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Short-Term Forecasting of Household Water Demand in
the UK Using an Interpretable Machine Learning Approach
Maria Xenochristou, Ph.D.1; Chris Hutton, Ph.D.2; Jan Hofman, Ph.D.3; and Zoran Kapelan, Ph.D.4

Abstract: This study utilizes a rich UK data set of smart demand metering data, household characteristics, and weather data to develop a
demand forecasting methodology that combines the high accuracy of machine learning models with the interpretability of statistical methods.
For this reason, a random forest model is used to predict daily demands 1 day ahead for groups of properties (mean of 3.8 households=group)
with homogenous characteristics. A variety of interpretable machine learning techniques [variable permutation, accumulated local effects
(ALE) plots, and individual conditional expectation (ICE) curves] are used to quantify the influence of these predictors (temporal, weather,
and household characteristics) on water consumption. Results show that when past consumption data are available, they are the most im-
portant explanatory factor. However, when they are not, a combination of household and temporal characteristics can be used to produce a
credible model with similar forecasting accuracy. Weather input has overall a mild to no effect on the model’s output, although this effect can
become significant under certain conditions. DOI: 10.1061/(ASCE)WR.1943-5452.0001325. © 2021 American Society of Civil Engineers.

Author keywords: Water demand forecasting; Smart demand metering; Random forest.

Introduction

Ensuring water availability for the future is a matter of increasing
concern, especially in the context of a rapidly changing world.
Understanding water consumption, as well as the drivers behind it,
is the first step toward developing accurate demand forecasts and
effective water demand management strategies. However, this is a
difficult task because household water use reflects many time- and
space-dependent factors, and research is often limited by data avail-
ability (Parker and Wilby 2013) and privacy concerns.

Jorgensen et al. (2009) reviewed several studies that used social
variables to model and predict water consumption and concluded
that most of them found different variables to be the most important
explanatory factors of consumption. In addition, the explanatory
potential of these models was limited, with R2 (coefficient of de-
termination) values reaching a maximum of ∼30% (Jorgensen et al.
2009). This inability of the models to accurately represent con-
sumption might be the reason for the high deviations between them.

Williamson et al. (2002) used a number of property characteristics
(e.g., number of residents, appliance ownership, and property type)

to predict monthly individual household consumption using statisti-
cal regression. This method could distinguish between a large num-
ber of households and explained 44% of the variance (R2 ¼ 44%) in
water demand. The rest was attributed to factors that were not in-
cluded in the model, such as the garden size. However, aggregating
consumption at the monthly scale means that temporal variables such
as the day of the week cannot be used as explanatory factors. This
might limit the amount of variance explained by the model, as well as
the opportunity to understand how these variables influence con-
sumption. In addition, for certain applications (e.g., operational re-
quirements for water distribution systems), predictions with higher
temporal resolution might be required.

Jorgensen et al. (2014) used a latent growth curve to predict
consumption for single-person households over four quarters in
2009 and 2010. In this case, the maximum variance explained
(R2) in the rate of change of water consumption was 31%. This
was achieved using three predictors, income, type of irrigation
system, and beliefs relating to own consumption. However, accu-
racy could be improved if more variables were included in the
analysis.

Duerr et al. (2018) also developed a water demand forecasting
model using property (e.g., land and building value as well as green
space), temporal (e.g., month and year), and weather (e.g., temperature
and precipitation) characteristics. Several methods were compared for
their ability to forecast monthly individual household consumption,
including statistical and machine learning models. The one that per-
formed best was the time-series model, with a minimum root-mean
square error (RMSE) of 1,246 gal:=month (equivalent of an average
of 155 L=day), for predictions 1 month ahead. Similarly to previous
studies, the level of accuracy is problematic, even when consumption
is aggregated at the monthly scale.

Overview and Aim

The benefit of explanatory variables depends on the model’s capa-
bility to capture the complicated relationships between them and
water consumption. In most cases, even when explanatory variables
(e.g., household and climatic variables) are utilized to produce water
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demand forecasts, this is often done using linear regression analysis
or geodemographic profiling based on census data (Parker
and Wilby 2013). These techniques have traditionally been used
because they are simple and able to capture the relationships be-
tween the predictors and water demand in a transparent way
(Goodchild 2003; Wong et al. 2010). However, their ability to
model the complicated relationships between a set of predictors
and water consumption may be limited. At the same time, the non-
linear and non-univariate effect of some weather variables on water
demand, as well as their interactions with other variables that were
observed in previous studies (Parker and Wilby 2013; Parker 2014;
Xenochristou et al. 2018, 2019, 2020b), require further attention.

Machine learning models are able to provide accurate water de-
mand forecasts (Herrera et al. 2010; Anele et al. 2017; Chen et al.
2017; Zubaidi et al. 2018), but they have been traditionally consid-
ered as black box. This means that they are not easy to interpret,
and sometimes even their structure and functionality is not well
understood. The interpretability of machine learning models is a
topic with increasing popularity as more methods are developed
(Doshi-Velez and Kim 2017; Adadi and Berrada 2018; Carvalho
et al. 2019; Molnar 2019) and find use in different fields, particu-
larly in medical applications (Berk et al. 2016; Choi 2018; Cremona
et al. 2018; Carmichael et al. 2019; Culos et al. 2020; Stanley et al.
2020). However, machine learning interpretability methods have not
been applied and tested in the field of water demand forecasting. As
a result, the ability to use these models to provide guidance to water
utilities has been limited.

The aforementioned gaps in knowledge are addressed by devel-
oping and presenting a novel approach for water demand forecast-
ing that combines the high accuracy of machine learning models
with the interpretability of simpler methods. Combining both
accuracy and interpretability is essential in order to produce accu-
rate forecasts and provide water utilities with the knowledge to im-
prove network operations and secure water for the future. Water
demand modeling that reconstructs detailed household, temporal,
and weather variables would enable planners to predict small area
demands and test new tariffs (Clarke et al. 1997). In addition, these
variables can enhance the understanding of water-use behaviors and
thus support improved demand management practices (Duerr et al.
2018). This is particularly important when the distribution of cus-
tomer demand is highly skewed, particularly on peak demand days,
when a small number of customers are responsible for a high per-
centage of the total water use. Results of this study would allow
demand management strategies to target particular household types
(i.e., the types that use the most water) in order to reduce peak de-
mands, which can be valuable during drought periods, as well as
improve the understanding of the complicated relationships between
weather and water consumption.

In order to achieve this, a machine learning model based on ran-
dom forests is implemented to predict daily demands for small
household groups with homogenous characteristics, with and with-
out past consumption data. Next, three interpretability techniques
[variable permutation, accumulated local effects (ALE) plots, and
individual conditional expectation (ICE) curves] are used to assess
the influence of a variety of household, temporal, and weather var-
iables, as well as their interactions, on the model’s predictions.

Data

The data set comprises of water demand data and household
characteristics from the southwest of England collected by Wessex
Water, one of the UK water companies, as well as weather data

provided by the Meteorological Office of the UK (Met Office).
A detailed description of each data type is available in this section.

Consumption Data

Water demand data were collected at the household level by the
water company using smart meters, recording consumption every
15–30 min over a 3-year period (October 2014–September 2017).
The raw data were carefully cleaned and processed before used in
any further analysis. A process was implemented consisting of log-
ical rules that aimed to exclude inconsistent or false data while
maintaining the natural variability of water demand. More details
about this process have been given by Xenochristou et al. (2020b).
After the preprocessing of the data, 1,793 properties are included in
the data set. Recordings for each property correspond to a maxi-
mum duration of 1,019 days, although this number is reduced
for most properties due to gaps in the data.

Household Characteristics

The water company also collected household data relating to prop-
erty and customer characteristics (garden size, rateable value, meter-
ing status, council tax band, acorn groups, and occupancy rate),
available at the household level. Information about garden sizes and
occupancy rates were collected by questionnaires that customers fill
in when they want to switch to a smart water meter. The rest of the
household properties were collected by their respective agencies.

In order to limit the processing time and reduce complexity, the
properties in the data set are grouped in two to three segmentation
categories for each household characteristic (Fig. 1). Garden sizes
were divided into small (<60 m2), medium (61–165 m2), and large
(>165 m2) by the water company. Properties that are classed as un-
metered are a representative sample of all unmetered customers in the
study area and are not charged based on their meter readings. The
water bill of unmetered properties in the UK is adjusted according
to the property’s rateable value, which is indicative of its rental value
and was last updated in the 1970s (Dresner and Ekins 2006). The
cutting points for the categories of the rateable value are chosen in
order to acquire relatively equal groups that are at the same time dis-
tinct enough to identify any differences in their water consumption.
The top and bottom 30% of the rateable values are classified as high
and low, respectively, whereas the rest are classified as medium.

Acorn is a geodemographic segmentation of the UK’s popula-
tion based on social factors and population behavior (CACI 2014).
According to the acorn guide, Consumer groups A, B, and C are
classified as Affluent Achievers and Groups D and E as Rising
Prosperity (CACI 2014). All Groups A–E are classified as Affluent
in the following. Groups F–J are classified as Comfortable Com-
munities, whereas Groups K–Q are Financially Stretched (similar
to the same guide). Occupancy rate groups are divided into 1, 2, and
3þ, based on the corresponding number of occupants living in each
household. The council tax bands are divided into three classes
containing Bands A–C, D–E, and F–H, with Class A being the
lowest and Class H the highest paying council tax band.

The cutting points of the new categories for the acorn status,
occupancy rate, and council tax band are selected based on a
z-statistic, according to the following process. Each type of house-
hold (e.g., households in Tax band C) is associated with a cer-
tain water consumption distribution among all days in the data.
A z-statistic is used in order to assess the similarity between
the consumption distributions for different types of households
(e.g., households in Council tax bands A, B, C, and so on). Similar
consumption distributions that are also in close proximity in terms
of the physical meaning of their characteristic (e.g., similarly

© ASCE 04021004-2 J. Water Resour. Plann. Manage.
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paying council tax bands) are grouped together into a larger cat-
egory (e.g., Council tax bands A–C).

Fig. 1 demonstrates the percentage of properties in each seg-
mentation category among all properties in the study area for each
one of the six household characteristics.

Weather Data

The weather data set includes Met Office data on air and soil temper-
ature at 10 cm depth, humidity, sunshine duration, and rainfall. These
data are recorded at the hourly or daily scale over the same period
(October 2014–September 2017) from hundreds of weather stations
across the study area as part of the Met Office Integrated Data
Archive System (MIDAS) Land and Marine Surface Stations Data
(Met Office 2006a, b, c, d, e). The number of preceding consecutive
days without rain is also calculated based on the rainfall data.

Out of the hundreds of weather stations in the study area, only
56 are included in the analysis, based on their proximity to the prop-
erties in the data set. Because the properties are scattered over a
relatively large area, daily and hourly information from multiple
weather stations is used to calculate one daily value for each weather
variable as a weighted average of all 56. In order to do this, a weight
is assigned to each weather station based on the number of proper-
ties that are the closest to it geographically (each property is closest
to one of the weather stations). For example, if Weather station A is
the nearest weather station to 100 properties and Weather station B
is the nearest weather station to 160 properties, Weather station B is
assigned a higher weight. Weather stations that have no properties in
the nearest proximity are assigned a zero weight. This methodology
is adopted in order to account for the location of the weather sta-
tions. Instead of calculating a mean value among all stations in the
area, the proximity of the stations to the properties in the data set is

taken into account. This is likely to result in more accurate estimates
of weather values, especially for the weather variables that demon-
strate a higher spatial variability.

Methodology

This section outlines the steps of the methodology adopted here in
terms of the model variables, the household grouping, the modeling
technique (random forests), the model and variable assessment
methodologies, and finally the model’s technical implementation.

Model Input Variables

The first step toward model building is to define the pool of var-
iables that will be included in the analysis. All available variables
are investigated for their influence on the model’s results, for fore-
casts 1 day into the future, grouped into the following four types:
• Past consumption: a 7-day window of past consumption is used

to capture the repetitive nature of water use over a calendar week.
Past consumption consists of seven values, reflecting mean daily
consumption for each one of the 7 days prior to the prediction
day. Fig. 2 demonstrates an example of how water consumption,
averaged across all properties in the data set, follows a weekly
pattern over 2 consecutive weeks, from April 18 until May 2,
2016. In Fig. 2, May 2, which is a Monday, corresponds to
unusually high consumption, which is typically characteristic
of weekends. This is due to the fact that this day is also a Bank
Holiday in the UK;

• Temporal variables: these refer to the season, month, day of
the week, and type of day (working day or weekend/holiday)
that consumption relates to. They are used as a proxy for time-
varying behavioral and weather patterns;

Fig. 1. Percentage of properties in each segmentation category of the six household characteristics: (a) occupancy rate; (b) council tax band;
(c) metering status; (d) rateable value; (e) garden size; and (f) acorn group.

© ASCE 04021004-3 J. Water Resour. Plann. Manage.
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• Household characteristics: the six variables collected by the
water company, namely garden size, rateable value, metering
status, occupancy rate, council tax band, and acorn group, are
regularly suspected to influence demand; and

• Weather variables: six variables relating to daily air and soil tem-
perature at 10 cm depth, relative humidity, total sunshine hours
and rainfall amount as well as the total number of preceding days
without rain are used to account for the weather-induced variance
in water consumption.

Household Grouping

In order to maintain the heterogeneity of the original data set, six
household characteristics are used in order to create homogenous
groups of properties. For example, one group comprises of proper-
ties with large gardens, high rateable value, metered consumption,
affluent residents, Tax bands A–C and occupancy rate 3þ. Because
each household characteristic has three to four categories, this re-
sults in 3,072 household groups

HG ð3,072Þ ¼ GS ð4Þ × RV ð4Þ ×MS ð3Þ
× Acorn ð4Þ × CT ð4Þ × OR ð4Þ

where HG = household groups; GS = garden size; RV = rateable
value; MS = metering status; CT = council tax band; and OR =
occupancy rate.

Even though the theoretical number of groups is 3,072, some of
the aforementioned household characteristics combinations contain
no houses for all or part of the days in the data set (1,019 days in
total), whereas others contain only one household. For this analysis,
the minimum amount of households allowed in each group is set to
two. Each data point represents consumption for a given group and
a given day, resulting in 56,020 data points, containing 2–24 house-
holds each, or a mean of 3.8 households.

This grouping is adopted in order to reduce the number of
data points and the noise in the consumption signal. Instead of
having multiple individual households with identical characteris-
tics and high variance in consumption, these are replaced by one
representative household, with consumption equal to the mean
among all properties in the group. Due to the small size of the
final groups and the high variation in their characteristics, daily
water consumption varies significantly among days and groups,
from ∼45 to ∼390 L=capita=day, with a mean consumption of
127.4 L=capita=day.

Random Forests

A random forest (RF) model is an ensemble of decision trees that
can be used for regression or classification purposes (Breiman
2001). The RF regression used here works by taking a set of input
variables, which are then passed onto each of the decision trees in
the forest. The uniqueness of a RF model lies in the fact that it
implements randomness in the modeling process because at each
node, the variable for splitting is chosen among a randomly selected
sample of the independent variables (Herrera et al. 2010). Each tree
gives a prediction, and the mean of these values is the prediction of
the RF.

Hyperparameters in machine learning models are parameters
whose values are fixed before the learning process begins. RFs’
performance depends on three key hyperparameters, the number
of features tested for splitting (mtry), the number of trees that com-
prise the forest (ntrees), and the tree depth, which can also be speci-
fied by the number of end points at each node (nodesize). The
maximum number of mtry is equal to the total number of input
variables. Reducing the mtry increases the randomness of the trees
and reduces processing time whereas reducing the nodesize cause
the trees to grow deeper, with the danger of overfitting.

It is commonly believed that default values of these hyper-
parameters (e.g., mtry = number of variables/3 in regression)
can produce good results, although there is no theoretical frame-
work that supports this assumption (Scornet 2017). A search for
the optimum set of hyperparameters (mtry, nodesize, and ntrees)
confirmed the belief that RFs are fairly robust to changes in hyper-
parameter values, at least when these are varied within reasonable
limits. Thus, the hyperparameter nodesize for the models is set to
200 and the number of trees at 300, although all models are tuned
for the optimum value of the mtry parameter.

RFs are chosen because they have been consistently found to
outperform most other models in the literature (Chen et al. 2017),
but at the same time, they are underrepresented in water demand
forecasting (Herrera et al. 2010; Chen et al. 2017; Duerr et al.
2018). In addition, these models are quick to train because the trees
are built in parallel and they have limited number of parameters that
require tuning.

Model Performance Assessment

The forecasting accuracy of the models is assessed using the fol-
lowing three performance metrics: the mean square error (MSE),
the mean absolute percentage error (MAPE), and the R2 coefficient
of determination. These metrics provide a range of information; the

Fig. 2. Mean per capita consumption (PCC) among all properties in the study area for 2 consecutive weeks, between April 18 and May 2, 2016.

© ASCE 04021004-4 J. Water Resour. Plann. Manage.

 J. Water Resour. Plann. Manage., 2021, 147(4): 04021004 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

T
ec

hn
is

ch
e 

U
ni

ve
rs

ite
it 

D
el

ft
 o

n 
05

/0
8/

24
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



MSE is sensitive to outliers; the MAPE is weighted more toward
smaller values and is independent of units and therefore system
capacity (Xenochristou 2019); the R2 indicates the agreement be-
tween observed and predicted values.

Each one of these metrics is calculated as follows:

MSE ¼ 1

n

Xn
i¼1

ðOi − PiÞ2

MAPE ¼ 100

n

Xn
i¼1

����
Oi − Pi

Oi

����

R2 ¼

2
64

P
n
i¼1ðOi − ÔÞðPi − P̂ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

n
i¼1 ðOi − ÔÞ2 Pn

i¼1 ðPi − P̂Þ2
q

3
75
2

where n = total number of values; O = observed values; P = pre-
dicted values;Oi andPi ¼ ith observed and predicted value, respec-
tively; and Ô and P̂ = observed and predicted means, respectively
(Xenochristou 2019).

The variable importance is calculated by assessing by how much
accuracy drops when a variable is permutated (i.e., rearranged).
Permutating a variable means shuffling its values and thus destroy-
ing the link between the predictor and the target; therefore, destroy-
ing its predictive capability. For example, shuffling the temperature
variable would rearrange the temperature values by randomly
assigning each one of them to a day in the data set. The MSE of
the model is calculated before and after the permutation occurs;
the higher the increase in MSE, the higher the importance of the
variable that was permutated. The shuffling is repeated several times
in order to achieve more accurate results. This process is affected by
variable interactions for two reasons. First, correlated predictors
mask each other’s effect because they provide overlapping informa-
tion to the model. At the same time, shuffling a variable that is
strongly correlated with another one could create unrealistic data
points (Molnar 2019). For example, assuming two correlated pre-
dictors, air and soil temperature, shuffling the air temperature values
could create a day with soil temperature of 4°C and air temperature
of 28°C.

The model predictors are evaluated for their impact on the
dependent variable, i.e., the water demand, based on two types of
interpretable machine learning methods, ALE plots (Apley and Zhu
2020) and ICE curves (Goldstein et al. 2015). In order to explain
these methods, it is easier to explain the simpler concept of partial
dependence plots (PDPs) first. PDPs work simply by forcing a
predictor to take the whole range of its values for each point in
the data (each data instance) and calculating the mean response
of the model for each value of the predictor. The same happens
for categorical predictors, except in this case, the variable is forced
to take each one of its potential categories instead of a range of
values. PDPs assume noncorrelated variables because in a different

scenario, this process could create unrealistic data instances, as ex-
plained previously.

ALE plots also describe how a variable affects the prediction on
average by calculating the variation in the model’s result when
varying the values of the predictor within a small window. ALE
plots are centered at zero, so the value at each point is the difference
to the mean prediction. Apley and Zhu (2020) first introduced ALE
plots as a faster and nonbiased alternative to PDPs. ALE plots are
used here to assess the influence of the household and temporal
characteristics.

ICE plots are the same as PDPs but instead of averaging, ICEs
show one curve for each data instance (each day and household
group). In other words, an ICE plot shows the response of the de-
pendent variable (daily water consumption) for a change in the in-
dependent variable (weather) for each data instance. Because there
are 56,020 different groups for all days in the data, the same amount
of curves are represented in one plot, which makes it very difficult
to distinguish between them. Therefore, these curves are aggre-
gated for each plot into three groups, using k-means clustering
(Steinley 2006). The ICE plots are used to capture the varying ef-
fect of the weather variables across different types of households
and days in the data (Xenochristou et al. 2020b).

More details and explanations regarding these three methods (var-
iable permutation, ICE curves, and ALE plots) have been given by
Molnar (2019). All of the preceding analyses were performed using
the R version 3.5.0 programming language, particularly the Random-
Forest (Liaw and Wiener 2002) and iml (Molnar 2019) packages.

Technical Implementation

Because the methods described previously (variable permutation
and ICE curves) are affected by variable interactions, the correla-
tions between the predictors need to be assessed. Many household
variables are indicative of the socioeconomic status of the house-
hold’s residents, thus the correlations between them are evaluated
using a chi-square (χ2) test of independence (Table 1). The χ2 varies
between 1 and −1, indicating a perfect positive or negative corre-
lation, respectively. According to Table 1, the council tax band is the
most highly interrelated variable. Properties that are under higher
paying council tax bands have higher rateable values, larger gardens,
and residents with higher socioeconomic status. Properties with
larger gardens have a higher rateable value and are occupied by res-
idents in higher acorn groups (Table 1). Although there are clear
relationships among the household variables, these were not consid-
ered strong enough in order to remove one of them as input.

An investigation into the weather variable interactions
(Xenochristou et al. 2020b) showed that sunshine hours and humid-
ity, rainfall, and days without rain, as well as air and soil temper-
ature, are correlated. Temporal variables such as the type of day
(working day versus weekend/holiday) and the weekday, as well as
the season and the month, are by definition also heavily correlated.
Past consumption data are also autocorrelated from one day to the
next one.

Table 1. Chi-square correlation statistic between each one of the six household variables

Household characteristics Garden size Rateable value Metering status Acorn groups Occupants Council tax band

Garden size 1 −0.41 0.16 0.33 −0.12 −0.48
Rateable value −0.41 1 0.09 −0.30 −0.07 0.57
Metering status 0.16 −0.20 1 0.17 0.29 −0.15
Acorn groups 0.33 −0.30 0.17 1 −0.04 −0.58
Occupants −0.12 0.10 0.29 −0.04 1 0.13
Council tax band −0.48 0.57 −0.15 −0.58 0.13 1
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Based on the preceding investigations, two groups of RF models
are developed for daily predictions 1 day into the future (Table 2).
Models 1, 2, and 6 incorporate past consumption data, whereas
Models 3, 4, 5, and 7 use a combination of temporal, household,
and weather characteristics. Consumption data are of high interest
for two reasons. Firstly, water utilities do not always have access to
these data, and therefore it is important to account for this scenario
and develop an alternative strategy. Secondly, past consumption in-
corporates many qualities that are characteristic of the household or
the day the consumption corresponds to and therefore can mask the
effect of other predictors.

The input variable configuration for Models 1–7 is chosen ac-
cording to the following. Model 1 (with past consumption) and
Model 3 (without past consumption) include all temporal, weather,
and household variables. To reveal the influence of each variable
without being concealed by overlapping information, Models 2, 4,
and 5 exclude strongly correlated inputs (Table 2). Finally, results
regarding the most important predictors from Models 1–5 are used
to build Models 6 and 7, based on the simplest model configuration
that would not compromise the modeling accuracy (Table 2).

In order to start the modeling process, the data set is shuffled and
divided randomly into a training set (70% of the data) used to train
the models and a test set (30% of the data) used to assess their per-
formance on unseen data, i.e., data that are not used during the
model-building phase.

Results and Discussion

Preliminary Analysis

The preliminary data analysis demonstrates how consumption varies
across different household and temporal categories. Modeling re-
sults can be strongly influenced by interactions among variables as
well as the model structure itself. Therefore, it is important to have
an initial view of which are the variables with the highest effect on
water consumption and test if these conclusions align with the mod-
eling results.

Fig. 3 shows the distribution of consumption for each variable
category and each day in the data set. The most distinct difference

in consumption is observed when households are grouped based on
their occupancy rate, with low-occupancy households (one resi-
dent) consuming significantly more per capita compared with high-
occupancy ones (three or more residents) [Fig. 3(a)]. Differences
also appear between households in different council tax bands
[Fig. 3(b)], with houses in Bands A–C (lower council tax bands)
consuming less water per capita than houses in Bands F–H (higher
council tax bands).

Fig. 3 also shows that distributions of household categories that
relate to higher consumption are generally more spread out, whereas
the low-consumption curves tend to have a higher peak and a much
smaller variance. This is likely because lower consumption consti-
tutes base consumption, i.e., water used in order to perform essential
day-to-day activities such as toilet flushing, showering, and cook-
ing. On the other hand, higher demand values and variance, typi-
cally found in higher council tax band households, are due to
additional, nonbase water consumption activities such as garden
watering that occur on some days but not on others. The high vari-
ance in the case of the occupancy rate is due to the consumption in
single-occupancy properties being more erratic, as it only depends
on one person. In the case of two, three, or more residents, the per
capita consumption (PCC) is calculated as the mean between the
occupants of the property, thus averaging out any differences in con-
sumption behavior from one day to the next one.

Fig. 4 shows the distribution of daily PCC for different catego-
ries of four temporal characteristics (month, day of the week, type
of day, and season). Demand is time-dependent because it increases
during certain times of the week or the year. Consumption is higher
over weekends and holidays as opposed to weekdays, with Sundays
claiming the highest weekly consumption [Figs. 4(a and d)]. A
milder influence is observed throughout the year, with water de-
mand over the summer months and December slightly higher than
any other time of the year [Figs. 4(b and c)].

Prediction Accuracy

A summary of the modeling results for the training and test data sets
is given in Table 3. Model 6 has the best performance (MAPE ¼
17.9% and R2 ¼ 54.9%). Model 7, which does not include data
on past consumption, can still explain 49% of the variance in the

Table 2. Input variables for Models 1–7

Variable group Model input variables 1 2 3 4 5 6 7

Past consumption Consumption 1–7 days ago X — — — — X —
Consumption 1 day ago — X — — — — —

Temporal Type of day X X X X X X
Weekday X — X — X — —
Month X — X — X — —
Season X X X X — — —

Household Acorn X X X X X — X
Garden size X X X X X — X

Metering status X X X X X — X
Rateable value X X X X X — X

Council tax band X X X X X — X
Occupancy rate X X X X X — X

Weather Sunshine hours X X X X — —
Soil temperature X — X — X — —
Air temperature X X X X — — —

Humidity X — X — X — —
Days without rain X — X — X — —

Rainfall X X X X — — —

Total input variables 23 12 16 11 11 8 7
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model (MAPE ¼ 19.7% and R2 ¼ 49.0%). For comparison, the
model that assumes water demand for each day in the data is equal
to mean demand averaged across all days has a MAPE ¼ 29.3% and
R2 ¼ 0. The model that predicts consumption for each household

group to be equal to the previous day has a MAPE ¼ 23.7%
and R2 ¼ 34.9%. Unlike the two simple benchmark models, the
RF model is able to predict a significant portion of the consump-
tion variance (R2 ¼ 54.9%), despite the relatively high amount of

Fig. 4. Distribution of consumption for different categories of temporal characteristics. Each distribution shows the mean daily PCC among all
properties for each day in the data for different (a) weekdays; (b) months; (c) seasons; and (d) day types (weekend/bank holiday).

Fig. 3. Distribution of consumption for different categories of 6 household characteristics. Each distribution shows the mean daily PCC among all
properties with the corresponding characteristic for each day in the data, for different (a) occupancy rates; (b) council tax bands; (c) metering statuses;
(d) rateable values; (e) garden sizes; and (f) acorn groups.
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randomness associated with this level of aggregation. This is due to
the RF’s ability to learn the consumption patterns in the training
data, even in the presence of noise.

Taking into account the small temporal (daily) and spatial (~3.8
household on average) scales for which predictions are made, the
models can predict a significant portion of the variance in house-
hold consumption despite the amount of randomness associated
with this level of aggregation. Previous studies specifically ac-
counted for this effect of spatial scale on prediction accuracy
and highlighted the reduction in predictive performance associated
with small-scale household consumption (Xenochristou and
Kapelan 2020). When predicting household consumption at the
monthly scale and household level, previous studies achieved a
maximum R2 of 44% (Williamson et al. 2002), or ∼30%
(Jorgensen et al. 2009). Therefore, the RF model developed here
(R2 ¼ 54.9%) performs significantly better at a very high temporal
(daily scale) and spatial (3.8 households) resolution.

According to Table 3, reducing the number of explanatory var-
iables does not (in most cases) influence the results, whereas in
some cases, it even improves the model’s accuracy. Removing cor-
related weather and temporal variables has hardly any effect on
the result (Table 3, Models 3–5), whereas excluding 6 days of past
consumption from Model 1 leads to increased forecasting errors
(Table 3, Model 2). Model 7, which includes only six household
variables and the type of day as input, performs better than Model
3, which has additional temporal and weather variables. Removing
all variables other than past consumption and the type of day from
Model 1 also slightly increases the prediction accuracy (Table 3,

Model 6). In both cases, this is likely due to overfitting problems,
i.e., the model learning patterns from the variables that do not in-
fluence consumption.

Based on the preceding findings, for the purposes of demand
prediction, water utilities do not necessarily need to rely heavily
on extensive smart metering programs over the whole network,
although there are potential benefits of smart metering data beyond
demand forecasting. These benefits include reduced consumption,
leakage detection, and deriving a greater understanding of house-
hold water consumption for individual water users. In terms of
demand forecasting, smaller-scale metering programs may be suf-
ficient to develop useful predictive models that could then be up-
scaled with data on customer and property characteristics. This
finding is particularly valuable for water utilities in the UK, where
almost half of the properties are unmetered and overall smart meter
penetration is significantly lower.

Variable Permutation

One variable is permutated at a time for each model, and results
appear in Fig. 5 (models with past consumption) and Fig. 6 (models
without past consumption). The x-axis demonstrates the impor-
tance factor, i.e., the factor by which the MSE increases (denoting
decline in model performance), when an input variable is permu-
tated. The variables are ranked on the y-axis based on this impor-
tance factor. Because the shuffling is repeated multiple times in
order to increase the robustness of the outcome, several importance
factors are calculated for each variable. The error bar corresponds

Table 3. Model configuration and prediction accuracy for Models 1–7

Models Consumption data

Model parameters Training Testing

mtry nodesize ntrees MAPE (%) MSE (L2=day2) R2 (%) MAPE (%) MSE (L2=day2) R2 (%)

1 Yes 5 200 300 16.1 742 64.3 17.9 952 54.7
2 Yes 4 200 300 18.1 936 54.7 19.0 1,055 50.0
3 No 8 200 300 18.7 983 53.1 19.7 1,115 47.6
4 No 6 200 300 19.3 1,027 51.3 20.0 1,132 47.3
5 No 5 200 300 19.1 1,014 52.0 19.8 1,126 47.5
6 Yes 3 200 300 16.7 809 61.0 17.9 934 54.9
7 No 3 200 300 19.6 1,069 48.5 19.7 1,067 49.0

Note: Two best models, i.e., with and without past consumption data, are highlighted in bold.

Fig. 5. Factor by which the mean square error (MSE) increases when each feature is permutated for Models 1 and 2.
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to the importance at 5% and 95% of the repetitions, whereas the dot
corresponds to the median. A factor of 1 means that excluding the
variable from the model does not influence accuracy.

According to Fig. 5, when 7 days of past consumption are in-
cluded as model input, they are by far the most important predictors
(Fig. 5, Model 1). Demand 1 day in the past (d.1) has the highest
explanatory value, followed by demand on the same day of the
week but 7 days prior (d.7). The day of the week is the only other
important variable, whereas the other predictors have a mild to zero
influence. However, even when the variable with the highest im-
portance (d.1) loses its predictive capacity, the MSE increases only
by a factor of 1.15. Because Model 1 already includes 7 days of past
consumption that carry overlapping information, excluding any
one of them individually does not have a major effect on the output.

However, things are different for Model 2 (Fig. 5), which ex-
cludes highly correlated predictors. In this case, both consumption
1 day ago (d.1) and the occupancy rate are highly important, and
excluding either from the model increases the MSE by a factor of
1.50–1.53 (i.e., by 50%–53%), a much higher rise compared with
Model 1. In addition, the significance of the rest of the household
characteristics as well as the type of day also increases (Fig. 5,
Model 2).

Fig. 6 demonstrates the same results when past consumption
data are not used as input (Models 3–5). In this case, household
characteristics, particularly the occupancy rate, are the most impor-
tant predictors, followed by temporal information (type of day or
weekday) (Fig. 6). Similarly to Fig. 5, all other variables, including
the weather and the rest of the temporal characteristics, are very
close to a factor of 1. This means that even when past consumption
is not included as model input, excluding these variables from the
model does not influence accuracy.

Although there are slight differences amongModels 3–5 (Fig. 6),
the importance factors relating to each predictor are very similar.
Removing correlated predictors (e.g., the season, month, and vari-
ous weather variables) from Models 4 and 5 in this case did not
increase their importance.

Notably, there is a large difference in the scale of feature impor-
tance between Fig. 5 (with past consumption) and Fig. 6 (without
past consumption). When the explanatory factors contain overlap-
ping information, excluding one of them only marginally reduces

accuracy, resulting in low feature importance factors (Fig. 5). When
information about past consumption is not available, the occupancy
rate is the only variable carrying this information, resulting in an
importance factor of up to 2.3 (Fig. 6, Model 3). This means that
excluding information about the occupancy rate of a household
when past consumption is not available will increase the MSE ∼2.3
times or 130%.

These findings provide a good overview of variable importance
and interactions and can be used as a guide on what variables to
include in the model under different conditions, i.e., based on what
other relevant information is available in each case.

Influence of Household Variables

Next, the effect that different household characteristics have on the
predictions is explored using the ALE plots (Fig. 7). The y-axis
shows different categories of each explanatory variable, and the
x-axis demonstrates the deviation from the mean predicted con-
sumption for each household category (Fig. 7). When the ALE
value of the x-axis is positive, the corresponding category is pre-
dicted to have a consumption higher than average, whereas the op-
posite is true when the ALE value is negative.

As can be seen from Fig. 7, the results are in agreement with
previous analysis that explored the distribution of consumption
for each household category (Fig. 3). Occupancy has by far the
highest influence on predicted consumption, as properties with
low occupancy rate (one resident) are predicted to consume
∼75 L=capita=day of water more than properties with high occu-
pancy (three or more residents) [Fig. 7(a)]. The next most influen-
tial variable is the council tax band [Fig. 7(b)]. Higher paying
bands (F–H) have a predicted consumption of ∼26.5 L=capita=day
more than lower bands (A–C), and unmetered customers are also
on the higher end, with ∼19.5 L=capita=day more than metered
customers [Fig. 7(c)]. A smaller influence is identified for the
acorn group, garden size, and rateable value. Financially stretched
customers have the highest predicted consumption, which is
∼9 L=capita=day more than customers in the comfortable acorn
group [Fig. 7(f)]. Properties with large gardens are predicted to con-
sume ∼5 L=capita=day more than the ones with small gardens
[Fig. 7(e)], whereas properties with high rateable values are

Fig. 6. Factor by which the mean square error (MSE) increases when each feature is permutated for Models 3–5.
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predicted to consume ∼3.5 L=capita=day more than the low ones
[Fig. 7(d)].

These results are in general agreement with studies in the liter-
ature (Russac et al. 1991; Edwards andMartin 1995; Bellfield 2001;
Butler and Memon 2006). Edwards and Martin (1995) concluded
that lower acorn classes are associated with lower PCC, whereas
other studies (Russac et al. 1991; Bellfield 2001) found no strong
relationship between the acorn group and water use. Although some
studies (Russac et al. 1991) observed that as the rateable value in-
creases, so does water consumption, others (Bellfield 2001) did not
find any relationship between the two. Finally, the relationship
between the garden size and water consumption has been so far
difficult to establish (Bellfield 2001; Gato et al. 2007).

Influence of Temporal Variables

The effect of four temporal characteristics on the model’s result is
also investigated using the ALE plots (Fig. 8). According to
Fig. 8, the type of day (if it is a weekend/bank holiday or not)
and day of the week have the highest impact on predicted water
demand, whereas the month and season have almost no influence.
Overall, water consumption on weekends and holidays is predicted
to be ∼11 L=capita=day higher than on working days [Fig. 8(c)].
Water demand gradually declines from Monday to Friday, to then
increase again on Saturday and Sunday. Sundays claim almost
8 L=capita=day more on average compared with Fridays, the day
with the lowest predicted consumption [Fig. 8(a)]. Although the
month and season have almost no influence on the model’s result,
summers cause a slight increase in consumption (<1 L=capita=day).
An even smaller influence is observed for December (<0.5 L=
capita=day), the month associated with the highest increase in pre-
dicted consumption. This is likely due to the holiday season because
people tend to spend more time at home.

Time variations in water-use patterns are widely recorded in
the literature (Edwards and Martin 1995; Hartley 1995; Kowalski
and Marshallsay 2005; Gato et al. 2007; Billings and Jones 2008;

Parker and Wilby 2013). Water use is higher in the weekends be-
cause this is when people tend to be more regularly at home
(Edwards and Martin 1995; Hartley 1995; Bellfield 2001; Gato
et al. 2007; Parker and Wilby 2013). Typically, water use peaks
over the summer months, although lower peaks have also been ob-
served over the winter (Billings and Jones 2008; Parker and Wilby
2013). However, in a temperate climate like the UK with lack of
strong seasonality and rainfall well distributed over the year, it is
expected that the seasonal pattern is going to be weaker than in
other countries.

Influence of Weather Variables

The influence of four weather variables on the model’s response,
i.e., the daily water consumption, is assessed using the ICE plots
(Fig. 9). Previous work (Xenochristou et al. 2020b) concluded that
the rainfall amount and soil temperature have a limited effect on
water demand; thus, only the ICE curves corresponding to air tem-
perature, humidity, sunshine duration, and days without rain are
presented here. To avoid significant interactions from correlating
weather predictors, only one weather variable at a time is consid-
ered as model input when creating the ICE plots, along with past
consumption data and the type of day. For each plot in Fig. 9, the
y-axis represents the change in PCC compared with the mean,
when the variable of interest (in this case one of the four weather
variables), varies within its whole range of values (x-axis). The per-
centage associated with each curve represents the percentage of
data points that belong to each cluster.

According to Fig. 9, the weather variable that causes the biggest
spike in water consumption is air temperature [Fig. 9(a)]. This effect
is nonlinear and becomes significant when temperature exceeds
approximately 18°C and to a lesser extent for near-freezing temper-
atures, which is likely due to water used to prevent pipes from freez-
ing (Billings and Jones 2008) or leakages between the meter and
the property. Although water consumption starts increasing for
temperatures over the 18°C threshold, the rate of increase varies

Fig. 7. Influence of 6 household characteristics on predicted water consumption, accumulated local effects (ALE) plots: (a) occupancy rate; (b) coun-
cil tax band; (c) metering status; (d) rateable value; (e) garden size; and (f) acorn group.
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significantly [Fig. 9(a)]. Different days and households have differ-
ent sensitivity to weather changes. Here, only for 11% of data in-
stances (one data instance is 1 day and one household group), the
model predicts an increase in water use of up to 15 L=capita=day for
an increase in air temperature from 18°C to 30°C. For the other 89%

of the days and household types, the predicted increase in consump-
tion is between 2.5 and 6.0 L=capita=day [Fig. 9(a)].

For the rest of the weather variables, the predicted increase
in consumption is lower than for air temperature. The maximum
increase in water consumption caused by sunshine duration is

Fig. 9. Influence of 4 weather variables on predicted water consumption, individual conditional expectation (ICE) plots: (a) air temperature; (b) sun-
shine duration; (c) relative humidity; and (d) days without rain. The percentage associated with each curve represents the percentage of data points that
belong to each cluster.

Fig. 8. Influence of 4 temporal characteristics on predicted water consumption, accumulated local effects (ALE) plots: (a) day of the week; (b) month;
(c) type of day; and (d) season.
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9 L=capita=day, which is 6 L=capita=day lower than for air tem-
perature, but this increase relates to 15% of data instances. The rel-
ative humidity has an even smaller effect, with a maximum change
of 4 L=capita=day. However, this change applies to ∼54% of all
days and household types, whereas for 22% of them, there
is a near-steady decline over the whole range of humidity values
[Fig. 9(c)]. For the rest 24% of data points, water consumption
drops by 4 L=capita=day for an increase in humidity from 60% to
70%, whereas it only marginally decreases after this point.

The number of consecutive days without rain has the smallest
effect on the predictions. Consumption starts increasing after 12 days
without rain, reaching a maximum increase of 3 L=capita=day, for
16% of data points. This could potentially cause problems in the
future if the length of droughts increase. There is also a marginal
but steady increase in consumption over the whole range of days
without rain (x axis) for 61% of the data points, whereas there is
no visible change for 39% of the days and households.

In previous studies, the temperature (Bellfield 2001; Parker
and Wilby 2013; Dos Santos and Pereira 2014), sunshine hours
(Bellfield 2001), and humidity (Dos Santos and Pereira 2014), have
all been found to influence water demand, whereas the rainfall
amount had a lesser effect on water consumption (Bellfield 2001;
Schleich and Hillenbrand 2008). One reason that could explain this
low impact of weather on prediction accuracy could relate to the
mild UK climate, which lacks seasonal extremes. In this region,
household demand uplifts associated with the weather are typically
in the order of 5% during hot summer periods; thus, weather in-
duced demand is overall limited. Even more so, the years included
in this study did not capture a particularly hot dry summer. During
the record summer temperatures of 2018, the nonlinear influence
between weather and demand was seen at a broader aggregation—
e.g., from DMA to company level. Therefore, stronger weather ef-
fects could have been observed if the analysis included 2018 data.

Another reason for the limited weather effect could be the small
size of household groups (a mean of 3.8 properties=group). At this
level, the noise in the consumption signal might be too strong to
allow for the subtle changes due to weather to show. Previous work
showed that the effect of weather becomes noticeable only for cer-
tain households, days, and times (Xenochristou et al. 2020b), as
well as for certain aggregation levels (Xenochristou et al. 2020a).

Summary and Conclusions

This study has demonstrated a novel approach that combines the
high accuracy of machine learning models with the interpretability
of statistical methods. As part of this work, a RF model is devel-
oped that predicts daily water consumption 1 day ahead for homog-
enous groups of properties (∼3.8 households=group). A variety of
interpretable machine learning techniques (variable permutation,
ALE, and ICE curves) is used in order to assess the contribution
of the predictors on the forecasting accuracy and predicted water
consumption.

Based on the results obtained, the following conclusions can
be drawn:
• The RF-based short-term demand forecasting model is able to

accurately capture the complex and nonlinear dependencies be-
tween water consumption and different explanatory variables
such as temporal, household, and weather characteristics.

• When past consumption is not available, credible forecasting
models can be developed using household and temporal char-
acteristics, but weather input does not further improve results.
The best-performing forecasting model in this case is the one
including six household variables (occupancy rate, council tax

band, metering status, rateable value, acorn, and garden size) as
well as the type of day as inputs.

• When past consumption is not available, the property’s occu-
pancy rate is the most influential input variable, followed by
the council tax band and metering status. The acorn group, gar-
den size, and rateable value have the smallest effect. The weekly
pattern of consumption also becomes evident. Weekends and
holidays have a higher predicted consumption compared with
working days, although the monthly and seasonal patterns
are very weak.

• When past consumption data are included in the demand fore-
casting model, no other variable can significantly improve the
prediction results. The best-performing model in this case is the
one using 7 days of past consumption and the type of day as
inputs.

• Although weather input does not improve the forecasting
accuracy, relationships are identified between water consump-
tion and air temperature, sunshine duration, humidity, and to a
lesser extent for days without rain. This influence, however, is
limited to only certain household groups and days in the data,
and in most cases, it is triggered when the weather variable ex-
ceeds a certain threshold. This nonlinearity is important to iden-
tify and is relevant to help understand and predict changes
in household consumption under potential changes in the UK
climate.
These results help identify the factors that can explain consump-

tion variability among households. Thus, they may assist with
effectively targeting water conservation strategies, testing new tar-
iffs, and assessing the impact of population and lifestyle changes,
as well as evaluating the effect of potential changes in the climate at
the household level. In addition, this methodology can lead to the
development of improved water demand forecasting models and
enhance the usefulness of machine learning models even when past
consumption is not available.

The same methodology can be adopted and applied in different
studies in order to determine the predictors of water demand with
respect to the characteristics of each individual case. However,
the results of each study are specific to and dependent on its indi-
vidual characteristics that can relate to environmental factors such
as climatic variables, as well as household characteristics, customs,
and habits, and the interactions among them. Therefore results
should always be interpreted within the context of the specific case
study.

In addition, this work uses a certain level of temporal (daily) and
spatial (∼3.8 households=group) aggregation. The small temporal
and spatial scales implemented here allow to maintain the hetero-
geneity of the data set and account for the influence of the different
household, temporal, and weather variables, as well as their inter-
actions, on the model’s output. However, this choice might have
influenced the results. Increasing the level of spatial aggregation
decreases the range of demand values and thus it reduces forecast-
ing errors. In addition, variable importance also changes at different
aggregation levels (Xenochristou et al. 2020a).

Finally, the RF model was selected for this analysis due to its
accuracy and ease of implementation. However, forecasting accu-
racy may further improve if a different model is used instead. The
performance of RFs with respect to the characteristics of the prob-
lem, such as the temporal and spatial scale, forecast horizon, and
data availability, compared with other machine learning models,
has been the topic of further work (Xenochristou and Kapelan
2020).
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