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In this paper we prove convergence rates for time discretization schemes for semilinear stochastic 
evolution equations with additive or multiplicative Gaussian noise, where the leading operator A is the 
generator of a strongly continuous semigroup S on a Hilbert space X, and the focus is on nonparabolic 
problems. The main results are optimal bounds for the uniform strong error 

E∞
k :=

(
E sup 

j∈{0,...,Nk}
‖U(tj) − Uj‖p

)1/p 
, 

where p ∈ [2, ∞), U is the mild solution, Uj is obtained from a time discretization scheme, k is the step 
size and Nk = T/k. The usual schemes such as the exponential Euler (EE), the implicit Euler (IE), the 
Crank–Nicolson (CN) method, etc. are included as special cases. Under conditions on the nonlinearity 
and the noise, we show 

• E∞
k � k

√
log(T/k) (linear equation, additive noise, general S) 

• E∞
k �

√
k
√

log(T/k) (nonlinear equation, multiplicative noise, contractive S) 

• E∞
k � k

√
log(T/k) (nonlinear wave equation, multiplicative noise), 

for a large class of time discretization schemes. The logarithmic factor can be removed if the EE method is 
used with a (quasi)-contractive S. The obtained bounds coincide with the optimal bounds for SDEs. Most 
of the existing literature is concerned with bounds for the simpler pointwise strong error 

Ek :=
(

sup 
j∈{0,...,Nk} 

E‖U(tj) − Uj‖p
)1/p 

. 

Applications to Maxwell equations, Schrödinger equations and wave equations are included. For these 
equations, our results improve and reprove several existing results with a unified method and provide the 
first results known for the IE and the CN method. 

Keywords : time discretization schemes; pathwise uniform convergence; SPDEs; optimal convergence 
rates; stochastic convolutions; stochastic wave equation. 
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2 K. KLIOBA AND M. VERAAR

1. Introduction 

In this paper we consider stochastic PDEs driven by an additive or multiplicative Gaussian noise. The 
equations we consider can be written as abstract stochastic evolution equations on a Hilbert space X of 
the form

{
dU = (AU + F(U)) dt + G(U) dWH on [0, T], 

U(0) = u0 ∈ Lp(Ω; X). (1.1) 

Here, A is the generator of a C0-semigroup (S(t))t≥0, WH is a cylindrical Brownian motion, F and G are 
globally Lipschitz, u0 is the initial data, and p ∈ [2, ∞).

Our aim is to obtain strong convergence rates for temporal discretization schemes that cover the 
hyperbolic setting. The hyperbolic setting has been extensively studied in recent years (see Kovács et al. 
(2010, 2012, 2013, 2020); Cohen et al. (2013); Wang et al. (2014); Wang (2015); Anton et al. (2016); 
Cohen & Quer-Sardanyons (2016); Anton & Cohen (2018); Cui & Hong (2018); Cox et al. (2019); Harms 
& Müller (2019); Cohen et al. (2020); Banjai et al. (2021); Cui (2021); Jacobe de Naurois et al. (2021); 
Cohen & Lang (2022); Hong et al. (2022); Berg et al. (2023); Bréhier & Cohen (2023) and references 
therein). In the parabolic setting, (i.e. (S(t))t≥0 being an analytic semigroup) regularization phenomena 
occur, which make it possible to prove very different convergence results. In the nonparabolic case, new 
methods to show convergence rates are needed and related to a way to obtain regularity. Kato’s setting 
for the hyperbolic case from his seminal work Kato (1975) creates a way to obtain this regularity, which 
has proven to be very useful in the analysis of quasilinear equations as well as their numerical treatment 
Hochbruck & Pažur (2017); Hochbruck et al. (2018); Kovács & Lubich (2018); Dörich & Hochbruck 
(2022); Schnaubelt (2023). 

The main idea in Kato’s setting is to consider two spaces X and Y with Y ↪→ X (or sometimes 
even three spaces) on which the operator A and the nonlinearities F and G can be analysed. In this way, 
one can create regularity of U and obtain better mapping properties of the nonlinearities. In numerical 
approximations, the obtained regularity can be used to obtain convergence rates, as illustrated for the 
deterministic case in the references above. 

The above setting often also applies to the parabolic case, in which, however, the required mapping 
properties of F on Y can often be avoided due to the regularising effect of the convolution with the 
analytic semigroup S. For these equations, it does not seem necessary to work with the Kato setting, 
as regularization phenomena can be exploited. For details on the parabolic case, the reader is referred 
to Gyöngy & Millet (2009); Jentzen & Kloeden (2009, 2011); Barth & Lang (2013); Cox & Neerven 
(2013); Kruse (2014); Lord et al. (2014); Jentzen & Röckner (2015); Kovács et al. (2015, 2018); Kamrani 
& Blömker (2017); Bessaih et al. (2018); Becker & Jentzen (2019); Anton et al. (2020); von Hallern & 
Rössler (2020); Diening et al. (2023) and references therein, as well as Remark 6.7. Consequently, our 
focus lies on the hyperbolic setting. 

1.1 Setting 

In the above-mentioned literature on the hyperbolic case (and often in the parabolic case), the error 
considered is the pointwise strong error 

sup 
j∈{0,...,Nk} 

E‖U(tj) − Uj‖p, (1.2)
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PATHWISE UNIFORM CONVERGENCE OF DISCRETIZATION SCHEMES 3

where U is the mild solution to (1.1), and (Uj)
Nk 
j=0 is an approximation of the solution given by a temporal 

discretization scheme of the form U0 = u0, 

Uj = RkUj−1 + kRkF(Uj−1) + RkG(Uj−1)ΔWj, j = 1, . . . , Nk. (1.3) 

Here, Nk = T/k is the number of points, k = tj − tj−1 is the uniform step size, tj = jk and ΔWj = 
WH(tj) − WH(tj−1). The operator Rk is an approximation of the semigroup S at time k. 

When performing numerical simulations to approximate the solution of a stochastic equation, one 
naturally wants the simulation to be close to the solution of (1.1). However, (1.2) being small does not 
provide enough information to conclude this, see Example 1.1. Also, from a probabilistic point of view 
(1.2) contains no information on the convergence of the path. Instead, it is a more meaningful question 
to find convergence rates for the uniform strong error 

E sup 
j∈{0,...,Nk}

‖U(tj) − Uj‖p, (1.4) 

where now the supremum over j is inside the expectation. In the deterministic setting there is no difference 
between ( 1.2) and (1.4). It is a widely known open problem in the field to find optimal estimates for (1.4). 
Such estimates where the supremum is inside the expectation are usually called maximal estimates, and 
there is an enormous literature on maximal estimates for general stochastic processes Talagrand (2021). 
However, for processes that do not have any Gaussian or martingale structure it can be quite complicated 
to prove (sharp) maximal estimates. Even maximal estimates for the mild solution U to (1.1) with F = 0 
and G(u) replaced by a progressively measurable g ∈ L2(Ω × (0, T); X) are unknown in general (see 
the survey (van Neerven & Veraar, 2020, Section 4) for details). The difference between the errors (1.2) 
and (1.4) is illustrated in the following simple example. 

EXAMPLE 1.1. Let Ω = [0, 1] and let P denote the Lebesgue measure. For γ ∈ (0, 1], let vN : Ω × 
[0, 1] → R be given by vN(ω, t) = 1 if  |t − ω| < 1/(2Nγ ), and zero otherwise. Then one can check that 
the following error estimates hold: 

sup 
t∈[0,1] 

E|vN(t)|p ≤ 
1 

Nγ and E sup 
t∈[0,1] 

|vN(t)|p = 1. 

One even has supt∈[0,1] |vN(ω, t)| =  1 for any ω ∈ Ω . This shows the discrepancy between having the 
supremum inside the expectation or not. Continuity of vN plays no role here. Indeed, one can easily 
replace the indicator function by a continuous function without influencing the above error estimates. 

In the case where S generates a C0-group it is known how to estimate the uniform strong error (1.4) 
for the exponential Euler (EE) method (i.e. Rk = S(k)). In this case, one can use the group structure in 
the following way: ∫ t 

0 
S(t − s)g(s) dWH(s) = S(t)

∫ t 

0 
S(−s)g(s) dWH(s), 

and, similarly, for the discrete approximation. This makes it possible to avoid maximal estimates for 
stochastic convolutions and use martingale techniques instead. This technique was first applied in Wang 
(2015) to obtain optimal convergence rates for the uniform strong error of the exponential Euler method
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4 K. KLIOBA AND M. VERAAR

for abstract wave equations. Later, this technique was extended to other settings (see Anton & Cohen 
(2018); Cui et al. (2019); Cohen et al. (2020); Berg et al. (2023)) and, in particular, applied to stochastic 
Schrödinger and Maxwell equations. However, if S is not a group this technique is no longer applicable. 
Equations in which S is not a group include transport equations, equations with dissipation (e.g. damped 
wave equations), parabolic equations, etc. Of course, there are also many important systems where groups 
are unavailable (e.g. if a parabolic equation is coupled to a wave or transport equation). Even more 
importantly, for schemes involving rational approximations (e.g. implicit Euler (IE), Crank–Nicolson 
(CN)) it is unclear how to use the C0-group structure to estimate the uniform strong error, since the 
group does not appear in the scheme. 

On the other hand, for other discretization schemes estimates for the simpler pointwise strong error 
(1.2) are available (see e.g. the above-mentioned papers in the hyperbolic case). Moreover, simulations 
suggest that optimal rates of convergence for the uniform strong error (1.4) hold as well. The main goal 
of our work is to prove such optimal bounds for (1.4) for more general semigroups and more general 
schemes. In particular, we prove such bounds under the condition that S and R are contractive. This solves 
the open problem on optimal rates for (1.4) for this class of semigroups and numerical schemes up to a 
logarithmic factor. 

1.2 Some of the main results for multiplicative noise 

As in Kato’s setting for the hyperbolic case, let X and Y be Hilbert spaces with Y ↪→ X. For  α ∈ (0, 1] 
we say that R approximates S to order α on Y if there is a constant Cα ≥ 0 such that for all x ∈ Y , k > 0 
and j ∈ {0, . . . , Nk}

‖(S(tj) − Rj 
k)x‖X ≤ Cαkα‖x‖Y , 

where Rj 
k = (Rk)

j denotes the j-th power of the scheme at time step k. Our main result on convergence 
rates for (1.4) is as follows.  

THEOREM 1.2. Let X and Y be Hilbert spaces such that Y ↪→ X. Let  A be the generator of a C0-contraction 
semigroup (S(t))t≥0 on X and Y . Suppose that (Rk)k>0 is a time discretization scheme which is contractive 
on both X and Y , that R approximates S to order α ∈ (0, 1/2] on Y and that Y ↪→ D((−A)α ). Suppose that 
F : X → X and G : X → L2(H, X) are Lipschitz continuous and that F : Y → Y and G : Y → L2(H, Y) 
are of linear growth. Let p ∈ [2, ∞), u0 ∈ Lp(Ω; Y) and U be the mild solution to (1.1). Let k ∈ (0, T/2] 
and let (Uj)

Nk 
j=0 be given by (1.3). Then, there is a constant CT > 0 not depending on u0 and k such that

∥∥∥∥ max 
0≤j≤Nk

‖U(tj) − Uj‖X

∥∥∥∥
Lp(Ω) 

≤ CT(1 + ‖u0‖Lp(Ω;Y))k
α
√

log(T/k). (1.5) 

In particular, the approximations (Uj)j converge at rate α as k → 0 up to a logarithmic factor.

Theorem 1.2 applies to, among others, 

• Exponential Euler (EE): Rk = S(k); 

• Implicit Euler (IE): Rk = (1 − kA)−1; 

• Crank-Nicolson (CN): Rk = (2 + kA)(2 − kA)−1. 
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PATHWISE UNIFORM CONVERGENCE OF DISCRETIZATION SCHEMES 5

TABLE 1 Convergence rates α in case Y = D((−A)β ) in Theorem 1.2 

EE IE CN 

α β ∧ 1 
2 

β 
2 ∧ 1 

2 
2β 
3 ∧ 1 

2 

Higher order implicit Runge–Kutta methods such as Radau methods, BDF(2), Lobatto IIA, IIB and 
IIC, and some DIRK schemes are covered as well. The contractivity of the scheme R in the cases of EE 
and IE follows from the contractivity of the semigroup S. For other rational schemes, the contractivity 
of Rk = r(kA) follows from the holomorphy of the corresponding rational function r : C− → C and 
|r(z)| ≤  1 for all z ∈ C−, which, in particular, is satisfied for A-acceptable or A-stable schemes. These 
assertions follow from functional calculus (see Proposition 2.5). 

In the above, one usually takes Y to be a suitable intermediate space between X and D(A). In the  
special and important case that Y = D(A) one can take α = 1 

2 for all of the aforementioned schemes. 
More general convergence rates can be found in Table 1. 

Up to the logarithmic factor, the estimate (1.5) is optimal in the sense that the rate is the same as 
the rate for the initial value term on its own (i.e. with F = 0 and G = 0). Theorem 1.2 follows from 
Theorem 6.4. In the case of EE we show that the logarithmic factor can be omitted, see Corollary 6.6. 
In the case of additive noise a similar result is obtained in Theorem 3.1 for the range α ∈ (0, 1] for 
semigroups and schemes which are not necessarily contractive. 

The error estimate (1.5) can be extended from the grid points to the full time interval [0, T] assuming 
higher integrability of the initial values. Provided that u0 ∈ Lp0(Ω; Y) holds for some p0 ∈ (2, ∞) in 
addition to the assumptions of Theorem 1.2 the pathwise uniform error on the full time interval can be 
estimated as (see Theorem 6.13 below)

∥∥∥∥ sup 
t∈[0,T]

‖U(t) − Ũ(t)‖X

∥∥∥∥
Lp(Ω) 

≤ CT(1 + ‖u0‖Lp0 (Ω;Y))k
α
√

log(T/k) (1.6) 

for all p ∈ [2, p0) and the piecewise constant extension Ũ of (Uj)j=0,...,Nk to [0, T]. This rate of 
convergence is known to be optimal already for scalar SDEs. In practice, this implies that the rate of 
convergence in the grid points is maintained already for a piecewise constant interpolation to other times. 
The error estimate relies on new optimal path regularity estimates of stochastic convolutions in suitable 
log-Hölder spaces, which will be presented in Proposition 6.12. 

Applications to Schrödinger and Maxwell equations are included in the main text (see Sec-
tions 3.3, 6.4, and 6.6). Our results improve several results from the literature to more general schemes 
and general rates α. In Section 7, we include a setting for abstract wave equations, which was considered 
in Wang (2015) only for the exponential Euler method. We prove similar higher-order convergence rates 
for more general schemes and, in particular, recover Wang (2015) as a special case. 

Let us emphasize that schemes involving rational approximations, such as the implicit Euler or 
the Crank-Nicolson method, are in the focus of our work. While we improve existing results for the 
exponential Euler method, the main novelty of our work lies in the possibility to treat other schemes with 
a semigroup approach. To the best of the authors’ knowledge, the present work is the first contribution to
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6 K. KLIOBA AND M. VERAAR

pathwise uniform convergence rates for hyperbolic problems from a theoretical standpoint, both in the 
generality and for the concrete examples listed above. The main innovations are as follows: 

• first optimal pathwise uniform convergence rates for the implicit Euler method, the Crank-Nicolson 
method, and any other contractive time discretization scheme for hyperbolic SPDEs, 

• first use of Kato’s framework for SPDEs to systematically treat hyperbolic problems, 

• maximal estimates for the convergence rate rather than pointwise estimates, 

• path regularity results allowing to consider the error on the full time interval, 

• novel pathwise uniform stability estimates, 

• convergence up to order 1 for abstract wave equations for any contractive scheme. 

To make the above results applicable to implementable numerical schemes for SPDEs, one would 
additionally need a space discretization. Since the main novelty of our work lies in the treatment of 
temporal discretizations we will only consider the latter. Space discretization is usually performed 
by means of spectral Galerkin methods Wang et al. (2014); Jentzen & Röckner (2015); Kamrani & 
Blömker (2017); Jacobe de Naurois et al. (2021), finite differences Gyöngy & Millet (2009); Cohen 
& Quer-Sardanyons (2016); Anton et al. (2020), or finite elements Kovács et al. (2010, 2012, 2013, 
2020); Cohen et al. (2013); Kruse (2014); Anton et al. (2016), sometimes combined with a discontinuous 
Galerkin approach Banjai et al. (2021); Hong et al. (2022), or other methods in space or space-time Barth 
& Lang (2013); Cui & Hong (2018); Cui et al. (2019); Harms & Müller (2019); Diening et al. (2023); 
Le & Wichmann (2023). 

A detailed understanding of the global Lipschitz setting is a quintessential step towards the treatment 
of local Lipschitz nonlinearities, which occur more frequently in practice. Our result should be seen as 
a first step, and we plan to continue our work on uniform strong errors in a local Lipschitz setting in the 
near future. 

It was recently shown in Cox et al. (2020) that one can transfer (1.2) to (1.4) using some of the 
Hölder continuity in the p-th moment at the price of decreasing the convergence rate via the Kolmogorov– 
Chentsov theorem. The strength of this lies in the generality of possible applications. However, to get 
practically useful bounds in concrete cases there are limitations. A more detailed comparison is made in 
Remark 6.5. 

1.3 Method of proof 

For the proof of the convergence rate we need several ingredients. First of all, we need to prove that the 
mild solution actually is continuous with values in the subspace Y . This can be seen as the replacement 
of the usual regularization one has for parabolic equations in spirit of the Kato setting explained before. 
Surprisingly, we do not need any Lipschitz assumptions on F and G as mappings from Y to Y , but linear 
growth conditions suffice. This is crucial since Lipschitz estimates typically fail for Nemytskij mappings 
on Sobolev spaces of higher order (see Dahlberg (1979) and Remark 4.5). 

A key estimate in the proof is a new maximal inequality for discrete convolutions. In particular, this 
inequality will be used to prove the stability of schemes such as (1.3), i.e. 

E sup 
j∈{0,...,Nk}

‖Uj‖p 
Y ≤ C, 

where C is independent of the step size k. But it also plays a role in further estimates for the convergence. 
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PATHWISE UNIFORM CONVERGENCE OF DISCRETIZATION SCHEMES 7

A second key ingredient is an improved version of an estimate recently proven in van Neerven & 
Veraar (2021), which allows estimating stochastic integral processes that contain a supremum 

E sup 
i∈{1,...,n} 

sup 
t≥0

∥∥∥ ∫ t 

0 
Φi(s) dWH(s)

∥∥∥p 

X 
(1.7) 

by certain square functions with a square-root-logarithmic dependency on n (see Proposition 2.3 below). 
Finally, to prove the desired convergence rate of Theorem 1.2 we need to split the error obtained in 

(1.3) into  

1 (initial value part) + 4 (deterministic terms) + 5 (stochastic terms) = 10 terms. 

To estimate these terms we require precise estimates for ‖S(tj) − Rj 
k‖L(Y ,X), E‖U(t) − U(s)‖p, stability 

estimates, and maximal estimates for continuous and discrete convolutions. 
In the end, we derive an estimate for the error in terms of itself, and we apply a standard discrete Gron-

wall argument to deduce the desired error bound. In the case of the exponential Euler method some terms 
disappear since S(tj) = Rj 

k, which makes it possible to omit the logarithmic terms originating from terms 
such 
as (1.7). 

1.4 Overview 

• Section 2 contains the preliminaries for the rest of the paper. 

• Section 3 discusses the case of additive noise and semigroups that are not necessarily contractive. 
We prove convergence of rate α up to order one, in case the noise and data are regular enough. This 
is proved under the assumption that the numerical scheme Rk approximates the semigroup at rate 
α. Results are illustrated for the Schrödinger equation in which case the obtained results improve 
several bounds from the literature for the EE method and provide the first uniform bounds for a large 
class of other numerical methods including the IE and the CN method. 

• In Section 4 we introduce the nonlinear evolution equation with multiplicative noise that we consider 
in the rest of the paper. After recalling a standard well-posedness result we introduce a special case of 
the Kato setting and prove that the solution has regularity in the subspace Y in case of linear growth 
in the Y-setting (see Theorem 4.4). 

• Section 5 is concerned with the stability of the discretization schemes for the nonlinear evolution 
equation introduced in Section 4. The main stability result can be found in Proposition 5.1 and only 
requires linear growth. Hence, it is applicable on both X and Y . 

• Section 6 is central in the paper, and here we prove Theorem 1.2 for the nonlinear evolution equation 
introduced in Section 4 (see Theorem 6.4 for the extended version). Moreover, we prove the error 
bound (1.6) on the full time interval in Theorem 6.13. For this, we first establish a new optimal path 
regularity result for the solution in Proposition 6.12, which is of independent interest. In Sections 6.4 
and 6.6, we present applications to the Schrödinger equation as well as the Maxwell equation. A 
numerical simulation of the Schrödinger equation in Section 6.5 confirms the analytical convergence 
rates obtained. 
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8 K. KLIOBA AND M. VERAAR

• In Section 7, we consider abstract stochastic wave equations and obtain convergence rates up to 
order one (see Theorem 7.6). Although we are not in the setting of Section 6 an inspection of the 
proofs given there shows that certain terms behave better for abstract wave equations due to their 
second-order nature. Again, convergence rates are obtained for a large class of numerical schemes, 
and versions of (1.6) are obtained. Examples with trace class, space-time white noise, and smooth 
noise are included and can be found in Sections 7.4, 7.5, and 7.6, respectively. All these results are 
new for schemes different from the EE method. Most notably, for smooth noise we can explain the 
numerical convergence rates one sees in (Wang, 2015, Figure 6.1) for the IE and the CN method. 

2. Preliminaries 

Notation. Throughout the paper we fix a probability space (Ω , F ,P) with filtration (Ft)t∈[0,T]. Denote 
the progressive σ -algebra on (Ω , F , P) byP and the progressively measurable subspace of a given space 
by the index P . Moreover, H, X, and Y denote Hilbert spaces, where H is used to define the (Ft)t∈[0,T]-
cylindrical Brownian motion WH . The space of Hilbert–Schmidt operators from H to X is denoted by 
L2(H, X) and the Borel σ -algebra of X by B(X). Subsequently, we consider the final time T > 0 to be  
fixed and consider a uniform time grid with tj = jk, where k > 0 is the time step and j = 0, . . .  , Nk with 
Nk = T/k ∈ N, and define �t� := max{tj : tj ≤ t} for t ∈ [0, T]. By (S(t))t≥0, we denote a C0-semigroup 
and by (Rk)k>0 a numerical scheme that approximates S. For a given evolution equation (U(t))t∈[0,T] is 
the exact solution and Uj the numerical solution approximating U at time tj for j = 0, . . . , Nk. For  f and 
g in the respective spaces let ‖f ‖p,q,Z := ‖f ‖Lp(Ω;Lq(0,T;Z)) and |||g|||p,q,Z := ‖g‖Lp(Ω;Lq(0,T;L2(H,Z))). We  
use the notation f (x) � g(x) to denote that there is a constant C ≥ 0 such that for all x in the respective 
set, f (x) ≤ Cg(x). 

2.1 Stochastic integration 

The space L2(H, X) of Hilbert–Schmidt operators from H to X consists of all bounded operators R : 
H → X such that

‖R‖2 
L2(H,X) :=

∑
i∈I

‖Rhi‖2 
X < ∞, 

where (hi)i∈I is an orthonormal basis of H. If  R ∈ L2(H, X) the sum contains at most countably many 
nonvanishing terms. For R ∈ L2(H, X), (hi)i∈I as before, and γ = (γn)n≥1 centered i.i.d. normally 
distributed random variables we define 

Rγ =
∑
n≥1 

γnRhn, (2.1) 

where the convergence is in Lp(Ω; X) for p < ∞ and almost surely (see Hytönen et al., 2017, Corollary 
6.4.12). 

In the stochastic integrals appearing in expressions such as (1.7) the integrator is an H-cylindrical 
Brownian motion to take L2(H, X)-valued integrands into account. An H-cylindrical Brownian motion 
is a mapping WH : L2(0, T; H) → L2(Ω) such that 

(i) WHb is Gaussian for all b ∈ L2(0, T; H), 

(ii) E(WHb1 · WHb2) = 〈b1, b2〉L2(0,T;H) for all b1, b2 ∈ L2(0, T; H), 
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PATHWISE UNIFORM CONVERGENCE OF DISCRETIZATION SCHEMES 9

(iii) WHb is Ft-measurable for all b ∈ L2(0, T; H) with support in [0, t], 

(iv) WHb is independent of Fs for all b ∈ L2(0, T; H) with support in [s, T], 

where we include a complex conjugate on WHb2 in case we want to use a complex H-cylindrical 
Brownian motion. For h ∈ H and t ∈ [0, T] we use the shorthand notation WH(t)h := WH(1(0,t) ⊗ h). 
Consequently, (WH(t)h)t∈[0,T] is a Brownian motion for each fixed h ∈ H, which is standard if and only 
if ‖h‖H = 1. In the special case H = R this notion coincides with real-valued Brownian motions. We 
refer to an H-valued stochastic process (W(t))t≥0 as a Q-Wiener process if W(0) = 0, W has continuous 
trajectories and independent increments, and W(t)− W(s) is normally distributed with parameters 0 and 
(t − s)Q for t ≥ s ≥ 0. The operator Q is in L(H), positive self-adjoint, and of trace class. One can show 
that W is a Q-Wiener process if and only if there exists an H-cylindrical Brownian motion WH such that 
Q1/2WH :=

∑
n≥1 Q

1/2hnWH(t)hn = W(t) for an orthonormal basis (hn)n≥1 of H (cf. (2.1)). To consider 
an equation such as (1.1) with a Q-Wiener process W instead of a cylindrical Brownian motion one can 
replace G by GQ1/2 and reduce to the cylindrical case. For further properties of H-cylindrical Brownian 
motions, Q-Wiener processes, and the Itô integral we refer to Da Prato & Zabczyk (2014). 

To estimate Itô integrals w.r.t. such H-cylindrical Brownian motions, the Burkholder–Davis–Gundy 
inequalities are particularly helpful. They imply that

(
E sup 

t∈[0,T]

∥∥∥∥∫ t 

0 
g(s) dWH(s)

∥∥∥∥p 

X

)1/p 
≤ Bp‖g‖Lp(Ω;L2(0,T;L2(H,X))). (2.2) 

In particular, one can take B2 = 2 (by Doob’s maximal inequality (Hytönen et al., 2016, Thm. 3.2.2) and 
the Itô isometry) and Bp = 4√

p for p > 2. Indeed, this follows by combining the scalar result of (Carlen 
& Krée, 1991, Theorem A) and (Ren, 2008, Theorem 2) with the reduction technique in (Kallenberg & 
Sztencel, 1991, Theorem 3.1) and the simple estimate ‖(ξ2 + η2)1/2‖p ≤ (‖ξ‖2 

p + ‖η‖2 
p)

1/2 valid for 
real-valued random variables ξ and η, and p ∈ [2, ∞). 

DEFINITION 2.1. A C0-semigroup (S(t))t≥0 is said to be quasi-contractive with parameter λ ≥ 0 if
‖S(t)‖ ≤ eλt for all t ≥ 0. 

The following maximal inequality for stochastic convolutions follows from Hausenblas & Seidler 
(2008), where the contractive case is treated. The quasicontractive case follows from a scaling argument. 

THEOREM 2.2. Let X be a Hilbert space and let (S(t))t≥0 be a quasi-contractive semigroup on X with 
parameter λ ≥ 0. Then for p ∈ [2, ∞) 

E sup 
t∈[0,T]

∥∥∥∥∫ t 

0 
S(t − s)g(s) dWH(s)

∥∥∥∥p 

X 
≤ epλTBp 

p‖g‖p 
Lp(Ω;L2(0,T;L2(H,X))) , 

where Bp is the constant from ( 2.2). In particular, one can take B2 = 2 and Bp = 4√
p for 2 < p < ∞. 

Next, we state a special maximal inequality, which will be needed to estimate stochastic integral 
terms without semigroups. A similar result with constant of order log(N) can be found in (van Neerven 
& Veraar, 2021, Proposition 2.7).
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10 K. KLIOBA AND M. VERAAR

PROPOSITION 2.3. Let X be a Hilbert space and let 0 < p < ∞. Let  Φ := (Φ(j) )N 
j=1 be a finite sequence 

in Lp 
P (Ω; L2(0, T;L2(H, X))) and set 

IΦ 
N (p) :=

(
E sup 

t∈[0,T],j∈{1,...,N}

∥∥∥∥ ∫ t 

0 
Φ(j) 

s dWH(s)

∥∥∥∥p 

X

)1/p 
. 

Then for some Kp ≥ 0 

IΦ 
N (p) ≤ Kp max

{√
log(N),

√
p
}‖Φ‖Lp(Ω;�∞

N (L
2(0,T;L2(H,X)))) if N ≥ 2. 

If 2 ≤ p < ∞ this estimate holds with Kp = K := 4 exp(1 + 1 
2e ) ≈ 13.07, which is p-independent. 

The above result was pointed out to the authors by Sonja Cox. The short proof below was pointed 
out to us by Emiel Lorist. A more general version can be found in (Cox & van Winden, 2024, Theorem 
3.1). 

Proof. To prove the result, by approximation, we may assume that each Φ(j) is contained in 
L∞(Ω; L2(0, T;L2(H, X))). First, consider pN = log(N) with N ≥ 8. Then, using �pN ↪→ �∞ 

contractively and the Burkholder–Davis–Gundy inequalities with Bp ≤ 4√
p in X (see (2.2)) we find 

IΦ 
N (pN) ≤

( N∑
j=1 

E sup 
t∈[0,T]

∥∥∥∥ ∫ t 

0 
Φ(j) 

s dWH(s)

∥∥∥∥pN 

X

)1/pN 

≤ 4
√

pN

( N∑
j=1 

E‖Φ(j)‖pN 
L2(0,T;L2(H,X))

)1/pN 

≤ 4√
pNN1/pN ‖Φ‖LpN (Ω;�∞

N (L
2(0,T;L2(H,X)))). 

Since √pNN1/p = e
√

log(N) this proves the result for p = pN . To deduce the result for arbitrary p ∈ 
(0, pN) note that by Lenglart’s inequality for increasing functions ( Geiss & Scheutzow, 2021, Theorem 
2.2) and with r = p/pN ∈ (0, 1) 

IΦ 
N (p)p = IΦ 

N (rpN)rpN ≤ r−r(4e
√

log(N)
)p 
E‖Φ‖rpN

�∞
N (L

2(0,T;L2(H,X))) 

= r−r(4e
√

log(N)
)p‖Φ‖p 

Lp(Ω;�∞
N (L

2(0,T;L2(H,X)))) . 

Taking 1/p-th powers the result follows. Moreover, for p ∈ [2, pN) the result with the stated constant 
follows after using r−r/p = ( pN 

p )
1/pN ≤ (

pN 
2 )

1/pN ≤ exp( 1 
2e ). 

If p ∈ (pN , ∞) then using Minkowski’s inequality we obtain 

IΦ 
N (p)p ≤ E

∣∣∣∣ N∑
j=1 

sup 
t∈[0,T]

∥∥∥∥ ∫ t 

0 
Φ(j) 

s dWH(s)

∥∥∥∥pN 

X

∣∣∣∣p/pN 

≤
( N∑

j=1

∣∣∣∣E sup 
t∈[0,T]

∥∥∥∥ ∫ t 

0 
Φ(j) 

s dWH(s)

∥∥∥∥p 

X

∣∣∣∣pN/p)p/pN 

≤ Np/pN sup 
j∈{1,...N} 

E sup 
t∈[0,T]

∥∥∥∥ ∫ t 

0 
Φ(j) 

s dWH(s)

∥∥∥∥p 

X 
≤ (4e

√
p)p sup 

j∈{1,...N} 
E‖Φ(j)‖p 

L2(0,T;L2(H,X)) , 
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PATHWISE UNIFORM CONVERGENCE OF DISCRETIZATION SCHEMES 11

where we used (2.2) once more. Taking 1/p-th powers and pulling the supremum over j inside the 
expectation the required estimate follows. 

It remains to comment on the case 2 ≤ N ≤ 7. Again by Lenglart’s inequality it suffices to consider 
p ∈ [2, ∞). In this case, the triangle inequality and (2.2) give  

IΦ 
N ≤

( N∑
j=1 

E sup 
t∈[0,T]

∥∥∥∥ ∫ t 

0 
Φ(j) 

s dWH(s)

∥∥∥∥p 

X

)1/p 
≤ Bp

( N∑
j=1

‖Φ(j)‖p 
Lp(Ω;L2(0,T;L2(H,X)))

)1/p 

≤ 4√
pN1/p‖Φ‖Lp(Ω;�∞

N (L
2(0,T;L2(H,X)))) 

≤ 4 exp
(

1 + 
1 
2e

)
max{√log(N),

√
p}‖Φ‖Lp(Ω;�∞

N (L
2(0,T;L2(H,X)))), 

where the last estimate follows from N1/p ≤ √
7 ≤ exp(1 + 1 

2e ) for 2 ≤ N ≤ 7. �

2.2 Approximation of semigroups and interpolation 

An integral part of approximating solutions of a stochastic evolution equation concerns the approxima-
tion of a semigroup by some scheme. The following definition allows us to quantify the approximation 
behaviour. 

DEFINITION 2.4. Let X be a Hilbert space. An L(X)-valued scheme is a function R : [0, ∞) → L(X). We  
denote Rk := R(k) for k ≥ 0. Let Y be a Hilbert space which is continuously and densely embedded in 
X. If  A generates a C0-semigroup (S(t))t≥0 on X an L(X)-valued scheme R is said to approximate S to 
order α >  0 on Y or, equivalently, R converges of order α on Y if for all T > 0 there is a constant Cα ≥ 0 
such that

‖(S(jk) − Rj 
k)u‖X ≤ Cαkα‖u‖Y 

for all u ∈ Y , k > 0 and j ∈ N such that jk ∈ [0, T]. An L(X)-valued scheme R is said to be contractive 
if ‖Rk‖L(X) ≤ 1 for all k ≥ 0.

Subsequently, we will omit the index for norms in the space X. In the absence of nonlinear and noise 
terms the following schemes approximate S to different orders: 

• Exponential Euler (EE): Rk = S(k), any order α >  0 on  X; 

• Implicit Euler (IE): Rk = (1 − kA)−1, order α ∈ (0, 1] on D((−A)2α ); 

• Crank-Nicolson (CN): Rk = (2 + kA)(2 − kA)−1, order α ∈ (0, 2] on D((−A)3α/2) provided that 
(S(t))t≥0 is contractive. 

Contractivity of the semigroup and the approximating scheme play a central role in our theory. While 
the contractivity of EE is immediate from the contractivity of the semigroup we state a useful sufficient 
condition to verify the contractivity of rational schemes such as IE and CN below. One of the standard 
assumptions in the theory of semigroup approximation is that the scheme R stems from a rational function 
r : C− → C with |r(z)| ≤  1 for all z in the negative open halfplane C−. Under an additional consistency 
condition this condition is known as A-acceptability Brenner & Thomée (1979), and it certainly holds 
for A-stable schemes Dahlquist (1963).
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12 K. KLIOBA AND M. VERAAR

PROPOSITION 2.5. Let A be the generator of a C0-semigroup of contractions on a Hilbert space X. Suppose 
that r : C− → C is holomorphic, |r(z)| ≤  1 for all z ∈ C−, and let Rk = r(kA) for k > 0. Then, R is 
contractive. 

Proof. This is a consequence of the properties of the bounded H∞-calculus of −A as the negative 
generator of a contraction semigroup, since Rk = r(kA) = r(−k(−A)) is defined via H∞-calculus. 
The underlying theorem can be found in (Hytönen et al., 2017, Thm. 10.2.24). �

As a consequence of this proposition, contractive schemes include IE, CN, and some higher-order 
implicit Runge–Kutta methods such as Radau methods, BDF(2), Lobatto IIA, IIB and IIC as well as 
some DIRK schemes. 

A common choice for the spaces Y on which a given scheme approximates S are domains of fractional 
powers of A. An important property of these spaces is that they embed into the real interpolation spaces 
with parameter ∞, i.e. for α >  0 

D(Aα ) ↪→ DA(α, ∞). (2.3) 

Here, DA(α, ∞) denotes the real interpolation space (X, D(A))α,∞. On later occasions, also the real 
interpolation spaces (X, D(A))α,2 will be used. See Lunardi (1995); Triebel (1995) for details on 
interpolation spaces. 

Embeddings of the form (2.3) and properties of DA(α, ∞) allow us to obtain decay rates for 
semigroup differences as follows. Let (S(t))t≥0 be a C0-semigroup such that ‖S(t)‖ ≤  Meλt for some 
M ≥ 1 and λ ≥ 0 for all t ≥ 0. Such M and λ exist for every C0-semigroup (Engel & Nagel, 2000, Prop. 
5.5). Then ‖S(t) − S(s)‖L(X) ≤ 2MeλT for 0 ≤ s ≤ t ≤ T . Since

‖[S(t) − S(s)]x‖X =
∥∥∥∥∫ t 

s 
S(r)Ax dr

∥∥∥∥
X 

≤ MeλT(t − s)‖x‖D(A) 

for x ∈ D(A), we have ‖S(t) − S(s)‖L(D(A),X) ≤ 2MeλT(t − s). By interpolation,

‖S(t) − S(s)‖L(DA(α,∞),X) ≤ 21−αMeλT(t − s)α ≤ 2MeλT(t − s)α 

for α ∈ (0, 1). Let  Y be another Hilbert space such that Y ↪→ X. Under the assumption that Y ↪→ 
DA(α, ∞) continuously for some α ∈ (0, 1) or Y ↪→ D(A) continuously, in which case we set α = 1, 
this implies

‖S(t) − S(s)‖L(Y ,X) ≤ 2CYMeλT(t − s)α , (2.4) 

where CY denotes the embedding constant of Y into DA(α, ∞) or D(A).

2.3 Gronwall type lemmas 

We need the following variants of the classical Gronwall inequality.
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PATHWISE UNIFORM CONVERGENCE OF DISCRETIZATION SCHEMES 13

LEMMA 2.6. Let φ : [0, T] → [0, ∞) be a continuous function and let α, β ∈ [0, ∞) be constants. 
Suppose that 

φ(t) ≤ α + β
( ∫ t 

0 
φ(s)2 ds

)1/2 
, t ∈ [0, T]. 

Then 

φ(t) ≤ α(1 + β2t)1/2 exp
(1 

2 
+ 

1 
2 
β2t

)
, t ∈ [0, T]. 

Proof. Using (a + b)2 ≤ (1 + θ)a2 + (1 + θ−1)b2 for a, b ≥ 0 and θ >  0 we can  write  

φ(t)2 ≤ (1 + θ)α2 + β2(1 + θ−1)

∫ t 

0 
φ(s)2 ds, t ∈ [0, T]. 

Therefore, applying Gronwall’s inequality we see that 

φ(t)2 ≤ (1 + θ)α2 exp(β2(1 + θ−1)t). 

Taking θ = β2t we obtain 

φ(t)2 ≤ (1 + β2t)α2 exp(β2t + 1), 

which gives the desired estimate. �
In the same way, one can prove the following discrete analogue by using the discrete version of 

Gronwall’s lemma instead (see Kruse, 2014, Lemma A.3). 

LEMMA 2.7. Let α, β ≥ 0 and (ϕj)j≥0 be a nonnegative sequence. If 

ϕj ≤ α + β 

⎛⎝ j−1∑
i=0 

ϕ2 
i 

⎞⎠1/2 

for j ≥ 0, 

then 

ϕj ≤ α(1 + β2j)1/2 exp

(
1 
2 

+ 
1 
2 
β2j

)
for j ≥ 0. 

3. Convergence rates for additive noise 

In this section we present several results on convergence rates for linear equations with additive noise. The 
reason to start with this case is twofold. Higher convergence rates can be proved in this case. Moreover, 
it allows us to explain the new techniques in a simpler setting, which can help understand the more 
complicated multiplicative setting of Section 6.
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14 K. KLIOBA AND M. VERAAR

Consider the stochastic evolution equation with additive noise of the form 

dU = AU dt + g(t) dWH(t) on [0, T], U(0) = u0 ∈ Lp 
F0 

(Ω; X), (3.1) 

where A generates a C0-semigroup (S(t))t≥0 on a Hilbert space X with norm ‖ · ‖, WH is an H-
cylindrical Brownian motion for some Hilbert space H and p ∈ [2, ∞). For Hölder continuous noise 
g ∈ Lp 

P (Ω; Cα ([0, T];L2(H, X))), α ∈ (0, 1], mapping into a space Y ↪→ X, we prove rates of 
convergence for time discretization schemes. An improvement of the rate is shown for the exponential 
Euler method for quasicontractive semigroups. Results are illustrated for the nonlinear Schrödinger 
equation in Section 3.3. 

The mild solution to (3.1) for  t ∈ [0, T] is uniquely given by (Da Prato & Zabczyk, 2014, Chapters 
5,6) 

U(t) = S(t)u0 +
∫ t 

0 
S(t − s)g(s) dWH(s). (3.2) 

To approximate it, we employ a time discretization scheme R : [0, ∞) → L(X) with time step k > 0 on  
a uniform grid {tj = jk : j = 0, . . . , Nk} ⊆  [0, T] with final time T = tNk > 0 and Nk = T 

k ∈ N being 
the number of time steps. The discrete solution is given by U0 := u0 and 

Uj := RkUj−1 + Rkg(tj−1)ΔWj = Rj 
ku0 + 

j−1∑
i=0 

Rj−i 
k g(ti)ΔWi+1, j = 1, . . . , Nk, (3.3) 

with Wiener increments ΔWj := WH(tj) − WH(tj−1), where we used (  2.1). 

3.1 General semigroups 

Our first result concerns general C0-semigroups S. A further improvement under further conditions on S 
is discussed in Section 3.2. Below, we denote the Hölder seminorm in Cα ([0, T];L2(H, X)) by [·]α,X for 
α ∈ (0, 1] and let 

|||g|||p,∞,Y := ‖g‖Lp(Ω;C([0,T];L2(H,Y))), g ∈ Lp(Ω; C([0, T];L2(H, Y))). (3.4) 

THEOREM 3.1. Let X and Y be Hilbert spaces such that Y ↪→ X. Let  A be the generator of a C0-semigroup 
(S(t))t≥0 on X with ‖S(t)‖ ≤  Meλt for some M ≥ 1 and λ ≥ 0. Let (Rk)k>0 be a time discretization 
scheme and assume that R approximates S to order α ∈ (0, 1] on Y . Suppose that Y ↪→ DA(α, ∞) 
continuously if α ∈ (0, 1) or Y ↪→ D(A) continuously if α = 1. Let p ∈ [2, ∞), u0 ∈ Lp 

F0 
(Ω; Y) and 

g ∈ Lp 
P (Ω; C([0, T];L2(H, Y))) as well as g ∈ Lp 

P (Ω; Cα ([0, T];L2(H, X))). Denote by U the mild 
solution of (3.1) and by (Uj)j=0,...,Nk the temporal approximations as defined in (3.3). Then for Nk ≥ 2

∥∥∥∥ max 
0≤j≤Nk

‖U(tj) − Uj‖
∥∥∥∥

p 
≤ (

C1 + C2

√
max{log(T/k), p})kα
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PATHWISE UNIFORM CONVERGENCE OF DISCRETIZATION SCHEMES 15

with constants C1 := Cα‖u0‖Lp(Ω;Y) and 

C2 := 
K

√
T√

2α + 1

(
MeλT

∥∥[g]α,X

∥∥
p +

(
2MeλTCY + Cα

)
|||g|||p,∞,Y

)
, 

where Cα is as in Definition 2.4, K = 4 exp(1 + 1 
2e ) and CY denotes the embedding constant of Y into 

DA(α, ∞) or D(A). 
In particular, the approximations (Uj)j converge at rate min{α, 1} up to a logarithmic correction factor 

as k → 0. 

Proof. Define Sk(t) := Rj 
k for t ∈ (tj−1, tj] and let �t� as introduced above. Then the discrete solutions 

are given by the integral representation 

Uj = Rj 
ku0 +

∫ tj 

0 
Sk(tj − s)g(�s�) dWH(s). 

Combining this representation with the mild solution formula ( 3.2) the error can be bounded by 

E :=
∥∥∥ max 

0≤j≤Nk
‖U(tj) − Uj‖

∥∥∥
p 

≤
∥∥∥ max 

0≤j≤Nk
‖[S(tj) − Rj 

k]u0‖
∥∥∥

p 

+
∥∥∥ max 

0≤j≤Nk

∥∥∥ ∫ tj 

0 
S(tj − s)[g(s) − g(�s�)] dWH(s)

∥∥∥∥∥∥
p 

+
∥∥∥ max 

0≤j≤Nk

∥∥∥ ∫ tj 

0 
[S(tj − �s�) − S(tj − s)]g(�s�) dWH(s)

∥∥∥∥∥∥
p 

+
∥∥∥ max 

0≤j≤Nk

∥∥∥ ∫ tj 

0 
[S(tj − �s�) − Sk(tj − s)]g(�s�) dWH(s)

∥∥∥∥∥∥
p 

=: E1 + E2 + E3 + E4. (3.5) 

We proceed to estimate all four terms individually. Since R approximates S to order α on Y 

E1 ≤ Cα‖u0‖Lp(Ω;Y)k
α . (3.6) 

For the second term we note that for s ∈ [t�, t�+1) for some 0 ≤ � ≤ Nk − 1 the definition of the Hölder 
seminorm [·]α implies that P-almost surely

∥∥∥ j−1∑
i=0 

1[ti,ti+1)
(s)S(tj − s)[g(s) − g(ti)]

∥∥∥
L2(H,X) 

≤ ‖S(tj − s)‖L(X)‖g(s) − g(t�)‖L2(H,X) 

≤ MeλT [g]α,X(s − t�)
α . 
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16 K. KLIOBA AND M. VERAAR

Proposition 2.3 with Φ (j) s = ∑j−1 
i=0 1[ti,ti+1)

(s)S(tj − s)[g(s) − g(ti)] and Hölder continuity of g then yield 

E2 =
∥∥∥∥ max 

0≤j≤Nk

∥∥∥∥ ∫ tj 

0 

j−1∑
i=0 

1[ti,ti+1)
(s)S(tj − s)[g(s) − g(ti)] dWH(s)

∥∥∥∥∥∥∥∥
p 

≤ K
√

max{log(Nk), p}
∥∥∥( ∫ T 

0 
max 

1≤j≤Nk
‖Φ(j) 

s ‖2 
L2(H,X) ds

)1/2∥∥∥
p 

≤ KMeλT
√

max{log(Nk), p}
∥∥∥∥( Nk−1∑

l=0

∫ t�+1 

t�
[g]2 

α,X(s − t�)
2α ds

)1/2∥∥∥∥
p 

≤ KMeλT 1√
2α + 1

√
max{log(Nk), p}kα+1/2

∥∥∥∥( Nk−1∑
l=0 

[g]2 
α,X

)1/2∥∥∥∥
p 

= KMeλT
∥∥[g]α,X

∥∥
p 

√
T√

2α + 1
√

max{log(Nk), p}kα . (3.7) 

Analogously, with Φ (j) s = ∑j−1 
i=0 1[ti,ti+1)

(s)[S(tj − ti) − S(tj − s)]g(ti) for E3 we obtain 

E3 ≤ 2KMeλTCY 

√
T√

2α + 1
|||g|||p,∞,Y

√
max{log(Nk), p}kα (3.8) 

using pathwise boundedness of g, i.e. g(ω, ·) : [0, T] → L2(H, Y) being bounded for P-almost every 
ω ∈ Ω , and noting that by ( 2.4)∥∥[S(tj − t�) − S(tj − s)]g(t�)

∥∥
L2(H,X) ≤ 2MeλTCY(s − t�)

α‖g(t�)‖L2(H,Y) 

holds P-almost surely. Likewise, with Φ (j) s = ∑j−1 
i=0 1[ti,ti+1)

(s)[S(tj − ti) − Rj−i 
k ]g(ti) we obtain 

E4 ≤ KCα 

√
T√

2α + 1
|||g|||p,∞,Y

√
max{log(Nk), p}kα , (3.9) 

since R approximates S to order α on Y . The error bound follows from inserting (3.6), (3.7), (3.8), and 
(3.9) into (3.5). �

For the exponential Euler method, less regularity of the initial value suffices for the same convergence 
behaviour. The exponential Euler method is obtained by setting Rk = S(k) in (3.3), i.e. we would solve 
exactly in the absence of noise g. 

COROLLARY 3.2 (Exponential Euler). Let X and Y be Hilbert spaces such that Y ↪→ X. Let  A be the 
generator of a C0-semigroup (S(t))t≥0 on X with ‖S(t)‖ ≤  Meλt for some M ≥ 1 and λ ≥ 0. Assume 
that g ∈ Lp 

P (Ω; C([0, T];L2(H, Y))) and g ∈ Lp 
P (Ω; Cα ([0, T];L2(H, X))) for some α ∈ (0, 1]. Suppose 

that Y ↪→ DA(α, ∞) continuously if α ∈ (0, 1) or Y ↪→ D(A) continuously if α = 1. Let p ∈ [2, ∞) and
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PATHWISE UNIFORM CONVERGENCE OF DISCRETIZATION SCHEMES 17

u0 ∈ Lp 
F0 

(Ω; X). Denote by U the mild solution of (3.1) and by (Uj)j=0,...,Nk the temporal approximations 
as defined in (3.3) obtained with the exponential Euler method R := S. Then for Nk ≥ 2

∥∥∥∥ max 
0≤j≤Nk

‖U(tj) − Uj‖
∥∥∥∥

p 
≤ C

√
max{log(T/k), p}kα 

with constant 

C := KMeλT 
√

T√
2α + 1

(∥∥[g]α,X

∥∥
p
+ 2CY |||g|||p,∞,Y

)
, 

where K = 4 exp(1 + 1 
2e ) and CY denotes the embedding constant of Y into DA(α, ∞) or D(A). 

In particular, if Y ↪→ D(A) and g is Lipschitz continuous as a map to L2(H, X) the approximations 
(Uj)j converge at rate 1 up to a logarithmic correction factor as k → 0.

Proof. We split the error as in (3.5). For the exponential Euler method the terms E1 and E4 in (3.5) vanish 
due to S(tj) − Rj 

k = S(jk) − S(k)j = S(jk) − S(jk) = 0 and, likewise, S(tj − ti) − Rj−i 
k = 0. The error 

bound follows from inserting the bounds (3.7) and (3.8) of the remaining terms into (3.5). �

3.2 Quasi-contractive semigroups 

Considering quasi-contractive semigroups, i.e. C0-semigroups (S(t))t≥0 for which ‖S(t)‖ ≤  eλt for some 
λ ≥ 0 for all t ≥ 0, allows us to eliminate the logarithmic factor for the exponential Euler method. The 
principle that lies at the heart of our proof is the maximal inequality from Theorem 2.2, which is used to 
estimate the stochastic convolutions in the error term. Depending on the spatial regularity of the noise g 
the convergence rate α ∈ (0, 1] is attained without a logarithmic correction factor. 

THEOREM 3.3 (Exponential Euler, quasi-contractive case). Adopt the notation and assumptions of 
Corollary 3.2. In addition, assume that ‖S(t)‖ ≤  eλt for some λ ≥ 0 for all t ∈ [0, T]. Then for Nk ≥ 2

∥∥∥∥ max 
0≤j≤Nk

‖U(tj) − Uj‖
∥∥∥∥

p 
≤ Ckα 

with constant 

C := 
Bp 

√
T√

2α + 1

(
eλT

∥∥[g]α,X

∥∥
p
+ 2CYe2λT |||g|||p,∞,Y

)
, 

where Bp is the constant from Theorem 2.2. 

Proof. We bound the error as in (3.5), where the first and fourth terms vanish as discussed in the proof 
of Corollary 3.2. We proceed to bound the remaining terms using the maximal inequality from Theorem
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18 K. KLIOBA AND M. VERAAR

2.2 instead of Proposition 2.3 to obtain 

E2 ≤
∥∥∥∥ sup 

t∈[0,T]

∥∥∥∥ ∫ t 

0 
S(t − s)[g(s) − g(�s�)] dWH(s)

∥∥∥∥∥∥∥∥
p 

≤ BpeλT
∥∥∥∥(∫ T 

0
‖g(s) − g(�s�)‖2 

L2(H,X) ds

)1/2∥∥∥∥
p 

≤ BpeλT
∥∥∥∥( Nk−1∑

i=0

∫ ti+1 

ti 
[g]2 

α,X(s − ti)
2α ds

)1/2∥∥∥∥
p 

≤ 
BpeλT

√
T√

2α + 1
∥∥[g]α,X

∥∥
pkα (3.10) 

by Hölder continuity of g. Analogously, for E3 we deduce from the semigroup bound ( 2.4) that 

E3 ≤
∥∥∥∥ sup 

t∈[0,T]

∥∥∥∥ ∫ t 

0 
S(t − s)[S(s − �s�) − I]g(�s�) dWH(s)

∥∥∥∥∥∥∥∥
p 

≤ BpeλT
∥∥∥∥(∫ T 

0
‖[S(s − �s�) − I]g(�s�)‖2 

L2(H,X) ds

)1/2∥∥∥∥
p 

≤ 2Bpe2λTCY

∥∥∥∥( Nk−1∑
i=0

∫ ti+1 

ti 
(s − ti)

2α‖g(ti)‖2 
L2(H,Y) ds

)1/2∥∥∥∥
p 

≤ 2Bpe2λTCY 

√
T√

2α + 1
|||g|||p,∞,Ykα . (3.11) 

The final error bound follows from adding ( 3.10) and (3.11). �
In particular, convergence rate 1 is attained without logarithmic correction factor for spatially 

sufficiently regular noise g. General, possibly irregular initial values u0 ∈ Lp 
F0 

(Ω; X) are still admissible 
as the following corollary shows. 

COROLLARY 3.4. Let X be a Hilbert space and let A be the generator of a quasi-contractive C0-semigroup 
on X with parameter λ >  0. Assume that g ∈ Lp 

P (Ω; C([0, T];L2(H, D(A)))) and is pathwise Lipschitz 
continuous as a map to L2(H, X). Let  p ∈ [2, ∞) and u0 ∈ Lp 

F0 
(Ω; X). Denote by U the mild solution of 

(3.1) and by (Uj)j=0,...,Nk the temporal approximations as defined in (3.3) obtained with the exponential 
Euler method R := S. Then there is a constant C ≥ 0 depending on (g, T , p, α, λ, X, D(A)) such that for 
Nk ≥ 2 ∥∥∥∥ max 

0≤j≤Nk
‖U(tj) − Uj‖

∥∥∥∥
p 

≤ Ck, 

i.e. the approximations (Uj)j converge at rate 1 as k → 0.
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PATHWISE UNIFORM CONVERGENCE OF DISCRETIZATION SCHEMES 19

3.3 Application to the linear Schrödinger equation with additive noise 

In this section, we study convergence rates of time discretizations of the linear stochastic Schrödinger 
equation with a potential and additive noise{

du = −i(Δ + V)u dt − i dW on [0, T], 
u(0) = u0 

(3.12) 

in Rd for d ∈ N, where {W(t)}t≥0 is a square-integrable K-valued Q-Wiener process (see Section 2.1), 
K ∈ {R, C}, with respect to a normal filtration (Ft)t≥0, V is a K-valued potential, u0 is an F0-measurable 
random variable, i is the imaginary unit and Δ the Laplace operator on Rd. Next, we introduce conditions 
on the dimension and on the regularity of V . With a slight variation of the methods below, one can also 
consider (3.12) on [0, L]d with periodic boundary conditions. More general domains with Dirichlet or 
Neumann boundary conditions can be treated as well, but for this, suitable adjustments are needed in the 
proofs below. 

Let σ ≥ 0 and, for this subsection only, write L2 = L2(Rd) and Hσ = Hσ (Rd). We will also be 
using the Bessel potential spaces Hσ ,q(Rd), which coincide with the classical Sobolev spaces Wσ ,q(Rd) 
if σ ∈ N and q ∈ (1, ∞). For details on these spaces the reader is referred to Bergh & Löfström (1976); 
Triebel (1995). 

To ensure the well-posedness of (3.12) we assume one of the following mutually exclusive conditions 
holds. 

ASSUMPTION 3.5. Let σ ≥ 0, d ∈ N and V ∈ L2 such that 
(i) σ >  d 

2 and V ∈ Hσ , or  

(ii) σ = 0 and V ∈ Hβ for some β >  d 
2 , or  

(iii) σ ∈ (0, 1), d > 2σ and V ∈ Hβ for some β >  d 
2 , or  

(iv) σ = 1, d ≥ 2 and V ∈ Hβ for some β >  d 
2 . 

In particular, this assumption implies that Vu ∈ Hσ for any u ∈ Hσ and ‖Vu‖Hσ ≤ CV‖u‖Hσ for 
some constant CV ≥ 0 depending on V . This follows from the algebra property of Hσ in case (i). Note 
that while (i) is taken verbatim from (Anton & Cohen, 2018, Prop. 4.1) cases (ii) and (iv) assume less 
regularity in our assumption and case (iii) is new. In the second case (ii) Hölder’s inequality and the 
Sobolev embedding Hβ ↪→ L∞ for β >  d 

2 yield

‖Vu‖L2 ≤ ‖V‖L∞‖u‖L2 � ‖V‖Hβ ‖u‖L2 , 

in the case (ii) see (Anton & Cohen, 2018, Prop. 4.1). The case (iii) is covered by Lemma  3.6 below. 
Lastly, ‖Vu‖H1 � ‖u‖H1 in the case (iv) follows from Hölder’s inequality, once with p = 2β and 
q = 4β 

2β−2 , β >  1, and the embeddings Hβ ↪→ L∞, H1 ↪→ Lq, as well as  Hβ ↪→ H1,2β via

‖Vu‖2 
H1 � ‖Vu‖2 

L2 + ‖V∇u‖2 
L2 + ‖(∇V)u‖2 

L2 

≤ ‖V‖2 
L∞

(‖u‖2 
L2 + ‖∇u‖2 

L2

) + ‖∇V‖2 
L2β ‖u‖2 

Lq

�
(‖V‖2 

Hβ + ‖V‖2 
H1,2β

)‖u‖2 
H1 � ‖V‖2 

Hβ ‖u‖2 
H1 . 

Hence, multiplication by V is a bounded operator on Hσ if Assumption 3.5 holds.
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20 K. KLIOBA AND M. VERAAR

LEMMA 3.6. Let σ ∈ (0, 1), d ∈ N such that d > 2σ , and V ∈ Hβ (Rd) for some β >  d 
2 . Then,

‖Vu‖Hσ ≤ CV‖u‖Hσ for some constant CV ≥ 0 for all u ∈ Hσ (Rd). 

Proof. Let q1 = 2d 
d−2σ and q2 = d 

σ . Then, 1 
q1 

+ 1 
q2 

= 1 
2 and q1 < ∞ because d > 2σ . By classical 

Sobolev and Bessel potential space embeddings (Bergh & Löfström, 1976, Thm. 6.5.1), Hd/2 ↪→ Hσ ,q2 , 
Hσ ↪→ Lq1 and Hβ ↪→ Cb(R

d) ↪→ L∞. Thus, an application of the product estimate (Taylor, 2007, 
Prop. 2.1.1) yields

‖Vu‖Hσ � ‖V‖Hσ ,q2 ‖u‖Lq1 + ‖V‖L∞‖u‖Hσ � (‖V‖Hd/2 + ‖V‖Hβ )‖u‖Hσ � ‖V‖Hβ ‖u‖Hσ . �
Since −iΔ generates a contractive semigroup (Anton & Cohen, 2018, Lemma 2.1) its bounded 

perturbation −i(Δ + V) generates a quasi-contractive semigroup (Engel & Nagel, 2000, Thm. III.1.3). 
Thus, we are in the setting of Section 3.2. Global existence and uniqueness of mild solutions U ∈ 
Lp(Ω; C([0, T]; Hσ )) to (3.12) in  Hσ are guaranteed provided that p ∈ [2, ∞), u0 ∈ Lp 

F0 
(Ω; Hσ ), 

Q1/2 ∈ L2(L
2, Hσ ) and Assumption 3.5 holds. 

Therefore, the Schrödinger equation (3.12) can be rewritten in the form of (3.1) on  X = Hσ with an 
H-cylindrical Brownian motion WH for H = L2. 

For the exponential Euler method we recover the error bound from (Anton & Cohen, 2018, Thm. 4.3),  
showing convergence of rate 1 in the case of sufficiently regular Q1/2 under less regularity assumptions 
on V . Moreover, under weaker regularity assumptions on Q1/2 and V we additionally provide an error 
bound for fractional convergence rates α ∈ (0, 1]. 

THEOREM 3.7. Let σ ≥ 0, d ∈ N and V ∈ L2 satisfy Assumption 3.5, and let p ∈ [2, ∞). Assume that 
u0 ∈ Lp 

F0 
(Ω; Hσ ) and Q1/2 ∈ L2(L

2, Hσ+2α ) for some α ∈ (0, 1]. Denote by U the mild solution of 
the linear stochastic Schrödinger equation with additive noise (3.12) and by (Uj)j=0,...,Nk the temporal 
approximations as defined in (3.3) obtained with the exponential Euler method R := S. Then there exists 
a constant C ≥ 0 depending on (V , u0, T , p, α, σ , d) such that for Nk ≥ 2∥∥∥∥ max 

0≤j≤Nk
‖U(tj) − Uj‖Hσ

∥∥∥∥
p 

≤ C‖Q1/2‖L2(L2,Hσ+2α)k
α . 

Proof. As discussed above, A = −i(Δ + V) generates a quasi-contractive semigroup on Hσ . Further-
more, setting g = −iQ1/2 allows us to rewrite (3.12) in the form of a stochastic evolution equation 
(3.1). Thus, Theorem 3.3 is applicable with X = Hσ and H = L2. It remains to check that g ∈ 
Lp 
P (Ω; C([0, T];L2(H, Y))) for some Y ↪→ DA(α, ∞) and that g ∈ Lp 

P (Ω; Cα ([0, T];L2(H, X))). The  
latter holds for any α ∈ (0, 1] due to g being constant in time. Taking Y = Hσ+2α = (Hσ , Hσ+2)α,2 = 
(Hσ , D(A))α,2 ↪→ (Hσ , D(A))α,∞, the first condition is satisfied as well. Corollary 3.2 yields the desired 
error bound. �

Furthermore, Theorem 3.1 enables us to extend (Anton & Cohen, 2018, Thm. 4.3) to general 
discretization schemes R involving rational approximations, at the price of an additional logarithmic 
factor. We state it for the IE and the CN method. 

THEOREM 3.8. Let σ ≥ 0, d ∈ N and V ∈ L2 satisfy Assumption 3.5, and let p ∈ [2, ∞). Let  (Rk)k>0 be 
the IE method or the CN method and set � = 4 or � = 3, respectively. Assume that u0 ∈ Lp 

F0 
(Ω; Hσ+�α ) 

and Q1/2 ∈ L2(L
2, Hσ+�α ) for some α ∈ (0, 1]. Denote by U the mild solution of the linear stochastic
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PATHWISE UNIFORM CONVERGENCE OF DISCRETIZATION SCHEMES 21

Schrödinger equation with additive noise (3.12) and by (Uj)j=0,...,Nk the temporal approximations as 
defined in (3.3). Then there exists a constant C ≥ 0 depending on (V , u0, T , p, α, σ , d, �) such that for 
Nk ≥ 2 ∥∥∥∥ max 

0≤j≤Nk
‖U(tj) − Uj‖Hσ

∥∥∥∥
p 

≤ C
(
1 + ‖Q1/2‖L2(L2,Hσ+�α)

)√
max{log(T/k), p}kα . 

Proof. This follows from Theorem 3.1 noting that IE approximates S to order α on D((−A)2α ) and 
this fractional domain is given by D((iΔ)2α ) = Hσ+4α , which is chosen as the space Y . Likewise, CN 
approximates S to order α on D((−A)3α/2) = Hσ+3α . �

Comparing this result to Theorem 3.7 for the exponential Euler method, it becomes apparent that 
lower order schemes like IE need higher regularity of the noise Q1/2 to achieve the same rate of 
convergence (L2(L

2, Hσ+4α ) compared with L2(L
2, Hσ+2α )). For instance, for Q1/2 ∈ L2(L

2, Hσ+2), 
the rates for EE, CN and IE are 1, 2 

3 and 1 
2 , respectively. If Q1/2 ∈ L2(L

2, Hσ+3), EE and CN have the 
same convergence rates up to a logarithmic factor, and if Q1/2 ∈ L2(L

2, Hσ+4), so does IE, all provided 
that V and u0 are sufficiently smooth. 

Note that in the absence of a potential, the same convergence rates are obtained without any limitation 
on the dimension d ∈ N in terms of the parameter σ . An analogue of Theorem 3.8 can be obtained 
for other implicit Runge–Kutta methods if the space is known on which the scheme approximates the 
semigroup to a given order. 

4. Well-posedness 

We consider the stochastic evolution equation with multiplicative noise{
dU = (AU + F(t, U)) dt + G(t, U) dWH on [0, T], 

U(0) = u0 ∈ Lp 
F0 

(Ω; X)
(4.1) 

for 1 ≤ p < ∞ and A generating a C0-semigroup (S(t))t≥0 of contractions on X. In this section we 
present progressive measurability, linear growth, and global Lipschitz conditions on F and G ensuring 
the well-posedness of the above equation.

ASSUMPTION 4.1. Let X be a Hilbert space and let p ∈ [2, ∞). Let  F : Ω × [0, T] × X → X, F(ω, t, x) = 
F̃(ω, t, x) + f (ω, t) and G : Ω × [0, T] × X → L2(H, X), G(ω, t, x) = G̃(ω, t, x) + g(ω, t) be strongly 
P ⊗ B(X)-measurable, and such that F̃(·, ·, 0) = 0 and G̃(·, ·, 0) = 0, and suppose 
(a) (global Lipschitz continuity on X) there exist constants CF,X , CG,X ≥ 0 such that for all ω ∈ Ω , t ∈ 

[0, T] and x, y ∈ X, it holds that

‖F̃(ω, t, x) − F̃(ω, t, y)‖ ≤ CF,X‖x − y‖,

‖G̃(ω, t, x) − G̃(ω, t, y)‖L2(H,X) ≤ CG,X‖x − y‖, 

(b) (integrability) f ∈ Lp 
P (Ω; L1(0, T; X)) and g ∈ Lp 

P (Ω; L2(0, T;L2(H, X))). 
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22 K. KLIOBA AND M. VERAAR

Note that Assumption 4.1 implies linear growth of F and G:

‖F̃(ω, t, x)‖ ≤  CF,X(1 + ‖x‖), ‖G̃(ω, t, x)‖L2(H,X) ≤ CG,X(1 + ‖x‖), (4.2) 

where the constant 1 can be left out, but is included for later use in Theorem 4.4. 
Well-posedness shall be understood in the sense of existence and uniqueness of mild solutions to 

(4.1). Denote by L0(Ω; V) the space of all strongly measurable V-valued random variables for Banach 
spaces V . 

DEFINITION 4.2. A U ∈ L0 
P (Ω; C([0, T]; X)) is called a mild solution to (4.1) if a.s. for all  t ∈ [0, T] 

U(t) = S(t)u0 +
∫ t 

0 
S(t − s)F(s, U(s)) ds +

∫ t 

0 
S(t − s)G(s, U(s)) dWH(s). 

The following well-posedness result is more or less standard (Da Prato & Zabczyk, 2014, Chapters 
6,7). 

THEOREM 4.3. Suppose that Assumption 4.1 holds for some p ∈ [2, ∞). Let  A be the generator of a 
C0-contraction semigroup (S(t))t≥0 on X. Let  u0 ∈ Lp 

F0 
(Ω; X). Then (4.1) has a unique mild solution 

U ∈ Lp(Ω; C([0, T]; X)). Moreover,

‖U‖Lp(Ω;C([0,T];X)) ≤ CX 
bdd

(
1 + ‖u0‖Lp(Ω;X) + ‖f ‖Lp(Ω;L1(0,T;X)) + Bp‖g‖Lp(Ω;L2(0,T;L2(H,X)))

)
, 

where CX 
bdd := (1 + C2T)1/2 e(1+C2T)/2 with C := CF,XT1/2 + BpCG,X , and Bp is the constant from 

Theorem 2.2. 

Proof. First, the local existence and uniqueness of solutions are to be proven. Second, local solutions are 
concatenated to obtain global existence and uniqueness. We only sketch the steps. Let δ ∈ (0, T]. Define 
the spaces Zδ := Lp(Ω; C([0, δ]; X)), Z := ZT , ZP

δ as the subset of all adapted v ∈ Zδ , and ZP := ZP
T . 

For v ∈ ZP
δ we define the fixed point functional 

Γ v(t) := S(t)u0 +
∫ t 

0 
S(t − s)F(s, v(s)) ds +

∫ t 

0 
S(t − s)G(s, v(s)) dWH(s). (4.3) 

The problem of finding local mild solutions of ( 4.1) then reduces to finding fixed points v ∈ ZP
δ of 

Γ . The contraction mapping theorem yields such unique fixed points provided that Γ is a contraction 
which maps ZP and thus ZP

δ into itself. That is, (i) continuity of paths of Γ v and maximal estimates for 
v ∈ ZP

δ (see Theorem 2.2) as well as (ii) adaptedness of Γ v, and that (iii) Γ is a (strict) contraction on 
ZP

δ . Lastly, we consider the evolution equation on [δ, 2δ] with initial value U(δ) to extend the solution 
to larger time intervals.
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PATHWISE UNIFORM CONVERGENCE OF DISCRETIZATION SCHEMES 23

It remains to prove the a priori  estimate for the mild solution U. Let  r ∈ [0, T]. Let ψ(r) = 1 +∥∥supt∈[0,r] ‖U(t)‖∥∥
p . From the triangle inequality, Theorem 2.2, and (4.2) we see that 

ψ(r) ≤ 1 + ‖u0‖Lp(Ω;X) + CF,X

∥∥∥∥∫ r 

0 
1 + ‖U(s)‖ ds

∥∥∥∥
p 
+ ‖f ‖Lp(Ω;L1(0,r;X)) 

+ Bp

[
CG,X

∥∥∥∥(∫ r 

0 
(1 + ‖U(s)‖)2 ds

)1/2 ∥∥∥∥
p 

ds + ‖g‖Lp(Ω;L2(0,r;L2(H,X)))

]

≤ cu0,f ,g + CF,X

∫ r 

0 
ψ(s) ds + BpCG,X

(∫ r 

0 
ψ(s)2 ds

)1/2 

≤ cu0,f ,g + C
(∫ r 

0 
ψ(s)2 ds

)1/2 
, 

where cu0,f ,g = 1 + ‖u0‖Lp(Ω;X) + ‖f ‖Lp(Ω;L1(0,T;X)) + Bp‖g‖Lp(Ω;L2(0,T;L2(H,X))) and C = CF,XT1/2 + 
BpCG,X . Here we used Minkowski’s inequality to pull in the Lp(Ω) and Lp/2(Ω) norms. Lastly, the 
version of Gronwall’s inequality from Lemma 2.6 yields the desired result 

ψ(T) ≤ cu0,f ,g(1 + C2T)1/2e(1+C2T)/2. 
�

Lastly, we present a well-posedness result on subspaces Y ↪→ X which does not require Lipschitz 
continuity of F̃, G̃ on Y , but merely linear growth. The reader is referred to Remark 4.5 below for a 
discussion where we explain why Lipschitz continuity on Y should be avoided. 

THEOREM 4.4. Suppose that Assumption 4.1 holds. Let Y ↪→ X be a Hilbert space and A the generator of a 
C0-contraction semigroup (S(t))t≥0 on both X and Y . Let  p ∈ [2, ∞) and u0 ∈ Lp 

F0 
(Ω; Y). Additionally, 

suppose that f ∈ Lp 
P (Ω; L1(0, T; Y)), g ∈ Lp 

P (Ω; L2(0, T;L2(H, Y))), F : Ω × [0, T] × Y → Y , 
G : Ω × [0, T] × Y → L2(H, Y) are strongly P ⊗ B(Y)-measurable, and there are LF,Y , LG,Y ≥ 0 such 
that for all ω ∈ Ω , t ∈ [0, T] and x ∈ Y ,

‖F̃(ω, t, x)‖Y ≤ LF,Y(1 + ‖x‖Y), ‖G̃(ω, t, x)‖L2(H,Y) ≤ LG,Y(1 + ‖x‖Y). 

Under these conditions the mild solution U ∈ Lp(Ω; C([0, T]; X)) to (4.1) is in  Lp(Ω; C([0, T]; Y)) and

‖U‖Lp(Ω;C([0,T];Y)) ≤ CY 
bdd

(
1 + ‖u0‖Lp(Ω;Y) + ‖f ‖Lp(Ω;L1(0,T;Y)) + Bp‖g‖Lp(Ω;L2(0,T;L2(H,Y)))

)
, 

where CY 
bdd := (1 + C2T)1/2 e(1+C2T)/2 with C := LF,YT1/2 + BpLG,Y , and Bp is the constant from 

Theorem 2.2. 

The constant C appears exponentially in the above. In the special case p = 2, LF,Y = LG,Y = T = 1, 
this leads to CY 

bdd ≤
√

10e5 ≤ 470. 

Proof. Recall that by Banach’s fixed point theorem for δ ≤ T0, where T0 ∈ (0, 1] only depends on p, 
CF,X , CG,X and X, one has U = limn→∞ Un in Lp(Ω; C([0, δ]; X)), where U0 = u0 and Un+1 = Γ (Un) 
with Γ as defined in (4.3). Since F and G map Y into Y , we can also consider Γ as a mapping on
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24 K. KLIOBA AND M. VERAAR

Z2 := Lp 
P (Ω; L2(0, δ; Y)) to eventually show that U is in Lp 

P (Ω; C([0, δ]; Y)) ⊆ Z2. Note that for U ∈ 
Z2, F(·, U) and G(·, U) are progressively measurable as Y and L2(H, Y)-valued mappings by (Hytönen 
et al., 2016, Theorem 1.1.6). Moreover, we claim that for all v ∈ Z2,

‖Γ (v)‖Lp(Ω;C([0,δ];Y)) ≤ ‖u0‖Lp(Ω;Y) + ‖f ‖Lp(Ω;L1(0,δ;Y)) 

+ Bp‖g‖Lp(Ω;L2(0,δ;L2(H,Y))) +
(
LF,Y + BpLG,Y

)
(1 + ‖v‖Z2). (4.4) 

Indeed, since S is contractive, the maximal inequality, linear growth of F̃ and G̃ on Y , and δ ≤ 1 imply

‖Γ (v) − S(·)u0‖Lp(Ω;C([0,δ];Y)) ≤ ‖F(·, v)‖Lp(Ω;L1(0,δ;Y)) + Bp‖G(·, v)‖Lp(Ω;L2(0,δ;L2(H,Y))) 

≤ ‖f ‖Lp(Ω;L1(0,δ;Y)) + LF,Y

(
δ + ‖v‖Lp(Ω;L1(0,δ;Y))

)
+ Bp

(
‖g‖Lp(Ω;L2(0,δ;L2(H,Y))) + LG,Y

(√
δ + ‖v‖Lp(Ω;L2(0,δ;Y))

))
≤ ‖f ‖Lp(Ω;L1(0,δ;Y)) + Bp‖g‖Lp(Ω;L2(0,δ;L2(H,Y))) 

+ (
LF,Y + BpLG,Y

) (
1 + ‖v‖Z2

)
. 

Therefore, (4.4) follows. Now (4.4) implies

‖Γ (v)‖Z2 ≤ δ1/2‖Γ (v)‖Lp(Ω;C([0,δ];Y)) 

≤ θ(1 + ‖u0‖Lp(Ω;Y) + ‖f ‖Lp(Ω;L1(0,δ;Y)) + ‖g‖Lp(Ω;L2(0,δ;L2(H,Y))) + ‖v‖Z2), 

where θ = δ1/2 max{1, Bp, LF,Y + BpLG,Y}. Choosing δ ∈ (0, T0] such that θ ≤ 1 
2 , iteratively we obtain 

that for n ≥ 1,

‖Un‖Z2 ≤ θ(1 + ‖u0‖Lp(Ω;Y) + ‖f ‖Lp(Ω;L1(0,δ;Y)) + ‖g‖Lp(Ω;L2(0,δ;L2(H,Y)))) + θ‖Un−1‖Z2 

≤ θ(1 + ‖u0‖Lp(Ω;Y) + ‖f ‖Lp(Ω;L1(0,δ;Y)) + ‖g‖Lp(Ω;L2(0,δ;L2(H,Y)))) 

+ θ2(1 + ‖u0‖Lp(Ω;Y) + ‖f ‖Lp(Ω;L1(0,δ;Y)) + ‖g‖Lp(Ω;L2(0,δ;L2(H,Y))) + ‖Un−2‖Z2) 

≤ . . .  ≤ 
n∑

j=1 
θ j(1 + ‖u0‖Lp(Ω;Y) + ‖f ‖Lp(Ω;L1(0,δ;Y)) + ‖g‖Lp(Ω;L2(0,δ;L2(H,Y)))) + θn‖U0‖Z2 

≤ 1 + ‖f ‖Lp(Ω;L1(0,δ;Y)) + ‖g‖Lp(Ω;L2(0,δ;L2(H,Y))) + 2‖u0‖Lp(Ω;Y). 

In conclusion, (Un)n∈N is bounded in Z2. By reflexivity of Y , and thus of Z2 (see Hytönen et al., 2016, 
Corollary 1.3.22), there is a subsequence (Unj )j∈N and V ∈ Z2 such that Unj → V weakly in Z2 and

‖V‖Z2 ≤ 1 + ‖f ‖Lp(Ω;L1(0,δ;Y)) + ‖g‖Lp(Ω;L2(0,δ;L2(H,Y))) + 2‖u0‖Lp(Ω;Y). (4.5)
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PATHWISE UNIFORM CONVERGENCE OF DISCRETIZATION SCHEMES 25

Since Un → U in Lp(Ω; C([0, δ]; X)) it follows that V = U. Since U = Γ (U), (4.4) and (4.5) give that 
U is in Lp(Ω; C([0, δ]; Y)). The same argument can be applied on [jδ, (j + 1)δ] using the initial value 
U(jδ) ∈ Lp(Ω; Y) for j = 1, 2, . . .  to obtain the statement on [0, T]. 

The final a priori  estimate follows as in Theorem 4.3, where we note that the Lipschitz conditions 
on F and G were not used in the estimate. �

REMARK 4.5. In applications, one often takes X = L2(O) and Y = H1(O) with O ⊆ Rd, and F is 
a Nemytskij operator for a given nonlinearity φ : R → R, i.e. F(x)(ξ) = φ(x(ξ)) for x ∈ L2(O) and 
ξ ∈ O. Lipschitz continuity of such mappings holds for F seen as a mapping from X to X if φ is Lipschitz. 
Also, linear growth holds for F as a mapping from Y into Y if φ is Lipschitz. A less trivial fact is that 
F is continuous from Y into Y (see Taylor, 2007, Proposition 2.6.4), but nothing more can be expected. 
For instance, Lipschitz continuity of F : Y → Y would require the estimate

‖φ′(x)x′ − φ′(y)y′‖L2(O) ≤ C‖x − y‖H1(O). 

The latter is true if and only if ‖(φ′(x) − φ′(y))x′‖L2(O) ≤ C̃‖x − y‖H1(O). This cannot be expected even 
if φ ∈ C∞(Rd) with bounded derivatives. Indeed, a product of x − y and x′ needs to be estimated, but 
this cannot be done in terms of ‖x − y‖H1(O). Similarly, problems would occur for Y = Hα (O) for other 
values of α >  0. For a detailed exposition which estimates can be expected for φ(x) − φ(y) the reader 
is referred to (Taylor, 2007, Section 2.7). 

5. Stability 

Before analysing the convergence of temporal approximations to solutions of the stochastic evolution 
equation (4.1) with multiplicative noise, the question of stability of time discretization schemes arises. 
We aim to prove the stability of contractive time discretization schemes under linear growth assumptions 
on F and G, and contractivity conditions on the scheme R. We formulate the result for mappings on X, 
but they will also be applied on Y later on. 

Let Rk : X → X be a contractive time discretization scheme with time step k > 0 on a uniform grid 
{tj = jk : j = 0, . . .  , Nk} ⊆  [0, T] with T = tNk > 0 and Nk = T 

k ∈ N. We consider the temporal 
approximations of the mild solution to (4.1) given by U0 := u0 and 

Uj := RkUj−1 + kRkF(tj−1, Uj−1) + RkG(tj−1, Uj−1)ΔWj (5.1) 

with Wiener increments ΔWj := WH(tj) − WH(tj−1) (see ( 2.1)) for 1 ≤ j ≤ Nk. The above definition of 
Uj can be reformulated as the discrete variation-of-constants formula 

Uj = Rj 
ku0 + k 

j−1∑
i=0 

Rj−i 
k F(ti, Ui) + 

j−1∑
i=0 

Rj−i 
k G(ti, Ui)ΔWi+1 (5.2) 

for j = 0, . . . , Nk. 

PROPOSITION 5.1 (Stability). Let X be a Hilbert space, p ∈ [2, ∞) and u0 ∈ Lp 
F0 

(Ω; X). Suppose that 
F : Ω × [0, T] × X → X, G : Ω × [0, T] × X → L2(H, X) are strongly P ⊗ B(X)-measurable, where 
F = F̃ + f and G = G̃ + g, f ∈ Lp 

P (Ω; C([0, T]; X)), g ∈ Lp 
P (Ω; C([0, T];L2(H, X))), and there are
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26 K. KLIOBA AND M. VERAAR

LF,X , LG,X ≥ 0 such that for all ω ∈ Ω , t ∈ [0, T] and x ∈ X,

‖F̃(ω, t, x)‖X ≤ LF,X(1 + ‖x‖X), ‖G̃(ω, t, x)‖L2(H,X) ≤ LG,X(1 + ‖x‖X). 

Let (Rk)k>0 be a contractive time discretization scheme and Nk ≥ 2. Then the temporal approximations 
(Uj)j=0,...,Nk obtained via (5.1) are stable in the sense of 

1 +
∥∥∥∥ max 

0≤j≤Nk
‖Uj‖

∥∥∥∥
p 

≤ Cstabcu0,f ,g,T , 

where Cstab := (1 + C2T)1/2 e(1+C2T)/2 with C := LF,XT1/2 + BpLG,X , 

cu0,f ,g,T := 1 + ‖u0‖Lp(Ω;X) + ‖f ‖Lp(Ω;C([0,T];X))T + ‖g‖Lp(Ω;C([0,T];L2(H,X)))BpT1/2, 

and Bp is the constant from Theorem 2.2. 

Examples for contractive schemes include the exponential Euler, the implicit Euler, and the Crank-
Nicolson method, as well as A-stable higher order implicit Runge–Kutta methods such as Radau methods, 
BDF(2), Lobatto IIA, IIB, and IIC (see Proposition 2.5). 

The exponential dependence in Proposition 5.1 comes from an application of Gronwall’s inequality. 
Therefore, to make the result suitable for numerical applications, some optimization of the constants was 
necessary. In the special case that LF,X = LG,X = T = 1, and p = 2 one can check that Cstab =

√
10e5 ≤ 

470, which seems a reasonable constant for error estimates in applications. Later on, we will also apply 
Proposition 5.1 in case the space X is replaced by Y in the setting of Section 4. 

Proof. Let ϕN := 1+‖ max0≤j≤N ‖Uj‖‖p and N ∈ {0, . . . , Nk}. Then the variation-of-constants formula 
(5.2) and contractivity of Rk allow us to bound 

ϕN ≤ 1 + ‖u0‖Lp(Ω;X) + k 
N−1∑
i=0

∥∥∥∥ max 
0≤j≤i

‖F(tj, Uj)‖
∥∥∥∥

p 

+
∥∥∥∥ max 

0≤j≤N

∥∥∥∥ j−1∑
i=0 

Rj−i 
k G(ti, Ui)ΔWi+1

∥∥∥∥∥∥∥∥
p 
. (5.3) 

Invoking linear growth of F̃ and boundedness of f for the third term we obtain the bound 

k 
N−1∑
i=0

∥∥∥∥max 
0≤j≤i

‖F(tj, Uj)‖
∥∥∥∥

p 
≤ k 

N−1∑
i=0

∥∥∥∥ max 
0≤j≤i

(
LF,X

(
1 + ‖Uj‖

)
+ ‖f (tj)‖

) ∥∥∥∥
p 

≤ k 
N−1∑
i=0

(
LF,X

(
1 +

∥∥∥∥ max 
0≤j≤i

‖Uj‖
∥∥∥∥

p

)
+ ‖f ‖Lp(Ω;C([0,T];X))

)

= C1,f tN + LF,Xk 
N−1∑
i=0 

ϕi ≤ C1,f tN + LF,Xt1/2 
N

(
k 

N−1∑
i=0 

ϕ2 
i

)1/2 
, (5.4) 
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PATHWISE UNIFORM CONVERGENCE OF DISCRETIZATION SCHEMES 27

where we have set C1,f := ‖f ‖Lp(Ω;C([0,T];X)), and used the Cauchy–Schwarz inequality and Nk = tN in 
the last line. It remains to bound the last term in (5.3). 

Since Rk is a contraction by the Sz.-Nagy dilation theorem (Sz-Nagy et al., 2010, Theorem I.4.2) we 
can find a Hilbert space X̃, a contractive injection Q : X → X̃, a contractive projection P : X̃ → X, and 
a unitary R̃k on X̃ such that 

Ri 
k = PR̃i 

kQ for all i ≥ 0. 

Let Gk(s) := G(ti, Ui) and Sk(s) := R̃−i 
k for s ∈ [ti, ti+1), 0 ≤ i ≤ Nk −1. Then, it follows from Theorem 

2.2 that

∥∥∥∥ max 
0≤j≤N

∥∥∥∥ j−1∑
i=0 

Rj−i 
k G(ti, Ui)ΔWi+1

∥∥∥∥∥∥∥∥
p 

=
∥∥∥∥ max 

0≤j≤N

∥∥∥∥ j−1∑
i=0

R̃j−i 
k QG(ti, Ui)ΔWi+1

∥∥∥∥∥∥∥∥
p 

=
∥∥∥∥ max 

0≤j≤N

∥∥∥∥ j−1∑
i=0

R̃−i 
k QG(ti, Ui)ΔWi+1

∥∥∥∥∥∥∥∥
p 

≤
∥∥∥∥ sup 

t∈[0,tN ]

∥∥∥ ∫ t 

0 
Sk(s)QGk(s) dWH(s)

∥∥∥∥∥∥∥
p 

≤ Bp

∥∥∥∥( ∫ tN 

0
‖Gk(s)‖2 

L2(H,X) ds
)1/2

∥∥∥∥
p 

≤ Bp

(
k 

N−1∑
i=0

∥∥∥‖G(ti, Ui)‖L2(H,X)

∥∥∥2 

p

)1/2 

≤ BpLG,X

(
k 

N−1∑
i=0 

ϕ2 
i

)1/2 

+ C2,gt1/2 
N , (5.5) 

where we have set C2,g := Bp‖g‖Lp(Ω;C([0,T];L2(H,X))). 
Inserting (5.4) and (5.5) in (5.3) gives the bound 

ϕN ≤ 1 + ‖u0‖Lp(Ω;X) + C1,f T + C2,gT1/2 + (
LF,XT1/2 + BpLG,X

) (
k 

N−1∑
i=0 

ϕ2 
i

)1/2 

. 

Setting C := LF,XT1/2 + BpLG,X and cu0,f ,g := 1 + ‖u0‖Lp(Ω;X) + C1,f T + C2,gT1/2, we obtain from the 
discrete version of Gronwall’s Lemma 2.7 that 

ϕN ≤ cu0,f ,g(1 + C2kN)1/2 e(1+C2kN)/2. 

This implies the desired statement for N = Nk noting that tNk = kNk = T . �
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28 K. KLIOBA AND M. VERAAR

6. Convergence rates for multiplicative noise 

Our aim is to prove rates of convergence of contractive time discretization schemes for nonlinear 
stochastic evolution equations of the form 

dU = (AU + F(t, U)) dt + G(t, U) dWH(t), U(0) = u0 ∈ Lp(Ω; X) (6.1) 

with t ∈ [0, T] on a Hilbert space X with norm ‖ · ‖, where WH is an H-cylindrical Brownian motion 
for some Hilbert space H and p ∈ [2, ∞). The operator A is assumed to generate a contractive C0-
semigroup (S(t))t≥0 on X and F, G are assumed to be progressively measurable, of linear growth and 
globally Lipschitz as detailed in Assumption 4.1. Hence, we have the unique mild solution given by a 
fixed point of 

U(t) = S(t)u0 +
∫ t 

0 
S(t − s)F(s, U(s)) ds +

∫ t 

0 
S(t − s)G(s, U(s)) dWH(s), (6.2) 

for t ∈ [0, T], see Section 4. 
To obtain convergence rates for temporal discretizations of the mild solution we assume additional 

structure of the nonlinearity F and the noise G. Let  Y be another Hilbert space such that Y ↪→ X and 
the semigroup (S(t))t≥0 is also contractive on Y . We will assume F and G map Y into Y and enjoy linear 
growth conditions as on X also on Y . Note that Lipschitz continuity is not assumed on Y contrary to X. 
This additional structure resembling the famous Kato setting (Kato (1975)), which was briefly mentioned 
in the introduction, allows for convergence rates of temporal discretizations for a large class of schemes 
introduced in section 6.1. The quantitative error estimate in Theorem 6.4 is the main result of this paper, 
stating that the additional structure suffices to obtain the order of the scheme as the convergence rate of the 
temporal approximations up to a logarithmic correction factor for sufficiently regular initial data. For the 
exponential Euler method the logarithmic correction factor can be omitted, as illustrated in Section 6.2. 
The main error estimate of Theorem 6.4 is extended to the full time interval [0, T] in Section 6.3. As  
an application we revisit the Schrödinger equation, now with a multiplicative potential, in Section 6.4, 
including its numerical simulation in Section 6.5, and consider the stochastic Maxwell’s equations in 
Section 6.6. 

6.1 General contractive time discretization schemes 

We now detail the assumptions on the structure of F and G on Y . Note that the assumption also implies 
that the conditions of Theorems 4.3 and 4.4 hold. 

ASSUMPTION 6.1. Let X, Y be Hilbert spaces such that Y ↪→ X continuously, and let p ∈ [2, ∞). Let  
F : Ω×[0, T]×X → X, F(ω, t, x) = F̃(ω, t, x)+f (ω, t) and G : Ω×[0, T]×X → L2(H, X), G(ω, t, x) = 
G̃(ω, t, x)+ g(ω, t) be strongly P ⊗B(X)-measurable, and such that F̃(·, ·, 0) = 0 and G̃(·, ·, 0) = 0, and 
suppose 
(a) (global Lipschitz continuity on X) there exist constants CF,X , CG,X ≥ 0 such that for all ω ∈ Ω , t ∈ 

[0, T], and x, y ∈ X, it holds that

‖F̃(ω, t, x) − F̃(ω, t, y)‖ ≤  CF,X‖x − y‖, ‖G̃(ω, t, x) − G̃(ω, t, y)‖L2(H,X) ≤ CG,X‖x − y‖, 

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/advance-article/doi/10.1093/im
anum

/drae055/7823734 by TU
 D

elft user on 21 January 2025



PATHWISE UNIFORM CONVERGENCE OF DISCRETIZATION SCHEMES 29

(b) (Hölder continuity with values in X) for some α ∈ (0, 1], 

Cα,F := sup 
ω∈Ω ,x∈X 

[F(ω, ·, x)]α < ∞, Cα,G := sup 
ω∈Ω ,x∈X 

[G(ω, ·, x)]α < ∞, 

(c) (Y-invariance) F : Ω × [0, T] × Y → Y and G : Ω × [0, T] × Y → L2(H, Y) are strongly 
P ⊗ B(Y)-measurable, f ∈ Lp 

P (Ω; C([0, T]; Y)), and g ∈ Lp 
P (Ω; C([0, T];L2(H, Y))), 

(d) (linear growth on Y) there exist constants LF,Y , LG,Y ≥ 0 such that for all ω ∈ Ω , t ∈ [0, T], and 
x ∈ Y , it holds that

‖F̃(ω, t, x)‖Y ≤ LF,Y(1 + ‖x‖Y), ‖G̃(ω, t, x)‖L2(H,Y) ≤ LG,Y(1 + ‖x‖Y). 

Condition 2 can be weakened to the existence of some α ∈ (0, 1] such that 

sup 
x∈X 

sup 
0≤s≤t≤T 

F(·, t, x) − F(·, s, x) 
(t − s)α

∈ Lp(Ω) 

and likewise for G, i.e. pathwise Hölder continuity uniformly in x ∈ X is sufficient together with existence 
of p-th moments of the Hölder seminorms. Assumption 6.1 implies that (6.1) has a unique mild solution. 

To bound the error arising from time discretization of the mild solution, moment bounds of 
differences of the mild solution at different time points as in the following lemma are required. As a 
shorthand notation in accordance with (3.4), let

‖f ‖p,q,Z := ‖f ‖Lp(Ω;Lq(0,T;Z)), |||g|||p,q,Z := ‖g‖Lp(Ω;Lq(0,T;L2(H,Z))) (6.3) 

for Hilbert spaces Z, p ∈ [2, ∞), and q ∈ [1, ∞]. We further introduce the constants 

Cu0,f ,g,Z := 1 + CZ 
bdd(1 + ‖u0‖Lp(Ω;Z) + ‖f ‖p,1,Z + |||g|||p,2,Z) (6.4) 

for Z ∈ {X, Y} with CX 
bdd and CY 

bdd as in Theorems 4.3 and 4.4, respectively. Then the estimate 

1 +
∥∥∥∥ sup 

r∈[0,T]
‖U(r)‖Z

∥∥∥∥
p 

≤ Cu0,f ,g,Z < ∞ (6.5) 

holds for Z ∈ {X, Y}. 
LEMMA 6.2. Suppose that Assumption 6.1 holds for some α ∈ (0, 1] and p ∈ [2, ∞). Let  A be the 
generator of a C0-contraction semigroup (S(t))t≥0 on both X and Y . Suppose that Y ↪→ DA(α, ∞) 
continuously if α ∈ (0, 1) or Y ↪→ D(A) continuously if α = 1. Let u0 ∈ Lp 

F0 
(Ω; Y). Then, for all 

0 ≤ s ≤ t ≤ T the mild solution U of (6.1) satisfies

(
E‖U(t) − U(s)‖p)1/p ≤ L1(t − s) + L2(t − s)1/2 + L3(t − s)α
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30 K. KLIOBA AND M. VERAAR

with constants L1 := CF,XCu0,f ,g,X + ‖f ‖p,∞,X , L2 := Bp(CG,XCu0,f ,g,X + |||g|||p,∞,X), and 

L3 := 2CY

[
‖u0‖Lp(Ω;Y) + TLF,YCu0,f ,g,Y + ‖f ‖p,1,Y + Bp

(
T1/2LG,YCu0,f ,g,Y + |||g|||p,2,Y

)]
, 

where Cu0,f ,g,X and Cu0,f ,g,Y are as defined in ( 6.4), CY denotes the embedding constant of Y into 
DA(α, ∞) or D(A), and Bp is the constant from Theorem 2.2. 

Proof. Since the conditions of Theorems 4.3 and 4.4 are met, U is pathwise continuous on X. By Theorem 
4.4, the pathwise continuity of U follows on Y as well. Moreover, the bound (6.5) holds. 

Fix t, s ∈ [0, T] with s ≤ t. From the mild solution formula (6.2), we deduce that

(
E‖U(t) − U(s)‖p)1/p ≤ ∥∥[S(t) − S(s)]u0

∥∥
Lp(Ω;X) 

+
∥∥∥ ∫ s 

0
‖[S(t − r) − S(s − r)]F(r, U(r))‖ dr

∥∥∥
p
+

∥∥∥ ∫ t 

s
‖S(t − r)F(r, U(r))‖ dr

∥∥∥
p 

+
∥∥∥ ∫ s 

0 
[S(t − r) − S(s − r)]G(r, U(r)) dWH(r)

∥∥∥
Lp(Ω;X) 

+
∥∥∥ ∫ t 

s 
S(t − r)G(r, U(r)) dWH(r)

∥∥∥
Lp(Ω;X) 

=: E1 + E2 + E3 + E4 + E5, 

where E� = E�(t, s) for 1 ≤ � ≤ 5. We proceed to bound these five expressions individually. By the 
semigroup bound (2.4) 

E1 ≤ ‖S(t) − S(s)‖L(Y ,X)‖u0‖Lp(Ω;Y) ≤ 2CY(t − s)α‖u0‖Lp(Ω;Y). 

Using ( 6.5) and (2.4) as well as linear growth of F̃ on Y and f ∈ Lp(Ω; L1(0, T; Y)) we obtain 

E2 ≤ 2CY

∥∥∥ ∫ s 

0 
[(t − r) − (s − r)]α‖F(r, U(r))‖Y dr

∥∥∥
p 

≤ 2CY(t − s)α
(

sLF,Y

∥∥∥∥ sup 
r∈[0,T] 

(1 + ‖U(r)‖Y)

∥∥∥∥
p 
+

∥∥∥ ∫ s 

0
‖f (r)‖Y dr

∥∥∥
p

)
≤ 2CY

(
TLF,YCu0,f ,g,Y + ‖f ‖p,1,Y

)
(t − s)α . 

Analogously, 

E3 ≤ (CF,XCu0,f ,g,X + ‖f ‖p,∞,X)(t − s) 

is obtained by contractivity of the semigroup, linear growth of F on X and boundedness of the solution. 
For the terms involving a stochastic integral we apply Theorem 2.2. Additionally making use of the 
bound (2.4) for semigroup differences, splitting the integral as in E2, and using linear growth of G̃, (6.5),
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PATHWISE UNIFORM CONVERGENCE OF DISCRETIZATION SCHEMES 31

as well as g ∈ Lp(Ω; L2(0, T;L2(H, Y))) results in 

E4 ≤ Bp

(
E

(∫ s 

0
‖[S(t − r) − S(s − r)]G(r, U(r))‖2 

L2(H,X) dr

)p/2 )1/p 

≤ 2BpCY

(
T1/2LG,YCu0,f ,g,Y + |||g|||p,2,Y

)
(t − s)α . 

For the last term, the contractivity of the semigroup and linear growth of G yield 

E5 ≤ Bp

(
E

(∫ t 

s
‖S(t − r)G(r, U(r))‖2 

L2(H,X) dr

)p/2 )1/p 

≤ Bp(CG,XCu0,f ,g,X + |||g|||p,∞,X)(t − s)1/2. 

In conclusion from the five individual bounds, we obtain the statement of the lemma

(
E‖U(t) − U(s)‖p)1/p ≤ (CF,XCu0,f ,g,X + ‖f ‖p,∞,X)(t − s) 

+ Bp

(
CG,XCu0,f ,g,X + |||g|||p,∞,X

)
(t − s)1/2 

+ 2CY

[
‖u0‖Lp(Ω;Y) + TLF,YCu0,f ,g,Y + ‖f ‖p,1,Y 

+ Bp

(
T1/2LG,YCu0,f ,g,Y + |||g|||p,2,Y

)]
(t − s)α . 

�

REMARK 6.3. Suppose that α ∈ (0, 1 
2 ]. Lemma 6.2 implies α-Hölder continuity of U in p-th moment. 

The latter remains true if the pathwise continuity of f and g with values in Y from Assumption 6.13 are 
relaxed to ‖f ‖p,1,Y < ∞ and |||g|||p,2,Y < ∞. Performing an additional Hölder argument for E3 and E5, the  
pathwise continuity assumption with values in X can be relaxed to ‖f ‖p, 1 

1−α
,X < ∞ and |||g|||p, 2 

1−2α
,X < ∞, 

where we use the convention 1 
0 = ∞. Although the lemma could be improved for our purposes the above 

version is enough since even pathwise continuity with values in Y is required in Theorem 6.4. 

For time discretization, we employ a contractive time discretization scheme R : [0, ∞) → L(X) with 
time step k > 0 on a uniform grid {tj = jk : j = 0, . . . , Nk} ⊆  [0, T] with final time T = tNk > 0 and 
Nk = T 

k ∈ N being the number of time steps. As in the previous section the discrete solution is given by 
U0 := u0 and 

Uj := RkUj−1 + kRkF(tj−1, Uj−1) + RkG(tj−1, Uj−1)ΔWj (6.6) 

= Rj 
ku0 + k 

j−1∑
i=0 

Rj−i 
k F(ti, Ui) + 

j−1∑
i=0 

Rj−i 
k G(ti, Ui)ΔWi+1 (6.7) 

for j = 1, . . . , Nk with Wiener increments ΔWj := WH(tj) − WH(tj−1). 
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32 K. KLIOBA AND M. VERAAR

We recall from Definition 2.4 that R approximates S to order α >  0 on Y or, equivalently, R converges 
of order α on Y if there is a constant Cα ≥ 0 such that for all u ∈ Y

‖(S(tj) − Rj 
k)u‖ ≤  Cαkα‖u‖Y . 

Under the conditions of Assumption 6.1 we conclude from Proposition 5.1 and the remark thereafter 
that R is stable, not only on X, but also on Y provided that u0 ∈ Lp 

F0 
(Ω; Y) and both S and R are contractive 

on both X and Y . Thus, 

1 +
∥∥∥∥ max 

0≤j≤Nk
‖Uj‖Y

∥∥∥∥
p 

≤ Ku0,f ,g,Y , (6.8) 

where Ku0,f ,g,Y := Cstabcu0,f ,g,T with constants Cstab, cu0,f ,g,T as in Proposition 5.1 applied on Y instead 
of X. Furthermore, we recall the shorthand notation ‖f ‖p,∞,Y and |||g|||p,∞,Y from (6.3). 

We can now state and prove the main result of this paper. 

THEOREM 6.4. Suppose that Assumption 6.1 holds for some α ∈ (0, 1] and p ∈ [2, ∞). Let  A be the 
generator of a C0-contraction semigroup (S(t))t≥0 on both X and Y . Let  (Rk)k>0 be a time discretization 
scheme which is contractive on X and Y . Assume R approximates S to order α on Y . Suppose that Y ↪→ 
DA(α, ∞) continuously if α ∈ (0, 1) or Y ↪→ D(A) continuously if α = 1. Let u0 ∈ Lp 

F0 
(Ω; Y). Denote 

by U the mild solution of (6.1) and by (Uj)j=0,...,Nk the temporal approximations as defined in (6.6). Then 
for Nk ≥ 2∥∥∥∥ max 

0≤j≤Nk
‖U(tj) − Uj‖

∥∥∥∥
p 

≤ Ce

(
C1k + C2k1/2 + (

C3 + C4

√
max{log(T/k), p})kα

)

with constants Ce := (1 + C2T)1/2 exp((1 + C2T)/2), C := CF,X 
√

T + BpCG,X , C1 := L1

(
CF,X 

2 T2 + 

BpCG,X 
√

T
)

, C2 := L2

(
2 
3 CF,XT +

(
3 
2

)1/2 
BpCG,X 

√
T
)

, C4 := C3,log 
√

T , and 

C3 := Cα‖u0‖Lp(Ω;Y) + C2,αT + C3,α 
√

T , 

C2,α := 
CF,XL3 + Cα,F 

α + 1 
+ (

LF,YKu0,f ,g,Y + ‖f ‖p,∞,Y

) ( 2CY 
α + 1 

+ Cα

)
, 

C3,α := 
Bp√

2α + 1

(√
3CG,XL3 + Cα,G + 2CY

(
LG,YKu0,f ,g,Y + |||g|||p,∞,Y

))
, 

C3,log := KCα

(
LG,YKu0,f ,g,Y + |||g|||p,∞,Y

)
, 

where L1, L2, L3 are as defined in Lemma 6.2, Ku0,f ,g,Y as in (6.8), K = 4 exp
(
1 + 1 

2e

)
, CY denotes the 

embedding constant of Y into DA(α, ∞) or D(A), and Bp is the constant from Theorem 2.2. 
In particular, the approximations (Uj)j converge at rate min{α, 1 

2 } up to a logarithmic correction factor 
as k → 0. 

This convergence result applies to schemes such as the exponential Euler, the implicit Euler and 
the Crank-Nicolson method, as well as other A-acceptable implicit Runge–Kutta methods such as Radau 
methods, BDF(2), Lobatto IIA, IIB and IIC by virtue of Proposition 2.5. If R commutes with the resolvent
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PATHWISE UNIFORM CONVERGENCE OF DISCRETIZATION SCHEMES 33

of A, contractivity of R and S extend to fractional domain spaces and complex interpolation spaces. 
Hence, contractivity on Y often comes together with contractivity on X. 

The constant Ce appears exponentially in the above. In the special case that CF,X = CG,X = T = 1, 
and p = 2, one can check that, similarly to Theorem 4.4, this yields the numerically reasonable value 
Ce =

√
10e5 ≤ 470. 

Proof. The assumptions of Theorems 4.3 and 4.4 hold, and thus, the mild solution U exists and the bound 
(6.5) holds. 

By definition, U(tj) = Uj = u0 for j = 0. Let N ∈ {1, . . .  , Nk}. Using (6.7) the discretization error 
can be split into three parts 

E(N) :=
∥∥∥∥ max 

1≤j≤N
‖U(tj) − Uj‖

∥∥∥∥
p 

≤
∥∥∥∥ max 

1≤j≤N
‖(S(tj) − Rj 

k)u0‖
∥∥∥∥

p 

+
∥∥∥∥ max 

1≤j≤N

∥∥∥∥ ∫ tj 

0 
S(tj − s)F(s, U(s)) ds − k 

j−1∑
i=0 

Rj−i 
k F(ti, Ui)

∥∥∥∥∥∥∥∥
p 

+
∥∥∥∥ max 

1≤j≤N

∥∥∥∥ ∫ tj 

0 
S(tj − s)G(s, U(s)) dWH(s) − 

j−1∑
i=0 

Rj−i 
k G(ti, Ui)ΔWi+1

∥∥∥∥∥∥∥∥
p 

=: M1 + M2 + M3. 

Using convergence of R of order α on Y and the dominated convergence theorem we obtain 

M1 ≤ Cαkα‖u0‖Lp(Ω;Y). (6.9) 

To shorten the notation for the discrete terms we introduce the piecewise constant functions Fk(s) := 
F(ti, Ui) and Gk(s) := G(ti, Ui) for s ∈ [ti, ti+1), 0  ≤ i ≤ Nk − 1 as well as  Sk(s) := Ri 

k for s ∈ 
(ti−1, ti], 1 ≤ i ≤ Nk. This allows us to rewrite 

M2 =
∥∥∥∥ max 

1≤j≤N

∥∥∥∥∫ tj 

0 
S(tj − s)F(s, U(s)) − Sk(tj − s)Fk(s) ds

∥∥∥∥∥∥∥∥
p 

≤
∥∥∥∥∥

N−1∑
i=0

∫ ti+1 

ti 
max 

1≤j≤N

∥∥∥S(tj − s)[F(s, U(s)) − F(s, U(ti))]
∥∥∥ ds

∥∥∥∥∥
p 

+
∥∥∥∥∥

N−1∑
i=0

∫ ti+1 

ti 
max 

1≤j≤N

∥∥∥S(tj − s)[F(s, U(ti)) − F(ti, U(ti))]
∥∥∥ ds

∥∥∥∥∥
p 

+
∥∥∥∥∥

N−1∑
i=0

∫ ti+1 

ti 
max 

1≤j≤N

∥∥∥S(tj − s)[F(ti, U(ti)) − F(ti, Ui)]
∥∥∥ ds

∥∥∥∥∥
p 
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34 K. KLIOBA AND M. VERAAR

+
∥∥∥∥∫ tN 

0 
max 

1≤j≤N

∥∥∥[S(tj − s) − Sk(tj − s)]Fk(s)
∥∥∥ ds

∥∥∥∥
p 

=: M2,1 + M2,2 + M2,3 + M2,4. 

Making use of Minkowski’s inequality in Lp(Ω), contractivity of (S(t))t≥0 and Lipschitz continuity of 
F̃ we derive the bound 

M2,3 ≤ CF,X 

N−1∑
i=0

∥∥∥∥∫ ti+1 

ti

∥∥∥U(ti) − Ui
∥∥∥ ds

∥∥∥∥
p 

≤ CF,Xk 
N−1∑
i=0 

E(i) (6.10) 

for M2,3. Proceeding likewise for M2,1 we obtain from Lemma 6.2 that 

M2,1 ≤ CF,X 

N−1∑
i=0

∫ ti+1 

ti 
(E

∥∥U(s) − U(ti)
∥∥p 

)1/p ds 

≤ CF,X 

N−1∑
i=0

∫ ti+1 

ti 
L1(s − ti) + L2(s − ti)

1/2 + L3(s − ti)
α ds 

≤ CF,X 

N−1∑
i=0

(
L1 
2 

k2 + 
2L2 
3 

k3/2 + 
L3 

α + 1 
kα+1

)

= CF,XtN

(
L1 
2 

k + 
2L2 
3 

k1/2 + 
L3 

α + 1 
kα

)
. (6.11) 

Analogously, uniform Hölder continuity yields 

M2,2 ≤ 
N−1∑
i=0

∫ ti+1 

ti

∥∥F(s, U(ti)) − F(ti, U(ti))
∥∥

Lp(Ω;X) ds 

≤ 
N−1∑
i=0

∫ ti+1 

ti 
(s − ti)

α ds
∥∥[F(·, U(ti))]α

∥∥
p 

≤ 
N−1∑
i=0 

kα+1 

α + 1 
Cα,F = 

Cα,FtN 
α + 1 

kα . (6.12) 
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PATHWISE UNIFORM CONVERGENCE OF DISCRETIZATION SCHEMES 35

Using the semigroup bound (2.4) together with the assumed convergence rate α of R on Y , the linear 
growth assumption and stability of R, we obtain 

M2,4 ≤
∥∥∥∥∥

N−1∑
i=0

∫ ti+1 

ti

∥∥∥[S(tj − s) − S(tj − ti)]F(ti, Ui)

∥∥∥ ds

∥∥∥∥∥
p 

+
∥∥∥∥∥

N−1∑
i=0

∫ ti+1 

ti

∥∥∥[S(tj − ti) − Rj−i 
k

]
F(ti, Ui)

∥∥∥ ds

∥∥∥∥∥
p 

≤ 2CY 

N−1∑
i=0

∥∥∥∥∫ ti+1 

ti 
(s − ti)

α‖F(ti, Ui)‖Y ds

∥∥∥∥
p 
+ Cαkα 

N−1∑
i=0

∥∥∥∥∫ ti+1 

ti

∥∥∥F(ti, Ui)

∥∥∥
Y 

ds

∥∥∥∥
p 

≤
(

2CY 
α + 1 

+ Cα

)
kα+1 

N−1∑
i=0

(
LF,Y

∥∥∥1 + ‖Ui‖Y

∥∥∥
p
+ ‖f (ti)‖Lp(Ω;Y)

)

≤
(

2CY 
α + 1 

+ Cα

) (
LF,YKu0,f ,g,Y + ‖f ‖p,∞,Y

)
tNkα . (6.13) 

In conclusion from ( 6.11), (6.12), (6.10) and (6.13), M2 is bounded by 

M2 ≤ 
CF,XL1 

2 
tNk + 

2CF,XL2 
3 

tNk1/2 + C2,αtNkα + CF,Xk 
N−1∑
i=0 

E(i) 

≤ 
CF,XL1 

2 
tNk + 

2CF,XL2 
3 

tNk1/2 + C2,αtNkα + CF,X
√

tN

(
k 

N−1∑
i=0 

E(i)2
)1/2 

, (6.14) 

where we have used the Cauchy–Schwarz inequality in the last line. 
Let �s� =  max{ti : 0 ≤ i ≤ Nk − 1, ti ≤ s}. The remaining term M3 can be rewritten as 

M3 =
∥∥∥∥ max 

1≤j≤N

∥∥∥∥∫ tj 

0 
S(tj − s)G(s, U(s)) − Sk(tj − s)Gk(s) dWH(s)

∥∥∥∥∥∥∥∥
p 

≤
∥∥∥∥ max 

1≤j≤N

∥∥∥∥∫ tj 

0 
S(tj − s)[G(s, U(s)) − G(s, U(�s�)] dWH(s)

∥∥∥∥∥∥∥∥
p 

+
∥∥∥∥ max 

1≤j≤N

∥∥∥∥∫ tj 

0 
S(tj − s)[G(s, U(�s�)) − G(�s�, U(�s�)] dWH(s)

∥∥∥∥∥∥∥∥
p 

+
∥∥∥∥ max 

1≤j≤N

∥∥∥∥∫ tj 

0 
S(tj − s)[G(�s�, U(�s�)) − Gk(s)] dWH(s)

∥∥∥∥∥∥∥∥
p 
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36 K. KLIOBA AND M. VERAAR 

+
∥∥∥∥ max 

1≤j≤N

∥∥∥∥∫ tj 

0 
[S(tj − �s�) − S(tj − s)]Gk(s) dWH(s)

∥∥∥∥∥∥∥∥
p 

+
∥∥∥∥ max 

1≤j≤N

∥∥∥∥∫ tj 

0 
[S(tj − �s�) − Sk(tj − s)]Gk(s) dWH(s)

∥∥∥∥∥∥∥∥
p 

=: M3,1 + M3,2 + M3,3 + M3,4 + M3,5. 

We bound each term individually. An application of the maximal inequality Theorem 2.2, the Lipschitz 
continuity of G̃ and Lemma 6.2 result in 

M3,1 ≤
∥∥∥∥∥ sup 

t∈[0,tN ]

∥∥∥∥∫ t 

0 
S(t − s)[G(s, U(s)) − G(s, U(�s�)] dWH(s)

∥∥∥∥
∥∥∥∥∥

p 

≤ Bp 

⎛⎝E

(
N−1∑
i=0

∫ ti+1 

ti
‖G(s, U(s)) − G(s, U(ti))‖2 

L2(H,X) ds

)p/2⎞⎠1/p 

≤ BpCG,X

( N−1∑
i=0

∫ ti+1 

ti

(
E‖U(s) − U(ti)‖p)2/p ds

)1/2 

≤ √
3BpCG,X

( N−1∑
i=0

∫ ti+1 

ti 
L2 

1(s − ti)
2 + L2 

2(s − ti) + L2 
3(s − ti)

2α ds

)1/2 

= √
3BpCG,X

√
tN

(
L2 

1 
3 

k2 + 
L2 

2 
2 

k + 
L2 

3 
2α + 1 

k2α

)1/2 

≤ √
3BpCG,X

√
tN

(
L1√

3 
k + 

L2√
2 

k1/2 + L3√
2α + 1 

kα

)
. (6.15) 

Again invoking the maximal inequality we conclude 

M3,2 ≤ Bp

( N−1∑
i=0

∫ ti+1 

ti

∥∥‖G(s, U(ti)) − G(ti, U(ti))‖L2(H,X)

∥∥2 
p ds

)1/2 

≤ Bp

( N−1∑
i=0

∫ ti+1 

ti 
(s − ti)

2α ds
∥∥[G(·, U(ti))]α

∥∥2 
p

)1/2 
≤ 

BpCα,G√
2α + 1

√
tNkα (6.16) 
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PATHWISE UNIFORM CONVERGENCE OF DISCRETIZATION SCHEMES 37

from the uniform Hölder continuity of G. Proceeding analogously for M3,3 and then applying 
Minkowski’s inequality in Lp/2(Ω) results in 

M3,3 ≤
∥∥∥∥∥ sup 

t∈[0,tN ]

∥∥∥∥∫ t 

0 
S(t − s)[G(�s�, U(�s�)) − Gk(s)] dWH(s)

∥∥∥∥
∥∥∥∥∥

p 

≤ BpCG,X 

⎛⎝E

(
k 

N−1∑
i=0

‖U(ti) − Ui‖2

)p/2⎞⎠1/p 

= BpCG,Xk1/2

∥∥∥∥∥
N−1∑
�=0 

max 
0≤j≤�

‖U(tj) − Uj‖2

∥∥∥∥∥
1/2 

p/2 

≤ BpCG,X 
√

k

( N−1∑
�=0

∥∥∥∥ max 
0≤j≤�

‖U(tj) − Uj‖2
∥∥∥∥

p/2

)1/2 

= BpCG,X 
√

k

( N−1∑
�=0 

E(�)2
)1/2 

. (6.17) 

Since R is contractive on Y by assumption, the conditions of Proposition 5.1 are fulfilled, not only on X, 
but also on Y . Thus, we can use the estimate (6.8). Together with the maximal inequality, the semigroup 
difference bound (2.4), the ideal property of L2(H, X) and linear growth of G̃, this yields 

M3,4 ≤
∥∥∥∥ sup 

t∈[0,tN ]

∥∥∥∥ ∫ t 

0 
S(t − s)

( j−1∑
i=0 

1[ti,ti+1)
(s)[S(s − ti) − I]G(ti, Ui)

)
dWH(s)

∥∥∥∥∥∥∥∥
p 

≤ Bp

(
E

(∫ tN 

0

∥∥∥1[ti,ti+1)
(s)[S(s − ti) − I]G(ti, Ui)

∥∥∥2 

L2(H,X) 
ds

)p/2)1/p 

≤ 2BpCY

(
E

( N−1∑
�=0

∫ t�+1 

t�
(s − t�)

2α
∥∥∥G(t�, U�)

∥∥∥2 

L2(H,Y) 
ds

)p/2)1/p 

≤ 
2BpCY√
2α + 1

√
tNkα

∥∥∥∥ max 
0≤j≤N−1

∥∥∥G(tj, Uj)

∥∥∥
L2(H,Y)

∥∥∥∥
p 

≤ 
2BpCY√
2α + 1

(
LG,YKu0,f ,g,Y + |||g|||p,∞,Y

)√
tNkα . (6.18) 
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Applying Proposition 2.3 with Φ (j) s = ∑j−1 
i=0 1[ti,ti+1)

(s)[S(tj − ti) − Rj−i 
k ]G(Ui) to the remaining term, 

we conclude that 

M3,5 =
(
E max 

1≤j≤N

∥∥∥∥ ∫ tj 

0 

j−1∑
i=0 

1[ti,ti+1)
(s)[S(tj − ti) − Rj−i 

k ]G(ti, Ui) dWH(s)

∥∥∥∥p)1/p 

≤ K
√

max{log(N), p}
∥∥∥∥( N−1∑

�=0 
k
(

max 
1≤j≤N

∥∥∥[S(tj − t�) − Rj−�

k ]G(t�, U�)

∥∥∥
L2(H,X)

)2
)1/2∥∥∥∥

p 

≤ K
√

max{log(N), p}
(
E

( N−1∑
l=0 

k

(
Cαkα

∥∥∥G(t�, U�)

∥∥∥
L2(H,Y)

)2 )p/2)1/p 

≤ KCα

√
tN

√
max{log(N), p}kα

∥∥∥∥ max 
0≤j≤N−1

∥∥∥G(tj, Uj)

∥∥∥
L2(H,Y)

∥∥∥∥
p 

≤ KCα

(
LG,YKu0,f ,g,Y + |||g|||p,∞,Y

)√
tN

√
max{log(N), p}kα (6.19) 

using that R approximates S to order α on Y , the ideal property of L2(H, X), linear growth and stability 
of R on Y . Combining the bounds ( 6.15) to (6.19) we deduce 

M3 ≤ BpCG,XL1
√

tNk +
√

3 
2 

BpCG,XL2
√

tNk1/2 + C3,α
√

tNkα 

+ C3,log
√

tN
√

max{log(N), p}kα + BpCG,X

(
k 

N−1∑
�=0 

E(�)2
)1/2 

. (6.20) 

Having bounded each term individually in ( 6.9), (6.14) and (6.20) we conclude 

E(N) ≤ C1k + C2k1/2 + C3kα + C4

√
max{log(Nk), p}kα + C

(
k 

N−1∑
�=0 

E(�)2
)1/2 

, 

noting that N ≤ Nk and tN ≤ T . Thus, by the discrete version of Gronwall’s Lemma 2.7 

E(N) ≤ (1 + C2tN)1/2 e(1+C2tN )/2
(

C1k + C2k1/2 + C3kα + C4

√
max{log(Nk), p}kα

)
follows. The desired error estimate is obtained for N = Nk. As  k → 0, the terms with the lowest 
exponents dominate, i.e. 

E(Nk) � k1/2 + k + √
max{log(Nk), p}kα �

√
max{log(Nk), p}kmin{ 1 

2 ,α}, (k → 0). 
�

REMARK 6.5. The result (Cox et al., 2020, Theorem 1.1) combines Hölder regularity in the p-th moment 
and bounds on the pointwise strong error to obtain a uniform strong error. Their effective method 
is based on a sophisticated application of the Kolmogorov–Chentsov continuity theorem, as well as
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PATHWISE UNIFORM CONVERGENCE OF DISCRETIZATION SCHEMES 39

approximation arguments. Let us refer to this method for obtaining uniform strong error estimates as the 
Kolmogorov–Chentsov method. At first sight, one might think that the result can be used to obtain the 
convergence rate of Theorem 6.4 up to an arbitrary ε >  0. Below, we point out what can precisely be 
achieved via their method. 

Suppose that R approximates S to order 1/2, a pointwise strong error estimate of rate 1/2 has already 
been established and Assumption 6.1 holds for fixed p ∈ [2, ∞) and α = 1/2. This means that the 
fixed data (u0, f , g) are assumed to have certain Lp(Ω)-integrability. We will check what type of rate the 
Kolmogorov–Chentsov method yields for 

Ep,∞ 
k :=

∥∥∥∥ max 
0≤j≤Nk

‖U(tj) − Uj‖
∥∥∥∥

p 
, 

and compare it to the rate Ep,∞ 
k ≤ Cpk1/2

√
log(T/k) we obtained in Theorem 6.4. We distinguish 

between three cases. 
(a) Integrability of data in L2(Ω): In this case, the Kolmogorov–Chentsov method does not apply, so 

no convergence rate is obtained. 

(b) Integrability of data in Lp(Ω) for a fixed p ∈ (2, ∞): the Kolmogorov–Chentsov method gives 
Ep,∞ 

k ≤ Cγ ,pkγ−1/p for any γ ∈ (1/p, 1/2). 

(c) Integrability of data in Lp(Ω) for all p ∈ (2, ∞): the Kolmogorov–Chentsov method gives Ep,∞ 
k ≤ 

Cγ ,pkγ for any γ ∈ (0, 1/2). 
In the last case, there is an arbitrarily small difference in the error rate. We can obtain this error rate 

under the assumption that the data are Lp(Ω)-integrable for a fixed p ∈ [2, ∞). In the case one has this 
for all p < ∞ one needs to choose a very large p in the Kolmogorov–Chentsov method to get close to 
the desired rate, which in turn produces large constants in the rate estimate. 

6.2 The exponential Euler method 

We analyse the time discretization error for the special case Rk := S(k) known as the exponential Euler 
(EE) method. Obviously, the EE method is contractive for contractive semigroups. Furthermore, several 
terms in the error analysis vanish for the EE method, since S(tj) − Rj 

k = S(tj) − S(k)j = 0 by the  
semigroup property. In particular, the logarithmic correction factor is not needed for this scheme. 

COROLLARY 6.6 (Exponential Euler). Suppose that Assumption 6.1 holds for some α ∈ (0, 1] and p ∈ 
[2, ∞). Let  A be the generator of a C0-contraction semigroup (S(t))t≥0 on both X and Y . Suppose that 
Y ↪→ DA(α, ∞) continuously if α ∈ (0, 1) or Y ↪→ D(A) continuously if α = 1. Let u0 ∈ Lp 

F0 
(Ω; Y). 

Consider the EE method R := S for time discretization. Denote by U the mild solution of (6.1) and by 
(Uj)j=0,...,Nk the temporal approximations as defined in (6.6). Then, for Nk ≥ 2

∥∥∥∥ max 
0≤j≤Nk

‖U(tj) − Uj‖
∥∥∥∥

p 
≤ CS,e

(
CS,1k + CS,2k1/2 + CS,3kα

)
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40 K. KLIOBA AND M. VERAAR

with constants CS,e := Ce, CS,1 := C1, CS,2 := C2 as in Theorem 6.4, CS,3 := CS,2,αT + CS,3,αT1/2, 
CS,3,α := C3,α and 

CS,2,α := 
1 

α + 1

(
CF,XL3 + Cα,F + 2CY

(
LF,YKu0,f ,g,Y + ‖f ‖Lp(Ω;C([0,T];Y))

))
, 

where C3,α is as defined in Theorem 6.4, L3 as in Lemma 6.2, Ku0,f ,g,Y as in (6.8), CY denotes the 
embedding constant of Y into DA(α, ∞) or D(A), and Bp is the constant from Theorem 2.2. 

In particular, the approximations (Uj)j converge at rate min{α, 1 
2 } as k → 0. 

Proof. Adopt the notation from the proof of Theorem 6.4. Contractivity of R on X and Y is immediate 
from contractivity of S on these spaces. Since S(tj) − Rj 

k = 0 for any j ∈ {0, . . .  , Nk}, the  terms  M1 and 
M3,5 vanish. Moreover, the second term in M2,4 vanishes so that 

M2,4 ≤ 
2CY 
α + 1

(
LF,YKu0,f ,g,Y + ‖f ‖p,∞,Y

)
tNkα . 

Combining the individual bounds for the remaining terms, the estimate follows from a discrete 
Gronwall argument as in the proof of Theorem 6.4. The logarithmic correction factor vanishes due to 
M3,5 = 0. �

REMARK 6.7. Adding a term that is quadratic in the Wiener increment to the EE method yields the 
Milstein scheme, which has been found to give good convergence properties Jentzen & Röckner (2015). 
In the parabolic case (i.e. A self-adjoint and with compact resolvent) (Jentzen & Röckner, 2015, Thm.  
1) yields convergence of rate arbitrarily close to 1 in the cases of additive noise or multiplicative noise 
satisfying a commutativity condition, which has been removed in subsequent work von Hallern & Rössler 
(2020). An extension of these results for the Milstein scheme to the hyperbolic case has been raised 
as a direction for future research in Jentzen & Röckner (2015), which, to the best of our knowledge, 
remains open. Moreover, in Jentzen & Röckner (2015); von Hallern & Rössler (2020), the pointwise 
strong error is analysed, from which a pathwise uniform convergence rate can only be obtained at the 
price of deteriorating the convergence rate, as discussed Remark 6.5. 

6.3 Error estimates on the full time interval 

In this subsection, we will extend the error estimates of Theorem 6.4 and Corollary 6.6 to the full time 
interval by using a suitable Hölder regularity of the paths of the mild solution. 

EXAMPLE 6.8. Fix N ≥ 1. Below, we construct a process vN : [0, 1] × Ω → R such that 
supt∈[0,1] E|vN(t)|p ≤ 1/N, but  vN(t) = 1 for all t in a neighborhood of {i/N : i ∈ {1, . . . , N}}. This  
shows that information on the pointwise strong error does not provide much insight on the path of vN in 
general. 

Indeed, let Ω = {ωm,i : i ∈ {1, . . . , N}, m ∈ N}. For every i ∈ {1, . . . , N} suppose that P(ωm,i) = 2−m 

N . 
Let IN = ⋃

m≥1
⋃N 

i=1{ωm,i} × ( i 
N − 1 

2N , i 
N + 1 

2N

)
, and set vN(ω, t) = 1 if  (ω, t) ∈ IN . Then one can 

check that vN satisfies the required estimates.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/advance-article/doi/10.1093/im
anum

/drae055/7823734 by TU
 D

elft user on 21 January 2025



PATHWISE UNIFORM CONVERGENCE OF DISCRETIZATION SCHEMES 41

The undesired behavior in the above example shows the need for having maximal estimates on the 
full time interval, i.e. estimates for ‖ supt∈[0,T] ‖U(t) − Ũ(t)‖‖p, where Ũ is the process obtained from 
the discrete approximation using piecewise linear interpolation. 

The following simple deterministic result provides a way to connect the uniform error to the error 
on the grid. Given a nondecreasing function Φ : [0, T] → [0, ∞) such that Φ �= 0 on  (0, T] we say that 
u ∈ CΦ ([0, T]; X) if u : [0, T] → X is continuous and 

[u]CΦ([0,T];X) = sup 
0≤s<t≤T

‖u(t) − u(s)‖
Φ(t − s) 

< ∞. 

Moreover, we set ‖u‖CΦ([0,T];X) := ‖u‖∞ + [u]CΦ([0,T];X). We shall be particularly interested in the 
function Φ(r) = rα

(
1 + log

(T 
r

))1/2 for r ∈ (0, T] for  some  α >  0 and Φ(0) = 0 in the following. 

LEMMA 6.9 (Decomposition of the error on the full time interval). Let u ∈ CΦ ([0, T]; X) for a 
nondecreasing function Φ : [0, T] → [0, ∞) such that Φ �= 0 on  (0, T]. Let Π ⊆ [0, T] be a finite 
time grid, and denote by ũ : Π → X an approximation of u, which is extended to [0, T] by setting 
ũ(t) := ũ(�t�Π) for t /∈ Π , where �t�Π := max{s ∈ Π : s ≤ t}. Then, it holds that 

sup 
t∈[0,T]

‖u(t) − ũ(t)‖ ≤  Φ(h) · ‖u‖CΦ([0,T];X) + sup 
t∈Π

‖u(t) − ũ(t)‖

for the maximal time step h := supt∈[0,T] dist(t, Π). 

Proof. For t ∈ [0, T] we can write

‖u(t) − ũ(t)‖ ≤ ‖u(t) − u(�t�Π)‖ + ‖u(�t�Π) − ũ(t)‖
≤ ‖u‖CΦ([0,T];X) · Φ(t − �t�Π) + sup 

s∈Π

‖u(s) − ũ(s)‖, 

which implies the required result. �
From the above, we see that to estimate the uniform error on [0, T], we need an (optimal) Hölder 

regularity result for the mild solution U to (6.1). To obtain such a result, the main difficulty lies in 
estimating the stochastic convolution. 

LEMMA 6.10 (Path regularity of stochastic convolutions). Let X, Y be Hilbert spaces such that Y ↪→ X 
continuously. Let A be the generator of a C0-contraction semigroup (S(t))t≥0 on both X and Y . Suppose 
that Y ↪→ DA(α, ∞) holds for some α ∈ (0, 1/2]. Let q ∈ (2, ∞] be such that 1 

2 − 1 
q = α and let 

2 ≤ p < p0 < ∞. Suppose that 

g ∈ Lp(Ω; L2(0, T;L2(H, Y))) ∩ Lp0(Ω; Lq(0, T;L2(H, X))) 

and define Jg : Ω × [0, T] → X as the stochastic convolution 

Jg(t) =
∫ t 

0 
S(t − s)g(s) dWH(s). 
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42 K. KLIOBA AND M. VERAAR

Then one has Jg ∈ Lp(Ω; CΨ ([0, T]; X)) for Ψ : (0, T] → (0, ∞), Ψ (r) := rα
(
1+ log

(T 
r

))1/2 and there 
exist constants Cp, Cα,p,p0,T ≥ 0 such that

‖Jg‖Lp(Ω;CΨ ([0,T];X)) ≤ Cp‖g‖Lp(Ω;L2(0,T;L2(H,Y))) + Cα,p,p0,T‖g‖Lp0 (Ω;Lq(0,T;L2(H,X))). 

By a simple rescaling, the result extends to quasi-contraction semigroups. Moreover, from the proof 
below one can see that a certain Orlicz integrability in Ω is sufficient for g. Note that the above path 
regularity is optimal for q = ∞. Indeed, Lévy’s modulus of continuity theorem for a scalar Brownian 
motion states that a.s. 

lim sup 
h↓0 

sup 
t∈[0,1−h] 

B(t + h) − B(t)√
2h log(1/h) 

= 1, 

which shows that Ψ cannot be replaced by a ‘better’ function. 

Proof of Lemma 6.10. For 0 ≤ s < t ≤ T we can write

‖Jg(t) − Jg(s)‖ ≤
∥∥∥(S(t − s) − I)

∫ s 

0 
S(s − r)g(r) dWH(r)

∥∥∥ +
∥∥∥ ∫ t 

s 
S(t − r)g(r) dWH(r)

∥∥∥
=: T1(t, s) + T2(t, s). 

For T1 we can write 

T1(t, s) ≤ ‖S(t − s) − I‖L(Y ,X)

∥∥∥ ∫ s 

0 
S(s − r)g(r) dWH(r)

∥∥∥
Y 

≤ c(t − s)α‖Jg(s)‖Y 

for some c ≥ 0. Therefore, by Theorem 2.2 we obtain

∥∥∥∥ sup 
0≤s<t≤T 

T1(t, s) 
Ψ (t − s)

∥∥∥∥
p 

≤ c
∥∥∥∥ sup 

0≤s<t≤T

‖Jg(s)‖Y(
1 + log

( T 
t−s

))1/2

∥∥∥∥
Lp(Ω) 

≤ cBp‖g‖Lp(Ω;L2(0,T;L2(H,Y))). 

For T2 we use the dilation result of (Sz-Nagy et al., 2010, Theorem I.7.1) (cf. Hausenblas & Seidler 
(2008)). We can find a Hilbert space X̃, a contractive injection Q : X → X̃, a contractive projection 
P : X̃ → X and a unitary C0-group (G(t))t∈R on X̃ such that S(t) = PG(t)Q for t ≥ 0. Thus, we can 
write 

T2(t, s) =
∥∥∥ ∫ t 

s 
PG(t − r)Qg(r) dWH(r)

∥∥∥
X 

≤
∥∥∥ ∫ t 

s 
G(−r)Qg(r) dWH(r)

∥∥∥
X̃ 

= ‖I(t) − I(s)‖X̃ , 

where I(t) := ∫ t 
0 G(−r)Qg(r) dWH(r). Then by ( Ondreját & Veraar, 2020, (2.12) and Theorem 3.2(vi)) 

we have I ∈ Lp(Ω; C|·|α | log(·)|1/2 
([0, T]; X̃)) and thus by boundedness of | log(·)|1/2

(
1 + log

(T 
·
))−1/2 on
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(0, T] also  I ∈ Lp(Ω; CΨ ([0, T]; X̃)). Moreover, there are constants cα,T , Cα,p,p0,T ≥ 0 such that

‖I‖Lp(Ω;CΨ ([0,T];X̃)) ≤ cα,T‖I‖Lp(Ω;Bα 
Φ2,∞(0,T ;̃X)) 

≤ Cα,p,p0,T‖G(−·)Qg(·)‖Lp0 (Ω;Lq(0,T;L2(H ,̃X))) 

≤ Cα,p,p0,T‖g‖Lp0 (Ω;Lq(0,T;L2(H,X))), 

where Bα 
Φ2,∞(0, T; X̃) denotes the Besov–Orlicz space corresponding to Φ2(x) := exp(x2) − 1, cf. 

(Ondreját & Veraar, 2020, Section 2.3) for the definition. It follows that∥∥∥∥ sup 
0≤s<t≤T 

T2(t, s) 
Ψ (t − s)

∥∥∥∥
p 

≤ ‖I‖Lp(Ω;CΨ ([0,T];X̃)) ≤ Cα,p,p0,T‖g‖Lp0 (Ω;Lq(0,T;L2(H,X))). 

Now the required estimate follows by combining the estimates for T1 and T2. �

REMARK 6.11. For analytic semigroups on X, the result of Lemma 6.10 even holds if merely g ∈ 
Lp0(Ω; Lq(0, T;L2(H, X))), and even Jg ∈ Lp(Ω; Bα 

Φ2,∞(0, T; X)) (see Ondreját & Veraar, 2020, 
Theorem 5.1). In particular, the space Y and contractivity of S are not needed. We do not know if one 
can take p0 = p in Lemma 6.10, even in the analytic case. Also, we do not know if the above Besov 
regularity of Jg holds in the nonanalytic case. 

Sharp path regularity results such as the one of Lemma 6.10 play an important role in obtaining 
convergence rates for numerical schemes for SPDEs. In particular, recent other applications of Ondreját 
& Veraar (2020) to numerics include Diening et al. (2023); Le & Wichmann (2023); Wichmann (2023, 
2024). Below, we apply Lemma 6.10 to obtain additional information on the numerical approximation 
in the Kato setting, and it seems to be the first of its kind for hyperbolic equations. 

After these preparations we can now prove the required path regularity of the mild solution. 

PROPOSITION 6.12 (Path regularity of the mild solution). Suppose that Assumption 6.1 holds for some 
α ∈ (0, 1/2] and p ∈ [2, ∞). Let  p0 ∈ (p, ∞) and q ∈ (2, ∞] be such that 1 

2 − 1 
q = α, and suppose that 

f , g, and u0 additionally satisfy 

f ∈ Lp0(Ω; L1(0, T; X)), g ∈ Lp0(Ω; Lq(0, T;L2(H, X))), and u0 ∈ Lp0 
F0 

(Ω; X) ∩ Lp 
F0 

(Ω; Y). 

Let A be the generator of a C0-contraction semigroup (S(t))t≥0 on both X and Y . Suppose that Y ↪→ 
DA(α, ∞) continuously. Let Ψ : (0, T] → (0, ∞) be given by Ψ (r) := rα (1 + log(T 

r ))
1/2. Then the 

mild solution to ( 6.1) satisfies U ∈ Lp(Ω; CΨ ([0, T]; X)) and there exists a constant C depending on 
(T , p, p0, α, F̃, G̃, X, Y) such that

‖U‖Lp(Ω;CΨ ([0,T];X)) ≤ C
(
1 + ‖u0‖Lp(Ω;Y) + ‖f ‖p,∞,Y + |||g|||p,∞,Y 

+ ‖u0‖Lp0 (Ω;X) + ‖f ‖p0,1,X + |||g|||p0,q,X

)
. 

Proof. The mild solution formula (6.2) yields an initial value term, a difference of deterministic 
convolutions and a stochastic version of the latter. The first two can be estimated as in the proof of
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44 K. KLIOBA AND M. VERAAR

Lemma 6.2, resulting in an upper bound of the form 

c(1 + ‖u0‖Lp(Ω;Y) + ‖f ‖p,∞,Y + |||g|||p,2,Y) 

for some c ≥ 0 depending on T . To the remaining term we apply Lemma 6.10 and note that 

|||G(·, U(·))|||p,2,Y ≤ LG,Y Cu0,f ,g,Y + |||g|||p,∞,Y , 

|||G(·, U(·))|||p0,q,X ≤ T1/q|||G(·, U(·))|||p0,∞,X + |||g|||p0,q,X ≤ T1/qCG,XC̃u0,f ,g,X + |||g|||p0,q,X

� 1 + ‖u0‖Lp0 (Ω;X) + ‖f ‖p0,1,X + |||g|||p0,q,X , 

where C̃u0,f ,g,X is defined as Cu0,f ,g,X in ( 6.4) with p replaced by p0. �
Consequently, we can now ‘upgrade’ Theorem 6.4 and Corollary 6.6 to estimates on the full time 

interval. 

THEOREM 6.13 (Uniform error on the full interval). Suppose that Assumption 6.1 holds for some α ∈ 
(0, 1/2] and p ∈ [2, ∞). Let  A be the generator of a C0-contraction semigroup (S(t))t≥0 on both X and 
Y . Let  (Rk)k>0 be a time discretization scheme which is contractive on X and Y and R approximates S to 
order α on Y or suppose that Rk = S(k) is the exponential Euler method. Suppose that Y ↪→ DA(α, ∞) 
continuously. Let p0 ∈ (p, ∞) and q ∈ (2, ∞] be such that 1 

2 − 1 
q = α, and suppose that f , g, and u0 have 

additional integrability as X-valued processes 

f ∈ Lp0(Ω; L1(0, T; X)), g ∈ Lp0(Ω; Lq(0, T;L2(H, X))), and u0 ∈ Lp0 
F0 

(Ω; X) ∩ Lp 
F0 

(Ω; Y). 

Denote by U the mild solution of ( 6.1) and by (Uj)j=0,...,Nk the temporal approximations as defined in 
(6.6). Define the piecewise linear extension Ũ : [0, T] → Lp(Ω; X) by Ũ(t) := Uj for t ∈ [tj, tj+1), 
0 ≤ j ≤ Nk − 1 and Ũ(T) := UNk . Then for all Nk ≥ 2 there is a constant C ≥ 0 depending on 
(u0, T , p, p0, α, F, G, X, Y) such that∥∥∥∥ sup 

t∈[0,T]
‖U(t) − Ũ(t)‖

∥∥∥∥
p 

≤ C
(
1 + √

max{log(T/k), p})kα . 

Proof. The error bound follows from applying Lemma 6.9 with Φ = (·)α(1+log
(T 

·
))1/2 in combination 

with Theorem 6.4 and Proposition 6.12 to bound the first and second term obtained from the proposition, 
respectively. �

Thus we can conclude that Theorem 6.4 and Corollary 6.6 can be improved to a uniform error estimate 
on [0, T] at the price of a slightly more restrictive integrability condition on g and u0. Moreover, in the 
exponential Euler method an additional logarithmic factor appears. Recall from (Müller-Gronbach, 2002, 
Theorem 3) that already for SDEs the error has to grow at least as log(T/k)1/2k1/2 for k → 0. Therefore, 
for α = 1/2, Theorem 6.13 gives the optimal convergence rate for any scheme. 

In the applications given below we restrict ourselves to the uniform error estimate on the grid points. 
By the above result these statements can be extended to the full interval [0, T] with additionally the 
square root of a logarithmic factor by imposing extra integrability conditions on the data.
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6.4 Application to the Schrödinger equation 

In this subsection we reconsider the stochastic Schrödinger equation with a potential from Section 3.3, 
now with linear multiplicative noise{

du = −i(Δ + V)u dt − iu dW on [0, T], 
u(0) = u0 

(6.21) 

and its nonlinear variant with φ : C → C and ψ : C → C,{
du = −i(Δu + Vu + φ(u)) dt − iψ(u) dW on [0, T], 

u(0) = u0 
(6.22) 

in Rd for d ∈ N, with Q-Wiener process {W(t)}t≥0, potential V and initial value u0 as introduced in 
Section 3.3. 

Let σ ≥ 0 and, for this subsection only, write L2 = L2(Rd; C) and Hσ = Hσ (Rd; C). We recall 
that the well-posedness of (3.12) required Assumption 3.5 on σ and d ∈ N to hold so that multiplication 
by V is a bounded operator on X = Hσ . For multiplicative noise this assumption is also required to 
hold on Y = Hσ+�α , where the choice of � depends on the scheme employed. To facilitate checking the 
assumptions on Y we use the following equivalent reformulation of Assumption 3.5: 

ASSUMPTION 6.14. Let σ ≥ 0, d ∈ N and V ∈ L2 such that 
(i) σ >  d 

2 and V ∈ Hσ , 

(ii) σ = 0 and V ∈ Hβ for some β >  d 
2 , 

(iii) d = 1, σ ∈ (0, 1 
2 ) and V ∈ Hβ for some β >  1 

2 , 

(iv) d ≥ 2, σ ∈ (0, 1] and V ∈ Hβ for some β >  d 
2 . 

Based on the combination of the cases of Assumption 6.14 for X = Hσ and Y = Hσ+�α , the following 
assumption emerges. 

ASSUMPTION 6.15. Let σ ≥ 0, d ∈ N, α ∈
(

0, 1 
2

]
, � ∈ (0, ∞), V ∈ Hβ for some β >  0 such that 

(i) σ >  d 
2 and β = σ + �α, or  

(ii) σ = 0, 1 ≤ d < �, α >  d 
8 , and β = �α, or  

(iii) σ = 0, d = 1, α <  1 
2�

, and β >  1 
2 , or  

(iv) σ = 0, d ≥ 2, α ≤ 1
�
, and β >  d 

2 , or  

(v) d = 1, σ ∈ (0, 1 
2 ), α >  1−2σ 

2�
, and V ∈ Hσ+�α , or  

(vi) d = 1, σ ∈ (0, 1 
2 ), α <  1−2σ 

2�
, and β >  1 

2 , or  

(vii) 2 ≤ d < 2σ + �, σ ∈ (0, 1], α >  d−2σ 
2�

, and β = σ + �α, or  

(viii) d ≥ 2, σ ∈ (0, 1], α ≤ 1−σ
�

, and β >  d 
2 . 
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46 K. KLIOBA AND M. VERAAR

For the exponential Euler method, we recover the error bound from (Anton & Cohen, 2018, Thm.  
5.5) showing convergence rate 1 

2 for linear noise in the case of sufficiently regular Q1/2 and V and σ >  d 
2 . 

Assuming less regularity of Q1/2 and V we extend their result to fractional convergence rates α ∈ (0, 1 
2 ] 

as well as the cases (ii)–(viii) of Assumption 6.15. 

THEOREM 6.16. Let σ ≥ 0, d ∈ N and V ∈ L2. Suppose that Assumption 6.15 is satisfied for some � ≥ 2 
and some α ∈ (0, 1 

2 ], β >  0 and p ∈ [2, ∞), and that u0 ∈ Lp 
F0 

(Ω; Hσ+�α ) as well as Q1/2 ∈ L2(L
2, Hβ ). 

Denote by U the mild solution of the linear stochastic Schrödinger equation with multiplicative noise 
(6.21) and by (Uj)j=0,...,Nk the temporal approximations as defined in (6.6) obtained with the exponential 
Euler method R := S. Then there exists a constant C ≥ 0 depending on (V , u0, T , p, α, σ , d, �) such that 
for Nk ≥ 2 ∥∥∥∥ max 

0≤j≤Nk
‖U(tj) − Uj‖Hσ

∥∥∥∥
p 

≤ C
(
1 + ‖Q1/2‖L2(L2,Hβ)

)
kα . 

In particular, the approximations (Uj)j converge at rate 1 
2 as k → 0 if  Q1/2 ∈ L2(L

2, Hσ+1), V ∈ Hσ+1, 
σ >  d 

2 and u0 ∈ Lp 
F0 

(Ω; Hσ+1).

Proof. By (Anton & Cohen, 2018, Lemma 2.1), A = −iΔ generates a contractive semigroup on both 
Hilbert spaces X = Hσ and Y = Hσ+�α . Furthermore, setting F(u) = −iV ·u and G(u) = −iMuQ1/2 for 
u ∈ Hσ with the multiplication operator Mu allows us to rewrite (6.21) in the form of a stochastic 
evolution equation (6.1). It remains to verify the mapping, linear growth and Lipschitz continuity 
conditions from Assumption 6.1. 

Note that Assumption 6.15 implies that Assumption 3.5 is satisfied for both σ and σ + �α. In  
particular, this means that Vu ∈ Y = Hσ+�α for any u ∈ Hσ+�α and ‖Vu‖Hσ+�α ≤ CV‖u‖Hσ+�α for 
some constant CV ≥ 0. More specifically, it can be shown that CV � ‖V‖Hβ , cf. Section 3.3. Hence, F 
maps both X and Y into themselves and it is of linear growth on Y because of

‖F(u)‖Y = ‖ −  iV · u‖Hσ+�α ≤ CV‖u‖Hσ+�α = CV‖u‖Y , u ∈ Y . 

Likewise, Lipschitz continuity on X is obtained. 
Set H = L2. Due  to

‖G(u)‖L2(H,Y) = ‖ −  iMu · Q1/2‖L2(L2,Hσ+�α) 

≤ ‖Mu‖L(Hβ ,Hσ+�α)‖Q1/2‖L2(L2,Hβ)

� ‖Q1/2‖L2(L2,Hβ)‖u‖Hσ+�α = ‖Q1/2‖L2(L2,Hβ)‖u‖Y , u ∈ Y , (6.23) 

G is of linear growth on Y . To see this we estimate the operator norm of Mu from Hβ to Hσ+�α using 
either the Banach algebra property of Hβ , a combination of Hölder’s inequality and Sobolev embeddings 
or an argument analogously to Lemma 3.6 as discussed in Section 3.3. Likewise, we check Lipschitz 
continuity of G on X with a multiple of ‖Q1/2‖L2(L2,Hβ) as Lipschitz constant. Measurability and Hölder 
continuity in time are trivially fulfilled due to F and G depending only on u ∈ X. Thus, Corollary 6.6 is 
applicable with X = Hσ , H = L2 and Y = Hσ+�α ↪→ Hσ+2α ↪→ (Hσ , D(A))α,∞, yielding the desired 
error bound. �
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Furthermore, Theorem 6.4 enables us to extend (Anton & Cohen, 2018, Thm. 5.5) to general 
discretization schemes R involving rational approximations at the price of an additional logarithmic 
factor. We focus on the IE method and the CN method, which approximate the Schrödinger semigroup 
to rate α on Y = Hσ+4α and Y = Hσ+3α , respectively (see Theorem 3.8). 

THEOREM 6.17. Let σ ≥ 0, d ∈ N and V ∈ L2. Let  (Rk)k>0 be the IE method or the CN method and 
set �0 := 4 or �0 := 3, respectively. Suppose that Assumption 6.15 is satisfied for some � ≥ �0 and for 
some α ∈ (0, 1 

2 ], β >  0, and p ∈ [2, ∞). Furthermore, suppose that u0 ∈ Lp 
F0 

(Ω; Hσ+�α ) as well as 
Q1/2 ∈ L2(L

2, Hβ ). Denote by U the mild solution of the linear stochastic Schrödinger equation with 
multiplicative noise (6.21) and by (Uj)j=0,...,Nk the temporal approximations as defined in (6.6). Then, 
there exists a constant C ≥ 0 depending on (V , u0, T , p, α, σ , d, �) such that for Nk ≥ 2

∥∥∥∥ max 
0≤j≤Nk

‖U(tj) − Uj‖Hσ

∥∥∥∥
p 

≤ C
(
1 + ‖Q1/2‖L2(L2,Hβ)

)√
max{log(T/k), p}kα . 

In particular, IE and CN converge at rate 1 
2 up to logarithmic correction as k → 0 if  V ∈ Hσ+�α , 

Q1/2 ∈ L2(L
2, Hσ+�α ), σ >  d 

2 , and u0 ∈ Lp 
F0 

(Ω; Hσ+�α ) with � = 4 and � = 3, respectively.

An analogous statement holds for all time discretization schemes (Rk)k>0 which are contractive on 
Hσ and Hσ+�α and approximate S to order α on Hσ+�α . The reader is referred to Proposition 2.5 for 
a tool to check contractivity. As in the additive case, the conditions on the dimension d ∈ N are not 
required in the absence of a potential. In most cases, choosing � = �0 is sufficient. However, in the 
situation of Assumption 6.15(ii) or (vii), choosing a larger � can yield the additional regularity required 
to solve Schrödinger’s equation in higher dimensions. 

Proof. We want to apply Theorem 6.4 with Y = Hσ+�α for � ≥ �0 ∈ {3, 4} and X, H, F, G as in Theorem 
6.16 for the exponential Euler method. The proof works analogously, replacing � ≥ 2 by � ≥ �0. It  
remains to check that IE and CN are contractive on Hσ and Hσ+�α . But since IE and CN are defined via 
A and a scaled version of its resolvent, Rk commutes with resolvents of A in both cases. Thus, Proposition 
2.5 yields the assertion. �

When passing to a nonlinear situation as in (6.22), showing Lipschitz continuity of G requires 
estimates of the form

‖ψ(u) − ψ(v)‖Hσ � ‖u − v‖Hσ , u, v ∈ Hσ 

and similar for φ. However, the best estimate known for σ ∈ (0, 1) and ψ ∈ C2 with bounded first and 
second derivatives is (Taylor, 2007, Prop. 2.7.2),

‖ψ(u) − ψ(v)‖Hσ � ‖u − v‖Hσ + (1 + ‖u‖Hσ + ‖v‖Hσ )‖u − v‖L∞ . 

Since this estimate is nonlinear in u and v, showing Lipschitz continuity of G is currently out of reach for 
σ >  0. Another reason to restrict our considerations to σ = 0 in the following is the negative result from 
Dahlberg Dahlberg (1979), see also the survey Bourdaud (2023). It states that for  σ + 2α ∈

(
3 
2 , 1 + d 

2

)
, 

the only mappings ψ such that ψ ◦ u ∈ Hσ+2α for all u ∈ Hσ+2α are the affine-linear ones. Hence, in
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48 K. KLIOBA AND M. VERAAR

dimension d > 1, the optimal rate α = 1 
2 cannot be expected for all σ >  1 

2 for genuinely nonlinear ψ . 
For σ = 0, however, a convergence rate can be obtained. 

THEOREM 6.18. Let σ = 0, d ∈ N, and V ∈ L2. Suppose that one of the cases (ii)–(iv) of Assumption 
6.15 is satisfied for � = 2 and for some α ∈ (0, 1 

2 ], β >  0 and p ∈ [2, ∞). Furthermore, suppose that 
u0 ∈ Lp 

F0 
(Ω; Hσ+2α ) as well as Q1/2 ∈ L2(L

2, Hβ ). Let  φ, ψ : C → C be Lipschitz continuous and 
such that φ(0) = ψ(0) = 0. Denote by U the mild solution of the nonlinear stochastic Schrödinger 
equation with multiplicative noise (6.22) and by (Uj)j=0,...,Nk the temporal approximations as defined in 
(6.6) obtained with the exponential Euler method R := S. Then, there exists a constant C ≥ 0 depending 
on (V , u0, φ, ψ , T , p, α, d, �) such that for Nk ≥ 2∥∥∥∥ max 

0≤j≤Nk
‖U(tj) − Uj‖L2

∥∥∥∥
p 

≤ C
(
1 + ‖Q1/2‖L2(L2,Hβ)

)
kα . 

In particular, the approximations (Uj)j converge at rate 1 
2 as k → 0 if  Q1/2 ∈ L2(L

2, H1), V ∈ H1 and 
u0 ∈ Lp 

F0 
(Ω; H1) for d = 1. In dimension d ≥ 2 this is attained for Q1/2 ∈ L2(L

2, Hβ ) and V ∈ Hβ for 
some β >  d 

2 , and u0 ∈ Lp 
F0 

(Ω; H1).

Proof. From the linear case it is already clear that

‖G(u) − G(v)‖L2(L2,L2) � ‖ψ ◦ u − ψ ◦ v‖L2‖Q1/2‖L2(L2,Hβ). 

Lipschitz continuity of ψ with Lipschitz constant Cψ ≥ 0 implies Lipschitz continuity of G on 
X = L2 via

‖ψ ◦ u − ψ ◦ v‖L2‖Q1/2‖L2(L2,Hβ) ≤ Cψ‖Q1/2‖L2(L2,Hβ)‖u − v‖L2 . 

Since from (6.23) we know that

‖G(u)‖L2(L2,H2α) � ‖ψ ◦ u‖H2α‖Q1/2‖L2(L2,Hβ), (6.24) 

it remains to estimate the norm of the composition ‖ψ ◦ u‖H2α by a multiple of ‖u‖H2α to show linear 
growth of G on H2α . In case α <  1 

2 , 2α ∈ (0, 1) and thus, by (Taylor, 2007, Prop. 2.4.1), ‖ψ ◦ u‖H2α �
‖u‖H2α . In the remaining cases 2α = 1 holds, so that

‖ψ ◦ u‖2 
H2α = ‖ψ ◦ u‖2 

L2 + ‖∇(ψ ◦ u)‖2 
L2 ≤ ‖ψ ◦ u‖2 

L2 + C2 
ψ‖∇u‖2 

L2 ≤ max{1, C2 
ψ }‖u‖2 

H1 , 

where in the first inequality we have invoked (Taylor, 2007, Prop. 2.6.1). Hence, G is of linear growth 
on Y = H2α . In the same way one can see that F(u) = −i(Vu + φ(u)) is Lipschitz on X and of linear 
growth on Y . The statement of this theorem follows by an application of Corollary 6.6. �

To estimate the composition in (6.24) we required 2α ∈ (0, 1] to apply the composition estimates. It 
is an open problem whether such estimates also hold in Hs for s > 1. For real-valued functions, results 
have been obtained for s < 3 

2 in (Bourdaud & Sickel, 2011, Thm. 18). These estimates being unknown
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for s > 1 limit us to suboptimal convergence rates for schemes involving rational approximations, at 
least for nonlinear Schrödinger equations. 

THEOREM 6.19. Let σ = 0, d ∈ N and V ∈ L2. Let  (Rk)k>0 be the IE method or the CN method and set
�0 := 4 or �0 := 3, respectively. Suppose that one of the cases (ii)–(iv) of Assumption 6.15 is satisfied 
for � = �0 and some α ∈ (0, 1

�
], β >  0 and p ∈ [2, ∞). Furthermore, suppose that u0 ∈ Lp 

F0 
(Ω; H�α ) as 

well as Q1/2 ∈ L2(L
2, Hβ ). Let  φ, ψ : C → C be Lipschitz continuous and such that φ(0) = ψ(0) = 0. 

Denote by U the mild solution of the nonlinear stochastic Schrödinger equation with multiplicative noise 
(6.22) and by (Uj)j=0,...,Nk the temporal approximations as defined in (6.6). Then, there exists a constant 
C ≥ 0 depending on (V , u0, φ, ψ , T , p, α, d, �) such that for Nk ≥ 2∥∥∥∥ max 

0≤j≤Nk
‖U(tj) − Uj‖Hσ

∥∥∥∥
p 

≤ C
(
1 + ‖Q1/2‖L2(L2,Hβ)

)√
max{log(T/k), p}kα . 

In particular, in dimension d = 1, the IE method converges at rate 1 
4 up to logarithmic correction as 

k → 0 if  V ∈ H1, Q1/2 ∈ L2(L
2, H1) and u0 ∈ Lp 

F0 
(Ω; H1). For the same regularity of V , Q1/2 and u0, 

the CN method converges at rate 1 
3 up to logarithmic correction as k → 0 in dimension  d = 1.

This theorem can be generalised to time discretization schemes (Rk)k>0 that are contractive on L2 

and H�α and that approximate S to order α ∈ (
0, 1

�

]
on H�α . 

6.5 Numerical experiments for the Schrödinger equation 

In this subsection we illustrate that convergence rates observed in numerical simulations correspond well 
to the analytic convergence rates obtained in Sections 3.3 and 6.4 for the Schrödinger equation. The code 
for the numerical simulations is available at Klioba & Veraar (2024). 

We consider the linear stochastic Schrödinger equation without potential (V = 0) and with periodic 
boundary conditions on [0, 2π ] in the case of multiplicative noise (6.21) and additive noise (3.12), 
respectively. For spatial discretization we employ a spectral Galerkin method with M = 210 Fourier 
modes and calculate L2-errors, i.e. σ = 0. The initial values u0 are taken with Fourier coefficients 
(1+|�|6)−1, −M/2+1 ≤ � ≤ M/2, resulting in sufficiently smooth initial values. We take the covariance 
operator Q to have eigenvalues λ� = (1 + |�|β )−1 to the eigenfunctions e� = (2π)−1/2 exp(i�·), � ∈ Z. 
We choose the exponent as β = 5.1 for additive noise and β = 3.1 for multiplicative noise, which leads 
to Q1/2 ∈ L2(L

2, H2+ε ) and Q1/2 ∈ L2(L
2, H1+ε ) for any ε ∈ (0, 0.05), respectively. In the simulation, 

both the noise and the approximate solutions are truncated at wave numbers −M/2 + 1 ≤ � ≤ M/2. 
For time discretization we consider the exponential Euler method (EE), the implicit Euler (IE) method 
and the Crank-Nicolson (CN) method. For additive noise, case (ii) of Assumption 3.5 is satisfied, so that 
according to Theorem 3.7, for any p ∈ [2, ∞), EE shall converge with the optimal rate 1. Analogously, 
by Theorem 3.8, IE shall converge with rate 2+ε 

4 ≈ 0.5125 and CN with rate 2+ε 
3 ≈ 0.68. The truncation 

error of the spectral Galerkin method can be computed to be of order (M/2)−4 ≈ 10−9, which is 
negligible. For multiplicative noise case (ii) of Assumption 6.15 is satisfied, resulting in analytical rates of 
convergence 0.5, 1+ε 

3 ≈ 0.35, and 1+ε 
4 ≈ 0.26 for EE, CN, and IE, respectively, based on Theorems 6.16 

and 6.17, respectively. 
The numerical rates of convergence of the pathwise uniform error with p = 2 of the three different 

schemes are illustrated in Fig. 1 and stated in Table 2 for additive and multiplicative noise as described 
above. The expected analytical rates of convergence can be confirmed. Small deviations of the numerical
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TABLE 2 Numerical rates of convergence for the stochastic Schrödinger equation 

EE IE CN 

H2+ε-valued additive noise 0.9650 0.5510 0.7071 
H1+ε-valued multiplicative noise 0.5321 0.3025 0.3675 

FIG. 1. Numerical rates of convergence for the stochastic Schrödinger equation with additive noise (left) and multiplicative noise 
(right) for exponential Euler (squares), implicit Euler (diamonds), and Crank-Nicolson (asterisks). 

from the analytical rate of convergence can be explained by the fact that the analytical solution is 
approximated by the EE method with a small time step k = 2−12 and 100 samples are used for the 
approximation of the expected values. For the approximations time steps k = 2−5, . . . , 2−9 are used. 

6.6 Application to Maxwell’s equations 

As a second example we consider the stochastic Maxwell’s equations

{
dU = [AU + F(U)] dt + G(U) dW on [0, T], 

U(0) = (E�
0 , H�

0 )
� (6.25) 

with boundary conditions of a perfect conductor as in Cohen et al. (2020). It describes the behaviour of 
the electric and magnetic field E and H, respectively, on a bounded, simply connected domain O ⊆ R3 

with smooth boundary with unit outward normal vector n. Here, A : D(A) → X := L2(O)6 is the
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Maxwell operator defined by 

A

(
E 
H

)
:=

(
0 ε−1∇× 

−μ−1∇× 0

)(
E 
H

)
=

(
ε−1∇ × H 

−μ−1∇ ×  E

)
on D(A) := H0(curl,O) × H(curl,O) with H(curl,O) := {H ∈ (L2(O))3 : ∇ × H ∈ L2(O)3} and 
its subspace H0(curl,O) of those H with vanishing tangential trace n × H|∂O . The permittivity and 
permeability ε, μ ∈ L∞(O) are assumed to be uniformly positive, i.e. ε, μ ≥ κ >  0 for some constant 
κ . We equip the Hilbert space X = L2(O)6 = L2(O)3 × L2(O)3 with the weighted scalar product〈(

E1 
H1

)
,

(
E2 
H2

)〉
:=

∫
O

(
μ〈H1, H2〉 +  ε〈E1, E2〉

)
dx, 

where 〈·, ·〉 denotes the standard scalar product in L2(O)3. Furthermore, W is a Q-Wiener process for a 
symmetric, nonnegative operator Q with finite trace such that Q1/2 ∈ L2(H, X), where H = L2(O)6 is 
equipped with the standard norm. 

For F : Ω × [0, T] × X → X we consider the linear drift term given by 

(ω, t, U) �→ F(ω, t, U) =
(

σ1(·, t)E 
σ2(·, t)H

)
, U = (E�, H�)�, (6.26) 

for sufficiently smooth σ1, σ2 : O × [0, T] → R. We assume boundedness of σ1, σ2 and their partial 
derivatives w.r.t. the spatial variables. In particular, let σj be uniformly Lipschitz continuous in time and 
let ∂xi σj, σj ∈ L∞(O × [0, T]) for i = 1, 2, 3 and j = 1, 2. Then, F is Lipschitz on X due to

‖F(t, V)‖2 
X =

∫
O

(
μ(x)‖σ2(·, t)HV‖2 

L2(O)3 + ε(x)‖σ1(·, t)EV‖2 
L2(O)3

)
dx 

≤ max{‖σ1‖∞, ‖σ2‖∞}2‖V‖2 
X =: C2 

F‖V‖2 
X , V = (E�

V , H�
V )

�, 

and linearity of F. A straightforward explicit calculation of the curl operator shows that

‖AF(t, V)‖2 
X =

∥∥∥∥( ε−1∇ ×  (σ2(·, t)HV) 
−μ−1∇ ×  (σ1(·, t)EV)

)∥∥∥∥2 

X 

≤ κ−2
∫
O 

μ‖∇ × (σ1(·, t)EV)‖2 
L2(O)3 + ε‖∇ × (σ2(·, t)HV)‖2 

L2(O)3 dx 

≤ 3κ−2
(

C2 
F‖AV‖2 

X + 2 max  
j=1,2 

max 
i=1,2,3

‖∂xi σj‖2∞‖V‖2 
X

)
. 

We conclude linear growth of F on Y := D(A) by

‖F(t, V)‖2 
D(A) = ‖F(t, V)‖2 

X + ‖AF(t, V)‖2 
X 

≤
(

max{1, 3κ−2}C2 
F + 6κ−2 max 

j=1,2 
max 

i=1,2,3
‖∂xi σj‖2∞

)
‖V‖2 

D(A). 
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As noise G(V), where V = (E�
V , H�

V )
� ∈ L2(O)6 we consider the Nemytskij map associated to 

diag((−ε−1E�
V , −μ−1H�

V ))Q
1/2, i.e. for h ∈ L2(O)6 and x ∈ O, we have  

(G(V)h)(x) =
(−ε−1(x) diag(EV(x)) 0 

0 −μ−1(x) diag(HV(x))

)
(Q1/2h)(x) ∈ R6. (6.27) 

Since for V1, V2 ∈ L2(O)6

‖G(V1 − V2)‖L2(H,X) ≤ κ−1‖Q1/2‖L2(H,X)‖V1 − V2‖X , 

G : X → L2(H, X) is Lipschitz continuous on X. As discussed in (  Cohen et al., 2020, p.5)  G 
is of linear growth on D(A) under higher regularity assumptions on Q1/2. To be precise, if  Q1/2 ∈ 
L2(L

2(O)6, H1+β (O)6) for some β >  3 
2 then, for some C ≥ 0,

‖G(V)‖L2(H,D(A)) ≤ C‖Q1/2‖L2(L2(O)6,H1+β(O)6)(1 + ‖V‖D(A)). 

This directly follows from the estimate (Cohen et al., 2020, formula (7)) for G defined by G = GQ1/2 

taking into account that for an orthonormal basis (e�)�∈N of H we have

‖G(V)‖L2(H,D(A)) =
∑
�∈N

‖G(V)e�‖D(A) =
∑
�∈N

‖G(V)Q1/2e�‖D(A) = ‖G(V)‖L2(Q1/2H,D(A)). 

The choice of the coefficient β >  3 
2 stems from the fact that the Sobolev embedding Hβ (O) ↪→ L∞(O) 

holds for β >  d 
2 = 3 

2 since O ⊆ R3 (Hytönen et al., 2017, Ex. 9.3.4). Thus, for the embedding into 
D(A) to hold Q1/2 is required to map into H1+β (O)6. 

THEOREM 6.20. Let p ∈ [2, ∞) and F, G as introduced in (6.26) and (6.27), respectively. Suppose that 
u0 ∈ Lp 

F0 
(Ω; D(A)) and Q1/2 ∈ L2(L

2(O)6, H1+β (O)6) for some β >  3 
2 . Denote by U the mild solution 

to the stochastic Maxwell’s equations (6.25) with multiplicative noise (6.21) and by (Uj)j=0,...,Nk the 
temporal approximations as defined in (6.6) obtained with the exponential Euler method R := S. Then, 
there exists a constant C ≥ 0 depending on (σ1, σ2, u0, T , p, α, ε, μ, κ) such that for Nk ≥ 2∥∥∥∥ max 

0≤j≤Nk
‖U(tj) − Uj‖Hσ

∥∥∥∥
p 

≤ C
(
1 + ‖Q1/2‖L2(L2(O)6,H1+β(O)6)

)
k1/2, 

i.e. the approximations (Uj)j converge at rate 1 
2 as k → 0.

Proof. The theorem follows from Corollary 6.6 with α = 1 
2 and Y = D(A). From the above 

considerations it follows that the conditions on F and G are met. It remains to verify that Y is Hilbert 
and (S(t))t≥0 is a contraction semigroup on both X and Y . Since Y = D(A) is a Banach space (Monk, 
2003, p. 410) and λ − A defines an isomorphism between D(A) and X for λ ∈ ρ(A) it is also a Hilbert 
space. By (Cohen et al., 2020, Formula (3)), (S(t))t≥0 is a contraction semigroup on X. By definition of 
the graph norm this implies contractivity on D(A). �

We can extend (Cohen et al., 2020, Thm. 3.3) to schemes involving rational approximations.
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THEOREM 6.21. Let p ∈ [2, ∞) and F, G as introduced in (6.26) and (6.27), respectively. Suppose that 
u0 ∈ Lp 

F0 
(Ω; D(A)) and Q1/2 ∈ L2(L

2(O)6, H1+β (O)6) for some β >  3 
2 . Let  (Rk)k>0 be a time 

discretization scheme which is contractive on L2(O)6 and D(A). Assume R approximates S to order 1 
2 

on D(A). Denote by U the mild solution to the stochastic Maxwell’s equations (6.25) with multiplicative 
noise (6.21) and by (Uj)j=0,...,Nk the temporal approximations as defined in (6.6). Then, there exists a 
constant C ≥ 0 depending on (σ1, σ2, u0, T , p, α, ε, μ, κ) such that for Nk ≥ 2∥∥∥∥ max 

0≤j≤Nk
‖U(tj) − Uj‖Hσ

∥∥∥∥
p 

≤ C
(
1 + ‖Q1/2‖L2(L2(O)6,H1+β(O)6)

)√
max{log(T/k), p}k1/2, 

i.e. the approximations (Uj)j converge at rate 1/2 up to a logarithmic correction factor as k → 0. In 
particular, rate 1 

2 is attained for the IE method and the CN method.

7. Convergence rates for abstract wave equations 

In this section we shall be concerned with rates of convergence for abstract stochastic wave equations of 
the form 

dU = (AU + F(t, U)) dt + G(t, U) dWH(t), U(0) = U0 = (u0, v0) ∈ Lp(Ω; X) (7.1) 

on a phase space X = V × V−1 of product structure to be specified later, which takes different 
regularities of the first and second components of the mild solution into account. We achieve the 
following convergence rates for sufficiently regular noise: 

• E∞
k � kα

√
log(T/k) with α close to one (general contractive schemes, multiplicative noise); 

• E∞
k � k (exponential Euler, multiplicative noise). 

Up to a logarithmic factor these rates are optimal for the given problem. They provide an alternative 
proof of (Wang, 2015, Thm. 3.1) for the exponential Euler method under less regularity assumptions on 
F and G and without making use of the group structure of the semigroup. The latter is crucial in order to 
extend the convergence result beyond the exponential Euler method. We extend the convergence result 
to general contractive schemes, which, to the best of our knowledge, is novel. 

At the heart of our proof lies the higher Hölder continuity of the first component of the mild solution 
in V compared with the mild solution vector in X, which emerges from the product structure of the 
phase space on which the abstract wave equation is considered. This allows for better estimates of those 
error terms depending on the Hölder continuity of the mild solution. Incorporating this into the setting of 
Section 6 leads to the main Theorem 7.6 in Section 7.1. Section 7.2 covers the exponential Euler method. 
An extension of the error estimates to the full time interval is presented in Section7.3. The results are illus-
trated for the stochastic wave equation with trace class noise, space–time white noise and smooth noise in 
Sections 7.4–7.6. 

Let V be a separable Hilbert space equipped with the norm ‖·‖V . Consider a densely defined, positive 
self-adjoint invertible operator Λ : D(Λ) ⊆ V → V . For  β ∈ R, define the norm ‖u‖Vβ := ‖Λβ/2u‖V 

for u ∈ Vβ and, for β ≥ 0, denote the domain of Λ 
β 
2 by Vβ and equip it with this norm. For negative 

β, we denote by Vβ the completion of V with respect to ‖ · ‖Vβ . We can thus interpret Λ as an operator 
mapping from V1 to V−1 and it holds that V = V0. In this section we consider stochastic evolution
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equations on the phase space X := V0 × V−1 = V × V−1. More generally, we introduce the product 
spaces 

Xβ := Vβ × Vβ−1 = D(Λ 
β 
2 ) × D(Λ 

β−1 
2 ) (7.2) 

for β ∈ R, equipped with the norm ‖U‖Xβ := (‖u‖2 
Vβ 

+ ‖v‖2 
Vβ−1 

)1/2 for U = (u, v) ∈ Xβ . Clearly, it 
then holds that X = X0. 

The stochastic evolution equation (7.1) depends on the nonlinearity F : Ω × [0, T] × X → X and 
the multiplicative noise G : Ω × [0, T] × X → L2(H, X) on the phase space X. However, the product 
structure of X considered in this section motivates an interpretation of (7.1) as a system of two evolution 
equations. Setting 

A =
(

0 I 
−Λ 0

)
, F(t, U) =

(
0 

F(t, u)

)
, G(t, U) =

(
0 

G(t, u)

)
forU =

(
u 
v

)
∈ X (7.3) 

gives rise to the system of evolution equations{
du = v dt, 
dv = (−Λu + F(t, u)) dt + G(t, u) dWH(t). 

This precisely captures the setting of stochastic wave equations when thinking of v(t) as the derivative 
of u(t), thus yielding a stochastic evolution equation for the derivative u̇(t) with left-hand side du̇. The  
invertibility of Λ does not lead to restrictions, because we can always reduce to this case by writing 
−Λu + F(t, u) = −(Λ + ε)u + εu + F(t, u) without changing the properties of F. 

The operator A from (7.3) generates a C0-semigroup (S(t))t≥0 given by 

S(t) =
(

cos(tΛ1/2) Λ−1/2 sin(tΛ1/2) 
−Λ1/2 sin(tΛ1/2) cos(tΛ1/2)

)
, (7.4) 

where we use the spectral theorem for self-adjoint operators to define the matrix entries. Indeed, 

lim 
t→0

‖ cos(tΛ1/2)x − x‖ =  lim 
t→0

∥∥∥ ∫ t 

0 
sin(sΛ1/2)Λ1/2x ds

∥∥∥ ≤ lim 
t→0 

t‖Λ1/2x‖ =  0 

and, analogously, limt→0 ‖ ±  Λ∓1/2 sin(tΛ1/2)x − x‖ =  0 for  x ∈ D(Λ1/2). Strong continuity of the 
semigroup follows by the density of D(Λ1/2), and the spectral theorem. It is straightforward to see that S 
satisfies the semigroup property and that A is its infinitesimal generator. Due to −Λu ∈ V−1 if and only 
if u ∈ V1 we find that the domain of A is given by 

D(A) = {U ∈ X : AU ∈ X} = {(u, v) ∈ X : (v, −Λu) ∈ V0 × V−1} = X1. 

Let β ∈ R. Combining the respective one-dimensional statements with the spectral theorem we obtain 
that sin(tΛ1/2) and cos(tΛ1/2) are contractive on Vβ , sin(0 · Λ1/2) = 0, and that Λ and powers thereof 
commute with both sin(tΛ1/2) and cos(tΛ1/2). The trigonometric identity satisfied by sin(tΛ1/2) and 
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cos(tΛ1/2) implies contractivity of the semigroup, that is

‖S(t)U‖Xβ ≤ ‖U‖Xβ . (7.5) 

Our aim is to derive conditions on F and G rather than F and G under which the temporal 
approximations 

Uj = Rj 
kU0 + k 

j−1∑
i=0 

F(ti, Ui) + 
j−1∑
i=0 

ΔWi+1Rj−i 
k G(ti, Ui), 0 ≤ j ≤ Nk, (7.6) 

converge to the mild solution U(t) = (u(t), v(t)) ∈ X at a certain rate. As will become apparent, rates of 
convergence > 1/2 can be attained up to a logarithmic correction factor even for general contractive 
schemes. The key aspect of our main theorem, Theorem 6.4, enabling this optimal rate consists of 
higherorder Hölder continuity of the first component of the mild solution. 

7.1 General contractive time discretization schemes 

As will be shown, the following assumptions on F and G imply that F and G fall within the scope of 
Section 6. 

ASSUMPTION 7.1. Let V be a Hilbert space, Λ : D(Λ) ⊆ V → V a densely defined, positive, self-adjoint 
and invertible operator, and p ∈ [2, ∞). Let  F : Ω × [0, T] × V → V−1, F(ω, t, x) = F̃(ω, t, x) + f (ω, t) 
and G : Ω×[0, T]×V → L2(H, V−1), G(ω, t, x) = G̃(ω, t, x)+g(ω, t) be stronglyP⊗B(V)-measurable, 
and such that F̃(·, ·, 0) = 0 and G̃(·, ·, 0) = 0, and suppose that for some δ >  0 and α ∈ (0, 1], 
(a) (Lipschitz continuity from V to V−1) there exist constants CF , CG ≥ 0 such that for all ω ∈ Ω , t ∈ 

[0, T] and x, y ∈ V it holds that

‖F̃(ω, t, x) − F̃(ω, t, y)‖V−1 ≤ CF‖x − y‖V ,

‖G̃(ω, t, x) − G̃(ω, t, x)‖L2(H,V−1) ≤ CG‖x − y‖V , 

(b) (Hölder continuity with values in V−1) there are constants Cα,F , Cα,G ≥ 0 such that 

sup 
ω∈Ω ,x∈V 

[Λ− 1 
2 F(ω, ·, x)]α ≤ Cα,F , sup  

ω∈Ω ,x∈V 
[Λ− 1 

2 G(ω, ·, x)]α ≤ Cα,G, 

(c) (continuity with values in Vδ−1) f  ∈ Lp 
P (Ω; C([0, T]; Vδ−1)), and g ∈ Lp 

P (Ω; C([0, T]; 
L2(H, Vδ−1))), 

(d) (invariance) F : Ω × [0, T] × Vδ → Vδ−1 and G : Ω × [0, T] × Vδ → L2(H, Vδ−1) are strongly 
P ⊗ B(Vδ)-measurable, 
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(e) (linear growth from Vδ to Vδ−1) there exist constants LF , LG ≥ 0 such that for all ω ∈ Ω , t ∈ [0, T] 
and x ∈ V it holds that

‖F̃(ω, t, x)‖Vδ−1 ≤ LF(1 + ‖x‖Vδ ),

‖G̃(ω, t, x)‖L2(H,Vδ−1) ≤ LG(1 + ‖x‖Vδ ). 

It is important to note that both δ ∈ (0, 1] and δ ∈ (1, 2] will be considered. As for δ = 2 optimal 
rates are obtained for the usual schemes, larger values of δ are not considered. 

Next, we first show that we satisfy the required conditions for the well-posedness and thus (7.1) has 
a unique mild solution. Adopt the notation of the proof of Theorem 6.4, replacing F, F̃, f , G, G̃ and g by 
F, F̃, f, G, G̃ and g, respectively. 

Setting Y := Xδ for some δ ≥ α it is clear from X = X0, invertibility of Λ and D(An) = Xn that 
Y ↪→ X and Y ↪→ DA(β, ∞) for any β ∈ (0, δ). Since Vδ are separable Hilbert spaces for δ ∈ R so are 
X and Y . Contractivity of the semigroup follows from (7.5). Note that strong P ⊗ B(X)-measurability 
of F and G, and that F̃, G̃ vanish in 0 immediately follow from the respective assumptions on F̃, G̃ 
due to the structure (7.3). We are left to prove Lipschitz continuity, linear growth, Y-invariance, and 
Hölder continuity of F, G and continuity of f and g. Deducing Y-invariance from Assumption 7.1 is 
straightforward noting that

‖f‖p,∞,Y =
∥∥∥∥ sup 

t∈[0,T]
‖f(t)‖Y

∥∥∥∥
p 

=
∥∥∥∥ sup 

t∈[0,T]
‖f (t)‖Vδ−1

∥∥∥∥
p 

= ‖f ‖p,∞,Vδ−1 (7.7) 

and, likewise, |||g|||p,∞,Y = |||g|||p,∞,Vδ−1 . The mapping properties on Y and strong P⊗B(Y)-measurability 
of F and G follow from Assumption 7.14 because Y = Vδ×Vδ−1. Linear growth of F̃ from Y to Y follows 
from linear growth of F̃ from Vδ to Vδ−1 as stated in Assumption 7.1 taking the structure (7.3) of  F into 
account via

‖F̃(t, U)‖Y = ‖F̃(t, u)‖Vδ−1 ≤ LF(1 + ‖u‖Vδ ) ≤ LF(1 + ‖U‖Y) 

for t ∈ [0, T], U = (u, v) ∈ Y = Vδ × Vδ−1. Analogously, linear growth of G̃ from Y to L2(H, Y) is 
obtained, since

‖G̃(t, U)‖Y = ‖G̃(t, u)‖Vδ−1 ≤ LG(1 + ‖u‖Vδ ) ≤ LG(1 + ‖U‖Y). 

Lipschitz continuity of F from X to X holds due to

‖F(t, U1) − F(t, U2)‖X = ‖F(t, u1) − F(t, u2)‖V−1 = ‖Λ− 1 
2 [F̃(t, u1) − F̃(t, u2)]‖V 

≤ CF‖u1 − u2‖V ≤ CF‖U1 − U2‖X 

for t ∈ [0, T] and U1 = (u1, v1), U2 = (u2, v2) ∈ X. Analogously,

‖G(t, U1) − G(t, U2)‖L2(H,X) = ‖Λ− 1 
2 [G̃(t, u1) − G̃(t, u2)]‖L2(H,V) ≤ CG‖U1 − U2‖X .
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Hence, G : X → L2(H, X) is Lipschitz continuous. Via the same argument, 

[F(ω, ·, U)]α = sup 
0≤s≤t≤T

‖F(t, U) − F(s, U)‖X 
(t − s)α

= sup 
0≤s≤t≤T

‖Λ− 1 
2 [F(t, u) − F(s, u)]‖V 

(t − s)α
, 

from which we conclude α-Hölder continuity of F. 
The above leads to following: 

LEMMA 7.2 (Well-posedness). Suppose that Assumption 7.1 holds for some α ∈ (0, 1], δ ≥ α, and 
p ∈ [2, ∞). Let  Y := Xδ as defined in (7.2) and U0 ∈ Lp 

F0 
(Ω; Y). Under these conditions there exists a 

unique mild solution U ∈ Lp(Ω; C([0, T]; X)) to (7.1). Furthermore, it is in Lp(Ω; C([0, T]; Y)) and

‖U‖Lp(Ω;C([0,T];Y)) ≤ CY 
bdd

(
1 + ‖U0‖Lp(Ω;Y) + ‖f ‖Lp(Ω;L1(0,T;Vδ−1)) 

+ Bp‖g‖Lp(Ω;L2(0,T;L2(H,Vδ−1)))

)
, 

where CY 
bdd := (1 + C2T)1/2 e(1+C2T)/2 with C := LFT1/2 + BpLG, and Bp is the constant from 

Theorem 2.2. 

As established in (6.5) the well-posedness on Z ∈ {X, Y} implies 

1 +
∥∥∥∥ sup 

r∈[0,T]
‖U(r)‖Z

∥∥∥∥
p 

≤ CU0,f,g,Z < ∞ 

with CU0,f,g,Z as defined in ( 6.4). In the abstract wave equation setting the constant simplifies to 

CU0,f,g,Z = 1 + CZ 
bdd(1 + ‖U0‖Lp(Ω;Z) + ‖f ‖p,1,Z2 + |||g|||p,2,Z2 ), (7.8) 

where CZ 
bdd denotes the constant from Lemma 7.2, Z2 := V−1 if Z = X, and Z2 := Vδ−1 if Z = Y . 

LEMMA 7.3 (Stability). Suppose that Assumption 7.1 holds for some α ∈ (0, 1], δ ≥ α, and p ∈ [2, ∞). 
Let Y := Xδ as defined in (7.2) and U0 ∈ Lp 

F0 
(Ω; Y). Let  (Rk)k>0 be a time discretization scheme which 

is contractive on X and Y , and let Nk ≥ 2. Then, the temporal approximations (Uj)j=0,...,Nk obtained via 
(7.6) are stable on both X and Y . That is, for Z ∈ {X, Y} 

1 +
∥∥∥∥ max 

0≤j≤Nk
‖Uj‖Z

∥∥∥∥
p 

≤ CZ 
stabcU0,f ,g,T ,Z , 

where CZ 
stab := (1 + C2 

ZT)1/2 e(1+C2 
ZT)/2 with CX := CFT1/2 + BpCG, CY := LFT1/2 + BpLG, 

cU0,f ,g,T ,Z := 1 + ‖U0‖Lp(Ω;Z) + ‖f ‖Lp(Ω;C([0,T];Z2))
T + ‖g‖Lp(Ω;C([0,T];L2(H,Z2)))

BpT1/2, 

Z2 := V−1 if Z = X, Z2 := Vδ−1 if Z = Y , and Bp is the constant from Theorem 2.2.
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58 K. KLIOBA AND M. VERAAR

We denote 

KU0,f ,g,Y := CY 
stabcU0,f ,g,T ,Y = CY 

stab(1 + ‖U0‖Lp(Ω;Y) + ‖f ‖p,∞,Vδ−1 T + |||g|||p,∞,Vδ−1 BpT1/2) (7.9) 

so that KU0,f ,g,Y = KU0,f,g,Y with KU0,f,g,Y as defined in ( 6.8). 
For future estimates it is useful to know the decay of differences of the sine and cosine operators 

sin(tΛ1/2) and cos(tΛ1/2). We include a short proof for the convenience of the reader. 

LEMMA 7.4. Let t ∈ [0, T]. Then, for all α ∈ [0, 1] we have

‖Λ− α 
2 [sin(tΛ1/2) − sin(sΛ1/2)]‖L(V) ≤ 2(t − s)α ,

‖Λ− α 
2 [cos(tΛ1/2) − cos(sΛ1/2)]‖L(V) ≤ 2(t − s)α 

for all 0 ≤ s ≤ t ≤ T .

Proof. The statement is trivially fulfilled for t = s. Let  0 ≤ s < t ≤ T . We claim that 

ζα(t, s) := 
| sin(t) − sin(s)| 

|t − s|α ≤ 2. 

Indeed, if |t − s| ≤  1, then by the mean value theorem ζα(t, s) ≤ ζ1(t, s) ≤ 1. If |t − s| > 1, then 
ζα(t, s) ≤ 2. Now let λ >  0. Applying the claim with tλ1/2 and sλ1/2 gives 

λ−α/2| sin(tλ1/2) − sin(sλ1/2)| ≤  2|t − s|α . 

Thus, by the spectral theorem for self-adjoint operators and positivity of Λ we get the desired statement. 
The statement for the cosine is proven analogously. �

While the mild solution U has at most 1/2-Hölder continuous paths as follows from Lemma 6.2, 
the product structure of the stochastic evolution equation results in higher Hölder continuity of the first 
component u of U, as the following lemma illustrates. In particular, u has Lipschitz continuous paths for 
sufficiently regular F and G. 

LEMMA 7.5. Suppose that Assumption 7.1 holds for some α ∈ (0, 1], δ ≥ α and p ∈ [2, ∞). Let  X := X0 
and Y := Xδ as defined in (7.2) and U0 ∈ Lp 

F0 
(Ω; Y). Then for all 0 ≤ s ≤ t ≤ T the first component u 

of the mild solution U of (7.1) satisfies

‖u(t) − u(s)‖Lp(Ω;V) ≤ L(t − s)α 

with constant 

L := 2CY

[√
2‖U0‖Lp(Ω;Y) + L1,FT 

α + 2 
α + 1 

+ BpL2,GT1/2
(

1 + 1√
2α + 1

)]
, 

where L1,F := LFCU0,f,g,Y + ‖f ‖Lp(Ω;L∞(0,T;Vδ−1))
, L2,G := LGCU0,f,g,Y + ‖g‖Lp(Ω;L∞(0,T;L2(H,Vδ−1))) 

with CU0,f,g,Y as in (7.8), CY denotes the embedding constant of Xδ into Xα , and Bp is the constant from 
Theorem 2.2.
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PATHWISE UNIFORM CONVERGENCE OF DISCRETIZATION SCHEMES 59

Proof. From the structure (7.4) of the semigroup as well as (7.3) of  F and G we deduce the following 
variation-of-constants formula for the first component of the mild solution 

u(t) = cos(tΛ1/2)u0 + Λ− 1 
2 sin(tΛ1/2)v0 +

∫ t 

0 
Λ− 1 

2 sin((t − r)Λ1/2)F(r, u(r)) dr 

+
∫ t 

0 
Λ− 1 

2 sin((t − r)Λ1/2)G(r, u(r)) dWH(r). 

Hence, the difference can be split up as

‖u(t) − u(s)‖Lp(Ω;V) ≤
∥∥[cos(tΛ1/2) − cos(sΛ1/2)]u0 + Λ− 1 

2 [sin(tΛ1/2) − sin(sΛ1/2)]v0

∥∥
Lp(Ω;V) 

+
∥∥∥ ∫ s 

0
‖Λ− 1 

2 [sin((t − r)Λ1/2) − sin((s − r)Λ1/2)]F(r, u(r))‖V dr
∥∥∥

p 

+
∥∥∥ ∫ t 

s
‖Λ− 1 

2 sin((t − r)Λ1/2)F(r, u(r))‖V dr
∥∥∥

p 

+
∥∥∥ ∫ s 

0 
Λ− 1 

2 [sin((t − r)Λ1/2) − sin((s − r)Λ1/2)]G(r, u(r)) dWH(r)
∥∥∥

Lp(Ω;V) 

+
∥∥∥ ∫ t 

s 
Λ− 1 

2 sin((t − r)Λ1/2)G(r, u(r)) dWH(r)
∥∥∥

Lp(Ω;V) 
=: E1 + E2 + E3 + E4 + E5, 

where E� := E�(t, s) for 1 ≤ � ≤ 5. We proceed to bound these five expressions individually. Lemma 
7.4 yields 

E1 ≤
∥∥∥‖[cos(tΛ1/2) − cos(sΛ1/2)]Λ− α 

2 ‖L(V)‖Λ 
α 
2 u0‖V 

+ ‖[sin(tΛ1/2) − sin(sΛ1/2)]Λ− α 
2 ‖L(V)‖Λ 

α−1 
2 v0‖V

∥∥∥
p 

≤ 2(t − s)α‖‖u0‖Vα + ‖v0‖Vα−1
‖p ≤ 2

√
2‖U0‖Lp(Ω;Xα) · (t − s)α 

≤ 2
√

2CY‖U0‖Lp(Ω;Y) · (t − s)α , 

where we have used the embedding Y = Xδ ↪→ Xα in the last line. Using the same trick of inserting 
Λ− α 

2 , applying Lemma 7.4, and using the embedding Vδ−1 ↪→ Vα−1 as well as linear growth of F̃ from 
Vδ to Vδ−1 we obtain 

E2 ≤ 2s(t − s)α
∥∥∥∥ sup 

r∈[0,T]
‖Λ 

α−1 
2 F(r, u(r))‖V

∥∥∥∥
p 

≤ 2CYs(t − s)α
∥∥∥∥ sup 

r∈[0,T]
‖F(r, u(r))‖Vδ−1

∥∥∥∥
p 

≤ 2CYs(t − s)α
(

LF

(
1 +

∥∥∥∥ sup 
r∈[0,T]

‖u(r)‖Vδ

∥∥∥∥
p

)
+ ‖f ‖p,∞,Vδ−1

)
≤ 2CYL1,FT(t − s)α . 
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60 K. KLIOBA AND M. VERAAR

Likewise, for the stochastic integral we conclude 

E4 ≤ 2CYBp(LGCU0,f,g,Y + |||g|||p,∞,Vα−1 )s 
1 
2 (t − s)α ≤ 2CYBpL2,GT 

1 
2 (t − s)α . 

Recalling that sin(0 · Λ1/2) = 0 we can estimate 

E3 ≤
∥∥∥ ∫ t 

s
‖[sin((t − r)Λ1/2) − sin(0 · Λ1/2)]Λ− α 

2 ‖L(V)‖Λ 
α−1 

2 F(r, u(r))‖V dr
∥∥∥

p 

≤ 2CY

∫ t 

s 
(t − r)α dr

∥∥∥∥ sup 
r∈[0,T]

‖F(r, u(r))‖Vδ−1

∥∥∥∥
p 

≤ 
2CYL1,F 
α + 1 

(t − s)α+1 ≤ 
2CYL1,FT 

α + 1 
(t − s)α , 

and, analogously, 

E5 ≤ 
2CYBpL2,G√

2α + 1 
(t − s)α+ 1 

2 ≤ 
2CYBpL2,GT1/2 

√
2α + 1 

(t − s)α . 

Adding the bounds for E1 to E5 results in the desired statement. �
Analogous to the considerations in Remark 6.3 the regularity assumptions on f and g can be relaxed 

in this lemma. Having established Hölder continuity of u of order up to 1 we can derive an error 
bound attaining the optimal order 1 for sufficiently good schemes and regular nonlinearity, noise and 
initial values. The following main theorem of this section generalizes (Wang, 2015, Thm. 3.1) from the 
exponential Euler method to general contractive schemes as well as more general F and G. 

THEOREM 7.6. Suppose that Assumption 7.1 holds for some α ∈ (0, 1], δ ≥ α and p ∈ [2, ∞). Let  
X := X0 and Y := Xδ as defined in (7.2) and U0 ∈ Lp 

F0 
(Ω; Y). Let  (Rk)k>0 be a contractive time 

discretization scheme on X which commutes with the resolvent of A. Assume R approximates S to order 
α on Y . Denote by U the mild solution of (7.1) and by (Uj)j=0,...,Nk the temporal approximations as 
defined in (7.6). Then for Nk ≥ 2

∥∥∥∥ max 
0≤j≤Nk

‖U(tj) − Uj‖
∥∥∥∥

p 
≤ Ce

(
C1 + C2

√
max{log(T/k), p})kα 

with Ce := (1 + C2T)1/2 exp((1 + C2T)/2), C := CF 
√

T + BpCG, C2 := KCαKG 
√

T and 

C1 := Cα‖U0‖Lp(Ω;Y) +
( 1 
α + 1 

(CFL + Cα,F + 2CYKF) + CαKF

)
T 

+ 
Bp 

√
T√

2α + 1 
(CGL + Cα,G + 2CYKG), 
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PATHWISE UNIFORM CONVERGENCE OF DISCRETIZATION SCHEMES 61

KF := LFKU0,f ,g,Y +‖f ‖Lp(Ω;C([0,T];Vδ−1))
, KG := LGKU0,f ,g,Y +‖g‖Lp(Ω;C([0,T];L2(H,Vδ−1)))

, L as defined 
in Lemma 7.5, KU0,f ,g,Y as in (7.9), K = 4 exp

(
1 + 1 

2e

)
, CY denotes the embedding constant of Y into 

DA(α, ∞) and Bp is the constant from Theorem 2.2. 
In particular, the approximations (Uj)j converge at rate min{α, 1} up to a logarithmic correction factor 

as k → 0. 

Possible choices for R in the above include, but are not limited to the EE, the IE and the CN methods, 
as well as other A-stable schemes. We recall that the contractivity of a large class of schemes follows 
from Proposition 2.5. 

Proof. By the discussion before Lemma 7.2 the conditions of Theorem 6.4 follow from Assumption 
7.1. Second, we make use of Lemma 7.5 to obtain decay of rate α for those terms limiting the rate of 
convergence in Theorem 6.4 to 1 

2 . 
Contractivity of S, Lipschitz continuity of F̃ from V to V−1 and Lemma 7.5 together yield 

M2,1 ≤ 
N−1∑
i=0

∫ ti+1 

ti
‖F(s, U(s)) − F(s, U(ti))‖Lp(Ω;X) ds 

= 
N−1∑
i=0

∫ ti+1 

ti
‖F̃(s, u(s)) − F̃(s, u(ti))‖Lp(Ω;V−1) ds 

≤ CF 

N−1∑
i=0

∫ ti+1 

ti
‖u(s) − u(ti)‖Lp(Ω;V) ds ≤ CFL 

N−1∑
i=0

∫ ti+1 

ti 
(s − ti)

α ds = 
CFL 
α + 1 

tNkα . 

Combining this with the bounds for M2,2 to M2,4 from Theorem 6.4 leads to 

M2 ≤
(

CFL + Cα,F + 2CYKF 
α + 1

+ CαKF

)
tNkα + CF

√
tN

(
k 

N−1∑
i=0 

E(i)2

)1/2 

. 

Here, we have used ( 7.7) to pass from the Y-norm of f to the Vδ−1-norm of f appearing in KF . For  the  
term M3,1, an application of the maximal inequality is required additionally. By the same reasoning as 
for M2,1 we then deduce 

M3,1 ≤ BpCG

( N−1∑
i=0

∫ ti+1 

ti
‖u(s) − u(ti)‖2 

Lp(Ω;V) ds

)1/2 
≤ 

BpCGL√
2α + 1

√
tNkα . 

In conclusion from the bounds for M3,1 to M3,5 

M3 ≤ Cp,α,G
√

tNkα + KCαKG

√
tN

√
max{log N, p}kα + BpCG

(
k 

N−1∑
i=0 

E(i)2
)1/2 
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62 K. KLIOBA AND M. VERAAR

with Cp,α,G := Bp(2α + 1)−1/2(CGL + Cα,G + 2CYKG). The final statement follows by summing the 
estimates for M1, M2 and M3 and then applying Gronwall’s inequality from Lemma 2.7. �

7.2 The exponential Euler method 

Also for the abstract stochastic wave equation the logarithmic correction factor vanishes when using the 
exponential Euler method. Hence, we obtain convergence of the optimal rate. 

COROLLARY 7.7. Suppose that Assumption 7.1 holds for some α ∈ (0, 1], δ ≥ α and p ∈ [2, ∞). Let  
X := X0 and Y := Xδ as defined in (7.2) and U0 ∈ Lp 

F0 
(Ω; Y). Consider the exponential Euler method 

R := S for time discretization. Denote by U the mild solution of (7.1) and by (Uj)j=0,...,Nk the temporal 
approximations as defined in (7.6). Then, for Nk ≥ 2∥∥∥∥ max 

j=0,...,Nk
‖U(tj) − Uj‖X

∥∥∥∥
p 

≤ CS,eCS · kα 

with constants CS,e := Ce as in Theorem 7.6 and 

CS := 
CFL + Cα,F + 2CYKF 

α + 1 
T + 

Bp 
√

T√
2α + 1 

(CGL + Cα,G + 2CYKG), 

where L is as defined in Lemma 7.5, KF and KG are as in Theorem 7.6, CY denotes the embedding 
constant of Y into DA(α, ∞) and Bp is the constant from Theorem 2.2. 

In particular, the approximations (Uj)j converge at rate min {α, 1} as k → 0. 

7.3 Error estimates on the full time interval 

In the same way as in the proof of Theorem 6.13 we see that the next result follows from Theorem 7.6. 

COROLLARY 7.8. Suppose that the conditions of Theorem 7.6 hold for α ∈ (0, 1/2]. Let p0 ∈ (p, ∞) and 
q ∈ (2, ∞] be such that 1 

2 − 1 
q = α, and suppose that f , g, and U0 have additional integrability 

f ∈ Lp0(Ω; L1(0, T; V)), g ∈ Lp0(Ω; Lq(0, T;L2(H, V))), and U0 ∈ Lp0 
F0 

(Ω; X) ∩ Lp 
F0 

(Ω; Xδ). 

Denote by U the mild solution of ( 7.1) and by (Uj)j=0,...,Nk the temporal approximations as defined in 
(7.6). Define the piecewise linear extension Ũ : [0, T] → Lp(Ω; X) of (Uj)j=0,...,Nk by Ũ(t) := Uj for 
t ∈ [tj, tj+1), 0 ≤ j ≤ Nk −1 and Ũ(T) := UNk . Then, for all Nk ≥ 2 there is a constant C ≥ 0 depending 
on (T , p, p0, α, u0, F, G, V , δ) such that∥∥∥∥ sup 

t∈[0,T]
‖U(t) − Ũ(t)‖X

∥∥∥∥
p 

≤ C
(
1 + √

max{log(T/k), p})kα . 

In case we only estimate the first component u more can be said about the convergence rate on the full 
time interval. Under weaker integrability conditions and for general α ∈ (0, 1] we obtain the following.
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COROLLARY 7.9. Suppose that the conditions of Theorem 7.6 hold. Define the piecewise linear extension 
Ũ = (ũ, ṽ) : [0, T] → Lp(Ω; X) of (Uj)j=0,...,Nk by Ũ(t) := Uj for t ∈ [tj, tj+1), 0  ≤ j ≤ Nk − 1 and 
Ũ(T) := UNk . Let  δ1 := min{δ, 1}. Then, the following two error estimates hold. 
(i) (general schemes) It holds that∥∥∥∥ sup 

t∈[0,T]
‖u(t) − ũ(t)‖V

∥∥∥∥
p 

≤ 2CU0,f,g,Xδ1 
kδ1 + Ce

(
C1 + C2

√
max{log(T/k), p})kα . 

(ii) (exponential Euler) If Rk = S(k) then∥∥∥∥ sup 
t∈[0,T]

‖u(t) − ũ(t)‖V

∥∥∥∥
p 

≤ 2CU0,f,g,Xδ1 
kδ1 + CS,eCS · kα . 

Proof. Since the mild solution is also a weak solution to (7.1) writing U = (u, v) ∈ Lp(Ω; C([0, T]; V × 
V−1)) we see that (u(t), ϕ) − (u0, ϕ) = ∫ t 

0(v(s), ϕ) ds for all ϕ ∈ V−1. Therefore, u is continuously 
differentiable as a V−1-valued function. 

By (6.5) 

max{‖u‖Lp(Ω;C([0,T];Vδ1 )), ‖u′‖Lp(Ω;C([0,T];Vδ1−1))
} ≤ ‖U‖Lp(Ω;C([0,T];Xδ1 )) ≤ CU0,f,g,Xδ1 

. (7.10) 

Using the above and the interpolation estimate ‖x‖V ≤ ‖x‖δ1 
Vδ1−1

‖x‖1−δ1 
Vδ1 

we find that

‖u(t) − u(s)‖V = ‖u(t) − u(s)‖δ1 
Vδ1−1

‖u(t) − u(s)‖1−δ1 
Vδ1 

≤ 2|t − s|δ1‖u′‖δ1 
C([0,T];Vδ1−1)

‖u‖1−δ1 
C([0,T];Vδ1 ). 

Therefore, by Hölder’s inequality and ( 7.10) we find that 

[u]Lp(Ω;Cδ1 ([0,T];V)) ≤ ‖u′‖δ1 
Lp(Ω;C([0,T];Vδ1−1))

‖u‖1−δ1 
Lp(Ω;C([0,T];Vδ1 )) ≤ 2CU0,f,g,Xδ1 

. 

By Lemma 6.9 we find that for Uj = (uj, vj) 

sup 
t∈[0,T]

‖u(t) − ũ(t)‖V ≤ kδ1‖u‖Cδ1 ([0,T];V) + max 
j=0,...,Nk

‖u(tj) − uj‖V . 

Therefore, taking Lp-norms and using the error estimate of Theorem 7.6 we find that∥∥∥∥ sup 
t∈[0,T]

‖u(t) − ũ(t)‖V

∥∥∥∥
p 

≤ 2CU0,f,g,Xδ1 
kδ1 +

∥∥∥∥ max 
j=0,...,Nk

‖u(tj) − uj‖V

∥∥∥∥
p 

≤ 2CU0,f,g,Xδ1 
kδ1 + Ce

(
C1 + C2

√
max{log(T/k), p})kα . 

The second estimate is obtained from Corollary 7.7 in place of Theorem 7.6 in the last step. �
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7.4 Application to the stochastic wave equation with trace class noise 

As an example, we consider the classical stochastic wave equation on an open and bounded subset O ⊆ 
R

d {
du̇ = (Δu + F(u)) dt + G(u) dW(t) on [0, T], 

u(0) = u0, u̇(0) = v0, (7.11) 

with Dirichlet boundary conditions. In the current subsection we consider trace class noise in L2 for any 
d ∈ N, and in Section 7.5 space–time white noise in case d = 1. 

It is well-known that Λ = −Δ is a positive and self-adjoint operator on L2(O), which is invertible. 
Let {W(t)}t∈[0,T] be a Q-Wiener process with Q ∈ L(L2(O)) so that Q is positive and self-adjoint. Finite-
dimensional noise is included, since Q need not be strictly positive. Assume 

Q1/2 ∈ L(L2(O), L∞(O)). (7.12) 

In particular, this implies Q1/2 ∈ L2(L
2(O), L2(O)) and that Q is trace class (see Hytönen et al., 2017, 

Corollary 9.3.3). 
We consider the stochastic wave equation (7.11) on  V := L2(O) and set H := L2(O). For  the  

nonlinearity and the multiplicative noise we choose Nemytskij operators F : V → V and G : V → 
L2(H, V) = L2(L

2(O), L2(O)) determined by 

F(u)(ξ) = φ(ξ , u(ξ)), (G(u)(h))(ξ) = ψ(ξ , u(ξ))Q1/2h(ξ), ξ ∈ O. (7.13) 

Here, the measurable functions φ, ψ : O × R → R are Lipschitz and of linear growth in the second 
coordinate, i.e. there is a constant L ≥ 0 such that for all u, u1, u2 ∈ R, ξ ∈ O it holds that 

|φ(ξ , u)| + |ψ(ξ , u)| ≤  L(1 + |u|), |φ(ξ , u1) − φ(ξ , u2)| + |ψ(ξ , u1) − ψ(ξ , u2)| ≤  L|u1 − u2|. 
(7.14) 

It is clear that F is Lipschitz from V to V . To see that the same holds for G, note that by ( 7.12) 

|G(u)h(ξ)| = |ψ(ξ , u(ξ))||Q1/2h(ξ)| ≤ Cψ ,Q(1 + |u(ξ)|)‖h‖H , 

where Cψ ,Q := L‖Q1/2‖L(L2(O),L∞(O)). Therefore, arguing as in ( Hytönen et al., 2017, Theorem 9.3.6 
(3)⇒(4)) by Riesz’ theorem we can find ku : O → H such that for a.e. ξ ∈ O for all h ∈ H, (ku(ξ), h)H = 
(G(u)h)(ξ) and ‖ku(ξ)‖H ≤ Cψ ,Q(1+|u(ξ)|). Therefore, for an orthonormal basis (hn)n≥1 of H we find 
that

‖G(u)‖2 
L2(H,V) =

∑
n≥1

‖G(u)hn‖2 
V =

∫
O

∑
n≥1 

|(ku(ξ), hn)|2 dξ =
∫
O

‖ku(ξ)‖2 
H dξ 

≤ C2 
ψ ,Q‖1 + |u|‖2 

V ≤ C2 
ψ ,Q(|O|1/2 + ‖u‖V)2 

with |O| denoting the Lebesgue measure of the set O. Likewise, we obtain Lipschitz continuity of G. In  
particular, F and G satisfy the required mapping properties of Assumption 7.1 for any δ ∈ (0, 1].
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The semigroup associated with (7.11) is the wave semigroup (S(t))t≥0. 
As an immediate consequence of Theorem 7.6 and Corollary 7.7 this yields the following conver-

gence estimate generalizing (Wang, 2015, Cor. 4.2) to arbitrary contractive schemes and slightly more 
general Q-Wiener processes W. 

THEOREM 7.10 (Wave equation with trace class noise in L2). Let O ⊆ Rd, d ∈ N, be a bounded and 
open set, V := L2(O), X := V × V−1, p ∈ [2, ∞) and 0 < α  ≤ δ ≤ 1. Suppose that (u0, v0) ∈ 
Lp 
F0 

(Ω; Xδ). Let  F and G be the Nemytskij operators as in (7.13) with φ and ψ satisfying (7.14). Suppose 
the covariance operator Q ∈ L(L2(O)) satisfies (7.12). Let Y := Xδ be as defined in (7.2). Let (Rk)k>0 
be a time discretization scheme which is contractive on both X and Y . Suppose that R approximates 
S to order α on Y . Denote by U the mild solution of (7.1) with trace class noise and by (Uj)j=0,...,Nk 
the temporal approximations as defined in (7.6). Then, there exists a constant C ≥ 0 depending on 
(u0, v0, φ, ψ , T , p, α,O, d, V , δ) such that for Nk ≥ 2∥∥∥∥ max 

0≤j≤Nk
‖U(tj) − Uj‖X

∥∥∥∥
p 

≤ C
(
1 + ‖Q1/2‖L(L2(O),L∞(O))

)√
max{log(T/k), p}kα . 

In particular, the approximations (Uj)j converge at rate 1 if (u0, v0) ∈ Lp 
F0 

(Ω; X1) and the exponential 
Euler method R = S is used. The logarithmic factor can be omitted in this case.

In case δ = 1, for the IE and the CN method, we can take α = 1/2 and α = 2/3, respectively. This is 
due to convergence at rate α on D((−A)2α ) and D((−A)3α/2), respectively. Using higherorder schemes, 
we can come as close to rate 1 as we want. In Theorem 7.12 we show that for smoother noise α = 1 can 
be reached even for the IE method. 

7.5 Application to the stochastic wave equation with space–time white noise 

We use the same notation as in Section 7.4, but this time with O = (0, 1) and Q = I, so that (7.11) is the  
classical wave equation with space–time white noise. The required mapping properties can be checked 
as in (Wang, 2015, Cor. 4.3). For convenience of the reader we include the details. The functions F and 
G are defined via (7.13), but this time we have to consider G as a mapping G : V → L2(H, V−1). 

The eigenvalues of the negative Dirichlet Laplacian Λ = −Δ are λi = π2i2, i ∈ N, with the 
corresponding orthonormal basis {ei = 

√
2 sin(iπ ·) : i ∈ N} of V consisting of eigenfunctions of Λ. 

Clearly, 

sup 
i∈N 

sup 
ξ∈[0,1] 

|ei(ξ)| ≤ √
2, and ‖Λ− ε+1 

4 ‖2 
L(V) = π−(ε+1) 

∞∑
i=1 

i−(ε+1) =: cε < ∞ 

then hold for every ε >  0. Now let ε ∈ (0, 1]. Using the properties above we conclude that

‖Λ− ε+1 
4 G(u)‖2 

L2(H,V) = 
∞∑

i=1 

∞∑
j=1 

|〈G(u)ei, Λ
− ε+1 

4 ej〉V |2 = 
∞∑

i=1 

∞∑
j=1 

λ
− ε+1 

2 
j

∣∣∣∣∫O 
g(ξ , u(ξ))ei(ξ)ej(ξ) dξ

∣∣∣∣ 2 

≤ 2 

⎛⎝ ∞∑
j=1 

λ
− ε+1 

2 
j 

⎞⎠ ‖g(·, u(·))‖2 
V ≤ 2L2cε(|O|1/2 + ‖u‖V)2. 
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Hence, G satisfies the linear growth condition of Assumption 7.1 with δ = 1−ε 
2 . Repeating the arguments 

for Λ−1/2[G(u1) − G(u2)] and using c1 = π2/6 results in

‖Λ−1/2[G(u1) − G(u2)]‖2 
L2(V) ≤ 2 

⎛⎝ ∞∑
j=1 

1 
π2j2 

⎞⎠ ‖g(·, u1(·)) − g(·, u2(·))‖2 
V ≤ 

L2 

3
‖u1 − u2‖2 

V . 

The nonlinearity F was already considered in Section 7.4. In conclusion we obtain the following 
generalization of (Wang, 2015, Cor. 4.3) to contractive time discretization schemes. 

THEOREM 7.11 (Wave equation with white noise). Let O = (0, 1), V := L2(O), X := V × V−1, p ∈ 
[2, ∞) and 0 < α  ≤ δ <  1/2. Suppose that (u0, v0) ∈ Lp 

F0 
(Ω; Xδ). Let  F and G be Nemytskij operators 

as above with φ and ψ satisfying (7.14). Suppose the covariance operator Q = I on L2(O). Let  Y = Xδ . 
Let (Rk)k>0 be a time discretization scheme which is contractive on X and Y . Assume that R approximates 
S on Y to order α. Denote by U the mild solution of (7.1) with space–time white noise and by (Uj)j=0,...,Nk 
the temporal approximations as defined in (7.6). Then, there exists a constant C ≥ 0 depending on 
(u0, v0, φ, ψ , T , p, α,O, d, V , δ) such that for Nk ≥ 2

∥∥∥∥ max 
0≤j≤Nk

‖U(tj) − Uj‖X

∥∥∥∥
p 

≤ C
√

max{log(T/k), p}kα . 

In particular, the approximations (Uj)j converge at rate arbitrarily close to 1 
2 if (u0, v0) ∈ Lp 

F0 
(Ω; X1) 

and the exponential Euler method R = S is used. The logarithmic factor can be omitted in this case.

For the IE and the CN method we can take α = δ/2 and α = 2δ/3, respectively. Since we can choose 
δ arbitrarily close to 1/2 this leads to rates which are almost 1/4 and 1/3, respectively. 

7.6 Application to the stochastic wave equation with smooth noise 

We have already seen that the exponential Euler method leads to convergence rates of any order α ∈ (0, 1] 
depending on the given data. In this section we show that this can also be attained for other schemes such 
as the IE and the CN method under some smoothness conditions on the noise. To avoid problems with 
boundary conditions we only consider periodic boundary conditions. Consider

{
du̇ = ((Δ − 1)u + F(u)) dt + G(u) dW(t) on [0, T], 

u(0) = u0, u̇(0) = v0, (7.15) 

with Λ = 1−Δ and periodic boundary conditions on the d-dimensional torus Td = [0, 1]d. For notational 
convenience we will write Hβ = Hβ (Td) = Vβ . Note that ‖Λ−β‖L(L2) ≤ 1 for all β >  0. The additional 
+1 in the definition of Λ is in order to ensure invertibility. Of course, F can be suitably redefined so that 
this is without loss of generality.

Let δ ∈ (1, 2] and write s = δ − 1. Let 

F(u)(ξ) = φ(u(ξ)), (G(u)(h))(ξ) = ψ(u(ξ))Q1/2h(ξ), ξ ∈ Td.
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Here, the measurable functions φ, ψ : R → R are Lipschitz with Lipschitz constants Lφ and Lψ , 
respectively. The Lipschitz estimates for F and G follow as in Section 7.4 since we will assume even 
more restrictive conditions on Q. The growth estimates for F and G as in Assumption 7.1 5 are more 
complicated. In case δ = 2 the paraproduct constructions from Taylor (2007) can be avoided, but we 
will consider the general case. 

By the torus version of (Taylor, 2007, Prop. 2.4.1) for u ∈ Vδ there is a constant Cs,φ ≥ 0 such that

‖F(u)‖Vδ−1 = ‖φ(u)‖Hδ−1 ≤ Cs,φ(‖u‖Hδ−1 + 1) ≤ Cs,φ(‖u‖Hδ + 1) = Cs,φ(‖u‖Vδ + 1). 

For G the estimate is still more complicated. In order to estimate the Hilbert–Schmidt norm of G(u), 
paraproduct estimates are required, as, for instance, in (7.17). These paraproduct estimates involve Bessel 
potential spaces Hs,q, which, in general, are not Hilbert spaces. Consequently, an extension of Hilbert– 
Schmidt operators to Banach spaces is needed; the so-called γ -radonifying operators (Hytönen et al., 
2017, Section 9.1). For a Banach space E let γ (H, E) denote the space of γ -radonifying operators. Let 
(γn)n≥1 be an i.i.d. sequence of standard Gaussian random variables taking values in R. Suppose that 
Λ 

δ−1 
2 Q1/2 : L2 → L∞. Then by (Hytönen et al., 2017, Corollary 9.3.3), Q1/2 ∈ γ (H, Hβ,q) for all 

q ∈ [1, ∞) and all β ≤ δ − 1, and 

Cq,β := ‖Q1/2‖γ (H,Hβ,q) ≤ ‖Q1/2‖γ (H,Hδ−1,q) ≤ cq‖Λ 
δ−1 

2 Q1/2‖L(L2,L∞), (7.16) 

where cq = ‖γ1‖Lq(Ω). Let  (hn)n≥1 be an orthonormal basis for H and fix N ≥ 1. Let ηN :=∑N 
n=1 γnQ1/2hn ∈ L2(Ω; Vδ−1). Then, ‖ηN‖L2(Ω;Vβ) ≤ ‖Q1/2‖γ (H,Hβ,q) for all β ≤ δ −1. It follows that 

N∑
n=1

‖G(u)hn‖2 
Vδ−1 = ‖ψ(u)ηN‖2 

L2(Ω;Vδ−1)
. 

Next, we estimate ‖ψ(u)ηN‖Vδ−1 pointwise in Ω . By the torus version of ( Taylor, 2007, Proposition 2.1.1) 
(see (Agresti & Veraar, 2024, Proposition 4.1(1))) and (Taylor, 2007, Prop. 2.4.1), there is a constant 
Cδ,d,1 ≥ 0 such that

‖ψ(u)ηN‖Vδ−1 = ‖ψ(u)ηN‖Hδ−1 ≤ ‖ψ(u)‖Lq1 ‖ηN‖Hδ−1,q2 + ‖ψ(u)‖Hδ−1,r2 ‖ηN‖Lr1 

≤ Lψ(‖u‖Lq1 + 1)‖ηN‖Hδ−1,q2 + LψCδ,d,1(‖u‖Hδ−1,r2 + 1)‖ηN‖Hδ−1,r1 , (7.17) 

where 1 
q1 

+ 1 
q2 

= 1 
r1 

+ 1 
r2 

= 1 
2 and q1, r1 ∈ (2, ∞] and q2, r2 ∈ [2, ∞). Taking r1 < ∞ and using (7.16) 

we find that

‖ψ(u)ηN‖L2(Ω;Vδ−1) ≤ LψCq2,δ−1(‖u‖Lq1 + 1) + LψCδ,d,1Cr1,δ−1(‖u‖Hδ−1,r2 + 1) 

for suitable constants Cq2,δ−1, Cr1,δ−1 ≥ 0. It remains to estimate ‖u‖Lq1 and ‖u‖Hδ−1,r2 by ‖u‖Hδ =
‖u‖Vδ using suitable Sobolev embeddings and choosing q1 ∈ (2, ∞] and r2 ∈ (2, ∞) suitably. As soon 
as we have done that we can let N → ∞  and conclude the required estimate

‖G(u)‖L2(H,Vδ−1) ≤ K(1 + ‖u‖Vδ ).
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To obtain Hδ ↪→ Lq1 we consider two cases. If δ ≤ d/2 (e.g. d ∈ {1, 2}) we can take q1 < ∞ 
arbitrary. If δ >  d/2 then we take q1 = 2d 

d−2δ
, and thus q2 = d 

δ
. 

To obtain Hδ ↪→ Hδ−1,r2 we consider two cases. If d ∈ {1, 2} then we can take r2 ∈ (2, ∞) arbitrary. 
If d ≥ 3 then we set r2 = 2d 

d−2 , and thus r1 = d. 

THEOREM 7.12. (Wave equation with smooth noise). Let V := L2(Td), X := V × V−1, p ∈ [2, ∞) and 
0 < α  ≤ 1 < δ  ≤ 2. Suppose that (u0, v0) ∈ Lp 

F0 
(Ω; Xδ). Let  F and G be Nemytskij operators as above 

with Lipschitz functions φ and ψ . Suppose the covariance operator Q on L2(O) satisfies Λ 
δ−1 

2 Q1/2 ∈ 
L(L2(Td), L∞(Td)). Let  Y := Xδ be as defined in (7.2). Let (Rk)k>0 be a time discretization scheme 
which is contractive on both X and Y . Assume that R approximates S to order α on Y . Denote by U the 
mild solution of (7.15) driven by a Q-Wiener process W and by (Uj)j=0,...,Nk the temporal approximations 
as defined in (7.6). Then, there exists a constant C ≥ 0 depending on (u0, v0, φ, ψ , T , p, α, d, V , δ) such 
that for Nk ≥ 2

∥∥∥∥ max 
0≤j≤Nk

‖U(tj) − Uj‖X

∥∥∥∥
p 

≤ C
(
1 + ‖Λ(δ−1)/2Q1/2‖L(L2(Td),L∞(Td))

)√
max{log(T/k), p}kα . 

The above result is not useful for the exponential Euler method, since Theorem 7.10 is better in 
that case. However, if we specialize to the IE and the CN method then we obtain rates α = δ 

2 and 
α = min{ 2 

3δ, 1}, respectively. In particular, this leads to convergence of order one if δ = 2 for  many  
numerical schemes. Note that δ = 2 more or less corresponds to a noise W which is in H1,q(Td) for all 
q < ∞. 

REMARK 7.13. Theorem 7.12 gives an explanation for the numerical convergence rates obtained in 
(Wang, 2015, Fig. 6.1, right figure). There, trace class noise determined by ψ(u) = u and Q with 
eigenvalues qj = j−β , j ∈ N, β = 1.1 has been investigated. Denote by (ej)j∈N the orthonormal basis of 
V and by λj = Cj2 the eigenvalues of Λ as in Section 7.5 for some constant C > 0. We calculate that 

Λ 
δ−1 

2 Q 
1 
2 ej = q 

1 
2 
j Λ 

δ−1 
2 ej = j−

β 
2 λ 

δ−1 
2 

j ej = C 
δ−1 

2 jδ−1− β 
2 ej 

for j ∈ N. Thus, Λ 
δ−1 

2 Q 
1 
2 maps L2 into L∞ if δ ≤ 1+ β 

2 . Setting δ := min
{
1+ β 

2 , 2
} = 1+ 1.1 

2 = 1.55 we 
derive convergence of rate δ 2 = 0.775 for the IE method and min

{ 2 
3δ, 1

} = 1 for the CN method. Taking 
numerical errors into account this corresponds exactly to the numerical convergence rates obtained in 
( Wang, 2015, Fig. 6.1, right figure). 
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