
 
 

Delft University of Technology

On a Neural Network to Extract Implied Information from American Options

Liu, S.; Leitao Rodriguez, A.; Borovykh, Anastasia; Oosterlee, C.W.

DOI
10.1080/1350486X.2022.2097099
Publication date
2022
Document Version
Final published version
Published in
Applied Mathematical Finance

Citation (APA)
Liu, S., Leitao Rodriguez, A., Borovykh, A., & Oosterlee, C. W. (2022). On a Neural Network to Extract
Implied Information from American Options. Applied Mathematical Finance, 28(5), 449-475.
https://doi.org/10.1080/1350486X.2022.2097099

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1080/1350486X.2022.2097099
https://doi.org/10.1080/1350486X.2022.2097099


Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ramf20

Applied Mathematical Finance

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ramf20

On a Neural Network to Extract Implied
Information from American Options

Shuaiqiang Liu, Álvaro Leitao, Anastasia Borovykh & Cornelis W. Oosterlee

To cite this article: Shuaiqiang Liu, Álvaro Leitao, Anastasia Borovykh & Cornelis W. Oosterlee
(2021) On a Neural Network to Extract Implied Information from American Options, Applied
Mathematical Finance, 28:5, 449-475, DOI: 10.1080/1350486X.2022.2097099

To link to this article:  https://doi.org/10.1080/1350486X.2022.2097099

© 2022 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 21 Jul 2022.

Submit your article to this journal 

Article views: 2094

View related articles 

View Crossmark data

Citing articles: 1 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=ramf20
https://www.tandfonline.com/loi/ramf20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/1350486X.2022.2097099
https://doi.org/10.1080/1350486X.2022.2097099
https://www.tandfonline.com/action/authorSubmission?journalCode=ramf20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=ramf20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/1350486X.2022.2097099
https://www.tandfonline.com/doi/mlt/10.1080/1350486X.2022.2097099
http://crossmark.crossref.org/dialog/?doi=10.1080/1350486X.2022.2097099&domain=pdf&date_stamp=21 Jul 2022
http://crossmark.crossref.org/dialog/?doi=10.1080/1350486X.2022.2097099&domain=pdf&date_stamp=21 Jul 2022
https://www.tandfonline.com/doi/citedby/10.1080/1350486X.2022.2097099#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/1350486X.2022.2097099#tabModule


APPLIED MATHEMATICAL FINANCE
2021, VOL. 28, NO. 5, 449–475
https://doi.org/10.1080/1350486X.2022.2097099

On a Neural Network to Extract Implied Information from
American Options

Shuaiqiang Liu a, Álvaro Leitao b,c, Anastasia Borovykhd and
Cornelis W. Oosterlee a,e

aApplied Mathematics (DIAM), Delft University of Technology, Delft, The Netherlands; bDepartment of
Mathematics, University of A Coruña, A Coruña, Spain; cCITIC research centre, University of A Coruña, A
Coruña, Spain; dImperial College London, London, UK; eCentrumWiskunde & Informatica, Amsterdam, The
Netherlands

ABSTRACT
Extracting implied information, like volatility and dividend, from
observedoptionprices is a challenging taskwhendealingwithAmer-
ican options, because of the complex-shaped early-exercise regions
and the computational costs to solve the corresponding mathe-
matical problem repeatedly. We will employ a data-driven machine
learning approach to estimate the Black-Scholes implied volatility
and the dividend yield for American options in a fast and robust way.
To determine the implied volatility, the inverse function is approxi-
mated by an artificial neural network on the effective computational
domain of interest, which decouples the offline (training) and online
(prediction) stages and thus eliminates the need for an iterative pro-
cess. In the case of an unknown dividend yield, we formulate the
inverse problem as a calibration problem and determine simulta-
neously the implied volatility and dividend yield. For this, a generic
and robust calibration framework, the Calibration Neural Network
(CaNN), is introduced to estimate multiple parameters. It is shown
that machine learning can be used as an efficient numerical tech-
nique to extract implied information from American options, par-
ticularly when considering multiple early-exercise regions due to
negative interest rates.
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1. Introduction

So-called implied financial information, which is obtained from financial derivatives
prices, is useful information for risk management, for the valuation of other financial
derivatives, for hedging, and forecasting (Christoffersen, Jacobs, and Young Chang 2013;
Won Seo and Sik Kim 2015). Different from historical volatility (which is computed from
past known asset prices), implied volatility (which is computed from the market option
prices) reflects the market implied uncertainty in the underlying asset prices. Similarly,
implied dividend can be seen as a measure which indicates howmuch market participants
expect an asset price will be reduced under the so-called pricing, or risk-neutral, mea-
sure. Compared to implied volatility, the implied dividend is typically a relatively weak
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signal, but there are several applications for the implied dividend information. An accu-
rate implied dividend yield may result in accurate theoretical option values, Greeks and
implied volatilities. One may choose a specific trading strategy according to the difference
between themarket implied and announced actual dividends, see Hull (2019). The authors
in Christoffersen, Jacobs, and Young Chang (2013), Bilson, Baum Kang, and Luo (2015),
and Fodor, Stowe, and Stowe (2017) give evidence for the fact that implied dividends are a
significant factor for forecasting actual dividend changes. In other words, implied dividend
is shown to have important predictive power compared to historical dividends.

American options, i.e., options with early-exercise features, are commonly traded. The
underlying asset may be any financial asset, such as currencies, commodities, bonds and
stocks.With American options, the holder has the right (but not the obligation) to exercise
the contract at any time before the contract’s expiry, whereas a European option can only
be exercised at the expiry time. Themain difficulty is resolving the well-known free bound-
ary due to the unknown early-exercise region. Valuation of American options requires
more intensive computation. Computing the implied volatility and implied divided from
observed European option prices has often been addressed in the literature, for exam-
ple, in Brenner and Subrahmanyam (1988), Corrado and Miller (1996), Chance (1996),
and Hull (2019). The computation of American option prices is generally more expen-
sive than pricing European options, because of the early-exercise features. Deriving the
implied information from American option values is therefore also a more challenging
task (Kutner 1998; Achdou, Indragoby, and Pironneau 2004; Burkovska et al. 2018, 2019).

There are different ways to compute implied information. For European options, a
closed-form expression may be derived, for example, to approximate the implied volatil-
ity in certain parameter ranges, see Brenner and Subrahmanyam (1988), Corrado and
Miller (1996), and Chance (1996). Such expressions are typically based on a Taylor series
expansion and on the analytical solution of the European option pricingmodel. One of the
drawbacks, however, is that the resulting formulas are only accurate near at-the-money
(ATM), and may give rise to inaccurate implied volatility values for deep in-the-money
(ITM) and out-of-the-money (OTM) options. To estimate the implied dividend, a popular
way is by means of the put-call parity, which holds, however, only for European options,
and is not valid for American options due to the early-exercise premium (Fodor, Stowe,
and Stowe 2017; Hull 2019). A second approach is by formulating the computation of the
implied information as a minimization problem, which is then based on an iterative search
technique. Traditionally, this methodology requires the repeated solution of the American
option pricing problem before reaching the stop criterion. Under a minimization frame-
work, there are essentially two popular approaches of determining the American option
implied volatility. The first one is by means of a ‘de-Americanization technique’, which
translates American option prices into the corresponding European prices (Jourdain and
Martini 2002; Carr and Wu 2009; Burkovska et al. 2018, 2019). Significant pricing errors
may arise due to inaccurate incorporation of the early-exercise premium. The higher the
early-exercise premium, typically the larger the error can get. Taking dividends into con-
sideration may further increase the error of the de-Americanization technique. A second
approach is to conduct a direct calibration of the American pricing model, see Lagnado
and Osher (1997), Kutner (1998), Achdou, Indragoby, and Pironneau (2004), Nardon and
Pianca (2013), and Burkovska et al. (2019). Unlike the European options, the derivative
of the option value with respect to the volatility does not have a closed-form expression
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in the case of American options. In addition, other complicating factors, such as a neg-
ative interest rate (Hendrik Frankena 2016), may lead to complex-shaped early-exercise
regions (e.g., we may encounter different continuation regions) (Donno, Palmowski, and
Tumilewicz 2020).

Recently, artificial neural networks (ANNs) have been emerging as advanced computa-
tional techniques to obtain solutions to possibly complicated problems in computational
finance, for example, inHan, Jentzen, andWeinan (2018), Liu,Oosterlee, andBohte (2019),
Buehler et al. (2019), Liu et al. (2019), Becker, Cheridito, and Jentzen (2019), and Lokesh-
war, Bharadwaj, and Jain (2022). We refer to (Ruf andWang 2020) for a review. Nowadays,
deep neural networks are also used to speed up the computation of prices and sensitiv-
ities of American options, see Sirignano and Spiliopoulos (2018), Becker, Cheridito, and
Jentzen (2020), Chen and Wan (2021), and Salvador, Oosterlee, and van der Meer (2021).
To date, those neural network-based algorithms have not been computationally efficient to
enable fast American option model calibration.

In order to accelerate the time-consuming solution of the American option pricing
model, we can take advantage of supervised learning with ANNs. Training ANNs to learn
the implied information fromobserved option prices is however non-trivial. For example, a
steep gradient of the implied volatility with respect to the option pricemay cause inaccurate
ANN results (Liu, Oosterlee, and Bohte 2019). Moreover, in the early-exercise region, the
American option price and the volatility are not bijective, as the gradient of the option price
with respect to volatility, Vega, equals zero in the early-exercise region. A robust, global
optimization plays an important role when exploring the solution space. Consequently,
the ANN efficiency may suffer from the global optimization. The paper (Liu et al. 2019)
proposed a neural network-based calibration framework, i.e., Calibration Neural Net-
works (CaNN), to address the speed issue of model calibration with a global optimization
algorithm. A recent study (Büchel et al. 2022) shows that the CaNN can achieve a compet-
itive performance when dealing with financial market data. Usually, however, the implied
dividend yield is also unknown, so that there are two open implied model parameters to
determine, see for example, Cao (2005) and Kragt (2016).

In this work, we will employ the CaNN to extract the implied information from Ameri-
can option prices. Negative interest rates as well as a negative dividend yield are taken into
consideration to cover a broad range of market conditions. We thus propose a data-driven
machine learning method to address the American option implied information. More
specifically, the proposedCaNN is composed of three components, an efficient option pric-
ingmethod, a global optimization technique and an implementation which runs efficiently
on a parallel computing platform. There are two separate stages in CaNN, the forward pass
to learn the pricing model and the backward pass to estimate the model parameters. Here
the forward pass of CaNN will give us two output quantities, the American put and call
prices, which originate from one ANN.

The remainder of this paper is organized as follows. In Section 2, the mathematical
American option pricing models are introduced. Furthermore, in Section 2.3, the implied
volatility and implied dividend yield from American options are discussed. In Section 3,
we describe the data-driven ANN to extract implied information from American options.
When a dividend yield is already known, the CaNN simplifies as it can be used to com-
pute theAmerican option implied volatility by directly approximating the inverse function.
In such case, an iterative numerical method is not needed. In other cases, the CaNN is
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employed to determine both the implied dividend and implied volatility. In Section 4,
numerical experiments are presented to demonstrate the performance of the proposed
methods.

2. American Options

In this section, wewill discuss themathematicalmodel used to price theAmerican options,
and the implied information in the market option prices.

2.1. Problem Formulation

Although other pricing models would easily fit in our framework, for clarity we will con-
centrate on the Black-Scholes pricing framework. The underlying asset price thus follows
a Geometric Brownian Motion (GBM) process, under the risk-neutral measure,

dS(t) = (r − q)S(t) dt + σS(t) dWQ(t), S(0) = S0, (1)

where S(t) is the underlying spot price at time t, and σ is the volatility parameter andW(t)
a Wiener process under the risk-neutral measure Q, S0 the starting point at time t = 0.
The two parameters r and q can be interpreted in different ways. For example, r and q
are the risk-less interest rate and dividend yield, respectively, for stocks. In the context of
currencies, r and q may be two different interest rates, and q would represent the cost of
carry in the case of commodities. In this paper, we stay with a stock option description, for
convenience, but we will also discuss q<0, which is found in commodity modelling. With
a risk-less asset B(t),

dB(t) = rB(t) dt, (2)

the arbitrage-free value of an American option at time t is given by

Vam(t, S) = sup
u∈[0,T]

E
Q
t [e

−r(T−t)H(K, S(u)) | S(u)], (3)

whereH(·) is the payoff function, with strike priceK;EQ
t represents the expectation under

the risk-neutral measureQ, with T being thematurity time. An optimal exercise boundary
S∗
t ≡ S∗(t), which depends on the time to maturity T−t, divides the domain into early-
exercise (stopping) regions�s and continuation (or holding) regions�h. In general, early-
exercise will be triggered when the discounted expected value drops below the value of
exercising the option.

As an American option can be exercised anytime before the expiry time, a correspond-
ing early-exercise premium should be added to the European option counterpart. For
example, an American put option (Carr, Jarrow, and Myneni 1992) can be decomposed
into the corresponding European put price and the early-exercise premium, i.e.,

VP
am(t, S) = E

Q
t [e

−r(T−t) max(K − S(T), 0)] +
∫ T

t
EQ
u [(rK − qS(u))1{S(u)∈�s}] du, (4)

where �s represents the stopping region, and the whole domain is � = �s + �h with �h
being the holding region. The first term in Equation (4) is indeed equivalent to the Euro-
pean Black-Scholes put solution. The above problem can be formulated as a Black-Scholes
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inequality, on a domain � with a free boundary S∗
t . At the free boundary, we have,

Vam(t, S∗) = H(K, S∗
t ),

∂Vam

∂S
= α, (5)

where α = 1 for American calls, α = −1 for American puts, and S∗
t is the asset price for

which the option value equals the payoff function. For American put options, the payoff
function equals H(K, S(t)) = max(K − S(t), 0). The above conditions at the free bound-
ary can be used to distinguish continuation from stopping regions, and we will use these
conditions in Section 3.2. In this paper, the American Black-Scholes solution and corre-
sponding pricing model are denoted by Vam = BSam(σ , S,K, t,T, r, q,α), with the time to
maturity τ := T − t.

2.2. The Put-call Symmetry

The put-call symmetry relation holds for both European options and American options,
and is given by,

VP(t, S;K,T, σ , r, q) = VC(t,K; S,T, σ , q, r). (6)

The above relation allows us to value a call or put option by means of its counterpart,
where the role of stock and cash values is interchanged. By swapping the strike with the
spot price and the interest rate with the dividend yield, an American call value equals the
corresponding American put. The relationship is also valid under negative discount rates
(Donno, Palmowski, and Tumilewicz 2020). Because with Equation (6) we can get two
option prices from one computation, only one function evaluation is required to compute
American call and put prices. We will focus on American put options in the following
sections, and compute American call options using the put-call symmetry relation.

There are two types of computational regions when dealing with American options,
the continuation (or holding) and the early-exercise (or stopping) region. The continua-
tion region boundaries are not known a-priori. Figure 1 illustrates the difference between
European and American Black-Scholes option solutions, with two sets of parameters. The
American put option price, in the case of no dividend payment, should not be less than
the put payoff, while the value of a European put option may be less than the payoff before
expiry. In Figure 1, there is only one early-exercise point.

However, two continuation regions may arise, when both the interest rate and divi-
dend yield become negative (Battauz, Donno, and Sbuelz 2015; Donno, Palmowski, and
Tumilewicz 2020) in the case of American options. Figure 2 presents an American put
solution with two early-exercise points, so that the continuation regions are discontinu-
ous. There are several reasons why we consider a negative dividend yield in our pricing
model. The interest rate may be negative in practice. When we use the put-call symme-
try to compute American calls by means of puts (the counterpart), we switch the interest
rate and the dividend yield in the pricing equation. For that reason, the dividend yield may
also be negative in the corresponding formula. AnAmerican optionBlack-Scholesmodel is
also used in foreign exchange or commodity markets, where negative qmay be interpreted
from an economic point-of-view.
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Figure 1. Left: American vs. European Black-Scholes put and call option prices (r> q): r = 0.10,
q = 0.04. Right: American vs. European Black-Scholes put and call option prices (r< q): r = 0.04,
q = 0.10. The option values are at initial time t = 0.0, with the expiry time T = 1.5, volatility σ = 0.4.
(a) r> q (b) r< q.

Figure 2. The setting: r = −0.01, q = −0.06, σ = 0.2, T = 20, K = 1.0. The option value in the solid
black line hits the payoff function twice. The stopping region is between the two early-exercise points.

2.3. Implied Volatility and Dividend Yield

The information implied in option prices provides participants’ expectations about future
market conditions. We will discuss the implied volatility and implied dividend yield.

2.3.1. Implied Volatility
Implied volatility represents a specific measure of the future uncertainty from the market
point of view. Mathematically, the implied volatility of an option is the level of volatility
which, when inserted in the Black-Scholes pricing model, makes the market and model
prices match. In that sense, the implied volatility computed from market option prices is
viewed as an indication for the look-forward uncertainty of the underlying asset prices as
estimated by market participants.
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Computing the implied volatility can be formulated as an inverse problem. The Amer-
ican option’s implied volatility is then written as,

σ ∗ = BS−1
am(Vmkt

am ; S,K, t,T, r, q,α), (7)

where BS−1
am(·) denotes the inversion of the American option Black-Scholes pricing prob-

lem, and Vmkt
am is an American option price observed in the market, with S the underlying

asset spot price at time t.
One often solves the implied volatility problem by means of a nonlinear root-finding

method, and employs an iterative algorithm to obtain its solution. Given an American
option market price, the implied volatility σ ∗ is determined by solving

Vmkt
am − BSam(σ ∗; S,K, t,T, r, q,α) = 0. (8)

Existence of σ ∗ can be guaranteed by the monotonicity of the Black-Scholes equation with
respect to the volatility in the holding region. Unlike for European options, a closed-from
expression for the derivative of the American option value with respect to the volatility
is not available. Various solutions have been proposed to solve the implied volatility of
American options, see, for example, Lagnado and Osher (1997), Kutner (1998), Achdou,
Indragoby, and Pironneau (2004), and Burkovska et al. (2019). As stated in Kutner (1998),
these solutionsmay have difficulties especially with deep in-the-money options. One of the
reasons is that option prices are insensitive to the underlying volatility deep in the money.
Gradient-free methods, like bisection, do not rely on gradient information, but they may
converge slowly because of the stopping regions. An important aspect when extracting the
implied volatility is that the derivative of the option price with respect to the volatility, the
option’s Vega, becomes zero in the stopping region for American call and put options. It is
well-known that,

|�| =
∣∣∣∣∂Vam

∂S

∣∣∣∣ = 1, Vega = ∂Vam

∂σ
= 0. (9)

In other words, the American option prices do not depend on the volatility in the stop-
ping regions. As shown in Figure 3, Vega is positive in the holding region and zero in the
stopping region. Consequently,

∂σ

∂Vam
= 1

Vega
→ ∞.

When we invert the American option Black-Scholes pricing problem in the stopping
regions, there is no unique solution for the implied volatility. Therefore, the definition
domain of Formula (7) should be the continuation region.

Remark: When gradient-based minimization algorithms (e.g., Newton’s method) are
used to extract implied information, an initial guess for the solution has to be specified. An
inappropriate starting point may cause the algorithm to fall into a ‘different’ continuation
region from the ‘envisioned’ region. Special rules have to be designed to help the algorithm
reach the ‘correct’ continuation region and explore the solution space. This makes it chal-
lenging to define a suitable starting point for the minimization algorithm when inverting
the pricing model.



456 S. LIU ET AL.

Figure 3. The Vega for American puts in different regions. The strike price is K = 1.0.

In our approach, we will use the ANNs to approximate the inverse function of For-
mula (7) on the continuation region, without relying on any iterative technique, which will
be explained in Section 3.2.

2.3.2. Implied Dividend
Many companies pay a dividend to the share holder on the ex-dividend date, which causes
the stock price to drop. The option prices are also impacted by the changes in the underly-
ing stock price. Generally, option prices may rise (in the case of the put) or drop (the call)
slightly due to the dividend payment. This dividend is called the actual dividend (denoted
by δ), while implied dividend reflects how themarket anticipates future dividend payments.
It is extracted from option prices, and thus a quantity under the risk-neutral measure.

The difference between actual dividends and implied dividends is similar to that
between historical and implied volatility. The two parameters reflect different market
aspects. An implied dividend may be modelled by means of multiple components, for
example,

q = εr + δ + b, (10)

where εr reflects the difference between the employed and the market interest rate, δ the
historical dividend and b the borrowing costs of the underlying asset. Some companies do
not pay dividends, but the corresponding options still indicate a non-zero dividend, which
may reflect the borrowing level of the stock, see Hull (2019). The borrowing costs are seen
as a factor that influences the implied dividend as a function of the time or the strike price.

Our approach is to estimate the implied dividend and implied volatility at the same time,
assuming the implied dividend is not constant over strike prices (Nardon and Pianca 2013).
In the case of European stock options, the implied dividend can be estimated by the put-call
parity relation (Hull 2019),

VC
eu(t, S) − VP

eu(t, S) = S(t)e−qτ − Ke−rτ , (11)

so that,

q = − 1
τ
log

(
VC
eu − VP

eu + Ke−rτ

S(t)

)
. (12)
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For American options, the put-call parity does not hold. In certain works (Fodor, Stowe,
and Stowe 2017; Hull 2019) the authors employ Formula (12) to roughly estimate the
implied dividend yield for American options. Obviously, this may result in inaccuracies
when the put-call parity deviation gets large.

In order to eliminate this error, the authors in Guerrero (2017) take the early-exercise
premium (EEP) into account for American options. For example, VC

am = VC
eu + �VC

and VP
am = VP

eu + �VP, where �VC and �VP stand for the American call and put
early-exercise premiums, respectively. Given the early-exercise premiums �VC and �VP,
Equation (11) can be used to calculate the implied dividend yield from the American
option prices. A requirement is that the American and European options are available,
under the same parameter set. It is however usually not easily possible to deduce the
early-exercise premiums from market option prices.

Next, we will numerically investigate how early-exercise premiums affect the put-call
parity. As mentioned, the American option price can be viewed as the sum of two com-
ponents, the corresponding European option price and the early-exercise premium. Let
f (S(u); S(t)) be the transition density function of S(u) conditional on S(t) for u ≥ t. Then,
Equation (4) can be rewritten as follows (Kuen Kwok 2008),

VP
am(t, S) = e−r(T−t)

∫ K

0
(K − S(T))f (S(T); S(t)) dS(T)

+
∫ T

t
e−r(u−t)

∫
�s

(rK − qS(u))f (S(u); S(t)) dS(u) du

= VP
eu(t, S) + �VP, (13)

with constant r and q, andwhere�s is the stopping region. If the holder of anAmerican put
chooses to exercise the put option in the case of S(u) being in the stopping region, he/she
would gain interest rKdt from the cash received, and lose dividend qS(t)dt from selling the
asset. Similarly, the American call price is made up of two components,

VC
am(t, S) = e−r(T−t)

∫ ∞

K
(S(T) − K)f (S(T); S(t)) dS(T)

+
∫ T

t
e−r(u−t)

∫
�s

(qS(u) − rK)f (S(u); S(t)) dS(u) du

= VC
eu(t, S) + �VC. (14)

Equations (13) and (14) can be substituted into the European put-call parity,

(VC
am − �VC) − (VP

am − �VP) = S(t)e−qτ − Ke−rτ ,

and the deviation from the put-call parity is found to be,

�VC − �VP = VC
am − VP

am − S(t)e−qτ + Ke−rτ . (15)

We can measure the ‘deviation’ from the European put-call parity relation by EED :=
�VC − �VP, i.e., the difference between two EEPs. The larger the deviation, the more
the American and European implied dividend yields will differ. For European options,
EED = 0.
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Figure 4. Left: EED versus the ratio of stock over strike price for different maturities T, with σ = 0.4,
r = 0.1, q = 0.05, K = 1.0. Middle: EED versus the ratio of stock over strike price for different values
r−q, with T = 1.0, r = 0.1, σ = 0.4, K = 1.0. Right: EED versus the ratio of stock over strike price for
different volatilities σ , with T = 1.0, r = 0.1, q = 0.04, K = 1.0.

We can assess the corresponding early-exercise premium by calculating the differ-
ence between the European and American option prices. In the following figures, we will
demonstrate how the early-exercise premiums vary with respect to the following factors,
maturity time T (Figure 4(a)), difference between interest rate and dividend yield r−q
(Figure 4(b)), volatility σ (Figure 4(c)). Roughly speaking, the absolute deviation is mono-
tonically increasing when an option goes deeper into the money (OTM or ITM), based on
Figure 4. Therefore, significant errors may occur when using the European put-call parity
to compute the implied dividends from American options.

Remark: The early-exercise premium (EEP) is not observable for most underlying secu-
rities, unless both American and European options with the same strike price and time
to maturity are available. Empirical studies have been conducted to analyse how the EEP
varies in the market using regression techniques, like in Su Chen (2018). The basic idea is
to fit a function for the EEP and other observed factors, i.e.,

EEP = β0 + β1(r − q) + β2(T − t) + β3(S/K) + β4(σt−1) + ε

In the Swedish equity market, for example, the early-exercise premiums for American puts
are empirically found to be positive (Engström and Nordén 2000), increasing with option
moneyness, and decreasing with time to maturity and the underlying asset’s volatility. For
American-style currency options, it was observed (Poitras, Veld, and Zabolotnyuk 2009)
that the early-exercise premiums equal approximately 5% for puts and 4.6% for calls. Our
numerical results coincide with these empirical studies of EEP.

We will employ a model-based approach, i.e., the American option Black-Scholes pric-
ing model, including a dividend yield, is inverted in order to extract the implied dividend.
American options can be priced as follows,{

VC
am = BSam(σ ∗, q∗; S0,K, t = 0,T, r,α = 1),

VP
am = BSam(σ ∗, q∗; S0,K, t = 0,T, r,α = −1),

(16)

where, BSam is the corresponding pricing model. Assuming the implied volatility and the
implied dividend are the same for calls and puts with the same parameter setK, S0, T and r,
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there appears to be a unique solution of the systemwith two equations and two unknowns.
However, this is not always the case, as option prices do not depend on the volatility in
the stopping regions. The system of Equation (16) is usually formulated as a minimization
problem and a numerical optimization algorithm is employed to search the solution space.
Note that a local search-based optimization method will most likely not converge when
traversing those early-exercise regions. For that reason, a global searcher is preferred.

3. Methodology

Artificial neural networks, ANNs, have been used to approximate the solution of European
option pricing models, for instance, under the Black-Scholes and Heston models in Liu,
Oosterlee, and Bohte (2019). Here, we will use the ANN to address the numerical solution
of American options, and in particular use it for computing the implied information. For
the inverse problem, when there is one parameter to calibrate, we can employ the ANN
to build a mapping from the observed market data to the target parameter (as a unique
mapping). When there are multiple parameters to calibrate, like the implied volatility and
the implied dividend, the CaNN (Calibration Neural Network) (Liu et al. 2019) is more
flexible to handle theminimization problem. The former case can be viewed as a simplified
CaNN which approximates a single model parameter.

3.1. Artificial Neural Networks

It is well-known that neural networks are powerful function approximators. In a basic
formulation, an ANN can be described as a composite function,

F(x | θ) = f̂ (�)(· · · f̂ (�)( f̂ (�)(x; θ (�)); θ (�)); · · · θ (�)), (17)

where x stands for the input variables, θ for the hidden parameters (i.e., the weights and the
biases in artificial neurons), � for the total number of hidden layers, and f̂ (�)(·) represents
a hidden-layer function. The composite function, F(·), depends on these hidden parame-
ters and activation/transfer functions. Once the structure, i.e., the hidden parameters and
transfer functions, is determined, the ANN in Equation (17) can be seen as a determin-
istic function. A popular approach for training neural networks is to employ first-order
optimization algorithms to determine the values of the hidden parameters which will min-
imize the loss function. Gradient-based algorithms are often fast, but it may be difficult to
calculate the gradients for a large test set. Stochastic gradient descent algorithms (SGD)
randomly select a portion of the data set, to compute the gradient, and address the mem-
ory issue. SGD and its variants (like Adam) are thus preferable to train the ANNs on big
data sets. In a data-driven supervised learning context, the objective function is given as
follows,

argmin
θ

L(θ | (X,Y)), (18)

given the input-output pairs (X,Y) and a user-defined loss function L(θ). Thus, the ANN
will be trained to approximate the function of interest in a certain norm, e.g., the l2-norm.
More details can be found in the book (Goodfellow, Bengio, and Courville 2016). Next, we
will discuss how the ANNs are used to approximate the inverse or pricing functions.
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Figure 5. Schematic diagram: An example of two continuation regions for an American put. The shaded
area represents the holding region, while the white area represents the stopping region. There are two
isolated continuation regions. Here the strike price is fixed K = 1.

3.2. ANN for Implied Volatility

When we focus solely on extracting the implied volatility, the basic technique is to employ
the ANN to approximate the inverse function of the American Black-Scholes model on a
suitable effective definition domain �h,

σ ∗ = BS−1
am(Vmkt

am ; S,K, t,T, r, q,α)

≈ NN(Vmkt
am ; S,K, t,T, r, q,α), [V , S,K, t,T, r, q] ∈ �h. (19)

The ANN is trained based on the above known model variables, which are observable in
the market, to approximate the unique target variable σ ∗.

3.2.1. Definition Domain Selection
The continuation regions are not known initially or are complicated so that there is no ana-
lytic formula to describe them. However, the early-exercise regions can be found implicitly
in a data-driven approach. In our method, we wish to only train the neural network on
the points in the continuation region. Overall, our aim is to find the inverse function of
the American-style pricing model on the continuation region, represented by the shaded
domain in Figure 5. There is an off-line stage, where the continuation regions are deter-
mined, and an on-line stage where we use the problem parameters to compute the implied
volatility. We build the mapping function via the ANN in the ‘irregular’ continuation
region. The resulting trained ANN solver is typically much faster to determine the implied
volatility than an iterative numerical solver.

First, random parameter values are generated as ANN samples in the entire input
domain�, followed by detecting the parameter samples that are in the early-exercise region
�s according to Equation (5).

Second, we use a robust version of the COS method (Fang and Oosterlee 2009) to cal-
culate American option values while generating the data set during the off-line ANN stage.
The COS method is an efficient numerical technique and provides the derivative informa-
tion (i.e., the Greeks) essentially without any additional costs. The basic idea in Fang and
Oosterlee (2009) was to approximate the American option value by solving a small series
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of Bermudan options with different numbers of exercises opportunities, and subsequently
apply a four-point Richardson extrapolation based on these four option prices.With a large
variety of asset and option parameters, we need to make sure that the option pricing tech-
nique is robust, i.e., it should work under all occurring parameter sets during training. This
might imply a large integration domainwithin theCOSmethod, and a relatively large num-
ber of Fourier terms in the cosine expansion.We generalized the aboveCOSmethod to deal
with two separate early-exercise regions, which are encountered when pricing American
options with negative interest rates. More details can be found in the Appendix.

Third, we obtain the approximate continuation region, �h = � − �s, as shown in
Figure 5. There are two indicators to detect the samples in the early-exercise region, the
difference between the option value and the payoff, and the option’s sensitivity Vega in
Equation (9). To control the numerical errors, threshold values are prescribed for the two
indicators. A threshold ε1 is set for the difference between the payoff function value and
the generated option value,

Vam(t, S) − H(K, S(t)) > ε1. (20)

The appropriate training samples for the continuation region are selected based on For-
mula (20). We also set a threshold ε2 for the value of Vega,

Vega > ε2, (21)

with ε1 ∈ R+ and ε2 ∈ R+. As early-exercise takes place with options that are ITM, the
above two criteria only apply to ITM samples. In principle, Criterion (20) is equivalent to
Criterion (21), but for robustness reasons, both will be enforced tomitigate the influence of
numerical errors. However, Vega may be unavailable in the prediction phase. In that case,
only Criterion (20) will be implemented. Note that the shape of the stopping region also
depends on the other model parameters. For example, the number of the early-exercise
points associated with the stopping region decreases from two to one, when the dividend
yield increases from a negative value to a positive one. Here for the illustration purpose, in
Figure 5, we plot a stop region just as a function of stock price and time to maturity.

Let �̂s represent the region where the generated samples do not meet the require-
ments (20) and (21), and the remaining region �̂h = � − �̂s. The effective definition
domain is found numerically by taking �h ≈ �̂h. The procedure requires additional
computations, but these happen in the off-line stage without affecting the on-line approx-
imation.

3.2.2. Gradient-squashing andOption Prices
Generally, ANNs are not accurate when functions with steep gradients need to be approxi-
mated. Therefore, we adapt the requested output function. To obtain the implied volatility
from the option prices, we need to employ the so-called gradient-squashing technique as
proposed in Liu, Oosterlee, and Bohte (2019). We subtract the intrinsic value from the
American option price to obtain the corresponding time value. Next, a brief derivation of
computing the intrinsic value of an American option with the dividend yield is given.
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Figure 6. A flowchart of the ANN-based method to compute the implied volatility from American
option.

Taking the put as an example, recall the put-call parity for European options,

VC
eu − S(t)e−qτ = VP

eu − Ke−rτ .

The following lower bound can then be deduced,

VP
eu(t, S) = VC

eu(t, S) + Ke−rτ − S(t)e−qτ ≥ Ke−rτ − S(t)e−qτ , (22)

where the right-hand side is called the European option’s intrinsic value. As an American
option is at least as expensive as its European counterpart, we have

VP
am(t, S) ≥ VP

eu(t, S) ≥ Ke−rτ − S(t)e−qτ . (23)

Additionally, American option prices should not be worth less than the pay-off function
at any time, as for example shown in Figure 2, and the time value of an American put is
computed by

V̂P
am = VP

am(t, S) − max(K − S(t),Ke−rτ − S(t)e−qτ , 0). (24)

After this step, the gradient-squashing technique (Liu, Oosterlee, and Bohte 2019) is
applied as follows,

ṼP
am = log (V̂P

am). (25)

The gradient-squashing technique for computing the implied volatility using the ANNs,
means taking the logarithm of the time value to obtain a quantity that can be well
approximated with ANNs, because its gradient is not too steep to approximate accurately.

As shown in Figure 6, with help of the sample filters and the gradient squashing
technique, the American implied volatility can be easily computed using neural networks.
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3.3. Determining Implied Dividend and Implied Volatility

When the American option implied dividend yield is unknown, we will determine both
implied volatility and implied dividend simultaneously by means of the CaNN calibration
methodology. We assume the implied volatility and the implied dividend are identical for
American calls and puts with the same K, S0, T and r values,{

VC,mkt
am − BSam(σ ∗, q∗; S0,K, t = 0,T, r,α = 1) = 0,

VP,mkt
am − BSam(σ ∗, q∗; S0,K, t = 0,T, r,α = −1) = 0,

(26)

so that there are twounknownparameters to calibrate, implied volatilityσ ∗ and the implied
dividend yield q∗, given a pair of American option prices, VC,mkt

am and VP,mkt
am . The above

system is reformulated as a minimization problem,

argmin
σ ∗∈R+,q∗∈R

(BSam(σ ∗, q∗;α = 1) − VC,mkt
am )2 + (BSam(σ ∗, q∗;α = −1) − VP,mkt

am )2. (27)

We employ a fast, generic and robust calibration framework, theCaNN (CalibrationNeural
Networks) developed in Liu et al. (2019). The basic idea of the methodology is to convert
the calibration of the model parameters into an estimation of the neural network’s hid-
den units. The reason for this is that both model calibration and training ANNs (here
supervised learning) can be reduced to solving an optimization problem according to
Equations (18) and (27). It can take advantage of parallel GPU computing to speed up
the computations, which enables us to employ a global optimization technique to search
the solution space. The gradient-free optimization algorithm, here Differential Evolution
(DE), typically does not get stuck in local minima or in the stopping region. Another bene-
fit of DE is that it is an inherently parallel technique where populations of possible optimal
solutions can be evaluated simultaneously within the ANN.

There is a calibration (the backward pass) in the CaNN, in addition to the training and
testing stages. The training is to determine suitable weights and biases in the hidden layers
to map model input to output, while the calibration estimates the model input parameters
to optimally match a given output. We will view the different stages as one framework,
and just change the learnable units between the original layers (i.e., the hidden, output and
input layers) within the different stages.More specifically, the CaNN consists of two passes.
The forward pass, including the training and testing stages, approximates the American
Black-Scholes prices. We have developed one neural network providing two output values
in the forward pass, the American call and the put prices, as illustrated in Figure 7. The
backward pass, on the other hand, aims to find the two parameters, (σ ∗, q∗), to match the
two observed American option prices, VP,mkt

am and VC,mkt
am , with strike price K, maturity

time T, spot price S0, interest rate r.
In Figure 7, black circles represent the frozen (unchanged) parameters during each

epoch, and open circles represent the parameters to be optimized. For example, in the
training phase, the black circles represent input-output pairs from the training dataset,
while the open circles represent the hidden weights and biases. In the calibration phase,
the black circles correspond to the already trained hidden weights and biases, as well as the
quotes (strike price, stock price, option price, maturity time, etc) observed in the market,
while the open circles stand for the implied volatility and implied dividend yield, which
are the to-be-calibrated parameters in Formula (28).
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Figure 7. Left: In the forwardpass of theCaNN, the output layer gives us twooptionprices. Right: During
the calibration, the CaNN estimates the two parameters, implied volatility and implied dividend, in the
original input layer. (a) Training (b) Calibration.

This is different from the network in Liu et al. (2019), where one neural network corre-
sponds to one output quantity. Therefore Equation (27) is written as an objective function
for the model calibration, as follows,

argmin
σ ∗,q∗

(NN(σ ∗, q∗;α = 1) − VC,mkt
am )2 + (NN(σ ∗, q∗;α = −1) − VP,mkt

am )2, (28)

where σ ∗ ∈ R+, q∗ ∈ R. Formula (28) is used as the loss function for the backward pass in
the CaNN. The (group-based) DE global optimization can be implemented in an efficient
way together with ANNs, see Figure 8, on a central processing unit (CPU) or a graphics
processing unit (GPU). Figure 8 illustrates the parallel computing aspect of the calibration
in the context of Differential Evolution and Neural Networks. In such way, the for-loop
is replaced by an efficient matrix multiplication, and searching the implied information
globally can be completed efficiently.

Remark: Because of a generic calibration framework, the CaNN can easily deal withmore
complex situations, for example, the objective function (28) including more than a pair
of American price quotes which share the same implied dividend, for example, as in the
work (Cao 2005).

3.4. The ANN Configuration

Our chosen ANN architecture in the forward pass constitutes four hidden layers and two
parallel output layers. Some particularly useful operations in deep neural networks, e.g.,
dropout and batch normalization, did not bring any significant benefits to our ANN. The
proposed configuration has been demonstrated to be able to fit the pricing model with
acceptable accuracy in Liu et al. (2019). We choose the activation function Softplus in this
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Figure 8. The global optimizer DE runs in parallel within CaNN. ‘Gm’ represents the m-th generation,
where there are n candidates of to-be-optimized parameters, i.e., n sets of open parameters in the
pricing model. These n sets of model parameters are independent, thus can be processed by the ANN
simultaneously, instead of a for-loop, to reduce the computation time. (a) Conventional DE (b) Parallel
DE.

Table 1. The ANN configuration.

Hyper-parameters Options

Hidden layers 4
Neurons (each layer) 200
Activation Softplus
Initialization Glorot_uniform
Optimizer Adam
Batch size 1024

paper, i.e.,

f̃ (x) = log(1 + ex),

as its smooth derivative fits well to the smoothness of the pricing function, especially in
the continuation region. According to the universal approximation theorem, a one-layer
based ANN can be used to approximate any continuous function to any desired precision,
but with the rate which linearly depends on the number of neurons involved. The depth
of the ANN (i.e., the number of hidden layers) can increase the function’s representation
accuracy exponentially, but deep ANNs are difficult to implement in parallel (e.g., a hid-
den layer has to wait for output signals of a previous one), resulting in long computation
time. Considering the approximation power and the computation efficiency, we choose
four hidden layers and 200 neurons in each layer. Both ANNs in the forward and back-
ward passes of the CaNNwill make use of the hyper-parameters that are shown in Table 1.
In the backward pass, the DE algorithm, a gradient-free global optimizer, replaces Adam.
These values have shown to result in a robust neural network which converges well for a
variety of problem parameters.

4. Numerical Results

This section presents numerical experiments for using the ANN to extract implied infor-
mation from American options. We begin with the simplified CaNN, focussing on the
implied volatility, and later employ the CaNN to extract implied volatility and dividend.
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Note that we use the COSmethod described in the Appendix to compute American option
prices for the training data set and for the simulated market data in this section.

4.1. Computing Implied Volatility

In this section, we approximate only implied volatility. We use one forward pass to approx-
imate the inverse function, from an American option price to its corresponding implied
volatility, assuming the other parameters to be known.

Without loss of generality, we use a fixed spot price S0 = 1.0. Then, the input for
the ANN is made up of five parameters {log (V̂P

am),K, r, q, τ }. The two thresholds in
Equations (20) and (21) are ε1 = 0.0001 and ε2 = 0.001 for the data set.

The ANN is trained with American put options to optimize the weights of the ANN-
based solver for the computation of the implied volatility from the American options. We
define the measures as follows:

MSE = 1
n

n∑
i=1

(yi − ŷi)2, MAE = 1
n

n∑
i=1

|yi − ŷi|, MAPE = 1
n

n∑
i=1

|yi − ŷi|
yi

,

where y represents the true values of the American option prices, and ŷ represents the
ANN approximated values, with n being the number of samples. During training, theMSE
is used to find the weights and biases, while the other two measures MAE and MAPE are
monitored. The goodness of fit, R2, is also provided, which describes the closeness from
the predicted values to the true values. By using different measures, we evaluate the quality
of approximation from different angles.

After the model input parameters are sampled (here by LHS) over the specific domain,
the COS method is used to solve the corresponding American Black-Scholes pricing
model, resulting in the data collection {S0,K, τ , r, q, σ ,Vam}, where σ is considered the
ground-truth value. Afterwards, the variable σ is placed into the output layer of the ANN,
as the implied volatility σ ∗ ≡ σ for the data collection. Meanwhile, the other variables in
the collection are included in the input layer of the ANN, and more details are in Table 2.
The validation samples help avoid over-fitting during training the ANN. The test samples,
which the ANN did not encounter during training, are subsequently used to evaluate the
generalization performance of the trained ANN. There are around one million samples,
with 80% being used as training, 10% as validation, 10% as test samples. The learning rate
is halved every 400 epochs during training. After 4000 epochs, the training and validation
losses have converged.

Table 3 and Figure 9 present the performance of the trained ANN. The test performance
is close to the train performance, suggesting that the trained ANN generalizes well for
unseen data, as shown in Table 3. TheANNpredicted implied volatility values approximate
the true values accurately for both the train and test datasets, as is indicated by the R2

measure value in Figure 9. Moreover, the online prediction stage for the American option
implied volatility, requiring only the evaluation of the trained ANN, is much faster than
traditional iterative root-finding algorithms.

It is observed that the trained model performance tends to decrease when the pricing
model parameters gets close to the upper or lower bounds of the values in Table 2. In other
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Table 2. Training dataset for American options under the Black-
Scholesmodel; Although the spot price is fixed S0 = 1, onewould scale
the strike and option prices if needed.

ANN Parameters Value range Employed method

ANN Input Strike, K [0.60, 1.40] LHS
Time value, log (V̂Pam) (−11.51,−0.24) COS
Time to maturity, τ [0.05, 3.0] LHS
Interest rate, r [−0.05, 0.10] LHS
Dividend yield, q [−0.05, 0.10] LHS

ANN output Implied volatility, σ ∗ (0.01, 1.05) LHS

Notes: Here we use τ := T − t instead of the two variables T and t = 0. The upper
bound of the American put prices is set to 1.8. LHS stands for Latin Hypercube
Sampling.

Table 3. Multiple measures are used to evaluate the performance.

– MSE MAE MAPE R2

Training 4.33 ·10−7 2.44·10−4 1.11·10−3 0.999994
Testing 4.60·10−7 2.51·10−4 1.15·10−3 0.999993

Figure 9. Predicted versus ground-truth implied volatility value on the test data set. Here the actual
values are prescribed. Left: R2 = 0.999994; Right: R2 = 0.999993. (a) Training (b) Testing.

words, outliers are most likely to appear near the boundary. Thus the training data set is
recommended to have a wider parameter range than the test range of interest.

4.2. Computing Implied Information

Next, we will approximate the implied volatility and the implied dividend yield simultane-
ously from the observed American option prices using the CaNN. The CaNN is based on
a forward and a backward pass, that are implemented in a sequential way.

Herewe extend the original CaNNby using one forward pass to approximate twoAmer-
ican option prices, a put and a call value. The input for the neural network in the forward
pass consists of (S0,K, r, q, σ , τ), and the output comprises a pair of American prices, that
is (ṼP

am, ṼC
am). As the neural network gives us two output variables, the loss function of the
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Table 4. Training data set for the forward pass. We fix S0 =
1, and sample strike prices K to generate different money-
ness levels.

ANN Parameters Value range Method

Forward input Strike, K [0.45, 1.55] LHS
Time to maturity, τ [0.08, 3.05] LHS
Risk-free rate, r [−0.1, 0.25] LHS
Dividend yield, q [−0.1, 0.25] LHS
Implied volatility, σ (0.01, 1.05) LHS

Forward output American put, VPam (0, 1.8) COS
American call, VCam (0, 1.2) COS

Notes: The total number of the data samples is nearly onemillion, with
80% training, 10% validation, 10% test samples. Note that the Amer-
ican call option prices are obtained through the put-call symmetry,
where the corresponding put prices are first computed by the COS
method.

Table 5. The performance of the CaNN forward pass with two outputs.

– Option MSE MAE MAPE R2

Training call 1.40 × 10−7 3.00 × 10−4 1.25 × 10−3 0.9999965
put 2.54 × 10−7 4.24 × 10−4 1.64 × 10−3 0.9999959

Testing call 1.43 × 10−7 3.02 × 10−4 1.27 × 10−3 0.9999964
put 2.55 × 10−7 4.26 × 10−4 1.64 × 10−3 0.9999959

forward pass includes two components,

MSE = 1
2n

n∑
i=1

{(ṼP
am,i − VP,mod

am,i )2 + (ṼC
am,i − VC,mod

am,i )2}, (29)

where VP,mod
am and VC,mod

am stand for the American put and call prices, respectively, that are
generated by the American option Black-Scholes model. This rule also applies toMAE and
MAPE. There are four hidden layers with 200 neurons each layer, as shown in Table 1. The
total number of hidden parameters is 122,202, and the loss function, Equation (29), is used
to update the hidden layers of the CaNN during the training stage. The training data set is
constructed according to the parameter ranges in Table 4, where the COS method is used
to compute American option prices for both the training data set and the simulatedmarket
data. Based on a converging and accurate training phase, the performance of the CaNN’s
forward pass is presented in Table 5. The results, for both calls and puts, are satisfactory,
achieving very high levels of precision in all the considered measures.

After performing the forward pass, in the CaNN’s backward (calibration) pass the
implied parameters are determined, in our current setting. Supposing each option quote in
the market includes American call and put prices, the idea behind the backward pass is to
determine two parameters (σ ∗, q∗)within the American Black-Scholes model to optimally
match the pair of market option prices, given the interest rate r, maturity time T, strike
price K, and spot price S0. The objective function for the calibration procedure is found in
Formula (28), which is equivalent to Criterion (29) in the case of n = 1. In practice, the
market price is taken to be the mid-price of the bid and ask prices.
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Table 6. Examples of using CaNN to extract implied volatility and implied dividend.

K/S0 T r σ † q† Cmktam Pmktam σ ∗ q∗

1.0 0.5 −0.04 0.1 0.06 0.0146 0.0597 0.099 0.059
1.1 0.5 −0.04 0.2 −0.06 0.0255 0.1181 0.198 −0.061
1.0 0.75 0.0 0.3 −0.02 0.1119 0.0976 0.300 −0.020
1.2 1.0 −0.04 0.4 0.08 0.0603 0.3810 0.40 0.080
0.8 1.0 0.02 0.3 0.02 0.2322 0.03472 0.299 0.020
0.7 1.25 0.0 0.4 −0.04 0.3886 0.0378 0.399 −0.040

†Represents the prescribed values.∗Represents the calibrated values.

Table 7. The parameter range for the systemic experiment.

Parameter Interval Step Number

σ [0.10, 0.45] 0.05 8
q [−0.06, 0.08] 0.02 8
K [0.70, 1.20] 0.10 6
τ [0.50, 1.50] 0.25 5
r [−0.04, 0.06] 0.02 6
Pmktam [0.70, 1.20] – 9271
Cmktam [0.70, 1.20] – 9271

Remark: The objective function, under the CaNN, can also be defined differently taking
into account the bid-ask spread, Delta (the sensitivity of an option’s value to the underlying
asset price) weighting, and other factors. This is however out of our scope here.

In order to evaluate the approach, we prescribe model parameters and investigate how
accurately the CaNN can recover them. Table 6 presents a set of examples, including many
different scenarios, e.g., ITM and OTM scenario’s, are considered. The results in Table 6
suggest that the CaNN can recover the implied volatility and implied dividend highly accu-
rately from our ‘artificial market option data’. Even when interest rates and dividend yields
are negative, the CaNN recovers the true values without any stalling of the convergence.
Themethod’s robustnessmay be attributed to the robust numerical solver generating accu-
rate option prices for a wide range of model parameters, the designed neural network
providing sufficient approximation capacity, and the gradient-free optimizer (i.e., DE) to
globally search the solution space.

For the DE, a search interval is required for each parameter, and we provide q ∈
[−0.08, 0.1] and σ ∗ ∈ (0, 1.0). During the mutation operation in the DE, the population
size of each generation is taken as a small number, here 10. We choose ‘best1bin’ as the
mutation strategy, that is, the best candidate of the previous generation enters the muta-
tion. During the crossover stage, the crossover possibility is set to 0.7. During the selection
stage, all new trial candidates with the objective function can be processed in parallel, and
the DE convergence tolerance is set to 0.01. As the number of calibration parameters is
only two, the computation time on a CPU is around 0.37 seconds using the sequential DE
and is less than 0.1 second using the parallel version of the DE method.

Furthermore, a systemic test is conducted to assess the averaged performance over a
large number of cases. We generate equally-spaced samples over a certain interval accord-
ing to Table 7, but remove the samples that are connected to early-exercise region option
prices. The experiment ends up with 9271 test cases. The results in Table 8 suggest that the
proposed approach performs very well under a wide variety of option market conditions
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Table 8. With a CPU (Intel i5) and a GPU(NVIDIA
Tesla P100), the averaged performance of the CaNN
estimating implied volatility and implied dividend
based on 9271 different test cases.

Absolute deviation Computational cost

|σ † − σ ∗| 6.65 × 10−3 CPU time (seconds) 0.08
|q† − q∗| 8.56 × 10−4 GPU time (seconds) 0.04

Note: The averaged number of function evaluations is 1060.

at a reduced computational cost. The calibration speed is due to the efficient forward pass
and the parallel, gradient-free DE optimizer. Basically the forward pass serves as a fast
numerical solver for the American pricing model. Additionally, with two output prices,
the forward pass requires half of the computational costs.

5. Conclusion

We studied the problem of pricing American options and extended a data-driven machine
learningmethod to extract the implied volatility and implied dividend yield from observed
market American option prices in a fast and robust way.

For computing the American implied volatility, we explained that the domain for
the inverse function should be equivalent to the continuation regions of the American
options. The ANN-based approach builds an approximating function and addresses com-
plex boundaries of the definition domain, by means of the different off-line and on-line
stages. More specifically, we used two conditions to classify the random data samples in
the domain in the off-line stage. The definition domain is represented by data points which
lie in the continuation regions. Subsequently, a neural network was trained on those sam-
ples to approximate the inverse function. This data-driven approach avoids an iterative
algorithm which may suffer from convergence problems. Due to the off-line definition of
the domain, our approach also successfully dealt with negative interest rates and dividend
yields, where two early-exercise regionsmay appear. In short, the offline-online decoupling
brings much flexibility.

Furthermore, we presented a method for finding simultaneously implied dividend and
implied volatility from American options using a calibration approach. The CaNN, which
consists of an efficient solver and a fast global optimizer, is employed to carry out the cal-
ibration procedure. As a result, the early-exercise premiums, which the European option
put-call parity relation fails to deal with, are handled successfully. The parallel global opti-
mizer prevents the CaNN from stopping in the early-exercise regions and allows to achieve
a good quality solution in a short amount of time. The numerical experiments demonstrate
that the CaNN is able to accurately extract multiple pieces of implied information from
American options. A continuous dividend yield is considered in this paper, and it should
be feasible to extend the approach to deal with time-dependent or discrete dividends.
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Appendix. Pricing American options by the COSmethod

For the valuation of American options, we use Richardson extrapolation on a series of Bermudan
options with an increasing number of exercise opportunities. We start with a Bermudan option,
where the holder has the right to exercise the contract at pre-specified dates before maturity. With
t0 being initial time, we assume there areM pre-specified exercise dates, and have {t1, . . . , tM} as the
collection of all exercise dates. The regular time interval reads �t := (tm − tm−1), t0 < t1 < · · · <

tM = T. With the help of the risk-neutral valuation, we arrive at the pricing formula for a Bermudan
option withM exercise dates, form = M,M − 1, . . . , 2:⎧⎨

⎩c(tm−1, x) = e−r�t
∫

R

V(tm, y)f (y | x) dy,
Vber(tm−1, x) = max (h(tm−1, x), c(tm−1, x)) ,

(A1)

followed by

Vber(t0, x) = e−r�t
∫

R

V(t1, y)f (y | x) dy. (A2)

where f (·) is the conditional density function, and the state variables x and y are the log-prices and
separately defined as

x := log(S(tm−1)/K) and y := log(S(tm)/K),

where S(tm) stands for the stock price at time tm, and K for the strike price. FunctionsV(t, x), c(t, x)
and h(t, x) represent the option value, the continuation value and the log-price payoff at time t,
respectively, for example,

h(T, x) = max [αK(ex − 1), 0], α =
{
1 for a call,
−1 for a put. (A3)

A.1 Pricing BermudanOptions

The COS method is generally based on employing a Fourier cosine expansion to approximate the
density function on a truncated domain [a, b],

f (y | x) ≈ 2
b − a

N−1∑′

j=0



(
ϕ

(
jπ

b − a
; x,�t

)
exp

(
−i

akπ
b − a

))
cos

(
kπ

y − a
b − a

)
, (A4)

where ϕ(u; x, t) represents the characteristic function of the log-asset price, x := log(S(t)/K), and
the notation

∑′
means that the first term in the summation is weighted by one-half.

With the centre of the interval x0 := log(S0/K), the integration range, [a, b], is defined as follows,

[a, b] :=
[
(ξ1 + x0) − L

√
ξ2, (ξ1 + x0) + L

√
ξ2

]
, (A5)

where L is a user-defined parameter to achieve a certain integration accuracy, and parameters
ξi represent the corresponding cumulants of the underlying stochastic process, see Zhang and
Oosterlee (2012).

We define the following formula,

φ(t, u) := ϕ(u; x = 0, t). (A6)

For the Black-Scholes dynamics in Formula (1) under the log-asset price, we have

φ(t, u) = exp
(
iut

(
r − q − 1

2
σ 2

)
− 1

2
σ 2u2t

)
,

ξ1 =
(
r − q − 1

2
σ 2

)
t, ξ2 = 1

2
σ 2t, ξ4 = 0.
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The continuation value in (A1), which resembles a European option between two consecutive
exercise dates, can be computed through the COS formula,

c(tm−1, x) = e−r�t
N−1∑′

k=0



(

φ

(
�t,

kπ
b − a

)
eikπ

x−a
b−a

)
Vk(tm), (A7)

where N is the number of Fourier cosine items. The Vk(tm) terms are the so-called option coeffi-
cients, to be computed depending on the early-exercise region.

An early-exercise point, x∗
m, at time tm, is a point where the continuation value equals the payoff,

i.e., c(x∗
m, tm) = H(x∗

m, tm). We will first derive the induction formula for Vk(t1) for a single early-
exercise point, and then extend it to the case of two early-exercise points. The early-exercise point
is determined by means of a root-finding algorithm, for example, Newton’s method. With x∗

m, the
option coefficients Vk(tm) can be split into two components: One on the interval [a, x∗

m] and the
other on (x∗

m, b] (i.e., on the holding or stopping region),

Vk(tm) =
{
Ck(a, x∗

m, tm) + Gk(x∗
m, b), for a call,

Gk(a, x∗
m) + Ck(x∗

m, b, tm), for a put, (A8)

form = M − 1,M − 2, . . . , 1. When tm = tM at the terminal time,

Vk(tM) =
{
Gk(0, b), for a call,
Gk(a, 0), for a put. (A9)

With the COS method, we have

Gk(x1, x2) := 2
b − a

∫ x2

x1
h(tm, x) cos

(
kπ

x − a
b − a

)
dx, (A10)

and

Ck(x1, x2, tm) := 2
b − a

∫ x2

x1
c(tm, x) cos

(
kπ

x − a
b − a

)
dx, (A11)

for k = 0, 1, . . . ,N − 1 and m = 1, 2, . . . ,M, there are analytic solutions for Gk(x1, x2) in (A10),
since the payoff functionh(x, tm) is known. The termsCk(x1, x2, tm) can be computed inO(N log2 N)

operations under the Black-Scholes dynamics.
At times tm, m = 1, 2, . . . ,M, from Equations (A1) and (A7), we obtain an approximation for

c(tm, x). Afterwards, c(tm, x) is inserted into (A11). Interchanging summation and integration gives
the following coefficients, Ck(x1, x2, tm):

Ck(x1, x2, tm) := e−r�t
N−1∑′

j=0



(
φ

(
�t,

jπ
b − a

)
Vj(tm+1) · Hk,j(x1, x2)

)
, (A12)

where Hk,j(x1, x2) is computed in the following integrals,

Hk,j(x1, x2) = 2
b − a

∫ x2

x1
eijπ

x−a
b−a cos

(
kπ

x − a
b − a

)
dx.

With the help of basic calculus, the term Hk,j(x1, x2) can be further divided into two parts,

Hk,j(x1, x2) = − i
π

(Hs
k,j(x1, x2) + Hc

k,j(x1, x2)).

Because Hs
k,j(x1, x2) = Hs

k+1,j+1(x1, x2) and Hc
k,j(x1, x2) = Hc

k+1,j−1(x1, x2), we get a Toeplitz and
Hankel structure in the matrices Hs and Hc, respectively. Therefore the Fast Fourier Transform
can be employed for highly efficient matrix-vector multiplication, and the resulting computa-
tional complexity of Ck(x1, x2, tm) is reduced to O(N log2 N). In addition, the Greeks of American
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Black-Scholes option prices can be easily approximated based on Equation (A7), for example,

Vega ≈ ∂c(tm−1, x)
∂σ

= e−r�t
N−1∑′

k=0



⎛
⎝∂φ

(
�t, kπ

b−a

)
∂σ

eikπ
x−a
b−a

⎞
⎠Vk(tm), (A13)

Here we extend this Bermudan COS method to deal with two early-exercise points. Suppose there
are at most two early-exercise points x∗

m1 < x∗
m2 at time tm. Thus, we have three intervals while

computing Vk(tm), that is, [a, x∗
m1], [x

∗
m1, x

∗
m2], and [x∗

m2, b]. Take a Bermudan put as an example,

Vk(tm) = C1
k(a, x

∗
m1, tm) + Gk(x∗

m1, x
∗
m2) + C2

k(x
∗
m2, b, tm), (A14)

for m = M − 1,M − 2, . . . , 1 and Vk(tM) = Gk(a, 0) when tm = tM . There are two continuation
valuesC1

k andC
2
K correspondingly. In such case, two roots x∗

m1 and x
∗
m2 are computed, with different,

smartly selected, starting points for the Newton’s method.

A.2 Pricing American Options

The extrapolation-based pricing method combined with the COS computations for Bermudan
options to price American options has been described in Fang and Oosterlee (2009), and a brief
description is given in this section.

Let Vber(M) denote the value of a Bermudan option withM exercise dates, considering maturity
T and �t = T/M which is a time interval between two consecutive exercise dates, the American
option value Vam can be approximated by applying the following 4-point Richardson extrapolation
scheme,

Vam(�) ≈ 1
21

(
64Vber(2�+3) − 56Vber(2�+2) + 14Vber(2�+1) − Vber(2�)

)
, (A15)

where parameter � determines the number of the exercise dates considered for each Bermudan
option involved.

Remark: The binomial trees technique is also a suitable candidate for American option valuation,
since it can accurately deal with two early-exercise points when pricing American options. However,
the COS method provides faster computation and the Greeks come without any extra cost.
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