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Abstract

In this paper we estimate the mean-variance portfolio in the high-dimensional case

using the recent results from the theory of random matrices. We construct a linear

shrinkage estimator which is distribution-free and is optimal in the sense of maximizing

with probability 1 the asymptotic out-of-sample expected utility, i.e., mean-variance ob-

jective function for different values of risk aversion coefficient which in particular leads

to the maximization of the out-of-sample expected utility and to the minimization of the

out-of-sample variance. One of the main features of our estimator is the inclusion of

the estimation risk related to the sample mean vector into the high-dimensional portfo-

lio optimization. The asymptotic properties of the new estimator are investigated when

the number of assets p and the sample size n tend simultaneously to infinity such that

p/n → c ∈ (0,+∞). The results are obtained under weak assumptions imposed on the

distribution of the asset returns, namely the existence of the 4 + ε moments is only re-

quired. Thereafter we perform numerical and empirical studies where the small- and large-

sample behavior of the derived estimator is investigated. The suggested estimator shows

significant improvements over the existent approaches including the nonlinear shrinkage

estimator and the three-fund portfolio rule, especially when the portfolio dimension is

larger than the sample size. Moreover, it is robust to deviations from normality.
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1 Introduction

In the seminal paper of Markowitz (1952) the author suggests to determine the optimal compo-

sition of a portfolio of financial assets by minimizing the portfolio variance assuming that the

expected portfolio return attains some prespecified fixed value. By varying this value we obtain

the whole efficient frontier in the mean-standard deviation space. Despite of its simplicity, this

approach justifies the advantages of diversification and is a standard technique and benchmark

in asset management. Equivalently (see, Tobin (1958), Bodnar et al. (2013)) we can obtain

the same portfolios by maximizing the expected quadratic utility (EU) with the optimization

problem given by

w′µn −
γ

2
w′Σnw→ max subject to w′1p = 1 , (1.1)

where w = (ω1, . . . , ωp)
′ is the vector of portfolio weights, 1p is the p-dimensional vector of ones,

µn and Σn are the p-dimensional mean vector and the p× p covariance matrix of asset returns,

respectively. The quantity γ > 0 determines the investor’s behavior towards risk. It must be

noted that the maximization of the mean-variance objective function (1.1) is equivalent to the

maximization of the exponential utility (CARA) function under the assumption of normality

of the asset returns. In this case γ equals the investor’s absolute risk aversion coefficient (see,

e.g., Pratt (1964)).

The solution of the optimization problem (1.1) is well known and it is given by

wEU = wGMV + γ−1Qnµn , (1.2)

where

Qn = Σ−1
n −

Σ−1
n 1p1

′
pΣ
−1
n

1′pΣ
−1
n 1p

(1.3)

and

wGMV =
Σ−1
n 1p

1′pΣ
−1
n 1p

(1.4)
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is the vector of the weights of the global minimum variance (GMV) portfolio. By changing

the risk-aversion coefficient γ ∈ (0,∞) we obtain the set of optimal portfolios. Merton (1972)

proved that this set is a parabola in the mean-variance (R-V) space (cf. Bodnar and Schmid

(2009)) given by

(R−RGMV )2 = s(V − VGMV ), (1.5)

where

RGMV =
µ′nΣ

−1
n 1p

1′pΣ
−1
n 1p

and VGMV =
1

1′pΣ
−1
n 1p

(1.6)

are the expected return and the variance of the GMV portfolio, and

s = µ′nQnµn (1.7)

is its slope parameter. The quantity s is always non-negative since Qn is a positive semidefinite

matrix. Moreover, when s is equal to zero, then the efficient frontier degenerates into a straight

line with the GMV portfolio being the only optimal portfolio.

In practice, however, the above mentioned approach of constructing an optimal portfolio

frequently shows poor out-of-sample performance in terms of various performance measures.

Even naive portfolio strategies, e.g., equally weighted portfolio (see, DeMiguel et al. (2009)),

often outperform the mean-variance strategy. One of the reasons is the estimation risk. The

unknown parameters µn and Σn have to be estimated using historical data on asset returns.

This results in the ”plug-in” estimator of the EU portfolio (1.2) which is a traditional and

simple way to evaluate the portfolio in practice. This estimator is constructed by replacing the

mean vector µn and the covariance matrix Σn with their sample counterparts in (1.2). Okhrin

and Schmid (2006) derive the expectation and the variance of the sample portfolio weights

under the assumption that the asset returns follow a multivariate normal distribution, whereas

Bodnar and Schmid (2011) obtain the exact finite-sample distribution. Recently, Bodnar et al.

(2016) extended these results to the case n < p.

The estimation of the parameters has a negative impact on the performance of the asset
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allocation strategy. This is noted in a series of papers with Merton (1980), Best and Grauer

(1991), Chopra and Ziemba (1993) among others. Several approaches have arisen to reduce the

consequences of the estimation risk. One strand of research opts for the Bayesian framework

and using appropriate priors takes the estimation risk into account already while building the

portfolio. The second strand relies on the shrinkage techniques and is related to the method

exploited in this paper. A straightforward way to improve the properties of the estimators for

µn and Σn is to use the shrinkage approach (see, Jorion (1986), Ledoit and Wolf (2004)). Al-

ternatively, one may apply the shrinkage estimation to the portfolio weights directly. Golosnoy

and Okhrin (2007) consider the multivariate shrinkage estimator by shrinking the portfolios

with and without the riskless asset to an arbitrary static portfolio. A similar technique is

used by Frahm and Memmel (2010), who construct a feasible shrinkage estimator for the GMV

portfolio which dominates the traditional one. At last, Bodnar et al. (2018) suggest a shrink-

age estimator for the GMV portfolio which is feasible even for the singular sample covariance

matrix.

An important issue nowadays is, however, the asset allocation for large portfolios. The sam-

ple estimators work well only in the case when the number of assets p is fixed and substantially

smaller than the sample size n. This case is known as the standard asymptotics in statistics

(see, Le Cam and Lo Yang (2000)). Under this asymptotics the traditional sample estimator

is a consistent estimator for the EU portfolio. But what happens when the dimension p and

the sample size n are comparable of size, say p = 900 and n = 1000? Technically, here we are

in the situation when both the number of assets p and the sample size n tend to infinity. In

the case when p/n tends to some concentration ratio c > 0 this asymptotics is known as high-

dimensional asymptotics or “Kolmogorov” asymptotics (see, e.g., Bai and Silverstein (2010)).

If c is close to one the sample covariance matrix tends to be close to a singular one and when

c > 1 it becomes singular. Thus it is very unstable and tends to under- or overestimate the

true parameters for c smaller but close to 1 (see, Bai and Shi (2011)). As a result, the sample

estimator of the EU portfolio behaves badly in this case both from the theoretical and practical

points of view (see, e.g., El Karoui (2010); Rubio et al. (2012)). For c > 1 the inverse sample

covariance matrix does not exist and the portfolio cannot be constructed in the traditional way.

Taking the above mentioned information into account the aim of the paper is to construct a
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feasible and simple shrinkage estimator of the EU portfolio which is optimal in an asymptotic

sense and is additionally distribution-free. The estimator is developed using the fast growing

branch of probability theory, namely random matrix theory. The main result of this theory is

proved by Marčenko and Pastur (1967) and further extended under very general conditions by

Silverstein (1995). Now it is called Marc̆enko-Pastur equation. Its importance arises in many

areas of science because it shows how the true covariance matrix and its sample estimator are

connected asymptotically. Knowing this we can build suitable estimators for high-dimensional

quantities which depend on Σn. In our case this refers to the shrinkage intensities. Note

however, that the optimal shrinkage intensity depends again on the unknown characteristics of

the asset returns. To overcome this problem we derive consistent estimators for specific func-

tions (quadratic and bilinear forms) of the inverse sample covariance matrix and mean vector.

Furthermore, we succeed to provide consistent estimators for the optimal shrinkage intensities

too. Additional advantage of our approach is the simultaneous treatment of estimation risks

of both the covariance matrix and the mean vector. In particular we contribute to the existent

literature (see, Ledoit and Wolf (2017a)) by weakening the assumption imposed on the mean

vector of the asset returns.

It is worth mentioning that there are clear links between the subject of the paper and clas-

sical methods in statistical signal processing. The data generating process considered in the

paper encompasses a broad range of system configurations described by the general vector chan-

nel model. Moreover, as for the aforementioned mean-variance portfolio optimization problem,

usual linear filtering schemes solving typical signal waveform estimation and detection problems

in signal array processing and wireless communications are based on the estimation of the un-

known population covariance matrix. Famous example is the equivalence of the GMV portfolio

to the so-called Capon or minimum variance distortionless response (MVDR) beamformer (see,

Verdú (1998); Van Trees (2002)).

The rest of paper is organized as follows. In the next section, we construct a shrinkage

estimator for the optimal portfolio weights obtained by shrinking the EU portfolio weights to

an arbitrary target portfolio. The oracle shrinkage intensity and the corresponding feasible

bona-fide estimators for c < 1 and c > 1 are established as well. The derived results are

evaluated in Section 3 in extensive simulation and empirical studies. All proofs are moved to
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the Appendix presented in the supplementary material.

2 Optimal shrinkage estimator of mean-variance portfo-

lio

Let Yn = (y1,y2, ...,yn) be the p× n data matrix which consists of n vectors of the returns on

p ≡ p(n) assets. Let E(yi) = µn and Cov(yi) = Σn for i ∈ 1, ..., n. We assume that p/n →

c ∈ (0,+∞) as n → ∞. This type of limiting behavior is known as ”the large dimensional

asymptotics” or ”Kolmogorov asymptotics”. In this case the traditional sample estimators

perform poorly or even very poorly and tend to over/underestimate the unknown parameters

of the asset returns, e.g., the mean vector and the covariance matrix.

Throughout the paper it is assumed that there exists a p × n random matrix Xn which

consists of independent and identically distributed (i.i.d.) real random variables with zero

mean and unit variance such that

Yn = µn1
′
n + Σ

1
2
nXn . (2.1)

It must be noted that the observation matrix Yn has dependent rows but independent columns.

Broadly speaking, this means that we allow arbitrary cross-sectional correlations of the asset

returns but assume their independence over time. Although this assumption looks quite restric-

tive for financial applications, there exist stronger results from random matrix theory which

show that the model can be extended to (weakly) dependent variables by demanding more

complicated conditions on the elements of Yn (see, Bai and Zhou (2008)) or by controlling the

number of dependent entries as dimension increases (see, Hui and Pan (2010), Friesen et al.

(2013), Wei et al. (2016)). Although our findings can still be used when weak serial dependence

structure is present between the observation vectors, like in the case of uncorrelated GARCH

(generalized autoregressive conditional heteroscedastic) processes or similar ones (see, e.g., the

simulation study in Bodnar et al. (2021a)), we suspect substantial changes in the analytical

expressions stated in the theorems for strongly correlated observation vectors, like in the case

of VAR (vector autoregressive) processes. In such situations, the estimator will depend on the
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autocorrelation matrices of the underlying stochastic model and the theoretical results of the

paper must be adjusted correspondingly. This interesting and important topic is not treated

in the paper and is left for future research.

Nevertheless, if the entries of matrix Yn are weakly dependent or so called m-dependent,

this will only make the proofs more technical, but leave the results unchanged. For that reason

we assume independent in time asset returns only to simplify the proofs of the main theorems

and make them as transparent as possible. The three assumptions which are used throughout

the paper are the following:

(A1) The covariance matrix of the asset returns Σn is a nonrandom p-dimensional positive

definite matrix.

(A2) The elements of the matrix Xn have uniformly bounded 4 + ε moments for some ε > 0.

(A3) The efficient frontier is asymptotically a non-degenerate object, i.e. for its slope parameter

it holds that s = µ′nQnµn > 0 uniformly in p.

All of these regularity assumptions are general enough to fit many real world situations. The

assumption (A1) together with (2.1) are usual for financial and statistical problems and they

impose no strong restrictions. The assumption (A2) is a technical one. Although we demand

the existence of moments of order a bit higher than four, this is solely due to the fact that the

almost sure convergence is employed in the formulation of the theoretical results. In case of the

convergence in probability the existence of exactly the fourth moment is sufficient. Indeed, it can

be easily shown that this extra ε follows from the Borel-Cantelli lemma (see Rubio and Mestre

(2011)[Proof of Lemma 4]). The assumption (A3) has an important financial interpretation. It

ensures that the efficient frontier is a parabola in the mean-variance space as defined in (1.5)

and it does not degenerate into a line parallel to the variance axis (cf., Bodnar and Bodnar

(2010)). In the latter case, the only optimal portfolio is the GMV portfolio (1.4), a special case

of the EU portfolio (1.2) with γ =∞, and its shrinkage estimators have already been developed

in Frahm and Memmel (2010) and Bodnar et al. (2018). The assumption (A3) can be tested

in practice by using Theorem 1 of Bodnar et al. (2021c).
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The sample covariance matrix is given by

Sn =
1

n
Yn(In −

1

n
1n1

′
n)Y′n =

1

n
Σ

1
2
nXn(In −

1

n
1n1

′
n)X′nΣ

1
2
n , (2.2)

where the symbol In stands for the n-dimensional identity matrix. The sample mean vector

becomes

ȳn =
1

n
Yn1n = µn + Σ

1
2
n x̄n with x̄n =

1

n
Xn1n . (2.3)

2.1 Oracle estimator. Case c < 1

In this section we consider the optimal shrinkage estimator for the EU portfolio weights pre-

sented in the introduction by finding the shrinkage parameter α and fixing some target portfolio

b.

The resulting estimator for c < 1 is given by

ŵGSE = αnŵS + (1− αn)b with b′1p = 1 , (2.4)

where the vector ŵS is the sample estimator of the EU portfolio given in (1.2), namely

ŵS =
S−1
n 1p

1′pS
−1
n 1p

+ γ−1Q̂nȳn (2.5)

with

Q̂n = S−1
n −

S−1
n 1p1

′
pS
−1
n

1′pS
−1
n 1p

. (2.6)

The target portfolio b ∈ Rp is a given nonrandom (or random, but independent of Yn) vector

with b′1p = 1.No assumption is imposed on the shrinkage intensity αn which is the object of

our interest.

The aim is now to find the optimal shrinkage intensity for a given nonrandom target portfolio

b. For that reason we introduce a unified mean-variance objective function in order to calibrate
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the shrinkage intensity αn. Consider the following optimization problem

U(β) = ŵ′GSE(αn)µn −
β

2
ŵ′GSE(αn)ΣnŵGSE(αn) −→ max with respect to αn . (2.7)

Obviously, the mean-variance objectives (1.1) and (2.7) coincide if β = γ. Other special values

of β which lead to widely used out-of-sample performance measures we summarize in the

following proposition

Proposition 2.1 (Calibration criteria). The optimization problem (2.7) is equivalent to

(i) maximization of the mean-variance objective (1.1) if β = γ,

(ii) minimization of the out-of-sample variance ŵ′GSE(αn)ΣnŵGSE(αn) if β →∞,

The proof of Proposition 2.1 follows from the fact that all optimal mean-variance portfolios

can be obtained by maximizing the expected quadratic utility function with a specific risk

aversion coefficient. As a result, the global minimum variance portfolio is a partial solution of

the optimization problem (1.1). The presentation of the calibration criterion (2.7) provides an

elegant way how to find the optimal shrinkage intensity αn = αn(β) in a unified manner for

several popular out-of-sample loss functions and compare them just by changing the parameter

β. In Section 2.3, we provide consistent estimates of these quantities under high-dimensional

asymptotic regime p/n→ c > 0 for (p, n)→∞.

It is worth mentioning that the coefficient β has an interesting interpretation from statistical

point of view. While coefficient γ controls for investor attitude towards financial risk (”in-

sample risk”), the parameter β stays for controlling the estimation risk (”out-of-sample risk”).

This implies that even the mean-variance investor with arbitrary γ > 0 could choose β → ∞

if she/he is interested, for example, in the minimization of the out-of-sample variance of the

estimated portfolio.

The unified calibration criterion (2.7) can be rewritten as

U(β) = αnŵ
′
Sµn + (1− αn)b′µn −

β

2

(
α2
nŵ
′
SΣnŵS + 2αn(1− αn)b′ΣnŵS + (1− αn)2b′Σnb

)
→ max

with respect to αn . (2.8)
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Next, taking the derivative of U with respect to αn and setting it equal to zero we get

∂U

∂αn
= (ŵS − b)′µn − β

(
αnŵ

′
SΣnŵS + (1− 2αn)b′ΣnŵS − (1− αn)b′Σnb

) !
= 0 .

From the last equation it is easy to find the optimal shrinkage intensity α∗n given by

α∗n = β−1 (ŵS − b)′(µn − βΣnb)

(ŵS − b)′Σn(ŵS − b)
. (2.9)

To ensure that α∗n is the unique maximizer of (2.7) the second derivative of U must be negative,

which is always fulfilled. Indeed, it follows from the positive definitiveness of the matrix Σn,

namely

∂2U

∂α2
n

= −β(ŵS − b)′Σn(ŵS − b) < 0 . (2.10)

In the next theorem we derive the asymptotic properties of the optimal shrinkage intensity

α∗n under large-dimensional asymptotics.

Theorem 2.1. Assume (A1)-(A3). Then it holds that

|α∗n − α∗|
a.s.−→ 0 for

p

n
→ c ∈ (0, 1) as n→∞

with

α∗ = β−1

(RGMV −Rb)

(
1 +

β/γ

1− c

)
+ β(Vb − VGMV ) +

γ−1

1− c
s

1

1− c
VGMV − 2

(
VGMV + γ−1

1−c(Rb −RGMV )
)

+ γ−2

(
s

(1− c)3
+

c

(1− c)3

)
+ Vb

,

(2.11)

where the parameters of the efficient frontier RGMV , VGMV and s are given in (1.6) and (1.7),

respectively. The quantities Rb = b′µn and Vb = b′Σnb denote the expected return and the

variance of the target portfolio b.

Next, we assess the performance of the classical estimator of the portfolio weights ŵS and

the optimal shrinkage weights ŵGSE. As a measure of performance we consider the relative
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increase in the utility of the portfolio return compared to the portfolio based on true parameters

of asset returns. The results are summarized in the following corollary.

Corollary 2.1. (a) Let UEU and US be the mean-variance objectives in (1.1) for the true EU

portfolio and its traditional estimator. Then under the assumptions of Theorem 2.1, the relative

loss of the traditional estimator of the EU portfolio is given by

LS =
UEU − US
UEU

a.s.−→
γ
2

(
1

1−c − 1
)
· VGMV + γ−1

(
1
2
− 1

(1−c) + 1
2(1−c)3

)
· s+ 1

2γ
· c

(1−c)3

RGMV + 1
2
γ−1 · s− γ

2
VGMV

(2.12)

for p
n
→ c ∈ (0, 1) as n→∞.

(b) Let UGSE be the expected quadratic utility for optimal shrinkage estimator of the EU

portfolio. Under the assumptions of Theorem 2.1, the relative loss of the optimal shrinkage

estimator is given by

LGSE =
UEU − UGSE

UEU

a.s.−→ (α∗)2LS+(1−α∗)2Lb+α∗(1−α∗) c

1− c
Rb −RGMV − γ−1s

UEU
(2.13)

for p
n
→ c ∈ (0, 1) as n → ∞ with Lb = (UEU − Ub)/UEU is the relative loss in the expected

utility Ub of the target portfolio b.

2.2 Oracle estimator. Case c > 1.

Here, similarly as in Bodnar et al. (2018), we will use the generalized inverse of the sample

covariance matrix Sn. Particularly, we use the following generalized inverse of the sample

covariance matrix Sn

S∗n = Σ−1/2
n

(
1

n
XnX

′
n − x̄nx̄

′
n

)+

Σ−1/2
n , (2.14)

where ′+′ denotes the Moore-Penrose inverse. It can be shown that S∗n is a generalized inverse of

Sn satisfying S∗nSnS
∗
n = S∗n and SnS

∗
nSn = Sn. However, S∗n is not exactly equal to the Moore-

Penrose inverse because it does not satisfy the conditions (S∗nSn)′ = S∗nSn and (SnS
∗
n)′ = SnS

∗
n.

In case c < 1 the generalized inverse S∗n coincides with the usual inverse S−1
n . Moreover, if

Σn is a multiple of identity matrix, then S∗n is equal to the Moore-Penrose inverse S+
n . In this
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section, S∗n is used only to determine an oracle estimator for the weights of the EU portfolio.

The bona fide estimator is constructed in the next section.

Thus, the oracle estimator for c > 1 is given by

ŵ∗GSE = α+
n ŵS∗ + (1− α+

n )b with b′1p = 1, (2.15)

where the vector ŵS∗ is the sample estimator of the EU portfolio given in (1.2), namely

ŵS∗ =
S∗n1p

1′pS
∗
n1p

+ γ−1Q̂∗nȳn (2.16)

with

Q̂∗n = S∗n −
S∗n1p1

′
pS
∗
n

1′pS
∗
n1p

. (2.17)

Again, the shrinkage intensity α+
n is the object of our interest. In order to save place we skip

the optimization procedure for α+
n as it is only slightly different from the case c < 1. The

optimal shrinkage intensity α+
n in case c > 1 is given by

α+
n = β−1 (ŵS∗ − b)′(µn − βΣnb)

(ŵS∗ − b)′Σn(ŵS∗ − b)
. (2.18)

In the next theorem we find the asymptotic equivalent quantity for α+
n in the case p/n →

c ∈ (1,+∞) as n→∞.

Theorem 2.2. Assume (A1)-(A3). Then it holds that

∣∣α+
n − α+

∣∣ a.s.−→ 0 for
p

n
→ c ∈ (1,+∞) as n→∞

with

α+ = β−1

(RGMV −Rb)

(
1 +

β/γ

c(c− 1)

)
+ β(Vb − VGMV ) +

γ−1

c(c− 1)
s

c2

(c− 1)
VGMV − 2

(
VGMV + γ−1

c(c−1)
(Rb −RGMV )

)
+

γ−2

(c− 1)3
(s+ c2) + Vb

, (2.19)

where RGMV , VGMV , Rb, Vb, and s are defined in Theorem 2.1.
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Next, as for the case c < 1, we provide here the expression for the relative losses.

Corollary 2.2. (a) Let UEU and US be the mean-variance objectives in (1.1) for the true EU

portfolio and its traditional estimator. Then under the assumptions of Theorem 2.2, the relative

loss of the traditional estimator of the EU portfolio is given by

LS =
UEU − US
UEU

a.s.−→
γ
2

(
c2

c−1
− 1
)
· VGMV + γ−1

(
1
2
− 1

c(c−1)
+ 1

2(c−1)3

)
· s+ 1

2γ
· c2

(c−1)3

RGMV + 1
2
γ−1 · s− γ

2
VGMV

(2.20)

for p
n
→ c ∈ (1,+∞) as n→∞.

(b) Let UGSE be the expected quadratic utility for the optimal shrinkage estimator of the EU

portfolio. Under the assumptions of Theorem 2.2, the relative loss of the optimal shrinkage

estimator is given by

LGSE =
UEU − UGSE

UEU

a.s.−→ (α+)2LS+(1−α+)2Lb+α+(1−α+)
1 + c− c2

c(c− 1)

Rb −RGMV − γ−1s

UEU

(2.21)

for p
n
→ c ∈ (1,+∞) as n→∞ with Lb = (UEU − Ub)/UEU is the relative loss in the expected

utility Ub of the target portfolio b.

2.3 Estimation of unknown parameters. Bona fide estimator

The limiting shrinkage intensities α∗ and α+ are not feasible in practice, because they depend

on RGMV , VGMV , s, Rb, and Vb which are unknown quantities. In this subsection we derive

consistent estimators for α∗ and α+. These results are summarized in two propositions dealing

with the cases c ∈ (0, 1) and c ∈ (1,∞), respectively. The statements follow directly from the

proofs of Theorems 2.1 and 2.2 that are provided in the supplement of the paper.

Proposition 2.2. The consistent estimator for the limiting optimal shrinkage intensity α∗

under large dimensional asymptotics p/n→ c < 1 as n→∞ is given by

α̂∗ = β−1

(R̂c − R̂b)

(
1 +

β/γ

1− p/n

)
+ β(V̂b − V̂c) +

γ−1

1− p/n
ŝc

1

1− p/n
V̂c − 2

(
V̂c + γ−1

1−p/n(R̂b − R̂c)
)

+ γ−2

(
ŝc

(1− p/n)3
+

p/n

(1− p/n)3

)
+ V̂b

(2.22)
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where R̂c, V̂c, ŝc, R̂b and V̂b are given by

R̂c = R̂GMV (2.23)

V̂c =
1

1− p/n
V̂GMV (2.24)

ŝc = (1− p/n)ŝ− p/n (2.25)

R̂b = b′ȳn (2.26)

V̂b = b′Snb , (2.27)

which are also ratio consistent estimators for RGMV , VGMV , s, Rb, and Vb, respectively, while

R̂GMV , V̂GMV and ŝ are traditional plug-in estimators.

Using Proposition 2.2 we can immediately construct a bona-fide estimator for the expected

utility portfolio weights in case c < 1. It holds that

ŵBFGSE = α̂∗
(

S−1
n 1p

1′pS
−1
n 1p

+ γ−1Q̂nȳn

)
+ (1− α̂∗)b (2.28)

with α̂∗ given in Proposition 2.2. The expression (2.28) is the optimal shrinkage estimator for

a given target portfolio b in the sense that the shrinkage intensity α̂∗ tends almost surely to its

optimal value α∗ for p/n→ c ∈ (0, 1) as n→∞.

The situation is more complex in case c > 1. Here we can present only oracle estimators for

the unknown quantities RGMV , VGMV and s.

Proposition 2.3. The consistent estimator for the limiting optimal shrinkage intensity α∗

under large dimensional asymptotics p/n→ c > 1 as n→∞ is given by

α̂o = β−1

(R̂o
c − R̂b)

(
1 +

β/γ

p/n(p/n− 1)

)
+ β(V̂b − V̂ o

c ) +
γ−1

p/n(p/n− 1)
ŝoc

(p/n)2

p/n− 1
V̂ o
c − 2

(
V̂ o
c + γ−1

p/n(p/n−1)
(R̂b − R̂o

c)
)

+
γ−2

(p/n− 1)3
(ŝoc + (p/n)2) + V̂b

, (2.29)
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where R̂o
c, V̂

o
c , ŝoc are given by

R̂o
c = R̂GMV

V̂ o
c =

1

p/n(p/n− 1)
V̂GMV

ŝoc = p/n[(p/n− 1)ŝ− 1] ,

where R̂GMV , V̂GMV and ŝ are the traditional plug-in estimators based on the generalized inverse

S∗n from (2.14) and R̂b and V̂b are given in (2.26) and (2.27), respectively.

Note that α̂o from Proposition 2.3 is not the bona fide estimator for the unknown shrinkage

intensity α+, since the matrix S∗n depends on the unknown quantities. Thus, we propose a

reasonable approximation using the application of the Moore-Penrose inverse S+
n . As a result,

the bona fide estimators of the quantities RGMV , VGMV and s in case c > 1 are approximated

by

R̂+
c ≈

ȳ′nS
+
n1p

1′pS
+
n1p

, V̂ +
c ≈

1

p/n(p/n− 1)

1

1′pS
+
n1p

, ŝ+
c ≈ p/n[(p/n− 1)ȳ′nQ

+
n ȳn − 1] , (2.30)

respectively. The application of (2.30) leads to the bona fide optimal shrinkage estimator of

the EU portfolio in case c > 1 expressed as

ŵ+
BFGSE = α̂+

(
S+
n1p

1′pS
+
n1p

+ γ−1Q̂+
n ȳn

)
+ (1− α̂+)bn , (2.31)

with

α̂+ = β−1

(R̂+
c − R̂b)

(
1 +

β/γ

p/n(p/n− 1)

)
+ β(V̂b − V̂ +

c ) +
γ−1

p/n(p/n− 1)
ŝ+
c

(p/n)2

p/n− 1
V̂ +
c − 2

(
V̂ +
c + γ−1

p/n(p/n−1)
(R̂b − R̂+

c )
)

+
γ−2

(p/n− 1)3
(ŝ+
c + (p/n)2) + V̂b

,

(2.32)

where R̂b and V̂b are given in (2.26) and (2.27), respectively; Q+
n = S+

n −
S+
n11′S+

n

1′S+
n1

and S+
n is

the Moore-Penrose pseudo-inverse of the sample covariance matrix Sn.

Remark 1. It is easy to verify that if Σn = σ2Ip for any σ > 0 the considered approximations

in (2.30) become the exact ones. Next, we investigate the quality of this approximation in
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general case without imposing restrictions on Σn. This issue was studied for other quantities

involving S∗n and S+
n in detail by Bodnar and Parolya (2020), who compare the limiting spectral

distributions of S∗n and S+
n by deriving the limits for their corresponding Stieltjes transforms.

It is concluded that the two inverses behave completely different in general. However, when

the concentration ratio c approaches 1, then the limiting spectral distributions of both inverses

S∗n and S+
n coincide independently of the structure of Σn. This in turn means that one should

expect a good approximation quality when c is not far away from 1.

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

c

α̂+

S*

MP

Figure 1: Estimated optimal shrinkage intensities for S∗n and S+
n (MP) as function of concen-

tration ratio c > 1 and dimension p = 300.
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Figure 2: Estimated optimal shrinkage intensities for S∗n and S+
n (MP) as function of dimension

p for c = 1.5 (left) and c = 2 (right).

In Figure 1 we provide a comparison between the optimal shrinkage intensities computed

using different types of generalized inverses, namely Moore-Penrose inverse S+
n and the reflexive

inverse S∗n from (2.14). The optimal shrinkage intensity is calculated by (2.32) in the case of S+
n
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and by using (2.32) where R̂+
c , V̂ +

c , and ŝ+
c are replaced by R̂o

c , V̂
o
c , and ŝoc from Proposition 2.3

in the case of S∗n. The design of the simulation study is exactly the same as the one described

in Section 3.1.

We observe that the two optimal shrinkage intensities are quite identical till the breaking

point c = 2. For c > 2 the Moore-Penrose approximation is not reliable anymore. We observe

a similar behaviour for other structures of the covariance matric Σn and the mean vector µn,

which indicates that the results are robust and justifies the theoretical findings of Bodnar and

Parolya (2020) for the optimal shrinkage intensity given in (2.32). Figure 2 provides further

numerical results related to the comparison of the two optimal shrinkage intensities. Here, we

set c = 1.5 and c = 2 and study the robustness of the results in Figure 1 to changes in the

dimension p from 50 to 300. We see that the shrinkage intensities are very similar uniformly

over p, independently of the chosen value of c.

Summarizing the above findings, we can recommend the application of the Moore-Penrose

approximation for c ≤ 2, but there is no guarantee for a good performance for c > 2. Also,

we observe that the Moore-Penrose inverse gets closer to S∗n when the covariance matrix Σn

is sparse. In the empirical study of Section 3.2 we consider the values of the concentration

ratio c bounded by 2. The empirical results are in line with the discussion provided in this

remark and, thus, c ≈ 2 seems to be a breaking point for the approximation indeed. More

theoretical treatment of this interesting phenomenon is of an independent research interest and

is not within the scope of this paper.

Remark 2. Seemingly, we have handled two cases c < 1 and c > 1 (for c ≤ 2), but not c = 1.

The case c = 1 is not easy to manage because the sample covariance matrix is theoretically

invertible for c equal or close to one but computationally very unstable. The reason is the

smallest eigenvalue of Sn which is numerically very close to zero. Indeed, it is well-known that

the smallest eigenvalue of Sn is of order (1−
√
p/n)2, which converges to zero if p/n→ 1 and

all the estimators explode (see, e.g., Bai and Yin (1993)).

In order to overcome the difficulty in a small neighborhood of c = 1 one has a few options

to proceed:

Tikhonov (ridge) One of the possibilities, which has also been used in the simulation and

empirical studies of Section 3, is the Tikhonov (ridge) approximation of the Moore-Penrose
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inverse. Indeed, one can show by the eigenvalue decomposition that

lim
δ→0+

(Sn + δI)−1Sn(Sn + δI)−1 = S+
n (2.33)

if c > 1. For c < 1 the limit in (2.33) trivially exists and equals S−1
n . The advantage of

the representation (2.33) is twofold. First, one has an elegant formula which incorporates

both cases c < 1 and c > 1, and, secondly, one stabilizes the behaviour of the inverse

matrix near singularity, i.e., near c = 1. The only question arises how to choose δ = o(1)

in practice, but it seems that taking δ = 1/p works well in many applications. Thus, we

will employ this adjustment in the empirical study in order to have a balanced and stable

estimator when c is close to 1 from both sides. Although this procedure smoothes out the

estimator of the precision matrix, it does not resolve the issue when c is large, i.e., c > 2.

Moore-Penrose Yet another option would be to derive the explicit limit of (2.18) when the

Moore-Penrose inverse matrix S+
n is directly used in (2.15)-(2.17). This procedure is

highly nontrivial because S+
n depends in a nonlinear way on the matrix Σn and this leads

to nonlinear integral equations in the high-dimensional setting. The problem becomes

even more involved when we consider quadratic and bilinear forms involving the Moore-

Penrose inverse. Moreover, the case of centered sample covariance matrix (the sample

mean is subtracted) makes the expressions tedious and confusing (see, e.g., Pan (2014)).

Thus, the fact that the optimal shrinkage intensity depends on the mean vector µn and

the covariance matrix Σn only via the three parameters of the efficient frontier will be lost

and no closed-form formulas can be derived for Σn 6= σ2I. Nevertheless, we are working

on this problem in a separate project and are studying the properties of the pseudo-inverse

S+
n in detail, especially the limiting behaviour of its eigenvectors.

Double-shrinkage A more intuitive option is to apply a double-shrinkage approach, which

incorporates both the shrinkage of the estimated portfolio weights and the regularization

of the sample covariance matrix. Namely, first we shrink (regularize) the sample covari-

ance matrix and then we shrink the estimated portfolio weights built upon the regularized

sample covariance matrix. This could be done by taking either the matrix Sn + δI for
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some δ > 0 or the one from (2.33) instead of Sn. Then the limiting shrinkage intensity

α will depend on δ and one needs to optimize the objective function (2.7) over δ as well.

Unfortunately, no closed-form expression for the optimal shrinkage intensity is available in

this case and the theoretical results presented in Section 2 must be changed accordingly.

Actually, this procedure would generalize all of the above mentioned ideas (including the

ones presented in this paper) and would provide a data-driven regularization parameter

δ. This interesting and important topic is left for future research.

3 Simulation and empirical studies

In this section we illustrate the performance and the advantages of the derived results using

simulated and real data. Particularly we address the estimation precision of the shrinkage

coefficient and compare the bona-fide estimator with the existent approaches.

3.1 Simulation study

For simulation purposes we select the structure of the spectrum of the covariance matrix and of

the mean vector to make it consistent with the characteristics of the empirical data. Particularly,

for each dimension p we select the expected returns equally spread on the interval -0.3 to 0.3,

capturing a typical spectrum of daily returns measured in percent. The covariance matrix has a

strong impact on the properties of the shrinkage intensity and for this reason we consider several

structures of its spectra. Replicating the properties of empirical data we generate covariance

matrices with eigenvalues satisfying the equation λi = 0.1eδc·(i−1)/p for i = 1, ..., p (see, e.g.,

Bodnar et al. (2021b) for implementation). Thus the smallest eigenvalue is 0.1 and by selecting

appropriate values for c we control the largest eigenvalue and thus the condition index of the

covariance matrix. Large condition indices imply ill-conditioned covariance matrices, with the

eigenvalues very sensitive to changes of the elements. We choose δ to attain the condition

indices of 150, 1000 and 8000. The target portfolio weights are set equal to the weights of

the equally weighted portfolio, i.e. bi = 1/p for i = 1, ..., p. The calibration criteria used to

determine the optimal shrinkage intensities are selected as defined in Proposition 2.1.

First, we assess the general behavior of the oracle shrinkage intensities as functions of c.

19



0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

c

α

CI=150
CI=1000
CI=8000

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

c

α

CI=150
CI=1000
CI=8000

Figure 3: The asymptotic optimal shrinkage intensity as a function of c for the calibration
criteria (i)-(ii) from Proposition 2.1 (left to right).

The oracle shrinkage intensities are computed using expressions in (2.11) and (2.19) for the

cases c < 1 and c > 1, respectively. The parameters are computed using the true mean vector

and the true covariance matrix. The results are illustrated for different condition indices and

different calibration criteria in Figure 3. We observe that in all cases the shrinkage intensity

falls to zero as c→ 1− and increases with c for c > 1. Thus if c is small the shrinkage estimator

puts higher weight on the traditional estimator of the portfolio weights, due to lower estimation

risk. If c tends to 1 the system becomes unstable because of nearly zero eigenvalues. In this

case the portfolio weights collapse to the target portfolio weights. With c further increasing

the shrinkage intensity increases too, implying that the pseudo-inverse covariance matrix can

be evaluated in a proper way. The fraction of the sample EU portfolio increases with c in this

case. It is worth mentioning that at some high level of c the information content in the data

becomes less relevant and the shrinkage intensity starts to decrease. Note, however, that even

for p much larger than n, there is still valuable information in the sample covariance matrix

leading to relatively high values of α+.

Regarding the calibration criteria we observe that if the calibration criteria coincides with the

expected quadratic utility (i.e. β = γ), then the limit shrinkage intensities are naturally higher,

compared to those minimizing the out-of-sample variance. The variance of portfolio return for

the equally weighted portfolio tends to be lower than that of the sample EU portfolio. Thus

the shrinkage intensity weights the equally weighted portfolio more heavily. It is important to

stress that the latter calibration criterion is more sensitive to the condition index.
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Figure 4: The relative losses for the portfolios based on the optimal shrinkage estimator, the
traditional estimator and the equally weighted portfolio as a function of c for the calibration
criteria (i)-(ii) from Proposition 2.1 (left to right). The dimension is set to p = 100 and the
condition index is set to 1000.

In a similar fashion we analyze the relative losses of portfolios based on the traditional

estimator and the oracle shrinkage estimator. As a benchmark, we take the equally weighted

portfolio which is also the target portfolio of the shrinkage estimator. The relative losses as

functions of c for fixed p = 100 are plotted in Figure 4. For c < 1 the losses of the traditional

estimator show explosive behavior and are comparable to the shrinkage-based estimators only

for very small values of c. Thus the traditional estimator is reliable only if the sample size

is considerably larger than the portfolio dimension. The performance of the shrinkage-based

estimator is relatively stable over the whole range of c and it clearly dominates both the

traditional and the equally weighted benchmark in almost all of the considered cases. The

losses are increasing for c < 1 and attain the loss of the equally weighted portfolio around

c = 1. This is consistent with the results in Figure 3. For c > 1 the losses decrease and remain

stable for c > 3.

The behavior of losses as functions of the dimension p is illustrated in Figure 5. For space

reasons we provide here only the results for β = γ, i.e., for the first calibration criterion. The

fraction c is set to 0.2 (top left), 0.5 (top right), 0.8 and 2, while the condition index equals 1000.

From financial perspective it is important to note that the traditional estimator outperforms

the equally weighted portfolio only for small values of c (in the particular setup for c = 0.2),

thus when the classical estimators are stable and robust. This is consistent with the evidence

from Figure 4. For c = 0.8 the losses of the traditional estimator increase dramatically and
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Figure 5: The relative losses for the portfolios based in the optimal shrinkage estimator, the
traditional estimator and the equally weighted portfolio as a function of the dimension p for
c = 0.2 (top left)), 0.5 (top right), 0.8 (bottom left), 2 (bottom right). The condition index
is set to 1000 and the mean-variance calibration criteria is used.

they are always considerably larger than the losses of two other considered trading strategies.

As before the shrinkage-based estimator clearly beats both the traditional EU portfolio and

the benchmark portfolio for all c values. Furthermore, the performance of the shrinkage-based

portfolio is stable for a wide range of dimensions, particularly for large values of p.

3.2 Empirical study

The data used in this study cover daily returns on 395 S&P500 constituents available for the

whole period from 01.01.2000 till 23.03.2018. The investor allocates his/her wealth to the con-

stituents with daily reallocation. We address several issues in this empirical study. First, we

wish to verify the robustness of the established theoretical results for empirical data. Thus

our aim is to go beyond the common practice of considering a single portfolio, but to generate

a large set of different portfolios from the universe of the S&P 500 constituents. Second, we
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assess the economic performance of the dynamic portfolio strategies stemming from the gener-

alized shrinkage estimator for portfolio weights. Thus we consider several popular performance

measures and test the significance in the differences between the alternative strategies. Third,

the choice of the target portfolio can clearly have a substantial impact on the empirical results.

For this reason, we consider several popular choices of the target. Finally, we wish to assess

the dynamics of the estimated shrinkage intensities and relate their behavior to the market

conditions. Next, we provide details on the setup of the empirical study.

To address the applicability of the suggested estimator in high dimensions we set p = 300

which is larger than a typical portfolio size in the literature. For each parameter constellation

we draw randomly 1000 sets of assets from the available constituents of the S&P500 index. This

guarantees a robust assessment of the empirical results. For every set of the assets we build

portfolios on each of the last 1000 trading days and compute the corresponding realized returns.

Afterwards, we compute the certainty equivalent (CE), Sharpe ratio (SR), Value-at-Risk (VaR)

and Expected shortfall (ES) as performance measures for each path of returns and every random

portfolio. To avoid potentially skewed inferences due to outliers or asymmetries we report the

10%-trimmed means and the medians of the CE and SR over the 1000 random portfolios. The

VaR and ES are computed as lower empirical quantiles at 5% and 1% significance levels and

are averaged over the portfolios either. For simplicity we neglect the transaction costs in the

below discussion.

Target portfolios

The target portfolio weights are the key component of the shrinkage estimator. We consider

three different targets: the equally weighted portfolio and two modified global minimum-

variance portfolios. The equally weighted portfolio arises if we assume that all asset returns have

equal expectations, equal variances and equal correlations. The covariance matrix for the first

global-minimum variance portfolio assumes different variances, but equal correlations. Thus al-

lows for more heterogeneity compared to the equally weighted portfolio. The single correlation

is computed as the average correlation for all asset pairs. The corresponding target is com-

puted by bec = Σ̂
−1

ec 1/1′Σ̂
−1

ec 1, where Σ̂ec = diag{Σ̂}1/2Recdiag{Σ̂}1/2 with diag{Σ̂} being the

diagonal of the sample covariance matrix of returns. For the second global minimum-variance
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portfolio we compute the covariance matrix of returns using the three-factor Fama-French

model, i.e.

Σ̂ff = B̂Σ̂fB̂
′ + diag{σ̂2

εεεi
}i=1,...,p,

where B̂ is the matrix of estimated parameters, Σ̂f is the covariance matrix of the factors and

diag{σ̂2
εεε,i}i=1,...,p is the diagonal matrix of residual variances. The resulting target vector of

weights is defined as bff = Σ̂
−1

ff 1/1′Σ̂
−1

ff 1. The latter two portfolios reduce the variation of

portfolios by looking at the variance but not the mean of the underlying assets. Note, that bec

and bff are stochastic by construction, since they are computed using sample characteristics

of the asset returns. Thus the theoretical results in these cases are valid only conditionally on

the target vector.

Benchmark models

To guarantee a fair assessment of the suggested estimator we consider two popular approaches

as benchmarks. The first approach is based on the non-linear shrinkage estimator of the covari-

ance matrix suggested by Ledoit and Wolf (2012, 2017a). The estimator relies on the spectral

decomposition of the sample covariance matrix Σ̂ = UDU′, but replaces the original eigenval-

ues by eigenvalues D∗ that minimize the Frobenius norm D∗ = argminD||Σ − UDU′||. The

solution can be approximated using a generalized version of the Marčenko-Pastur equation.

First, we consider a numerical implementation of this method proposed in Ledoit and Wolf

(2017b) (called LWQuEST ). The direct numerical computation of the eigenvalues appears to

be very demanding. Recently, Ledoit and Wolf (2020) suggest an analytic expression of the non-

linear shrinkage estimator that uses a nonparametric estimator of the spectral density (called

LWAnalytic). In order to determine the optimal portfolio weights we use these two approaches

as a plug-in estimator of the covariance matrix. Note that in contrary to our approach, these

methods shrink a parameter of the distribution of asset returns and not the portfolio weights,

which are the key object of interest in asset allocation problems. The second benchmark is

an extension of the three-fund portfolio of Kan and Zhou (2007). The optimal portfolio is a

linear combination of the target portfolio, the sample global minimum-variance portfolio and
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the portfolio that maximizes the Sharpe ratio3. The weights of this linear combination are

determined by maximizing the expected out-of-sample utility. Note that Kan and Zhou (2007)

derive the optimal portfolios assuming a finite portfolio with p < n. The extension of these

results to the case p/n→ c goes beyond the scope of this paper. For this reason we apply this

estimator only for the case p < n. For both benchmarks we estimate the expected returns by

the historical mean returns, as it is frequently done in practice.

Empirical results

The results of the empirical study are summarized in Tables 1 and 2 containing the results for

mean-variance (β = γ) and minimum variance (β = ∞) calibration criteria, respectively. The

top blocks of the table provides results for c = 0.2, while the following blocks correspond to

c =0.5, 0.8, and 2. At the beginning of each block we summarize the performance measures for

the traditional estimator and the estimator based on the nonlinear-shrinkage of Ledoit and Wolf

(2012). These estimators do not depend on the target portfolio weights. Further we provide the

results for the strategies involving the target, i.e. the suggested bona-fide shrinkage technique,

the target portfolio itself and the extension of the estimator of Kan and Zhou (2007). This

is done for equally weighted portfolio, equal correlation portfolio and Fama-French portfolio

as targets. Furthermore, we include results for the traditional portfolio and for the bona-fide

shrinkage portfolio, where the sample covariance matrix is replaced by its regularized version

based on the Tikhonov (ridge) approximation (2.33) with δ = 1/p. The corresponding strategies

are called trad ridge and bona fide ridge, respectively.

First, we consider the results for the mean-variance calibration in Table 1. If the dimension

is low relatively to the sample size, namely c = 0.2, then the traditional estimator shows a good

and robust performance. According to virtually all performance measures it is better than

any estimator based on equal correlation and Fama-French targets. The Ledoit-Wolf estimator

is better only in terms of the Sharpe ratio. The dominant strategy for this value of c is the

Kan-Zhou estimator with the equally weighted target which is closely followed by the suggested

bona-fide shrinkage portfolio. The ranking of the targets and the estimators slightly changes if

we increase c to 0.5. As expected the traditional estimators becomes worse and is dominated by

3We thank Raymond Kan for providing these results in personal communication.
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CE SR VaR ES
average median average median α = 0.05 α = 0.01 α = 0.05 α = 0.01

c
=

0
.2

trad -0.84840 -0.84795 0.10033 0.10041 -0.88181 -1.43362 -1.27802 -2.01774
trad ridge -0.85096 -0.85028 0.10066 0.1006 -0.88193 -1.43891 -1.28130 -2.02313
LWQuEST -0.96539 -0.96509 0.10310 0.10288 -0.93884 -1.52905 -1.35071 -2.10094

LWAnalytical -0.79142 -0.79179 0.10141 0.10151 -0.8544 -1.37885 -1.24301 -1.97136
equally weighted target

bona fide -0.80701 -0.80578 0.10125 0.10137 -0.85637 -1.41141 -1.25832 -2.00392
bona fide ridge -0.80303 -0.80305 0.10124 0.10136 -0.85485 -1.39997 -1.25366 -1.99908

target -1.47973 -1.47978 0.05178 0.05183 -1.35819 -2.17993 -1.90944 -2.91308
KZ -0.73868 -0.73831 0.10204 0.10195 -0.81524 -1.33615 -1.20824 -1.94859

equal correlation target
bona fide -0.86149 -0.86029 0.09785 0.09803 -0.90268 -1.48278 -1.30966 -2.06512

bona fide ridge -0.86011 -0.85989 0.09773 0.09788 -0.90141 -1.48209 -1.30729 -2.06240
target -2.13972 -2.14348 0.05303 0.05291 -1.46652 -2.71956 -2.21071 -3.41674

KZ -0.93578 -0.93437 0.09170 0.09159 -0.94118 -1.63936 -1.40500 -2.14364
Fama-French target

bona fide -0.85595 -0.85551 0.09504 0.09433 -0.89107 -1.45683 -1.29601 -2.04557
bona fide ridge -0.8524 -0.85234 0.09552 0.09556 -0.88859 -1.45891 -1.29374 -2.04100

target -2.27656 -2.27951 0.03522 0.03529 -1.44902 -2.83263 -2.21467 -3.40873
KZ -0.89766 -0.89748 0.08611 0.08562 -0.89600 -1.58344 -1.34739 -2.09784

c
=

0
.5

trad -1.56794 -1.56702 0.04112 0.04158 -1.25759 -1.97710 -1.74511 -2.60700
trad ridge -1.47446 -1.47309 0.04468 0.04461 -1.2158 -1.90656 -1.68947 -2.53159
LWQuEST -3.28708 -3.28730 0.02557 0.02559 -1.85906 -2.93786 -2.56534 -3.68434

LWAnalytical -0.86718 -0.86687 0.06531 0.06548 -0.89736 -1.50835 -1.31493 -2.09438
equally weighted target

bona fide -1.02898 -1.02829 0.05067 0.05098 -1.00189 -1.67912 -1.458300 -2.30347
bona fide ridge -0.99158 -0.9911 0.05342 0.05347 -0.98209 -1.65375 -1.43523 -2.27809

target -1.47854 -1.47831 0.05167 0.05170 -1.35780 -2.18133 -1.90904 -2.91312
KZ -0.93245 -0.93159 0.05903 0.05973 -0.95118 -1.50578 -1.34866 -2.10714

equal correlation target
bona fide -1.18004 -1.17898 0.05198 0.05215 -1.10187 -1.82427 -1.59237 -2.44481

bona fide ridge -1.15576 -1.15526 0.05312 0.05308 -1.09212 -1.81848 -1.58300 -2.43487
target -1.81699 -1.81663 0.04036 0.04029 -1.40816 -2.42265 -2.10357 -3.33301

KZ -1.01288 -1.01141 0.05760 0.05770 -1.01531 -1.57685 -1.41783 -2.14790
Fama-French target

bona fide -1.22574 -1.22594 0.04963 0.04973 -1.11090 -1.75940 -1.57373 -2.42489
bona fide ridge -1.19113 -1.19039 0.05083 0.05064 -1.09567 -1.73454 -1.55387 -2.40117

target -1.93351 -1.9336 0.04278 0.04265 -1.40284 -2.48907 -1.99845 -2.92676
KZ -1.01496 -1.01416 0.05761 0.05782 -1.00263 -1.55246 -1.40187 -2.16018

c
=

0
.8

trad -11.10781 -11.07733 0.04031 0.03992 -3.35917 -5.40548 -4.66218 -6.70938
trad ridge -5.60256 -5.59981 0.04942 0.04921 -2.40138 -3.8217 -3.29866 -4.71741
LWQuEST -18.80892 -18.81717 0.03520 0.03521 -4.51683 -6.92530 -6.05810 -8.35046

LWAnalytical -0.98453 -0.98438 0.08988 0.08999 -0.98071 -1.61591 -1.42389 -2.24346
equally weighted target

bona fide -1.40577 -1.40584 0.05118 0.05134 -1.29895 -2.07527 1.83362 -2.79312
bona fide ridge -1.31635 -1.31596 0.05238 0.05235 -1.28390 -2.02482 -1.79171 -2.74021

target -1.48023 -1.47918 0.05170 0.05171 -1.35865 -2.18186 -1.91045 -2.9148
KZ -2.03472 -2.03185 0.06359 0.06288 -1.40796 -2.25191 -1.97686 -2.94533

equal correlation target
bona fide -1.60399 -1.60241 0.04978 0.04984 -1.29237 -2.39802 -1.98752 -3.17541

bona fide ridge -1.55829 -1.55768 0.05013 0.05005 -1.26800 -2.35739 -1.96495 -3.16411
target -1.68942 -1.68949 0.04453 0.04452 -1.3124 -2.45543 -2.05351 -3.35801

KZ -1.96623 -1.96299 0.06550 0.06522 -1.37667 -2.20379 -1.93809 -2.91761
Fama-French target

bona fide -1.79593 -1.79528 0.04740 0.04760 -1.39084 -2.26699 -1.94795 -2.84830
bona fide ridge -1.69800 -1.6972 0.04796 0.04793 -1.34454 -2.23851 -1.90270 -2.78836

target -1.83876 -1.83798 0.04355 0.04365 -1.37985 -2.41411 -1.98305 -2.94513
KZ -2.06935 -2.07129 0.06506 0.06515 -1.41329 -2.27824 -1.98427 -2.95639

c
=

2
.0

trad -2.12939 -2.13080 0.06414 0.06427 -1.44683 -2.38186 -2.07522 -3.18270
trad ridge -2.05179 -2.05106 0.06509 0.06514 -1.42082 -2.34175 -2.03791 -3.12989
LWQuEST -59.03298 -58.99561 0.00629 0.00618 -7.9549 -12.68863 -10.94189 -15.31889

LWAnalytical -1.50503 -1.50439 0.06355 0.06375 -1.26581 -1.95316 -1.7726 -2.69539
equally weighted target

bona fide -1.22550 -1.22474 0.05904 0.05907 -1.18681 -1.99190 -1.72914 -2.75302
bona fide ridge -1.30872 -1.30891 0.06790 0.06782 -1.14901 -1.94775 -1.70477 -2.73827

target -1.47869 -1.47779 0.05175 0.05176 -1.35801 -2.17908 -1.90898 -2.91238
equal correlation target

bona fide -1.22592 -1.22761 0.07282 0.07288 -1.09681 -2.09756 -1.74639 -2.91502
bona fide ridge -1.24075 -1.23914 0.07872 0.07873 -1.10084 -1.93814 -1.67112 -2.70638

target -1.32850 -1.32805 0.07020 0.07020 -1.13496 -2.16850 -1.83174 -3.08545
Fama-French target

bona fide -1.44490 -1.44438 0.05890 0.05867 -1.22790 -2.09709 -1.75667 -2.65269
bona fide ridge -1.42024 -1.41913 0.06947 0.06922 -1.19613 -1.96825 -1.72476 -2.66945

target -1.62084 -1.62093 0.05377 0.05360 -1.29152 -2.34075 -1.86625 -2.83814

Table 1: Performance of traditional, bona-fide, the benchmark portfolios (LWQuEST - Ledoit and Wolf (2017b), LWAnalytical
- Ledoit and Wolf (2020), KZ - Kan and Zhou (2007)) and the target portfolios for the mean-variance calibration criteria. The
performance measures are averaged over 1000 random portfolios of size 300. The trading period consists of 1000 days preceding
23.03.2018 and the risk aversion is set to 5. The average values are based on trimmed mean with 10% of extreme values being
dropped. The best strategies for every criteria and every values of c are highlighted in bold.26



CE SR VaR ES
average median average median α = 0.05 α = 0.01 α = 0.05 α = 0.01

c
=

0
.2

trad -0.85309 -0.85231 0.10035 0.10057 -0.88250 -1.44210 -1.28383 -2.02584
trad ridge -0.84923 -0.84889 0.09923 0.09909 -0.88174 -1.43823 -1.27883 -2.01864
LWQuEST -0.96554 -0.96474 0.10343 0.10359 -0.93948 -1.52539 -1.35090 -2.10343

LWAnalytical -0.79114 -0.79048 0.1014 0.10161 -0.85381 -1.38047 -1.24188 -1.96952
equally weighted target

bona fide -0.81308 -0.81284 0.10123 0.10150 -0.85908 -1.41182 -1.26178 -2.0085
bona fide ridge -0.80998 -0.81034 0.10012 0.10001 -0.85828 -1.40687 -1.25735 -2.00243

target -1.47805 -1.47784 0.05169 0.05168 -1.35704 -2.17938 -1.90829 -2.91097
KZ -0.73828 -0.73822 0.10187 0.10195 -0.81400 -1.33608 -1.20828 -1.95301

equal correlation target
bona fide -0.85773 -0.85717 0.09806 0.09785 -0.89740 -1.47224 -1.30236 -2.05662

bona fide ridge -0.85262 -0.85171 0.09803 0.0981 -0.89563 -1.46898 -1.29994 -2.05272
target -2.13255 -2.12898 0.05319 0.05312 -1.46343 -2.71591 -2.20532 -3.40780

KZ -0.93731 -0.93588 0.09141 0.09120 -0.94052 -1.63821 -1.40403 -2.14399
Fama-French target

bona fide -0.85149 -0.85077 0.09663 0.09677 -0.88750 -1.45256 -1.29064 -2.03126
bona fide ridge -0.84949 -0.84947 0.09629 0.09625 -0.88760 -1.44700 -1.28814 -2.0294

target -2.27063 -2.26895 0.03538 0.03543 -1.44480 -2.82390 -2.21059 -3.40190
KZ -0.89663 -0.89478 0.08661 0.08659 -0.89534 -1.58062 -1.34627 -2.09320

c
=

0
.5

trad -1.56971 -1.57001 0.04173 0.04161 -1.26072 -1.97665 -1.74582 -2.60683
trad ridge -1.47585 -1.4756 0.04465 0.0444 -1.21598 -1.90785 -1.69053 -2.54353
LWQuEST -3.28833 -3.29027 0.02581 0.02608 -1.86558 -2.93777 -2.56735 -3.67757

LWAnalytical -0.86699 -0.86626 0.0654 0.06526 -0.89816 -1.50838 -1.31504 -2.0954
equally weighted target

bona fide -1.0532 -1.05298 0.05066 0.05048 -1.01036 -1.69687 -1.46966 -2.30812
bona fide ridge -1.14637 -1.14571 0.05275 0.05322 -1.08067 -1.78718 -1.56281 -2.41015

target -1.48082 -1.48066 0.05171 0.05172 -1.35847 -2.18138 -1.91024 -2.91449
KZ -0.93323 -0.93338 0.05939 0.05941 -0.95222 -1.50541 -1.34938 -2.10436

equal correlation target
bona fide -1.17591 -1.17430 0.05196 0.05184 -1.09485 -1.80109 -1.57693 -2.42242

bona fide ridge -1.14637 -1.14571 0.05275 0.05322 -1.08067 -1.78718 -1.56281 -2.41015
target -1.80886 -1.80920 0.04010 0.04001 -1.40596 -2.41696 -2.09826 -3.32139

KZ -1.01397 -1.01394 0.05762 0.05790 -1.01524 -1.58062 -1.41661 -2.14494
Fama-French target

bona fide -1.22924 -1.22845 0.04980 0.05017 -1.11019 -1.75950 -1.56925 -2.41742
bona fide ridge -1.18967 -1.18982 0.05057 0.05064 -1.09012 -1.72857 -1.54528 -2.39013

target -1.93623 -1.93641 0.04259 0.04257 -1.40372 -2.49587 -2.00108 -2.93538
KZ -1.01377 -1.01328 0.05759 0.05765 -1.00204 -1.55270 -1.40064 -2.15907

c
=

0
.8

trad -11.1587 -11.12847 0.03821 0.03725 -3.3777 -5.43327 -4.67808 -6.73814
trad ridge -5.59307 -5.5935 0.05126 0.05138 -2.39789 -3.80057 -3.28431 -4.69414
LWQuEST -18.84221 -18.84773 0.03577 0.03624 -4.50978 -6.96099 -6.06441 -8.39818

LWAnalytical -0.98496 -0.98436 0.08942 0.08955 -0.98112 -1.61597 -1.42344 -2.2402
equally weighted target

bona fide -1.43449 -1.43529 0.05084 0.0503 -1.30108 -2.08832 -1.83907 -2.79121
bona fide ridge -1.30591 -1.30557 0.05487 0.05487 -1.26708 -1.99403 -1.77592 -2.71366

target -1.47821 -1.47811 0.05168 0.05169 -1.35667 -2.18041 -1.90876 -2.91209
KZ -2.03415 -2.03269 0.06235 0.06256 -1.41138 -2.25474 -1.97862 -2.94248

equal correlation target
bona fide -1.60982 -1.60906 0.05073 0.05031 -1.29875 -2.39866 -1.98344 -3.15048

bona fide ridge -1.53174 -1.52924 0.05174 0.05171 -1.26259 -2.35322 -1.94643 -3.11905
target -1.68850 -1.68914 0.04481 0.04491 -1.31139 -2.45712 -2.05434 -3.36065

KZ -1.96089 -1.95878 0.06499 0.06450 -1.37460 -2.19955 -1.93337 -2.90941
Fama-French target

bona fide -1.82002 -1.82289 0.04739 0.04775 -1.40332 -2.25988 -1.95652 -2.86186
bona fide ridge -1.6811 -1.67987 0.04983 0.04971 -1.34377 -2.20183 -1.89093 -2.77691

target -1.83460 -1.83658 0.04329 0.0432 -1.37616 -2.40806 -1.98023 -2.93814
KZ -2.07064 -2.06718 0.06476 0.06399 -1.41264 -2.27641 -1.98342 -2.96439

c
=

2
.0

trad -2.12727 -2.12819 0.06405 0.0641 -1.44373 -2.38377 -2.07218 -3.17711
trad ridge -2.06068 -2.05893 0.06518 0.06514 -1.4236 -2.34051 -2.04197 -3.13703
LWQuEST -58.92062 -58.87816 0.00574 0.00587 -7.96587 -12.64654 -10.9261 -15.29078

LWAnalytical -1.50775 -1.50743 0.064 0.06383 -1.26662 -1.9523 -1.77553 -2.70126
equally weighted target

bona fide -1.45575 -1.45568 0.05220 0.05226 -1.34997 -2.15551 -1.89422 -2.89468
bona fide ridge -1.2937 -1.29318 0.06757 0.06793 -1.14349 -1.94082 -1.69787 -2.73005

target -1.4788 -1.47899 0.05174 0.05177 -1.35821 -2.17967 -1.90906 -2.91205
equal correlation target

bona fide -1.31924 -1.32062 0.07073 0.07077 -1.13066 -2.15773 -1.82514 -3.07313
bona fide ridge -1.22331 -1.22256 0.07853 0.07837 -1.09087 -1.93172 -1.66227 -2.69818

target -1.32790 -1.32922 0.07046 0.07044 -1.13449 -2.16647 -1.83165 -3.08673
Fama-French target

bona fide -1.60447 -1.60370 0.05413 0.05423 -1.28581 -2.32282 -1.85587 -2.82089
bona fide ridge -1.41559 -1.41478 0.06915 0.06884 -1.19404 -1.97205 -1.72228 -2.66687

target -1.61993 -1.62003 0.05373 0.05383 -1.29209 -2.33933 -1.86513 -2.83576

Table 2: Performance of traditional, bona-fide, the benchmark portfolios (LWQuEST - Ledoit and Wolf (2017b), LWAnalytical
- Ledoit and Wolf (2020), KZ - Kan and Zhou (2007)) and the target portfolios for the minimum variance calibration criteria. The
performance measures are averaged over 1000 random portfolios of size 300. The trading period consists of 1000 days preceding
23.03.2018 and the risk aversion is set to 5. The average values are based on trimmed mean with 10% of extreme values being
dropped. The best strategies for every criteria and every values of c are highlighted in bold.27



every target-based portfolio. The leading estimator for this value of c becomes the analytical

Ledoit-Wolf estimator followed by Kan-Zhou with the equally weighted portfolio as the target.

Finally, we note that the application of the regularized sample covariance matrix based on the

Tikhonov (ridge) approximation (2.33) leads to minor improvements in the performance of both

the traditional and the bona-fide shrinkage estimators when c = 0.2 and c = 0.5.

With c = 0.8 we attain the ratio of dimension to sample size where the high-dimensional

asymptotics becomes relevant and simpler estimators heavily suffer from estimation risk. The

traditional estimator shows extremely poor performance, which is similar to that of the nu-

merical Ledoit-Wolf estimator. Since the Kan-Zhou estimator does not take the increasing

dimension into account, it becomes worse than the target portfolios and the bona-fide shrink-

age portfolios. At the same time, the analytical Ledoit-Wolf estimator becomes dominant with

bona-fide ridge estimator slightly behind. Large improvements are observed in the performance

of the traditional estimator when the ridge regularization is employed in its construction. In

contrast, the application of the ridge regularization to the bona-fide shrinkage portfolios leads

to minor improvements.

Finally, if we increase c to 2 the sample covariance matrix is singular and we use the gen-

eralized inverse for the traditional estimator. Now the bona-fide estimator becomes clearly

dominant, while the use of the equally weighted target and of the equally correlation target

leads to similar results. As mentioned above the Kan-Zhou estimator is not feasible for c > 1.

Also, the application of the regularized sample covariance matrix based on the Tikhonov (ridge)

approximation improves the performance of the traditional estimator, while it leads to slightly

worse performance of the bona-fide shrinkage estimator. To this end, we note a surprisingly

poor performance of both Ledoit-Wolf estimators, which appear to be worse than most of the

target portfolios. Noteworthy, the LWQuEST estimator is probably suffering from some nu-

merical instabilities, while LWAnalytical behaves still very stable. If we switch to the minimum

variance calibration criteria in Table 2, then the ranking of the estimators remains unchanged.

Summarizing, the suggested bona-fide shrinkage estimator is comparable to the analytical

Ledoit-Wolf nonlinear shrinkage estimator for c < 1 and becomes superior starting with c > 1.

It is dominant with respect to all performance measures. For smaller values of c the Kan-Zhou

estimator outperforms the bona-fide estimator and both Ledoit-Wolf estimators, and tends to
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show the best performance when it is used with the equally weighted target. For intermediate

values of c < 1 the analytical Ledoit-Wolf estimator is dominant, while its poor performance for

c > 1 is potentially due to the fact, that it does not take into account the estimation risk related

to the sample mean vector, which is accounted for in the bona-fide shrinkage estimator and in

the Kan-Zhou estimator. The numerical Ledoit-Wolf estimator seems to show huge numerical

instabities in comparison to the analytic one (see, also Remark 3 below for further discussion

of this finding).

The choice of the target is an important issue and relying on the results we can make

general recommendations regarding its choice. For c < 1 the equally weighted portfolio is the

best performing standalone strategy among the three alternatives. This target also leads to the

shrinkage portfolio with the best overall performance. The equally correlated target is in all

cases the second best choice. If c = 2 then the order changes and the equally correlated target

becomes slightly better both as a standalone strategy and as the target for the shrinkage-

based approach. Since the analysis is based on 1000 random portfolios, we can, therefore,

recommend using the equally weighted target for c < 1 and equally correlated target for c > 1.

Furthermore, we can conclude that taking the best standalone target strategy shall lead to the

best performing shrinkage-based approach.

The time series of estimated shrinkage coefficients are depicted in Figure 6. For space reasons

we provide the coefficients only for the equally weighted target and the mean-variance calibra-

tion. For other parameter constellations the results are similar. The portfolio is constructed

using the first alphabetically sorted assets. We observe that for small values of c and thus a low

estimation risk the shrinkage intensities are close to one. The behavior is very stable, but mim-

ics the periods of high and low volatility of financial markets. Thus high volatility on financial

markets causes higher shrinkage coefficients and a larger fraction of the sample EU portfolio.

This can be justified by stronger effects of diversification during turmoil periods. With larger

c the confidence in the classical portfolio diminishes leading to a stronger preference for the

equally weighted portfolio. This results in lower and more volatile shrinkage intensities. How-

ever, we observe the reverse behaviour of the estimated shrinkage intensity when c = 2. Here,

the impact of the traditional estimator in the portfolio structure increases and becomes com-

parable to the case of c = 0.5. Such results are in line with our findings of the simulation study
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Figure 6: The bona-fide shrinkage intensities for the first 100 assets (alphabetic order) using
the equally weighted target portfolio and the mean-variance calibration for c = 0.2, 0.5, 0.8
and 2. Above - bona fide, below - bona fide ridge (see formula (2.33)).

presented in Figure 3, where the shrinkage intensity is close to zero around c = 1. Finally, the

results obtained by employing the regularized sample covariance matrix based on the Tikhonov

(ridge) approximation leads to similar values of the shrinkage intensities independently of c.

These are shown in the lower plot in Figure 6. This finding is in line with the values presented

in Tables 1 and 2.

Remark 3. The numerical Ledoit-Wolf estimator shows in our empirical study surprisingly
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poor performance, which is probably because of some numerical issues. That is why we recom-

mend to use its new analytic version. Nevertheless, the analytical nonlinear shrinkage Ledoit-

Wolf estimator still shows in our empirical study a poor performance4 in case c > 1, but we

believe there is a specific reason for that. Indeed, in Ledoit and Wolf (2017a, Assumption 5)

the authors assume that the sample mean vector is independently distributed of the sample

covariance matrix and its distribution is rotation invariant. This assumption appears to be a

characteristic property of multivariate normal distribution following Lukacs (1979). Moreover,

the assumption that the distribution of the sample mean vector is rotation invariant, imposes

further restrictions on the data-generating model. It requires the population mean vector to be

a zero vector and the population covariance matrix to be proportional to the identity matrix.

As such, it is not clear whether the Ledoit-Wolf estimator is optimal in the case of a non-zero

population mean vector, i.e., in the mean-variance framework. This is also justified by the au-

thors themselves in Ledoit and Wolf (2017a, see Remark 5). It seems that this “sample mean”

effect becomes more prominent in the case of the singular sample covariance matrix (c > 1)

and/or small risk aversion coefficient γ, i.e. when optimal portfolios lie further away from the

global minimum variance portfolio on the efficient frontier. Thus, the Ledoit-Wolf estimator

should be adjusted to this type of optimal portfolios before it can be efficiently used in prac-

tice when portfolio dimension is larger than the sample size, whereas the suggested bona-fide

estimator for the optimal portfolio weights incorporates both the high-dimensional effects from

the sample covariance matrix and the sample mean vector simultaneously.

4 Summary

In this paper we consider the portfolio selection in the high-dimensional framework. Particu-

larly, we assume that the number of assets p and the sample size n tend to infinity such that

their ratio p/n tends to constant c where c can also be larger than one, implying that we have

more assets than observations. Because of the large estimation risk we suggest a shrinkage-

4For c > 1, the analytical Ledoit-Wolf estimator was initially also very unstable because the (p − n + 1)th
smallest eigenvalue was too close to zero (of order 10−12). We have corrected this issue by treating it as “zero”
and replacing it by a specific constant. To the rest of eigenvalues the optimal nonlinear shrinkage formula was
applied (see, formulas (C.4) and (C.5) in Ledoit and Wolf (2020, Supplement)). The numerical implementation
of Ledoit-Wolf estimator is provided in R-package HDShOP (see, Bodnar et al. (2021b)).

31



based estimator of the portfolio weights, which shrinks the mean-variance portfolio to several

target portfolios, such as the equally weighted portfolio, minimum-variance portfolio, etc. For

the established shrinkage intensity we derive the limiting value which depends on c and on the

characteristics of the efficient frontier only. On the other side, the derived limiting expression of

the shrinkage uncertainty is only an oracle value and is not feasible in practice, since it depends

on unknown quantities. In order to overcome the problem, we construct a bona-fide shrinkage

estimator of the optimal portfolio weights by deducing consistent estimators of the parameters

of the efficient frontier under the high-dimensional setting. As a result, a fully data-driving

approach is established for constructing a practically feasible estimator for the weights of the

optimal mean-variance portfolios. From the technical point of view, we rely on random matrix

theory and work with the asymptotic behavior of linear and quadratic forms in the sample

mean vector and in the (pseudo)-inverse sample covariance matrix. In extensive simulation

and empirical studies, we evaluate the performance of established results with artificial and

real data. Only if the sample size is much larger than the portfolio dimension, the traditional

portfolio or the benchmark portfolio dominates the portfolio suggested in the paper.
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Bodnar, T., Mazur, S., and Podgórski, K. (2016). Singular inverse Wishart distribution with applica-

tion to portfolio theory. Journal of Multivariate Analysis, 143:314–326.

Bodnar, T. and Parolya, N. (2020). Spectral analysis of large reflexive generalized inverse and moore-

penrose inverse matrices. In Holgersson, T. and Singull, M., editors, Recent Developments in

Multivariate and Random Matrix Analysis, pages 1–16. In: Holgersson T., Singull M. (eds) Recent

Developments in Multivariate and Random Matrix Analysis. Springer, Cham.

Bodnar, T., Parolya, N., and Schmid, W. (2013). On the equivalence of quadratic optimization

problems commonly used in portfolio theory. European Journal of Operational Research, 229:637–

33



644.

Bodnar, T., Parolya, N., and Schmid, W. (2018). Estimation of the global minimum variance portfolio

in high dimensions. European Journal of Operational Research, 266:371–390.

Bodnar, T. and Schmid, W. (2009). Econometrical analysis of the sample efficient frontier. European

Journal of Finance, 15:317–335.

Bodnar, T. and Schmid, W. (2011). On the exact distribution of the estimated expected utility

portfolio weights: Theory and applications. Statistics & Risk Modeling, 28:319–342.

Chopra, V. K. and Ziemba, W. T. (1993). The effect of errors in means, variances, and covariances

on optimal portfolio choice. The Review of Financial Studies, 19:6–11.

DeMiguel, V., L., G., and U., R. (2009). Optimal versus naive diversification: How inefficient is the

1/N portfolio strategy? The Review of Financial Studies, 22:1915–1953.

El Karoui, N. (2010). High-dimensionality effects in the Markowitz problem and other quadratic

programs with linear constraints: Risk underestimation. Annals of Statistics, 38:3487–3566.

Frahm, G. and Memmel, C. (2010). Dominating estimators for minimum-variance portfolios. Journal

of Econometrics, 159:289–302.
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