
 
 

Delft University of Technology

Environmental and anthropogenic drivers of surface urban heat island intensity
A case-study in the Yangtze River Delta, China
Wang, Zian; Meng, Qingyan; Allam, Mona; Hu, Die; Zhang, Linlin; Menenti, Massimo

DOI
10.1016/j.ecolind.2021.107845
Publication date
2021
Document Version
Final published version
Published in
Ecological Indicators

Citation (APA)
Wang, Z., Meng, Q., Allam, M., Hu, D., Zhang, L., & Menenti, M. (2021). Environmental and anthropogenic
drivers of surface urban heat island intensity: A case-study in the Yangtze River Delta, China. Ecological
Indicators, 128, Article 107845. https://doi.org/10.1016/j.ecolind.2021.107845

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.ecolind.2021.107845
https://doi.org/10.1016/j.ecolind.2021.107845


Ecological Indicators 128 (2021) 107845

Available online 1 June 2021
1470-160X/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Environmental and anthropogenic drivers of surface urban heat island 
intensity: A case-study in the Yangtze River Delta, China 

Zian Wang a,b,c, Qingyan Meng a,c,e,*, Mona Allam a,d, Die Hu a,c,e, Linlin Zhang a,c,e, 
Massimo Menenti a,f 

a Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China 
b University of Chinese Academy of Sciences, Beijing 101400, China 
c Sanya Institute of Remote Sensing, Sanya 572029, China 
d Environment & Climate Changes Research Institute, National Water Research Center, El Qanater El khairiya 13621/5, Egypt 
e Hainan Research Institute of Chinese Academy of Sciences, Sanya 572029, China 
f Geosciences and Remote Sensing Department, Delft University of Technology, Stevinweg 12628 CN, Delft, the Netherlands   

A R T I C L E  I N F O   

Keywords: 
Surface urban heat island 
Land surface temperature 
Boosted regression trees 
Yangtze River Delta 

A B S T R A C T   

Nowadays urban climate is a global problem and many studies focused on understanding the relation between 
urban climate the built-up space using radiometric observations of the land surface temperature to estimate and 
monitor the surface urban heat island intensity (SUHIs). In this study MODIS land surface temperature (LST) data 
were used. The Yangtze River Delta Urban Agglomeration (YRDUA), eastern China, was selected as an example 
to study SUHI and multiple influencing factors in 16 big cities. Anthropogenic factors are considered the most 
important ones in determining SUHI, while natural factors remain influential. By using stratified random sam-
pling (SRS), 78,085 random points were selected within the 16 cities. Nine influencing factors were selected in 
this study: distance from building (BD), distance from the main roads (RD), distance from water (WD), digital 
elevation model product (DEM), gross domestic product (GDP), normalized difference vegetation index product 
(NDVI), nighttime lighting intensity (NTI), population (POP) and impervious surface area data (%ISA). The SUHI 
intensity was extracted at each random point as well as the values of the influencing factors, NDVI, DEM, ISA, 
POP, NTI and GDP. For BD, WD and RD, random points were selected from the water, building and main roads 
using the near tool in ArcGIS to measure these distances. Boosted regression tree (BRT) model was applied to 
capture the contributions of the above factors to SUHI. We also applied a different procedure to evaluate the 
relative influence of Land Use and Land Cover (LULC). The relative influence refers to the contribution of each 
factor to determine SUHI. The influencing factors were ranked on the basis of the relative influence on SUHI. The 
results showed that (1) higher SUHI intensity was recorded in Shanghai, Jiaxing and Nanjing cities respectively, 
while Hangzhou recorded the lowest SUHI. (2) Anthropogenic drivers have slightly higher relative influence on 
SUHI than natural drivers, i.e. 51.29% and 48.71% respectively. The influence of all drivers on SUHI from high to 
low is NTI (27.62%), ISA (24.38%), NDVI (12.11%), GDP (7.95%), DEM (7.29%), POP (6.37%), BD (5.33%), WD 
(4.93%), RD (4.02%). (3) The variation in the socioeconomic level lead to different spatial patterns of different 
influence factors, further indicating that the overall mean SUHI intensity is affected by the development of the 
city.   

1. Introduction 

According to the World Urbanization, 54% of the world’s population 

lives in urban areas, and this percentage is expected to reach 66% by 
2050 (United Nations, 2014). Impervious surfaces, such as cement, 
asphalt and concrete have gradually replaced the natural land surfaces 

Abbreviation List: LST, land surface temperature; UHI, urban heat island; SUHI, surface urban heat islands; YRDUA, Yangtze River Delta Urban Agglomeration; 
DEM, digital elevation model; NDVI, normalized difference vegetation index; ISA, impervious surface area; NTI, nighttime lighting intensity; LULC, land use and land 
cover change; POP, population; GDP, gross domestic product RD/BD/WD, distance from the major roads/building/water; BRT, boosted regression trees. 
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as a result of the accelerating urbanization process (Lo et al., 1997). 
These changes affect many things including the energy exchange be-
tween the land surface and the atmosphere. Urbanization also leads to 
changes in the climatic system, threatens biodiversity and affects 
ecosystem productivity through energy imbalance and loss of carbon 
storage (Cui et al., 2012; Seto et al., 2012). The relative increase in the 
temperature of a city relative to its surroundings is called the “urban 
heat island (UHI) effect” (Martilli et al., 2020; Oke, 1995). 

UHI affects all kinds of living organisms in the urban areas (Zhang 
et al., 2013), affects the health of urban residents and increases air 
pollution (Zhang et al., 2019)(Li et al., 2017a). Therefore, it is important 
to understand which factors determine UHI and what is their relative 
weight in order to develop proper urban policies in the future (Hu et al., 
2020b), and to reduce the expected negative impacts of urban heat 
(Martilli et al., 2020). Anthropogenic heat, which consists of the heat 
discharged from industrial plants, space heating, human metabolism 
and vehicle exhausts, is a major contributor to UHI. In cities, this heat 
usually contributes 15–50 W/m2 to the local heat balance (Sobrino et al., 
2008). 

The UHI can be calculated by air temperature, while the surface 
urban heat island (SUHI) is calculated with observations of the land 
surface temperature (Streutker, 2003; Li et al., 2017b). Air temperature 
is measured at weather stations while land surface temperature (LST) is 
retrieved from airborne and satellite data. This study focuses on esti-
mating SUHI and to evaluate the multiple properties of urban areas 
which might influence SUHI in 16 big cities. The weight of each influ-
encing factor and its effect on the spatial heterogeneity of SUHI was 
evaluated. 

Several previous studies focus on SUHI, e.g. Ayanlade (2016), Clin-
ton and Gong 2013), Lu et al. (2014) and Weng (2009). Factors affecting 
SUHI can be divided into: (1) Surface biophysical factors which include 
LULC, NDVI (normalized difference vegetation index) (Liu et al., 2016; 
Zhou et al., 2014c), NDBI (normalized difference built-up index) were 
widely used in SUHI studies (Chen et al., 2006; Liu and Zhang, 2011; Du 
et al., 2016c) (2) Socio-economic factors include population density 
(Huang and Cadenasso, 2016; Kotharkar and Surawar, 2016; Weng 
et al., 2008), distance from the building (BD), the main roads (RD) and 
the water (WD) (Feng et al., 2019). Also including gross domestic 
product (GDP), which is an indicator to the economic level in the city 
(Cui et al., 2016), and nighttime light data (nW cm− 2 Sr− 1), it is an in-
dicator of the human density in a specific area (Peng et al., 2012). ISA 
was also studied here, which it is defined by artificial structures that 
prevent infiltration of water into the soil (Bounoua et al., 2018; Gong 
et al., 2019). 

Some of the previous studies applied one influencing factor at the 
time in a regression analysis (Pearson correlation analysis, ordinary 
least-squares regression analysis, geographically weighted regression 
(GWR) analysis), and compared individual effects on SUHI on the basis 
of the coefficient of regression (R2). SUHI is usually affected by multiple 
factors, therefore, the strength of coefficient of regression (R2) for a 
single-factor cannot accurately explain observed SUHI. Most previous 
studies focused on an individual factor (Imhoff et al., 2010; Jusuf et al., 
2007; Oke, 1973; Tan and Li, 2015), while a few studies focused on the 
effects of multiple factors on SUHI (Coseo and Larsen, 2014; Peng et al., 
2012). 

Currently most stepwise regression methods are used in SUHI 
studies. Even though this method can generate an accurate model to 
explain the observed SUHI, it is difficult to estimate the contribution of 
all influencing factors. In brief, a small number of researches focused on 
detecting the ranking of the influencing factors on SUHI. 

The study was carried out in the Yangtze River Delta Urban 
Agglomeration (YRDUA), China. This study aimed to assess SUHI and 
the influencing factors using boosted regression trees (BRT). The main 
purposes of the study were: (1) investigate the effects of influencing 
factors on the SUHI and to detect the prevailing factors; (2) compare the 
effects of these factors on SUHI in the 16 selected cities. 

The research questions can be summarized as follows: 
(1) What is the pattern of SUHI in YRDUA? 
(2) What are the relations between influencing factors and SUHI on 

agglomeration scale and what is the contribution rate of each factor? 
(3) Is the relative effect of influencing factors on SUHI r similar in 

different cities? 
(4) Is the BRT model more effective than other statistical methods? 

2. Material and methods 

2.1. Study area 

The Yangtze River Delta is located in the east of China, adjacent to 
the East China Sea (118◦30 ’00 “E-123◦00′ 00′′ E, 28◦00 ’00 ”N-33◦30′

00′′ N). Its area is 9.96 × 104 km2, and the total urban area is 4.19 ×
103km2 (Hu et al., 2009). In this study, YRDUA refers to an area con-
sisting of a core city (Shanghai), two sub-core cities (Nanjing and 
Hangzhou) and 13 other prefecture-level cities in southeastern Jiangsu 
province and northern Zhejiang province. It is surrounded to the east by 
Shanghai, to the south by Taizhou and to the west by Hangzhou (Fig. 1). 
The topography of YRDUA is largely composed of plains and various 
landforms like hills and mountains. YRDUA belongs to the subtropical 
monsoon climate, the average annual precipitation and temperature are 
804 to 2057 mm and 9.3 to 17.3 ◦C respectively (Yang et al., 2017). This 
region is regarded as one of the most developed ones in China, and most 
industries are concentrated in this area (Huang and Lu, 2015). The 
urban agglomeration of the Yangtze River Delta region is one of the 
important six urban areas in the world, because it plays an important 
role in China’s economic and social development (Gu, 2011; Tian, 
2011). The YRDUA accounts for a quarter of the country gross domestic 
product (GDP) (Zhou et al., 2018). Rapid urbanization led to the 
decrease of land resources and environmental quality (Sun et al., 2019). 

In 2015, China’s GDP reached 1,087.7 billion US dollars (Gao et al., 
2019). At the same time, the region is one of the highest densities on the 
world, with 82.3 million people in 2015, 53.6 million of them living in 
the urban areas (Zhou et al., 2018). So for the above mentioned reasons, 
YRDUA was selected as our study area Rapid urbanization has acceler-
ated surface warming of YRDUA (Du et al., 2016b; Yang et al., 2011). 

2.2. Data description and preprocessing 

LST data were derived from MOD11A2 data products available at the 
Geospatial Data Cloud (http://www.gscloud.cn/). The 2015 data were 
used to study the SUHI pattern and drivers of SUHI in the YRD. 

Nighttime light satellite images have been widely used to detect, 
estimate, and monitor socioeconomic dynamics (Bennett and Smith, 
2017). With updated remote sensing data and the development of 
technology, nighttime light satellite data with higher resolution have 
become available. NPP-VIIRS data (spatial resolution: 750 m) may be a 
powerful tool for modeling socioeconomic indicators (Shi et al., 2014). 
NTL VIIRS data not only detect urban population, but also reflect the 
level of urbanization in detail (Chen et al., 2015). The sensor can also 
detect the artificial light from the earth’s surface and have been used to 
study social-economic activities (Elvidge et al., 1997). In this study, the 
Suomi-NPP-VIIRS data (https://ngdc.noaa.gov/) was used to assess 
nighttime lighting intensity (NTI). Most potential driving factors 
requiring data on roads, buildings and waters, were evaluated using data 
extracted from Open Street Map (OSM, https://www.openstreetmap. 
org/). The GDP and POP data were extracted from the Resource and 
Environment Science and Data Center (http://www.resdc.cn/). 

The impervious surface products are the ones described by Gong 
et al. (2019). The DEM and NDVI products are derived from geospatial 
data cloud (http://www.gscloud.cn). The original LULC mapped 21 
classes, which were aggregated into six classes for the purpose of our 
study: (1) Built-up area, including buildings, streets and other artificial 
surfaces; (2) Grassland (including natural grassland and artificial 
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grassland); (3) Water body (including lakes, reservoirs and rivers); (4) 
Forest land (including land with natural forests, plantations and urban 
trees); (5) Farmland land (including paddy fields and dry land); (6) 
Unutilized land (including bare land and the leveled unused land). 

The influence of the data spatial resolution on LST should not be 
underestimated, therefore, all data for factor calculations were resam-
pled to a 1000 m × 1000 m resolution within the study area as delin-
eated with ArcGIS 10.2. The potential driving factors were selected 
based on the literature review and available data (Table 1). 

2.3. Rural area 

We selected 16 cities for our study (Fig. 1). The retrieved LST was 
improved by correcting for noise caused by cloud contamination, 
topographic differences and zenith angle changes (Wan, 2008). The 
validation of the MODIS LST data against the in situ LST data indicate 
that the accuracy of the MODIS LST data (Du et al., 2016a; Wan, 2008). 

The choice of an appropriate and stable rural reference is most 
important in studies on SUHI. For this purpose, rural areas can be 
identified according to the following criteria (Liu et al., 2018): 

1. Flat fields on the same altitude as the city: The difference in 
elevation between the rural point of comparison and the urban region in 
question should be ≤ 50 m on a level, horizontal surface in order to 
ensure that the results of the assessment are not affected by temperature 
differences due to terrain exposure and elevation. 

2. Areas with a nighttime light intensity value ≤ 1. By using night-
time light intensity, one can identify areas that are virtually unaffected 
by human activity, including rural backgrounds where the heat island 
effect is not present. Although the outskirts of the cities are primarily 
composed of farmlands and vegetation, they are also affected to a 
relatively large degree by urbanization, and therefore are not suitable 
for use as a rural reference in a study on SUHI. Therefore, only areas 

where the nighttime light intensity is ≤ 1 have been chosen as the rural 
reference for this study. 

3. Areas where the maximum annual NDVI value is ≥ 0.7. By using 
this index, one can identify areas that are purely composed of highly 
concentrated vegetation and which do not include bodies of water and 
exclude many areas of low vegetation coverage in the outskirts of the 
cities, such as rural villages or satellite towns. The index can be obtained 
using the annual maximum NDVI image for 2015. 

2.4. Surface urban heat island intensity (SUHI) calculation 

The SUHI intensity has been estimated as the LST difference between 
urban and rural areas, with the aid of ancillary information, as LULC and 
ISA (Deilami et al., 2018). SUHI intensity has been calculated in this 
study as follows: 1. delineated the rural areas as discussed in section 3.1. 
2. Delineated the rural area using Arcgis 10.2. 3. From LST image the 
rural area was clipped to get the LST for rural areas.4. We calculated the 
mean LST for rural area. 5. SUHI was then calculated by subtracting the 
mean LST of rural area from LST (Oke, 1982; Schwarz et al., 2011; Zhou 
et al., 2014a): 

ΔLSTi = LSTi
urban − LSTrural (1)  

Where LSTi
urban is the urbanLST , i = random points, i = 1,…, N. N =

3297 in Changzhou, N = 12128 in Hangzhou, N = 4646 in Huzhou, N =
2940 in Jiaxing, N = 4941 in Nanjing, N = 6573 in Nantong, N = 5835 in 
Ningbo, N = 3655 in Shanghai, N = 5445 in Shaoxing, N = 5976 in 
Suzhou, N = 4511 in Taizhou1, N = 6533 in Taizhou2, N = 3422 in 
Wuxi, N = 5046 in Yangzhou, N = 2817 in Zhenjiang, N = 320 in 
Zhoushan. And LSTrural is the mean LST in the rural area.ΔLSTi repre-
sents the SUHI intensity at point i. 

Fig. 1. Location of the study area. (a) China. (b) Provincial area of Jiangsu, Zhejiang and Shanghai. (c) Yangtze River Delta.  
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2.5. Selection of the influencing factors 

The influence of the UHI effect is complex and varied, and contains a 
great deal of information. According to the previous results on UHI ef-
fect, the driving factors were divided into natural and anthropogenic 
factors. Ten potential driving factors were selected in the BRT model 

based on the literature review and available data. 
Normalized difference vegetation index (NDVI) (Tucker et al., 1985) 

has been widely used to characterize vegetation coverage (Hu et al., 
2020b). Previous studies have shown that SUHI is negatively correlated 
with NDVI (Yuan and Bauer, 2007). 

Nighttime lighting intensity (NTI) is derived from nighttime light 
remote sensing images to represent economic development. Logarithmic 
conversion of the NPP-VIIRS nighttime light composite data has been 
used to establish a quantitative indicator, the NTI (Yu et al., 2018). 

Distance to the major roads (RD), buildings (BD) were calculated 
from urban road and building vector data, which are commonly used as 
indicators of the anthropogenic heat, several studies documented the 
influence of the distance to roads on thermal environment (Hien et al., 
2011; Wang et al., 2014). 

Besides, the Yangtze River flows through Jiangsu Province, which is 
one of the largest rivers in North China, and there are 49 tributaries of 
the Yangtze River running through Jiangsu Province, with a total length 
of 26.2 km. Taihu Lake covers an area of 0.224 km2 was also considered. 
Water-cooling islands are important for mitigating UHI effects of ultra- 
high heat (Du et al., 2016), therefore, distance to waters (WD) has 
been established as an indicator of natural factors. 

With the fast-economic development and rapid population all over 
the world, the rate of urbanization increased and impervious surfaces 
replaced the natural ones (Stankowski, 1972). The GDP and population 
were considered as drivers of SUHI (Zhao et al., 2016). 

The fractional abundance of impervious soil cover is considered the 
main determinant of SUHI (Zhao et al., 2016). When computing the % 
ISA of each pixel, the fishnet with the same resolution as the LST data 
was established and the fractional abundance of impervious surfaces 
was calculated. 

Elevation of the natural surface of the Earth remains the same over a 
period of time and does not undergo any major change, even after ur-
banization (Wang et.al, 2015). The Digital Elevation Model (DEM) data 
with a 90-m resolution were used to characterize the elevation within 
the study area. 

The effects of the influencing factors on SHUI are calculated as fol-
lows: 1-The calculated SUHI in section 2.4 is classified into 10 classes 
using ArcGIS classification tool (Jenks classification) and the area of 
each class was calculated; 2- By using stratified random sampling (SRS) 
method (Nguyen et al., 2019), 78,085 random points were selected in 
the whole study area, the number of random points was selected ac-
cording to the area of each class. For Hangzhou, there was the largest 
number of random points (12128) while for Zhoushan, the numbers of 
random points were the lowest one, i.e. 320; 3- Each city was clipped in 
the SUHI map. 4- Distances from these points to main roads, buildings 
and waters were calculated using the near tool in ArcGIS toolbox. 5- 
SUHI were extracted at these points. 6- The values of NDVI, elevation, 
ISA, POP, GDP, NLI were also extracted at the same points. 7- All the 
extracted values are applied in the BRT model in R (R Development Core 
Team, 2006) version 2.3–1, using gbm package, then the relative in-
fluence and its contribution of each factor are calculated. 8- Each LULC 
class has no numerical value, thus the regression analysis cannot be done 
in the same way as with the other factors. Assign a number to each LULC 
type, then extracted at the selected random points and applied in com-
bination with SUHI to BRT model. The results are then assigned back to 
the original LULC type, so the relative influence of LULC on SUHI in the 
16 cities was gotten. 

2.6. Boosted regression trees analysis 

A machine learning statistical method called a boosted regression 
tree (BRT) was used to analyze the natural and anthropogenic factors in 
the complex urban environment. The BRT approach is fundamentally 
different from usual technique of using a tool to quantify the relation-
ship between one variable and another. The BRT combines two algo-
rithms, regression tree and boosting, in a single process (Friedman, 

Table 1 
The potential driving factors selected in this study.  

Type Name(ad) Definition Date source 

Natural factors Digital elevation 
model (DEM) 

DEM is digital elevation 
model, it characterizes 
the topographical 
variation (elevation) of 
the study area (Wang 
et al., 2018). 

http://www. 
gscloud.cn 

Normalized 
difference 
vegetation index 
(NDVI) 

NDVI is normalized 
difference vegetation 
index, it reflects 
vegetation coverage and 
intensity (Hu et al., 
2020b). 

http://www. 
gscloud.cn 

Impervious 
surface area 
(ISA) 

ISA is artificial structure 
that prevents infiltration 
of water into the soil, 
includes roofs, paved 
surfaces (Bounoua et al., 
2018; Gong et al., 2019). 

(Gong et al., 
2019) 

Distance from 
the water (WD) 

WD is one of the 
distance-based 
proximity factors, it is 
the distance from the 
water (Feng et al., 2019). 

http://www. 
openstree 
tmap.org 

Land use and 
land cover 
changes (LULC) 

LULC, It has direct 
relation with the global 
warming as well as with 
modification of local 
climate and environment 
in a microclimate region 
(Guo et al., 2018; 
Pramanik and Punia, 
2019). 

http://www. 
resdc.cn  

Anthropogenic 
factors 

Gross domestic 
product (GDP) 

GDP is gross domestic 
product. It reflect the 
level of economy in the 
city (Cui et al., 2016). 

http://www. 
resdc.cn 

Population 
(POP) 

POP is considered an 
indicators of 
anthropogenic heat, 
which reflects the spatial 
distribution of residents 
(Du et al., 2016b). 

http://www. 
resdc.cn 

Nighttime light 
product (NTL) 

NTI is nighttime lighting 
intensity, it is indicator 
to the density of human. 
Low nighttime lighting 
intensity is directly 
generated by 
agricultural activities, 
especially for 
undeveloped regions 
where slow urbanization 
occurs (Peng et al., 
2012). 

https://ngdc. 
noaa.gov 

Distance from 
the major roads 
(RD) 

RD it is the distance from 
main roads to the center. 
It is a measure of urban 
density: long RD means 
low urban density (Feng 
et al., 2019). 

http://www. 
openstree 
tmap.org 

Distance from 
the building 
(BD) 

BD is one of the distance- 
based proximity factors, 
it is the distance from the 
main building. Large BD 
means far from building 
(Feng et al., 2019). 

http://www. 
openstree 
tmap.org  
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2002). The process iteratively splits the space defined by independent 
variables to construct the dependent variable model. With the increase 
of split number, the accuracy of the model is improved. The tree-based 
model uses a series of rules to identify the regions with the most uniform 
response to predictive variables, thus dividing the predictive variable 
space into multidimensional subspaces. Friedman (2002) proposes a 
definition of the “relative influence” of a variable (where relative in-
fluence refers to the contribution of each variable). For each of the next 
steps, the focus is on the residuals: changes in the model’s response that 
have not been explained so far. Statistical deviation is used as the loss 
function of the software we use (please refer to https://statisticaloddsa 
ndends.wordpress.com/2019/03/27/what-is-deviance/). 

The analysis was performed using the statistical programming soft-
ware R version 3.3.2 with the gbm package. In gbm, randomness is 
controlled by “bag fraction”, which specifies the proportion of data to be 
selected for each step. The default bag fraction is 0.5, which means that 
in each iteration, 50% of the data will be randomly selected from all the 
training sets without replacement. In our study, 50% of the data was 
used to fit our independent variable, SUHI as the first regression tree. 

3. Results 

3.1. Spatial pattern of SUHI 

Using the MODIS LST data for the year 2015, the annual mean SUHI 
intensity was calculated (Fig. 2). It is clear that the SUHI is higher in the 
central and eastern parts of the study area including Shanghai, Suzhou 
and Jiaxing. In Shanghai, the SUHI intensity reaches up to 5.7 ◦C in 
downtown areas in the centre and northern part of Shanghai. Hangzhou, 
Ningbo and Taizhou also showed high SUHI intensity to some extent but 
less than Shanghai and Nanjing. One of the important reasons for this is 
the large vegetation areas that are spreading in these cities. Hangzhou 
has been named “International Garden City” by the International 
Federation of Park and Recreation. This confirms the important of urban 
vegetation in reducing SUHI. 

In the YRDUA, there is a “SUHI string cluster” with Shanghai at its 
center and a series of cities in the northwest, including Suzhou, Wuxi 
and Changzhou. In the northwestern cities of Nanjing, Yangzhou and 
Zhenjiang (close to each other), SUHI intensity was also well known to 
be rather high, same as Hangzhou and Ningbo (near Hangzhou Bay). The 
high SUHI largely occurs in the cities surrounding Shanghai. Due to the 
limited land area of Shanghai, its heat island cannot spread out much. In 
the future, these cities are expected to expand SUHI within this 

Fig. 2. The Distribution of SUHI intensity in YRDUA in 2015.  

Z. Wang et al.                                                                                                                                                                                                                                   
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agglomeration. As a result, the “SUHI string cluster” centered on 
Shanghai is growing in coastal areas, including the cities of Hangzhou 
Bay (e.g., Jiaxing, Hangzhou and Ningbo), while expanding to Nantong, 
Zhenjiang and Yangzhou, as well as Nanjing in the northwest. Eventu-
ally, clusters may form a large regional heat island in a “Z” shape, 
mimicking the shape of areas affected by urbanization. 

3.2. Relationship between SUHI and influencing factors 

3.2.1. The contribution of influencing factors 
As described in Sect.2.5 multiple factors were selected to evaluate 

their influence on SUHI. The relative influence of each factor is scaled as 
a percentage (Carslaw and Taylor, 2009). Fig. 3 presents the results of 
the BRT analysis for the 16 cities of YRDUA, indicating the relative in-
fluence of the natural and anthropogenic factors on SUHI. 

Overall, the relative influences of the factors were different in 
different cities (Fig. 3), as shown by the variability in the vertical di-
rection. On average of most important factors are NTI ISA and NDVI, 
with 27.62%, 24.38% and 12.11% respectively. NTI has the highest 
relative influence in Nantong, Shanghai, Shaoxing, Taizhou1, Yangzhou, 
Zhenjiang and Zhoushan with 35.06%, 32.01%, 33.20%, 43.23%, 
39.88%, 25.68% and 29.95% respectively. As regards the other factors, 
the influencing factors range from high to low are GDP, DEM, POP, BD, 
WD and RD, with 7.95%, 7.29%, 6.37% and 5.33% respectively on 
average. The relative influence of natural factors is 48.71%, in which 
ISA and NDVI are the most influential factors. For anthropogenic factors, 
the relative influence is 51.29%, in which GDP and POP have a relatively 
limited influence on SUHI. 

The contribution of the influencing factors varies from city to city. In 
coastal cities for example in Nantong and Jiaxing the contribution rate 
of natural factors, such as elevation, is relatively low with 1.16% and 
5.49% respectively, while the influence of anthropogenic factors, such 
as POP, is relatively high with 12.49% and 13.77% respectively. For the 
southern coastal cities, i.e. Ningbo, Taizhou2 and Zhoushan, the situa-
tion is reversed, as the contribution rates of elevation are 25.66%, 
16.08% and 7.89%, which is relatively high, while the contributions of 
POP are relatively low, 6.88%, 2.89% and 6.28% respectively. For the 
cities located along the Yangtze River, such as Nanjing, the influence of 
NDVI, ISA and NTI is relatively high, with 10.38%, 34.34% and 30.25%, 
while the influence of DEM, WD and RD is relatively low, with 6.32%, 
4.40% and 3.49% respectively. For the cities surrounding the Taihu 
Lake, such as Changzhou, Wuxi and Suzhou, all factors have approxi-
mately the same influence. For business and industrial areas, such as 
Shanghai, NTI has the largest influence and RD the lowest. In Hangzhou, 
ISA is the most influential and BD the least. 

We selected Hangzhou and Nantong as two case studies to analyze in 
more detail the influence of each factor on SUHI. As shown in Fig. 4(a), 
the most influential factor in Hangzhou is ISA, indicating that the urban 
impervious area is the main cause of SUHI as its relative influence was 
41.30% while the lowest one was BD. In Nantong, the NTI is the most 
influential factor while the DEM is the least. 

NDVI influence on SUHI in Hangzhou is high, i.e. rank 4th compared 
with Nantong, i.e. rank 6th and that is due to the widespread green areas 
in Hangzhou which help in mitigating SUHI. Among distance-based 
proximity factors (RD, BD and WD), WD has an obvious influence on 
SUHI in Nantong, reaching 7.12%, but in Hangzhou, the influence of WD 

Fig. 3. The relative influence on SUHI of the selected factors in the 16 cities within the YRD, 2015.  

Z. Wang et al.                                                                                                                                                                                                                                   
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is not obvious. Besides, it can be concluded that the natural factors have 
greatest contribution rate on SUHI in Hangzhou. The contribution rates 
of ISA and DEM accounting 60.93%, while the total contribution of the 
five anthropogenic factors is 30.91%. Therefore, the natural factors can 
be more properly used to explain influencing factors in Hangzhou. 
However, in Shanghai, five anthropogenic factors accounted for 
66.73%, which were the main factor affecting SUHI. 

3.2.2. Variation trends of influencing factors 
Overall, each one of the five natural factors, i.e. ISA, NDVI, DEM, 

WD, LULC, had a comparable influence on SUHI (Fig. 5). 

ISA had the highest influence on SUHI of all natural factors, which 
was expected since a higher ISA indicates lower infiltration and evap-
oration (Bounoua et al., 2018; Gong et al., 2019). In addition, imper-
vious surfaces tend to have a higher urban surface temperature (Cai 
et al., 2011; Imhoff et al., 2010). ISA has a lower relative influence on 
SUHI in the range 0 to 0.25, while the effect increases when ISA > 0.25. 
When ISA is>0.5, its influence on SUHI is negative but non-negligible. 
As a kind of man-made material composed of concrete and roads, ISA 
has the characteristics of rapid heating and cooling, and its thermal 
characteristics affect the change of surface temperature. 

In all cities NDVI is negatively correlated with SUHI (Fig. 5b). In 

Fig. 4. The relative influence of all factors in 2015. (a) Hangzhou and (b) Nantong.  

Fig. 5. The influence of natural factors on SUHI: a) ISA, b) NDVI, c) DEM, d) WD and e) LULC; values > 0 indicate a positive influence on SUHI; values < 0 indicate a 
negative influence on SUHI; values = 0 indicate no influence. 

Z. Wang et al.                                                                                                                                                                                                                                   



Ecological Indicators 128 (2021) 107845

8

Zhoushan the relative influence of NDVI on SUHI decreases when NDVI 
> 0.6, indicating that the mitigating effect of vegetation on SUHI is 
larger at smaller vegetation cover. In Changzhou, when NDVI is in the 
range (0–0.2), the relative influence on SUHI decreases gradually, then 
increases before 0.4 and decreases again, reaching the lowest level when 
NDVI = 0.9. In the other cities, the relative influence shows nonlinear 
relations with two thresholds. Like Wuxi, there seems to be two 
thresholds at 0.3 and 0.8. NDVI < 0.3 indicates less vegetation cover 
than building area, so it has a positive relative influence on SUHI even 
though fractional abundance of vegetation is small. When NDVI > 0.3, 
however, the effect of NDVI decreases, reaching its lowest point at 0.85. 

As seen in Fig. 5(c), when elevation is in the range (20, 100 m), the 
relative influence of it on SUHI decreases sharply, while when the value 
of DEM > 100 m, there is no effect on SUHI. But in Shaoxing, Ningbo, 
Hangzhou, Huzhou and Taizhou2, when elevation is in the range (0, 
600 m), the relative influence on SUHI decreases gradually, then at DEM 
> 600 m, there is no effect of DEM on SUHI. 

When WD is in the range 0–0.02 km (Fig. 5d), the relative influence 
on SUHI increases, then remains unchanged. In Shaoxing, Changzhou, 
Ningbo, Huzhou and Zhenjiang, however, when WD increases in the 
range 0–0.015 km, its relative influence on SUHI increases, then de-
creases when WD < 0.025 km and finally remains unchanged. These 
findings confirm that the thermal properties of and the absorption of 
irradiance by waterbodies do have an influence on the surface temper-
ature of adjacent patches (Wilson et al., 2003) and that this influence 
extends within a limited range, i.e. 0.25 km. 

The impacts of LULC on land surface climate are well documented in 
literature (Guo et al., 2018; Pramanik and Punia, 2019). We evaluated 
the relative influences of the unutilized land, grassland, construction 
land, farmland, forest land and water bodies in the 16 cities (Fig. 5e), 
which had a documented influence on SUHI in Shaoxing, Nanjing, 
Shanghai, Jiaxing, Taizhou1 and Zhoushan. The relative influences of 
LULC on SUHI were in the following order: construction land > farm-
land > grassland > forest land > unutilized land > water body. The 

influence of the construction land on SUHI suggests a large influence of 
human activities. For, the relative influence of farmland in different 
cities was lower (Fig. 5e), possibly due to the sparse vegetation cover in 
horticulture farms in the urban areas. Forest land had the lowest influ-
ence on SUHI due to the limited extent in urban areas and to the miti-
gating effect of high transpiration on surface temperature. 

As mentioned in Sect.3.2.1, NTI and GDP have the largest influence 
of all anthropogenic factors, i.e. 27.62% and 7.95% respectively. The 
relative influence of NTI on SUHI increases rapidly with increasing NTI 
up to about a value of 1.5, while it was negligible past this value. The 
relative influence of NTI in most cities is negative in the range (0–1), like 
Hangzhou, Taizhou1, Ningbo, Zhoushan, Shaoxing. The case of Nantong 
is slightly different: the relative influence on SUHI increases with 
increasing the NTI in the range 0–8, the then decreases in the range from 
8 to 15, then increases slowly in the range from 15 to 25 up to an 
asymptotic value. 

GDP is the second most important anthropogenic factor. The relative 
influence of GDP on SUHI increases in the range from 0 to 20000 yuan/ 
km2, then it remains negligible. In Shanghai, the relative influence of 
GDP on SUHI was positive, it increased up to 19,000 yuan/km2, then the 
effect decreased with GDP in the range 19,000 to 35,000 yuan/km2. In 
Nanjing, the relative influence of GDP on SUHI increased up to 30,000 
yuan/km2, then the influence decreased with GDP in the range from 
30,000 to 40,000 yuan/km2, and then it remained constant. In Hang-
zhou, the relative influence of GDP on SUHI is positive, but it decreased 
up to 37,000 yuan/km2, then it remained unchanged. We have applied 
just two GDP values in our analysis: one value for the rural area and one 
(higher) value for the urban area for each city. This gives a large 
improvement in model accuracy at the first split, but no further 
improvement afterward. This explains the general trend in Fig. 6b. 

The total contribution rates of the last three factors, BD, POP and RD 
are 15.72% (as mentioned in Sect.3.2.1). The relative influence of BD on 
SUHI decreases with increasing BD in the range of BD up to 0.075 km, 
and then it remains unchanged. POP is considered an indicator of 

Fig. 6. The influence of anthropogenic factors on SUHI: a) NTI, b) GDP, c) POP, d) BD and e) RD.  

Z. Wang et al.                                                                                                                                                                                                                                   
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anthropogenic heat (Fig. 6c), which reflects the spatial distribution of 
residents in the way we sampled this data set. The relative influence on 
SUHI increases up to 2000 person/km2, then it remains constant and 
negligible. In Nanjing, the relative influence of POP increases up to 1000 
person/km2. In the range 1000–1500 person/km2 the relative influence 
of POP dips a bit, then it increases again and finally levels off to zero. In 
Shanghai, the relative influence of POP on SUHI is slowly increases. In 
Ningbo and Nantong, the relative influence of POP increases up to 1000 
person/km2, then decreases slightly in the range 1000–1500 person/ 
km2 to level off at zero as POP increases further. RD is a measure of 
urban density: large RD means low urban density. In Nantong, when RD 
in the range from 0 to 0.035 km, the relative influence on SUHI de-
creases (Fig. 6e), when RD is from 0.035 to 0.05 km, the relative in-
fluence of RD on SUHI increases sharply, then the effect is nihil. In 
Changzhou, when RD in the range from 0 to 0.035 km, the relative in-
fluence of RD on SUHI decreases, when RD is from 0.035 to 0.045 km the 
relative influence of RD on SUHI increases sharply, then there is steady 
effect of RD on SUHI, then the relative effect on SUHI again decreased in 
the range 0.06–0.075 km. For the other cities, the relative influence of 
RD on SUHI continuously decreases with an increasing RD. When RD 
is<0.025, its influence on SUHI is positive. From the results, it can be 
seen that this distance-based proximity factor reflects the radiation ef-
fect of the city. 

The results are summarized in Table 2 and Table 3. 

4. Discussion 

The aim of this study was to assess the SUHI dependence on influ-
encing factors in 16 big cities in YRD. Most of high SUHI intensity lo-
cations were recorded in cities like Shanghai, Nanjing and Shaoxing, 
while lower SUHI intensity was recorded in the suburban areas. 
Impervious surfaces are recoded in the economic and industrial areas 
that characterize by intensive human activities, SUHI intensity has high 
values in these areas through changing the percentage of the ISA. 
Impervious surface is an indicator of human activity intensity and has a 
great effect on urban surface energy balance (Zhao et al., 2018). Our 
results show that that the increase in ISA tend to increase SUHI, while an 
increase in the vegetation cover tends to mitigate the SUHI, confirming 
the findings of Du et al. (2016), Estoque et al. (2017) Guo et al. (2015), 
Li et al. (2011), Li et al. (2017) and Yue et al. (2007). ISA and NDVI are 
highly correlated with SUHI. POP is highly and positively correlated 
with SUHI effect, especially in rapid urbanization and high income areas 
and our results agree with Das Majumdar and Biswas (2016). 

4.1. Comparison of influential factors with previous studies 

This study provides an in-depth quantitative analysis of the causal 
relationship between influence factors and the SUHI. The idea behind 
this exercise is that if the change in the influencing factors precedes the 
change in the SUHI effect, causality is more likely to occur. The results of 
these analyses show statistically that the SUHI effect is context- 
dependent, that is, it varies widely in space. Our findings (Figs. 5 and 
6) are consistent with those of Buyantuyev and Wu, 2010; Li et al., 2010; 
Su et al., 2012; Tian et al., 2012. In areas near water bodies (such as 
Taihu Lake), the situation is reversed by a negative regression coeffi-
cient. The results of this study also indicate that SUHI effect is not only 
influenced by DEM, NVDI, ISA and WD, but also by POP, GDP, NTI, RD 
and BD. The results show that the increase of DEM, NDVI, RD and BD can 
significantly reduce the SUHI, while the increase of GDP, NTI, ISA and 
WD can significantly increase it. We found that DEM, NDVI, ISA, GDP, 
POP, NTI and RD have a stronger influence on SUHI, which is consistent 
with Zhang et al. (2017). Air temperature varies between 0.6 and 1.0 K 
for every 100 m of elevation change. Given its small variations in the 
study area, the effect of elevation may not be significant. 

Policymakers paid less attention to manage SUHI in the YRDUA and 
more attention to other environmental phenomena, such as traffic 

Table 2 
Influence of natural factors on SUHI.  

Factor Definition Relative 
influence 

Reason Agreement 

ISA ISA is artificial 
structure that 
prevents 
infiltration of 
water into the 
soil, includes 
roofs, paved 
surfaces ( 
Bounoua et al., 
2018; Gong 
et al., 2019). 

The relative 
influence of 
ISA on SUHI 
increasing 
with 
increasing ISA 
in all the 16 
selected cities. 
ISA has a 
lower relative 
influence on 
SUHI in the 
range 0 to 
0.25, while 
the effect 
increases 
when ISA >
0.25. When 
ISA is>0.5, its 
influence on 
SUHI is 
negative but 
non- 
negligible. 

As a kind of man- 
made material 
composed of 
concrete and roads, 
ISA has the 
characteristics of 
rapid heating and 
cooling, and its 
thermal 
characteristics affect 
the change of surface 
temperature. A 
higher ISA indicates 
lower infiltration 
and evaporation ( 
Bounoua et al., 2018; 
Gong et al., 2019). 

(Chen 
et al., 
2006; Hu 
et al., 
2020a; 
Yuan and 
Bauer, 
2007).  

NDVI NDVI is 
normalized 
difference 
vegetation 
index, it 
reflects 
vegetation 
coverage and 
intensity (Hu 
et al., 2020b). 

- For 
Zhoushan: 
The relative 
influence of 
NDVI on SUHI 
decreases 
when NDVI >
0.6, indicating 
that the 
mitigating 
effect of 
vegetation on 
SUHI is larger 
at smaller 
vegetation 
cover.- For 
Changzhou: 
When the 
value of NDVI 
is in the range 
(0–0.2), the 
relative 
influence on 
SUHI 
decreases 
gradually, 
then increases 
before 0.4 and 
decrease 
again, 
reaching 
lowest level 
when NDVI =
0.9.- For the 
other cities: 
The relative 
influence 
shows 
nonlinear 
relations with 
two 
thresholds. 
When NDVI 
less than first 
threshold, 
there is a 
positive 
relative 

This is related to the 
decrease of surface 
resistance to 
evapotranspiration, 
the majority of 
energy of latent heat 
flux and the 
reduction of Bowen 
ratio (Mildrexler 
et al., 2011; Mu 
et al., 2007). 

(Hu et al., 
2020b; 
Yuan and 
Bauer, 
2007) 

(continued on next page) 
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congestion and greenhouse gas emissions. Many studies have suggested 
effective ways for SUHI mitigation. For example, a decrease in the dis-
tance from a road is associated with an increase in LST, thus increasing 
SUHI. To alleviate the latter problem various urban growth management 
policies, e.g., bus-oriented, compact and corridor development, are 
being implemented (Adachi et al., 2014; Myint et al., 2015). This points 
to future research challenges in investigating the effectiveness of urban 
growth management in reducing the SUHI effect. A smaller WD does 
help to mitigate SUHI, due to the water thermal properties, consistently 
with previous studies (Weng et al., 2004; Yue et al., 2007). 

4.2. Limitations 

This study provided a comprehensive framework to study the rela-
tion between SUHI and the influencing factors at different spatial scales 
in YRDUA. Though, this research has some limitations: Firstly, the study 
analyzed the spatial patterns of SUHI intensity and the related factor for 
just the year, 2015). Therefore, this research will continue by applying 
multi-temporal remote sensing data. Secondly, other influencing factors 
need also to be studied deeply such as human activities, urban size, and 
traffic flow. Thirdly, we considered 6 aggregated LULC classes, but a 
more detailed classification of LULC, for example separating industrial 
and commercial lands, would be useful to understand better the drivers 

Table 2 (continued ) 

Factor Definition Relative 
influence 

Reason Agreement 

influence on 
SUHI even 
though 
fractional 
abundance of 
vegetation is 
small. And 
then the effect 
of NDVI 
decreases, 
reaching its 
lowest point 
at 0.85.  

DEM DEM is digital 
elevation 
model, it 
characterizes 
the 
topographical 
variation 
(elevation) of 
the study area ( 
Wang et al., 
2018). 

- For 
Shaoxing, 
Ningbo, 
Hangzhou, 
Huzhou and 
Taizhou2: 
When DEM 
(elevation) is 
in the range 
(0, 600 m), 
the relative 
influence on 
SUHI 
decreases 
gradually, 
then at DEM 
> 600 m, 
there is no 
effect of DEM 
on SUHI.- For 
the other 
cities:When 
DEM 
(elevation) is 
in the range 
(20, 100 m), 
the relative 
influence of it 
on SUHI 
decreases 
sharply, while 
when the 
value of DEM 
> 100 m, 
there is no 
effect on 
SUHI. 

Due to orographic 
effects, SUHI vary 
with urban-suburban 
difference in 
elevation (Zhou 
et al., 2014a). 

(Wang 
et al., 
2018)  

WD WD is one of 
the distance- 
based 
proximity 
factors, it is the 
distance from 
the water (Feng 
et al., 2019). 

- For 
Shaoxing, 
Changzhou, 
Ningbo, 
Huzhou, 
Zhenjiang: 
When WD 
increases in 
the range 
0–0.015 km, 
its relative 
influence on 
SUHI 
increases, 
then 
decreases 
when WD <
0.025 km and 
finally 
remains 
unchanged.- 
For the other 
cities:When 

These findings 
confirm that the 
thermal properties of 
and the absorption of 
irradiance by 
waterbodies do have 
an influence on the 
surface temperature 
of adjacent patches ( 
Wilson et al., 2003) 
and that this 
influence extends 
within a limited 
range, i.e. 0.25 km. 

(Ghosh and 
Das, 2018)  

Table 2 (continued ) 

Factor Definition Relative 
influence 

Reason Agreement 

WD is in the 
range of 
0–0.02 km, 
the relative 
influence on 
SUHI 
increases, 
then remains 
unchanged.  

LULC LULC, It has 
direct relation 
with the global 
warming as 
well as with 
modification of 
local climate 
and 
environment in 
a microclimate 
region (Guo 
et al., 2018; 
Pramanik and 
Punia, 2019). 

We evaluated 
the relative 
influences of 
the unutilized 
land, 
grassland, 
construction 
land, 
farmland, 
forest land 
and water 
bodies in the 
16 cities, 
which had a 
documented 
influence on 
SUHI in 
Shaoxing, 
Nanjing, 
Shanghai, 
Jiaxing, 
Taizhou1 and 
Zhoushan. 
The relative 
influences of 
LULC on SUHI 
were in the 
following 
order: 
construction 
land >
farmland >
grassland >
forest land >
unutilized 
land > water 
body. 

The influence of the 
construction land on 
SUHI suggests a large 
influence of human 
activities. For, the 
relative influence of 
farmland in different 
cities was lower, 
possibly due to the 
sparse vegetation 
cover in horticulture 
farms in the urban 
areas. Forest land 
had the lowest 
influence on SUHI 
due to the limited 
extent in urban areas 
and to the mitigating 
effect of high 
transpiration on 
surface temperature. 

(Pramanik 
and Punia, 
2019)  
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Table 3 
Influence of anthropogenic factors on SUHI.  

Factor Definition Relative 
influence 

Reason Agreement 

NTI NTI is nighttime 
lighting 
intensity, it is 
indicator to the 
density of 
human. Low 
nighttime 
lighting intensity 
is directly 
generated by 
agricultural 
activities, 
especially for 
undeveloped 
regions where 
slow 
urbanization 
occurs (Peng 
et al., 2012). 

- For Nantong: 
In the range 
0–8, the 
relative 
influence on 
SUHI increases 
with increasing 
the NTI, and 
then decreases 
in the range 
from 8 to 15, 
then increases 
slowly in the 
range from 15 
to 25 up to an 
asymptotic 
value.- For 
other cities: 
The relative 
influence of 
NTI on SUHI 
increases 
rapidly with 
increasing NTI 
up to about a 
value of 1.5, 
while it was 
negligible past 
this value. The 
relative 
influence of 
NTI in most 
cities is 
negative in the 
range (0–1), 
like Hangzhou, 
Taizhou1, 
Ningbo, 
Zhoushan, 
Shaoxing. 

Human activities 
motivated 
anthropogenic 
heat emissions. 
As a result, at 
low NTI, i.e. in 
the transition 
from rural to low 
density urban 
areas increase 
the temperature 
difference 
between urban 
and suburb ( 
Peng et al., 
2012). 

(Clinton and 
Gong, 2013; 
Liao et al., 
2017; Peng 
et al., 2012; 
Hu et al., 
2020a, p. 
32)  

GDP GDP is gross 
domestic 
product. It 
reflect the level 
of economy in 
the city (Cui 
et al., 2016). 

- For 
Shanghai:The 
relative 
influence of 
GDP on SUHI 
was positive, it 
increased up to 
19,000 yuan/ 
km2, then the 
effect 
decreased with 
GDP in the 
range 19,000 to 
35,000 yuan/ 
km2.- For 
Nanjing:The 
relative 
influence of 
GDP on SUHI 
increased up to 
30,000 yuan/ 
km2, then the 
influence 
decreased with 
GDP in the 
range from 
30,000 to 
40,000 yuan/ 
km2, and then 
it remained 
constant.- For 
Hangzhou:The 

Sometimes even 
GDP is high, its 
relative 
influences on 
SUHI is low and 
this is due to the 
high protection 
measures and 
high green areas 
to the 
environment. As 
in case of 
Hangzhou, it is 
the large 
vegetation areas 
that are 
spreading in this 
city. Hangzhou 
has given the 
name of the 
International 
Garden City by 
the International 
Federation of 
Park and 
Recreation. 

(Cui et al., 
2016; Niu 
et al., 2020)  

Table 3 (continued ) 

Factor Definition Relative 
influence 

Reason Agreement 

relative 
influence of 
GDP on SUHI is 
positive, but it 
decreased up to 
37,000 yuan/ 
km2, then it 
remained 
unchanged.- 
For the other 
cities:The 
relative 
influence of 
GDP on SUHI 
increases in the 
range from 0 to 
20000 yuan/ 
km2, and then 
it remains 
negligible.  

BD BD is one of the 
distance-based 
proximity 
factors, it is the 
distance from 
the main 
building. Large 
BD means far 
from building ( 
Feng et al., 
2019). 

The relative 
influence of BD 
on SUHI 
decreases with 
increasing BD 
in the range of 
BD up to 0.075 
km, and then it 
remains 
unchanged. 

Building is the 
basic unit of heat 
generation, 
whether it is 
industrial heat 
source or man- 
made heat, BD 
can reflect the 
radiation effect 
of the city to a 
certain extent. 

(Schatz and 
Kucharik, 
2015; Zhao 
et al., 2011; 
W. Zhou 
et al., 
2014b)  

POP POP is 
considered an 
indicators of 
anthropogenic 
heat, which 
reflects the 
spatial 
distribution of 
residents (Du 
et al., 2016b). 

- For Nanjing: 
The relative 
influence of 
POP increases 
up to 1000 
person/km2. In 
the range 
1000–1500 
person/km2 the 
relative 
influence of 
POP dips a bit, 
then it 
increases again 
and finally 
levels off to 
zero.- For 
Shanghai:The 
relative 
influence of 
POP on SUHI is 
slowly 
increases.- For 
Ningbo and 
Nantong:The 
relative 
influence of 
POP increases 
up to 1000 
person/km2, 
then decreases 
slightly in the 
range 
1000–1500 
person/km2 to 
level off at zero 
as POP 
increases 
further.- For 
the other 
Cities:The 
relative 

This may be 
related to the 
measures taken 
at these cities 
like increasing 
the green areas 
and other 
measures taken 
by the residence. 
Human activities 
not only can 
increase the 
intensity of 
SUHI, but also 
can decrease it 
depending on 
their behaviors. 

(Cui et al., 
2016; Du 
et al., 
2016b; Su 
et al., 2012; 
Zhang and 
Wang, 2008) 

(continued on next page) 
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of urban climate. Fourthly, urban areas have different design in different 
regions, which makes it more complex to study influence factors. 
Therefore, further studies are needed to address this aspect. Finally, the 
limitation of the low spatial resolution remote sensing imagery used in 
this study should be overcome by using higher resolution remote sensing 
images to extract urban land-cover information. 

This study analyzed the spatial variability of SUHI effect for a het-
erogeneous region and selecting multiple influencing variables. Our 
study differs from previous studies in three aspects. First, previous 
studies focused on one or two influencing factors, while we selected a 

comprehensive set of natural and anthropogenic factors. Second, pre-
vious studies focused on direct influencing factors, while this study 
focused on direct and indirect influences by calculating the distance 
from buildings, the major road and water. Third, our study provided 
further analysis of the influence factors and SUHI in each selected city, 
such as how to fully understand the relationships between POP, NDVI 
and SUHI and how to apply these results in urban management and 
planning. Future work will include the application of time series analysis 
to study the temporal variability of SUHI and the contribution of the 
influencing factors. This study will help us better understand the effect 
natural and anthropogenic factors on SUHI and help decision makers to 
develop more sustainable urban environments. 

5. Conclusions 

This paper took YRDUA, a major urban agglomeration in Eastern 
China, as a case study and made quantitative analyses to investigate the 
influence of multiple factors on SUHI intensity in 2015. MODIS data 
were used in this study. The spatial pattern of SUHI intensity was 
differently distributed, as it was most severe in the center and southeast. 
Three main conclusions can be summarized. Firstly, NTI and ISA are the 
two most influential factors on SUHI, while RD variations have a smaller 
influence. The total contribution of anthropogenic factors (NTI, GDP, 
POP, BD, RD) was 51.29% and natural factors (ISA, NDVI, WD, DEM) 
was 48.71%, indicating that SUHI is highly affected by anthropogenic 
factors. The order of influence of LULC on SUHI are as follows: con-
struction land > farmland > grassland > forest land > unutilized land >
water body. Secondly, in this study, both NTI and NDVI are significantly 
correlated with the SUHI intensity. Comparatively, GDP and RD have a 
non-significant correlation with SUHI. Thirdly, the variation in the so-
cioeconomic level lead to different spatial patterns of different influence 
factors. 

In summary, the influence of NTI and ISA on SUHI is higher in each 
city, while the influence is lower in case of RD. It has been also detected 
that the overall mean SUHI intensity is affected by the development of 
the city. Distance-based proximity factors (like RD and BD) are nega-
tively correlated SUHI, while ISA and POP are positively correlated. So 
we recommend that these factors should be considered in cities future 
urban planning. The findings from this study might be relevant for urban 
planning within a framework to control SUHI. 
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