
Convolution in
Multiphase Flow
Simulations
Improving Interface Curvature
Estimations
E.M. SpaansD

el
ft

U
ni

ve
rs

it
y

of
T
ec

hn
ol

og
y

Convolution in Multiphase
Flow Simulations

Improving Interface Curvature Estimations

by

E.M. Spaans
to obtain the degree of Bachelor of Science

at the Delft University of Technology,
to be defended publicly on Wednesday July 4, 2018 at 2:00 PM.

Student number: 4429710
Project duration: September 4, 2017 – July 4, 2018
Thesis committee: Prof. dr. ir. C. Kleijn, TU Delft, supervisor

Dr. D. van der Heul, TU Delft, supervisor
Ir. K. van As, TU Delft, supervisor
Prof. dr. ir. A. Heemink, TU Delft
Dr. S. Kenjeres, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

The accurate approximation of the surface tension force is paramount for continuum surface models in the
field of computational fluid dynamics for multiphase flow where surface tension is relevant. This involves
being able to accurately calculate the curvature at the interface. This study focuses on the use of convolution
in smoothing the VOF colour field in order to obtain better approximations of the curvature.

Given the sudden jump in values of the VOF colour field, the calculation of its derivative for the curvature
is sensitive to errors, given the large values of high order terms that determine the truncation error. To deal
with this problem, convolution of this abruptly varying field can be used to create a smoother transition. The
curvature approximation of a circular interface improved as the support of the convolution was increased. It
was proven analytically that, for these interfaces, the original curvature is retrieved from the convoluted field.
Interfaces along which the curvature varies were also considered, and it was found that there is a critical
convolution support that minimizes the error in the curvature, given that the choice of the support length
can modify the curvature that is estimated.

An algorithm was implemented in OpenFOAM that calculates the convolution of the VOF colour field.
The resulting smoothed field was then used to calculate the curvature, which is needed for the surface tension
force of the system. The simulations of a two-dimensional rising bubble resulted in more accurate results for
the circularity and the rising velocity, when compared to the original OpenFOAM implementation with no
smoothing. With the convolution algorithm, the terminal velocity deviated only 0.01% from a well-accepted
benchmark case, a great improvement when compared to the 4.2% difference when no smoothing was used.
However, simulations of a static bubble in zero-gravity rapidly resulted in unphysical flow, manifested as a
wavy interface, when a convolution support larger than 2 cells was chosen. An improvement of the estimation
of the surface tension force direction may be needed for this behaviour to disappear.

iii

Contents

Abstract iii

1 Introduction 1

2 Principles of Two-Phase Flow Modelling 3
2.1 Physics of Two-Phase Flow . 3

2.1.1 Governing Equations . 3
2.1.2 Surface Tension . 4
2.1.3 Interface Shape . 4

2.2 Volume of Fluid . 6
2.3 Mathematical Model . 7
2.4 Curvature . 8

2.4.1 Curvature Calculation . 8
2.4.2 Curvature Error . 9

3 Convolution Filters 10
3.1 Convolution: the Principle . 10
3.2 Convolution Filters . 11

3.2.1 Kernel Requirements . 11
3.2.2 Filters . 11
3.2.3 Discretisation of the Filters . 12

3.3 Example: Convolution of Circle . 14
3.4 Estimating the Normal Vector with a Convoluted VOF Field . 15

3.4.1 General Case . 15
3.4.2 Interface with a Locally Constant Curvature . 17

4 Impact of Convolution on Curvature Calculations 20
4.1 Implementation . 20
4.2 Constant Curvature: Circle . 20

4.2.1 Initialization . 21
4.2.2 Curvature Error . 21

4.3 Non-Constant Curvature: Ellipse . 24
4.3.1 Initialization . 24
4.3.2 Curvature Error . 25

4.4 Concluding Remarks . 28

5 Impact of Convolution on Two-Phase Flow Simulations 30
5.1 Algorithm . 30
5.2 Comparison of Curvature Calculation Between Python and OpenFOAM 31
5.3 Benchmark Case 1: Static Bubble . 32

5.3.1 Case Description . 32
5.3.2 Results . 33

5.4 Benchmark Case 2: Rising Bubble . 36
5.4.1 Case Description . 36
5.4.2 Results . 37

iv

Contents v

6 Analysis of the Interface Wave Induced by the Convolution Method 41
6.1 Parameters Relevant to Simulation . 41

6.1.1 Curvature . 41
6.1.2 Pressure . 42
6.1.3 Surface Tension Force . 43

6.2 Conclusions . 44

7 Conclusions and Recommendations 46
7.1 Conclusions . 46
7.2 Recommendations . 47

A Filter weights 48

B Plots of Curvature Error as a Function of Convolution Support for Different Mesh Dimensions 49

C Convolution Code 51
C.1 convolution.H . 51
C.2 convolution.C . 52

Bibliography 57

1
Introduction

Fluid-fluid multiphase flow is concerned with the study of the motion and interaction of two or more immis-
cible fluids. These interactions are ubiquitous in nature, e.g. rainfall, ocean waves and underground water
circulation. It is also of great importance for industry, e.g. fuel sprays for combustion engines, ink jet systems,
cavitation and evaporation [1], and spray drying [2]. Understanding the underlying dynamics is crucial for
the prediction of the behaviour of such systems.

Multiphase flow is an important component in the field of computational fluid dynamics (CFD), which
intends to predict the motion of a multiphase system by numerically approximating the solution of the gov-
erning equations. Despite its broad use and the impact it has had on the field, it remains a challenge to
accurately estimate the evolution of such flow. There are several methods that have been developed to solve
these problems, and to keep track of the interface. The most common ones include Volume of Fluid (VOF)
methods [3], Height Functions (HF) [4] and Level Set (LS) [5]. Some approaches also involve a combination
of two methods, in order to take advantage of the qualities of each one [6]. The current study focuses on the
VOF method.

In some cases, surface tension plays an important role in the development of the flow. Here, one of the
main issues is how to model the surface tension that arises at a curved interface between fluids. Brackbill
et al. [7] proposed the Continuum Surface Force (CSF) model, which models the surface tension as a force
spread over a region of finite thickness. It is the most accepted model to resemble the action of surface ten-
sion within the VOF formulation. A key factor in the modelling of this force is being able to correctly approxi-
mate the curvature of the interface, since this influences the magnitude of this force. Moreover, the interface
normal vector is important for the direction of the force.

The main advantages of the VOF method are its mass conserving property [8], and its straightforward
implementation. Nevertheless, it suffers from poor curvature estimations, as the VOF describes an abruptly
varying field. The curvature is estimated from finite differences of this field, and the magnitude of high order
terms, which determine the accuracy of the curvature, are large for this steep field. This generally leads to
inaccurate surface forces, and the generation of so-called spurious currents [7] (non-physical velocities which
arise as a consequence of the numerical mismatch of the surface tension force and the pressure). To address
this issue, various efforts have been made to improve the curvature estimations. Some methods involve a
reconstruction of the interface based on the volume fractions [9]. Another approach is to smooth the abruptly
varying VOF field, and calculate the curvature based on this new field. Lafaurie et al. [10] developed the
Laplacian filter in order to achieve this smoothing. Among others, convolution is also used to achieve this [11,
12], but there are still numerical challenges encountered with this smoothing method.

OpenFOAM is a well-known open-source CFD solver [13]. Currently, it estimates the curvature by using
the steep VOF field. There are contributions from the CFD community that have implemented a Laplacian
filter [14], which has led to a reduction of spurious currents. Nevertheless, these are in many cases still sig-
nificant in magnitude. This study focuses on the impact of using convolution to smooth the VOF field on
curvature estimations for the simulation of two-phase flow in OpenFOAM. To achieve this, a convolution
algorithm was implemented.

The following questions will be addressed:
1. How does convolution affect the estimation of the interface curvature? Convolution as a smoother may

change the local value of the curvature. This effect will be considered for an interface with constant curvature

1

2 1. Introduction

(circle), and an interface along which the curvature varies (ellipse).
2. Does an improved curvature estimation by convoluting the VOF field yield more accurate multiphase

simulations in OpenFOAM? Test cases of a static bubble in zero-gravity and a rising bubble are considered.
In the former, the spurious currents are quantified, and in the latter the rising velocity and circularity. The
results are compared with benchmark cases.

Chapter 2 reviews the physics of two-phase flow relevant to this study, along with a description of the nu-
merical model. Chapter 3 explains how convolution works, and the convolution filters that will be considered.
Next, Chapter 4 evaluates the effect of convolving the VOF field for interfaces of various shapes, followed by
the results of simulations of a static and a rising bubble case in OpenFOAM in Chapter 5. Chapter 6 analyses
the unexpected interface wave that emerged during the simulation when the convolution method was used,
and Chapter 7 finalizes by presenting the conclusions of the study.

2
Principles of Two-Phase Flow Modelling

In this chapter, the principles of two-phase flow modelling are introduced. The physics of two-phase immis-
cible, incompressible flow is outlined in Section 2.1, whereafter the discretisation of the domain with the use
of the Volume of Fluid (VOF) method is presented in Section 2.2. Section 2.3 follows with an overview of the
mathematical model that describes the presented flow, where the Continuum Surface Force (CSF) model is
introduced. The chapter concludes by presenting the equations for the calculation of the curvature in Sec-
tion 2.4.

2.1. Physics of Two-Phase Flow
The theory of two-phase flow attempts to describe the evolution of two immiscible fluids brought into con-
tact. It studies, among other aspects, the displacement and interaction of these two phases. In order to cor-
rectly predict how a specific initial distribution of two fluids will develop in time, fundamental physical laws
are used. To this end, Newton’s second law and the laws of conservation of mass and energy are applied to the
system. The current study focuses only on the spatial displacement of the two-phase flow, such that thermal
energy transfer is ignored in the present analysis. It is assumed that the fluids are Newtonian, incompressible
and immiscible. The main focus is on fluid droplets immersed in a second fluid.

2.1.1. Governing Equations
Consider a domain with two fluids separated by an interface, as shown in Figure 2.1.

Fluid 1

Fluid 2

Figure 2.1: Illustration of a two-phase flow distribution.

The momentum equation that arises from the application of Newton’s second law of motion to a New-
tonian, incompressible volume element in fluid i at either side of the interface results in the well-known

3

4 2. Principles of Two-Phase Flow Modelling

Navier-Stokes momentum equation [2]

ρi

(
∂u

∂t
+u ·∇u

)
=µi∇2u−∇p +∑

fext, (2.1)

where ρ is the density, u the velocity, µ the dynamic viscosity and fext a force per unit volume. The first
term on the left-hand side of Equation (2.1) accounts for the local transient variation of the velocity field and
the second term for the changes due to the motion of the fluid. The first two terms on the right-hand side
represent the stresses present within the fluid, whereas the last term includes all the external forces that act
on the system. This normally is formed by the gravitational force fg = ρg, with g the acceleration vector due
to gravity, and in the present research the volumetric surface tension force fs is also included. This is further
explained in Section 2.3.

With the law of conservation of mass, the so-called continuity equation for a volume element can be
derived, which in the case of incompressible flow is given by [2]

∇·u = 0. (2.2)

Equations (2.1) and (2.2) together allow solving for the unknown velocity field u and the pressure p. Due to the
discontinuity of fluid properties ρ and µ at the interface, Equation 2.1 needs to be solved for fluid 1 and fluid
2 separately, given appropriate boundary conditions. One of the conditions is for the normal and tangential
direction of the velocity to be the same at the interface for both fluids. Secondly, the normal and tangential
(also called shearing) stresses should be balanced at the interface. An approach to solving the system as a
whole is presented in Section 2.3.

2.1.2. Surface Tension
The concept of surface tension plays an important role in understanding the interface development between
two fluids in a two-phase system. When considering the composition of a fluid at a microscopic level, the
cohesion forces between molecules is what keeps them together. For molecules located at the inner part of a
fluid, on average these forces are the same in all directions, such that the net force on each molecule is zero
(without considering any other external forces). However, for molecules located at the interface of the fluid,
there is an imbalance in the forces at one side of the molecule, due to the fact that there are no alike molecules
with which the molecule can bind with. This results in a net force pointing inwards, towards the fluid, which
for a curved interfaces gives a pressure jump across the interface [15]. This pressure jump is given by the
Young-Laplace equation:

∆p =σκ, (2.3)

whereσ is the surface tension and κ the curvature. This pressure jump needs to be included in Equation (2.1),
but need special treatment due to the locality of the force and the discontinuity in the pressure across the
interface. This will be treated in Section 2.3.

2.1.3. Interface Shape
The shape that a bubble or droplet acquires in a specific two-phase flow setting depends on the forces that act
on these particles, and the particle properties. This defines a wide variety of possible shapes a fluid can attain.
In order to classify these into categories, and be able to predict the occurrence of each of these categories,
important dimensionless quantities are used.

Reynolds number (Re): describes the ratio between inertia forces and viscous forces,

ρodi vi

µo
. (2.4)

Eötvös number (Eo): describes the ratio between gravitational forces and surface tension forces,

g d 2
i ∆ρ

σ
. (2.5)

2.1. Physics of Two-Phase Flow 5

Morton number (M): correlates the parameters of the two-phase flow,

gµ4
o∆ρ

ρ2
oσ

3
, (2.6)

where ρ is the density, d is the characteristic diameter, v is the rising velocity of the droplet or bubble, µ is the
dynamic viscosity and σ is the surface tension [16]. The indices i and o stand for inner and outer, whether it
is a droplet surrounded by gas or a bubble surrounded by liquid.

Figure 2.2 depicts the different shape regimes attained by gravity driven two-phase flow given different
values of the dimensionless quantities.

Figure 2.2: Shape regimes for two-phase flow in the presence of a gravitational field.[2]

Note how these numbers can influence the shape of a droplet or bubble. Consider for instance a com-
bination of a relatively low Eo (around 0.3), as well as a low Re (around 1). Given that surface tension forces
are more relevant than the gravitational forces, and the fact that viscous forces are approximately in balance
with the inertia forces, the equilibrium shape constitutes a sphere. The external forces are not big enough
to deform the droplet or bubbles to more complicated shapes, and the minimization of the energy results in
the minimization of the surface area (such that the surface tension force is reduced), which is attained by a
spherical shape. This situation occurs when the length is scaled down, since this results in a linear scaling of
the tension forces, whereas other forces decrease at a higher rate [17]. The bottom-left region of Figure 2.2
depicts this behaviour.

More complex shapes occur as the external forces become significant, which occurs at higher Re and
Eo. In these situations, the surface tension is no longer able to counteract the inertial/gravitational forces
which act on the bubble or droplet, which results in ellipsoids, and caps with different shapes, as observed

6 2. Principles of Two-Phase Flow Modelling

in the right and upper regime of the presented figure. Note that the shape of a bubble evolves in time, as
the properties of the bubble or droplet such as velocity changes over time, which results in a variation of for
instance Re, and a shift in the shape regimes depicted in Figure 2.2. For extreme values of Re (generally for
values over 104), the flow becomes turbulent, and viscous forces cannot keep up with the external flow field.
In some of these cases, the single bubble or droplet we had in our system may breakup into parts. Similar
consequences are observed when surface tension forces are not able to keep up with the buoyancy forces as
a result of the gravitational influence, for high Eo.

For the modelling of this flow and to solve the discontinuities in fluid properties for Equation 2.1, the
Volume of Fluid method is used, which is introduced next.

2.2. Volume of Fluid
The Volume of Fluid (VOF) method was introduced by Hirt and Nichols [3] as a way of tracking free bound-
aries, i.e. regions in space at which discontinuities occur. In the present case, this method is used to track the
interface of two-phase flow. The function that characterizes this method is called the colour function γ:

γ=
1, fluid 1,

0, fluid 2.
(2.7)

To define the VOF colour function, the domain is first discretised into a mesh of any shape or size. For
the present study, a 2D Cartesian mesh is considered, where the cell size in the x and y direction, ∆x and ∆y ,
are the same. This cell size will be called h. Consider now a two-phase flow distribution, where the interface
between fluid 1 and fluid 2 is modelled. The value of the VOF colour function for each mesh element of this
discretisation is defined as the fraction of fluid 1 present in the control volume of the grid element:

ci j =

∫
cell(i,j)

γ dV

∫
cell(i,j)

dV
, (2.8)

where (i , j) represent the cell indices in the x and y direction, respectively. In other words, c will attain a value
of 1 in those mesh elements that are completely covered by fluid 1, whereas a value of 0 means that the mesh
element is only covered by fluid 2. Mesh elements located along the interface between the fluid will receive
values between 0 and 1, proportional to the amount of fluid 1 present in the cell. This definition is illustrated
in Figure 2.3, where the value of the VOF colour function for a circle in a 2D Cartesian discretised domain is
indicated in each cell.

0 0 0 0 0 0

0 0.32 0.91 0.91 0.32 0

0 0.91 1 1 0.91 0

0 0.91 1 1 0.91 0

0 0.32 0.91 0.91 0.32 0

0 0 0 0 0 0

Figure 2.3: Values of the VOF colour function with a two decimal precision for a circle in a 2D Cartesian domain. The darker region
represents fluid 1.

To find the approximate location of the interface given the VOF colour function, the normal direction to
the boundary needs to be found. This is given by the direction in which the colour function changes the

2.3. Mathematical Model 7

most [3], since this is the direction of the gradient, which by definition is perpendicular to the tangent of the
point on the interface. In this context, the normal of a cell (i , j) at the interface is therefore given by

ni j =∇hci j , (2.9)

where ∇h emphasizes that the derivatives are calculated by a finite difference method. Dividing by |∇hc|
would result in the unit normal vector n̂i j . Together with the value of c in the present cell, the interface can
be approximated. The major advantages of the VOF method include the relatively easy implementation for
arbitrary mesh shapes [18], and the fact that only one value per cell needs to be stored to have information
about the interface location. Moreover, the mass conservation property of this method is one of its principal
assets [8]. However, because of the discrete nature of this field, the computation of the derivative of this
function needs to be treated carefully.

To follow the evolution of the VOF colour function c in time, the field is advected with the transport equa-
tion, which in integral form is ∫ [

∂c

∂t
+∇h · (cu)

]
dV = 0. (2.10)

In the remainder of this and the following chapters, the subscript h will be omitted, where it should be clear
from the context that finite difference methods should be used for the discrete valued function c.

2.3. Mathematical Model
After discretising the domain, the momentum and continuity equations (2.1) and (2.2) are solved for each vol-
ume element. As mentioned in Section 2.1, the jump in fluid properties at the interface posed a problem for
solving Equation 2.1 as a whole. To solve this, for cells containing an interface, cell properties are calculated
by a weighted average of the two fluids, with the weights given by the VOF colour function. In this way, the
mean value across the control volume is used, and a gradual transition between fluid properties is obtained.
The density and dynamic viscosity can be therefore written as

ρ = cρ1 + (1− c)ρ2, (2.11)

µ= cµ1 + (1− c)µ2. (2.12)

Due to the non-linearity of the Navier-Stokes momentum equation, only very simple scenarios can be solved
analytically, and one has to recur very quickly to numerical methods to find the velocity and pressure of the
setting.

Surface tension, which was introduced in Section 2.1.2, is modelled as an external force in the momentum
equation. Therefore, an extra term fs must be included on the right-hand side of Equation (2.1) to account
for the surface tension force. In the VOF method, this force can be modelled as a volumetric force, i.e. acting
over a finite region in space rather than over the infinitesimally thin surface. The most accepted method to
model the surface tension that arises at the interface between two fluids is the Continuum Surface Force (CSF)
model, developed by Brackbill et al. [7]. The subtlety of their approach was to spread the force resulting from
surface tension over a region of finite thickness, instead of using its value as a boundary condition. In this
way, the combination of the two fluids being considered can be seen as a whole, with surface tension acting as
an external force over some small finite region in the domain. To this end, we need a characteristic function
that distinguishes the fluids, and that changes continuously over the region where the surface tension force
is spread. In the present study, this characteristic function is given by the VOF colour function, c. With this
characteristic function, the volumetric surface tension force can be expressed as [7]

fs =σκ∇c, (2.13)

with σ the surface tension coefficient and κ the curvature of the interface. σ is assumed to be constant in the
observed computational cell. The calculation of this curvature is treated in Section 2.4.1. Note that a force
of this magnitude correctly models the pressure jump from the Young-Laplace equation (2.3). The locality
of fs is ensured by the gradient of the colour function. Since this function only varies at a region around the
interface, it evaluates to zero elsewhere, where surface tension does not come into action. Figure 2.4 depicts
the CSF approach. The region around the interface where the force is present is shown in white, and some
vectors representing the direction of the force are given.

8 2. Principles of Two-Phase Flow Modelling

Fluid 1

Fluid 2

Figure 2.4: Illustration of a discrete two-phase flow distribution with the CSF approach to surface tension modelling. As an example, the
force is represented as a vector acting on cell centres for two cells. This image is based on Brackbill et al. [7].

In conclusion, the final model that describes the current problem is given by the following system of
equations:

ρ

(
∂u

∂t
+u ·∇u

)
=∇2(µu)−∇p +ρg+σκ∇c (2.14)

∇·u = 0, (2.15)

with appropriate boundary and initial conditions, and where the interface is tracked with Equation (2.10).
The fluid properties are given by Equations (2.11) and (2.12). After the discretisation of the domain, this
system is solved in each computational cell. The main focus of this research lies on the calculation of the
interface curvature κ. Accurate estimations of this parameter are needed in order to obtain accurate pressure
and velocity fields from the equations describing the system, as noted by Francois et al. [9]. Failing to do so,
the solutions become unphysical, due to the presence of the so-called spurious currents.

2.4. Curvature
2.4.1. Curvature Calculation
The curvature κ of an interface is a measure of the variation of the unit normal vector to the interface. Given
a curve that is parametrised in terms of a variable t : (x(t), y(t)), where t runs along the arc length, the exact
curvature can be calculated with

κexact = x ′y ′′− y ′x ′′

(x ′2 + y ′2)3/2
. (2.16)

In terms of the normal vector, it can be computed as the negative of the divergence of the unit normal vec-
tor [7]:

κ=−∇· n̂. (2.17)

Brackbill et al. [7] proposed a reformulation of this equation that produced better results:

κ= 1

|n|

[(
n

|n| ·∇
)
|n|−∇·n

]
. (2.18)

It was argued that, in this way, the contributions to the curvature came principally from where the gradient
was maximum, as a consequence of differentiating the unnormalized normal vector. Consider the definition
of n in terms of c in Equation (2.9). In that context, the normal vector was only defined at the interface. If
one extends this definition over the whole domain, cells around the interface also receive a normal vector
(the derivative is still non-zero here), and the rest of the cells’ normal vector is zero. Then, one can define the
normal vector in terms of the VOF field by

κ= 1

|∇c|2
(∇c

|∇c| ·∇
)
∇c − 1

|∇c|∇ ·∇c. (2.19)

2.4. Curvature 9

For the two dimensional Cartesian case, this reduces to evaluating the following equation:

κ= 1

|∇c|3

(
∂c

∂x

)2
∂2c

∂x2 +
(
∂c

∂y

)2
∂2c

∂y2 +2
∂c

∂x

∂c

∂y

∂2c

∂x∂y

− 1

|∇c|

[
∂2c

∂x2 + ∂2c

∂y2

]
. (2.20)

Since the VOF colour function is discrete, finite difference methods need to be applied in order to calculate
the derivatives in Equation 2.20. To this end, a central difference stencil is used for the first derivative with
a step size of h = ∆x = ∆y . For the second derivative, a central difference is applied twice with a step size of
h =∆x/2 =∆y/2.

As mentioned earlier, direct calculation of the curvature with the VOF colour function results in high
curvature errors. These errors arise mainly from the second order finite difference evaluation of the steep
colour function in the equation for the curvature, as noted by Cummins et al. [8]. This occurs as a result of the
large magnitude of higher order derivatives of the VOF colour function, which determine the magnitude of
the truncation error of the finite difference approximation of the derivative. Moreover, the fact that the VOF
tries models a discontinuous colour function γ poses problems for the differentiability of this field. There are
several methods discussed in the literature to reduce these issues, amongst which the process of convolution
stands out. The idea behind this is to create a smoother colour function, such that the transition region of the
VOF field at the interface is increased. In this way, the field that describes the interface varies more gently,
and the magnitudes of high order derivatives is decreased. The process of convolution is explained in further
detail in Chapter 3.

2.4.2. Curvature Error
To determine the proximity of the calculated curvature values to the actual values, the L2 and L∞ norms will
be used, which define the average curvature error across the entire interface and the maximum value this
error attains, respectively. These error measures are given by

L2 =
√∑N

i=1(κi −κi ,exact)2

N
(2.21)

and
L∞ = max

i∈{1,...,N }
|κi −κi ,exact|, (2.22)

where the summation index i runs along the cells that form the interface, κi is the curvature calculated with
the colour field c and κi ,exact is the exact curvature in the centre of an interface cell i , given in Equation (2.16).

3
Convolution Filters

The accurate calculation of the curvature of the interface by using the discrete VOF colour function is a chal-
lenge due to its steep, discontinuous nature. To improve this, convolution filters can be applied to the colour
function in order to smooth out the values of this function. There are many parameters worth of consider-
ation and some requirements needed when using a convolution filter. The principle of convolution will be
introduced in Section 3.1. Section 3.2 mentions some requirements for convolution filters and introduces the
convolution filters that are used the most in literature. Then, Section 3.3 provides a visualisation of the impact
of convolution on a VOF colour field c. Section 3.4 concludes with an analytical derivation of the curvature
estimation as a result of using convolution.

3.1. Convolution: the Principle
Convolution is an operation that builds a function by combining two other functions over a certain domain.
It is calculated by multiplying the function that will be convoluted, say g , by shifted versions of a convolution
kernel K , and finally integrating over space. In this way, a new function g̃ is constructed, where g̃ (x) becomes
a weighted combination of different values g (y), with y in the vicinity of x. These weights are determined
by the choice of the kernel K , which should be normalized. The extent to which values of y that are in the
neighbourhood of x will be considered for the convolution integral are determined by what is known as the
kernel support, which will be represented by Ω. For y 6∈Ω, K (y) = 0. The convolution operation is expressed
by the ∗ sign, and is defined by

g̃ (x) = g (x)∗K (x) =
∫
Ω

g (x̄)K (x− x̄)dx̄. (3.1)

The integral is limited to Ω since the integrand evaluates to zero outside this domain. Convolution in-
tegrals are extensively used in the current field of study to smooth an otherwise discontinuous function, as
in the case of the VOF method explained in Section 2.2. The abrupt nature of the colour function c imposes
difficulties when trying to calculate the derivative of this function, which is needed for computing the cur-
vature of the interface between the two fluids. As Brackbill et al. [7] noted, errors of the magnitude of the
curvature are present if the colour function c is not smoothed before calculations for the curvature are per-
formed. By convoluting the colour function over a finite support, the volume fractions in the mesh elements
are spread out, such that a gentle transition between cell values is obtained. This, in turn, ensures a more
accurate estimation of the curvature at the interface cells.

Despite improvement in the curvature calculation when using the convoluted colour field, the error after
convolution is found to diverge when the mesh is refined. The error in the curvature calculation starts to
increase for a mesh size corresponding to about 9 cells per radius of a circle, even for triangular and polygonal
meshes, as confirmed by Evrard et al. [19]. This effect will be further investigated, by considering all the factors
that have impact on the convolution.

The question now arises as to how one should choose the appropriate kernel and its support. These
choices, and examples of typical convolution kernels, are discussed in the next section.

10

3.2. Convolution Filters 11

3.2. Convolution Filters
3.2.1. Kernel Requirements
Williams et al. [12] established five conditions which must be taken into account when choosing a convolu-
tion kernel K :

1. The support of the kernel is compact: |Ω| <∞.

2. The kernel is spherically symmetric: K (x) = K (r), with r the Euclidean distance from the centre of the
kernel.

3. The kernel monotonically decreases with increasing distance r from the centre of the convolution:
K (r1) > K (r2), for r1 < r2, and r1,r2 ≤ |Ω|.

4. The kernel is smooth enough: K ∈C k , for k ≥ 3.

5. The kernel is normalized:
∫
ΩK (x) dx = 1.

As noted later in Section 3.4, it is also necessary for the convolution kernel to be zero at the boundary.
This does not follow directly from the kernel requirements, but was required for the calculations of that sec-
tion. The distance from the convolution centre to the boundary of the support is denoted by δ, which will
also be referred to as the support. The choice of this δ is pivotal for the resulting field. If chosen too large,
the obtained smoothed value is not representative for its location, and the interface region of the multiphase
flow becomes too spread out. This causes problems when interfaces of two or more different bubbles ap-
proach each other, since then the mesh element values from one bubble impact the convoluted colour field
of another one, which is not physically valid. Therefore, the decision of δ should also be based on the cur-
rent physical location of the interface. However, if δ is too small, the effect of the convolution may not be
significant enough to smooth the colour function. For this reason, the decision of this parameter needs to be
investigated.

Based on the conditions mentioned above, Williams et al. [12] formulated the K6 and the K8 convolution
kernels, both of which satisfy the five mentioned requirements, as well as the added requirement that it needs
to be zero on the boundary (r = δ).

3.2.2. Filters
Sixth-order kernel K6

This kernel is given by

K6(r,δ) =
A[1− (r /δ)2]3, r < δ

0, r ≥ δ.
(3.2)

The normalization constant A ensures that condition 5 is attained. With respect to the desired δ, Williams et
al. [12] recommend δ≥ 4h, with h the cell size.

Eighth-order kernel K8

Following the same structure as the sixth-order kernel, the eighth-order kernel is given by

K8(r,δ) =
A[1− (r /δ)2]4, r < δ

0, r ≥ δ,
(3.3)

where A again serves as a normalization constant.

Cosine kernel Kcos

Peskin [20] introduced a convolution kernel based on a cosine function which he used for studying the flow
of blood in the heart to smooth the velocity field and boundary forces. His kernel definition is given by

Kcos(r,δ) =
 1

2δ [1+cos(πr /δ)], r < δ
0, r ≥ δ.

(3.4)

12 3. Convolution Filters

For this kernel to comply with the requirements mentioned above, a normalization constant can be intro-
duced in the definition of the kernel.

In order to visualize how the kernels distribute the weights, Figure 3.1 displays the value of each kernel as
a function of the distance r from the centre of the filter.

0.0 0.2 0.4 0.6 0.8 1.0
r/δ

0.0

0.5

1.0

1.5

2.0

2.5

K
/h

K6

K8

Kcos

Figure 3.1: Values of the normalized K6, K8 and Kcos convolution filters as a function of distance r from the centre of the filter relative to
the convolution support δ.

3.2.3. Discretisation of the Filters
The general principle of convolution and some examples of convolution kernels for a continuous domain
have been considered. However, the current study is based on the use of discrete convolution, given that the
VOF colour function c is discrete-valued, i.e. each cell value represents a region in space. The modification
for a discrete domain is explained next.

Discrete Convolution
The principle of convolution for the discrete case is the same as the continuous case: a weighted average
of neighbouring cells around the convolution centre determines the value in any cell. The integral in Equa-
tion (3.1) becomes a sum, and the kernel K must now also be made discrete. For the two dimensional case,
the discrete convolution is therefore given by the next equation (square brackets are used to point out the
discrete nature of the domain):

g̃ [x, y] =
kx∑

x̄=−kx

ky∑
ȳ=−ky

g [i , j]K [x − x̄, y − ȳ]. (3.5)

Again, the convolution is limited to a specific region, which is now given by points between [−kx ,kx] ×
[−ky ,ky], since the kernel is zero outside.

Discrete Kernels
The convolution kernels defined above are given as continuous functions of the Euclidean distance r from
the centre of the kernel. For the discrete domain of the current study, the values of the kernel should only be
assigned to isolated points in the neighbourhood of the value to be smoothed. To correct for this discreteness,
the kernel adopts a grid-like format, with the same cell size as the one given by the domain grid. A value is
assigned to each grid cell, obtained by evaluating the continuous kernel at the centre of the cell. In this way,
a midpoint rule approximation of the convolution is applied. This approximation provides a second order
convergence when integrating over a continuous function. However, in this case the discontinuous VOF field
is integrated. It is plausible to assume that such a convergence rate will not be achieved. Improving the
accuracy when integrating a discontinuous function by quadrature rules is a challenge.

3.2. Convolution Filters 13

For the discrete kernels to comply with the symmetry requirement, the number of cells of the kernel grid
in any dimension should be odd and equal, such that the centre of the kernel is always given by a cell centre
rather than the boundary between cells. This ensures that neighbouring cells which are equally far from the
cell to be smoothed receive equal weights. For the continuous convolution kernels, a constant A was intro-
duced to ensure normalisation, and could be computed as the inverse of the magnitude of the convolution
integral. In the discrete domain, a finite number of weights are assigned, and A becomes the inverse sum of
these weights. This guarantees that no cell in the domain attains a VOF value above unity.

To gain some insight on how the convolution filters influence the value to be smoothed, Figure 3.2 por-
trays the weight distribution of the K6, K8 and Kcos discrete kernels in a colour plot. The grid is of unit length
in both dimensions, and the support Ω covers a distance δ = 0.5 in the radial direction from the centre
(kx = ky = 0.5). A choice of five cells per dimension was made. For mesh elements of which the centre is
located further away from the centre of the kernel than the value of δ, the weight becomes zero. For this
reason, the corner elements of the filters for this plot have no influence in the convolution process.

0.5 0.3 0.1 0.1 0.3 0.5
|x− x̄|

0.5

0.3

0.1

0.1

0.3

0.5

|y
−
ȳ
|

0.00

0.05

0.10

0.15

0.20

0.25

(a) K6 kernel.

0.5 0.3 0.1 0.1 0.3 0.5
|x− x̄|

0.5

0.3

0.1

0.1

0.3

0.5

|y
−
ȳ
|

0.00

0.05

0.10

0.15

0.20

0.25

(b) K8 kernel.

0.5 0.3 0.1 0.1 0.3 0.5
|x− x̄|

0.5

0.3

0.1

0.1

0.3

0.5

|y
−
ȳ
|

0.00

0.05

0.10

0.15

0.20

0.25

(c) Kcos kernel.

Figure 3.2: Sixth order, eighth order and cosine convolution kernels. The colour bars haven been normalized to span the same interval.
For the exact value of the weights in each cell, see Appendix A.

It is evident from this figure, and also from the plot of the weights for the continuous case in Figure 3.1,
that the K6 convolution kernel puts more weight to mesh elements located further away from the centre
when compared to the K8 kernel. The Kcos kernel exploits this effect even more. In this way, the eighth order
convolution kernel has a much more centralized effect when smoothing the colour function, such that this
function remains localized and closer to the region where there is an interface. From Figure 3.2, it is also
evident that the K8 kernel has a steeper transition region. This effect becomes even more significant when
the support length δ decreases, which gives large values of the derivative of the kernel. Therefore, as Williams
et al. [12] noted, a large number of points is needed within the support of the kernel to calculate the derivative

14 3. Convolution Filters

of the kernel, which was a step needed in the hybrid method they implemented for the curvature calculation.
The curvature calculation in this work is based solely on the difference equations once the colour function
has been smoothed, such that this unwanted effect does not have an impact.

There is one more filter worth of consideration, which is discrete by nature. This is the Laplacian filter,
and is presented next.

Laplacian filter
The Laplacian filter, implemented first by Lafaurie et al. [10], introduces a smoothed field c̃ based on the
original field c defined as

c̃ =
∑n

f =1 c f A f∑n
f =1 A f

, (3.6)

where f is the index that runs through all the faces surrounding the mesh element, and A f is the corre-
sponding face area. The values at the faces of the mesh element boundaries are calculated by means of linear
interpolation with each of the neighbouring mesh elements. This filter can also be used iteratively, such that
after a second implementation of the filter, the second order neighbouring cells are also taken into account.
This concept is illustrated in Figure 3.3 for a 2D Cartesian mesh.

Figure 3.3: Mesh elements considered for the Laplacian filter.

The cell that will be smoothed is the central black one. Let nlap be the number of iterations used. The
horizontal pattern fills the first order cells, which are taken into account when nlap = 1. Furthermore, a ver-
tical pattern fills the cells that are then also considered when the filter is applied with nlap = 2. Ubbink [15]
suggests two implementations of the Laplacian filter to smooth the colour function, such that all neighbours
depicted in Figure 3.3 are used. In this case, the weight of the central cell corresponds to 5/16, first order
neighbours receive 1/8 and second order neighbours 3/128.

3.3. Example: Convolution of Circle
To visualise the impact that convolution has on a VOF field, consider the colour plots in Figure 3.4, where
convolution is applied to the VOF field of a circle. The left-most image is the unconvoluted field, whereas for
the right-most image, a K6 convolution kernel was applied to smooth the colour function. It is evident what
the impact of the filtering is. The interface now seems to be spread over a larger region, and computational
cells that formed the interface from the original VOF field now have a smoother transition at both sides of the
interface.

3.4. Estimating the Normal Vector with a Convoluted VOF Field 15

1.5 1.0 0.5 0.0 0.5 1.0 1.5
|x|

1.5

1.0

0.5

0.0

0.5

1.0

1.5

|y
|

0.0

0.2

0.4

0.6

0.8

1.0

(a)

1.5 1.0 0.5 0.0 0.5 1.0 1.5
|x|

1.5

1.0

0.5

0.0

0.5

1.0

1.5

|y
|

0.0

0.2

0.4

0.6

0.8

1.0

(b)

Figure 3.4: Colour plots of (a) the original (unconvoluted) VOF field and (b) the VOF field convoluted with a K6 kernel. The radius of the
circle is 1, and the surrounding fluid was extended 0.5 at each axis. h = 0.1 and δ= 3h.

3.4. Estimating the Normal Vector with a Convoluted VOF Field
In this section, an analytical expression for the normal vector estimation given the convoluted VOF field will
be derived. After this, it will be shown that this vector correctly points in the radial direction for a locally
circular interface and is independent of δ, concluding that the exact interface curvature can be retrieved in
the case of a circular interface. For the purposes of the derivation, a continuous domain is considered.

3.4.1. General Case
Consider an interface of random shape as shown in Figure 3.5, where the extent of the convolution is given
by the smaller circle. Let A be the region in space that belongs to the central fluid 1, and Ω the part of the
domain that is covered by the convolution filter.

A

Ω

a
b

.
.

ŷ

x̂

S C kernel centre

Figure 3.5: Visualisation of the relevant components when estimating the normal vector by using the convoluted colour field c̃.

The exact colour field c can be formulated as

c(x) =


1, x ∈ A \∂A,

1/2, x ∈ ∂A,

0, x 6∈ A,

(3.7)

16 3. Convolution Filters

∂A being the boundary of A. The interface of the shape is defined as the contour line c = 1/2. Let n̂ be the
unit vector normal to this contour line. The exact curvature is then obtained from

κ=
∣∣∣∣dn̂

ds

∣∣∣∣ , (3.8)

with s the arc length. An estimate of the normal vector needed for the curvature calculation can be obtained
from the convoluted colour field c̃, given by the continuous version of Equation 2.9. Using the definition of
convolution in Equation 3.1 we get

nest(x) =∇xc̃(x) (3.9)

=∇x

∫
Ω(x)

c(x̄)K (x− x̄) dx̄ (3.10)

= ∂

∂x

[∫
Ω(x)

c(x̄)K (x− x̄) dx̄

]
x̂+ ∂

∂y

[∫
Ω(x)

c(x̄)K (x− x̄) dx̄

]
ŷ, (3.11)

where ∇x denotes differentiations with respect to x, and where the coordinates are x = xx̂+ y ŷ and x̄ = x̄x̂+
ȳ ŷ. The subscript est, referring to the estimation of the normal vector, will be dropped to avoid too many
subscripts, but it may be clear that it refers to an estimate. Define H(x, x̄) = c(x̄)K (x− x̄) and consider the x
component of the normal vector, nx . Using Reynolds Transport Theorem with respect to the variable x, nx

becomes

nx (x) =
∫
Ω(x)

[
∂H(x, x̄)

∂x
+∇x̄ · (H(x, x̄)v)

]
dx̄, (3.12)

with

v = dx̄

dx
. (3.13)

Splitting the integrand and applying the divergence theorem to the second integral gives

nx (x) =
∫
Ω(x)

∂H(x, x̄)

∂x
dx̄+

∫
∂Ω(x)

H(x, x̄)(v · ˆ̄n) dx̄, (3.14)

with ˆ̄n is the unit vector perpendicular to the boundary of the domain ∂Ω(x). Remember that the kernel was
chosen such that it evaluates to zero at the boundary. Therefore,

H(x, x̄) = 0 for x̄ ∈ ∂Ω(x), (3.15)

and the second term in Equation (3.14) vanishes. We are left with

nx (x) =
∫
Ω(x)

∂

∂x
[c(x̄)K (x− x̄)] dx̄, (3.16)

where the definition of H was substituted back again. The performed calculation is equally valid for the y
component of the normal vector, such that

n(x) =
[∫

Ω(x)

∂

∂x
[c(x̄)K (x− x̄)] dx̄

]
x̂+

[∫
Ω(x)

∂

∂y
[c(x̄)K (x− x̄)] dx̄

]
ŷ (3.17)

=
∫
Ω(x)

[
∂

∂x
[c(x̄)K (x− x̄)]x̂+ ∂

∂y
[c(x̄)K (x− x̄)]ŷ

]
dx̄ (3.18)

=
∫
Ω(x)

∇x[c(x̄)K (x− x̄)] dx̄ (3.19)

=
∫
Ω(x)

c(x̄)∇xK (x− x̄) dx̄. (3.20)

Recall that c(x̄) = 0 for x̄ ∉ A. Therefore, the integrand only has a non-zero value for x̄ ∈ A∩Ω, and we get

n(x) =
∫

A∩Ω
∇xK (x− x̄) dx̄. (3.21)

3.4. Estimating the Normal Vector with a Convoluted VOF Field 17

Using that ∇xK (x− x̄) =−∇x̄K (x− x̄),

n(x) =−
∫

A∩Ω
∇x̄K (x− x̄) dx̄. (3.22)

Let a ∈R2 \0 be a constant vector. Using the identity ∇·(K a) = a·(∇K)+K (∇·a), and the fact that a is constant,
it holds that ∇ · (K a) = a · (∇K), since the divergence of a vanishes. Using this identity, we can rewrite our
expression for n(x) in Equation 3.22, introducing a constant vector a:

a ·n(x) =−a ·
∫

A∩Ω
∇x̄[K (x− x̄)] dx̄ (3.23)

=−
∫

A∩Ω
a ·∇x̄[K (x− x̄)] dx̄ (3.24)

=−
∫

A∩Ω
∇x̄ · [K (x− x̄)a] dx̄. (3.25)

The divergence theorem now gives us that

a ·n(x) =−
∫
∂(A∩Ω)

K (x− x̄(l))a · n̂∂ dl , (3.26)

where n̂∂ is the unit normal vector to ∂(A∩Ω), the boundary of A∩Ω, and dl is the arc length. This boundary
is the union of the curves S and C in Figure 3.5. It is again used that the kernel is zero at the boundary of the
convolution support. Therefore, the integrand in Equation 3.26 vanishes for the blue curve C in Figure 3.5,
and we obtain

a ·n(x) =−a ·
∫

S
K (x− x̄(l))n̂∂ dl , (3.27)

where the vector a was taken out of the integral because it is constant. Rearranging gives

a ·n(x)+a ·
∫

S
K (x− x̄(l))n̂∂ dl = 0 (3.28)

a·
(

n(x)+
∫

S
K (x− x̄(l))n̂∂ dl

)
= 0. (3.29)

For this to hold for any non-zero constant a ∈R2, we must have that

n(x) =−
∫

S
K (x− x̄(l))n̂∂ dl . (3.30)

Equation 3.30 provides an analytical expression for the estimation of the normal vector based on the convo-
luted colour field. The exact outcome of this calculation is dependent on the local interface topology. When
an interface is locally circular, this expression can be simplified. This will be done next.

3.4.2. Interface with a Locally Constant Curvature
Consider an interval S of an interface where the local curvature can be considered constant. Figure 3.6 illus-
trates this scenario, and presents the relevant parameters. Given the symmetry of this interval, it is useful to
use polar coordinates.
Let the convolution support be such that δ< R. The points x on the interval S can be parametrised as

x(θ) = R sin(θ)x̂+R cos(θ)ŷ. (3.31)

The exact unit local normal vector is computed directly from this parametrisation, and results in

n̂loc(θ) = sin(θ)x̂+cos(θ)ŷ = ε̂(θ). (3.32)

The exact curvature is given by κexact = 1/R. The unit tangential vector to the interface is ω̂(θ). The unit
normal vector n̂∂ in Equation 3.30 can be expressed in terms of the unit vectors ε̂ and ω̂ as

n̂∂(φ,θ) = cos(φ)ε̂(θ)+ sin(φ)ω̂(θ), (3.33)

18 3. Convolution Filters

R
θ

φ

ε̂

ω̂

ŷ

x̂

x
.

x̄
.

Figure 3.6: Visualisation of the relevant variables when estimating the interface normal of a locally circular interface.

where θ specifies the angle at which the centre of the convolution is located, and φ the angle with respect to
θ. The argument of K in Equation 3.30 only depends on the distance between the centre of the convolution
x(θ) and points at the interface x̄(θ,φ). The argument as a function of φ can therefore be expressed as

|x− x̄| = |2R sin(φ/2)|. (3.34)

Combining Equations (3.33) and (3.34) into (3.30) gives

n(θ) =−
∫ φ+

φ−
K (|2R sin(φ/2)|)[cos(φ)ε̂(θ)+ sin(φ)ω̂(θ)] R dφ (3.35)

=−
[∫ φ+

φ−
K (|2R sin(φ/2)|)cos(φ) R dφ

]
ε̂(θ)−

[∫ φ+

φ−
K (|2R sin(φ/2)|)sin(φ) R dφ

]
ω̂(θ), (3.36)

where dl = R dφ is the arc length, and φ+ and φ− = −φ+ are the angles with respect to θ at which the con-
volution boundary intersects the interface, for which the condition δ < R is needed. The integrand of the ω̂
component is odd around φ= 0, and therefore integrates to zero. The integrand of the ε̂ component is even
around φ = 0 and non-zero, since the convolution kernel is positive in its interior. Thus, it integrates to a
non-zero constant, such that

n(δ,θ) = γ(δ)ε̂(θ). (3.37)

The constant γ is dependent on δ because it determines the integration limits φ− and φ+. With this, it has
been proven that for a locally circular interface the normal vector calculated with the convoluted colour field
correctly points in the direction perpendicular to the interface. For a completely circular interface, this means
that the direction of the estimated normal vector at each point on the interface is the same as the direction of
the exact perpendicular vector. For the curvature from Equation 3.8 it means that

κ=
∣∣∣∣∣dn̂(δ,θ)

ds

∣∣∣∣∣ (3.38)

=
∣∣∣∣∣ 1

γ(δ)

dn(δ,θ)

dθ

dθ

ds

∣∣∣∣∣ (3.39)

= 1

R
, (3.40)

since s = θR. This matches the exact curvature κexact, and is independent of the convolution support δ.

3.4. Estimating the Normal Vector with a Convoluted VOF Field 19

Concluding remarks
It was shown that, for a circular interface, the estimation of the curvature from the convoluted colour field is
the same as the exact value, independent of δ < R. For shapes where the interface cannot be approximated
as circular, the estimated normal vector will acquire a component in the ω̂ direction which will be dependent
on δ and on the local interface shape. For that curvature, this means that the variation of the unit normal
vector along the interface differs from the exact variation, failing to obtain the exact curvature.

4
Impact of Convolution on Curvature

Calculations

In order to test the performance of the different convolution filters and the influence of the kernel parameters,
a program that calculates a discrete convolution integral was implemented in Python. The performance was
checked by calculating the error in the curvature after the VOF field was smoothed by means of convolution.
The implementation is described in Section 4.1. Section 4.2 presents the results of a circular shape, for which
the interface curvature is constant. Next, Section 4.3 shows the same calculations, but now for an ellipse, for
which the interface curvature is not constant. In this chapter, time is not considered, and all the calculations
are two-dimensional.

4.1. Implementation
The implemented program in Python calculates the VOF colour field for a particular interface shape, carries
out the convolution and calculates the curvature. To this end, the convolution operation is performed with
the different kernels described in Section 3.2. Convolution is performed by element-wise multiplication of
two matrices, the VOF colour field and shifted versions of the convolution kernel, which is also instantiated
in matrix-form. Problems with calculating convolution at the boundary of the domain were avoided by ex-
tending the surrounding fluid to such an extent that it did not affect the convolution of the cells for which
convolution actually changes the colour field (i.e. the walls of the domain can be thought of as being located
at infinity).

The program accepts random shape dimensions, as well as grid resolution. For ease of implementation,
the computational grid is aligned with the chosen shape, having an even amount of cells fill the shape both in
the x and y direction. This allows for the calculation of the colour field only in the first quadrant, after which
the obtained field is mirrored in both the x and y direction. After convolution, the curvature is calculated
using Equation (2.20). Central differencing schemes are used for the first and second derivative, as explained
in Section 2.4.1. The values of the curvature are then compared with the exact curvature, using the measures
introduced in Section 2.4.2. The cells that are considered in this error measure are the ones located at a band
around the interface which is 3h wide, and centred at the interface. This represents the region where the
surface tension force from the Continuum Surface Force model typically acts (refer to Section 2.3).

4.2. Constant Curvature: Circle
A circular interface is a good starting point for the current study, because the VOF implementation is rather
straightforward and it allows for a proper visualisation of the underlying effect of convolution. This shape
serves as a test case of constant curvature along the interface, which will then be compared with a case of
varying curvature in Section 4.3.

20

4.2. Constant Curvature: Circle 21

4.2.1. Initialization
The VOF colour field c for a circle was calculated exactly based on the overlap of the circle with each of the
grid cells, given the geometry of the setting and the grid being Cartesian. A circle can be parametrised as

x(θ) = R cos(θ) (4.1)

y(θ) = R sin(θ), (4.2)

where R is the radius of the circle and θ ∈ [0,2π). With this parametrisation, the exact curvature of a circle is
found by substituting the corresponding expressions in Equation (2.16), which results in

κexact,c = 1

R
. (4.3)

4.2.2. Curvature Error
The error in the curvature was calculated as a function of the mesh size, for a circle with R = 1. Ten logarithmically-
spaced mesh sizes were chosen between 2 and 100. The convolution support δwas varied between h and 4h,
as well as the Laplacian filter iteration number nlap from 1 to 4, in order to observe the impact on the error
given the cell size. The results for the mean curvature error are shown in Figure 4.1, and the maximum error
for the same settings in Figure 4.2.

101 102

1/(κrefh)

100

101

102

L
2
/κ

re
f

Unconvoluted
K6

K8

Kcos

Laplacian

(a) δ= h, nlap = 1.

101 102

1/(κrefh)

100

101

102

L
2
/κ

re
f

Unconvoluted
K6

K8

Kcos

Laplacian

(b) δ= 2h, nlap = 2.

101 102

1/(κrefh)

100

101

102

L
2
/κ

re
f

Unconvoluted
K6

K8

Kcos

Laplacian

(c) δ= 3h, nlap = 3.

101 102

1/(κrefh)

10−1

100

101

102

L
2
/κ

re
f

Unconvoluted
K6

K8

Kcos

Laplacian

(d) δ= 4h, nlap = 4.

Figure 4.1: Curvature errors L2 for different convolution supports δ or Laplace filter iterations nlap. The curvature calculated with the
unconvoluted VOF is shown for reference in each sub-figure. Following the same approach as Evrard et al. [19], each axis is normalized

with the reference curvature, which for the case of a circle is simply the constant curvature κexact = 1/R.

The x-axis quantifies the number of cells per radius of the interface, so the error in the curvature decreases
up to a point as the mesh becomes finer, whereafter it monotonically starts to increase (this will be called the

22 4. Impact of Convolution on Curvature Calculations

101 102

1/(κrefh)

100

101

102

L
∞
/κ

re
f

Unconvoluted
K6

K8

Kcos

Laplacian

(a) δ= h, nlap = 1.

101 102

1/(κrefh)

100

101

102

L
∞
/κ

re
f

Unconvoluted
K6

K8

Kcos

Laplacian

(b) δ= 2h, nlap = 2.

101 102

1/(κrefh)

100

101

102

L
∞
/κ

re
f

Unconvoluted
K6

K8

Kcos

Laplacian

(c) δ= 3h, nlap = 3.

101 102

1/(κrefh)

100

101

102

L
∞
/κ

re
f

Unconvoluted
K6

K8

Kcos

Laplacian

(d) δ= 4h, nlap = 4.

Figure 4.2: Similar to Figure 4.1, but now the L∞ curvature errors are shown on the vertical axis.

turning point). This holds for all kernel supports. This behaviour is the same that is observed by other studies
[19]. It is worth noting that all the implemented kernels have the same divergent trend. This is not surprising,
since the same method of smoothing is being used in each case, so the trend should be similar. The number
of cells per radius at the turning point increases as the support of the convolution kernel is extended. For a
support of h, at approximately 3 cells per radius the curvature error starts to increase, and for a support of
2h, 3h and 4h it becomes around 4, 7 and 11 cells per radius, respectively. This is attributed to the fact that a
greater kernel support implies a smoother transition between the values of the colour function, which implies
that the differentiation that is applied when calculating the curvature is less prone to errors. Note how the
curvature error of the unconvoluted field is very susceptible to errors. As the mesh is refined, the curvature
error follows an upward trend, with evident spikes that demonstrate the unstable nature of the curvature
when the colour field is not smoothed.

The difference between the kernels given a fixed convolution support is only how the weights of the filter
are distributed, and this accounts for a shift in the error of the curvature for each kernel. Besides Figure 4.1a,
where the convolution support was set to h, the mean curvature errors are distributed in the same way for
each kernel. In each case, the Laplacian filter has the highest error, followed by the K8, K6 and Kcos kernels.
Recall from Figure 3.1 that the Kcos was the filter that extended its weight the most to neighbours further away,
followed by K6 and K8, this last one being the most ‘localised’ one. The consequence of giving more weight
to far neighbours is comparable to extending the kernel support. This effect was analysed in the previous
paragraph. Therefore, the Kcos kernel provides a smoother change of the colour field at the interface, which
is reflected in having a smaller curvature error. It can be concluded that the difference in the curvature error
for each convolution kernel is trivial, since the nature of the curvature error follows the same trend in each
case.

4.2. Constant Curvature: Circle 23

It seems that scaling the convolution support linearly with the cell dimension h cannot ensure conver-
gence of the curvature error as the mesh is refined. However, it is possible for the error to converge when the
mesh is refined by scaling the convolution support δ in a different way with the mesh dimension h. More
specifically, for δ ∝ hα, with α < 2/3. The effect of scaling δ in a non linear way with h has already been
investigated [8], but may also be proven formally. Consider the second term on the right-hand-side of Equa-
tion 2.19 for the estimation of the curvature based on a smoothed colour function c̃:

ψ=− 1

|∇c̃|∇
2c̃. (4.4)

It can be proven that ψ is not consistent for α≥ 2/3.

Proposition. Given a convoluted colour field c̃, the estimation of ψ is not consistent for a support of δ∝ hα,
α≥ 2/3.

Proof. Let δ∝ hα be the convolution support used to smooth c. The width of the transition region between
the values of 0 and 1 of c̃ is proportional to 2hα. Consider c̃ in terms of τ = r /hα, such that the colour func-
tion becomes independent of h. By repeatedly applying the chain rule for c̃(τ), the computation of the n-th
derivative of this function can be written as

dn c̃

dr n = ∂n c̃

∂τn · 1

hnα , (4.5)

with ∂n c̃/∂τn independent of h and bounded. Consider first the ∇2c̃ term in ψ. Given the discreteness of
the domain, finite difference methods are used. Using a central difference approach with step size h, the
approximation of the second derivative of the Laplacian can be written as

∇2c̃ = d2 c̃

dr 2 + h2

12
c̃(4)(ξ), (4.6)

for ξ ∈ (r −h,r +h). The truncation error of this approximation is

h2

12
c̃(4)(ξ) = h2

12

∂4c̃

∂τ4 (ξ) · 1

h4α =O (h2−4α), (4.7)

since ∂4c̃/∂τ4 is a constant. Consider now the scaling factor 1/|∇c̃| in ψ. The gradient is found by differenti-
ating once with respect to r :

dc̃

dr
= ∂c̃

∂τ
· 1

hα
. (4.8)

Therefore,

|∇c̃| =O (h−α) =⇒ 1

|∇c̃| =O (hα). (4.9)

Combining the two factors results in

ψ=− 1

|∇c̃|∇
2c̃ =O (hα)O (h2−4α) =O (h2−3α). (4.10)

The total truncation error of the curvature estimation is therefore O (h2−3α). To guarantee consistency in the
estimation, it is necessary that

2−3α> 0 =⇒ α< 2

3
. (4.11)

To visualize this finding, Figure 4.3 shows the mean and maximum curvature error L2 for ten logarithmi-
cally spaced mesh sizes. The parameter that distinguishes the different lines is the scaling of the convolution
support. A support of δ= hα was used for different values of α, for the K6 convolution kernel.

Though Figure 4.3 certainly does not prove convergence, it is instructive to observe the behaviour of the
curvature error as the scaling of the convolution support with respect to the cell size is varied. For α = 2/3,
the convergence seems to be O (1), which follows from the proven proposition. If α < 2/3, one can expect
a second order convergence, given the truncation error of a central difference approximation for a second
derivative. However, Figure 4.3 seems to shows that, for α< 2/3, no improvement from approximately a first

24 4. Impact of Convolution on Curvature Calculations

101 102

1/(κrefh)

10−2

10−1

100

101

L
2
/κ

re
f

α = 1

α = 0.7

α = 2/3

α = 0.6

α = 0.4

α = 0.3

(a) L2 error.

101 102

1/(κrefh)

10−2

10−1

100

101

102

L
∞
/κ

re
f

α = 1

α = 0.7

α = 2/3

α = 0.6

α = 0.4

α = 0.3

(b) L∞ error.

Figure 4.3: Normalized curvature errors as a function of mesh size for convolution supports given by δ= hα. The K6 kernel was used.

order convergence can be obtained. As mentioned in Section 3.2.3, the midpoint rule integration over the
discontinuous VOF colour field is not assumed to have the expected O (h2) truncation error. Therefore, this
may limit the accuracy that is obtained from the finite differencing methods for the curvature calculation.

Scaling with α< 1 makes physical sense. Suppose a support of δ= h is chosen for convolution. When the
mesh is coarse, the colour function values around the interface are weighted with cells that are relatively far
away from the interface, since the mesh dimension is relatively large. When the mesh is refined, the colour
function values around the interface will every time be averaged with cells that are closer to the interface, so
the physical span of the convolution kernel is decreased. This means that the transition of the colour function
is still very steep, such that errors in the curvature calculation are likely to occur. However, if the convolution
support is scaled with α < 1, the discrete span of the kernel increases, resulting in a smoother colour field
(it is extended over a larger physical span compared to scaling with α = 1). The degree to which one should
decrease α is determined by the error term in the finite difference method used to calculate the curvature,
which appears to beα= 2/3. It is still the case that the support of the convolution in physical space decreases
when refining the mesh, but the decrease with α= 2/3 is more gradual.

4.3. Non-Constant Curvature: Ellipse
The convergence of the curvature error was investigated in Section 4.2 for an interface of constant curvature.
The objective now is to examine the effect of convolution on interfaces where the curvature is not constant.
The simplest shape for this scenario is an ellipse. This will help to determine what are the decisive factors
when smoothing a colour field belonging to a shape where the curvature varies along the interface.

4.3.1. Initialization
The VOF colour field c of the ellipse was calculated with Monte Carlo integration. 105 random points were
generated per cell, and the ratio of points inside the ellipse with respect to the total number determined the
VOF fraction. An ellipse can be parametrized as

x(θ) = a cos(θ), (4.12)

y(θ) = b sin(θ), (4.13)

where again θ ∈ [0,2π), and a and b are fixed. a is called the semi-major axis, and b the semi-minor axis when
a > b, which is the case for the generated ellipses. Figure 4.4 shows the relevant parameters of the ellipse.

Given the parametrisation, the exact curvature of an ellipse at the interface is now

κexact,e(θ) = ab[
(a sin(θ))2 + (b cos(θ))2

]3/2
. (4.14)

4.3. Non-Constant Curvature: Ellipse 25

x

y

θ

a

b

Figure 4.4: Sketch of an ellipse and its relevant parameters.

4.3.2. Curvature Error
Mean curvature error
Differing now from the approach used when considering the circle, the effect of increasing the support of the
kernel for fixed cell dimensions in the curvature error will be investigated. To this end, different ellipses are
generated, for which a/b = 2, 3, and 4. The higher the ratio a/b, the higher the curvature variation along the
interface, so the effect of smoothing an interface with different curvature variations can be analysed. With-
out loss of generality, the K6 kernel will be used, since it was seen that all kernels behave similarly. Eight
logarithmically-spaced convolution supports were taken between h and 16h. The results for the mean curva-
ture error as a function of δ are shown in Figure 4.5

100 101

δ [h]

10−2

10−1

100

L
2
/κ

re
f

circle

a/b = 2

a/b = 3

a/b = 4

Figure 4.5: L2 curvature error as a function of δ for ellipses with 20 cells per semi-minor axis and a varying number of cells per
semi-major axis. The error of a circle with 20 cells per radius is given as a reference. The error of the ellipses were normalized with

κref = a/b2, which corresponds to the maximum curvature, and of the circle again with κref = 1/R, following the approach of Evrard et
al. [19].

Note that Figure 4.5 portrays a different parameter on the x-axis than Figure 4.3, since it is used to analyse
the impact of large convolution supports. Figure 4.5 evidences how the calculation of the curvature of a circle
is improved as the kernel support increases. However, this is not the case for an ellipse. For this shape, there
is a point after which increasing the kernel support makes no sense to improve the curvature calculation.
Note how the curvature error of the ellipse for which the curvature varies the greatest (a/b = 4) is the largest.
Moreover, its error appears to diverge for a lower δ than the ellipse with a/b = 2. This is also the case for the
ellipse with a/b = 3. The kernel support after which the mean curvature error of the ellipse starts to diverge

26 4. Impact of Convolution on Curvature Calculations

changes as a function of the amount of cells that form the ellipse. In this sense, the size of the cells in the
domain of a discrete ellipse tells us nothing without the actual dimensions of the ellipse; only mesh sizes
relative to the ellipse dimensions provide information about what kernel support to use.

The following paragraph analyses what exactly is the determining factor of an interface that leads to dis-
crepancies of the curvature when the colour field is smoothed by means of convolution.

Curvature error as a function of curve parameter θ
To investigate what aspect of an interface leads to high curvature errors, the difference between the exact
and calculated curvature will be considered along the interface, as a function of θ. In this way, the value of
θ for which the curvature error is the highest indicates the part of the interface that is more susceptible for
errors in the curvature when convolution is used. In Figure 4.6, an ellipse with 20 cells per semi-minor axis
is convoluted with a kernel of δ = 8h. From Figure 4.5, it can be seen that the error at this point is already
diverging.

0 π/2 π 3π/2 2π

θ

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

κ
−
κ

ex
a
ct

[m
−

1
]

Figure 4.6: Difference between exact and estimated curvature of an ellipse as a function of θ for δ= 8h. b = 1m, a = 3m.

Figure 4.6 clearly demonstrates that the major contributions to the curvature error come from the points
where θ = 0 and θ = π. To further investigate what aspect of the curvature variation determines these high
errors, the values of the curvature and its second derivative as a function of θ have been plotted in Figure 4.7
(the first derivative is not relevant for the analysis). It stands out how closely related the curvature error in
Figure 4.6 and the second derivative of the exact curvature in Figure 4.7b are. This resemblance leads to the
conclusion that it is this aspect of the interface that will determine the error in the curvature calculation of
the interface after convolution with a large kernel support.

Figure 4.6 might be deceiving, because it plots the error in an absolute scale rather than a relative one. At
θ = 0 and θ = π, the curvature is the highest, so maybe the relative error is unchanged as a function of the
interface parameter. To analyse the evolution of the relative error as a function of the support θ when the
support of the kernel is increased, Figure 4.8 plots these parameters for the same ellipse as before, changing
the convolution support in each sub-figure.

Figure 4.8 evidences that the error at θ = 0 andπ does not always dominate. For a kernel support of δ= 4h,
the relative error peaks are at θ =π/4, 3π/4, 5π/4 and 7π/4. As the support is increased to δ= 6h, the relative
error is more or less evenly distributed as a function of θ. From that point on, increasing the kernel support
changes the error magnitude minimally at all the values of θ but the errors at 0 and π, where the error is
significantly increased. Therefore, large convolution supports fail to work for an ellipse because the error is
amplified around these values of θ, leading to inaccurate estimations of the curvature.

4.3. Non-Constant Curvature: Ellipse 27

0 π/2 π 3π/2 2π

θ

0.0

0.5

1.0

1.5

2.0

2.5

3.0

κ
ex

a
ct

[m
−

1
]

(a) κ

0 π/2 π 3π/2 2π

θ

−60

−40

−20

0

20

d
2
κ

ex
a
ct
/d
θ2

[m
−

1
]

(b) d2κ/dθ2

Figure 4.7: The exact curvature κexact and its first derivative of an ellipse as a function of θ.

0 π/2 π 3π/2 2π

θ

−0.2

−0.1

0.0

0.1

0.2

(κ
−
κ

ex
a
ct

)/
κ

ex
a
ct

(a) δ= 4h

0 π/2 π 3π/2 2π

θ

−0.2

−0.1

0.0

0.1

0.2

(κ
−
κ

ex
a
ct

)/
κ

ex
a
ct

(b) δ= 6h

0 π/2 π 3π/2 2π

θ

−0.2

−0.1

0.0

0.1

0.2

(κ
−
κ

ex
a
ct

)/
κ

ex
a
ct

(c) δ= 8h

0 π/2 π 3π/2 2π

θ

−0.2

−0.1

0.0

0.1

0.2

(κ
−
κ

ex
a
ct

)/
κ

ex
a
ct

(d) δ= 10h

Figure 4.8: The relative curvature error of an ellipse as a function of θ for different convolution supports. The y axes represent the same
interval for all subplots.

28 4. Impact of Convolution on Curvature Calculations

Choosing the ideal support for an ellipse
In order to investigate what size the kernel should have given an ellipse and its extension in the discrete cell
space, several ellipses with a/b = 2, 3 and 4 are generated, varying the number of cells per semi-minor axis
b, which will be called n. For each of these domains, the colour fields are convolved with kernels varying in
size from δ = h to δ = 18h, in steps of h. For each mesh resolution, the normalized mean curvature error L2

was plotted against the convolution support. Some of these plots are shown in Appendix B. It was observed
that in each case, the difference between the ellipses with a/b = 2, 3 and 4 was minimal, so the influence of
this parameter can be neglected. To find the ideal kernel support for an ellipse, the convolution support for
which L2 was minimal for the ellipse with a/b = 3 was plotted against n. The results are shown in Figure 4.9.

0 20 40 60 80 100 120
n

0

2

4

6

8

10

12

14

δ
[h

]

Figure 4.9: Convolution support δ for which the L2 error in the curvature was minimal against the number of cells per semi-minor axis
b, n. The best fit for the square root relation shown is δ= (1.15±0.03)

p
n + (−0.17±0.20).

The best fit for the results is a square root relation given by

δ= (1.15±0.03)
p

n + (−0.17±0.20). (4.15)

The notable step-like character of the data points at nearby values of n is because the convolution support δ
can only change in unit steps, given the discrete nature of the domain. For this same reason, when choosing
the appropriate convolution support given the mesh size of an ellipse, the obtained value of δ in the fit must
be rounded to the nearest integer. The error bars cover an interval of δ, to account for variations in the a/b
value of an ellipse. This fit can be used as a general guideline for the convolution support that must be chosen
for an ellipse in a given mesh. In this way, the error in the curvature by using convolution with the current
method is minimized. However, this might not be the best that can be achieved with convolution. As was
analysed in the previous paragraph, the error in the curvature depends on the local interface shape. The
current method utilises a global convolution support, i.e. it is the same for all cells. A different approach
would be to choose a local support based on the local curvature of the interface. For this, an estimate of the
curvature can be made using a global support, after which one could specialize the support per individual
cell, and thereby minimize the error in the curvature. This method is computationally more costly than the
current method, and was not implemented for the current research.

4.4. Concluding Remarks
In this section, two types of interfaces were considered, one with a constant interface curvature and one
where the curvature varied along the interface. In the first case, it was observed that increasing the convolu-
tion support had a positive effect in decreasing the error in the curvature estimations. This is because as δ
is increased, the VOF colour field around the interface becomes smoother, and the magnitude of the higher
order terms that determine the truncation error in the curvature decrease. This result is accompanied by
the fact that, for interfaces where the curvature is constant, the convoluted VOF field correctly preserves the

4.4. Concluding Remarks 29

shape of the interface, independent of the chosen δ for convolution. This was analytically shown in Sec-
tion 3.4.2.

The case for an interface with varying curvature is different. It is still the case that a smoother VOF field
is needed for better curvature approximations. Convolution is still helpful to achieve this, but because of the
interface shape, an unwanted effect occurs. As the curvature varies along the interface, convoluting the VOF
field has an impact on the actual curvature that one intends to estimate. If the support is chosen too large,
contour lines around the interface of the smoothed VOF field will actually change its original shape. This
effect was analysed in Section 4.3.2 for an ellipse. It was found that this modification from the original shape
is most significant for high values of the second derivative of the curvature with respect to the arc length.

In this sense, increasing the convolution support for convoluted VOF fields for interfaces with varying
curvature has both a positive and negative impact on the curvature estimation:

1. Positive: the VOF field at the interface becomes smoother, decreasing the magnitude of higher order
derivatives that determine the error in the estimation.

2. Negative: the original shape of the interface is increasingly modified.

The combined effect of these two factors determine the final accuracy of the curvature error. In Section 4.3.2,
a general measure for choosing the convolution support is provided for an ellipse, which is based on the
support at which the combined effect is the most favourable. The exact convolution support for a general
interface above which effect 2 becomes more significant than effect 1 cannot be retrieved from this analysis,
but it was evident that this point is determined by the magnitude of the second derivative of the curvature
with respect to the arc length. It was here where the dominance of effect 2 over effect 1 was the largest. For
future work, it would be interesting to analyse in depth the point at which effect 2 becomes more significant
for a general interface shape.

5
Impact of Convolution on Two-Phase Flow

Simulations

Having tested the influence of convolution merely in the curvature computation in Chapter 4, this chapter
will consider its use in OpenFOAM simulations, which includes other phenomena like spurious currents.
Section 5.1 describes the implemented convolution algorithm in OpenFOAM. Section 5.2 compares Open-
FOAM curvature values with values from the Python code used in Chapter 4. Then, the results of performing
simulations with convolution will be verified using two benchmark cases: a static bubble in Section 5.3 and a
rising bubble in Section 5.4.

5.1. Algorithm
Figure 5.1 summarizes the computation of convolution in OpenFOAM. The code can be found in Appendix C.

Find all cells within a distance δ of cell_ID

Compute weights of these cells

Normalize weights

Calculate c̃ for cell cell_ID

[repeat ∀ cells] [repeat ∀ cells]

Figure 5.1: UML activity diagram of the convolution algorithm in OpenFOAM.

Comments

• Find all cells within a distance δ of cell_ID: this is done by means of an iterative process. Using the
OpenFOAM method cellCells()[cell_ID], the cell indices of the cells neighbouring cell_ID are obtained.

30

5.2. Comparison of Curvature Calculation Between Python and OpenFOAM 31

This method is used again to find neighbouring cells to the neighbours of cell_ID. This process is con-
tinued until the cell centres of any new neighbours and the centre of cell_ID are separated by a distance
larger than the convolution support δ.

• Compute weights of these cells: the weight of each neighbouring cell is computed with the equation
for the kernel, where the distance ri is the distance between the cell centre of neighbouring cell i and
cell_ID. In the developed program, an additional weighing with the cell volume was included. This only
has an effect when the mesh size varies along the mesh. In that case, a higher weight is given to cells
that occupy a larger region in space, which avoids biasing the convolution to one specific region where
the mesh might have been refined. Therefore, the weight of each cell is expressed as

w(ri) = wk (ri)Vi , (5.1)

with wk the unnormalized kernel weight and V the volume.

• Normalize weights: the normalization constant A of the convolution is given by

A =
N∑

i=1
w(ri), (5.2)

where the index i runs along all the neighbour cells. The weights calculated in the previous step are
divided by A.

• Calculate c̃ for cell cell_ID: the smoothed colour field value for cell cell_ID is given by

c̃[cell_ID] = 1

A

N∑
i=1

ci w(ri). (5.3)

5.2. Comparison of Curvature Calculation Between Python and OpenFOAM
The results obtained from the developed code in Python to calculate the curvature used throughout Chapter 4
will be compared to the values obtained with OpenFOAM for a given two-phase flow initial setting. The VOF
colour field of a circular bubble with a radius R of 1m and 10 cells per radius is generated with the code
in Python. After this, this field is exported to OpenFOAM and used as initial condition. The colour field is
smoothed with the K6 kernel given in Equation 3.2 and a support of δ= 4h. The curvature is then calculated
independently with each program. Figure 5.2 depicts the calculated curvature field for both programs on a
3h wide band around the interface.

-2.0 -1.0 0.0 1.0 2.0
x

2.0

1.0

0.0

-1.0

-2.0

y

0.0

0.2

0.4

0.6

0.8

1.0

(a) OpenFOAM.

-2.0 -1.0 0.0 1.0 2.0
x

2.0

1.0

0.0

-1.0

-2.0

y

0.0

0.2

0.4

0.6

0.8

1.0

(b) Python.

Figure 5.2: Curvature of domain cells within a 3 cell wide band centred around the interface when calculated with different programs.
The convolution support is δ= 4h.

The fields shown in Figure 5.2 visually show a great resemblance between the curvatures calculated with
both programs. To quantify the difference for several convolution supports and mesh dimensions, Table 5.1
show the mean difference in curvature for cells in a 3h wide band around the interface.

32 5. Impact of Convolution on Two-Phase Flow Simulations

Table 5.1: Mean difference in curvature values between the calculations with OpenFOAM and Python. The deviations are normalized
with the reference curvature of κref = 1m−1. The considered cells are those within a 3h wide band around the interface.

Cells per radius
Convolution support [h]

4 6 8 10

10 0.34 0.10 0.02 0.01
20 0.18 0.05 0.02 0.01

Large deviations are observed for coarse meshes, and the difference seems to vanish as the support in-
creases. The observed deviation can be explained by the fact that OpenFOAM directly calculates the diver-
gence of the normal vector based on the VOF colour field (Equation (2.17)), whereas the code that was im-
plemented in Python uses the modification suggested by Brackbill et al., Equation (2.18). When testing these
two ways of calculating, they found that the rms error was smaller when using Equation (2.18) as opposed to
Equation (2.17). This difference can also be attributed to the fact that OpenFOAM uses the curvature values
at cell faces, as opposed to cell centres. To achieve this, it interpolates the values from cell centres. At the
end, the curvature values at cell centres are obtained by reconstructing the values from the faces. Therefore,
the final curvature of each cell is not the direct curvature that is computed in Python, but an average over the
curvature values in a set of nearby cells. This effect is the largest for small convolution supports, because the
band around the interface where the curvature estimates are better is narrower than for larger supports.

5.3. Benchmark Case 1: Static Bubble
The impact of convolution on the complete two-phase flow model will first be considered in a case with
a circular static bubble in another fluid. This is achieved by setting the gravitational acceleration g to zero,
such that no external forces can make the bubble rise or sink. This case is widely used because any movement
of the bubble in the simulation can be attributed to numerical discrepancies in the method of solving the
equations (spurious currents), rather than the laws of physics acting on the system. Therefore, a criterion to
evaluate the validity of the implemented method is observing whether the bubble gains velocity over time,
and how much. The results will be compared with the benchmark simulation of Hoang et al. [21]. Although
their research focuses on microchannels, the impact of smoothing with a Laplacian filter (Section 3.2.3) for a
static bubble in OpenFOAM is considered, and therefore serves as a reference point for the current study.

5.3.1. Case Description

0.15

0.15

0.6

0.6

Fluid 2

Fluid 1

Figure 5.3: Initial setting for benchmark case 1. All the distances are in millimetres.

Table 5.2 presents the properties of the fluids.
For the circular bubble, R = 150 ·10−6 m, and the radius covers 25 computational cells, such that h =

6 ·10−6 m. Furthermore, the total domain spans an area of 4R ×4R, and the bubble is initially centred. The

5.3. Benchmark Case 1: Static Bubble 33

Table 5.2: Fluid properties for benchmark case 1. ρ is the density, µ the dynamic viscosity, ν the kinematic viscosity and σ the surface
tension.

Property Fluid 1 Fluid 2

ρ [103 kgm−3] 0.5 1

µ [10−3 Pas] 2.5 1

ν [10−6 ms−1] 5 1

σ [10−3 Nm−1] 23.6

approach Hoang et al. [21] used to initialize the VOF colour field was to start with a rectangular bubble, and
let the bubble relax to its final shape by running the simulation for some time. In the current study, the exact
VOF colour field is used as initial condition. This field is calculated externally with the existing Python code
and then used as initial condition.

As in the benchmark case, OpenFOAM’s PISO scheme is used. First order implicit Euler schemes are used
for the transient terms, and OpenFOAM’s interfaceCompression is used for the discretisation of the VOF colour
field, with the MULES solver [13]. The rest of the spatial discretisations are done with the second order van
Leer scheme. The maximum Courant number was set to 0.3, which sets an upper bound for the time steps in
the discrete integration methods. A fixed zero contact angle was chosen as boundary condition of the colour
field the walls, and a uniform value of 1 at the top and bottom. No slip conditions were applied at the walls
and bottom: a uniform value of zero for the velocity and zero gradient for the pressure. Finally, the top of the
domain had a uniform value of zero for the pressure and zero gradient for velocity.

5.3.2. Results
As in the benchmark case, the maximum velocity magnitude present in the domain is tracked over time. This
velocity is scaled with what is called the capillary velocity, and the time is scaled with the capillary time:

ucap = σ

µ1
, tcap = µ1R

σ
. (5.4)

These are used to normalize the corresponding axes to non dimensional quantities. For this case, ucap =
23.6ms−1 and tcap = 6.36µs. Figure 5.4 shows the results for a convolution support of δ= h, and 2h.

0 500 1000 1500 2000
t/tcap

10−5

10−4

10−3

10−2

m
ax

(|u
|)/
u

ca
p

no smoothing

δ = h

δ = 2h

δ = h(∗)

no smoothing (b.c.)

smoothing (b.c.)

Figure 5.4: Plot of the maximum spurious velocity as a function of time, normalized with the capillary velocity and capillary time,
respectively. The results from Hoang et al. [21] are given as a reference, and are marked as (b.c.) for benchmark case.

(∗)Case with adjusted solver settings.

The obtained maximum spurious velocity without smoothing of the current study are very similar to those

34 5. Impact of Convolution on Two-Phase Flow Simulations

from the benchmark case. This means that the results can be compared meaningfully, since the starting
point of the spurious currents is similar. Qualitatively, a support of 2h delivers the best results when trying
to reduce spurious currents. When the support was extended beyond this support, the maximum spurious
velocities started increasing again, and were left out of the plot for visualisation reasons. A simulation was also
performed with adjusted solver settings, restricting the maximum time step to a maximum of ∆t = 1 ·10−5 to
ensure stability of the simulation. This reduced the spurious currents by more than an order of magnitude
when compared to the case with the same convolution support but no explicit time constraint.

In order to quantify the impact of convolution, a similar approach to the benchmark case is adopted. The
following measure is defined:

εsv,λ =

(∫
t max(|u|) d t

)
δ=λh(∫

t max(|u|) d t
)
δ=0

, (5.5)

which serves as an average value of the spurious velocity displayed in Figure 5.4. Table 5.3 presents the mag-
nitudes of this measure for convolution supports of δ=λh, forλ= 1, 2, 3 and 4, along with the same measure
obtained by Hoang et. al for a λ number of iterations of their Laplacian smoother, εbc,λ.

Table 5.3: Normalized spurious velocity average until t/tcap = 2350 for different convolution supports

λ 0 1 2 3 4

εsv,λ 1 0.75 0.54 0.75 1.91
εbc,λ 1 0.14 0.078 0.072 0.07

The benchmark case smoother provides an average reduction in the spurious velocities of a factor 13
for a smoothing with two iterations, after which the improvement in spurious currents was minimal. When
convolution is used, the minimum in the average spurious velocity over the displayed time is achieved with
a convolution support of δ = 2h, after which the spurious currents start to increase again. The spurious
velocities were decreased by approximately a factor 1.9 in this case, significantly less than what was achieved
with the Laplacian smoother.

A remarkable difference in the results is that the Laplacian smoother keeps reducing the maximum spu-
rious velocities as the number of iterations is increased. However, this is not the case with convolution. As
the support is increased after δ= 2h, the maximum spurious velocities start rising again, resulting in poorer
results. This is very surprising, since the analysis in Section 4.2 provided the insight that the curvature estima-
tions for the case of a circle became more accurate as the convolution support was increased. This is clearly
not the case here. By visualising the VOF field of the simulation, it became evident why the spurious velocities
were so significant with high convolution supports. Figure 5.5 depicts contour plots of the VOF colour field
at several times during the first half of the simulation.

While smoothing with a Laplacian filter correctly maintains the circular shape that a bubble in the current
scenario should have, convolution appears to generate a wave on the interface. Already after short times
of the simulation, a clear distortion is visible. The amplitude of this distortion for a convolution support
of δ = 4h grows until approximately t/tcap = 346. After this, the colour field is so distorted that it starts to
oscillate in random directions, resulting in asymmetric contour lines, as observed for t/tcap = 1006. It makes
no sense to examine the effect at larger times, because the evolution of the simulation from this point on is
quite unpredictable and nonsensical.

Considering this phenomenon physically, surface tension would ensure that these waves, where the cur-
vature is relatively high, damp out. However, the curvature is being calculated with the smoothed VOF colour
field, where these high curvature areas have been smoothed out as a consequence of convolution. So surface
tension is greatly underestimated, and these waves remain on the interface. Figure 5.6 depicts how the high
curvatures vanish when convolution is applied.

It was observed that the amplitude of these waves is proportional to the convolution support, and that the
wavelength increases as the support is increased. At δ= h, they are not even visible and therefore do not affect
the VOF colour field considerably at all. As the support increases, the distortion on the field becomes more
significant. Despite providing some improvement in the maximum spurious velocity of a static bubble, there
is an underlying problem with the convolution algorithm in OpenFOAM. This phenomenon will be analysed
in more detail in Section 6.

5.3. Benchmark Case 1: Static Bubble 35

(a) t/tcap = 0. (b) t/tcap = 94. (c) t/tcap = 126.

(d) t/tcap = 157. (e) t/tcap = 346. (f) t/tcap = 1006.

Figure 5.5: Contour plots of the VOF colour field at c = 0.5 for different times using convolution with δ= 4h.

-0.6 -0.3 0.0 0.3 0.6
x [mm]

0.6

0.3

0.0

-0.3

-0.6

y
[m

m
]

0.0

0.2

0.4

0.6

0.8

1.0

(a) Unsmoothed VOF colour field.

-0.6 -0.3 0.0 0.3 0.6
x [mm]

0.6

0.3

0.0

-0.3

-0.6

y
[m

m
]

0.0

0.2

0.4

0.6

0.8

1.0

(b) VOF colour field smoothed with δ= 4h.

Figure 5.6: Colour plots of the VOF colour field and its smoothed counterpart.

36 5. Impact of Convolution on Two-Phase Flow Simulations

5.4. Benchmark Case 2: Rising Bubble
Having considered the static case as first benchmark case, the next step is to evaluate the use of convolution
for a rising bubble. The gravitational force is now present as an external force. Therefore, the simulated bub-
ble will have a physical rising velocity. The considered benchmark case is the first case described by Hysing et
al. [22]. This case refers to a rising bubble with small density and viscosity ratios. They compared the results
from simulations of three different research groups that use finite element methods, two of which use the
Level-Set Method and the third uses Arbitrary Lagrangian-Eulerian. The benchmark quantities that will be
considered are the mean rising velocity and circularity. The results for the three different groups considered
in the reference study were very well in agreement. Although they did not study a case where the VOF method
is used, it serves as a numeric reference for the mentioned quantities, given that three different, independent
codes obtained virtually identical results.

5.4.1. Case Description

0.25

1.25

0.25

1

2

Fluid 2

Fluid 1

Figure 5.7: Initial setting for benchmark case 2. All the distances are in metres.

Table 5.4 presents the properties of the fluids and the simulation.

Table 5.4: Simulation and fluid properties for benchmark case 2. ρ is the density, µ the dynamic viscosity, ν the kinematic viscosity, σ
the surface tension and g the gravitational acceleration.

Property Fluid 1 Fluid 2

ρ [103 kgm−3] 0.1 1

µ [Pas] 1 10

ν [103 ms−1] 0.1 0.1

σ [10−3 Nm−1] 24.5

g [ms−2] 0.98

Eo 9

M 3.6 ·10−3

A circular bubble is initialized with the exact VOF colour field, provided by the program implemented in

5.4. Benchmark Case 2: Rising Bubble 37

Python. This bubble has R = 0.25m, and the domain covers a region of 2R ×4R, as shown in Figure 5.7. The
benchmark case considered several different cell dimensions, but observed little difference for a cell size finer
than h = 1/80m, which is why this cell dimension is chosen for the current study. This corresponds to 20 cells
per radius for the initial condition.

As in the static bubble case, the PISO algorithm is used for pressure-velocity coupling. As for the boundary
conditions, a zero gradient is used for all the faces for the colour function. No slip condition is applied to the
velocity for the top and bottom walls, and slip for the lateral walls. Finally, a uniform zero dynamic pressure
is applied to all the faces as boundary condition.

5.4.2. Results
The comparison with the benchmark case is made with time traces of the mean rising velocity and circularity
of the bubble.

Circularity
The circularity is defined as

φ= Pa

Pb
, (5.6)

where Pa is the perimeter of an area equivalent circle and Pb is the actual perimeter of the bubble. These
values are extracted after the simulation with the contour filter available in paraview. With this tool, a contour
line along a value of the colour field of 0.5 is chosen, which approximates the location of the interface. The
length of this contour line then provides the value of the perimeter of the bubble. The area A occupied by the
bubble can be obtained by integrating the colour field. With this value, the perimeter of an area equivalent
circle is obtained with

Pa = 2
p

Aπ. (5.7)

Figure 5.8 shows the results of simulations performed without smoothing and with convolution supports
of δ= h, 3h and 5h, and close-ups around pertinent moments in time.

All of the performed simulations predicted a circularity that is lower than the reference case. The circu-
larity of the bubble approaches the one from the benchmark case as the support of the convolution kernel
is increased. For no smoothing, the final circularity predicted by OpenFOAM deviates around 1% from the
benchmark case, whereas a convolution with δ = 5h reduces this to around 0.4%. Convolving with a single
cell of support does not seem to improve the results. This is very different from the results obtained for a spu-
rious bubble, where it was observed that instabilities in the simulation actually increased after a convolution
support of δ= 2h. For the case of a rising bubble, there is no visible wave present on the interface that distorts
the VOF colour field. To see this, Figure 5.9 depicts the evolution of the interface by plotting contour plots at
different times.

The difference in shape for the simulation without smoothing and with a convolution support of δ = 4h
is minimal but noticeable, and is in closer agreement with the considered benchmark case. However, if the
support is increased too much, the resulting shapes of the bubble become unphysical. This starts at a convo-
lution support of δ= 5h. Figure 5.10 presents the final rising shape which arises when a convolution support
of δ = 8h is used. Similar results where observed by Denner and van Wachem [11] when large convolution
stencils were used.

In Section 4.3, it was analysed why there was a limit above which convolution does not improve curvature
calculations for an interface with varying curvature, which can explain the obtained results. By approximat-
ing the obtained final shape to an ellipse, there are approximately 16 cells per semi-minor axis. Based on
Equation 4.15, the ideal convolution support for this scenario would be δ = 4h. This gives a reasonable ap-
proximation of the actual ideal support, which is 5h, considering that the actual shape is not precisely an
ellipse.

Rising Velocity
The rising velocity is given by

ur =
∫
Ω1

|u| dx∫
Ω1

dx
, (5.8)

where Ω1 is the region occupied by fluid 1. To calculate this value, a third-party library extension called
swak4foam is used. Figure 5.11 plots the rising velocity as a function of time for the same cases considered in
Figure 5.8.

38 5. Impact of Convolution on Two-Phase Flow Simulations

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t [s]

0.90

0.92

0.94

0.96

0.98

1.00

φ

(a) Complete simulation.

1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3
t [s]

0.890

0.895

0.900

0.905

0.910

0.915

0.920

φ

(b) Close-up around the minimum.

2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0
t [s]

0.895

0.900

0.905

0.910

0.915

0.920

0.925

φ

(c) Close-up around final value.

no smoothing

δ = h

δ = 3h

δ = 5h

b.c.

Figure 5.8: Circularity as a function of time of the considered rising bubble and close-ups around relevant moments in the shape
development. The results from Hysing et al. [22] are given as reference, indicated by b.c.

These results are indeed what one would expect after having observed the circularity plots in Figure 5.8.
Again, the rising velocities approach the results of the benchmark case as the convolution support is in-
creased, for supports greater than δ = h. Since the circularity of the simulated bubbles was consistently
increased as the support was incremented up to δ= 5h, this indicates that the cross-sectional area of the ris-
ing bubbles decreased as a function of convolution support. Discarding the possibility of bubble shapes that
are elongated in the rising direction (this is not physically possible for the current case), a circle would be the
shape with least cross-sectional are, which corresponds to a circularity of 1. Therefore, since the circularity
increased as the convolution support did when compared to the case with no smoothing, the cross-sectional
area decreased. This means that the drag force that counteracts the buoyancy force is smaller, which finally
results in a higher rising velocity. The calculated terminal velocity for no smoothing differs 4.2% from the
benchmark case, and this is greatly reduced to 0.01% for a convolution support of δ= 5h. As with the circu-
larity, it makes no sense to consider the cases where a large convolution support distorts the development of
the bubble, since it results in unphysical rising velocities.

Concluding remarks
Simulations of the rising bubble case with the use of convolution resulted in circularities and rising velocities
that were in better agreement when compared to the reference data, up to a limit of a convolution support of
δ= 5h. The values where still a little underestimated. It is worth mentioning that the results of the benchmark
case were obtained with Finite Element Methods, which are a higher order method than the currently used
Finite Volume Method. This might explain the underestimation.

Unfortunately the results cannot be compared with experimental data, because the case considered is
two dimensional, and a 3D case would take too long for the present work. However, given that Hysing et
al. evaluated the algorithms of three independent research groups, and their results were very similar, the
data presented in their study is a good numerical reference of what the circularity and rising velocity of this

5.4. Benchmark Case 2: Rising Bubble 39

Figure 5.9: Shape evolution of an initially circular bubble for a simulation without smoothing (black) and with convolution of support
δ= 4h (red).

Figure 5.10: Bubble shape at t = 3s when a support of δ= 8h is used.

hypothetical test case should be.
The unexpected interface wave that emerged for a zero-gravity static bubble was not visible for the rising

bubble. The current case has a Eo of 9, which means that the gravitational forces are much more significant
that the surface tension forces. Therefore, the inaccuracies of the surface tension estimation have a smaller
impact on the results of the simulation when compared to the static case, where Eo was 0.

40 5. Impact of Convolution on Two-Phase Flow Simulations

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t [s]

0.00

0.05

0.10

0.15

0.20

0.25

u
r

(a) Complete simulation.

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
t [s]

0.20

0.21

0.22

0.23

0.24

0.25

u
r

(b) Close-up around the maximum.

2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0
t [s]

0.170

0.175

0.180

0.185

0.190

0.195

0.200

0.205

0.210

u
r

(c) Close-up around the terminal velocity.

no smoothing

δ = h

δ = 3h

δ = 5h

b.c.

Figure 5.11: Rising velocity as a function of time and close-ups around important moment during the simulation. The results from
Hysing et al. [22] are given as reference, indicated by b.c.

6
Analysis of the Interface Wave Induced by

the Convolution Method

In Section 5.3.2 it was observed that increasing the convolution support beyond δ = 2h was detrimental for
the simulation of a static bubble. A wave formed on the interface that distorted the VOF colour field to such an
extent that the spurious velocities greatly increased. This chapter attempts to investigate the factors that may
have influence on the generation of such a wave. The same static bubble benchmark case as in Section 5.3
will be considered.

6.1. Parameters Relevant to Simulation
6.1.1. Curvature
Section 4.2.2 described how the error in the curvature estimation changes as a function of the convolution
support. It was found that, for a circle, the curvature error decreased as the support δ increased. Figure 6.1
confirms that this is also the case for the curvature calculation in OpenFOAM.

1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70
r [m] ×10−4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

κ
[m
−

1
]

×104

δ = h

δ = 2h

δ = 4h

δ = 8h

1/r

Figure 6.1: Curvature as a function of the distance r to the centre of the bubble for different convolution supports. The line is taken
along the positive x-axis. The exact value of 1/r is plotted as reference. The dotted line is a scaled version of the surface tension force,

which indicates the region where the curvature actually has an impact on the flow.

As the convolution support is increased, the curvature in the region around the interface better approxi-
mates the expected value of 1/r . This behaviour was the same for lines at 8 equidistant angles between 0 and
π/2 with respect to the x-axis. Therefore, regardless of the alignment of the grid with respect to the interface,
convolution has a positive impact on the curvature calculation.

41

42 6. Analysis of the Interface Wave Induced by the Convolution Method

Given that the convolution method correctly predicts the curvature, and that using this method results in
an interfacial wave, which does not occur without smoothing or when using a Laplacian smoother, Figure 6.2
compares the computed curvature of those methods. The Laplacian smoother uses 8 iterations, such that
the smoothed VOF colour fields of the different smoothers are similar in terms of dispersion of the original
colour field around the true interface.

1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70
r [m] ×10−4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

κ
[m
−

1
]

×104

no smoothing

conv(δ = 4h)

lap(nlap = 8)

1/r

Figure 6.2: Similar to Figure 6.1, but now including the results of a simulation without smoothing and one with a Laplacian smoother.

It can be seen that the Laplacian filter correctly improves the curvature estimations as well, and does
not differ significantly from the convolution smoother. The unsmoothed case provides the right curvature
exactly where the interface is located, but fails to come close to the real curvature for the region around the
interface. Surface tension is present in this region, so it is crucial to correctly estimate the curvature here
as well. Therefore, the overall correction in the curvature for both smoothed cases when compared to the
unsmoothed case is significant. Again, this same behaviour was observed for lines at 8 different angles from
0 to π/2, indicating independence of grid alignment.

6.1.2. Pressure
Two fluids experience a pressure jump at the interface separating the fluids. According to the Young-Laplace
equation (2.3), this pressure jump should be∆p =σκ. For the current case, the pressure jump should be∆p =
157.3Pa, given that the exact curvature is κ= 1/R. To evaluate whether this is achieved, simulations for cases
with smoothing (convolution and Laplacian) and without smoothing were performed for the benchmark case
and two further mesh refinements. The pressure jump was determined as the difference in pressure between
the centre of the bubble and a point in the field far from the bubble. Table 6.1 summarizes the pressure jumps
for the considered cases.

Table 6.1: Pressure jumps in Pa for three different smoothing options and cell dimensions.

Case
Cells per radius R/h

25 50 75

No smoothing 127 133 136
Convolution 153 154 153

Laplacian 152 153 152

It was observed that all the simulations underestimate the true value of the pressure jump, and that fur-
ther refining the mesh does not yield an improvement for the cases where smoothing was applied. The case
with convolution seems to be the one that is the closest to the expected value, but does not differ much from
the case with the Laplacian filter. No conclusion can be drawn by merely looking at the pressure jump, be-

6.1. Parameters Relevant to Simulation 43

cause it is the pressure gradient in combination with the surface tension force that predicts the flow. This is
considered in Section 6.1.3

6.1.3. Surface Tension Force
The curvature has a direct impact on the resulting surface tension force that arises at a region around the
interface. For the static bubble case, this force, which is modelled as a volumetric force, should compensate
for the pressure jump between the considered fluids. Only then will the Navier-Stokes equations predict a
zero velocity as solution. The two important factors to consider for a force are its magnitude and direction.
Ideally, it should point radially inward. Figure 6.3 plots the vector field of the surface tension force in the first
quadrant of the bubble.

0.0 0.5 1.0 1.5
r [m] ×10−4

0.0

0.5

1.0

1.5

r
[m

]

×10−4

(a) Convolution (δ= 4h).

0.0 0.5 1.0 1.5
r [m] ×10−4

0.0

0.5

1.0

1.5

r
[m

]

×10−4

(b) Laplacian smoother (nits = 8).

0.0 0.5 1.0 1.5
r [m] ×10−4

0.0

0.5

1.0

1.5

r
[m

]

×10−4

(c) No smoothing

Figure 6.3: Plot of the vector field of the surface tension force for different smoothers.

The direction of the surface tension force for the unsmoothed case is very distorted along the interface.
This improves with the use of either smoother, but there are still vectorial components pointing in a direction
other than the radial. The current study focused on the improvement of curvature calculations, which directly
affects the magnitude of the force. The direction is given by the normal vector, defined as the gradient of the
VOF colour field, as described in Equation 2.13. This normal vector is calculated with the unsmoothed VOF
colour field, and is thus very sensitive to errors. The model of the current study also uses this approach, which
is why the vector fields in Figure 6.3 are not directed perfectly in the radial direction. Even then, the normal
vector seems to be approached better when a smoother is used. This can be explained by considering how
OpenFOAM calculates the direction of the surface normal force.

In order to solve for the velocity and pressure fields, calculations in OpenFOAM are performed with re-
spect to the cell faces. The surface tension force is therefore defined on cell faces (as a surface field) rather
than cell centres (as a volume field). To achieve this, once the curvature is calculated at cell centres, these
values are interpolated to the faces. This is done by averaging the curvature values of the two cells that are
connected to a face. The gradient of the VOF colour field is calculated by projecting the centre value to the

44 6. Analysis of the Interface Wave Induced by the Convolution Method

faces. The two surface fields are multiplied with each other and scaled with the surface tension σ to obtain
the surface tension force, at the cell faces. Finally, a reconstruction procedure is used to obtain fields that
represent the volume of the cell, by averaging the face values. Each face represents a vector in the direction
normal to the face, with the magnitude given by the face value. In this way, a vector is obtained for the body
force that models the surface tension in each cell. Therefore, the direction of the force is affected by the mag-
nitude of the curvature, since it has a direct impact on the face values, which then determine the length of
the force component in the direction normal to the interface. This can explain why the direction of the sur-
face tension force is better approximated with the smoothers despite calculating the normal vector with the
gradient of the unsmoothed VOF colour field.

An interesting approach would be to calculate the normal vector needed for the direction of the surface
tension force with the smoothed VOF colour field. Figure 6.4 plots the vector field of the surface tension force
calculated in this way, for the same case and a convolution support of δ= 4h.

0.0 0.5 1.0 1.5
r [m] ×10−4

0.0

0.5

1.0

1.5

r
[m

]
×10−4

Figure 6.4: Vector field with the same magnitude as Figure 6.3a, but with the direction determined by the gradient of the smoothed VOF
colour field. This is calculated outside OpenFOAM.

There is an evident improvement in the direction of the surface tension force when the normal vector is
calculated with the smoothed VOF colour field. This gradient was calculated post processing from the cell
centre values of this smoothed field. Simulations in OpenFOAM might benefit from this approach, regardless
of the interpolation and reconstruction processes inherent to the solver.

The difference in magnitude of the surface tension force between smoothing with convolution and a
Laplacian filter was small along the interface, but is definitely present. Figure 6.5 plots the magnitude of
the surface tension force Fs along 16 lines with equidistant angles between 0 and π/2. The contribution to
this magnitude comes from the interface cells located along the chosen lines.

The magnitude of the surface tension force oscillates with respect to the angular direction, which could
generate an interfacial wave. However, the interfacial wave appeared only in the simulations where convolu-
tion was used, not with the Laplacian filter. Figure 6.5 shows that the Laplacian smoother also suffers from
this oscillation as a function of θ, and therefore this distortion cannot explain why the convolution smoother
has this problem.

The difference in magnitude of the surface tension force along the angular direction for a given smoother
can be attributed to discretisation. Line integrals are performed for different angles, and some angles might
provide a line that covers more computational cells where surface tension is present than others. This was
nevertheless the best way of comparing the surface tension forces along the interface for the smoothers.
Figure 6.5 therefore serves merely as a comparison between Laplacian smoothing and convolution, and has
no absolute meaning. No conclusions can therefore be drawn about a variation of the surface tension force
along the interface. What can be said is that a difference in the magnitude of the surface tension force, in
combination with a poor estimation of the interface normal, could lead to unphysical interface development.

6.2. Conclusions
The analysis of the curvature, surface tension force and pressure values for simulations with different smoothers
did not provide any reason for the appearance of an interface wave that would uniquely be present in the con-

6.2. Conclusions 45

0 π/8 π/4 3π/8 π/2
θ

1.4

1.5

1.6

1.7

F
s

[N
]

×102

conv(δ = 4h)

lap(nlap = 8)

Figure 6.5: Magnitude of the surface tension force Fs along line with an angle of θ with respect to the x-axis for two different smoothers.

volution method. Curvature estimations are indeed improved when convolution is used to smooth the VOF
colour field, but the resulting effect on the surface tension force, and therefore also on the time evolution of
the bubble, does not benefit from this. Besides the curvature factor in the surface tension force, it is also im-
portant that the normal vector is estimated appropriately, since this will influence the direction of the force.
The direction of the surface tension force did not vary significantly between simulations with the Laplacian
smoother and convolution. However, this direction could be better approximated if the smoothed VOF colour
field is used in the computations of the force direction instead of the otherwise abruptly varying VOF colour
field.

It is evident that finding the origin of the formation of the wave at the interface requires a more extended
analysis of the influencing factors, and an evaluation of the methodology used by OpenFOAM to estimate the
factors present in the surface tension body force, including the impact of their interpolation and reconstruc-
tion methods to switch between cell centre values and face values. Any uneven compensation of forces for
the static case may lead to the formation of a wave, where the direction is as important as the magnitude to
obtain accurate results. Regardless, for the mere purpose of improving the curvature calculations, smoothing
by means of convolution is advantageous.

7
Conclusions and Recommendations

7.1. Conclusions
In this study, the effect of smoothing the VOF colour field by means of convolution was investigated. Since this
colour field describes an abruptly varying discrete function across the interface, calculations of the second
order spatial derivative for curvature estimations often lead to high errors. These errors, in turn, introduce
discrepancies in the surface tension forces along the interface, resulting in unphysical flows (known as spu-
rious currents). Convolution is used to smooth the colour function, to obtain a more gentle transition of the
function values and thereby improve the curvature estimations. The goal was ultimately to understand how
convolution can influence these estimations, and the impact of the convolution parameters on the resulting
field.

Convolution was first used to smooth a VOF field representing a circular interface, for which the curvature
is constant. It was found that the curvature estimations improved as the convolution support increased. A
uniform discretised grid was used with equal cell lengths in both dimensions, h. When the length of the
convolution support was scaled as a linear function of h, the curvature diverged as the mesh was refined. It
was found that if the length of the convolution support is scaled with h2/3, the curvature converges to the
theoretical value. Moreover, it was analytically proven that for interfaces with constant curvature, the original
interface shape is conserved in the convoluted VOF field.

When using convolution for VOF fields representing interfaces with varying curvature, the behaviour was
different. The simplest non-constant interface curvature shape was chosen: an ellipse. In contrast to the
circular shape, there is an ideal convolution support to minimize the errors in the curvature for an ellipse:
convolution of the VOF field acts as an averaging process of values from nearby cells, with the consequence
that the true interface shape may change. Above this ideal convolution support, this change in shape be-
comes more significant than the advantage of having a smooth VOF field for the curvature calculation, for
which the magnitude of the high order derivative that determine the truncation error are small. This effect
was found to be the most significant at high values of the second order derivative of the interface curvature
with respect to the polar angle, as confirmed by an experimental study. A correction for the change in in-
terface shape may be needed in order to use convolution supports larger than the ideal length. A numerical
study was performed on how to choose the ideal convolution support for an ellipsoidal shape, with several
ratios of major to minor axis. The curvature errors are minimized if the convolution support is chosen as
a function of the square root of the number of computational cells per semi-minor axis of the ellipse. The
impact of ratios of major to minor axis on this ideal value was minimal.

The goal of improving the curvature calculations with convolution was to predict two-phase flow sim-
ulations in OpenFOAM more accurately, since this solver uses the unsmoothed VOF field for the curvature
estimations. Moreover, it has an implementation of another smoother, the Laplacian filter, with which to
compare the results. For a static bubble in zero-gravity, spurious velocities were reduced with small convolu-
tion supports, but resulted in an increasingly unphysical flow, visible as a wavy interface, when the support
was extended beyond three computational cells. In these cases, the curvature was estimated properly, but this
nevertheless had a negative impact on the simulations. There was no clear cause found for this behaviour,
especially since the use of a Laplacian smoother did not suffer from the mentioned problem. The case of a
rising bubble in a fluid with low density and viscosity ratios was also tested, where external forces are now

46

7.2. Recommendations 47

active. The circularity and rising velocity of an initially-circular bubble as a function of time were obtained
more accurately when convolution was applied than without it. The terminal velocity of the simulation with
convolution differed only 0.01% from a well-known benchmark case, whereas no convolution resulted in a
deviation of 4.2%.

7.2. Recommendations
For further research, there are two topics that could be examined more carefully. First, a thorough analysis of
the curvature calculation for interfaces with non-constant curvature can be done in order to determine for
which convolution support the error is minimized. For this, both the impact of having a smoother field and
changing the local shape of the interface with convolution need to be considered. Second, the improvement
of the approximation of the surface tension in OpenFOAM can be looked into with more detail. The normal
vector of the force is still determined with the unsmoothed VOF colour field, and therefore does not always
point in the radial direction. This could improve the results from this study and maybe provide a reason for
generation of an interface wave. Finally, the impact of the interpolation and reconstruction methods used by
OpenFOAM should be investigated more deeply. These are used to retrieve field values at either cell centres
or faces, and a repetitive use of these functions may affect the locality of the calculated field.

A
Filter weights

0 0.002 0.010 0.002 0

0.002 0.064 0.121 0.064 0.002

0.010 0.121 0.205 0.121 0.010

0.002 0.064 0.121 0.064 0.002

0 0.002 0.010 0.002 0

(a) K6 kernel.

0 0 0.004 0 0

0 0.054 0.127 0.054 0

0.004 0.127 0.255 0.127 0.004

0 0.054 0.127 0.054 0

0 0 0.004 0 0

(b) K8 kernel.

0 0.005 0.016 0.005 0

0.005 0.068 0.113 0.068 0.005

0.016 0.113 0.172 0.113 0.016

0.005 0.068 0.113 0.068 0.005

0 0.005 0.016 0.005 0

(c) Kcos kernel.

Figure A.1: Numerical values to three decimals of precision of the weights the filters K6, K8 and Kcos assign to its neighbouring cells for
δ= 0.5, where each mesh element size is 0.2×0.2.

48

B
Plots of Curvature Error as a Function of
Convolution Support for Different Mesh

Dimensions

0 2 4 6 8 10 12 14 16 18
δ [h]

10−1

L
2
/κ

re
f

a/b = 2

a/b = 3

a/b = 4

(a) 2 cells per b

0 2 4 6 8 10 12 14 16 18
δ [h]

10−1

L
2
/κ

re
f

a/b = 2

a/b = 3

a/b = 4

(b) 4 cells per b

0 2 4 6 8 10 12 14 16 18
δ [h]

10−1

100

L
2
/κ

re
f

a/b = 2

a/b = 3

a/b = 4

(c) 8 cells per b

0 2 4 6 8 10 12 14 16 18
δ [h]

10−2

10−1

100

L
2
/κ

re
f

a/b = 2

a/b = 3

a/b = 4

(d) 15 cells per b

Figure B.1: Curvature error of three ellipses with a/b = 1, 2 and 3 normalized with κref = a/b2 as a function of the convolution support δ
for different mesh dimensions.

49

50 B. Plots of Curvature Error as a Function of Convolution Support for Different Mesh Dimensions

0 2 4 6 8 10 12 14 16 18
δ [h]

10−2

10−1

100

L
2
/κ

re
f

a/b = 2

a/b = 3

a/b = 4

(a) 30 cells per b

0 2 4 6 8 10 12 14 16 18
δ [h]

10−2

10−1

100

L
2
/κ

re
f

a/b = 2

a/b = 3

a/b = 4

(b) 60 cells per b

0 2 4 6 8 10 12 14 16 18
δ [h]

10−3

10−2

10−1

100

101

L
2
/κ

re
f

a/b = 2

a/b = 3

a/b = 4

(c) 90 cells per b

0 2 4 6 8 10 12 14 16 18
δ [h]

10−3

10−2

10−1

100

101

L
2
/κ

re
f

a/b = 2

a/b = 3

a/b = 4

(d) 120 cells per b

Figure B.2: Curvature error of three ellipses with a/b = 1, 2 and 3 normalized with κref = a/b2 as a function of the convolution support δ
for different mesh dimensions.

C
Convolution Code

C.1. convolution.H
1 #ifndef smoothers_convolution_H
2 #define smoothers_convolution_H
3

4 #include "weightedSmootherKernel.H"
5

6 // * //
7

8 namespace Foam
9 {

10 namespace smoothers
11 {
12

13 /* ---*\
14 Class normal Declaration
15 *---*/
16

17 template <class Type >
18 class convolution
19 :
20 public weightedSmootherKernel <Type >
21 {
22 // Private data
23

24 scalar convSupportConstant_;
25 word kernelName_;
26 typedef scalar (* KernelPtr)(scalar , scalar);
27 KernelPtr kernel_;
28

29 // Private Member Functions
30 // Define a struct to store cell labels and their corresponding weights
31 struct cellsAndWeights
32 {
33 DynamicList <label > neighbours;
34 DynamicList <scalar > weights;
35 };
36

37

38 // General functions
39 cellsAndWeights findConvolutionCellsAndWeights(const GeometricField <Type ,

,→ fvPatchField , volMesh >& fld , int celli) const;
40

41 inline scalar computeDistance(vector a, vector b) const { return mag(a-b); };
42

43 inline bool insideKernel(scalar distance , scalar convSupport_) const { return (
,→ distance <= convSupport_); };

44

45 bool contains(DynamicList <label >& list , scalar value) const;
46

51

52 C. Convolution Code

47 Type convolutionOneCell(const GeometricField <Type , fvPatchField , volMesh >& fld ,
,→ struct cellsAndWeights& convolutionCellsAndWeights) const;

48

49 // Convolution kernels
50 static inline scalar degree6Kernel(scalar distance , scalar convSupport_) {

,→ return pow(1-pow(distance/convSupport_ ,2) ,3); };
51

52 static inline scalar degree8Kernel(scalar distance , scalar convSupport_) {
,→ return pow(1-pow(distance/convSupport_ ,2) ,4); };

53

54 static inline scalar cosKernel(scalar distance , scalar convSupport_) { return
,→ (1+ cos(M_PI*distance/convSupport_))/(2* convSupport_); };

55

56 public:
57

58 //- Runtime type information
59 TypeName("convolution");
60

61 // Constructors
62

63 //- Construct from dictionary
64 convolution
65 (
66 const word& name ,
67 const dictionary & dict
68);
69

70 //- Destructor
71 virtual ~convolution (){}
72

73

74 // Member Functions
75

76 virtual tmp <GeometricField <Type , fvPatchField , volMesh >> smoothen(const
,→ GeometricField <Type , fvPatchField , volMesh >& fld) const;

77 virtual tmp <GeometricField <Type , fvPatchField , volMesh >> smoothen(
78 const GeometricField <Type , fvPatchField , volMesh >& fld ,
79 const tmp <volScalarField >& tweight
80) const;
81 };
82

83

84 // * //
85

86 } // End namespace smoothers
87 } // End namespace Foam
88

89 // * //
90

91 #ifdef NoRepository
92 #include "convolution.C"
93 #endif
94

95 // * //
96

97 #endif
98

99 // *** //

C.2. convolution.C

1 #include "convolution.H"
2 #include "fvcWeightedAverage.H"
3

4 namespace Foam
5 {
6

7 // * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
8

9 template <class Type >

C.2. convolution.C 53

10 Foam:: smoothers :: convolution <Type >:: convolution
11 (
12 const word& name ,
13 const dictionary& dict
14)
15 :
16 weightedSmootherKernel <Type >(name , dict),
17 convSupportConstant_(dict.lookupOrDefault <label >("convSup" ,0)),
18 kernelName_(dict.lookupOrDefault <word >("kernel", "K6")),
19 kernel_(NULL)
20 {
21 if (convSupportConstant_ <= 0)
22 {
23 // Default value still needs to be adjusted
24 int convSupportConstantDefault = 2;
25 WarningInFunction
26 << "Specified convSup = " << convSupportConstant_ << "." << nl
27 << " " << "This value must be positive. Assuming the default

,→ value " << convSupportConstantDefault << " instead." <<
,→ endl;

28 convSupportConstant_ = convSupportConstantDefault;
29 }
30

31 if (kernelName_ == "K6")
32 {
33 kernel_ = °ree6Kernel;
34 } else if (kernelName_ == "K8")
35 {
36 kernel_ = °ree8Kernel;
37 } else if (kernelName_ == "Kcos")
38 {
39 kernel_ = &cosKernel;
40 } else
41 {
42 FatalErrorInFunction << "Specified kernel " << kernelName_ << " for convolution

,→ not valid." << nl
43 << "Valid kernel names are:\n\tK6\n\tK8\n\tKcos" << exit(FatalError);
44 }
45 }
46

47 // * * * * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * * *
,→ * //

48 template <class Type >
49 typename Foam:: smoothers :: convolution <Type >:: cellsAndWeights
50 Foam:: smoothers :: convolution <Type >:: findConvolutionCellsAndWeights(const GeometricField

,→ <Type , fvPatchField , volMesh >& fld , int celli) const
51 {
52 // Returns a list of lists , with the neighbour indices that are used in the

,→ convolution in the first list and their unnormalized weights in the second
,→ list

53 // Each cell is weighted with the kernel weight and a cell volume weight , to give a
,→ larger importance to bigger cells

54 // Dynamic list is used to store the cells for convolution. A rough estimate of the
,→ amount of neighbours of celli is given by convolutionCellsSize =(2*
,→ convSupport_)^d/fld.mesh().V()[celli], with d the dimensions of the
,→ simulation.

55

56 // Access reference to cell centres and neighbours
57 const volVectorField& cellCentres = fld.mesh().C();
58 const labelListList& cellNeighbours = fld.mesh().cellCells ();
59 const scalarField& cellVolumes = fld.mesh().V();
60

61 // Estimate local cell separation by averaging distances to cell neighbours
62 scalar avgCellSep = 0;
63 forAll(cellNeighbours[celli], counter)
64 {
65 avgCellSep += computeDistance(cellCentres[celli], cellCentres[

,→ cellNeighbours[celli][counter]]);
66 }
67 avgCellSep /= cellNeighbours[celli].size();
68

54 C. Convolution Code

69 scalar convSupport_ = (convSupportConstant_ +0.5)*avgCellSep;
70

71 int convolutionCellsSize = pow(convSupport_ *2, 2);
72 DynamicList <label > convolutionCells(convolutionCellsSize);
73 convolutionCells.append(celli);
74 DynamicList <scalar > weights(convolutionCellsSize);
75 scalar weightCentreCell = kernel_(0, convSupport_)*cellVolumes[celli];
76 weights.append(weightCentreCell);
77

78 // Keep track of the sum of the weights for normalization
79 scalar totalWeight = weightCentreCell;
80

81 DynamicList <label > newCells;
82 newCells.append(celli);
83 int newCellsSize = 2;
84

85 // Loop until no new neighbours are added
86 while (newCellsSize != 0)
87 {
88 // Create a copy of the new cells list to avoid looping over a list that

,→ changes size in the loop iterations
89 DynamicList <label > newCellsCopy = newCells;
90

91 // Clear the newCells list to fill it up again with the neighbours from
,→ last iteration , which are now stored in newCellsCopy

92 newCells.clear();
93 forAll(newCellsCopy , cellj)
94 {
95 const labelList neighbours = cellNeighbours[newCellsCopy[cellj]];
96 forAll(neighbours , cellk)
97 {
98 scalar distance = computeDistance(cellCentres[celli], cellCentres[

,→ neighbours[cellk]]);
99 if (insideKernel(distance , convSupport_) && !(contains(

,→ convolutionCells , neighbours[cellk])))
100 {
101 convolutionCells.append(neighbours[cellk]);
102 scalar kernelWeight = kernel_(distance , convSupport_)*

,→ cellVolumes[cellk];
103 weights.append(kernelWeight);
104 totalWeight += kernelWeight;
105 newCells.append(neighbours[cellk]);
106 }
107 }
108 }
109 // If no new neighbours are added , newCellsSize becomes zero and the while

,→ loop is broken
110 newCellsSize = newCells.size();
111 }
112

113 // Normalize weights
114 forAll(weights , cellm)
115 {
116 weights[cellm] /= totalWeight;
117 }
118

119 // Make a struct containing neighbours indices and their corresponding weights
120 cellsAndWeights convolutionCellsAndWeights;
121 convolutionCellsAndWeights.neighbours = convolutionCells;
122 convolutionCellsAndWeights.weights = weights;
123 return convolutionCellsAndWeights;
124 }
125

126 template <class Type >
127 bool Foam:: smoothers :: convolution <Type >:: contains(DynamicList <label >& list , scalar

,→ value) const
128 {
129 // Returns true if value is contained in list , false otherwise
130 bool isContained = false;
131 forAll(list , item)
132 {

C.2. convolution.C 55

133 if (value == list[item])
134 {
135 isContained = true;
136 break;
137 }
138 }
139 return isContained;
140 }
141

142 template <class Type >
143 Type Foam:: smoothers :: convolution <Type >:: convolutionOneCell
144 (
145 const GeometricField <Type , fvPatchField , volMesh >& fld ,
146 struct cellsAndWeights& convolutionCellsAndWeights
147) const
148 {
149 Type smoothValue(Zero);
150 forAll(convolutionCellsAndWeights.neighbours , celli)
151 {
152 smoothValue += fld[convolutionCellsAndWeights.neighbours[celli]]*

,→ convolutionCellsAndWeights.weights[celli];
153 }
154 return smoothValue;
155 }
156

157 // * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
158

159 template <class Type >
160 tmp <GeometricField <Type , fvPatchField , volMesh >>
161 Foam:: smoothers :: convolution <Type >:: smoothen(const GeometricField <Type , fvPatchField ,

,→ volMesh >& fld) const{
162

163 if(!this ->weight_.valid ()){
164 FatalErrorInFunction
165 << "Attempted to use smoothen(fld) with a smoother instance

,→ that does not own its own weightFunction." << nl
166 << "The function smoothen(fld , weight) should have been used

,→ instead." << nl
167 << "This indicates an error in the programming logic."
168 << abort(FatalError);
169 }
170

171 // Compute weightFactor
172 tmp <volScalarField > tweight = this ->weight_ ->weight(fld.mesh());
173

174 // Smoothen field
175 return smoothen(fld ,tweight);
176 // tweight is automatically cleared (out -of -scope)
177

178 }
179

180

181 template <class Type >
182 tmp <GeometricField <Type , fvPatchField , volMesh >>
183 Foam:: smoothers :: convolution <Type >:: smoothen(
184 const GeometricField <Type , fvPatchField , volMesh >& fld ,
185 const tmp <volScalarField >& tweight // Not yet implemented
186) const
187 {
188 Info << "(convolution) Smoothing(fld ,tweight) " << fld.name() << "." << endl;
189 tmp <GeometricField <Type , fvPatchField , volMesh >> tfldSmooth
190 (
191 new GeometricField <Type , fvPatchField , volMesh >
192 (
193 IOobject
194 (
195 "convolution("+fld.name()+’)’,
196 fld.instance (),
197 fld.mesh(),
198 IOobject ::NO_READ ,
199 IOobject :: NO_WRITE

56 C. Convolution Code

200),
201 fld.mesh(),
202 fld.dimensions ()
203)
204);
205

206 GeometricField <Type , fvPatchField , volMesh >& fldSmooth = tfldSmooth.ref();
207

208 forAll(fld , celli)
209 {
210 struct cellsAndWeights convolutionCellsAndWeights =

,→ findConvolutionCellsAndWeights(fld , celli);
211 fldSmooth[celli] = convolutionOneCell(fld , convolutionCellsAndWeights);
212 }
213

214 typename GeometricField <Type , fvPatchField , volMesh >::
215 Boundary& bav = fldSmooth.boundaryFieldRef ();
216

217 forAll(bav , patchi)
218 {
219 bav[patchi] = fld.boundaryField ()[patchi];
220 }
221

222 fldSmooth.correctBoundaryConditions ();
223

224 return tfldSmooth;
225 }
226

227 // *** //
228

229 } // End namespace Foam
230

231 // *** //

Bibliography

[1] C.E. Brennen. Fundamentals of Multiphase Flow. Cambridge University Press, 2005. ISBN: 9781107717671.
URL: https://books.google.nl/books?id=zM5VAgAAQBAJ.

[2] R. Clift et al. Bubbles, Drops, and Particles. Academic Press, 1978. ISBN: 9780121769505. URL: https:
//books.google.nl/books?id=n8gRAQAAIAAJ.

[3] C.W. Hirt and B.D. Nichols. “Volume of fluid (VOF) method for the dynamics of free boundaries”. In:
Journal of Computational Physics 39.1 (1981), pp. 201 –225. ISSN: 0021-9991. DOI: https://doi.org/
10.1016/0021-9991(81)90145-5.

[4] Malik Mayank, Fan Eric Sheung-Chi, and Bussmann Markus. “Adaptive VOF with curvature-based re-
finement”. In: International Journal for Numerical Methods in Fluids 55.7 (2007), pp. 693–712. DOI:
10.1002/fld.1490.

[5] Mark Sussman, Peter Smereka, and Stanley Osher. “A Level Set Approach for Computing Solutions to
Incompressible Two-Phase Flow”. In: Journal of Computational Physics 114.1 (1994), pp. 146 –159. ISSN:
0021-9991. DOI: https://doi.org/10.1006/jcph.1994.1155.

[6] Mark Sussman. “A second order coupled level set and volume-of-fluid method for computing growth
and collapse of vapor bubbles”. In: Journal of Computational Physics 187.1 (2003), pp. 110 –136. ISSN:
0021-9991. DOI: https://doi.org/10.1016/S0021-9991(03)00087-1.

[7] J.U. Brackbill, D.B. Kothe, and C. Zemach. “A continuum method for modeling surface tension”. In:
Journal of Computational Physics 100.2 (1992), pp. 335 –354. ISSN: 0021-9991. DOI: https://doi.org/
10.1016/0021-9991(92)90240-Y.

[8] Sharen J. Cummins, Marianne M. Francois, and Douglas B. Kothe. “Estimating curvature from volume
fractions”. In: Computers & Structures 83.6 (2005). Frontier of Multi-Phase Flow Analysis and Fluid-
Structure, pp. 425 –434. ISSN: 0045-7949. DOI: https://doi.org/10.1016/j.compstruc.2004.08.
017.

[9] Marianne M. Francois et al. “A balanced-force algorithm for continuous and sharp interfacial sur-
face tension models within a volume tracking framework”. In: Journal of Computational Physics 213.1
(2006), pp. 141 –173. ISSN: 0021-9991. DOI: https://doi.org/10.1016/j.jcp.2005.08.004.

[10] Bruno Lafaurie et al. “Modelling Merging and Fragmentation in Multiphase Flows with SURFER”. In:
Journal of Computational Physics 113.1 (1994), pp. 134 –147. ISSN: 0021-9991. DOI: https://doi.org/
10.1006/jcph.1994.1123.

[11] Fabian Denner and Berend G. M. van Wachem. “Fully-Coupled Balanced-Force VOF Framework for
Arbitrary Meshes with Least-Squares Curvature Evaluation from Volume Fractions”. In: Numerical Heat
Transfer, Part B: Fundamentals 65.3 (2014), pp. 218–255. DOI: 10.1080/10407790.2013.849996.

[12] M. W. Williams, D. B. Kothe, and E. G. Puckett. “Accuracy and Convergence of Continuum Surface Ten-
sion Models”. In: Fluid Dynamics at Interfaces. Univ. Press, 1998, pp. 294–305.

[13] The OpenFOAM Foundation. OpenFOAM v4 User Guide. 2015. URL: https://cfd.direct/openfoam/
user-guide-v4/.

[14] K. van As. “kva_interfaceProperties”. In: GitHub repository (2017). URL: https://github.com/floquation/
OF-kva_interfaceProperties.

[15] Onno Ubbink. “Numerical prediction of two fluid systems with sharp interfaces”. PhD thesis. London:
Imperial College London, Jan. 1997.

[16] L.P.B.M. Janssen and M.M.C.G. Warmoeskerken. Transport Phenomena Data Companion. 3rd ed. Delft:
VSSD, 2006. ISBN: 9789071301599.

[17] Suman Chakraborty. “Surface-Tension-Driven Flow”. In: Encyclopedia of Microfluidics and Nanoflu-
idics. Ed. by Dongqing Li. New York, NY: Springer New York, 2015, pp. 3170–3186. ISBN: 978-1-4614-
5491-5. DOI: 10.1007/978-1-4614-5491-5_1510.

57

https://books.google.nl/books?id=zM5VAgAAQBAJ
https://books.google.nl/books?id=n8gRAQAAIAAJ
https://books.google.nl/books?id=n8gRAQAAIAAJ
https://doi.org/https://doi.org/10.1016/0021-9991(81)90145-5
https://doi.org/https://doi.org/10.1016/0021-9991(81)90145-5
https://doi.org/10.1002/fld.1490
https://doi.org/https://doi.org/10.1006/jcph.1994.1155
https://doi.org/https://doi.org/10.1016/S0021-9991(03)00087-1
https://doi.org/https://doi.org/10.1016/0021-9991(92)90240-Y
https://doi.org/https://doi.org/10.1016/0021-9991(92)90240-Y
https://doi.org/https://doi.org/10.1016/j.compstruc.2004.08.017
https://doi.org/https://doi.org/10.1016/j.compstruc.2004.08.017
https://doi.org/https://doi.org/10.1016/j.jcp.2005.08.004
https://doi.org/https://doi.org/10.1006/jcph.1994.1123
https://doi.org/https://doi.org/10.1006/jcph.1994.1123
https://doi.org/10.1080/10407790.2013.849996
https://cfd.direct/openfoam/user-guide-v4/
https://cfd.direct/openfoam/user-guide-v4/
https://github.com/floquation/OF-kva_interfaceProperties
https://github.com/floquation/OF-kva_interfaceProperties
https://doi.org/10.1007/978-1-4614-5491-5_1510

58 Bibliography

[18] Fabian Denner. “Balanced-force two-phase flow modelling on unstructured and adaptive meshes”.
PhD thesis. London: Imperial College London, Aug. 2013.

[19] Fabien Evrard, Fabian Denner, and Berend van Wachem. “Estimation of curvature from volume frac-
tions using parabolic reconstruction on two-dimensional unstructured meshes”. In: Journal of Com-
putational Physics 351.Supplement C (2017), pp. 271 –294. ISSN: 0021-9991. DOI: https://doi.org/
10.1016/j.jcp.2017.09.034.

[20] Charles S. Peskin. “Numerical analysis of blood flow in the heart”. In: Journal of Computational Physics
25.3 (1977), pp. 220 –252. ISSN: 0021-9991. DOI: https://doi.org/10.1016/0021-9991(77)90100-
0.

[21] Duong A. Hoang et al. “Benchmark numerical simulations of segmented two-phase flows in microchan-
nels using the Volume of Fluid method”. In: Computers & Fluids 86 (2013), pp. 28 –36. ISSN: 0045-7930.
DOI: https://doi.org/10.1016/j.compfluid.2013.06.024.

[22] Hysing S. et al. “Quantitative benchmark computations of two-dimensional bubble dynamics”. In: In-
ternational Journal for Numerical Methods in Fluids 60.11 (2008), pp. 1259–1288. DOI: 10.1002/fld.
1934.

https://doi.org/https://doi.org/10.1016/j.jcp.2017.09.034
https://doi.org/https://doi.org/10.1016/j.jcp.2017.09.034
https://doi.org/https://doi.org/10.1016/0021-9991(77)90100-0
https://doi.org/https://doi.org/10.1016/0021-9991(77)90100-0
https://doi.org/https://doi.org/10.1016/j.compfluid.2013.06.024
https://doi.org/10.1002/fld.1934
https://doi.org/10.1002/fld.1934

	Abstract
	Introduction
	Principles of Two-Phase Flow Modelling
	Physics of Two-Phase Flow
	Governing Equations
	Surface Tension
	Interface Shape

	Volume of Fluid
	Mathematical Model
	Curvature
	Curvature Calculation
	Curvature Error

	Convolution Filters
	Convolution: the Principle
	Convolution Filters
	Kernel Requirements
	Filters
	Discretisation of the Filters

	Example: Convolution of Circle
	Estimating the Normal Vector with a Convoluted VOF Field
	General Case
	Interface with a Locally Constant Curvature

	Impact of Convolution on Curvature Calculations
	Implementation
	Constant Curvature: Circle
	Initialization
	Curvature Error

	Non-Constant Curvature: Ellipse
	Initialization
	Curvature Error

	Concluding Remarks

	Impact of Convolution on Two-Phase Flow Simulations
	Algorithm
	Comparison of Curvature Calculation Between Python and OpenFOAM
	Benchmark Case 1: Static Bubble
	Case Description
	Results

	Benchmark Case 2: Rising Bubble
	Case Description
	Results

	Analysis of the Interface Wave Induced by the Convolution Method
	Parameters Relevant to Simulation
	Curvature
	Pressure
	Surface Tension Force

	Conclusions

	Conclusions and Recommendations
	Conclusions
	Recommendations

	Filter weights
	Plots of Curvature Error as a Function of Convolution Support for Different Mesh Dimensions
	Convolution Code
	convolution.H
	convolution.C

	Bibliography

