs Manages DataArchitec
ture- 
Management 

Data Indicates that the 
object is capable of 
managing 
architecture design. 
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Object 
Property 
Name 

Subclass Of Domain 
Classes 

Range 
Classes 

Description 

Integrates Manages Data-
Integration-
AndInter-
operability- 
Management 

Data Indicates the object 
is capable of 
managing data 
integration. 

Presents Manages DataWare-
Housing 
AndBusiness 
Intelligence- 
Management 

Data Indicates that the 
object is capable of 
presenting data. 

Read Manages DataStorage
And-
Operations-
Management 

Data Indicates that the 
object is capable of 
reading data. 

Secures Manages DataSecurity
Management 

Data Indicates that the 
object is capable of 
providing data 
security. 

Store Manages Document-
AndContent-
Management 
DataStorage
And-
Operations-
Management 

Data Indicates that the 
object is capable of 
storing data. 

Update Manages DataStorage
And-
Operations-
Management 

Data Indicates that the 
object is capable of 
updating data. 

Measures  Measure- 
ment 

AMDI Indicates that the 
object is capable of 
measuring another 
object or event. 

Organizes  DG-
Organization 
Self-
Organization 

AMDI Indicates that this 
object defines the 
rules for organizing 
the AMDI. 

Coordinates Organizes DG-
Organization 
Cooridinatio
nMechanism 

AMDI Indicates that the 
object determines the 
coordination 
mechanism used to 
coordinate interaction 
with other objects. 

Contracts Coordinates Contracting AMDI Indicates that the 
object is capable of 
contracting. 
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Object 
Property 
Name 

Subclass Of Domain 
Classes 

Range 
Classes 

Description 

Plans Coordinates Planning AMDI Indicates that the 
object is capable of 
planning. 

Signals Coordinates Feedback AMDI Indicates that the 
object is capable of 
providing feedback. 

DataOwner Foaf:Role Agent Data Indicates that the 
agent has 
accountability for 
ensuring data is 
properly managed. 

DataSteward Foaf:Role Agent Data Indicates that the 
agent is responsible 
for ensuring data is 
properly managed. 

Structures  DG-
Organization 

Agent Indicates that this 
object structures the 
process or 
organization. 

Perceives  Perception Data Indicates that the 
object is capable of 
perceiving the world 
and transforming the 
perception into data. 

 
Processes 

 Intelligent-
Processing 

Data Indicates that the 
object is capable of 
processing data for 
intelligent decision-
making. 

Registers  Registration Data Indicates that the 
object is capable of 
registering data. 

Transmits  Transmission Data Indicates that the 
object is capable of 
transmitting data. 

Uses  Agent Data 
Technology 

Indicates that this 
object uses objects in 
its range for a 
particular purpose. 
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Appendix C: Comparison of the Test Cases on Class 

and Individual Levels 
 

Table C-1: Comparison of the test cases on class and individual levels 

AMDI Class Name Individuals of 
WIM 

Individuals of 
Smart Meter 

Individuals of 
Hoog Dalem 

Group AssetManager 
EnforcementAgency 

End-user 
Energy Supplier 
GridManager 

Aggregator 
Prosument 
Supplier 

Organization Police 
RWS 
Transport 
Inspectorate 

Stedin 
Tennet 

Stedin 
Tennet 

OrganizationalUnit CIV Data 
CIV IT 
WVL 

GSA 
IT 
MeterAssetManage
ment 
MeterKast&-
Aansluiting 
SmartData 
Telecom 

MeterKast&-
Aansluiting 
SmartData 
Strategie 

Person DataAnalyst 
RoadManager 
TrafficInspector 
TrafficOfficer 

AssetManager 
DataAnalyst 
HomeOwner 

AssetManager 
DataAnalyst 
HomeOwner  

Robot   SmartAppliance 

Domain-
Independent-
Metadata 

  HashStore 

DomainSpecific- 
Metadata 

OGC_Technical 
Metadata 

ReadOutSymbols MessageStore 

PhysicalMetadata OGC_MetadataInfor
mation 

 AGRPortfolio 
PlanBoard 

UserMetadata NGR_WIM SMUserInstructions CommonReference 

Description KemlerPlate MeterConfiguration-
Cat1 

Day-
aheadMarketPrices 
PVLoadForecast 

Identification NumberPlate MeterID MeterID 

Measurement Length 
Speed 
Weight 

15minvalues-Cat5 
ElectraMeterReadin
gs-Cat3 
ElectricGridManage
ment-Cat2 

Congestion-
PointLimits 
FlexPotential 
PVLoad 
UncontrolledLoad 
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AMDI Class Name Individuals of 
WIM 

Individuals of 
Smart Meter 

Individuals of 
Hoog Dalem 

GasMeterReadings-
Cat4 
HourValuesGas-
Cat6 

Intelligent-
Processing 

Central Analysis 
WebPortal 
WIMDataAccess 
System 

Splunk Dashboards WebPortal 

Perception Camera 
InductionLoop 
LoadSensor 

SmartMeter SmartMeter 

Transmission VIC-Net CDMA 
GPRS 

CDMA 
GPRS 

Algorithm BI_reports Dashboard 
algorithms 

PBC Layer 

Application CognosBI 
Winfrabase 

MeterFrontEnd WorkFlowLayer 

Platform WIDAS Splunk ServiceLayer 

Functional-
Requirement 

WIMFunctional-
Specs 
Overloading-
Enforcement 

DSMR-Functional 
Handleiding_SM 

Implementation-
Guidelines 
UseCase-
Descriptions 

NonFunctional-
Requirement 

WIMSystem 
Requirements 

DSMR-Technical InstallationManual 

BusinessRule ConfigurationRules NEDU-user profiles 
NEDU-market 
profiles 

Libraries in use 
NamingConventions 
Prerequisites 
Glossary 
Interface-
Descriptions 
 

DataModel OGC_NGR-
Datamodel 

NEDU-data profiles UDIDataStructure&
Messages 

Lineage DataManagementPr
ocessDescriptions 

P4_score DataManagement-
ProcessDescriptions 

Standard OGC Standards NEDU USEF 

DataAudit TNO Reports ACM 
GDPR 

LevelsofCompliancy 
PrivacybyDesign 

DataPolicy ProjectReports 
ServiceDescriptions 

NEDU-process-
improvements&-
innovation 
PIA 

MessageTransport&
Descriptions 



Appendices 

387 
 

AMDI Class Name Individuals of 
WIM 

Individuals of 
Smart Meter 

Individuals of 
Hoog Dalem 

DataStrategy i-Strategie RWS Stedin_Data-
Strategie 

USEF Framework 
Specs 

Contracting SystemFocused-
Contract-
Management 

SM Aansluiting-
contract 

InterActorMessage-
Flows 

DataArchitecture-
Management 

WIM 
SystemArchitecture 
ServiceDefinitions 

DSMR Architecture 
NEDU profile 
definitions 

USEF Reference-
Architecture 
USEFComponentMo
dels 
USEFLayeredViews 

DataIntegration-
And- 
Interoperability-
Management 

WIDAS system 
design 

DSMR_integration 
architecture 

CommonInboundMe
ssageRoutingFlow 
CommonInbound-
MessageFlow 
CommonOutbound
MessageFlow 
CommonProcess-
Flow 
FileLoggerFlow 
HashCheckFlow 
MessageIDCheck-
Flow 
PBCInvocationFlow 
ResolveParticipant-
Flow 
 

DataQuality 
Management 

2stage 
QualityAssurance 

P4_score DataIntegrityGuideli
nes 

DataSecurity- 
Management 

VICNet security and 
firewall 

DSMR_Security 
Specs 

USEFPrivacySecurit
yGuideline 
USEFSecurityLayer 

DataStorageAnd-
Operations-
Management 

BI database SCADA 
Management 

DataStoreSchemas 

DataWarehousingA
ndBusiness-
Intelligence-
Management 

BI Warehouse BW on Hana  

DocumentAnd-
Content-
Management 

PDF-ECM SMOOC_fileshare 
StedinIntranet 

MessageCatalog 

Metadata-
Management 

OGC_NGR StedinIntranet Interface-
Descriptions 

ReferenceAnd-
MasterData-
Management 

RDW database StedinERP DataManagement-
Guidelines 
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AMDI Class Name Individuals of 
WIM 

Individuals of 
Smart Meter 

Individuals of 
Hoog Dalem 

Cultural-
Environment 

Open and Inclusive 
Respect For Privacy 

Healthy Suspicion 
Inclusiveness 

EchtHoogDalem – 
“a nice place to 
live” 

Physical-
Environment 

Highway Personal Homes Suburban 

Political-
Environment 

Strict Enforcement 
Laws 

Strict Data 
Protection Laws 

Well defined rules 
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Appendix D: Case Study Protocol  
The case study protocol follows the template as suggested by Yin (2009, 
pp. 84–86). Yin (2009) suggests that the protocol is a major way of 
increasing the reliability of the research and advises including four 
sections to the protocol: A. An overview of the study; B. Data collection 
procedures; C. Data collection questions; and D. A guide for the case 
study report. 

Section A: Overview of the Case Study 

With regards to section A of the protocol, Table D-1 below summarizes 
the sub-parts of the protocol and how they are dealt with in this research. 
 

Table D-1: Section A of the protocol and how the sub-parts are dealt with in this research 

Sub-part of the 
Protocol 

How it is reported in this research 

1. Change Record The research report is versioned. Significant versions 
summarize main updates and reasons for these. 

2. Background 
 

The background of the research is reported in Chapter 1 
 

2a. identify previous 
research on the topic 

2a. Previous research is discussed in the literature review in 
Chapter 3 and in the introduction in Chapter 1. 
 

2b. define the main 
research question being 
addressed 

2b. The main research question is described in Chapter 1 

2.c identify any 
additional research 
questions that will be 
addressed 
 

2. All research questions are described and discussed in 
Chapter 1 

3. Theoretical framework 
for the case study 

The theoretical frameworks used in the exploratory case 
studies: CAS theory and Duality of Technology theory, are 
discussed in Chapter 4. 

4. Role of the protocol in 
guiding the case study 

The protocol was used as a standardized agenda for our 
line of inquiry, providing an overview of the research, the 
process to be followed in the research and guiding the line 
of questioning. 

Section B: Data Collection Procedures 
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With regards to section B of the protocol, Table D-2 below summarizes 
the sub-parts of the protocol and how they are dealt with in this research. 

Table D-2:Section B of the protocol and how the sub-parts are dealt with in this research 

Sub-part of the 
Protocol 

How it is reported in this research 

5. Names of contact 
persons for doing field 
work 

Names and contact details of contact persons are not made 
public. Due to privacy concerns all names and contact 
details are protected and will only be released with express 
permission from the individuals. 

6. Data collection plan The data collection plans are presented in chapters 4 and 7. 

7. Data storage plan All data is stored in a versioned cloud storage facility. The 
data is warehoused according to source and type. 

8. Expected preparation 
prior to field work 

Researchers familiarized themselves with the goal and 
purpose of the research prior to performing field work. In 
this research this was done by means of a workshop in 
which the background and goals were explained and 
discussed. During the workshop the data collection topics 
were also discussed and interview techniques were 
practiced. Junior interviewers were required to observe at 
least 5 interviews performed by senior interviewers prior to 
performing independent interviews. 

Section C: Data Collection Questions 

With regards to section C of the protocol, Table D-3 below summarizes 
the sub-parts of the protocol and how they are dealt with in this research. 
 

Table D-3: Section C of the protocol and how the sub-parts are dealt with in this research 

Sub-part of the 
Protocol 

How it is reported in this research 

9. Data Collection 
Questions 

The following topics were listed as being of importance for 
the interview. Specific topics to be discussed were identified 
for specific interviewees as not all interviewees were 
expected to be proficient in all the topics: 
 
1. Describe the IoT implementation in as much detail as 
possible, including: 
- Technology 
- Processes 
- Relevant people and departments 
2. How is the IoT implementation used? 
3. Who uses the IoT implementation? 
4. What does the architecture of the IoT implementation 
look like? 
5. What is data governance to you? 
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Sub-part of the 
Protocol 

How it is reported in this research 

6. How is ownership of data organized? 
7. What does data quality mean to you? 
8. What data is created by the IoT implementation? 
9. What is this data used for? 
10. How is data quality monitored? 
11. Are there legal constraints to which the use of data 
must be compliant? 
12. How is compliance assured? 
13. Who are the main stakeholders?  
14. What is the role of the government in ensuring the IoT 
implementation is successful? 
15. What were the main benefits of adopting the IoT 
system? 
16. What were the main barriers or learning points during 
the adoption of the IoT system? 
17. How did the idea for the IoT system come about? 
18. What were the original goals of the IoT implementation? 
19. In what ways was the IoT implementation innovative? 
20. How was the IoT implementation funded? 
 
The interviews were unstructured and interviewers were 
encouraged to delve further after the initial response. As 
such, not all questions were dealt with in each interview, 
but rather specific areas were dealt with based on the 
target interviewee. 

 

Section D: Guide for the Case Study Report 

With regards to section D of the protocol, Table D-4 below summarizes 
the sub-parts of the protocol and how they are dealt with in this research. 
 

Table D-4: Section D of the protocol and how the sub-parts are dealt with in this research 

Sub-part of the Protocol How it is reported in this research 

10. Audiences for the 
report and stylistic 
preferences 

The main audience for the report include both the 
scientific community as well as people working in asset 
management organizations. As such, a report style was 
adopted in which the asset management community were 
able to read and understand the report, whilst also 
acknowledging the formality of the scientific format. 

11. Innovativeness of the 
IoT adoption 

The report looks at why IoT was adopted in the asset 
management organization, and what the organization 
expected to gain from the adoption of IoT as opposed to 
pre-IoT adoption practices. The study also looks at the 
hurdles the adoption needed to overcome – what made 
the adoption difficult and why was it different to other 
projects? 
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Sub-part of the Protocol How it is reported in this research 

12. Outcomes of the IoT 
adoption to date 

The report looks at the results of the IoT adoption – has it 
achieved its goals? And also how these results are 
measured and monitored. 

13. Asset management 
context and history 
pertaining to traditional 
practices 

The report looks at how asset management was 
conducted before IoT adoption – does IoT improve the 
practice, if so how, and is it accepted? 

14. Exhibits to be 
developed: chronology of 
events, logic model, 
references to relevant 
documents 

The report presents and discusses these exhibits in 
Chapters 4 and 7.  
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