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This paper proposes a sub-step based iterative constitutive model for line interface elements used to
analyse masonry structures loaded in-plane. Based on a total deformation theory, the model adopts char-
acteristics of multi-surface plasticity, including a Coulomb friction failure surface for shear, with tension
and compression cut-off and softening for all three domains. The model is driven by two damage param-
eters, one for compression and one that couples tension and shear. The sub-stepping technique is demon-
strated to be numerically stable and is used as an alternative to the traditional return-mapping
algorithms, which are prone to convergence issues and instability. The proposed model has been vali-
dated against experimental tests performed on masonry walls subjected to cyclic, in-plane loading.
The numerical simulations adequately identify the failure mode, the hysteretic behaviour and the crack
pattern. When toe crushing is governing, the results appear to be sensitive to the assumed masonry com-
pressive strength. It is shown that calibration of the lumped compressive strength makes possible to fully
describe the damage evolution in walls that exhibit a mix of flexural crack-crush failure and shear failure.
Overall, the model is demonstrated to be an efficient and robust tool for analysing the cyclic, in-plane
behaviour of masonry walls.
� 2021 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Masonry is one of the oldest building materials in the world,
encountered in a variety of structures, from historic monuments
to modern residential buildings. It is typically made of units
(bricks, stones, blocks or other) and joints (mortar or dry), being
an inhomogeneous material with complex mechanical behaviour.
Despite its good performance under gravitational loads, it is sus-
ceptible to damage when subjected to other types of loads, from
settlements to more exceptional loads, such as earthquakes. In
those cases, its failure is usually brittle, and the cracks can develop
along the joints or through the units, depending on the strength of
the two components and their interfaces.

Different modelling strategies are traditionally applied for
the numerical analysis of masonry structures, depending on the
desired level of accuracy and computational effort, and on the
knowledge of the structure’s geometry and of the material proper-
ties. Classifications and reviews of these strategies according to dif-
ferent authors can be found in [3–5]. According to the classification
of Lourenco and Rots for Finite Element Modelling (FEM) of
masonry [6–8], three approaches are commonly used:
macro-modelling, detailed micro-modelling and simplified micro-
modelling. In macro-modelling, masonry is assumed to be a homo-
geneous material and its properties and damage are smeared out in
the continuum; it has been observed that the continuum constitu-
tive models best describe the behaviour of masonry when the
orthotropy of masonry is taken into account [9–17]. In detailed
micro-modelling, the units and the mortar are modelled with con-
tinuum elements, whereas the unit-mortar interfaces are repre-
sented by discontinuum interface elements. Finally, simplified
micro-modelling lumps the properties of the mortar joints and
the unit-mortar interfaces at either side of the joint into zero-
thickness interface elements. The units are then properly increased
in thickness by adding the joint thickness to them, so that the stack
of units and zero-thickness interfaces has the same dimensions as
the real masonry. Simultaneously, the elastic stiffness of the zero-
thickness interface is determined from the Young’s modulus of the
joint and the Young’s modulus of the unit, such that it matches the
actual overall Young’s modulus of the masonry as a composite [8].
Macro-models are more suitable for applications on structures of
large dimensions, since they offer a good compromise between
accuracy and numerical effort. Conversely, the micro-models are
usually more accurate, even though they require more computa-
tional time and memory.
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The need for higher accuracy and the necessity to examine in
more detail the local behaviour of masonry has led to the develop-
ment of constitutive models for interface elements, broadly used
for applications on masonry structures. One of the first constitutive
models for masonry interface elements was developed by Lotfi
et al. [18]. Another early application was the multi-surface plastic-
ity model of Lourenco and Rots [1], developed initially for mono-
tonic cases and extended later on to include also cyclicity [19].
Since then, more constitutive models have been developed [20–
29], all of them incorporating a Coulomb friction failure criterion.
Even though these models have the potential to provide accurate
results, the convergence difficulties and numerical instabilities
that arise during the return-mapping algorithm are a recurring
problem of plasticity-based models, especially in high curvature
yield functions or in the case of multi-surface plasticity with
‘‘corners” [30–33]. Moreover, the accuracy of implicit return map-
ping schemes is not always reliable if the strain increments are not
sufficiently small. An alternative method proposed for these prob-
lems is the sub-stepping technique, where the strain increments
(or, more precisely, relative displacement increments in case of
interfaces) are divided into smaller sub-steps and integration is
conducted at each sub-step [34–37].

The aim of the authors is to provide a constitutive model for 1D
line interface elements capable of modelling the failure modes of
masonry while maintaining numerical stability. To this extent, this
paper proposes a sub-stepping based iterative constitutive model
based on total deformation theory, while adopting some character-
istics of multi-surface plasticity, naming yield-surface criteria
including Coulomb friction, as well as tension and compression
cut-off including softening. To clarify, interface models based on
deformation theory express the tractions as a function of the total
relative-displacements (in analogy to the total strain crack models
used in continuum elements), whereas in classical multi-surface
plasticity theory the total displacements (or strains for continuum
elements [38]) are decomposed in an elastic and a plastic part [39].
Additionally, in order to include the strength and stiffness degrada-
tion, two damage parameters are introduced: one coupled param-
eter for tension and shear, and one for compression. The
combination of the aforementioned characteristics resembles the
damage-plasticity algorithms and this name will be adopted from
hereon to describe the constitutive model, keeping in mind that
the formulation of the stresses is based on a total relative-
displacement concept. The novelty of the model lies on the inclu-
sion of two algorithms: a sequential uniaxial damage calculation
algorithm in normal and shear directions, followed by an extra
damage iterative calculation algorithm. These algorithms in combi-
nation with the sub-stepping technique constitute a robust proce-
dure and can replace the mapping-back process. Moreover, the use
of a sub-stepping technique tackles issues related to path-
dependency. At the current stage, the constitutive relations have
been derived only for the in-plane behavior of two dimensional
masonry walls.

A description of the uniaxial constitutive relations and of the
multi-surface plasticity criteria is given in Sections 2 and 3 respec-
tively, followed by the description of the sub-stepping damage-
plasticity algorithm in Section 4. The validation of the proposed
constitutive model against experimental results is discussed in
Section 5 and the final remarks are reported in Section 6.
2. Uniaxial constitutive relations

For the description of the loading, unloading and reloading
relations in compression, tension and shear, the stress–strain rela-
tionships are derived from those proposed in [16] and imple-
mented in the Engineering Masonry Model (EMM) [40]. These
2

equations, originally defined for continuum elements, are modified
to be suitable for interface elements.

In the following, r indicates the stress normal to the interface, s
the shear stress tangential to the interface, dn and ds are the rela-
tive displacements normal and tangential to the interface, respec-
tively, whereas K indicates the stiffness of the interface. Finally, the
subscripts c; t; s refer to compression, tension and shear, e; so and
sec refer to elastic, softening and secant, and peak and u refer to
the state at the peak and at the end (ultimate) of the softening dia-
gram respectively.

2.1. Compression

The compressive stress envelope consists of a sequence of a
third-order curve, a parabolic curve up to the compressive strength
f c , and a linear softening curve, as expressed in Eq. (1).

r ¼

B1
Kc;edn
f c

h i3
� B2

Kc;edn
f c

h i2
þ Kc;edn for� f c

Kc;e
� dn < 0

A�1
A

Kc;e dc;peakþdnð Þ
Kc;edc;peak�f c

� �2

� 1

 !
f c for� dc;peak � dn < � f c

Kc;e

dn�dc;u
dc;peakþdc;u

f c for dc;u � dn < �dc;peak

0 for dn < dc;u

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð1Þ

where the constants B1, B2 and A can be calculated by:

B1 ¼ A� 2
A

þ 2
A� 1
A

f c
Kc;edc;peak � f c

� �
f c ð2Þ

B2 ¼ 3� 2A
A

� 2
A� 1
A

f c
Kc;edc;peak � f c

� �
f c ð3Þ

A ¼ Kc;edc;peak

f c

� �1
3

ð4Þ

The ultimate relative displacement in compression dc;u

depends on the compressive fracture energy Gf ;c and is given by
Equation (5).

dc;u ¼ �dc;peak �max 0;
2Gf ;c

f c
� f c
A2Kc;e

� Aþ 1
A

dc;peak � f c
Kc;e

� �" #
ð5Þ

The unloading/reloading path is represented through a bilinear
curve: when unloading from a stress state rc;limit , a linear branch
with elastic stiffness Kc;e is followed until a stress level
rk ¼ ð1� kÞrc;limit is reached; then, a secant stiffness Kc;e;1 to the
origin is used. The reloading follows the same path as the unload-
ing. The unloading factor k is defined such that k ¼ 1 corresponds
to fully linear elastic unloading, whereas k ¼ 0 corresponds to
secant unloading. The compressive behaviour is depicted in Fig. 1a.

2.2. Tension

The uni-axial tensile behaviour is described by an elastic
ascending branch followed by linear softening (Eq. (6)), with the
ultimate tensile relative displacement dtu ¼ 2Gft=f t based on the
tensile fracture energy Gft . For unloading and reloading, secant
stiffness is applied (Fig. 1b).

r ¼
Kt;edn if 0 � d < dt;peak

f t � f t
dt;u�dt;peak

ðdn � dftÞ if dt;peak � d < dt;u

0 if dt;u � d

8><
>: ð6Þ



Fig. 1. Uniaxial constitutive curves for (a) compression, (b) tension and (c) shear for zero-thickness interface elements.
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2.3. Shear

Finally, the shear behaviour is described by a trilinear envelope.
Elastic behaviour is adopted until the shear capacity speak is
reached, followed by linear softening with stiffness Ks;so until all
the shear fracture energy Gfs is consumed and a residual shear
strength (sf ¼ max �lr;0ð Þ) is reached. The shear strength is
determined from Coulomb friction as: speak ¼ max c � lr; cð Þ
where rn, c and l are the normal stress, the cohesion and the fric-
tion coefficient, respectively. The shear unloading and reloading
always follow the initial shear stiffness Ks;e, as shown by the
dashed lines in Fig. 1c. The dilatancy angle is not taken into
account in the definition of the constitutive law. This implies that
a zero dilatancy angle is assumed, which is in accordance with the
observation that the dilatancy angle tends to zero under increasing
relative-shear-displacement and normal confining pressure
([1,41]). Moreover, in [8] it was shown that non-zero values of dila-
tancy angle may lead to over-stiff behavior and stress locking. For
more information refer to [16,40].
s ¼

dsKs;e if 0 � jdsj � ds;peak

ds
jds j speak þ ðds � ds;peakÞKs;so if ds;peak < jdsj � ds;u

ds
jds j sf if ds;u < jdsj

8>>>><
>>>>:

ð7Þ
Fig. 2. Multi-surface plasticity criterion for interface elements.
where ds;peak ¼ speak
Ks;e

and ds;u ¼ ds;peak þ 2Gfs

c � c
Ks;e

.

For the biaxial state of combined shear and tension, both the
tensile and shear capacity are lower than the corresponding uniax-
ial capacities, as explained in detail in Section 3.
3

3. Multi-surface damage-plasticity

The coupling effect between the normal and the shear stress of
this constitutive model is defined by a multi-surface plasticity cri-
terion, which includes a tension cut-off, a compression cut-off, and
a Coulomb friction failure surface (Fig. 2).

The surfaces of Fig. 2 can also be expressed with three yield
functions, as presented below.

f 1 ¼ jsj þ r� tan/� cð1�wÞ
f 2 ¼ r� ð1�wÞf t
f 3 ¼ � 1�wcð Þf c � r

8><
>: ð8Þ

where
w: the damage factor for cracking caused by tension and/or

shear, with values varying between 0 and 1. The initial value is
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equal to 0 and corresponds to an uncracked state, while the max-
imum value of 1 corresponds to fully damaged material;

wc: the damage factor of crushing caused by compression, with
values varying between 0 and 1. The initial value of wc is 0 and
remains 0 during pre-peak hardening, whereas it increases up to
1 during post-peak softening.

By definition, all stress states (combinations of r and s) should
be within or on the yield surfaces, such that the values of functions
f 1, f 2 and f 3 satisfy simultaneously the following criteria:

f 1 � 0; f 2 � 0; f 3 � 0 ð9Þ
Stress states inside the contour only cause elastic deformations,

whereas stresses on the yield surface contribute to the evolution of
plastic deformations. The yield surface expands during compres-
sive hardening, and shrinks during compressive/tensile/shear soft-
ening. The damage factor w is used to couple the softening in
tension and shear, resulting in a two-way dependency between
the shear and tensile stresses. Similarly, the damage factor wc

relates to the softening rate in compression. Only one-way depen-
dency exists between compression and shear: a change in the com-
pressive capacity affects the shear capacity, whereas a change in
the shear capacity does not influence the compressive capacity.

4. Sub-stepping damage-plasticity calculation

This paper introduces a sub-step based iterative constitutive
model. In the case that damage occurs (or increases) in an integra-
tion point, the corresponding incremental relative displacements
are divided in n sub-increments (n both in normal and shear direc-
tion). These sub-increments are applied in subsequent pairs (n
pairs in total), until the total incremental relative displacement is
reached for each direction (this procedure is named ‘‘sub-
increment divider”). In each pair first the normal sub-increment
is applied, followed by the shear one. The sequential application
of sub-steps ensures the convergence of the calculated stress state
to the solution, as if the increments of relative displacements in
both normal and shear directions were applied simultaneously
(Fig. 3).

Instead of conventional return-mapping algorithms, a sequen-
tial procedure that includes two algorithms, is used to calculate
the stress state once damage develops. These algorithms, named
‘‘uniaxial damage calculation” and ‘‘extra damage iterative calula-
tion”, are applied in sequence for each sub-step. The former algo-
rithm calculates the stresses ðr; sÞ and the damage in the normal
and shear directions ðw;wcÞ, based on the uniaxial constitutive
equations of Section 2. The latter is an iterative algorithm that
Fig. 3. Sequential application of sub-steps of the increments of relative displace-
ments in shear and tensile direction.

4

computes the damage factor w by including the extra damage
due to the two-way coupling between tension and shear and/or
the one-way coupling between compression and shear. This dam-
age is induced by the reduction of the maximum capacity in one
direction (dir-1, either normal or shear) caused by the updated
value of the stress in the other direction (dir-2). The procedure is
iterated until convergence of the values of strength is reached both
in dir-1 and dir-2.

As presented in Fig. 4, for each sub-step, first the damage in the
normal direction is calculated. Then, the ‘‘extra damage iterative
calulation” algorithm computes the additional damage caused in
the shear and normal directions due to coupling. After convergence
is achieved, the second part of the sub-step is applied, which
includes the application of the shear displacement’s sub-
increment and the calculation of the corresponding damage. The
iterative damage algorithm will then be used again to calculate
the extra damage caused due to coupling first in the normal and
then in the shear direction. In the next sub-step the same proce-
dure is followed, until the total amount of normal and shear dis-
placement has been applied. A detailed explanation of each of
the two processes is provided in the following sections.

4.1. Uni-axial damage-plasticity loading

In the uniaxial damage calculation, the multi-surface plasticity
criterion is first used to determine the maximum stress capacity
in one direction (dir-1) based on the stress state of the other direc-
tion (dir-2). Then the stress and damage in dir-1 are calculated
based on the following assumptions:

1. The softening stiffness (Kt;so for tension and Ks;so for shear) is
kept constant and equal to the one introduced for uniaxial
behaviour. However, due to coupling, the ultimate relative-
displacement in one or both of the directions can change.

2. The amount of damage is calculated based on the increment of
plastic relative-displacement (Eqs. (10) and (11)).

As already mentioned, the damage in tension and shear is cou-
pled, meaning that the damage in one direction influences the
capacity in the other direction. For a more straightforward demon-
stration of the uniaxial damage calculation algorithm in the case of
tension and shear, one can refer to Fig. 5, where it is depicted how
to further plastically load the interface’s integration point in ten-
sion and shear, starting from four stress states A to D located
already on the yield surface (Fig. 5a).

In Fig. 5:
di;0: the total relative normal or shear displacement of the last

update;
di;1 : the total relative normal or shear displacement of the cur-

rent update;
r0 and s0: the total normal (tensile) and shear stress of the last

update, respectively;
r1 and s1: the total normal (tensile) stress and shear of the cur-

rent update, respectively;
Ki;e;0: the (softened) elastic tensile or shear stiffness of the last

update;
Ki;so: the softening stiffness in tension or shear;
di;lost: the increment of plastic relative displacement in tension

or shear. di;lost ¼ di;1 � di;0 � 0, with i ¼ t for tension and i ¼ s for
shear. The current damage factorw1, common to tension and shear,
is determined by Eqs. (10) and (11).

w1 ¼ min w0 þ dt;lost
f t

Kt;so

;1

0
@

1
A ð10Þ



Fig. 4. Overview of the algorithm of the damage-plasticity calculation.

Fig. 5. Examples of uniaxial damage calculations: (a) possible initial stress states; (b) stress state A loaded in shear; (c) stress state C loaded in shear, (d) stress state A loaded
in tension, (e) stress state B loaded in tension and (f) stress state D loaded in tension.
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w1 ¼ min w0 þ ds;lost
c

Ks;so

;1

 !
ð11Þ

In the case of compression, only the shear capacity is influenced
by the level of compression: it increases during hardening and
decreases during softening and unloading; this is discussed in Sec-
tion 4.2. On the other hand, the compressive stress/strength/dam-
age is not influenced by shear and the calculation of compressive
damage factor is simple and given by

wc;1 ¼ min
�f c � r1

�f c
;1

� �
ð12Þ

where r1 is the compressive normal stress at the current step.

4.2. Extra damage iterative calculation

Softening in tension, and unloading or softening in compression
lead to a reduction of the maximum shear capacity speak, in which
5

case the integration point might be unable to withstand the shear
stress of the previous update (shear stress s0 at the beginning of
the sub-step). Therefore, the value of the shear stress may further
reduce (extra-softening) in order to reach a new equilibrium
between the shear load and the shear capacity, or in other words,
between the external shear force applied to the interface and the
internal shear force of the interface. A similar situation can also
occur for the tensile capacity after softening in shear; if the tensile
capacity is not able to carry the tensile stress of the last update,
extra damage in tension will occur before the next uniaxial damage
is calculated in normal direction. The influence of one direction on
the other (shear on normal -tension- and normal -tension or
compression- on shear) is therefore computed through an iterative
procedure, named extra-damage calculation, until convergence at
the local integration point level is achieved.

A simple mechanical model is used to define the extra damage,
consisting of two units stacked on top of each other, with a mortar
layer in-between them, assuming that there is already a partially
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developed crack along the mortar joint and that the block is further
loaded in shear (or tension). The analytical derivation of the
equations and their graphical representation can be found in
APPENDIX A. The reduced shear stress s1 in the current sub-step
after the additional softening (extra damage) can be expressed as:

s1 ¼ max s0 � 1� Ks;so

Ks;e

� �
s0 � smaxð Þ; sf

� �
ð13Þ

smax ¼ maxð�r0lþ c 1�w0ð Þ;0Þ ð14Þ
Accordingly, the updated damage parameter after the addi-

tional softening is given as: w1 ¼ w0 þ ðsmax � s1Þ=c, where the
indexes 0 and 1 represent the state before and after the extra-
damage calculation, respectively.

Similarly, if the maximum tensile capacity rmax, determined by
the Coulomb friction criterion, is unable to resist the tensile stress
r0 of the last update, the reduced tensile stress can be calculated
as:

r1 ¼ max r0 � 1� Kt;so

Kt;e

� �
r0 � rmaxð Þ;0

� �
ð15Þ

rmax ¼ min
c 1�w0ð Þ � s0

l
; f t 1�w0ð Þ

� �
ð16Þ

Therefore, the damage parameter w, that is the same for shear
and tensile direction, can be updated as w1 ¼ w0 þ ðrmax � r1Þ=f t .

4.3. Summary of constitutive model’s procedure

The overall procedure of the proposed constitutive model is
shown in Fig. 6. The algorithm of the sub-stepping damage-
plasticity calculation, including the uni-axial plastic loading and
iterative damage calculation algorithms, is implemented as the
Sub-step divider and Plastic damage calculator in this model. The
inputs of the user subroutine include the stresses and relative dis-
placements in shear and normal directions of the previous step, the
increments of the relative displacements of the current step, the
loading/unloading/reloading status and all the material properties.
The superscript 0 and 1 stand for the input and output values of the
subroutine, respectively.

As for the sub-step divider, it is found that a minimum of two
sub-steps are required. In order to optimize the sub-step iterative
procedure and avoid unnecessary calculations the plastic damage
calculator is initially calculated with two and three sub-steps and
the damage factors for the two cases are compared. If the differ-
ence between the calculated results is within an established toler-
ance, these are the final results and the stiffness matrix is
constructed. Otherwise, the number of sub-steps defined by the
user is applied.

Finally, the stiffness matrix is calculated at the end of each iter-
ation i, using the stresses and displacements calculated during the
last sub-step. In particular, the tangent stiffness matrix is used, as
described below:

K ¼
ri�ri�1

dn;i�dn;i�1
0

0 si�si�1
ds;i�ds;i�1

" #
ð17Þ
5. Validation

This constitutive model has been implemented in the finite ele-
ment software DIANA FEA, version 10.3, via a user-supplied sub-
routine developed in FORTRAN. The validation of the constitutive
model was carried out at structural level, by modelling five brick
masonry walls. The first two walls modelled, were tested in TU
6

Eindhoven, under monotonic in-plane conditions [42]: a Hollow
Wall (a wall with a central opening) and a Solid Wall, both com-
prising solid clay bricks of dimensions 204 � 98 � 50 mm3 and
mortar joints of 10 mm thickness. The remaining three walls were
tested in-plane in a quasi-static cyclic manner at the Stevin labora-
tory of TU Delft, and they were made of calcium-silicate bricks of
dimensions 210 � 71 � 102 mm3 with a mortar joint thickness
of 12 mm. The walls are characterized by different geometries
(aspect ratios of 0.7, 1 and 2.5), different boundary conditions
(double clamped at top and bottom with or without possibility of
vertical displacement at top, clamped at bottom only) and/or dif-
ferent precompression level. The walls exhibited different types
of in-plane failure: shear failure or flexural failure [42,43] (see
Table 1).

The finite element discretisations of the walls were composed
of quadrilateral 4-noded, plane stress elements representing the
bricks, and line interface elements (2 + 2 nodes) representing the
head- and bed-joints. Linear elastic behavior was adopted for the
bricks, except for the bricks of Solid Wall, where nonlinearities in
tension and compression were introduced through a Total Strain
Rotating Crack Model (TSRCM) (Table 2). The plane stress elements
were integrated by a 2x2 Gauss scheme and the interface elements
by a 2-point Newton-Cotes scheme. In the numerical model, the
dimensions of the bricks were increased by the thickness of the
adjacent mortar layer, in order to ensure geometrical compatibility
with the zero-thickness interface elements, following a simplified
micro-modelling approach.

The material properties used for walls TUD- COMP-3, COMP-4,
and COMP-6 adopted the values measured during the experimen-
tal companion tests. These tests were performed both perpendicu-
lar and parallel to the bed joints, to investigate the orthotropic
behavior and properties of masonry along its two predefined direc-
tions [37]. Accordingly, different material properties were used for
the head and bed joints. (Tables 2 and 3).

As for the Solid and the Hollow Walls, the elastic and inelastic
properties used by Lourenco et al. [1] were used, with the excep-
tion of the compressive strength and fracture energy of the inter-
face elements. In Lourenco’s model, a cap described by

f 3 ¼ r2 þ 9s2 � r
�ðj3Þ ensured the reduction of shear stresses for

high compressive stresses. In the presented model, which does
not include such a cap, the compressive strength of the interface
elements was limited from 10.4 MPa to 4 MPa. This value was cal-
culated through the abovementioned formula by setting f 3 ¼ 0 and

assuming that s ¼ c � lr, and r
�
j3ð Þ ¼ 10MPa. As for the normal

displacement at peak strength dc;peak, it was calculated as follows:

dc;peak ¼ f c
3Kc;e

þ jfc , with jfc ¼ 0:09, taken from [1].

The nonlinear tensile and shear properties of the interface can
be interpreted as direct properties for debonding and shearing at
micro-level, whereas the nonlinear compression properties for
the interface should be regarded as lumped indirect properties that
aim to phenomenologically represent the overall compressive
behavior of the masonry as-a-composite. The actual compressive
behavior may involve mortar crushing, brick splitting in the plane,
brick splitting out of the plane, spalling and other effects. This is
lumped into a fictitious discrete crush line characterized by an
overall compressive strength and compressive fracture energy,
estimated from the companion tests. The residual stiffness factor
ratioK;r is defined as a percentage from the initial elastic interface
stiffness to maintain slight residual stiffness after ultimate relative
displacement, in order to avoid ill-conditioned stiffness matrices.

The dead weight and pre-compression load were applied in the
first five load steps and were kept constant during the application
of the cyclic lateral load on the top edge of the walls. For walls
TUD- COMP-3 and COMP-4, the top edge of the wall was allowed
to move vertically and was kept straight and horizontal, whereas



Fig. 6. Overview of the structure of the constitutive model.

Table 1
Geometrical properties, boundary conditions and main failure mechanism of the five modelled walls [42,43].

Name Dimensions L � H � tðmm3Þ Aspect ratio ðH=LÞ PrecompressionlevelðMPaÞ Boundary conditions Failure mode

Solid 1000 � 990 � 98 1:01 0:3 Double clamped Shear
Hollow 1000 � 990 � 98 1:01 0:3 Double clamped Shear and flexure
TUD-COMP-3 1100 � 2760 � 102 2:50 0:4 Double clamped (duy;top allowed) Flexure
TUD-COMP-4 4000 � 2760 � 102 0:7 0:3 Double clamped (duy;top allowed) Shear
TUD-COMP-6 4000 � 2760 � 102 0:7 0:5 Cantilever Shear

Table 2
Input parameters for plane stress brick elements. The values in bold refer only to the
solid wall; elastic behavior is assumed for the brick elements of the hollow wall.

Parameter modulus Unit TUD-COMP-3 & 4 &
6

Hollow & Solid
Wall

Modulus of
ElasticityEbrick

ðMPaÞ 8990 16700

Poisson’s ratiom ð�Þ 0:14 0:15
Densityq ðT=mm3Þ 1:805� 10�9 1:805� 10�9

Tensile strengthf t;brick ðMPaÞ � �=2
Fracture energyGft;brick ðN=mmÞ � �=0:08
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for the Hollow and Solid Wals no vertical movement was allowed.
Finally, for the cantilever wall TUD-COMP-6 the top edge was kept
straight and was allowed to rotate.
7

Physically nonlinear, quasi-static analyses were performed with
an implicit solver; a secant iteration scheme was chosen to ensure
numerical stability at global level, with both displacement and
force convergence norms to be satisfied and set to 0.01. The anal-
yses would terminate when convergence was not reached, but all
analyses were completed without convergence problems. More-
over, the number of user defined sub-steps, in the case that 2–3
sub-steps were not sufficient, was 100. Geometrical nonlinearities
were neglected as they did not influence the results. The compar-
ison with the experimental results was carried out in terms of total
hysteretic behaviour and crack pattern at failure.
5.1. Hollow wall

Two identical double clamped walls with an opening (hollow
walls) were tested in TU Eindhoven [42]. The opening resulted in



Table 3
Input material parameters for zero-thickness interface elements; the original material properties are used for the walls tested in TU Delft.

Parameter Unit TUD-COMP-3 & 4 & 6 Hollow & Solid

bed joint head joint bed joint head joint

Ks;e ðMPa=mmÞ 39:31 16:36 36:00 36:00
Kt;e ðMPa=mmÞ 121:16 10:44 82:00 82:00
Kc;e ðMPa=mmÞ 121:16 10:44 82:00 82:00
Gf ;s ðN=mmÞ 3:0 0:1 0:125 0:125
Gf ;t ðN=mmÞ 0:00775 0:00078 0:018 0:018
Gf ;c ðN=mmÞ 15:0 34:0 15 15
l ð�Þ 0:43 0:43 0:75 0:75
c ðMPaÞ 0:140 0:014 0:35 0:35
f t ðMPaÞ 0:1050 0:0035 0:25 0:25
f c ðMPaÞ 5:93 8:10 4:0 4:0
ratioK;r ð�Þ 10�4 10�4 10�4 10�4

k ð�Þ 0:95 0:95 0:95 0:95
dc;peak ðmmÞ 0:897 3:308 0:13 0:13
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two small piers, and the tests resulted in different load–displace-
ment curves, and different crack patterns. However, for both walls
diagonal cracks initiated from the opening’s corners and propa-
gated towards the top and bottom of the wall in step-wise pat-
terns. Subsequently, horizontal tensile cracks were also formed at
the top and bottom of the piers. Eventually, failure due to toe-
crushing occurred at the bottom and top of the wall [1,12]. The
numerical model estimated with good accuracy the base shear
capacity with respect to the one tested wall (-3.2%), whereas it
overestimated it for the other wall by 23% (Fig. 9). Overall the soft-
ening behavior was in line with the experimental results. The
numerical crack pattern resembled the experimental realistically,
with diagonal cracks forming at top and bottom of the window
and extending toward the corners of the wall. More specifically,
the numerical crack pattern at the top half of the wall resembled
the one of Panel J2G, whereas the bottom half of the wall resem-
bled the one of Panel J3G (Figs. 7 and 8).
Fig. 8. Deformed shape and absolute values of relative displacements of the
interface elements at the end of the numerical analysis for Hollow Wall (scaling
factor 10).
5.2. Solid wall

The two tested solid walls formed initially horizontal cracks at
the top and bottom of the wall. As the applied deformation
increased, diagonal shear cracks prevailed, alongside with cracking
of some bricks and toe crushing at the top and bottom corners
(Fig. 10). Previous researchers modelled the potential cracks
Fig. 7. Geometry and crack locations of the hollow walls o
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through the bricks with interface elements with satisfactory
results. In this paper, instead, TSRCM is used for the modelling of
the brick elements, with a tensile strength of 2 MPa and a fracture
bserved at the end of the experiment, taken from [2].



Fig. 9. Comparison of the experimental (black) and numerical (red) force–
displacement capacity for Hollow Wall.

Fig. 10. Geometry and crack patterns of the solid walls as observed at the end of the experiments, taken from [1].

Fig. 11. Deformed shape of solid wall at the end of the numerical analysis, (a) displacement of interface elements, exhibiting the crack locations, and (b) location of cracks in
brick elements and the corresponding cracking strains (scaling factor 10).

Fig. 12. Comparison of experimental (black) and numerical (red) results of solid
wall.
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energy of 0.08 N/mm; the compressive behavior is assumed to be
linear elastic. These values were used for the interface elements
used to model the cracks in the bricks by [1], and were adopted
here for plane-stress elements. The base shear capacity was pre-
dicted with very good accuracy, differing only by �1.4% and 2.7%
from the experimental results. Moreover, the numerical residual
strength fell between the two corresponding experimental values
(Fig. 12). The sudden drop of the Force-Displacement curve
occurred during the cracking of the first two bricks (depicted with
red tensors in Fig. 11b)), and it occurred sooner than the more
gradual drop observed for the experiments. Finally, in the numer-
ical model, horizontal tensile cracks were formed at the top and
bottom of the wall (similar to the experiment), followed by three
diagonal step-wise cracks that formed at the centre of the wall
and eventually expanded towards the corners. Cracking occurred
in some brick elements as well (Fig. 11b).
Fig. 14. Comparison of experimental (black) and numerical (red) force displace-
ment diagram of wall TUD-COMP-4.
5.3. TUD-COMP-4

TUD-COMP-4 was a double-clamped squat wall that exhibited
pure shear failure. Its FE model captured well the failure mecha-
nism, as well as the force capacity (+5.7%), the initial stiffness
(+6.3%), the stiffness at the end of the loading procedure (+4.8%),
Fig. 13. (a) Wall TUD-COMP-4 at the end of the test, (b) crack pattern observed at the e
displacements of the interfaces of TUD-COMP-4 for the maximum top displacement of
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and the energy dissipated throughout the test (+2.2%) (Fig. 14).
In terms of crack pattern, the results from the experiment and
the FE analysis were similar, with the diagonal cracks running from
nd of test TUD-COMP-4, and (c) deformed shape and absolute values of the relative
5.5 mm (scaling factor = 40).
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the top to the bottom corners clearly visible (Fig. 13), although the
experiment showed more localised cracks. This could have been
due to the imperfections in the real wall, not taken into account
in the numerical model. Besides, most of the micro-cracks in the
real wall could not be observed with the naked eye. In terms of cyc-
lic behaviour and dissipated energy, Fig. 14 shows that the analysis
well reproduced the experiment. The unloading/reloading assump-
tions for shear, compression and tension, were concluded to ade-
quately reproduce the cyclic behavior. Furthermore, as for all
Fig. 15. (a) Observed crack pattern in the experiment of test TUD-COMP-3, (b) detail of
displacement of the interface at maximum lateral displacement for (c) uncalibrated and
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examples in this paper, the iterative damage calculation procedure
performed adequately and in the global level the convergence cri-
teria were met for all steps.

5.4. TUD-COMP-3

TUD-COMP-3 was a double-clamped slender wall, which exhib-
ited flexural failure. The outcomes of the numerical analysis
showed a good agreement in terms of initial stiffness with the
cracking and crushing at top and bottom of the wall and absolute value of relative
(d) calibrated TUD-COMP-3 ((scaling factor = 10).



Fig. 16. Comparison of experimental (black) and numerical (red) force displacement diagram for the (a) uncalibrated and (b) calibrated DIANA simulation ofwall TUD-COMP-3.
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experimental result. However, the ultimate loading capacity was
25% higher than the experimental, and both the energy dissipation
and the unloading stiffness were underestimated (Fig. 16a). The FE
model showed a typical rocking behaviour with little toe crushing
(Fig. 15c) while the experiment indicated a flexural behaviour with
splitting of bricks at corners (Fig. 15b). In the performed analysis,
the plane stress elements representing the bricks were modelled
with a linear elastic constitutive model. To compensate for this
limitation, the compressive strength of the zero-thickness inter-
faces was reduced further, to a relatively low value (2MPa) while
the fracture energy under the softening branch was not changed.
As mentioned before, the fictitious discrete crush lines aim to cap-
ture the overall compressive characteristics of the masonry. The
calibrated model showed more toe crushing at the corner
(Fig. 15d), accompanied by a reduction in the force capacity and
a better agreement with the experiment in terms of loading capac-
ity (+19.1%), initial stiffness (+0.8%), unloading stiffness at the end
of the test (-4.7%), energy dissipation (-21.7%), and correct strength
and stiffness degradation for repeated cycles of the same ampli-
tude. It should also be noted that the reduced compressive
strength, in combination with the choice of the unloading factor
(k ¼ 0:95Þ caused accumulation of compressive deformation and
damage in several integration points close to the top and the base
of the wall. Moreover, the choice of the unloading/reloading factor
as k ¼ 0:95 led to an initial rapid decrease of the compressive stress
(and consequently shear stress) of these integration points upon
unloading with elastic stiffness, followed by a sudden change in
stiffness once the kink in the unloading curve is passed and secant
stiffness towards the origin is adopted. This sudden change in the
unloading stiffness may have caused the unusual stepped behavior
that can be observed during the last cycles of the analysis, as
shown in Fig. 16b.
5.5. TUD-COMP-6

Also the numerical simulation of TUD-COMP-6 (a cantilever,
squat wall characterized by a combination of flexural and shear
failure) was sensitive to the values adopted for the compressive
strength. A first uncalibrated model, which used the original mate-
rial properties of the wall, showed diagonal cracks that extended
from the top corners and intersected at the bottom centre of the
wall, extending all the way to the bottom edge. A long sliding plane
developed at the right bottom edge with little crushing (Fig. 17c),
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whereas in the experiment toe crushing (in the form of mainly
brick splitting) was more significant (Fig. 17a-b). This difference
also resulted in a force–displacement curve that corresponded
more to the typical pure sliding behaviour, deviating from the
experiment. In a second, calibrated model, the compressive
strength f c was then reduced from 5:98 MPa to 4:5 MPa (fracture
energy under the softening branch remains the same) and the fric-
tion coefficient l was increased from 0:43 to 0:50. The calibrated
model exhibited significantly more toe crushing at both bottom
corners (Fig. 17d), even though the overall crack pattern still devi-
ated from the experimental result. The force displacement curve
showed a good agreement in terms of initial stiffness (-9.0%), ulti-
mate capacity (+10.0) and energy dissipation (+7.0%), with some
differences in the unloading stiffness at the end of the analysis.
This reflects that the crushing of the corner interface elements
can equivalently model the splitting of the bricks in the experi-
ment. Again, global convergence was satisfied throughout the
process.
6. Conclusions

In this paper a constitutive model for the in-plane behaviour of
masonry line interface elements is proposed. The model combines
elements of multi-surface plasticity and damage mechanics, using
a sub-stepping algorithm to compute local damage and provide
numerical stability, as an alternative to plasticity based return-
mapping algorithms. The iterative sub-stepping algorithm is intro-
duced to keep the calculated stress state on the yield surfaces
while those are shrinking at the same time due to softening. To
the author’s knowledge, this technique has not been used before
for masonry structures. Failure in shear, tension and compression
are considered through a multi-surface damage-plasticity model,
with a Coulomb friction criterion for shear, and tension and com-
pression cut-off. Two independent damage parameters are
included, one for compression and one for the coupling of tension
and shear. The sub-stepping iterative algorithm ensures that dur-
ing the damage calculation the fully-coupled tension-shear dam-
age parameter is calculated consistently, with the updated stress
state always lying on the yield surface defined by the damage
parameters.

The comparison between experimental tests and the corre-
sponding numerical simulations demonstrates that the developed
model is capable of accurately simulating the behaviour of



Fig. 17. (a) Observed crack pattern in the experiment of test TUD-COMP-6 and the absolute value of relative displacement of the interface at maximum lateral displacement
for (b) uncalibrated and (c) calibrated TUD-COMP-6 (scaling factor = 1).
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masonry walls subjected to lateral, in-plane loading in terms of
failure mode, hysteretic behaviour and crack pattern. Moreover,
the sub-stepping technique has been demonstrated to allow stable
and robust analyses for all the tested cases.

From sensitivity studies, it was observed that the model is sen-
sitive to the assumed value of the compressive strength of the mor-
tar joint (Fig. 16 and Fig. 18), when toe-crushing is present. The use
of the strength defined from companion tests performed at mate-
Fig. 18. Comparison of experimental (black) and numerical (red) force displacement diagr
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rial level may lead to an underestimation of the toe-crushing fail-
ure. This issue can be solved by calibrating the material properties
in compression, as done here, or by refining the compressive cap,
coupling the maximum capacity of compression and shear.

The constitutive model is currently proposed for 2D analysis
with line interface elements that connect plane stress elements,
and it is planned to be extended towards 3D analysis with planar
interface elements. Overall, the model proposed in this paper is
am for the (a) uncalibrated and (b) calibrated DIANA simulation ofwall TUD-COMP-6.
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concluded to be an efficient and robust tool to analyse the in-plane
cyclic behaviour of masonry walls, avoiding underestimation of
hysteretic energy consumption observed in secant-based models
and avoiding possible instabilities in return-mapping schemes for
cornered yield criteria present in softening plasticity.
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Appendix A

To derive the formulae used for the extra-damage calculator, a
simple mechanical model composed of two units and a mortar
joint is considered (Fig. A.1). It should be assumed that, in the pre-
vious step, the structure has been loaded until a crack was partially
developed (the green solid line and the blue dashed line in Fig. A.1).
The current shear stress of the FE model is s0.

The application of the relative displacement in the normal
direction (first sub-increment) reduces the maximum shear capac-
ity of the interface element, to the value smax. However, the internal
shear stress of the interface element has also decreased, that is
why the plane stress elements representing the units after loading
in normal direction (red dashed line) rebound a little bit compared
with their original shape (blue dashed line). For the interface, a
new equilibrium forms between the internal force of the interface
element and the external force applied by the plane stress element
to the interface element.

During this rebound process, a certain amount of additional
softening has taken place. To calculate a reasonable value of the
Fig. A1. Illustration of the extra damage process of the
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shear stress after softening, the detailed mechanical model is con-
sidered. The deformed shape of the mechanical model after soften-
ing is plotted with orange solid lines in the scaled figure. The
relative displacement of the crack increases from d0

s;0 to d0
s;1 (detail

of Fig. A.1). Given that the relative shear displacement of the inter-
face element does not change and the units in the mechanical
model are always overlapped with the corresponding part of the
units in the FE model throughout the entire loading process, the
value of d0

s;1 can be calculated using the geometrical compatibility
equation as follow:

d0
s;1 ¼ d0

s;0 þ s0
Gj

hj � s0
Gu

hj þ s1;e
Gu

hj � s1;e
Gj

hj ðA:1Þ

where
d0

s;1: the relative displacement of the cracked surface in shear
direction in the mechanical model after the additional softening;

d0
s;0: the relative displacement of the cracked surface in shear

direction in the mechanical model before the additional softening;
s1;e: the elastic shear stress in the intact mortar layer during the

rebound process of the additional softening;
s0: the shear stress before the additional softening;
Gu: the shear modulus of the unit in the mechanical model;
Gj: the shear modulus of the mortar joint in the mechanical

model;
hj: the total height of the mortar joint in the mechanical model.
It should be noted that the shear stresses are the same for both

the mechanical model and the FE model. Also, from the geometri-
cal compatibility condition of the mechanical model in the elastic
stage, the following equation can be derived:

1
Ks;e

¼ hj

Gj
� hj

Gu
ðA:2Þ

where Ks;e is the elastic stiffness of the zero-thickness interface ele-
ment in FE model in shear direction. Combined with the Eq. (A.2),
Eq. (A.1) can be rewritten as

Dd0
s ¼ d0

s;1 � d0
s;0 ¼ hjð 1Gu

� 1
Gj
Þðs1;e � s0Þ ¼ � 1

Ks;e
ðs1;e � s0Þ ðA:3Þ

where Dd0 is the increment of the relative displacement of the
cracked surface in the mechanical model.

The above equation indicates the relation between the shear
stress in the intact mortar layers and the increment of the relative
partially cracked mechanical model and FE model.



Fig. A2. Relation between the amount of softening at the interface element and the relative displacement of the real crack in shear.
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displacement of the cracked surface during the rebound process.
The internal shear stress in the intact mortar layers is also equal
to the external shear stress applied on the cracked surface.

In addition, the following equation relates the internal shear
stress of the cracked surface during its softening process to the
increment of the relative displacement of that surface. That is:

s1;so ¼ maxðsmax þ K 0
s;soDd0

s; sf Þ ðA:4Þ

where
K 0

s;so: the softening stiffness of the cracked surface in the
mechanical model in shear direction (negative). Its value can be
calculated with 1

Ks;so
¼ 1

Ks;e
þ 1

K
0
s;so
;

s1;so: the shear stress in the cracked surface during the addi-
tional softening;

w0: damage factor of the crack caused by shear and tension
before the additional softening, 0 � w0 � 1.

The Eqs.ations (A.3) and (A.4) are plotted in Fig. A.2 in blue and
green color respectively.

Knowing that the internal stress s1;so and the external stresses
s1;e of the cracked surface must be equal to each other
s1s0 ¼ s1;e ¼ s1ð Þ, the reduced shear stress s1 in the current sub-
step after the additional softening (extra damage) can therefore
be calculated as the intersection of these two lines. This can be
solved by combining these two Eqs. (A.3) and (A.4) resulting in
Eq. (13).
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