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Becoming Team Members: Identifying
Interaction Patterns of Mutual
Adaptation for Human-Robot
Co-Learning
Emma M. van Zoelen1,2*, Karel van den Bosch2 and Mark Neerincx1,2

1Interactive Intelligence, Intelligent Systems Department, Delft University of Technology, Delft, Netherlands, 2Human-Machine
Teaming, Netherlands Organization for Applied Scientific Research (TNO), Soesterberg, Netherlands

Becoming a well-functioning team requires continuous collaborative learning by all team
members. This is called co-learning, conceptualized in this paper as comprising two
alternating iterative stages: partners adapting their behavior to the task and to each other
(co-adaptation), and partners sustaining successful behavior through communication. This
paper focuses on the first stage in human-robot teams, aiming at a method for the
identification of recurring behaviors that indicate co-learning. Studying this requires a task
context that allows for behavioral adaptation to emerge from the interactions between
human and robot. We address the requirements for conducting research into co-
adaptation by a human-robot team, and designed a simplified computer simulation of
an urban search and rescue task accordingly. A human participant and a virtual robot were
instructed to discover how to collaboratively free victims from the rubbles of an earthquake.
The virtual robot was designed to be able to real-time learn which actions best contributed
to good team performance. The interactions between human participants and robots were
recorded. The observations revealed patterns of interaction used by human and robot in
order to adapt their behavior to the task and to one another. Results therefore show that
our task environment enables us to study co-learning, and suggest that more participant
adaptation improved robot learning and thus team level learning. The identified interaction
patterns can emerge in similar task contexts, forming a first description and analysis
method for co-learning. Moreover, the identification of interaction patterns support
awareness among team members, providing the foundation for human-robot
communication about the co-adaptation (i.e., the second stage of co-learning). Future
research will focus on these human-robot communication processes for co-learning.

Keywords: human-robot collaboration, human-robot team, co-learning, co-adaptation, interaction patterns,
emergent interactions

INTRODUCTION

When people collaborate in teams, it is of key importance that all team members get to know each
other, explore how they can best work together, and eventually adapt to each other and learn to make
their collaboration as fluent as possible. While humans do this naturally (Burke et al., 2006), it is not
self-evident for robots that are intended to function as team partners in human-robot collaborations.
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It is well known that robotic team partners should be transparent,
predictable, and explainable, but it is often overlooked that
human team partners become predictable and explainable
through a process of exploration and mutual learning.

We call the above mentioned process co-learning (Bosch et al.,
2019). While existing work on human-robot collaboration and
mutual adaptivity often focuses on short-term single interactions,
we believe it is necessary to also look at repeated interactions to
study co-learning as a mechanism for building fluent human-
robot collaborations.We conceptualize co-learning as comprising
two alternating iterative stages. In the first stage, partners observe
each other and adapt their behavior to the other, leading to
successful emergent team behaviors. Such adaptation can be done
deliberately but often occurs implicitly and unconsciously. In the
second stage, partners communicate about their adaptations and
give each other feedback, thereby giving meaning to and
becoming aware of the learned behavior. Especially this second
stage of creating awareness of what has been learned helps to
sustain the behavioral adaptations over time and across contexts.

We regard co-learning to be vital for creating successful
human-robot collaborations. However, the term “co-learning”
is relatively new in human-robot interaction literature, and it is
not yet precisely defined what human-robot co-learning looks
like in practice and how it should be studied. Emergent behavior
can only be investigated through empirical studies; to investigate
human-robot co-learning it is therefore necessary that both
partners can learn in real-time while collaborating with each
other. In this study, we therefore chose to empirically study co-
learning with a human participant and a Reinforcement Learning
(RL) virtual robot. For the investigation of emerging co-adaptive
behaviors, we distinguish four main research questions:

1. How to identify and classify recurring behaviors that indicate
co-learning in a human-robot team?

2. Which recurring sequences of these behaviors (co-learning
patterns) can be identified, such that they can be used by the
team partners to communicate about their adaptations?

3. How does the robot’s learning, emerging from the
interactions, affect the human’s behavior and learning?

4. How does the human’s learning, emerging from the
interactions, affect the robot’s behavior and Reinforcement
Learning?

The literature on human-robot interaction and learning
contains a large body of research on personalized robot tutors,
in which a robot tutor learns to personalize its interactions to
support the learning process of a human student, focused on
classroom or training related contexts [a few examples are (Baxter
et al., 2017; Gao, Barendregt, and Castellano 2017; Belpaeme
et al., 2018; Vignolo et al., 2019)]. Formal training is important to
initiate learning and to steer development in the right direction.
However, it is important to realize that learning continues after
training has been completed. Every new experience in the task
provides an opportunity for human-robot teams to learn from
their collaboration. An important aspect of co-learning in actual
task contexts is developing and refining (shared) mental models
about team members and about the task at hand, to increase

mutual understanding of the best way to perform the task (Klein
et al., 2004). Therefore, we specifically attempt to answer the
above mentioned questions in a task context where learning
happens during task execution.

In this paper, we present a behavioral study of how a human
and a virtual robot, which uses a Reinforcement Learning
algorithm to adapt and optimize its actions, adapt their
behavior to collaboratively solve a task. We are interested in
how the behavior of the human ánd the behavior of the robot
changes as a result of this process, making our study fit within a
new area of research in which both human and machine behavior
are assessed [with their mutual dependencies; cf. (Rahwan et al.,
2019)]. We first provide an in-depth elaboration of the concept
“co-learning” within the context of human-robot collaboration,
resulting in a definition of co-learning and the related concepts of
co-adaptation and co-evolution. Based on this, we identify the
requirements for empirical research into co-adaptation and co-
learning, and present the design of an environment for studying
co-learning. This environment has been built and used to conduct
an empirical study into human-robot co-learning. From the
analysis of the observed human-robot interactions, a list of
patterns of adaptive interactions, and the switching between
these patterns over time, were identified. These patterns can
emerge in similar task contexts, forming a first description
method for co-learning analyses. Moreover, it supports the
creation of awareness, providing the foundation (concepts) for
human-robot communication about the co-adaptation (i.e., the
second stage of co-learning).

CO-LEARNING: BACKGROUND AND
DEFINITION

Collaborative learning is a widely studied mechanism in human-
only contexts, and it was Dillenbourg (Dillenbourg et al., 1996)
who suggested that collaborative learning can also take place
between humans and computers. Collaborative learning in the
context of Dillenbourg’s work means that learning (the
acquisition of new knowledge, skills, behavior, etc.) results
from collaborative activities between team partners. If we look
at human-robot interaction literature, several terms are used that
describe a similar process in which two parties or systems change
their behavior and/or mental states concurrently while
interacting with each other. Co-adaptation (Xu et al., 2012;
Chauncey et al., 2016; Nikolaidis et al., 2017a) and co-learning
(Bosch et al., 2019) are two of them, but we also encounter co-
evolution (Döppner et al., 2019), in which “co” stands for
collaborative, also meaning “mutual.”

Co-adaptation and co-learning are often used interchangeably,
making it difficult to understand what they stand for. There are
several vision papers explaining the importance of both co-
adaptation [e.g. (Xu et al., 2012; Ansari, Erol, and Sihn 2018)]
as well as co-learning [e.g. (Bosch et al., 2019; Holstein, Aleven,
and Rummel 2020; Wenskovitch and North 2020)], but a clear
distinction between the two, or a definition specifically for co-
learning, is missing from these papers. When looking at the
experimental literature, however, it seems that there are subtle
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differences. Experimental studies on co-adaptation often focus on
making the agent or robot adaptive to the human, using different
kinds of information about the human [e.g. (Buschmeier and
Kopp 2013; Ehrlich and Cheng 2018; Sordoni et al., 2015; Yamada
and Yamaguchi 2002)]. Some studies have investigated how a
human adapts in situations in which they collaborate with an
intelligent agent or robot. These studies mostly focus on the
performance of the human and their resulting subtle behavior
change in short experiments [e.g. (Nikolaidis et al., 2017b;
Mohammad and Nishida., 2008; Nikolaidis et al., 2017a)]. The
studies that use “co-learning” tend to take a more symmetrical
approach by looking at agent or robot learning as well as human
learning, and pay more attention to the learning process and
changing strategies of the human as well, often looking at many
repetitions of a task (Ramakrishnan, Zhang, and Shah 2017; C.-S.
Lee et al., 2020; C. Lee et al., 2018; Shafti et al., 2020). Studies on
co-evolution, on the other hand, monitor a long-term real-world
application in which behavior of the human as well as the robot
subtly changes over time (Döppner, Derckx, and Schoder 2019).

Following these differences, we propose to distinguish the
terms using three dimensions, namely 1) the time over which the
development takes place, 2) the persistence of the resulting
behavior/mental state over time and across contexts, and 3)
the intention of the development. Table 1 shows the proposed
definitions in detail. Within our research, we focus on co-learning
as defined here.

In a human-robot co-learning process, a human and a robot
collaborate on a given task. In order to do well on the task, they need
to learn all kinds of implicit and explicit knowledge related to both the
task itself as well as the collaboration and interaction between them.
Related to the task they can, for example, learn the technical details of
how the task should be executed. Related to the collaboration, they
can, for example, learn social collaboration skills. Related to both, they
can learn about their own role and the role of the other in the task and
the consequences of their own and their partner’s actions andmental
state on the task (how to collaborate in context of the task).
Ultimately, learning this should help them to together perform
well on the task, to build understanding of each other in context
of the task and to calibrate the trust that the human and the robot
have in each other. We focus our work on this last type of combined
task and collaboration learning.

We further define co-learning to be comprised of two stages
that follow each other in continuous iterative cycles, namely 1)
co-adaptation, and 2) a communication process. Part (a) is
therefore a process in which team members (sometimes
unconsciously) adapt to each other and the task, thereby

changing and developing their behavior as a consequence of
interactions and an implicit or explicit drive to improve
performance or experience (see again Table 1). Part (b) is a
process in which these implicitly developed behaviors are shared
and discussed through direct communications or interactions
between team members, thereby making the team members
aware of the implicit adaptations. This combination ensures
that learned strategies are grounded in the context and task
and can be strategically used in new contexts.

RESEARCH CHALLENGES

Many research challenges follow from the conceptualization of
co-learning, due to the fact that both human and robot are non-
static. They are both constantly developing, changing and
adapting, and they influence each other in the process. This
means that it is not possible to study only one of the team
partners; it is necessary to take a symmetrical approach, where
both human and robot are studied through the interactions
between them. Moreover, co-learning in dynamic tasks is a
continuous process in which new task situations that appear
dynamically require new learning over and over again. Therefore,
focusing on one specific interaction, or on team performance as
end result, does not offer a complete picture. We need to study all
interactions that contribute to this process. These specific
dynamic properties need to be taken into account in the
design of experiments, as well as in the analysis and
discussion of results. Following from this, and to provide a
broader view on the specific study that we present in this
paper, we have defined three research directions that need to
be addressed in the study of human-robot co-learning:

1. Research into enabling and assessing co-learning: to
understand the dynamics of co-learning, we need to
investigate what kind of behaviors and interactions drive
co-adaptation and co-learning, and how learning processes
of human and robot team members influence each other.

2. Research into interaction patterns that make team partners
explicitly aware of learned behavior, such that behavior can
be sustained over time and context: in order to create
sustainable team behavior, human and robot need to
communicate about learned behavior to ensure that they
are aware of useful learned behavior. It is important to
investigate what kind of communication interaction
patterns enable this specific type of communication.

TABLE 1 | The concepts co-adaptation, co-learning and co-evolution defined in terms of timespan in which they occur, persistence and intention.

Co-adaptation Co-learning Co-evolution

Timespan Short (seconds—hours) Medium (hours—weeks) Long (weeks—years)
Persistence Developed behavior/mental state does not necessarily

persist over time, and probably not at all across
contexts

Developed behavior/mental state persists
over time and possibly across contexts

Developed behavior/mental state might persist for a
while but possibly continues to evolve, similar to the
development of habituation

Intention Changes and developments happen as a
consequence of interactions and an implicit or explicit
drive to improve performance or experience

Explicitly goal-driven: Attempts to improve
performance or experience; learning is an
explicit goal

Changes and developments happen as a
consequence of interactions and possibly an implicit
drive to improve performance or experience
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3. Research into a dynamic team mental model that takes into
account naturally occurring changes in interaction patterns,
and how such a model can support the robot in its learning
process: as humans, we are able to anticipate on the fact that
our team members learn and change. It is important to
investigate how a dynamic team model can enable robots
to also anticipate the fact that their human team member is
continuously changing.

The study presented in this paper focuses on the first research
direction; the research questions presented in the introduction have
been derived from it. More specifically, in the experiment that we
describe in the following sections, we have chosen to focus on the
first stage of the co-learning process: co-adaptation as a precursor for
co-learning. We do not yet address questions concerning
communication about learned behaviors (research direction 2),
but focus on the implicit behavioral adaptations that occur within
a relatively short time span. It is expected that results of the present
study will provide pointers for how to investigate the issues
associated with research challenges two and three above.

RESEARCH ENVIRONMENT: DESIGNING
TASK, AGENT, CONTEXT

Context
To study co-learning in human-robot teams, a suitable task
context needs to be designed. We identify the following
requirements for such a task context in which we can study
co-adaptation according to the definition in Table 1:

1. It should be possible for the team to improve its performance
by making effective use of the capabilities of the individual
team members [as this is necessary to make it a team task
(Johnson et al., 2014)];

2. There should be possibilities for implicit adaptation and
learning for both human and robot team members;

3. It should accommodate different emergent collaborative
strategies for solving the task;

4. For this first study, the task and team work should be simple
enough for a Reinforcement Learning agent to learn new
behavior in a short number of rounds, such that we can
study co-adaptation in relatively short experimental sessions;

5. To ensure societal relevance of this research, the task should be
based on a real-life domain in which there is a need for
autonomous robots that function as team partners.

As a general context for defining a task, we chose Urban Search
and Rescue (USAR). A lot of research on human-agent teaming is
done inUSAR-related tasks (Lematta et al., 2019), because the safety-
critical nature makes the application of human-robot collaboration
very useful; there are ongoing initiatives which aim to use robots in
real USAR teams (requirement 5). Moreover, it is a dynamic task
context with many possible subtasks and possibilities for the
introduction of threats, safety risks and changing information.

We developed an earthquake scenario for our human-robot
USAR team, with the team’s task to remove rubble and debris

from a victim. To get a better understanding of the task, and of the
knowledge and capabilities it requires from partners, we created a
storyboard (Figure 1). The storyboard shows a possible scenario
in which the robot picks up a large rock to clear it away, not
realizing that the action may lead to a small rock falling on the
head of the victim (Figure 1C). When the human notices this, this
provides an opportunity to jump in, and to prevent the rock from
crushing the victim (Figure 1D). This event facilitates the human
learning that the robot apparently does not understand the risks
of falling rocks. It provides the robot with the opportunity to learn
that it made a mistake. The event furthermore provides an
opportunity for team members to communicate about the
event, their actions, and to plan how they will manage such
situations together in the future. This storyboard illustrates that
using the unique capabilities of both the human (insight into
strategic choices) and robot (physical strength) can be exploited
to achieve better task performance (requirement 1). The task of
removing rubble from a victim allows for a great diversity in task
planning and execution, and for the development of individual
strategies (requirement 2 and 3), as the different debris can differ
in shape, size and location, while enabling simple basic actions to
create strategies for solving the task (requirement 4).

Task Implementation
We developed a digital task simulation of the described USAR
context using Python and the MATRX package (MATRX
Software, 2020). MATRX is a package for rapid prototyping of
human-agent team environments, which supports easy generation
of an environment, object and agents. Figure 2 shows a screenshot of
the simulation. The scene involves three characters: a victim buried
underneath a pile of rocks (shown in the middle), an explorer (avatar
on the left, played by a human participant) and a Reinforcement
Learning robot agent (avatar on the right). The goal of the task is to
free the victim by clearing away all rocks that are in front of the
victim, as well as to create a pathway to the victim from either the left
or the right side. In order to score well, this must happen as quickly as
possible, and no additional rocks (or as little as possible) should fall on
top of the victim, as that will cause extra harm. Both the human and
the virtual robot each have a set of actions they can perform, such as
picking up rocks and dropping them somewhere else. However, the
extent to which they can perform actions differs: the robot can pick
up large and small objects, and break large objects into pieces.
Humans can only pick up small objects. Humans however have a
better insight in certain aspects of the task that dictate which actions
are useful to do, such as how rocks will fall when other rocks are
removed or replaced. This insight stems from the fact that humans
have “common sense,” which helps us understand the probable
consequences of actions. In order to complete the task successfully
participants must collaborate with the virtual robot (requirement 1),
while managing their actions in such a way that the robot does not
accidentally drop rocks on the victim’s head. Since it is not clear at the
start what the best strategy would be to solve the task quickly, both
partners need to learn and adapt as they go (requirement 2). The
levels are designed such that there are different possible ways to solve
the task (requirement 3), and it is a discrete environment build on a
simple state machine, making it possible to design a Reinforcement
Learning agent that can process the environment (requirement 4).
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Learning Agent
To be able to empirically study how a human and a robot co-
adapt while collaborating on a task, the robot should be able to try
out and evaluate different actions, to be able to choose the policy
that best fits the goals of the team given the adaptations done by

the human team member. We chose to use Reinforcement
Learning to enable the agent to learn, for three main reasons:

1. The robot had to be able to learn real-time, on the basis of
rewards: as the behavior of the human team partner is adaptive

FIGURE 1 | A storyboard describing how a human-robot teammight free an earthquake victim from underneath a pile of rocks. In this storyboard, we can see how
the robot picks up a large rock, unaware that this will cause another rock to fall on the head of the victim (panel C). The human notices the issue, and steps in to prevent
the rock from falling (panel D). This event can help the robot learn about the task, and that it apparently made amistake. The human can learn about the capabilities of the
robot, namely that it didn’t understand how the rocks would fall and that it would cause harm.

FIGURE 2 | The USAR task environment programmed in MATRX. It shows a victim underneath a pile of rocks, and a human and a robot representing the team
members. The dashed red square (above the human’s head) represents the hand of the human that can be moved to pick up rocks. The dashed blue square represents
the hand of the robot. Scene (A) was used as level 1 in the experiment, while scene (B) was used as level 2.
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and unpredictable, we cannot determine optimal behavior
before the start of the task. This means that the best way to
find the optimal strategy for solving the task collaboratively
would be to get feedback or rewards on performance.

2. The described task can be solved by a sequence of actions that
manipulate the state of the world with each action, therefore,
the learning algorithm had to be able to learn a sequence of
actions given different sequential task situations.

3. The described task is a human-robot scenario, but it can also
conceptually be seen as a multi-agent scenario as both the
robot and the human are autonomous and learning agents
within the collaboration. Reinforcement Learning is an often
used and widely studied mechanism in multi-agent scenarios,
for reasons related to reasons one and two above as well [see
e.g. (Kapetanakis and Kudenko 2002; Foerster et al., 2016)].

Reinforcement Learning has been designed for learning
sequences of actions in tasks that can be modeled as Markov
Decision Processes (van Otterlo and Wiering 2012), in which
the transitions between states are unknown. In contexts where
agents collaborate and learn with a human, these transitions are
unknown since it is unknown what the human will do; this is also
the case in our task. While such a human-agent collaborative
context poses many challenges (e.g. large state spaces, long
convergence times and random behavior in the beginning)
(Dulac-Arnold, Mankowitz, and Hester 2019), earlier work has
shown that RL can be used successfully for learning behavior in real
time when interacting with a human, provided that the learning
problem is simple enough (Weber et al., 2018). Since we used RL
mostly as a tool to ensure that the agent could adapt over time, and
not as a goal in itself, we created a RL mechanism that is much
simpler than the current state-of-the-art, but that would provide the
basic learning that is sufficient for our research goals. We simplified
the task by modeling it as a semi-Markov Decision Process (Sutton,
Precup, and Singh 1999), which means that the task is divided into
several “phases,” which serve as the states in the RL algorithm.
Normally states last one timestep, whereas in a semi-Markov
Decision Process, these phases can last variable amounts of time.
Our state definition describes the state of the environment based on
the amount of rocks present in the area around the victim. The state
space is defined by S � (Phase 1, Phase 2, Phase 3, Phase 4, Goal
Phase). Table 2 describes the details of the individual states. We
chose to not explicitly represent learning about collaboration in the
learning agent, since we wanted to focus on implicit behavioral
adaptations (as explained in Research Challenges). We combined

this with a system inspired by the Options Framework (Stolle and
Precup 2002) and a basic greedy Q-learning algorithm. In the
Options Framework, agents use RL to learn a meta-policy as well as
several “sub-policies.” These sub-policies can also be seen as macro-
actions; they are combinations of atomic actions that are used
together to solve parts of the task. Usually, these macro-actions are
learned in parallel with the meta-policy, but sometimes they are
pretrained, such as for example in (Illanes et al., 2019). To further
simplify the learning problem, we chose to predefine three rule-
based macro-actions; the agent could choose from these macro-
actions in each phase of the task (a description of eachmacro-action
is given in Figure 3, Figure 4, and Figure 5). The rewards for the RL
algorithm are based on two factors: 1) the time it took the team to
move to the next phase, and 2) the amount of additional harm done
to the victim. The agent would receive this reward when
transitioning into a new phase, or when the task terminates due
to becoming unsolvable or due to a timeout. The height of the
rewards was made such that the total reward given was always
negative. With initial Q-values of 0, this ensured that in the first
three runs of the experiment, the agent would try out all three
macro-strategies in order, to enforce initial exploration. A visual
overview of the learning problem is provided in Figure 6, after we
have explained more details about the experimental method.

Claims: Expected Observations
We expect to observe several behaviors within this task
environment, given that it was designed to study co-learning
behavior. We have formulated these expected observations as the
following claims:

• Different participants develop different ways of performing
the task;

• The agent learns different sequences of macro-actions for
different participants;

• Different teams converge to different ways of performing
the task;

• The agent converges to a specific sequence of macro-actions
for most participants;

• The human converges to a specific strategy within the
experiment.

In the Discussion (Discussion), we use the results of our
experiment to critically evaluate whether we have been able to
study co-adaptation as a precursor for co-learning with our
methods by verifying to what extent these claims hold.

TABLE 2 | The task conditions specified for each Phase Variable used in the state space of the Reinforcement Learning algorithm.

Phase Description

Phase 1 The starting phase: Describes the state of the task environment when no rocks have been moved
Phase 2 The heights of all piles of rocks added up is now at least 10 rocks lower than in phase 1
Phase 3 Phase 2 has been reached, and the heights of all piles of rocks added up is now at least 20 rocks lower than in phase 1
Phase 4 Phase 2 and 3 have been reached, and either there are nomore rocks directly on top of the victim, OR one of the sides of the

task field is cleared from rocks, meaning there is an access route to the victim from either the left or right side
Goal phase Phase 2, 3 and 4 have been reached, and there are no more rocks directly on top of the victim, AND one of the sides of the

task field is cleared from rocks, meaning there is a free route from either the left or right side to the victim. The task terminates
when this phase is reached
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METHOD OF STUDY FOR IDENTIFYING
INTERACTION PATTERNS

The experimental setup and procedure described belowwas approved
by the Human Research Ethics Committee at Delft University of
Technology on August 17th, 2020 (reference number: 1261).

Participants
A total of 24 people participated in the experiment (17 female,
seven male), recruited through personal connections on
LinkedIn, within the university, from a Slack community on
AI and Design and from interns at TNO. The average age among
the participants was 24.8 (Std � 2.47). All of the participants had a

FIGURE 3 | A flowchart showing the rule-based decision making the agent would go through when using Macro-Action 1.

FIGURE 4 | A flowchart showing the rule-based decision making the agent would go through when using Macro-Action 2.

FIGURE 5 | A flowchart showing the rule-based decision making the agent would go through when using Macro-Action 3.
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university degree in a STEM field. Most of them had little to some
experience with gaming (n � 7 for “little experience,” n � 10 for
“some experience”). Also, most of them expressed that they had
no to little experience with human-robot collaboration (n � 11 for
“no experience,” n � 7 for “little experience”) or human-robot
collaboration research (n � 11 for “no experience,” n � 5 for “little
experience”).

Due to a few problems in the data collection, some participants
were excluded from all of the analyses or some of the analyses.
Two participants (one female, one male) were excluded from all
analyses, because there were significant connectivity issues during
the execution of the experiment and/or data collection went
wrong on more than one factor. One participant (female) was
excluded from the questionnaire analyses, because their data was
not properly saved, and one participant (male) was excluded from
the robot behavioral analyses, because the log data was not
properly saved.

Design and Materials
Participants were divided over two conditions: 1) a condition in
which participants were instructed to think aloud and 2) a
condition in which they were asked to perform the task in
silence. Since we study learning processes, and since it is
known that thinking aloud can have an effect on learning, the
two conditions ensured that we had control over any possible
effect.

We presented the task environment described in Task
Implementation to all participants, in the form of two different
levels. The first level was designed to be relatively easy, as it could
be solved by simply clearing away all rocks (Figure 2A). A
complicating factor was that breaking rocks would easily hurt
the victim, which would therefore need to be avoided. The second
level was designed to be more challenging: it contained a brown
rock that could not be picked up at all (Figure 2B). This means
that if the brown rock would fall on top of the victim, it would no
longer be possible to save the victim and finish the task.

Participants played the first level five times, as it was estimated
from pilot runs that five times would provide ample opportunity
for both the participant and the robot to learn a working strategy.
Participants then played the second level three times, to give the

team the opportunity to adapt to the new situation. The repetition
allowed for within-subject analyses, in which the behavior of
participants could be compared between rounds, as well as
between-subjects analyses of learning. For an overview of how
the definition of the task in the Reinforcement Learning
algorithm combines with this setup, Figure 6.

Procedure
The experiment was conducted through a video call between the
experimenter and each individual participant, while both were
located in their own home for the course of the experiment.
Participants were given access to the experimental task using
Parsec, which is a screen-sharing platform made for collaborative
gaming (Parsec., n.d.). This ensured that participants had control
over the task environment, while allowing the experimenter to
observe their behavior.

All participants went through the following steps:

1. Participants were seated in front of their own computer at
home;

2. They read the instruction, signed the consent form and
provided some demographic information as well as
information on their experience with video games, human-
robot collaboration and human-robot collaboration research;

3. Participants had the opportunity to do a short test scenario of
the task without the virtual robot, to familiarize them with the
task environment and the controls;

4. Participants were presented with the first pre-specified level.
After five runs, the new level was presented to the participant,
which they played three times;
a. The participants in condition A were asked to think aloud

during the execution of the levels;
b. After each level, participants completed a selection of the

questionnaire on Subjective Collaboration Fluency [taken
from (Hoffman 2019), see Supplementary Appendix SA
for the questions used]. In addition, they were asked to rate
how confident they were that their strategy was a good
strategy for solving the task on a scale of 1–10;

c. After the first five runs and at the end of the experiment the
participants were interviewed about their experiences.

FIGURE 6 | An overview of the representation of the learning problem embedded in the experiment. It shows the different runs that a participant went through (5
runs for level 1, 3 runs for level 2), as well as how the runs were separated into 4 phases defined by the Phase Variables. The colors show how in R1.1, R1.2 and R1.3, the
robot usually used O1—picking up all, O2—passive large rocks and O3—breaking respectively in each phase. From R1.4 onwards, the robot would choose a Macro-
action based on the learned Q-values. The Future Run portrays the behavior that the robot would engage in if there were another run, based on the Q-values
after R2.3.
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Data Collection and Analysis
Several types of data were collected in order to answer our
research questions:

1. Screen captures and notes of behavior in the MATRX
environment during the execution of the experiment

2. Voice recordings of the participants in condition A while they
are thinking aloud during the execution of the experiment

3. Voice recordings of short interviews (see Supplementary
Appendix SA for the questions asked)

4. Collaboration Fluency scores
5. Confidence of Strategy scores
6. Q-table as learned by the robot and log of how it changes

We will explain in more detail how this data was collected and
how it relates to our research questions in the sections below.

Behavior
In order to identify what interaction patterns drive co-adaptation
and co-evolution, we wanted to look at how the behavior and
strategy of the team changed over time, and which interactions
were used in that process. We used data types 1, 2, 3 and 6 for this.
The screen captures and notes (data type 1) serve mainly as data
on the human behavior, while the thinking aloud output and the
interviews (data types 2 and 3) help to explain why humans
behave in a certain way. The Q-tables (data type 6) serve to see
what strategy the robot chose in each phase of the task. Normally,
behavior of a robot driven by RL is assessed by looking at the
cumulative rewards. As we are not necessarily interested in
performance, but in the behavior resulting from the learning
process [as prescribed in (Rahwan et al., 2019)], we chose to look
at the development of the Q-tables, to understand what macro-
action the robot learned to choose in each phase.

A Grounded Theory (Charmaz 2014) process was used to
identify recurring adaptive behaviors from the screen captures
and notes. This means that we went through a process of open
coding first, while constantly writing short memos of observed
patterns. After that, we collected all codes and categorized and
clustered them until reaching the desired level of detail.

We will explain how the behavioral data and Q-tables were
used to answer our research questions in more detail in Results.

Subjective Collaboration Fluency and Confidence
Score
Within the task that we designed, it is quite difficult to keep track
of task performance due to the possibility for large differences in
strategies, as well as because the task can become unsolvable. To
still keep track of how the human-robot team performed over the
course of the experiment, we have chosen two measures for
tracking subjective task performance: subjective collaboration
fluency and confidence score (data types 4 and 5). These
measures helped us to validate that our experiment setup
actually allowed for learning and improvement.

For subjective collaboration fluency, we used a short version of
an existing questionnaire (Hoffman 2019). To measure
participants’ confidence in their strategy, we asked them to
rate confidence on a scale from 1 to 10 with the following

question: “How confident are you that your strategy is the
right strategy?”

RESULTS

Subjective Collaboration Fluency and
Confidence Score
We have created a box plot of the Subjective Collaboration
Fluency scores (Figure 7). The Confidence scores followed a
very similar pattern, therefore we do not go into further detail
about those. Both scores follow a pattern with scores starting off
relatively high in run one, after which they drop for run two and
three, move up again for four and five, drop again for six and then
move up for the last two runs. To test whether thinking aloud and
the number of the run affected participants’ experience of
collaboration with the robot, the Subjective Collaboration
Fluency score was entered in a one-way repeated measures
ANOVA with Thinking Aloud (yes/no) as between-subjects
factor, and run number (1–8) as a within-subjects repeated
measure factor. Results show that there was no significant
difference between the participants who were instructed to
think aloud (Mean � 40.56, Std � 22.78) and those who were
not (Mean � 45.12, Std � 25.75) (F � 0.81, p � 0.38), while there
was a significant effect on the run (F � 5.97, p < 0.0001). When
looking at Figure 7, we expected this significant difference to exist
between round one and round two, round three and round four,
round five and round six and round six and round seven (scores
went down after round one, up after round three, down again
after round five and up after round six). To test whether these
differences between rounds were significant, we did a post-hoc
analysis using a Tukey HSD test, which mostly confirmed the
differences visible from the plot: R1.1 and R1.2 are significantly
different (p � 0.006), R1.3 and R1.4 are significantly different (p �
0.006), R1.5 and R2.1 are almost significantly different (p � 0.058)
but R1.4 and R2.1 are (p � 0.003). R2.1 and R2.2 did not differ
statistically, but R2.1 and R2.3 do, although not significantly (p �
0.114).

The pattern of scores on both fluency and confidence over
runs are probably caused by the setup of our experiment. In the
first run, the robot would use macro-action 1 for the whole task,
which is the easiest to work with from a participant perspective.
Therefore, participants may have been inclined to assign high
scores in the beginning. In run 2 and 3, the way the RL algorithm
is implemented causes the robot to use macro-action 2 and 3
respectively for the whole task, which are quite hard to
understand from a participant perspective, arguably leading to
a lower level of experienced fluency. In run 4 and 5, the robot
would start picking its macro-action based on previous
performance, while the participant would have learned to
work with the robot a bit more. It is likely that this made the
fluency scores go up again. Run 6, however, introduced the new
scenario in which previously learned strategies often did not work
anymore. In runs seven and eight the human-robot team would
then learn to perform better at this second scenario, inducing
participants to give higher scores on experienced collaboration
fluency. Following this explanation of the scores, these results
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suggest that our experiment design indeed allowed for a learning
process of the human-robot team as we anticipated.

Interaction Pattern Analysis
The open coding process of behavioral summaries, based upon the
information from videos, interviews and notes, yielded a list of 52
different behaviors. These behaviors consist of task-related actions by
the participant; interactions between the participant and the virtual
robot; learning (participant learns something about the task or the
collaboration); strategies (combinations of actions executed over
longer periods of time); team performance and participant
emotional responses. After excluding behaviors that did not relate
to adaptation in specific (e.g. actions such as “picking up top rocks”)
and behaviors that were more of an assessment of the quality of a
behavior rather than a description (e.g. performance factors such as
“not understanding the link between waiting and robot action”), a
list of 38 behaviors was left.

These 38 behaviors were categorized in the following two
categories [based on the categorizations made in (van Zoelen
et al., provisionally accepted)]:

• Stable situations (9 behaviors): behaviors observed in-
between adaptations, such as the behavior of the
participant alternating acting and waiting for the robot.

• Sudden adaptations (29 behaviors): behaviors in which the
human and/or robot adapted their actions, thus starting a
transition from one stable situation to another. The
adaptation happens in a single moment or over a short
period of time, often in response to a newly hypothesized or
discovered property of the partner’s behavior.

The full list and categorization can be found in
Supplementary Appendix SB. The behaviors listed in the

Appendix are closely tied to the experimental task. The
descriptions of the behaviors were processed to fit co-
adaptation in general (such that we can call them interaction
patterns). For this purpose, some of the behaviors were combined
into one descriptive interaction pattern. The resulting list,
consisting of 23 interaction patterns (five stable situations, 18
sudden adaptations), is presented in Table 3.

The biggest group is that of “sudden adaptations,” the
patterns that often arise in response to a discovery, an
expectation, or a surprise of one of the partners. In order to
better understand this important group of adaptive interaction
patterns, we explored in more detail the nature of the triggers
that initiate them, what characterizes the execution of these
patterns, and what they bring about in the human-robot
collaboration. Again following the approach taken in [van
Zoelen et al. (provisionally accepted)], we used the
following terms to describe the sudden adaptations:

• External trigger: an event outside of the partner (e.g. in the
task, environment or other partner) triggers an adaptation
to a new stable situation;

• Internal trigger: an event inside of the partner (e.g. a specific
expectation or change of mind) triggers an adaptation to a
new stable situation;

• Outcome: a specific action that is preceded by an internal or
external trigger, that will gradually develop into a new stable
situation afterward;

• In-between-situation: a specific action that is preceded by an
internal or external trigger, that serves as a new trigger for
adapting to a new stable situation afterward.

The results of this can be found in Supplementary
Appendix SB.

FIGURE 7 | The Collaboration Fluency scores per run in the experiment for all participants.
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Collaborative Learning
In addition to developing a comprehensive description of adaptive
interaction patterns, we further explored how human behavior, and
specifically human behavior adaptation, influenced learning by the
virtual robot. We analyzed and coded human adaptive behavior at a
detailed level by identifying the interaction patterns as described
above, but in order to analyze how the development of robot
behavior and human learning depend on each other, a different
level of detail was necessary. We looked at three aspects of the data:

• For each participant, we looked at the Q-tables of the virtual
robot at the end of each run in the experiment, to see which
of the three macro-actions received the highest expected
reward in the different phases and runs of the task;

• For each participant, we identified the main behavioral
strategy used by the human per run, as well as during
the whole experiment;

• We analyzed how the chosen macro-actions of the virtual
robot can be associated with specific behavioral strategies of
the participants.

We will describe our process for all three of these aspects in
more detail below.

Virtual Robot Q-Tables
The Reinforcement Learning algorithm addressed learning when to
apply which of three macro-actions or options (as described in
Figure 3, Figure 4, and Figure 5; we will call them O1—picking up
all, O2—passive large rocks and O3—breaking from here onwards)
and used four phase variables to identify states. Figure 8 shows an
overview of how often the robot learned to pick specific macro-
actions in each phase (Figure 8A) and each run (Figure 8B), based
on the macro-action with the highest expected reward.

As the robot’s choice for macro-options is not clearly related to
the phases in the task (especially phase 2, 3 and 4 are very similar,
as can be seen in Figure 8A), we looked mostly at Figure 8B to
understand how the robot’s behavior developed. The figure shows
that in the first three runs the robot mostly tried out all macro-
strategies one by one, as determined by how the algorithm was
programmed. Small deviations from this are likely caused by
some participants going back and forth between phases in the

TABLE 3 | The interaction patterns identified from the behavioral data, including a description of what they entail.

Category Concept Description

Stable situation Actively synchronizing actions with a team member Human understands the capabilities of another team member and actively uses their own
actions to make optimal use of the combined capabilities

Alternating actively working on the task and waiting for a
team member

Human switches between performing their own task for a while, then waiting for a team
member to perform their task, and so on

Being generally passive and letting a team member do
most of the work

Human is overall passive and lets the other team member do the work

Damage control: Prevent damage caused by a team
member

Human performs actions that prevent their team member from causing intentional or
unintentional harm or damage

Focusing on own task Human performs their own task without paying much attention to their team member
Sudden
adaptation

Avoiding communication with a team member One of the team member actively avoids the other team member to avoid unwanted
communication interpretations

Being confused by non-human-like behavior A human team member is confused by non-human-like behavior performed by a team
member

Being confused by unexpected behavior (negative) One of the team members is confused or frustrated by behavior performed by their team
member that they did not expect

Being happy that a team member does as expected One of the team members is happy that their team member performs the kind of behavior
that they expect and hoped for

Being surprised by unexpected behavior (positive) One of the team members is positively surprised by behavior performed by their team
member that they did not expect

Coming into action when a team member comes into
action

A teammember starts to actively perform their task after a period of inaction, when their team
member also starts to actively perform their task after a period of inaction

Doing useless or harmful actions because there is nothing
else to do

A team member is unable to perform useful actions, therefore starts performing useless or
harmful actions

Feeling alone, as if team member does not help A human team member feels left alone
Following a team member’s action A team member follows or copies the action performed by another team member
Learning about behavioral cues A team member gains insight into specific behavior performed by another team member
Learning about own capabilities A team member gains insight into their own capabilities
Learning about team member’s capabilities or strategy A team member gains insight into the capabilities or strategy of another team member
Moving around different task components A team member moves around different task components without actually performing any

task
Team member changes strategy, which is visible by a
behavioral cue

A team member observes that another team member changes strategy by a behavioral cue

Team member performs an action that makes no sense A team member performs a useless action
Trying to communicate by interacting with a team partner A team member attempts to communicate with another teammember by directly interacting

with them, for example by coming close to them
Trying to communicate by signaling task actions A team member attempts to communicate with another team member by trying out different

actions that they want their team member to perform
Waiting for a team member to start acting A team member waits for another team member to start performing their task
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task, rather than moving through them linearly as we initially
expected. The robot generally learned to select O1—picking up all
most of the time for most participants over the course of the next
few runs, which fits with how level 1 of the experiment was
designed. From run 6 onwards, when the second level was
introduced, the robot learned to choose O2—passive large
rocks and O3—breaking more often. This shows that the robot
is able to generally learn what works best for the task.

Participant Behavioral Clustering
To better understand how the behavior of the participants
developed over time, we performed a manual clustering of
participant behavior per run. Based on the behavior
observations as described in Interaction Pattern Analysis, we
defined the following behavioral clusters:

• Just focus on own behavior efficiently
• Balancing acting and waiting
• Exploring how the robot works by observing and trying to
communicate

• Actively using O3—breaking
• Actively using O2—passive large rocks

The result of this clustering can be seen in Figure 9. It is difficult
to find detailed insights from this figure, apart from the fact that
more participants showed more adaptive behavior in the later runs,
as indicated by the red and olive green bars in the figure. Participants’
strategies did not develop linearly, and it also did not converge to one
specific type of behavior consistently within our experiment. To be
able to see whether human learning had an influence on robot
learning, we chose to remove the dimension of time (runs) from our
participant data, and focus on whether and how a participant
adapted over the whole experiment. We created the following
clusters based on participant adaptation over the whole experiment:

• Does not adapt: participant shows no signs of adapting to
strategies employed by the robot; participant either focuses
on their own task, or constantly switches between behavior
strategies as they focus too much on the robot.

• Adapts by balancing waiting and acting: participant shows
signs that they adapt by waiting for the robot to act, and to
use that robot behavior to determine their own response. It
suggests that the participant understands that being passive
for a while may cause the robot to act.

• Adapts by actively using O2—passive large rocks or
O3—breaking: participant visibly adapts as they actively
guide the robot to pick up or break rocks by waiting on
top of those rocks.

This clustering of participants according to their dominant
strategy resulted in three clusters with a similar number of
participants per cluster, as shown in Table 4.

Combining Participant Adaptation and Robot Learning
In order to explore whether these different types of adaptation
employed by participants affected robot learning, and whether
differences occur between clusters, we plotted the robot strategies
per human adaptation cluster, as shown in Figure 10. These figures
present the bar graphs of how often the differentmacro-actions were
chosen across the group, in an attempt to more closely evaluate any
possible differences between the three clusters. The figures suggest a
response in the robots’ behavior to the participants’ actions,
especially later on, in the final runs. When we compare the
figures for “adapts by balancing passively waiting and acting”
(Figure 10B) and “does not adapt” (Figure 10C), the former
shows the trend of using O1—picking up all in the first level
(first five runs) and using other strategies in the second level
(run 6–8) more strongly. The figures for “adapts by actively
using O2 or O3” (Figure 10A), however, shows that the robot
already learned to use O2—passive large rocks and O3—breaking
before being introduced with the second level, and actually moving
back to O1—picking up all a little more toward the final runs.

This suggests that if participants learned more about the robot
behavior and adapted their own behavior more strongly (by
actively guiding the robot with O2—passive large rocks and
O3—breaking), the robot was also able to learn to use those
strategies more often. This combined learning effect therefore can
be seen as learning at the team level.

FIGURE 8 | An overview of how often certain Macro-actions were chosen by the robot across all participants per phase (A) and per run (B).
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DISCUSSION

Interaction Patterns That Drive Co-Learning
We set out to investigate what interaction patterns between
humans and robots drive co-adaptation as a precursor for co-
learning. From the behaviors observed in our experiment, we
identified a list of interactions and a set of interaction patterns. It

should be noted, however, that (interactive) behavior is very
much determined by the specific context. This means that our list
should not be considered as a complete list of all possible co-
adaptive interactions. It should rather be seen as a collection of
interaction patterns that are likely to appear in contexts similar to
ours, where co-adaptation is centered around mutual observation
and harmonizing actions when collaborating.

The collection of interaction patterns can be used as a language
for recording, analyzing and coding co-adaptive behavior. By
describing observed behavior with such interaction patterns,
complex behavioral observations of human-robot co-adaptive
strategies can more easily be compared. The interaction
patterns can also be useful as a vocabulary for a human-robot
team itself to discuss the adaptations that they are engaged in, to
help them elaborate and sustain successful collaborations
over time.

FIGURE 9 | An overview of how many participants used specific behavioral strategies per run.

TABLE 4 | The clusters resulting from manually clustering participants based on
whether they adapted to the robot across the whole experiment.

Cluster Participants

Does not adapt 2, 6, 9, 15, 21, 22, 23, 24 (n � 8)
Adapts by balancing passively waiting and
acting

12, 13, 14, 16, 27, 28 (n � 6)

Adapts by actively using O2 or O3 3, 8, 10, 17, 19, 20, 26 (n � 7)

FIGURE 10 | An overview of how often certain Macro-actions were chosen by the robot across all participants per run, split up by the level adaptation the
participant showed: (A) shows participants who adapted by actively using O2—passive large rocks and/or O3—breaking, (B) shows participants who adapted by
balancing waiting and acting, and (C) shows participants who did not adapt.
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Validating the Research Environment
An important objective of this study is to improve our
understanding of how human-robot co-learning develops, as
well as how the adaptative processes of both partners interact.
We defined claims for the experimental environment we
designed; if these claims are justified, it means that it
enabled us to study co-adaptation, the process that we
consider to be a precursor for co-learning. Table 5 shows
the claims described in Claims: Expected Observations and
annotated conclusions as to whether we were able to justify the
claims in the present study.

As can be seen in the table, only one of the claims was justified
completely. Fortunately, many of the other claims were partly
justified. For the claims that we did not realize, the results provide
cues for how to design a research environment that better fits the
claims. We regard these findings as an important step toward
studying and revealing the processes involved in human-robot
co-learning. Aspects that should be improved upon or need
further work center around a few problems that we will
elaborate on below:

1. Behavior strategy: Convergence vs. flexible adaptations
2. Statistical analysis of complex behavioral data
3. Behavior of the individual team member vs. behavior of

the team
4. Task effects vs. participant effects

In our claims in Table 7, we mentioned convergence
several times. This stems from the principle that a
Reinforcement Learning algorithm should aim for
convergence toward an optimal solution. However, when
studying co-learning, we specifically use dynamic task

environments that have no fixed optimal solution, and in
which unpredicted events can require strategy changes. In
such environments, convergence is not a good criterion for
performance, as agents (human as well as robot) are required
to continuously learn and adapt. For human-robot co-
learning it can be argued that it is better to make the
algorithm learn certain repeated subsequences of
interactions (or interaction patterns), and to store those in
a rule-based manner. Once a pattern of interaction has
proven to be successful in multiple instances of task
situations, it can be applied, combined and if necessary
revised in similar but other task situations. We therefore
believe that future research into co-learning should not take
convergence as a criterion for the robot’s behavior, but to
focus on the emergence and sustainability of successful
interaction patterns (aspect 1).

The results show that the robot had a similar learning process
across all participants despite the high variety between individual
participants. However, the behavioral data of both the robot and
the participant is quite complex. Sometimes there are radical
changes in behavior between one run and the next, and even
within one run participants sometimes quite radically changed
their behavior. It is a challenge to analyze such data as it is often
difficult to clarify the origin of the behavior from the data. Our
qualitative analysis and clustering is able to deal with this
complexity and provides many useful insights, therefore we
would advise future research into co-learning to include
similar qualitative analyses. When further investigating co-
learning, it will, however, also be relevant and interesting to
verify insights statistically. This will require different design
considerations. The current complexity in behavioral data is
partly due to the interaction between two adaptive systems,

TABLE 5 | The claims as presented in Claims: Expected Observations that need to be justified in a co-adaptation experiment, including whether they were validated and an
explanation of that conclusion.

Claim Justified Explanation

Different participants develop different ways of performing the task Yes When looking at the different interaction patterns that people engage in, and categorizations
of their adaptive behavior, we can see that different people indeed performed the task in a
variety of ways

The agent learns different sequences of strategy options for
different participants

Partly The results showed that not all agents learned the same model on an individual level.
However, the models had much in common, suggesting that all agents learned similar
behavior. When splitting this up in groups based on human adaptive behavior, there seems
to be a difference in learned agent behavior between the different groups. Currently,
however, we did not do any statistical analysis to test whether this is a significant result

Different teams converge to different ways of performing the task Partly When looking at the different interaction patterns that participants engaged in with their robot
team partner, different teams solved the task in a variety of ways (see H1). However, it is
unclear to what extent the robot contributed to this. Moreover, while participants generally
gained more confidence in their strategy and expressed to experience a greater subjective
collaboration fluency toward the end of the experiment, it is unclear to what extent the
strategy of the team really converged to a stable one

The agent converges to a specific sequence of strategy options
for most participants

No While we did observe a logical development of the Q-values on a population level, this does
not count for all of the individual agents. Moreover, it is not clear to what extent the agents
really converged to a stable set of actions

The human converges to a specific strategy within the experiment Partly The categorizations of participant behavior show that participants settle on a stable strategy
more and more over the course of the experiment. This is also shown by the development of
the confidence scores and subjective collaboration fluency. True convergence to a stable
strategy, however, is not clearly visible within the 8 runs of the experiment
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and probably an inherent property of co-learning. Moreover, the
human and robot can approach the task in many different ways
by design. This property is a strength of our experiment, as it
allows participants to behave relatively freely and naturally, but it
also contributes to the complexity of the resulting co-adaptation.
For future research, it will be important to explicitly take these
properties into account when designing an environment for
experimentation (aspect 2), in such a way that insights can be
verified statistically. For example, in our design, the strategies of
the robot were separate, nominal actions, but if we can design a
learning agent such that their learned behavior is ordinal (e.g. by
using more or less of a certain behavior), it might be easier to
apply statistical methods. Moreover, we can look into data
analysis methods used in complexity science, to see if they can
be applicable to co-learning scenarios.

Lastly, it is currently a challenge to determine which aspects of
the final team behavior are caused by adaptations of individual
team members, and which by interactions between them.
Similarly, we cannot yet conclusively determine which aspects
of the learned strategy are caused by the task, and which by the
individuality of a participant (e.g. what does the robot learn just
because of the task, and what does the robot learn because a
certain participant behaved a certain way). To solve this problem,
we need to find ways to separate the different effects, for example
by creating relevant baseline results. Letting the robot perform a
task and learn by itself is not an option in the context of team
tasks, as the nature of such task dictates dependencies between the
team members. A possibility might be to create a simulated,
possibly rule-based human agent for the robot agent to
collaborate with.

Future Steps for Studying Human-Robot
Co-Learning
The discussion regarding the interactions that underlie co-
learning provide several pointers and suggestions for
improving the design of our research methods. Besides the
suggestions above, however, there are several other directions
in which we believe that co-learning research should develop. In
this paper we developed an approach for studying co-learning.
Since we were still defining what it means to study co-learning,
the scope of the task, learning algorithm and opportunities for
interaction had to be limited. Eventually, if we want to enable and
study co-learning in full-fledged teams, it will be necessary to use
more complex task environments, more intelligent agents or
robots and more elaborate interaction and communication
between the human and the robot. In the following section we
will therefore further outline the two research directions
mentioned in Research Challenges that we did not further
address in this paper (research direction two and three).

The first direction is aimed at enabling the communication
between partners within the team, especially communication
about adaptations. We believe that in order for team members
to produce successful sequences of interactive behavior, that can
be used strategically across contexts, it is necessary that the team
members can communicate with one another. The interaction
patterns that we have identified might be used as a start for a

vocabulary for such communication interactions, but the specific
timing, modality and details of the interactions will have to be
designed and studied.

The second direction is aimed at making the agent or robot
more intelligent in terms of its abilities for co-learning. In the
experiment we presented, our agent only learned based on task-
related rewards. It makes sense to also explicitly reason about or
take into account the human’s behavior and preferences in
learning. There is a large body of research on personalizing
robot behavior, e.g. by making the robot develop a user model of
its partner, but these models often do not explicitly take into
account that the human continuously learns and adapts. We
therefore believe that there is a need for user models and team
models that specifically accommodate the adaptive interactions
as described in this paper. A team mental model that is able to
represent the interactions within a team will support the
partners in developing and sustaining successful adaptations
and to synchronize and align their actions and learning
processes.

CONCLUSION

Co-learning is an important mechanism for building successful
human-robot teams. However, there is no general understanding
of what co-learning means in the context of human-robot teams. In
this paper, we defined the concept of co-learning based on related
literature, and positioned it in relation to co-adaptation and co-
evolution. From this definition, it is clear that adaptive interactions
between humans and robots play a central role in co-learning. We
defined requirements for studying how bi-lateral adaptation emerges
from the interactions between humans and robots.

From these requirements, we developed an experimental task
environment based on a real-life Urban Search and Rescue task.
The task was designed such that it allowed human participants to
behave relatively naturally and freely, enabling us to record and
analyze emerging adaptive interactions between a human and a
robot. A bottom-up coding process based on Grounded Theory
allowed us to identify recurring interaction patterns. The
resulting list of interaction patterns describe stable situations
(repeating subsequences of stable behavior) as well as sudden
adaptations (changes in behavior happening over short periods of
time). These patterns can emerge in similar task contexts, thereby
forming a description and analysis method of co-adaptive
behavior in human-robot teams.

Over the course of the experiment, the robot learned similar
strategies for most participants. However, the results show that
the learned strategies were slightly different depending on
whether a human participant adapted their behavior to the
robot. This suggests that human learning affected the robot’s
Reinforcement Learning. More specifically, the human learning
about and adapting to a specific strategy of the robot enabled the
robot to learn to stick to that strategy. This shows how learning
on the individual level lead to team level learning in our
experiment.

This paper presents a theoretical framework and a
methodological approach for studying the processes that
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underlie co-learning in human-robot teams. The strengths as
well as the shortcomings of our approach provide ample
directions for future research into this important
process that ultimately defines the quality of human-robot
teaming.
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