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Summary

This thesis describes the development and the characteristics of the coastline along the Dutch
coastal zone, managed by Hoogheemraadschap Hollands Noorderkwartier. The coastal zone is a
rich environment with multiple stakeholders. These stakeholders use the coastal zone for a range
of functions such as safety, nature, business, and recreation. Coastal dunes have been the first
line of defense against the sea for many years. On decadal and intercentennial time scale, climate
change (e.g. sea level rise) and human intervention (e.g. nourishment), affect the variability of
the coastline in different ways. Reports have shown an increase of the mean sea level, which
is expected to increase even after the year 2100. Bruun was one of the first researchers, who
found a relation between sea level rise and shoreline recession. While Bruuns findings contain
the fundamental adaption of the coastline due to sea level rise, the coastline remains a highly
complex system.

Morphological data has been collected yearly of the Dutch coast as part of the JarKus program.
Meanwhile, the data collection and computational power have increased exponentially, while
the computational cost has gone down. Combining the newly computational power with the
extensive JarKus data set, provides new insight into the complex coastal system. The derived
variables from the JarKus data set range from widths, gradients, volumes to heights. These
derived variables are combined with nourishment into a high-dimensional data set.

Clusters of comparable coastal profiles in the Hoogheemraadschap Hollands Noorderkwartier
area, have been made using machine learning techniques. Machine learning techniques such as
K-means and the Self-Organizing Map (SOM) contain an intelligence, with the capability of
clustering similar high-dimensional objects or data, without knowing the desired output. While
both methods have the same goal, K-means moves its centroids inside the data and the SOM
moves the data to its centroids (BMU). The advantage of combining both methods, is to keep
the topological preservation while having the ’hard’ clustering advantage of the K-means, which
provides easy interpretation and therefore computations.

The coastline of the Noorderkwartier can be broken up into nine clusters. Five of these clusters
are classified as main-clusters, having a large number of transects. Four clusters are classified
as sub-clusters, having just a few transects. Each of the clusters contains its own characteristic
variables. Each of these characteristics originates from its own long-term natural and human-
induced causes.

The variable dominating the general clustering, is the active profile of the coastline. The lesser
dominating variables are the foreshore nourishment, depth of closure and increase in foreshore
volume. Meaning that the high-dimensional data set, find their similarities due to these dominant
variables. Upon further investigation, the clusters containing the highest active profiles, were
also the clusters containing historical larger nourishments. Comparing the yearly change of
the standard deviation, shows that the clusters containing larger historical nourishment, have a
shifting depth of closure. With respect to the dunes, correlations are found between the dune
foot, y-coordinate of the boundary between marine and aeolian transport, dune volume and
active width of the dune. While the exact reason for this correlation is still unknown, it shows
potential for further research.

The results of this research contribute to another step in understanding the complex coastal
zone. Hoogheemraadschap Hollands Noorderkwartier can now adjust its policy and approach for
each cluster based on the results of this research. For further research, it is now possible to focus
on specific clusters with their unique characteristics. Lastly, results highlight the importance of
the effect of nourishment on the active profile and with this the future dynamic equilibrium of
the coastline.
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I INTRODUCTION

I. Introduction

I.1 Background

Understanding coastal development has been a challenge for engineers throughout the years. In
ancient Egypt, the first engineers started exploring the development of river and coastal changes.
Many years later, the Vikings made huge ports in Denmark, conquering the sea. Though they
still had very little knowledge of the coastal processes, they still managed to see the effects of
winds, waves, tides and currents Bruun [1982].

During the Middle Ages, the inhabitants of the Netherlands started building dikes around tidal
inlets and rivers, to protect the hinterland against rising water in the rivers. As protection against
the rising sea, natural sand barriers were present at the Dutch coast, the dunes Verhagen [1990].
The dunes and dikes made it possible for the Dutch people to inhabit the land, that lies below
or just above sea level.

In the years after the Middle Ages, the Dutch dunes became more narrow. Since 1776 Dutch
engineers constructed groynes along the coast to trap longshore sediment transport, making
the dunes grow Verhagen [1990]. Since 1970, regular nourishment has been part of the Dutch
strategy to mitigate coastal erosion.

Hoogheemraadschap Hollands Noorderkwartier (HHNK) is one of the Dutch Waterboards which
is continuously working in understanding and managing their coastline for future challenges, with
their managed area seen in figure I.1. Morphological data has been collected yearly of the Dutch
coast, as part of the JarKus program. This presents the opportunity to use historical data,
combined with the increasing popular advanced data analysis techniques Stewart [2019] for new
insights in the coastal behavior along the management area of HHNK.

Figure I.1: Management area of Hoogheemraadschap Hollands Noorderkwartier. Wegman and
Leenders [2020] Waterschapspartij [2020]
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I INTRODUCTION

The coastal dunes in the HHNK area, are the first line of defense against the sea. Dunes may
form at locations where the wind is able to transport a large supply of sand. The coastline
is an ideal place for these processes to occur. At the coast, longshore transport supplies the
sand and the waves then transport the sand to the beach. The beach acts as a supply area,
where the wind picks up the sand particles in the top layer and transports them to the dunes.
The rates of sediment transport are governed by the capacity of the wind, beach dimensions,
moisture content, grain size and more De Vries [2019]. The dunes have two main coastal defense
functions. The first function is to provide protection to the hinterland. The second function is
to provide short term storage of sediment, to allow for adjustment of the beach profile during
storms which occur on a small temporal scale Reeve et al. [2002]. Making the dune profile and
level of safety dynamic in time.

One of the expected changes of the HHNK coastline in the future, is due to sea level rise. Reports
have shown an increase of the mean sea level. It is expected, that the mean sea level will increase
even after the year 2100 IPCC et al. [2018]. The Intergovernmental Panel on Climate Change
(IPCC) is an independent research institute, that aims to provide transparent and objective
research on climate change without biased evaluation. Besides external drivers such as sea level
rise, wind, waves, and correlation between local parameters such as the dune volume and the
beach slope, also affect the coastline profile De Vries et al. [2012]. Later it was also found, that
the beach width is related to dune volume changes Keijsers et al. [2014]. Therefore variables
and their changes in space and time can give valuable information about the processes in the
complex coastal zone.

Bruun was one of the first researchers, who found a relation between sea level rise and shoreline
recession, see figure I.2. Bruun’s approach has been criticized by different researchers, due to the
fact that Bruun’s approach looks at a too confined environment. For example, it doesn’t take
sediment supply or longshore gradients into account and assumes a static profile shape. Bruun’s
approach does show a fundamental process, rising sea level acts as a driver of the coast, allowing
waves to move up more to the coast and therefore causing more erosion Zhang et al. [2004].

Advanced data analysis techniques have become more popular and have been used in various
fields, due to the increase in computational power and data collection Stewart [2019]. Making
it easier to apply to historical data derived from the coastline. Advanced data analysis contains
an immense branch of methods and algorithms, where finding the right match is a complex task
Li [2017]. Understanding the algorithm and results, are the basics in problem solving, with the
use of advanced data analytics.

In the last year, research has been done by Van IJzendoorn et al. [2019] to investigate the trend
of changes in the Dutch coast, due to the effect of sea level rise. This research has shown that
the profile of the Dutch coast does not follow Bruun’s rule. The dune toe and crest increase
along the Dutch coast, see figure I.3. The governing processes of the increase of elevation, still
remain unclear.

Figure I.2: Schematic diagram showing the
Bruun Rule for coastal recession Ranasinghe
et al. [2012]

Figure I.3: Elevation of the dune toe and
dune crest Van IJzendoorn et al. [2019].
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I INTRODUCTION

I.2 Purpose of this research

Since the early days, HHNK provides safety against flooding for its managed area. This is
done through maintenance and periodic reinforcement of the coast. HHNK works together with
multiple stakeholders (e.g. Rijkswaterstaat, the municipality, inhabitants, research and advi-
sory companies such as HKV consultants and businesses) to develop future solutions. These
solutions are a balance between safety and spatial adaptation (e.g. drought and water, sustain-
ability, drinking water extraction, nature and recreation). Along the entire Dutch coast, annual
measurements of the coastline profiles are done by Rijkswaterstaat Minneboo [1995]. These
measurements are abbreviated with JarKus. The goal is to make strategic plans for the future,
based on this information. It is not always necessary to intervene, as decisions are made based
on risk analyses. Currently the relation between the policy goals and the sediment requirement
are not yet clear. With this research, the goal is to give more scientific insight in the complex
coastal zone which is managed by HHNK thus future strategical decisions can be made and
substantiated.

I.3 Problem description

The Dutch coast and dunes have multiple functions besides safety, such as nature, business and
recreation. For future investments, it is important to know how the coastline profiles will change.
Coastal engineers have come a long way since the Egyptians and Vikings, but there is still a lot
to learn about the complex governing processes at the coast. At this time, predictions on future
coastline profile changes of the HHNK area have been made, based on experts opinions and
a number of researches. The understanding of the coastal zone still contains many unknown
complex physical processes M.R.Hashemia et al. [2010]. In the recent years data collection and
computational power has increased exponentially while at the same time the computational cost
has gone down. This gives incentive for new data analysis. Measurements such as JarKus, can
help validate and provide better understanding of past and future coastline profile changes.

I.4 Research objective

The main objective is to provide deeper and better understanding of the coastal management
area of HHNK, based on historical data such as JarKus. The analysis of the historical data is
done with the use of advanced data analysis techniques, which have become easier to apply. To
do this, the following questions will be answered in this research.

Research question

What is the expected future coastline profile change of the Hoogheemraadschap Hollands
Noorderkwartier area based on historical measurements ?

To answer the main research question, a set of sub-questions will be answered.

Sub-questions:

• How can long term changes be characterized along the coastline of the HHNK area, using
advanced data analysis and machine learning techniques ?

• Which locations along the coastline of the HHNK area, can be clustered in time and space
with their associated characteristics ?

• How do the long term changes along the HHNK area compare with physical understanding
of the long term coastal processes ?

• What are the recommendations to incorporate the understanding of long term changes in
future strategical plans and policies ?

3



I INTRODUCTION

I.5 Methodology

The main focus of this report is to use historical data to analyse and interpret the complex coastal
changes along the HHNK area. Variables are derived from the JarKus data, which are yearly
measurements of the coastline profile. Combined with the nourishment data, each transect of
the coast contains its own set of variables. These variables represent the unique characteristics of
each transect in time and space. This collected data is combined with advanced data clustering
techniques: The K-means and the Self-Organizing Map, that uses an intelligence with the
capability of clustering similar objects or data without knowing the desired output. As the
approach of combining the K-means method and Self-Organizing Map is relatively new, especially
with a coastal application, an initial phase was done to understand certain effects in building the
data set and model . Finding similarities will give more insight into the relationship between the
transect themselves and the relationship between their unique variables. Gaining more insight
from an advanced data analysis approach and combining it with the physical understanding.
This combination gives new insight into the complex coastal zone managed by HHNK and can
be used as input and substantiation for future policy and strategical plans.

I.6 Reading guide

This thesis consists of 5 chapters in total. Chapter I gives an introduction to the purpose of
this research and the description of the problem. Chapter II introduces the study area managed
by HHNK, the height measurements (JarKus) and changes of the coastline in different spacial
and temporal scales. Followed by the geometry of the cross-shore profile of the coastline and its
derived variables. Finishing the first part of this chapter with the effect of coastal recession and
an explanation of the external drivers. The second part of this chapter starts with a background
introduction in the machine learning field of advanced data science. Previous advanced data
analysis applications on the coastal zones are researched. On the basis of the problem that is
being tackled in this research, two unsupervised machine learning models are introduced, the
Self-Organizing Map and the K-means. Chapter III starts with explaining the research phases of
the used method, followed by the build-up of the data set. Next, the used hybrid algorithm is
explained. Ending this chapter with an explanation of the used methods and data set in both
the initial phase and final phase. Chapter IV starts with the results of the initial phase, followed
by the results of the final phase. The results of the final phase are used to find and explain the
dominant variables found in the clustering. The clusters are referred back to the management
area of HHNK. First, the characteristics of the main-clusters are explained in a quantitative and
qualitative way. Next the same is done for the sub-clusters. Chapter V is the last chapter of this
research. Starting with the discussion, followed by the conclusion and ending this research with
the recommendations.

4



II LITERATURE STUDY

II. Literature study

This paragraph introduces the study area which is management by HHNK (figure II.1) in para-
graph II.1. Paragraph II.2 introduces the governing mechanisms on different spacial and temporal
scales. Subsequently, the coastline variables are explained in paragraph II.3. Paragraph II.4 looks
at the shoreline recession. Paragraph II.5 looks at the external drivers and their relationship to
experimental research. Paragraph II.6 introduces the field of advanced data science. Paragraph
II.7 gives a detailed explanation of the Self-Organizing Map algorithm. Ending the chapter with
a detailed explanation of the K-means algorithm in paragraph II.8.

II.1 Study area: Hoogheemraadschap Hollands Noorderkwartier

II.1.1 Management area of Hoogheemraadschap Hollands Noorderkwartier.

The management area of HHNK consists of a variety of morphological, ecological and economical
differences. These varieties can be seen in Figure II.1, where an introduction to the management
area of HHNK from north to south is introduced. With Texel being excluded from this research.

Den Helder - Camperduin Underwa-
ter at the most northern location, gul-
lies are present along the ebb tidal delta.
Along the coast numerous of groynes are
present. This location is mostly known for
its bathing places, beach houses and beach
pavilions. Recently, at the most south lo-
cation at Camperduin, a large nourishment
has been placed. Creating the Hondsboss-
che Dunes.

Camperduin - Castricum aan Zee Two
of the most popular bathing places are lo-
cated here, Bergen aan Zee and Egmond
aan Zee. These two bathing places are
widely popular due to the recreational
attraction and the Schoorlse Duinen
which lie just behind these bathing places.
Schoorlse Duinen are the widest dunes
found at the Dutch coast, with a great
diversity in flora and fauna.

Castricum aan Zee - Velsen-Noord At
Castricum aan Zee, a small number of
beach pavilions are present. In this area a
great number of beach houses are located
from north to the south. The area ends at
North Sea Channel, with the outer harbor
extending far into the sea.

Figure II.1: Introduction to the management area of HHNK (excluding Texel) HHNK [2020].
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II.1.2 Yearly height measurements (JarKus)

Since 1965 yearly height measurements are taken along transects on the Dutch coast, these are
the JarKus measurements. Transects are imaginary lines on water and/or land. Along the Dutch
coast, a main transect is located, called National Beach Pole Line (RSP), this line follows the
Dutch coast Minneboo [1995]. Every 200 - 250 meters, measurements are done perpendicular
to the RSP. Above and around the waterline, these measurements have a spatial resolution of
5 meters. Some meters under the waterline, the spatial resolution is around 10 meters. Early
measurements were not accurate and have a larger resolution and lack measurements over time.
The quality of the more recent measurements is therefore higher. The measurements are packed
in a netCDF file and open sourced by Deltares1.

The total amount of transects is equal to 2285 transects over the whole Dutch coast for 55
years. Each transect contains the height measurement for each year perpendicular to the coast.
The height measurement consists of an x-coordinate, relative to the RSP, and a y-coordinate,
relative to Normal Amsterdam Level (NAP). Resulting in a data set that contains 55 years ×
2285 transects = 125675 coastline profiles in space and time.

The management area of HHNK is located in section 6 and section 7 of the JarKus data set.
Where section 6 represents Texel and section 7 the area seen in figure II.2. This research will focus
on the long term changes in section 7. Section 7 contains 294 transects, with measurements of
the last 55 years. This results in 55 years × 294 transects = 16170 coastline profiles in space and
time. Perpendicular to the coast, along the blue line, measurements can be shorter or even not
present over 55 years. An example for this can be found in figure II.3, which shows the height
measurement of the coastline of the managed area by HHNK for the year 2019.

Figure II.2: Potential measurement coordi-
nates for the management area of HHNK.

Figure II.3: Actual measurement coordi-
nates (2019) for the management area of
HHNK.

1http://opendap.deltares.nl/thredds/catalog/opendap/rijkswaterstaat/jarkus/profiles/catalog.html
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II.2 Coastline: Spacial scale and temporal scale

The coastline changes due to a variety of natural and human-induced factors. These changes
happen on different spatial and temporal scales. This is seen in table 1, which shows the human-
induced and natural causes/factors. The understanding of these mechanisms are important
for the success of nourishment interventions. The coast shows oscillatory behavior in different
temporal scales and can result in nourishment of the coast which would accrete anyway Guille´n
et al. [2002]. These mechanisms result in the coastline profile evolving to a dynamic equilibrium
under constant forcing for a certain time period.

II.2.1 Inter seasonal and inter annual variability

The inter seasonal and inter annual variability is the smallest temporal scale which is relevant
to coastal management. During storms, the upper part of the coastline erodes and accrete
when the wave conditions are mild. The Irrabaren number takes into account different forcing
parameters and initial conditions of the coastline profile to represent the state in a range of
reflective or dissipative equilibrium. If the nourished sediment doesn’t differ too much from the
native sediment, the natural variability remains almost the same Hamma et al. [2002].

II.2.2 Inter annual and inter decadal variability

Stive et al. [1999] used the JarKus data to look at changes of the coast on decadal scale. The
information between the years 1964 and 1992 was used. Two particular areas were investigated,
location with human interventions and almost no human interventions. Stive et al. [1999]
assumed that the bar system acts as a filter for the wave energy reaching the beach, resulting
in a dominant factor on decadal time scale. This was seen in the relation between dune foot
change and bar behavior, which travels alongshore on the coast. The research also suggested
that cumulative surge-storm parameters correlate with the mean shoreline position Stive et al.
[1999].

II.2.3 Intercentennial variability

The JarKus data set contain time scale information in the range of decadal variability to inter-
centennial variability. This is the main focus of this research for both the available data and
future management. As seen in table 1, there are many natural and human-induced causes that
affects the coastline on the intercentennial time scale. Understanding the reason behind decadal
and intercentennial variability, shore nourishment and natural processes can work in concert
rather than counteract each other Hamma et al. [2002].

This research focuses mostly on the intercentennial variability. Combining and understanding
all causes and factors is a complicated task. The JarKus data contains the historical variability
induced by the different causes and factors. It can be seen in table 1, that relative sea level
rise, regional climate variations, coastal inlet cycles and extreme events are natural impacts
on intercentennial scale. Phenomenons such as ’sand waves’ also impact the changes on the
coastline profile. While Stive et al. [1999] observed the dutch coast with the use of the JarKus
data set almost 20 years ago, multiple human causes and factors have played a role since then.
Mainly nourishment along the coast has increased in recent years.
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.

Table 1: Human-induced and natural causes/factors for associated evolutions for shore and
shoreline variability (M = Major) Guille´n et al. [2002].

Variability Time
scale\Space
scale

Natural causes\factors Human causes\factors

Late Holocene centuries to - ’sediment availability’ - human climate change
Variability millennia\ - relative sea-level changes - M river regulation

100km+ - differential bottom changes - M coastal structures
- long-term climate changes - M reclamations\closure
- paleomorphology - structural coastal manage-

ment

Intercentennial decades to - relative sea-level changes - river regulation
Variability centuries\ - regional climate variations - coastal structures

10 - 100 km - coastal inlet cycles - reclamations\closures
- ’sand waves’ - Coastal (non)management
- extreme events - natural resource extraction

(Inter-)annual years to - Wave climate variations - Surf zone structures
and decadal decades\ - Surf zone bar cycles - Shore nourishment
Variability 1 - 5 km - Extreme events

(Inter-)seasonal hours to - - Wave, tide and surges - Surf zone structures
and annual years\ - Seasonal climate variations - Shore nourishment
Variability 10 m - 1 km
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II.3 Coastline: Variables

II.3.1 Geometry

The cross-shore profile of the coastline can be classified in different zones. In figure II.4, zones in
the cross-shore profile are classified by means of derived variables. The cross-shore profile starts
with the dune width, which starts from the landward boundary and ends at the dune foot. The
location from the dune crest till the dune foot is denoted as the dune front. Close to the dune
foot at +2m NAP lies the Bma, which is the border between the marine transport zone and
aeolian transport zone De Vries et al. [2010]. From the dune foot till the mean sea level (MSL)
is denoted as the beach width Keijsers et al. [2014]. The MSL lies in the middle of the intertidal
width, which is the distance between the mean high water (MHW) and the mean low water
(MLW). Where often the foreshore width is located from the Bma up to the MLW or taken up
until the seaward foreshore location at -4m NAP Van IJzendoorn et al. [2019]. In this research,
the foreshore is denoted as the location from the Bma up until the inner depth of closure. This
location is often taken at -8m NAP. The outer depth of closure lies around -20m NAP and will
be neglected for this research Hinton [2000]. The entire cross-shore profile which is looked at
in this research, is the active profile width, which is located from the landward boundary till the
inner depth of closure. The visualisation of the variables on the cross-shore profile of the coastal
area, can be found in appendix B.

Figure II.4: Definition of different beach zones. Position of the landward boundary (XLB), dune
foot (XDF ) and the shoreline position (XSL) Keijsers et al. [2014].

Recently Van IJzendoorn et al. [2019] used the JarKus data set to find a correlation between
sea level rise and coastal dune changes. Most of the coastline variables as mentioned before in
table 2, are derived by Van IJzendoorn using the JarKus data set2. By using the x-coordinate
and the y-coordinate of the height measurements, variables such as locations, widths, gradients
and volumes can be derived along the cross-shore profile of the coast. With the help of these
variables, Van IJzendoorn showed that the dune foot and crest increase in elevation along the
Dutch coast, not following Bruun’s rule.

Table 2: General width definitions of the coastline profile.

Geometry definition Locations
Dune width Landward boundary - Dune foot
Dune front Dune crest - Dune foot
Beach width Dune foot - MSL
Intertidal width MHW - MLW
Fore shore width Bma - Seaward foreshore
Active profile width Landward boundary - DoC

2https://github.com/christa-tudelft/jarkus
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II.3.2 Landward boundary

The landward boundary is defined as the landward starting location of the dune. The location
has been determined as the most stable landward location from the dune crest with a height
greater than 5 meters above NAP and a variance lower than 0.2 Van IJzendoorn et al. [2019]
De Vries et al. [2010].

II.3.3 Dune crest

The dune crest is defined as the highest location of the dune. This location can be determined
by looking at the prominence. Where a valley is defined as the lowest point between a peak and
a higher peak. The prominence is calculated from the peak relative to the highest valley.

II.3.4 Boundary between Marine and Aeolian transport

The coastal area can be classified in a marine transport zone and an aeolian transport zone. The
location separating these zones is identified as the boundary, where landward of the boundary no
marine processes are present and seaward the changes are mainly due to the marine processes.
This location has been assumed to lie around +2m relative to NAP De Vries et al. [2010].

II.3.5 Dune Foot

Multiple researches were done on the exact location of the dune foot. Since 1965, the dune
foot was visually determined to be located at about +3 meter relative to NAP Reussink and
Jeuken [2002]. This method restricts changes in the vertical. In the research of Van IJzendoorn
et al. [2019], two approaches for the dune foot have been used. The first method looks at
the first and second derivative of the profile between the MHW and +6 meter relative to NAP.
This method looks at the most seaward position, where the first derivative equals 0.001 and the
second derivative equals 0.01 Diamantidou et al. [2020]. This method has been found to be a
robust estimation of the dune foot. The second method is based on machine learning to predict
the location of the dune foot. Beuzen [2019] made his program available called pybeach3. This
program looks at the location with the highest probability to represent the dune foot location.

II.3.6 Mean High Water and Mean Low Water

Both the MHW and the MLW are defined by taking the average height relative to NAP for a
period of 19 years. The MHW has been determined to lie around +1 meter relative to NAP at
the Dutch coast and the MLW at around -1 meter relative to NAP Van IJzendoorn et al. [2019].

II.3.7 Mean Sea Level

Defining the mean sea level (MSL) can be done in two ways De Vries et al. [2010]. The first
one is to take a fixed vertical position, which is the same position as the Normaal Amsterdams
Peil. The second method is to find the average between the MHW and the MLW.

3https://pypi.org/project/pybeach/
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II.3.8 Depth of Closure - Standard deviation

One of the most important parameters for the Bruun rule, is the depth of closure (DoC). This
point is the boundary condition at the seaward side for cross-shore sediment transport. After this
point, there is no significant exchange with the beach Aragonés et al. [2017]. The effectiveness
of beach nourishment depends on the knowledge of the local DoC, which is often taken at -8
meter relative to NAP De Vries et al. [2010]. It is mentioned by G.Valiente et al. [2019] that
there are two ways of calculating the DoC. The first one is through observations and the second
one is through numerical models. In figure II.5, the flow diagram can be found for each method.
In this flow diagram, it is observed that the dominant forces for the position of the DoC are the
wave height and wave period.

Figure II.5: Flow diagram for defining the depth of closure based on observations and numerical
models G.Valiente et al. [2019].

Hinton [2000] researched the DoC at the Dutch coast. Hinton found that the most accurate
method for looking at the observations and bottom smoothness, which is seen in figure II.5, the
standard deviation of depth change method (ssdc). This method deals with large data sets with
outlying values. With the ssdc method, the variation in the standard deviation of elevation as
a function of cross-shore distance for x number of profiles along the same alongshore location
are located Hinton [2000]. Hinton advises to use a data set of 20+ years. The best method for
the Dutch coast, is to find the first value of an ssdc of 0.25 m. Changes are measured every
year, at all possible locations in the cross-shore direction, after which the standard deviation is
calculated. Figure II.6 shows the ssdc method with a threshold of 0.25 m.

Figure II.6: The standard deviation of depth change method (ssdc) for deriving the depth of
closure. With a threshold value of 0.25 m. Depth of closure defines the boundary between
morphodynamic active zone and inactive zone Hinton [2000].
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II.4 Shoreline recession

II.4.1 The Bruun Rule

One of the most famous Danish coastal engineer was Per Bruun. Bruun described that the
equilibrium cross-shore profile of the shore shifts upward and landward due to sea level rise
Bruun [1962]. It assumes that the cross-shore profile is in equilibrium with hydrodynamic forces
such as waves, tides and currents. Due to sea level rise, the cross-shore profile needs to adjust
back to its equilibrium. To accommodate for this change in equilibrium, the cross-shore profile
is taken as a two-dimensional mass system. Striving for a new equilibrium, the lower part of the
cross-shore cross-shore has additional space for sediment deposit. This sediment is then supplied
from the upper part of the profile. This effect can be seen in figure II.7. The Bruun rule is
expressed in equation II-1.

R =
SL

h+B
=

S

tan β
(II-1)

Where R is the shoreline recession. S is the sea level rise. L is the horizontal length from the
dune peak to the depth of closure. h is the depth of closure, beyond this point no significant
sediment transport occurs. B is the height from mean sea level to the dune crest and β is the
average slope of the active profile. The schematic positions of these parameters can be found in
figure I.2.

Figure II.7: Schematic diagram showing the Bruun Rule for coastal recession Ranasinghe et al.
[2012].

Many researches were done after Bruun, expanding his findings, but at the same time criticizing
his confined approach Zhang et al. [2004] Andrew et al. [2004]. Criticizing the Bruun rule as
it assumes the cross-shore profile is always in equilibrium, making it hard to apply to coastal
areas where the equilibrium changes due to human interventions. Sediment is assumed to only
be distributed in the cross-shore direction. Losses due to aeolian transport, gradients in the
longshore and transport beyond the inner depth of closure are not taken into account. While
the Bruun rule is a highly conservative approach, it does hold fundamental information at the
potential consequences of the future coastline.

II.4.2 Probabilistic Coastline Recession model

Additionally, the Bruun rule has been expanded with a model that is focused more on the pro-
cesses which dominate the shoreline recession due to sea level rise. This resulted in a probabilistic
coastline recession (PCR) model Ranasinghe et al. [2012]. This model takes into account the
probabilistic data of storms over a time span of 10 years and combining it with sea level rise. As
the increase of mean sea level rise result in storm waves breaking closer to the coastline. The
erosion is then calculated by a simplified wave impact dune erosion model is used Larson et al.
[2004]. Hence, the uncertainty in the PCR model is less as it doesn’t require highly uncertain
estimates of the depth of closure Ranasinghe et al. [2012].
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II.5 Coastline: External drivers

II.5.1 Sea Level Rise

Almost 66% of all cities in the world, with a population of five million and more, are located in
areas with a risk to sea level rise United Nations [2017]. Predicting the future of sea level rise
and its effects, is one of the biggest challenges for engineers nowadays.

The main drivers of sea level rise in the last century are said to be the ocean thermal expansion
and the melting of the glaciers IPPC et al. [2013]. Both these effects count for the sum of
total sea level rise, see figure II.8. The IPPC follows the Representative Concentration Pathways
(RCP), which are different scenarios, based on the changes of anthropogenic behavior. The two
scenarios, as seen in figure II.9, are the RCP 2.6 (blue bar) and RCP 8.5 (red bar). Both these
scenarios are predicted with a 95th percentile. The trend also shows to increase after 1993.
Model based estimations indicate that this is caused by the natural and anthropogenic radiative
forcing IPPC et al. [2013].

Besides sea level rise, the ocean thermal expansion and melting glaciers, have effects on the
ocean’s conveyer belt Pietrzak [2011]. This causes changes in currents, winds and even the
Earth’s gravitational field. These effects vary around the world, changing the sea level rise per
location. Studies have been done on locations that have a great number of measurements.
IJmuiden is one of these locations. These measurements show that the sea level rise in the
Netherlands lies below that of the global predicted sea level rise trend. The effect of the glaciers
melting, is larger on the equator and smaller further away from the equator.

Figure II.8: Projections for global mean sea
level rise and their contributions IPPC et al.
[2013].

Figure II.9: Projection for global mean sea
level rise in IJmuiden, RCP2.6 (dark blue)
and RCP8.5 (red) IPPC et al. [2013].

The RCP 2.6 scenario takes into account that CO2 emissions start declining by 2020 and go to
zero by 2100. It also takes into account the decrease of different emissions such as methane
(CH4) and sulfur dioxide (SO2). These interventions will keep the temperature rise to 2 degrees
Celsius and the sea level rise with (0.32 - 0.63) m by the year 2100 IPPC et al. [2013]. The
RCP 8.5 scenario is the worst case scenario. This scenario takes into account that the processes
are not well understood, and that current emissions are overestimated. The temperature would
increase with 4 degrees Celsius and the sea level rise increases by (0.52 to 0.98) m by the year
2100 IPPC et al. [2013]. Hausfather and Peters [2020] states that this case is possible, but the
scenario is rather implausible, which is also seen by each passing year. At the same time, KNMI
[2017] reported that the findings in IPPC et al. [2013] aren’t taking the contribution of Antarctica
enough into account. Stating that this will influence the rising of the sea level significantly.
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II.5.2 Nourishment

Since 1960, Rijkswaterstaat has been providing nourishment along the Dutch coast. As seen in
figure II.10, this has been rapidly increasing. Rijkswaterstaat executes the Dutch "Nourishment
Program Coastline Care", which aims to prevent structural coastal erosion Deltares [2014]. The
criterion for nourishment is the Base Coastline (BKL). The Momentane Coastline (MKL) is a
measurement which is done every year. Nourishment aims to prevent the MKL going below the
BKL.

Research by Giardino et al. [2019] shows a possible causality between nourishment and the dune
foot location. This shows the significance of taking nourishment into account as a space and
time variable in the data set. Rijkswaterstaat provided the nourishment data for the entire coast
in the years from 1952 up to 2019. Figure II.10 shows how the nourishment in the management
area of HHNK, also denoted as section 7. The nourishment in section 7 (blue bar) is compared
to the total nourishment along the entire Dutch coast (orange bar).

Figure II.10: Nourishment in the management area of HHNK (section 7/blue) compared to the
whole dutch coast from 1952 to 2019 (section all/orange).

In figure II.10, an anomaly is removed which represent a large nourishment in 2014. This was
the start of the mega nourishment to create the Hondsbossche Dunes. For figure II.11, this
mega nourishment is also omitted to scale the graphs. This figure shows that the nourishment is
separated into 7 categories. Dune reinforcement was mainly used in the first years. From 1986
beach nourishment was mainly used, up until today. From 1999 beach nourishment has been
combined with foreshore nourishment. The nourishment which is done above the MLW, will be
combined into dune nourishment in this report. All the nourishment done below the MLW will
be combined to foreshore nourishment in this report.

Figure II.11: Types of nourishment in the management area of HHNK (section 7).
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II.5.3 Experiments: Shoreline recession due to sea level rise and nourishment

Previous research has been done to represent the coastline response of the coast based on sea level
rise and nourishment Cowell et al. [1992]. Different responses were modeled with their associated
risk for a site specific location. In a more recent report, physical model experiments were done in
a flume to look at the effect of sea level rise and nourishment Aktinson and Baldock [2020]. The
experimental profile was exposed to a sufficient duration of waves to approach a near equilibrium
state. Before the experiments were done, the recession was estimated by expanding the Bruun
rule with an additional cross-shore volume term. The experiment consists of four models with
different profile types and nourishment locations. Important to note, the nourishment which
is reviewed in chapter II.5.2 doesn’t contain detailed information about the exact location of
nourishment in the profile. One of the four models which represents the foreshore nourishment
the most is seen in figure II.12 and figure II.13. This model also came back to represent the
expanded Bruun rule the best. Figure II.12 represents the experiment without nourishment and
figure II.13 represents the results with nourishment. In both figures, the blue line represents
the model before sea level rise and the black line represents the model after sea level rise. The
shaded gray area represents the added nourishment.

The recession of the upper part of the profile can be seen in the model with no nourishment.
The results represent the Bruun rule, where there is erosion on the upper part of the profile,
which is deposited on the lower part of the profile. With nourishment, the erosion on the upper
part is minimized, and the lower part of the profile increases in height. The second important
result, is that the increase of bottom profile is more spread. Without nourishment, an increase
of the bottom profile is seen at a specific location where with nourishment, the increase is spread
along with the profile.

As spoken in chapter II.2, both sea level rise and nourishment are important factors on a decadal
to intercentennial scale. At the same time, there are many more mechanisms that play a role in
the complex dynamics at the coast.

Figure II.12: Coastline profile changes after sea level rise without nourishment [Blue = Profile
before sea level rise / Black = Profile after sea level rise] Aktinson and Baldock [2020].

Figure II.13: Coastline profile changes after sea level rise with nourishment [Blue = Profile before
sea level rise / Black = Profile after sea level rise] Aktinson and Baldock [2020].
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II.6 Advanced data science

II.6.1 Disciplines

Data science is an overarching field for many disciplines. In figure II.14 a few of these disciplines
and their mutual coherence are shown. The exact mutual coherence between the disciplines
remains a gray area and keeps improving.

Figure II.14: Venn diagram covering parts of the disciplines in data science Mitchell-Guthrie
[2014].

II.6.2 Machine learning vs Statistics

Machine learning is one of the buzzwords in the field of advanced data science Murphy [2018].
While it’s becoming more popular, machine learning has been around for a couple of decades.
Data collection and computational power have increased exponentially in the last years, while
at the same time the computational cost has gone down. Making the use of machine learning
more attractive Stewart [2019].

As stated in chapter III.1,lots of information is available from the JarKus and Nourishment data
set. Figure II.14 shows a great number of disciplines, that are available to analyse this data. This
chapter compares most of the potential data analysis methods to answer the research questions
most reliably.

Statistics is a subfield of mathematics, while machine learning is a subfield of computer science
and Artificial Intelligence. Statistics rely on mathematical equations, while machine learning
requires no prior assumption of the underlying relationships between the variables Stewart [2019].
Matthews analogy about these differences is stated as followed:

"Machine learning is all about results, it is like working in a company where your worth is
characterized solely by your performance. Whereas, statistical modeling is more about

finding relationships between variables and the significance of those relationships, whilst also
catering for prediction"

- Matthew Stewart
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II.6.3 Machine learning: Algorithms

Machine learning allows computers to learn tricks on their own, without being explicitly pro-
grammed. Data is fed to the machine, where an algorithm processes the data and ends in a
machine learning model. This model represents what was learned by training the algorithm,
for its best performance. The algorithms are classified by four branches for finding its best
performance;

Supervised learning: Input data and output data are known. The data is labeled with the
output that the algorithm should come up with. The algorithm is trained with training data and
compared with the test data. Regression problems and classification problems are the two main
areas where supervised learning is often used.
Unsupervised learning: The algorithm doesn’t know what the output is. Data is handed
unlabeled, not having a correct output or desired outcome. This method is often used in problems
such as clustering or anomaly detection.
Reinforcement learning: An agent is placed in an unknown environment. Numerous actions
are taken by the agent and is rewarded or punished based on trial and error. The goal is to get
the highest reward.
Semi-Supervised learning: There is also a fourth branch, which uses both labeled and unlabeled
data.

While the branches narrow down the immense amount of algorithms 4, finding the best matching
algorithm remains a complex task Li [2017].

II.6.4 Previous coastal applications using advanced data analytics

Bayesian Approach:
Gutierrez et al. [2012] used the Bayesian network with sea level rising as the main driver. In-
dependent variables included in the Bayesian network consist of beach slope, tidal range, wave
height and sea level rise. Resulting in a Bayesian network that provides a probabilistic prediction
of the coastline profile change. The accuracy increased with a larger sea level rise per year.

More recently Giardino et al. [2019] applied the Bayesian network to look at the effectiveness of
nourishment on the Dutch coast. The JarKus data was combined with historical nourishment
data and beach characteristics. Results showed that the current nourishment policy is effective
in preventing structural erosion. Effects of future nourishment could be predicted, only if those
were seen in the statistical distribution of past nourishment.

Neural Network Approach:
M.R.Hashemia et al. [2010] used a Neural Network to find changes of the coastline profile in the
Tremadoc bay (United Kingdom). Twice a year, measurements were taken at 19 stations over a
span of 7 years. Input data consisted of significant wave height, significant wave period, angle
of the beach, wind direction, and more. The key for the algorithm was, to prevent overfitting,
which happens when the model learns to many input and output results. The input vectors
were decreased as much as possible and highly correlated data was excluded. Results show
that the Neural Network has a great performance in predicting seasonal beach profile changes.
M.R.Hashemia et al. [2010] stated that the results generally are more accurate, compared to
computationally expensive models for that same region. In that particular research, the data was
still very limited.

López et al. [2018] used a Neural Network for sandy beaches, while looking at the effect of
marine vegetation. López et al. [2018] states that the accuracy of input nodes isn’t as important
as finding the right characteristic input nodes. Sixty Neural Networks were made and the best
results correlated with wave height, median sediment size, profile slope and an energy reduction
factor as input nodes.

4https://en.wikipedia.org/wiki/Outline_of_machine_learning
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II.7 Data Analysis: Self-Organizing Map

Dr. Eng. Teuvo Kohonen was a Finnish professor and researcher, who became interested in
neural networks in 1960. In 1977 he invented the first supervised competitive-learning algorithm,
the Learning Subspace Method (LSM). His research on the Self-Organizing Map (SOM) didn’t
begin until 1981. His idea came from the need for an algorithm, which would map vectors.
Vectors that lie close to each other in the input space, are mapped onto contiguous locations in
the output space Kohonen [1997]. Self-Organizing Maps are still widely used in data analyses
such as the mapping of the Covid-19 virus, spread between countries in 2020 Melin et al. [2020].
Clustering countries behave similarly and thus can benefit by using similar strategies in dealing
with the spread of the virus.

II.7.1 Artificial Neural Network: SOM

The Self-Organizing Map (SOM) is a branch of the artificial neural networks (ANNs). It is an
unsupervised learning technique that uses a competitive learning technique while maintaining its
topological properties from the input space. As seen in figure II.15, the SOM neural network
consists of an input layer, weighted matrix and an output layer. The output layer can be 1D,
2D or even a 3D map. For this research, a 2D neuron lattice map is used. These neurons are
also called units. The weights in between the input layer and output layer determine the spatial
location of each neuron. Over time the weights are trained and updated to cluster the neurons.

The core idea is that the nodes are self organizing, according to their similarity, without any
supervision. Thus reducing the high-dimensional data to a lower 2D dimension. Each variable
will have its own feature map, also called a component plane, that maintains its topological
properties, with respect to the output space.

Figure II.15: Self-Organizing Map showing the neural network connections between the input
layer and output layer Lan [2018].

18



II LITERATURE STUDY

II.7.2 SOM algorithm

The SOM algorithm uses competitive learning by adjusting its weights. A single neuron is selected
after each iteration, to represent the input vector, while all other neurons compete to represent
this vector as well. The winner is called the Best Matching Unit (BMU). The BMU is selected,
by calculating the Euclidean difference between all the nodes and the input vector, along with
its neighbours within a certain radius. The neighbours positions are slightly adjusted after each
iteration to match the input vectors. This is done for all neurons in the output layer before the
next iteration. Each iteration is denoted by t as a step. Similar nodes are grouped and dissimilar
nodes are separated. Each iteration in the SOM algorithm ends at step 4 and repeats at step 2.
The SOM algorithm consists of the following steps Sarkar [2019]:

Step 1. Preprocessing:
The data is normalized and the weights are randomly selected. Additionally the weight can be
selected by using the Principal component analysis (PCA).

Step 2. Competition:
Every neuron will compete with other neurons to represent the input vector. This is done by
calculating the Euclidean distance (equation II-2), between the weight of each node and the
input vector. The node with the smallest Euclidean distance, which is the input vector closest
to the weight vector, is called the Best Matching Unit (BMU).

||~x− ~wij || =

√√√√ n∑
t=1

[~x(t)− ~wij(t)]2 (II-2)

With ~x being the input vector and ~wij being the weight vector connecting the node to the i,j
position on the 2D-grid, as seen in figure II.15. The || represents the magnitude of the euclidean
distance and t representing the current iteration step.

Step 3. Collaboration:
The topological neighbourhood on the map, starts with the BMU, also the node with the small-
est euclidean distance. The radius which affects the neighbours, is represented by a Gaussian
distribution. The Gaussian distribution formula representing the smallest euclidean distance can
be found in equation II-3.

βij(t) = exp(
−min(||~x− ~wij ||)2

2σ2(t)
) (II-3)

Where the upper part of the exponential function represents the BMU, which is the node with
the smallest distance. The σ value is found in equation II-5. This value represents the radius in
which the neighbourhood nodes are affected on the 2D grid.

Step 4. Weight update:
The algorithm learns through adjusting the weights with equation II-4. The neighbourhoods
close to the BMU are adjusted to make them more like the BMU. This adjustment is bigger in
the beginning and smaller at the end. Also the neighbourhoods that are closer, are adjusted
more. This learning is done till the chosen criteria is met.

wij(t+ 1) = wij(t) + αi(t)βij(t)[x(t)− wij(t)] (II-4)
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With wij(t + 1) being the updated weight for node i,j. Which contains of the old weight wij

with a slightly adjusted weight to move the node cluster to the BMU. αi(t) being a factor found
in equation II-5, βij(t) being the neighourhood function seen in equation II-3. [x(t) − wij(t)]
being the euclidean distance and t representing the current iteration step

σ(t) = σ0 × exp(
−t
λ
)

α(t) = α0 × exp(
−t
λ
)

(II-5)

Both the radius σ and the learning rate α, decrease exponentially over time. With σ0 and α0

containing the values of the first iteration and λ representing a constant time value.

II.7.3 Batch Training

To speed up the computation time of the SOM, the batch training mode is chosen in the
SOMPY-module Matsushita and Nishio [2010]. This means that the whole data set is trained
before it is projected on the map. All vectors are updated according to equation II-6.

wi(t+ 1) =

∑n
j=1 βic(j)xj∑n
j=1 βic(j)

(II-6)

Where βic(j) is the neighbourhood function for the wining node, as seen in equation II-3 and xj
representing the mean of the vector.

II.7.4 Output SOM

U-matrix:
The Unified Distance Matrix (U-matrix), as seen in figure II.16, visualises the grouping of x-
dimensional input vectors. This is done in a 2D lattice which corresponds with the components
plane of each input variable. The clustering can be visualised in a 3D representation of the
U-matrix. Similar data is represented by valleys and boundaries are visualised by mountains.
Meaning that similar input vectors are located in the same valley.

Components plane:
Each input vector on the U-matrix consist of multiple components planes. Each component or
rather variable, is plotted on a component plane while maintaining the same topological location
as the U-matrix. An example can be seen in figure II.17.

Figure II.16: Example of the unified
distance matrix Kohler et al. [2010].

Figure II.17: Example of the compo-
nent plane Kohler et al. [2010].
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II.7.5 Hyperparameters

In the previous chapter, parameters such as the weight of the node, are defined based on the
results of the model. Hyperparameters require to be defined upfront and control the learning
process, as seen in figure II.18. While there are a few hyperparameters that can be tweaked and
affect the results, this research will limit itself to the map size and training steps, denoted as vari-
able hyperparameters. The map type, normalization, neighbourhood function and initialization
won’t be investigated for their effect. These selections are the inputs for the SOMPY module.

Static Hyperparameter

• Maptype: A SOM can have different map shapes such as a cylinder and toroid. For this
model a static planar hyperparameter is chosen. The nodes can be either rectangular or
hexagonal, which influences the number of neighbours. To reduce the difficulty of the
map, rectangular nodes are chosen.

• Normalization: In the first phase, the data is normalized. This is done by using the unit
variance which was divided by the standard deviation.

• Neighbourhoods: To define the neighbourhoods from the BMU, a Gaussian distribution is
chosen. Both normalization and neighbourhood hyperparameters are commonly used.

• Initialization: The initial weights can be random or chosen by utilizing the PCA. With
a random sample, the output space will converge differently each time. To increase the
automatisation of the algorithm and find the differences between each run, reliability is a
key point. Therefore PCA is preferred.

Variable Hyperparameters

• Mapsize: Kohonen [1997] suggested to determine the map quality, by looking at and iterat-
ing with, the results of the QE and TE. There have been two rules of thumb which have of-
ten been used to determine the amount of neurons in the 2D lattice. The first rule of thumb
is equal to Amount of neurons = 3×

√
amount of input vectors Xia [2017]. The sec-

ond rule of thumb used is equal to Amount of neurons = 5×
√
amount of input vectors

Estévez et al. [2012].

• Training steps (t): The SOM algorithm in chapter II.7.2 is iterated from step 2 to step
4. The number of steps that need to be taken, depends on the converges of the QE and
the TE. As these decrease with the number of steps, the quality of the output space will
increase.

Figure II.18: The associated input in the model for the hyperparameters and parameters.
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II.7.6 Quality evaluation

Both the Quantization error (QE) and the Topographic error (TE), represent how well the data
fits on the two-dimensional map. It also visualises how many iterations are needed to reach
convergence. These techniques can be compared to the Sum of Squared Errors (SSE).

Quantization error (QE):
As stated by Kohonen, the best map yields the smallest quantization error (QE) Kohonen [1997].
The quantization error measures the distance between the BMU and the input vectors. The
smaller this distance, the closer it lies to its BMU. The formula to calculate this distance is
||x−mc||. The average error is calculated for the whole map with equation II-7.

QE =

∑N
i=1 ||xi − wc||

N
(II-7)

Where wc represents the winning node or the BMU. xi represents the input vector and N is the
number of input vectors, to get the average value.

Topographic error (TE):
The QE only looks at how the nodes, in relation to the neurons, are mapped and not how they
are mapped between each other Breard [2017]. For this, the Topographic error (TE) is used.
The main feature of the SOM is that the topological relation in a high dimension is preserved in
the lower, 2D dimension. The TE measured the discontinuities in the map. The TE is calculated
by finding the BMU and the second BMU in the neuron map for each input and evaluated the
position. If they are not neighbours, an error is added to t. TE is then equal to the total number
of errors divided by the number of data points. This formula can be seen in equation II-8.

TE =
1

n

n∑
i=1

t(xi) (II-8)

t(x) =

{
0 if µ(x) and µ′(x) are neighbours

1 if not, add error

Where µ(xi) is the BMU and µ′(xi) is the second BMU.
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II.8 Data Analysis: K-means

II.8.1 K-means algorithm

The K-means clustering algorithm was first introduced by MacQueen [1967]. Up until today, K-
means is one of the most well-known and used clustering algorithms. It is very easy to implement,
is computationally fast and easy to implement on large data sets. K-means is classified as an
unsupervised learning technique. The algorithm needs a predefined amount of centroids or K.
The number of centroids are randomly placed in and outside of the data. The Euclidean distance
between the data is calculated and after each iteration, the centroids is moved to minimize this
distance. This distance is the sum of every cluster which contains the sum of the euclidean
distance to each data point. This formula can be seen in equation II-9 Tizhoosh [2019].

E =

K∑
k=1

X∑
x=i

||xi −mk||2 (II-9)

Where K is the number of clusters, X is the number of data points, xi the chosen data point
and mk the centroid for cluster k.

An example can be seen in figure II.19. Here a two-dimensional data set is used with three
centroids. After iteration, the data set is clustered into three clusters. In this case, the data is
separated well and is still very easy to visualize. In a high-dimensional field, k-means can still
cluster the data where for humans this is difficult to visualize. If the data isn’t separated well,
the initial randomly placed centroids can result in different results every time.

II.8.2 Quality control

One of the disadvantages of the K-means is that a predefined amount of centroids or K needs to
be selected. Methods such as the "Gap", "Silhouette" and "Elbow" methods are used to identify
the possible location of the optimal centroids. This research will focus on using the "Elbow"
method as it’s often used and the easiest to implement. The Sum of Squared Errors (SSE)
decreases with the number of centroids and often the shape of the graph looks like a bent elbow.
An example can be seen in figure II.20, where the optimal number of clusters is around three
and lies in the pocket of the elbow.

Figure II.19: Example of the K-means
clustering with three centroids SuperData-
Science [2018].

Figure II.20: Example of the K-means "el-
bow" method SuperDataScience [2018].
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III. Methodology

This chapter starts with paragraph III.1, introducing the research phases used in the method.
Paragraph III.2 explains the build-up of the data set, followed by the used hybrid algorithm.
Ending with steps taken in the initial phase , in paragraph III.4 and the final phase in paragraph
III.5.

III.1 Method

III.1.1 Phases

The core component of any machine learning approach, is the input data, from which the
algorithm learns. This research will contain not only learning by means of the machine learning
algorithm, but also learn from the input data. This approach can be seen in figure III.1. The
initial phase, starts with the data set, containing derived variables from the JarKus data and the
nourishment data. The origin of the data set is explained more in chapter III.2. Each derived
variable in the data set, represents a single individual coastal profile in time and space. The
machine learning algorithm, which in this case is a combination of two clustering algorithms, the
K-means algorithm and the SOM algorithm. These algorithms learn by repeating and adjusting
their algorithm until a certain threshold is reached. After which, the parameters in the final step
define the model. The model output contains the clustered input data, with a connection to
the input data set. In the initial phase, these results are used to understand the impact of the
method of deriving the input variables. In which adjustments are made, resulting in a modified
data set. The modified data set is the input for the final phase. Resulting, in the clustering of
the final data set, which is used to answer the research questions.

Figure III.1: Method approach
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III.2 Data set

III.2.1 Data collection

The source of the data set comes from both the JarKus measurements and the nourishment
data. The JarKus measurements are used to derive variables along the cross-shore profile. Close
to 50 variables have been derived in previous research Van IJzendoorn et al. [2019]. These
variables are extracted for the HHNK management area. These variables are expanded using a
revamped standard deviation method, inspired by Hinton [2000]. Resulting in a full data set of
294 transects over 55 years, as seen in figure III.2.

Figure III.2: Sources of data for this research. Blue indicating the raw data, yellow indicating
derived variables from the raw data and gray indicating the combined data set.

The cross-shore profile location of the approximated 50 derived variables, can be seen in figure
III.3. These variables can be categorized into locations, gradients, widths and volumes. A more
detailed explanation of the variables can be found in appendix A and appendix B.

Figure III.3: Locations of the derived variables along the cross-shore profile for transect 7000948.
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III.2.2 Data reduction

The height measurements and algorithms used to derive the variables, are not always possible
due to certain reasons. These variables result in a ’Not a Number’ (NaN) value in the data set.
For data preparation, there are several ways to handle NaN values. This can be; omitting the
data, assigning zero values, interpolation and extrapolation. This research uses both omitting,
interpolation and extrapolation of data to eliminate the NaN values. In figure III.4 all NaN values
for each specific derived variable are shown. A couple of variables stand out, which are far above
the mean number of NaN values. These specific variables are removed from the data set. After
removing the variables with a high number of NaN values, the average amount of missing data
rows equal to around 4000 data rows. The total amount of data rows in the data set is equal to
294 transects × 55 years, which equals 16170 data rows. This means that around 25% of data
rows contain NaN values.

Figure III.4: Number of NaN values for each variable in the data set
(Dark red = missing data in 2019 / Dark blue = missing data in 1965).

26



III METHODOLOGY

To investigate the origin of the NaN values, the missing amount of data is displayed in space
and time in figure III.5. With dark blue indicating that all data is present and orange indicating
that almost all data is missing. A clear pattern of missing data can be seen from before the year
1987, indicated by a light blue area. The northern part of the transects contains a large number
of vertical orange bars ranging from the year 1965 to the year 2019. In the horizontal direction,
an orange bar can be found in the year 2002, ranging from transect 7000000 up to transect
7005500. The results indicate the locations where the highest quality of data is located.

Figure III.5: Amount of NaN values for each variable in the data set.
(Dark blue = 0 number NaN variables / Orange = 40 number NaN variables).
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III.2.3 Data format

In the data set, a trade-off is made between having a large enough data set and having the most
reliable data. Figure III.5 shows the amount of reliable data in space and time. Based on these
results, a separation is made between three areas in space and time. The results of the separated
new data set can be found in table 3.

Table 3: Extracted space and time data.

Area 1 Area 2 Area 3
Year 1987 - 2019 2001 - 2019 1987 - 2019
Transects 7000000 - 7001925 7001940 - 7002747 7002764 - 7005500

The data set starts out with 25% of missing data, isolating the areas reduces the amount of
missing data and increases the reliability. After isolation, transects that contain a vertical orange
bar as seen in figure III.5, are omitted. The remainder of the data is interpolated. If interpolation
wasn’t possible, the remainder transects were omitted as well.

Area 1:
As seen in table 3, area 1 consists of 121 transects over 32 years. After omitting the orange bars
from area 1, the data set has an average of 200 NaN values. With 32 years × 121 transects =
3872 data rows this results in 5.1% of missing data. After interpolation there were still a small
number of transects that remained, these were also omitted. Resulting in 93 transects for 32
years.

Area 2:
As seen in table 3, area 2 consists of 58 transects over 18 years. After omitting the orange bars
from area 2, the data set has an average of 35 NaN values. With 18 years × 58 transects =
1044 data rows this results in 3.4% of missing data. All missing data could be interpolated,
resulting in 47 transects for 18 years.

Area 3:
As seen in table 3, area 3 consists of 115 transects over 32 years. After omitting the orange bars
from area 3, the data set has an average of 250 NaN values. With 32 years × 115 transects =
3680 data rows this results in 6.7% of missing data. After interpolation there were still a small
number of transects that remained, these were also omitted. Resulting in 109 transects for 32
years.

Table 4: Removed transects.

Area 1
Transects 7000000 7000020 7000030 7000040 7000050 7000060 7000070

7000150 7000170 7000668 7000708 7000748 7000768 7000789
7000994 7001023 7001054 7001085 7001115 7001145 7001175
7001205 7001235 7001265 7001295 7001755 7001784 7001903

Area 2
Transects 7001932 7001962 7001990 7002015 7002111 7002134 7002158

7002187 7002212 7002238 7002600
Area 3
Transects 7002935 7002987 7003325 7003675 7003800 7005500
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III.3 Machine learning: hybrid algorithm

III.3.1 Clustering

The previous chapter gave an in-depth explanation of machine learning and its different algo-
rithms. Two unsupervised machine learning algorithms were highlighted. The Self-Organizing
Map and the K-means method. The goal of both methods is to use an intelligence with the
capability of clustering similar objects or data without knowing the desired output. While this
makes clustering a very powerful tool in finding structures in data, the results of something un-
known are difficult to interpret. Therefore this research will be combined with in depth research
in the physical processes based on the results.

III.3.2 Hybrid model (K-means and SOM)

Both the K-means and the SOM model have their advantages and disadvantages. K-means is a
"hard clustering", where the data is clustered binary. The SOM is a "soft clustering", where the
clustering is identified by likelihood. While the likelihood is a good representation of physical
processes, it result in different output each time, where the result can be interpreted differently
by each reader.

While fundamentally the methods are the same, the algorithm updates the results based on the
lowest Euclidean distance (other methods are also possible). The biggest difference lies in the
approach. With K-means the centroids move inside the data to find the cluster and in the SOM,
the data moves around the centroids or BMUs. After each iteration, everything is updated in
the K-means algorithm, wherein the SOM, only the neurons/units neighbours are updated.

The Self-Organizing Map can be seen as a constrained K-means.

By combining both models, both the advantages of the K-means and SOM can be utilized.
K-means helps the hybrid model to automatise the process and keep the results the same in
each run. In the SOM, the results require human intervention to interpret the results. The
disadvantage of the K-means clustering is that most of the information in the input space is lost.
The SOM maintains the information in the input space due to its topological preservation. The
human brain can’t cope well with finding patterns in a high-dimensional space and interpret the
results. The SOM brings this back to an understandable two-dimensional space.

Combining the topological preservation of the SOM, is done through plotting the contours of
the K-means clustering back on the U-matrix. There is still a lot of research in the field of
automatisation of the SOM. Lan [2018] expanded the current SOMPY-module by plotting the
K-means clusters back onto the U-matrix 5.

While the updated version of the SOMPY-module combines both methods, this research adds a
personal addition to the SOMPY-module by adding the contours of the clustering back on each
component plane. Thereby finding information from the input space and dominant variable for
each cluster.

5https://github.com/hhl60492/SOMPY_robust_clustering
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III.4 Initial phase

III.4.1 Initial data set

The initial phase starts by using the raw variables derived by Van IJzendoorn et al. [2019]. These
variables are derived for each individual profile in space and time. Around 50 variables have been
derived and can be categorized into locations, widths, gradients and volumes. Most variables
have a fixed position in time, meaning that the variables are taken for the same y-coordinate
for each year. Variables are also derived with a variable y-coordinate. The y-coordinate is then
calculated through an algorithm or method Van IJzendoorn et al. [2019]. The raw JarKus data
is then combined with the nourishment data. This results in around 7000 input vectors in time
and space, which are plotted on a 50x60 SOM map. A general overview of the variables in the
cross-shore profile can be found in figure III.3. With the more detailed explanation of all variables
in appendix A and appendix B.

This initial data set, consists of two data sets, both with different variables. This method is
chosen to get more information about the impact of certain variables in the results. The first
data set, denoted by 1A, contains the variables which are seen in table 5. The second data set,
denoted by 1B, removes the important variables which results from data set 1A. Both models
have variables to represents y-coordinates, widths, gradients and volumes. The variables which
are based on the x-coordinate, include a biased due to it being relative to RSP. Model 1A takes
into account a single x-coordinate, to see the effect of this bias. The second reason for omitted
certain data, is due to multiple methods being used in the isolation of the same variable. The
fix locations are omitted as much as possible and used if there isn’t a variable derived location
present. This trade-off results in the chosen data, as seen in table 5.

Table 5: Description of the chosen variables for data set 1A and 1B.

Variable name Description Included
in data
set

FS_Volfix Volume between the fixed location in the foreshore 1A
DVol_der Volume between the variable location in the dunes. 1A
DT_prim_y Location of the Dune Top 1A + 1B
MHW_y_var Height relative to NAP of the Mean High Water level 1A + 1B
MLW_y_var Height relative to NAP of the Mean Low Water level 1A + 1B
DF_der_y Height relative to NAP of the Dune Foot based on the

second derivative approach
1A + 1B

BW_der_var Beach Width between variable locations 1A + 1B
DFront_der_prim_W Dune Width between variable locations’ 1A + 1B
DFront_der_prim_grad Gradient between of the dune’ 1A + 1B
Int_grad Gradient of the intertidal location 1A + 1B
FS_grad Gradient of the foreshore location 1A + 1B
AP_grad Volume of the active profile, not based on the standard

deviation
1A + 1B

DoC_Y Depth of closure based on the standard deviation 1A + 1B
Foreshore_volume Volume of the beach, not based on the standard deviation 1B
Dune_volume Volume of the dunes not based on the Standard deviation 1B
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III.5 Final phase

III.5.1 Derivation by means of Standard Deviation

The final phase, replaces the methods for deriving the volumes and locations along the cross-
shore profile. This new method uses the standard deviation to derive the locations and volumes
along the cross-shore profile. This method originates to identify the depth of closure Hinton
[2000]. This research expanse this method to find more locations in the cross-shore profile. With
these new variables, extracting of new volumes, widths and gradients are available. Meaning
the variables aren’t based on fixed locations or different algorithms, but on the same extraction
of variability. Figure III.6 shows an example of the standard deviation for transect 7001544.
This standard deviation shape characterises most transects along the HHNK area. The landward
boundary is found at the red vertical dashed line, the boundary between marine and aeolian
transport (Bma_y) at the purple vertical dashed line and the depth of closure at the green
vertical dashed line. The volume between the landward boundary and Bma_y is denoted as the
new dune volume and the volume between the Bma_y and the depth of closure is denoted as
the new foreshore volume.

Figure III.6: Derivation of the depth of closure based on the standard deviation for transect
7001544.

III.5.2 Linear regression

The dunes are constantly changing, during a storm, part of the dune is eroded and recovers
due to natural processes. Therefore the yearly results of each variable can depend on the yearly
amount of storms before a measurement. A regression line, as seen in equation III-1, is plotted
in between the data to find a decadal trend. This results in a slope (m) and an average starting
value (b). An example for the changes of the dune volume for transect 7000948 in 31 years can
be found in figure III.7. In this example the slope m is equal to 5.71 m3/year. The starting
volume is equal to 2316 m3. This method is applied to every transect and variable along the
management area of HHNK.

y = a×m+ b (III-1)
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Figure III.7: Linear regression line for the dune volume in transect 7000948.

III.5.3 Final data set

In the final data set, the raw JarKus data are expanded and adjusted. The time component of a
transect is now represented by a single variable. The total amount of new variables used in the
data set, can be seen in table 6.

Table 6: Description of the chosen variables for the final data set.

Variable name Description
DT_prim_yb Starting point dune crest
W_intertidal_varb Starting point intertidal width
BW_varb Starting point variable beach width
B_grad_fixb Starting point fix beach width gradient
DFront_der_prim_gradb Starting point gradient dune front
FS_gradb Starting point foreshore gradient
DF_y2b Starting point updated dune foot
beachwidthvar2b Starting point updated variable beach width
dunefront2b Starting point updated dune front width
beachy Derived landward boundary by means of STD
Bma_y Derived marine and aeolian transport boundary by means of STD
docy Derived depth of closure by means of STD
Dune_W Active profile width of the dune by means of STD
ActiveProfile_W Total active profile by means of STD
Foreshore_W Active profile width of the foreshore by means of STD
Nourishentforeshoreb Foreshore nourishment value
NourishmentdunesbDune nourishment value
DT_prim_ym Slope change of the dune crest height
DT_prim_xm Slope change of the tune crest horizontal location
W_intertidal_varm Slope change of the intertidal width
landward_6m_xm Slope change of the landward 6m location
Bma_xm Slope change of the marine and aeolian transport border
seaward_FS_x_allm Slope change of the seaward foreshore horizontal location
DF_x2m’ Slope change of the updated Dune Foot horizontal location
DF_y2m Slope change of the updated Dune Foot height location
beachwidthvar2m Slope change of the updated Beach variable Width.
dunefront2m Slope change of the updated Dune front width.
foreshorem Slope change of the foreshore volume
dunesm Slope change of the dune volume
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IV. Results

This chapter starts with paragraph IV.1, representing the results of the initial phase. These
results are the building blocks to update the algorithm to a final data set. The results of the
final data set are represented in paragraph IV.2. The clustered components are represented back
on the management area of HHNK in paragraph IV.3. The characteristics of the main-clusters
are extensively explained in paragraph IV.4. The characteristics of the sub-clusters are extensively
explained in paragraph IV.5. Ending this chapter with deeper research on the variables which
dominate the clustering and the mutual correlations IV.6.

IV.1 Initial phase

IV.1.1 U-matrix

The first step utilises the Self-Organizing Map (SOM) algorithm, resulting in the vectors being
plotted on the two-dimensional U-matrix. Figure IV.1 represent the U-matrix of data set 1A.
Data set 1A shows to have a high number of vectors with a large euclidean distance among each
other, both in the middle and in the corners. Comparing these results with data set 1B, there is
a more clear distinction between clusters, where the boundary between clusters is separated by
a high euclidean distance.

Figure IV.1: U-matrix using the initial data
set 1A.

Figure IV.2: U-matrix using the initial data
set 1B.

IV.1.2 Clustered U-matrix

As each input vector has a location on the U-matrix, the second step is to cluster each input
vector with the K-means algorithm. The results for data set 1A, can be seen in figure IV.3. Here
the specific location with high euclidean distance vectors, show to be represented by a single
cluster. At the corners we see much larger locations forming a cluster. This shows that the SOM
and K-means algorithm deviates from each other. Comparing the results of data set 1A with
the results of data set 1B, as seen in figure IV.4, the similarities between the SOM and K-means
are more clear. Each enclosed area in the U-matrix, show to be represented by a cluster in the
K-means algorithm as well.

Each input vector on the clustered U-matrix, represent an individual profile in time and space.
The resulting clusters for each individual space and time profile for data set 1A, can be seen in
figure IV.6. The first impression, is that a pattern in both time and space is found. Between the
deviation of clusters in time, the clusters are relatively stable. In space, clusters are distinguishable
from north to south. Comparing the results of data set 1A with the results of data set 1B, the
clusters in figure IV.7 find more similarities in the north and south of the HBD. The south area
shows to be dominated by two clusters, which is reflected back in the upper north location. From
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this north location to the HBD, the area shows to be represented by two clusters.

Figure IV.3: K-means clustering on top
of the U-matrix using the initial data
set 1A.

Figure IV.4: K-means clustering on top
of the U-matrix using the initial data
set 1B.

The contours of the clustered U-matrix can be represented back onto each component plane of
the input data set. For the initial data sets, this can be seen in figure IV.5. These individual
component planes can be found in appendix C, with the clustered component planes found in
appendix D. The clusters in data set 1A show to be dominated by the fixed foreshore volume.
The clusters in data set 1B show to be dominated by the volumes and the variable y-coordinate
of the MLW and MHW.

Figure IV.5: clustered component planes using the initial data set 1A and 1B.

Figure IV.6: Clustered space and time graph using the initial data set 1A.
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Figure IV.7: Clustered space and time graph using the initial data set 1B.

IV.1.3 Adjustments

In the final data set, the extraction of the variables are revamped and are derived based on the
standard deviation method. While isolating the depth of closure for initial data set 1A and 1B,
a characteristic profile was found, as seen in figure III.6. The results of data set 1A and 1B,
show that the volumes play a dominant role in the classification of clusters. In the revamped
and final data set, the landward boundary, boundary between marine and aeolian transport and
depth of closure are derived with the standard deviation method. This results in new values for
the dune volume and the foreshore volume. Beside the volumes, the new locations also results
in the active profile width of the dunes and the foreshore. These new variables are the input for
the final data set, as seen in table 6.

The results of data set 1A and 1B showed that the clusters are steady in time with a small
deviation. The addition of nourishment was hardly reflected in the results. Another improvement
that was made, is to incorporate the horizontal movement instead of a horizontal location.
This is done with the regression line, as referred in chapter III.5.2. Both the time component,
nourishment and horizontal movement are defined by a trend. To identify how these values
change from their old profile, the values contain a ’b’ base value and a trend value ’m’.
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IV.2 Final phase

The final data set contains the adjustments based on the results of the initial data set. These
adjustments reduced the input vectors from around 7000 to 250 with an updated derivation of
the variables.

IV.2.1 U-matrix

The first step of the final data set is to look at the resulting U-matrix. This result can be seen in
figure IV.8. The U-matrix shows to distinguish specific areas in the corners, which are enclosed
by high euclidean distances. The middle shows a slight overfitting, where input vectors seem to
be clustered individually and not in a group.

Figure IV.8: U-matrix using the final data set.

IV.2.2 Clustered U-matrix

Repeating what was done in the initial data set, the final data set is also expanded with a K-
means clustering. The disadvantage of the K-means clustering, is that the amount of centroids
has to be predefined. To further understand the effect of the predefined centroids on the results,
the data set is clustered with four, five and six predefined centroids. The results can be seen in
figure IV.9. At the most left figure, the U-matrix is clustered with four centroids. The cluster in
the lower-left corner is strongly seen back in the U-matrix in figure IV.8. This effect is not seen
in the other corners. Therefore the amount of centroids is increased. With five centroids, as
seen in the middle figure, the centroid in the lower-right corner is now found. With six centroids,
the upper right corner is now also isolated as a cluster, with all the strong clusters following
the same contours as the U-matrix. Thereby, using this definition to find the best amount of
centroids.

Figure IV.9: K-means clustering on top of the U-matrix using the final data set, with different
amount of centroids (k = 4 / k = 5 / k = 6).

36



IV RESULTS

The next step is to look at the results of the spatial location for each input vector with respect to
the clusters. The results with four centroids can be seen in figure IV.10. The results show, that
most of the input vectors which have similarities, are close to each other in the spacial location.
Increasing the number of centroids to five, as seen in figure IV.11, the boundaries of each cluster
don’t change but rather a part of a previous cluster is now defined as an individual cluster. This
can be seen at transects 7002882 and 700528. The results of six centroids, as seen in figure
IV.12, shows the first sign of cluster which are broken down in the spacial location. This is seen
at transect 7001167. This result, combined with the results of the U-matrix, results in the final
data set being clustered with 6 centroids.

Figure IV.10: Clustered space graph for the final data set with 4 centroids.

Figure IV.11: Clustered space graph for the final data set with 5 centroids.

Figure IV.12: Clustered space graph for the final data set with 6 centroids.
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IV.2.3 Quality control

As seen in the results, the disadvantage of the K-means algorithm, is predefining the number
of centroids. The quality algorithm used for the K-means, is the Sum of Squared Errors (SSE),
which is seen in figure IV.13. Typically in the SSE an elbow can be found to justify the number of
centroids needed. Looking at the results, the elbow is hardly found in the results of the final data
set. The elbow method is a method to find a threshold where adding a centroid doesn’t affect
a large part of the data set. Meaning, that adding centroids in the final data set, has a small
effect. Therefore the number of centroids are taken with respect to the changes in clustered
U-matrix.

Figure IV.13: Sum of Squared Errors for the final data set.

The quality of the SOM algorithm is measured by both the quantization error and topographic
error. The results of both errors can be found in figure IV.14. After around 10 iterations,
the quantization error remains stable at around 2.05. The topographic error is very small and
therefore negligible in the final data set. The speedup of the SOM by means of PCA can be
seen in the results, where the quantization error reaches stability very fast.

Figure IV.14: Quantization error and Topographic error for the final data set.
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IV.3 HHNK clusters

The final data set results in nine clusters along the transects located in the coastal management
area of HHNK. These clusters can be identified in the clustered U-matrix in figure IV.15. Each
individual cluster holds its own characteristics, based on the combination of known and unknown
mechanisms. Clusters having the same color, indicate that the K-means algorithm clustered them
together, but in the SOM, these clusters lie separated from each other. As the input vectors in
the SOM lie close to similar input vectors, the representation of areas with the same color which
don’t lie close to each other, will be seen as individual clusters.

The five largest areas containing the most input vectors, are indicated as main-clusters. The
remaining four clusters, with a small number of input vectors are indicated as sub-clusters. The
location of both the main-clusters and sub-clusters on the U-matrix, can be seen in figure IV.15.
Each input vector in the clustered U-matrix are represented back onto the spacial location in
figure IV.16.

The spacial representation of the clusters, which are located in the area managed by HHNK. The
real-world locations of the clusters north of the HBD, can be seen in figure IV.17. The results
south of the HBD can be seen in figure IV.18. The main-clusters are indicated by a solid line
and the sub-clusters are indicated as a dashed line. In total 202 transects are clustered. The
transects which were omitted due to various reasons as mentioned in this report, are indicated
by a gray solid line.

Intermezzo: The reader is advised to read appendix B to understand the meaning of each used
variable and its context.

Figure IV.15: Classification of the clustered U-matrix for the final data set. With a total of nine
clusters being identified.

Figure IV.16: Representation of the nine clusters in the space graph for the final data set.
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An interactive Google Map webpage of figure IV.17 and figure IV.18 can be found in this
hyperlink 6.

Figure IV.17: Graphical overview of the clus-
ters in the northern part of the management
area of HHNK. Solid line representing the
main-clusters and the dashed line represent-
ing the sub-clusters.

Figure IV.18: Graphical overview of the clus-
ters in the southern part of the management
area of HHNK. Solid line representing the
main-clusters and the dashed line represent-
ing the sub-clusters.

6https://pgrwdhgzgnumatrk6qvssw-on.drv.tw/hkv/Clustering_Noorderkwartier.html
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IV.4 Main-clusters

The first section of clusters, is dedicated to the main-clusters. These are clusters that contain the
biggest part of the data set, containing more than 10 transects. The main clusters identify the
bigger picture of processes and changes along the coastline of the management area of HHNK,
where the sub-clusters can be seen as smaller processes. In total there are five main clusters
isolated on the clustered U-matrix, as seen in figure IV.16.

Main-cluster 1 consists of 22 transects, located north of the HBD. These transects are bundled
at one location. It represents the Callantsoog area which is represented by beach pavilions and
recreational beaches. Main-cluster 2A consist out of 51 transects. The largest amount of these
transects are located south of the HBD. There is also a small bundle of the same cluster, which
is located north of the HBD. With south of the HBD a small and a large bundle. The northern
location is located at Keeten with beach pavilions and recreational beaches. In the south the
area represents both Egmond aan Zee and Bergen aan Zee. Main-cluster 3 contains 12 transects
all bundled together. This cluster is represented by a large recreational area and is located at
the most southern part of the HHNK coastline. Main-cluster 4A contains the largest amount of
transects, with 77 transects in total. Most transects are located south of the HBD and a decent
amount is located north of the HBD. Among all the clusters, main-cluster 4A is most spread
among multiple locations along the HHNK coastline. Finally, main-cluster 5A consists of 19
transects. These transects are bundled together in the most north part of the HHNK coastline,
representing recreational areas.

The next paragraphs will focus and explain the characteristics of each main-cluster. A full
breakdown of the values for each cluster can be seen in appendix E. The average value as seen
in the appendix are used. The main-clusters are explained with the use of the average values
in appendix E and done in comparison to the other clusters. Highlighting the characteristics of
each individual cluster. Table 7 represents a highlighted transect with the average values for
each specific cluster.

Table 7: Partial representation of the average values in the main-clusters.

Cluster 1 2A 3 4A 5A

Amount of transects in cluster Unity #22 #51 #12 #77 #19

ActiveProfile_W [m] 1016 1130 1000 863 689
Foreshore_W [m] 824 918 768 719 433
Nourishmentforeshoreb [-] 73.3 34.7 0.0 8.2 21.9
Nourishmentforeshoreb [m3] 2272 1074 0.0 255 677
docy [NAP] -8.9 -8.6 -5.4 -6.9 -11.9
foreshorem [m3/year] 8.55 5.33 4.05 1.63 5.01

Dune_W [m] 192 213 232 144 257
DF_x2m [m/year] 0.55 1.06 2.58 0.12 1.51
Bma_y [NAP] -0.6 0.0 1.4 1.1 -1.6
dunesm [m3/year] 2.99 3.69 4.53 1.51 5.56
beachwidthvar2b [m] 77 97 149 85 78
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IV.4.1 Main-cluster 1

Main-cluster 1 contains the highest dunes [19.2 m], which have been relatively stable [0.0005
m/year]. The crest of the dune has a slight seaward movement [0.54 m/year]. This seaward
movement is also seen in the landward 6 meter location [0.77 m/year], the boundary between
marine/aeolian transport [1.10 m/year] and a very large seaward foreshore movement [9.70
m/year]. While the dune foot [0.55 m/year] moves seawards, it is smaller compared to the other
cluster. The derived height of the dune foot [0.03 m/year] largely increases. The intertidal width
[65 m], beach width [77 m] and dune width [76 m] are in the same range. This is also seen in the
yearly change of the intertidal width [0.23 m/year], beach width [0.83 m/year] and dune width
[0.21 m/year]. The beach gradient [-0.037] is on the steep side, while both the dune gradient
[-0.208] and foreshore gradient [-0.012] are less steep. The beach [0.0033] is rapidly flattening
and the dunes [0.001] are relatively stable in their gradient.

Main-cluster 1 contains the largest foreshore nourishment [2272 m3] and a decent amount of
dune nourishment [782 m3]. This is seen in the increasing foreshore volume [8.55 m3/year] and
dune volume [2.99 m3/year]. While the active dune with [192 m] is small, the active foreshore
width is large [824 m]. The depth of closure [-8.9 m] is located deeper than the average depth.
At last, the Bma_y [-0.9 m] is below NAP. The highlighted transect 7001381 for main-cluster 1
can be found in figure IV.19.

Figure IV.19: Main-cluster 1: All profiles and highlighted profile [7001381].

IV.4.2 Main-cluster 2A

Main-cluster 2A contains both high dunes [18.8 m] and short dunes [13.6 m]. The height of these
dunes [0.024 m/year - 0.121 m/year] has been rapidly changing over the years, with a variety in
seaward movements [-0.15 m/year - 0.50 m/year]. Both the landward 6 meter [0.95 m/year], the
boundary between marine/aeolian transport [1.56 m/year] and seaward location [3.70 m/year],
have a slightly higher seaward movement than average. The dune foot [1.06 m/year] also has
an average seaward movement. Both the beach width [97 m] and intertidal width [82 m] are
higher than average, The dune width [55 m] on the other hand, is on the smaller side. The
dune gradient [-0.209] is average and both the beach gradient [-0.0037] and foreshore gradient
[-0.024] are very steep.

The foreshore [2272m3] has received large nourishment, combined with an average dune [474m3]
nourishment. Both the dune volume [3.69 m3/year] and the foreshore volume [5.33 m3/year]
have a slightly larger increase than average. This is also reflected in the second-largest active
profile width [1130 m] and a deep depth of closure [-8.6 m]. At last, the Bma_y [0.0 m] is
around NAP. The highlighted transect 7003925 for main-cluster 2A can be found in figure IV.20.
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Figure IV.20: Main-cluster 2A: All profiles and highlighted profile [7003925].

IV.4.3 Main-cluster 3

Main-cluster 3 contains the highest variety in dunes. With high dunes [9.4 m] and short dunes
[20.9 m]. On average, the height of the dunes [-0.036 m/year] decreases, with a very large
seaward movement [2.27 m/year]. Besides the dune crest, the landward 6 meter position [2.45
m/year], the boundary between marine/aeolian transport [2.14 m/year] and seaward location
[3.95 m/year] have a large seaward movement. With these large movements, the dune foot also
has a very large seaward movement [3.95 m/year]. This cluster contains the largest intertidal
width [107 m] and beach width [149 m]. All the gradients in this cluster are flat compared to the
other clusters. Such as the beach gradient [-0.017] and foreshore gradient [-0.010]. The beach
gradients is stable over time.

This clusters contains zero nourishment for both the foreshore [0.0 m3] and dunes [0.0 m3].
While there is no nourishment, there is a large increase in the foreshore volume [4.05 m3/year]
and dune volume [4.53 m3/year]. The depth of closer [-5.4 m] is the most shallow. The active
profile width [1000 m] is around the average of all clusters. At last, the Bma_y [1.4 m] is above
NAP. The highlighted transect 7005450 for main-cluster 3 can be found in figure IV.21.

Figure IV.21: Main-cluster 3: All profiles and highlighted profile [7005450].
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IV.4.4 Main-cluster 4A

Main-cluster 4A contains a large variety among the dunes, from small dunes [13.1 m] to high
dunes [20.8 m]. This is also reflected in the large variety in dune crest movement [-0.03 -
0.86 m/year]. The height of the dunes [0.060 m/year] are increasing more than average. The
position of the landward 6 meter location [0.23 m/year] and the boundary between marine/aeolian
transport [0.38 m/year], have a very small seaward movement. The dune foot [0.12 m/year]
shows negligible movement. The seaward foreshore location [1.95 m/year] movement is around
the lower part of the spectrum. Both the intertidal width [77 m] and beach width [85] are
average. While both the beach width [0.45 m/year] and intertidal width [0.45 m/year] increases
by a small amount, the dune width [-0.13 m/year] shows to retreat. The dune front is steeper [-
0.315] compared to most other clusters. The beach gradient [-0.030] is average and the foreshore
gradient [-0.013] has a mild steepness. The beach gradient is getting more flatter [0.0013] and
the dunes [-0.0014] more steeper.

This cluster contains one of the lowest amounts of foreshore nourishment [255 m3] and dune
nourishments [134 m3]. This is reflected in the low increase in dune volume [1.51 m3/year] and
foreshore volume [1.63 m3/year]. The active profile width [863 m] is among the shortest with
a shallow depth of closure [-6.9 m]. At last, the Bma_y [1.1 m] is above NAP. The highlighted
transect 7004750 for main-cluster 4A can be found in figure IV.22.

Figure IV.22: Main-cluster 4A: All profiles and highlighted profile [7004750].

IV.4.5 Main-cluster 5A

Main-cluster 5A contains a large variety from small dunes [14.8 m] to high dunes [17.6 m]. Both
the change in height of the dunes [0.003 m/year - 0.085 m/year] and seaward movement [-0.01
m/year - 1.79 m/year] have a large variety. The intertidal width [53 m] and beach width [78
m] are among the smallest. The intertidal width [1.03 m/year] has a stronger change compared
to the small change in beach width [0.42 m/year]. With the landward 6 meter [1.50 m/year],
the boundary between marine/aeolian transport [1.73 m/year] and the dune foot [1.51 m/year]
having a slightly larger than average seaward movement. The foreshore gradient [-0.020] and
beach gradient [-0.037] are among the steepest. The beach gradient [-0.021] is getting steeper
over time. Variables derived along the dune such as the dune foot [1.51 m/year], have a strong
seaward movement.

44



IV RESULTS

This cluster contains the largest dune nourishment [1731 m3] and a fair amount of foreshore
nourishment [677 m3]. Both the foreshore volume [5.01 m3/year] and dune volume [5.56
m3/year] have a large increase. The active profile width [689 m] is among the smallest. The
depth of closer [-11.9 m] is located at the second deepest height. At last, the Bma_y [-1.6 m] is
below NAP. The highlighted transect 7000409 for main-cluster 5A can be found in figure IV.23.

Figure IV.23: Main-cluster 5A: All profiles and highlighted profile [7000409].
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IV.5 Sub-clusters

The second section of clusters, is dedicated to the "sub clusters". These are clusters along the
HHNK coastline which stand out from the data analysis, but contain less than 10 transects. The
sub-clusters are seen as anomalies in the clusters. Three out of the four clusters are classified as
the same clusters by the K-means method, but were separated using the SOM. The annotation for
these clusters contains a "B". This paragraph focuses on dissecting each of the sub-clusters. The
dissection contains a visual representation of a highlighted transect in that particular cluster. Part
of the data for the highlighted transect, can be seen in table 8. The table contains information
about both the dominant variables and input variables, as spoken in chapter IV.6. The full table
containing all input parameters and can be seen in Appendix E.

A quick overview of the clusters in figure IV.15 and figure IV.16, show that three out of the
four sub-clusters are located in the northern part of the management area of HHNK. To further
research each sub-cluster, the effect of both the clustering method is examined, as seen in chapter
IV.2.2. Increasing the number of centroids from four to six, doesn’t change the boundaries, as
seen in the results with four clusters. It can also be seen that cluster 0 remains stable with an
increasing number of centroids and doesn’t have any other corresponding connection with other
main clusters. The sub-clusters are strongly identified using the SOM, as seen in figure IV.8,
compared with the clustered U-matrix in figure IV.15.

Sub-cluster 0 contains four transects and is located close to the HBD. While the final data set
has the HBD removed, it relied on the reduced data as seen in chapter III.2.2. The key concept
here was based on measurement quality before the year 2001. Meaning the remnants, are the
transects that are included in the nourishment of the HBD and have measurements up till 1990.
Sub-cluster 2B is located at the most northern location in the management area of HHNK.
This cluster contains five transects. Sub-cluster 4B is the second-highest cluster in the north,
containing eight transects. The last sub-cluster 5B, is located at the most southern location in
the northern part of the management area of HHNK. It can be noted that each of the sub-clusters
is located in the north.

In the following paragraphs, the average values of the clusters are explained and compared to all
other clusters.

Table 8: Partial representation of the average values in the sub-clusters.

Cluster 0 2B 4B 5B

Amount of transects in cluster Unity #5 #5 #8 #3

ActiveProfile_W [m] 1100 1554 869 643
Beach_W [m] 387 1300 648 508
Nourishmentforeshoreb [-] 12.7 62.7 16.1 12.7
Nourishmentforeshoreb [m3] 393 1943 498 393
docy [NAP] -10.1 -19.8 -8.3 -6.9
foreshorem [m3/year] 6.64 -6.20 3.85 1.98

Dune_W [m] 713 254 222 135
DF_x2m [m/year] 0.34 1.55 1.70 -0.64
Bma_y [NAP] -5.6 -2.8 0.1 0.4
dunesm [m3/year] 5.13 3.56 5.18 0.35
beachwidthvar2b [m] 102 70 88 66
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IV.5.1 Sub-cluster 0

The dune nourishment [1099 m3] in sub-cluster 0 contains mean nourishment which is larger
than both the 25th percentile [254 m3] and 75th percentile [396 m3]. This originates from a
certain transect that contains nourishment information from the HBD. Both the nourishment
and effect of the HBD, is seen in the increase in dune volume [5.13 m3/year], which is the
largest compared to all clusters.

The dune crest has a large variety between both high dunes [19 m] and low dunes [14 m]. The
height increase of the crest [0.013 m/year] is among the smallest. This cluster, is the only cluster
with a landward moving dune crest [-0.32 m/year]. The intertidal width [77 m] and its changes
[0.38 m/year] are average. The beach width [102 m] is the second largest and has the largest
increase in width [2.67 m/year]. The boundary between marine/aeolian transport [2 m/year] and
seaward foreshore location [9.32 m/year], has a high seaward movement. The landward 6 meter
location [0.29 m/year] has a very small seaward movement. The isolated height of the dune
foot [0.03 m/year] moves upwards, affecting the horizontal isolation of the dune foot. The dune
foot [0.34 m/year] has a small seaward movement. This cluster contains one of the smallest
dune width [50 m], which largely increases over time [0.87 m/year]. Both the beach gradient
[-0.029] and the foreshore gradient [-0.0015] are not very different from most clusters. The beach
gradient however, becomes more flatter [0.00052] than any other cluster. The most interesting
value, is the dune gradient [-0.363]. This gradient is the steepest and rapidly changes [0.0067]
to a flatter gradient.

At last, the changes of the dune volume [5.13 m3/year] and the foreshore volume [6.64
m3/year], are among the highest. The active beach width [387 m] is among the smallest,
with the cluster containing the largest dune width [713 m] is the largest. Resulting in a large
total active profile width [1100 m]. The depth of closure [-10.1 m] is at a very deep height. At
last, the Bma_y [-5.6 m] is located at the lowest height below NAP. The highlighted transect
7002782 for sub-cluster 0 can be found in figure IV.24.

Figure IV.24: Sub-cluster 0: All profiles and highlighted profile [7002782].
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IV.5.2 Sub-cluster 2B

Both the height [16.9 m] and changes [0.046 m/year] of the dune crest in sub-cluster 2B are
average. The seaward movement [0.12 m/year] is small. Both the landward 6 meter [1.01
m/year] and the boundary between marine/aeolian transport [1.28 m/year] have the same order
of magnitude. While the foreshore location [2.09 m/year] moves seawards much faster, the
locations are average. The dune foot [1.55 m/year] also moves in the same order and doesn’t
change height. The intertidal width [46 m] along this cluster is the smallest. The beach width
[70 m] is also very small. Besides the beach width being small, it is also the only cluster that
shows a retreat of the beach width [-0.10 m/year]. Both the intertidal width [0.60 m/year] and
dune width [0.61 m/year] are growing. Besides the decreasing beach width, the beach gradient
[-0.037] and the foreshore gradient [-0.024] are very steep. The beach gradient is gaining more
steepness over time.

These changes in certain variables can be explained, due to this being the only cluster that has
a very large decrease in foreshore volume [-6.20 m3/year]. The dune volume [3.56 m3/year]
however, is steadily increasing. With a large amount of foreshore nourishment [1943 m3] and a
very large active foreshore width [1300 m], the depth of closure [-19.8 m] lies very deep. The
active dune width [254 m] is in the same order of magnitude as most clusters. At last, the
Bma_y [-2.8 m] is below NAP. The highlighted transect 7000230 for sub-cluster 2B can be
found in figure IV.25.

Figure IV.25: Sub-cluster 2B: All profiles and highlighted profile [7000230].

IV.5.3 Sub-cluster 4B

Sub-cluster 4B contains the smallest dune crest [14.9 m] and is largely increasing [0.127 m/year],
with a steady seaward movement [0.41 m/year]. Both the landward 6 meter [1.43 m/year] and
the boundary between marine/aeolian transport [1.51 m/year] has the same order of magnitude
moving seawards. The seaward foreshore location [2.30 m/year] moves almost twice as fast
seawards. The height of the dune foot stays the same, while the horizontal movement is strongly
seawards [1.70 m/year]. The dune width [63 m] is relatively small compared to all other clusters,
but has been increasing very fast [1.01 m/year]. Both the beach width [88 m] and its changes
[0.36 m/year] are average. The beach gradient steepens in time [-0.04].

48



IV RESULTS

With hardly any dune nourishment [60 m3] and foreshore nourishment [498 m3], there is a
large increase in dune volume [5.18 m3/year] and a decent increase in foreshore volume [3.85
m3/year]. The total active profile width [869 m] is average with a slightly deeper depth of
closure [-8.3 m]. At last, the Bma_y [0.1 m] is around NAP. The highlighted transect 7000869
for sub-cluster 4B can be found in figure IV.26.

Figure IV.26: Sub-cluster 4B: All profiles and highlighted profile [7000869].

IV.5.4 Sub-cluster 5B

The height of the dune crest [15.8 m] in sub-cluster 5B, is lower than average and increases
steadily [0.025 m/year]. The location of the dune crest [1.62 m/year] moves seawards. A unique
characteristic compared to all other clusters, is that the landward 6 meter landward position
[-0.35 m/year] and the boundary between marine/aeolian transport [-0.35] are retreating. In
contrary, the seaward foreshore location [2.66 m/year] moves seawards. The dune foot [-0.64
m/year] is retreating as well. Resulting in a decrease in dune width [-2.04 m/year]. This retreat
causes the dune steepness to increase strongly [-0.0087]. The beach width [66 m] is one of the
smallest, but is increasing [0.76 m/year] steadily. Compared to the other clusters, the beach
gradient [-0.038] and the foreshore gradient [-0.017] are average.

Both the dune nourishment [353 m3] and the foreshore nourishment [393 m3] are very small
compared to all other clusters. The foreshore volume [1.98 m3/year] and dune volume [0.35
m3/year] have a very small increase. This cluster also contains the smallest active profile width
[643 m] and a shallow depth of closure [-6.9 m]. At last, the Bma_y [0.4 m] is around NAP.
The highlighted transect 7002782 for sub-cluster 5B can be found in figure IV.27.

Figure IV.27: Sub-cluster 5B: All profiles and high profile [7001668].

49



IV RESULTS

IV.6 Dominant variables

IV.6.1 Active Foreshore Width

Nine clusters are identified in the clustered U-matrix in the final phase. After combining the
SOM and the K-means algorithms, an extra step was taken in this research. This step plots the
contours of the clustered U-matrix back onto each individual two-dimensional component plane.
This results in a clear and fast visualisation of the dominant variables which identify the clusters.
At the same time, each individual cluster can be inspected on its own unique characteristics
relative to all component planes of each variable. The first degree of dominant variables, are the
total active profile width (’ActiveProfile_W’) and active foreshore width (’Foreshore_W’), which
can be seen in figure IV.28. The total active profile width is dependent on two components, the
active dune width and active foreshore width.

Figure IV.28: First degree of dominant variables for the final data set. Represented by the total
active profile width (ActiveProfile_W) and the active foreshore width (Foreshore_W).

As the clustering is dependent on high-dimensional data, there is more depth in the reason for
the clustering than a single variable. The second level of dominant variables which follow the
contours of the clustered U-matrix, but have slightly more deviation, are the amount of foreshore
nourishment (’Nourishmentforeshoreb’), depth of closure y-coordinate (’docy’) and the change
of total foreshore volume (’foreshorem’). Besides comparing the individual variables with the
clustered U-matrix, the individual component planes can also be compared with each other to
identify correlations for specific clusters. The full set of variables combined with the contours of
the clustered u-matrix, can be found in appendix C.

Figure IV.29: Second degree of dominant variables for the final data set. Represented by the
foreshore nourishment (Nourishmentforeshoreb), y-coordinate of the depth of closure (docy) and
change in foreshore volume (foreshorem).
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Having isolated the dominant variables, the variables are compared with each other. This includes
the foreshore nourishment (’Nourishmentforeshoreb’) and the dunes (’Nourishmentdunesb’). The
nourishments are compared with the changes of volumes in the foreshore (’foreshorem’) and the
change of volume in the dunes (’dunesm’). These four variables are visualised in figure IV.30 and
plotted with their values on the left. The largest dominant variable such as the active foreshore
width and (’Foreshore_W’), is seen as a red line in figure IV.30.

The foreshore nourishment and the active foreshore width, show to follow the same pattern
for most locations from north to south. The locations where this pattern isn’t seen, such as
cluster 0, are also identified in figure IV.29. In chapter II.5.3, an experimental setup was used to
identify the combined effects of long-term changes such as sea level rise and nourishment. The
results in this research correspond to the same results as the experiment for most clusters. With
nourishment resulting in a shifting of the depth of closure and therefore resulting in a larger total
active width.

To further investigate this effect, two transects are compared. The first transect 7003425, has
a large amount of nourishment and a large active beach width, as seen in figure IV.30. The
second transect 7004500, has a very small amount of nourishment and a small active beach
width, as seen in figure IV.30. In both examples the standard deviations are plotted, cumulative
for each year from 1995 to 2019. This indicates if the depth of closure would be derived at a
different location if more or fewer years are used. While using this method to compare the effect
of nourishment, having more years equals a more qualitative standard deviation Hinton [2000].

For the first transect 7003425, the results are seen in figure IV.31. The derivation of the depth
of closures moves seaward, with a total amount of 237 meters over the years. Comparing this to
the standard deviation of the second transect 7004500, the depth of closure stays at the same
place over the years, as seen in figure IV.32. Comparing both the results of this research and
the experiment done by Aktinson and Baldock [2020], a correlation between the depth of closure
and therefore the active profile width due to nourishment is found.

Figure IV.30: Representation of variables from the north to the south of the management area
of HHNK. Red line representing the active foreshore width, the blue dot representing the change
in foreshore volume, the orange dot representing the change in dune volume, the blue shaded
area representing the foreshore nourishment and the orange shaded area representing the dune
nourishment.

51



IV RESULTS

Besides the depth of closure, the standard deviation method is also used to derive the landward
boundary and the Bma_y. The landward boundary, located at the crossing between the STD
threshold left of the standard deviation peak in the dunes, show almost no differences between
the first couple of years and the years after. The landward boundary is located at around -230
meters for figure IV.31 and -30 meters for figure IV.32, relative to the RSP. The Bma_y, which
is the minimum between the standard deviation peak in the dunes and the standard deviation
peak in the foreshore, is slightly harder to find. But in both cases almost no differences between
the first years and the years after are found.

Figure IV.31: Standard deviation for different cumulative years for transect 7003425. With a
shifting depth of closure of 237 meters seawards.

Figure IV.32: Standard deviation for different cumulative years for transect 7004500. With no
shifting depth of closure.
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IV.6.2 Correlation in dune variables

To identify the trend in horizontal change of the depth of closure and nourishment in the identified
clusters, the derivation for the depth of closure is slightly modified. This is done due, because
an increase in cumulative measurements results in a more qualitative standard deviation profile.
With fewer measurements, the standard deviation profile is less representative of the changes in
the profile. This results in a paradox where fewer measurements give valuable information but at
the same time are qualitative less representative of the standard deviation profile. Therefore the
algorithm is adjusted and the threshold is set higher to 0.5 to remove smaller anomalies. Due
to each cluster having different processes which are dominant, the standard deviation profile can
also show general differences. Figure IV.33 represents the total change in distance of the depth
of closure (e.g. figure IV.31) in regard to the total amount of nourishment for each individual
transect in each cluster.

Figure IV.33: Correlation graph with the amount of nourishment and the shifting depth of closure
for each transect in each identified cluster.

The correlations in figure IV.33 can be classified by their clusters and is found in table 9.
Indicating that for most clusters, the correlations can’t be found, especially in the sub-clusters.
This is due to no nourishment being present or the small number of data points. Both cluster
1 and cluster 2A are associated with a high nourishment, while cluster 4A is associated with
almost zero nourishment. This results in biases in the derivation of the correlations. With the
identified characteristics of each cluster, the correlation gives valuable information.

Table 9: Correlation (Pearson, Spearman, Kendall) for all identified clusters.

Correlation/Clusters 0 1 2A 2B 3 4A 4B 5A 5B

Pearson - -0.82 0.62 - - 0.34 - - -
Spearman - -0.84 0.61 - - 0.26 - - -
Kendall - -0.70 0.48 - - 0.18 - - -
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The strongest correlation is found in cluster 2A. This cluster represents a large part of the
management area of HHNK with 51 transects. As this is not the only cluster that is nourished,
it is a particular cluster inside all nourished locations. Where cluster 1 is also classified as a
nourished transect, it represents a negative correlation, with a high probability that this originates
from the ebb-tidal delta.

Removing small anomalies from the data set, results in a very strong Pearson correlation of
0.732, as seen in figure IV.34. Indicating there is a high correlation between the nourishment
and the horizontal movement of the depth of closure, particular in cluster 2A.

Figure IV.34: Calculated Pearson correlation for the data isolated for main-cluster 2A.
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IV.6.3 Active Dune Width

In the previous paragraph, the active foreshore width is seen as the main dominant variable
for the clustering. This paragraph will focus on the correlation between variables that do not
dominate the clustering. The total active profile width consists of both the active dune width
and the active foreshore width. The active dune width is defined as the width between the
landward stable point and the Bma_y, as explained in chapter III.5.1.

Figure IV.35 shows the correlation between variables from the input space on the component
plane. A correlation is seen between the active dune width, horizontal change of the dune foot,
Bma_y and the change in dune volume. Besides these variables, the Bma_x and landward 6
meters also correlate with these variables. The clustered component planes of each individual
variable can be seen in Appendix C.

Figure IV.35: Clustered component planes for the active dune width (Dune_W), Dune foot
horizontal change (DF_x2m), y-coordinate boundary marine/aeolian transport (Bma_y), dune
volume change (dunesm).

The correlations show that for most clusters, a larger active dune width correlates with a larger
dune volume increase. Though the derivation of the dune volume is based on the active dune
width, the derivation of the horizontal seaward movement of the dune foot, isn’t based on any
correlated variable. At last, the Bma_y lies above NAP for the locations with a small change
and lies below NAP for transects with a large change.

Figure IV.36: Representation of variables from the north to the south of the management area
of HHNK. Red line representing the active dune width, the blue dot representing the change
in foreshore volume, the orange dot representing the change in dune volume, the blue shaded
area representing the foreshore nourishment and the orange shaded area representing the dune
nourishment.
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V. Discussion, Conclusion and Recommendations

This chapter starts with paragraph V.1, in which various parts of the research are discussed.
Followed, by the conclusion of this research in paragraph V.2. This research ends in paragraph
V.3, containing recommendations for HHNK on how to implement and expand further upon the
results of this research, into a better understanding of the complex coastal zone.

V.1 Discussion

V.1.1 Data Collection

The most important aspect of any data analysis, is to understand the source of the data. The
first part of the data collection, consists of the derived variables from the JarKus data set.
Variable are derived based on an algorithm or method, each of them containing a certain bias.
The definitions for variables, such as the beach width, can be derived as a fixed or variable
location, both representing the beach width with different results. While the bias is minimized
by taking a regression line and clustering the data, it needs to be taken into account when
interpreting the results. The second part of the data collection, consists of the nourishment
data. This data is provided by Rijkswaterstaat and contains a starting transect, ending transect
and the total amount of volume nourished. The total volume of nourishment is evenly spread
along all the transects. But it is practically impossible to nourish each transect with the same
amount of volume. The last part of the data collection contains variables, that are derived
with the standard deviation method. The standard deviation method has previously only been
used to identify the depth of closure. Within this research, it is extended for locations, widths,
gradients and volumes. For the most part it showed great potential for deriving multiple variables.
But there are transects that have a hard time identifying the depth of closure. For example,
the northern part of the management area of HHNK, showed to have more trouble with the
derivation than the southern area. This was one of the reasons for removing certain transects.

V.1.2 Method

The K-means algorithm is one of the most used unlabelled clustering techniques, while the SOM
is used on a much lower scale. This research combines both algorithms and reflect the results
on the input space. This approach is used on a even much lower scale. Therefore, this research
focuses also on the applications of the hybrid algorithm and its results with respect to different
input data. As no guidelines are present for the combination of both algorithms, the guidelines
were chosen based on the fundamentals of both algorithms, as both have the same goal but a
different approach. The SOM can be seen as a constrained K-means. In the final data set, the
elbow method showed to be insufficient. This is due to the effect that adding centroids in the
K-means does not change a large part of the clusters. After interpreting the results, it is also seen
that another approach could be. to look at the clusters in the spacial location of the management
area of HHNK and take every boundary from north to south as an individual cluster. At last,
reflecting the clustered U-matrix onto the component planes, revealed the dominant variables.
The SOM gives great insight into the complex high dimensional data in a two-dimensional plane.
Even though this gives more insight for human interpretation, translating the results remains
complex when looking into the "why" aspect of the results. This is why machine learning is
often referred to as a "Black Box" approach. While this applies to this research as well, the
results gave great insight into part of the "why" question.
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V.1.3 Results

The results of this research can be categorized in three sections; Clustering of the management
area of HHNK, horizontal change of the depth of closure and correlation in dune characteristics.

Clusters
The management area of HHNK is classified in nine clusters, based on unlabelled data. While
this clustering reveals interesting results, it is based on the intelligence of a machine and the
input data. The clusters are based on their foreshore changes, which might not be in line with
morphological understanding of the coast. As the foreshore changes are largely based on human
interventions, the clusters give new perspective of the coast, based on the data analysis. The
most southern cluster is most likely defined by the pier at IJmuiden. In the North, the ebb-
tidal delta most likely defines the clusters. While these exact processes aren’t researched, the
clustering algorithm isolates part of the coastline changes due to these influences being present.
The larger clusters show more range of variability of the results, but still contain their unique
characteristics. Each of the these clusters could be made smaller, to identify more local changes.

Depth of Closure
The results show that the active foreshore width, foreshore nourishment, foreshore volume change
and the depth of closure, are the dominant variables for the clustering. Upon further investigation,
a strong correlation between the horizontal shifting of the depth of closure and nourishment, was
found in nourished clusters. These results correspond to the experimental research Aktinson and
Baldock [2020]. While the experimental setup wasn’t intended on finding the depth of closure,
the horizontal shifting effect was clearly seen. These results are important to the current policies
and understanding of the complex coastal zone. The results affect two main components of
the current policies. The first component is, that the depth of closure is used to determine the
amount of nourishment needed at the coast and is an offshore limit for both numerical models
and fill designs Morang and Birkemeier [2005] Rijkswaterstaat [2020]. The second component,
addresses the ecological effect of nourishment. The biodiversity on the bottom of the sea is
distorted due to nourishment Rijkswaterstaat [2020]. The specific effect is complex and location-
dependent. The results of this research can be used in future ecological research off the effect
of nourishment. There has been previous research that indicates that the depth of closure is
variable alongshore and its derivation is influenced by bar behavior Marsh et al. [1998]. With
this research including more qualitative and quantitative data of the JarKus data set, it can now
also be concluded that the depth of closure can also be variable in time.

Boundary between marine and aeolian transport
The boundary between marine and aeolian transport, indicates till what location the marine
processes and aeolian processes are present De Vries et al. [2010]. A clear pattern is seen between
the location of this boundary, relative to NAP and the variables along the dunes. The correlation
is found between the active dune width and increase in dune volume, which originates from the
same standard deviation method. Therefore the correlation and variables could be correlated
due to the derivation method. However, it also correlates with the horizontal movement of the
dune foot, which isn’t derived with the standard deviation method, validating the correlation
to some degree. The question that remains is, if the correlation is equal to the causation. In
this research it’s too early to make this statement, it does however provide a strong underlying
argument for further research. Presuming that, a lower Bma_y results in a larger supply area for
aeolian transport and therefore a larger dune growth and vica versa. As this research didn’t take
wave climate into account, further research in the origin of the Bma_y by means of standard
deviation is advised.
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V.2 Conclusion

V.2.1 Research questions

To answer the main research question, the following research questions have been answered:

• How can long term changes be characterized along the coastline of the HHNK
area, using advanced data analysis and machine learning techniques ?
The long-term changes of the management area of HHNK, derived from the JarKus and
nourishment data, are bundled together in a high-dimensional unlabeled data set. Research
on advanced data analysis techniques, concluded that clustering techniques, which are a
branch of machine learning, are best fitted to understand this complex high-dimensional
data set. The K-means algorithm is used in combination with the Self-Organizing Map.
The algorithms are combined to form a hybrid algorithm that has the ability to plot the
structures of the clustering, back onto each individual component plane of the input space
variables. This results in identifying similar unique characteristics for each cluster of long-
term changes along the coastline of HHNK.

• Which locations along the coastline of the HHNK area, can be clustered in time
and space with their associated characteristics ?
The results of the initial data sets show, that the clustered transects, are stable in time and
vary in space. Using a regression line, the information in time is contained in a single value.
In the final data set, the derivation of volumes is adjusted, as it shows to be the dominant
variable in the initial data set. With these adjustments made from the initial data set, the
final data set identifies nine clusters along the coastline of HHNK. Four of these clusters
have a large number of transects and are denoted by main-clusters. The remaining clusters
with a low number of transects are denoted by sub-clusters. The dominant variable, which
identifies the similarities among individual clusters, is the active foreshore width. This
is combined with lesser dominant variables such as the foreshore nourishment, depth of
closure and changes in the volume of the foreshore. With one highlighted transect from
all nine clusters to be seen in figure V.1. The unique characteristics of the main-clusters
and sub-clusters are as followed:

Main-Cluster 1: The highest and most stable dunes. With the largest amount of foreshore
nourishment, the foreshore volume has the largest increase in volume. Decent amount of
dune volume, with the dunes increasing in volume. The dunes are moving seaward com-
bined with a flattening of the beach and the foreshore.

Main-Cluster 2A: Large amount of dune and foreshore nourishment. Dunes have a large
variety in both height and gradient. The beach width and intertidal width are large and
the dune width is small. Both the beach gradient and foreshore gradients are very steep.
The increase in volume is slightly larger, compared to all clusters.

Main-Cluster 3: On average the dune crest is decreasing and has a large seaward move-
ment. Largest widths and most flat gradients. With zero nourishment, both the foreshore
volume and dune volume are increasing. The depth of closure is the most shallow of all
clusters.

Main-Cluster 4A: One of the lowest nourished clusters, with a very small increase in
volume. Dune foot shows negligible movement, with very small seawards movement for
most variables. With this cluster containing the most transects, it also shows the most
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variety in most variables.

Main-Cluster 5A: Contains the largest amount of dune nourishment and a decent amount
of foreshore nourishment. The depth of closure is located at the second deepest height,
with a very small active profile. The gradients are among the steepest, and are steepening
over time. The widths in this clusters are among the smallest. The dune foot has a strong
seaward movement.

Sub-Cluster 0: Contains remnants of the HBD nourishment which is removed in the final
data set. Large beach width, with small and steep dunes that are flattening. Large active
dune width and a small beach width. Retreating dune crest and small seawards movement
of the dune foot, but large movement of the seaward foreshore location. Very large increase
in foreshore volume and dune volume.

Sub-Cluster 2B: Small seaward movement of the dune crest and larger seaward movement
of the dune foot. Largest beach nourishment and very high dune nourishment. Contains
the deepest depth of closure and largest active profile. Very small beach and intertidal
width, with a steep beach gradient. The only cluster with retreating beach width, steep-
ening beach gradient and decrease in foreshore volume.

Sub-Cluster 4B: Average dune crest has the largest increase in height. The largest in-
crease in intertidal width, dune width and dune foot. With almost no dune nourishment
and foreshore nourishment, the increase in dune volume and foreshore volume are one of
the largest.

Sub-Cluster 5B: Very small intertidal width and beach width, with the steepest beach
gradient. Shallow depth of closure, and smallest active profile width. A small amount
of dune and foreshore nourishment. The dune crest has a large seaward movement and
is the only cluster with a retreating landward 6 meter location, the boundary between
marine/aeolian transport and dune foot. The dune width is also decreasing and largely
steepening. No increase in dune volume and a small increase in foreshore volume.

Figure V.1: Graphical representation of active profile for the highlighted transects of the nine
clusters.
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• How do the long term changes along the HHNK area compare with physical un-
derstanding of the long term coastal processes ?
The identified nine clusters and their similarities, are the result of both long term natural
processes and human interventions. Each cluster is represented by different changes in
the coastal profile and therefore by their own long-term changes. Relating the unique
characteristics in each cluster, to their own unique combination of natural processes and
human interventions. The similarities between clusters, were found to be dominated by
the active foreshore width, the foreshore nourishment, depth of closure and increase in
foreshore volume. The standard deviation method explains this correlation, as the depth
of closure shifts seawards with increasing foreshore nourishment. Besides the dominant
variables, a correlation was found between the Bma_y, horizontal movement of the dune
foot, increase in dune volume and active dune width. A larger increase in dune volume and
horizontal movement of the dune foot, correlates with a lower Bma_y relative to NAP.
With almost no increase in dune volume and horizontal movement of the dune foot, the
Bma_y lies higher relative to NAP.

• What are the recommendations to incorporate the understanding of long term
changes in future strategical plans and policies ?
Nourishment has been an increasing approach in maintaining the coast. This research
shows that nourishment not only positively affects the characteristics of the coast, but
also changes its future dynamic equilibrium. The existing Bruun rule is used as the basic
fundamental adaption of the coastline profile, even though its confined approach. The
results of this research show, where the future adaption upon the existing Bruun rule
should be improved, for the use in the complex coastal zone. Clusters originate from
known and unknown processes that influence their unique characteristics. Each specific
cluster requires a unique strategical plan and policy for the future preservation of the
coastline profile of the management area of HHNK.

V.2.2 Main research question

Combining the results of the previous research questions, the following main research question
is answered.

What is the expected future coastline profile change of the Hoogheemraadschap Hollands
Noorderkwartier area based on historical measurements ?

There are hardly any areas that show a retreat in dune volume or foreshore volume. On average
most clusters have an increasing volume and positive changes due to nourishment. Resulting in
human-induced nourishment, dominating changes along the coastline for most clusters. This is
more strongly seen in the foreshore rather than the dunes. In the dunes, the boundary between
marine and aeolian transport seems to play a role in the positive changes. As there are exceptions
for these general statements, each cluster has their own unique changes, dominated by their
specific processes. While the exact processes remain unknown, the locations and changes are
identified by the clusters. Following the trend of increasing nourishment in the recent years, it’s
safe to assume this policy will carry on. Nourishment results in positive changes, but also in
changes of the dynamic equilibrium of the coastline profile.
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V.3 Recommendations

V.3.1 Application

The main focus of this research, is to give more insight into the complex coastal zone of the
management area of HHNK. The clusters are an ideal input, to be interpreted by HHNK, for
future strategical plans and policies from a new perspective. Making it also possible to add
future new information on top of the clusters, to find new patterns and insights. The current
nourishment approach positively affects the coastline. The clusters that had lesser nourishment
contribution, should be included in the future strategical plans and policies. The clusters that
show anomalies, like loss of volume in the dunes or loss of volume in the foreshore, should be
researched for underlying causes and for future prevention of recession.

V.3.2 Further research

This research has given more insight in the variables and their underlying correlations. Due to
the time restriction of this research, more research is required to substantiate the effects on the
long term changes. As referred to in the discussion, two of the main interesting results come
from the depth of closure and the boundary between marine and aeolian transport.

Depth of Closure and Nourishment
Better understanding of the depth of closure would be beneficial for HHNK, as the amount of
nourishment is calculated based on the boundaries, such as the inner and outer depth of closure
Rijkswaterstaat [2020]. This nourishment affects the long-term changes of the coastline profile.
With main-cluster 2A representing a strong correlation between the shifting depth of closure and
the amount of nourishment. These results compare to lab experiments Aktinson and Baldock
[2020]. If time wasn’t a restriction in this research, the same experimental set-up could be used
to answer the remaining questions;

As seen in the Bruun rule, the depth of closure remains at the same location in time. If the depth
of closure changes, how would this affect the future equilibrium of the profile ? Is this relationship
linear ? Does this increase the active profile width and therefore require more sediment ? These
are a handful of questions which could be the basis for an experimental setup. Having more
insight in the depth of closure, could also help understand the ecological effects of nourishment,
as this has been becoming a more popular research subject Rijkswaterstaat [2020]. Where the
area below the depth of closure changes from a static zone into a dynamic zone, it affects the
habitat of animal species.

Boundary between marine and aeolian transport y-coordinate
The boundary between marine and aeolian transport, shows an interesting correlation between
the derived variables located in the dune area. This correlations seems to be less cluster depen-
dent. The causation between these variables couldn’t be substantiated in this research. Deeper
understanding of both the derivation, with the use of the standard deviation method and physical
understanding, could provide more insight in the changes in the aeolian transport area.
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A. Appendix - Sketch/location variables

Appendix A.1 represents the derived variables which have been motioned in chapter III.4.1. Every
derived variable is represented by a symbol, as seen in figure A.1. The legend shows widths,
gradients and volumes by combining two symbols, representing a clear overview of the various
variables which are derived from the cross-shore profile of the transects.

Figure A.1: Locations of every derived variable for transect 7000984 [2019].
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B. Appendix - Background variables

Appendix B introduces a more detailed explanation and background of each individual variable.
As the data set contains a great number of variables, this chapter focuses on the variable used
in the primary data set of this research.

There are various methods of deriving the dune foot as seen in figure A.1. This research will use
the dune foot from a prior data set, denoted as dune foot from the new data set 7.

B.0.1 Dune Crest

The dune crest is defined as the highest location of the dunes, as seen in figure B.1. The
y-coordinate of this variable is denoted as DT_prim_y and it’s x-coordinate is denoted as
DT_prim_x. The derivation of this variable uses the scipy.signal.find_peaks module 8. This
module is based on the prominence of a peak. This is a measure to calculate how much a peak
stands out relative to its surrounding. The parameters used are a height of 5 and prominence of
2.0.

Figure B.1: Derived variable: Dune Top [DT_prim_y] and [DT_prim_x].

B.0.2 Intertidal width

The intertidal width is defined as the horizontal distance between the Mean Low Water level
and the Mean High Water level, as seen in figure B.2. The intertidal width is denoted as
W_intertidal_var. The Mean High Water level is taken as a variable location which is included
in the JarKus database. This variable height differs in space, from north to south, but is steady
in time. The variable values lie close to the fixed locations. The fixed y-coordinate for the Mean
High Water level is located at +1 m NAP. For the Mean Low Water level, the y-coordinate is
located at -1 m NAP.

7http://opendap.deltares.nl/thredds/catalog/opendap/rijkswaterstaat/DuneFoot/catalog.html?dataset=
varopendap/rijkswaterstaat/DuneFoot/DF_2nd_deriv.nc

8https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html
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Figure B.2: Derived variable: Intertidal width [W_intertidal_var].

B.0.3 Beach Width

The beach width is defined as the horizontal distance between the Mean Sea Level and the Dune
Foot, as seen in figure B.3. The y-coordinate of the Mean Sea Level is the mean of the Mean
High Water level and Mean Low Water level. For the fixed location this is located at 0m NAP.
The beach width can include both a fixed Mean Sea Level and Dune Foot. The chosen width
includes the fixed Mean Sea Level and both the Dune Foot from the new data set, denoted as
beachwidthvar2. The beach width including a fixed Dune Foot is denoted as BW_var, which
includes a fixed Dune Foot which is located at +3m NAP.

Figure B.3: Derived variable: Beach Width [beachwidthvar2].
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B.0.4 Beach Gradient

The beach gradient is defined as the gradient between the Mean Sea Level and the Dune Foot,
as seen in figure B.4. The beach gradient used in this research is denoted as B_grad_fix. This
gradient is defined by the fixed beach width.

Figure B.4: Derived variable: Beach Gradient [B_grad_fix].

B.0.5 Boundary between Marine and Aeolian transport

The boundary between marine and aeolian transport is located by isolating the variance along
the coast De Vries et al. [2010]. This variable is denoted as Bma_x.

Figure B.5: Derived variable: Boundary between marine and aeolian transport [Bma].
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B.0.6 Foreshore Gradient

The foreshore gradient is defined as the gradient between the marine and aeolian transport
boundary and the fixed depth of closure, as seen in figure B.6. The fixed depth of closure,
denoted as Seaward_ActProf_x, is located at -8m NAP. The foreshore gradient is denoted as
FS_grad.

Figure B.6: Derived variable: Foreshore Gradient [FS_grad].

B.0.7 Dune Foot

There have been various methods of deriving the dune foot, as seen in figure B.7. This research
uses the dune foot from the new data set, with the y-coordinate denoted by DF_y2 and the
x-coordinate denoted by DF_x2.

Figure B.7: Derived variable: Dune Foot [DF_x] and [DF_y].
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B.0.8 Dune Front

The dune front is defined as the width between the dune crest and the dune foot from the new
data set, as seen in figure B.8. The variable is denoted as dunefront2.

Figure B.8: Derived variable: Dune front [dunefront2].

B.0.9 Dune Gradient

The dune gradient is defined as the gradient of the dune front, as seen in figure B.9. This
variable is denoted as DFront_der_prim_grad. The dune front is defined by the dune crest and
the dune foot of the new data set.

Figure B.9: Derived variable: Dune Gradient [DFront_der_prim_grad].
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B.0.10 Landward 6 meter

The landward 6 meter location, is the first location at +6 meter NAP going from the dune crest
seawards, as seen in figure B.10. This variable is denoted as Landward_6m.

Figure B.10: Derived variable: Landward 6 meter [Landward_6m].

B.0.11 Seaward Foreshore

The seaward foreshore location is located at the y-coordinate of -4m NAP, as seen in figure B.11.
The variable is denoted as seaward_FS_x_all.

Figure B.11: Derived variable: Seaward Foreshore [seaward_FS_x_all].
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B.0.12 Landward Point

The landward point is defined as the first location which crosses the standard deviation threshold,
going landward from the dune crest, as seen in figure B.12. This location is denoted as beachy

Figure B.12: Derived variable: Landward point [beachy].

B.0.13 Bma_y

The y-coordinate of the Boundary between marine and aeolian transport is defined at the mini-
mum location between the peaks of the standard deviation method. The first peak is located at
the dunes and the second peak is located in the foreshore, as seen in figure B.13. This location
is denoted as Bma_y, which represents the location with the least amount of variability.

Figure B.13: Derived variable: Stable point [Bma_y].
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B.0.14 Depth of Closure

The depth of closure is defined as the location which shows almost no variability over the years.
This location is derived by defining the crossing of the standard deviation with the threshold of
0.25 - 0.35 as defined by II.6. This variable is denoted as docy.

Figure B.14: Derived variable: Depth of Closure [docy].

B.0.15 Active Width Dune

The active width of the dunes, is the width between the landward point and the stable point, as
seen in figure B.15. This width is denoted as B.15.

Figure B.15: Derived variable: Active width Dune [Dune_W].
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B.0.16 Active Width Foreshore

The active width of the foreshore, is the width between the stable point and the depth of closure,
as seen in figure B.16. This variable is denoted as FS_W.

Figure B.16: Derived variable: Active width Foreshore [FS_W].

B.0.17 Total Active Profile Width

The total active profile width is defined by the sum of the active profile of the dunes and the
active profile of the foreshore. Meaning the width between the landward point and the depth of
closure as seen in figure B.17. This indicates that in the years measured, almost all variability
of the profile can be seen between these two points.

Figure B.17: Derived variable: Total active profile width [ActiveProfile_W].
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B.0.18 Dune Volume

The dune volume is defined as the volume between the landward point and the stable point,
as seen in the shaded area in figure B.18. The actual volume will depend on the chosen y-
coordinate, therefore this research looks at the change in volume in this area. With its variable
denoted by dunesm.

Figure B.18: Derived variable: Dune volume [dunesm].

B.0.19 Foreshore Volume

The foreshore volume is defined as the volume between the stable point and the depth of
closure, as seen in the shaded area in figure B.19. The actual volume will depend on the chosen
y-coordinate, therefore this research looks at the change in volume in this area. With its variable
denoted by foreshorem.

Figure B.19: Derived variable: Foreshore volume [foreshorem].
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C. Appendix - Component Planes Variables

Appendix C represents the component planes of each individual variable used in the different data
sets. The component planes are a fast method to find correlations between different variables
and indicate the range of values. The component planes of the first initial data set is represented
in Figure C.1. The component planes of the second initial data set is represented by figure C.2.
Finally, the component planes represented by the finalized data set can be seen in figure C.3.

Figure C.1: All component planes for the initial data set 1A.

73



C APPENDIX - COMPONENT PLANES VARIABLES

.

Figure C.2: All component planes for the initial data set 1B.
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Figure C.3: All component planes for the final data set.
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D. Appendix - Clustered Components Planes

Appendix D represents the clustered component planes of each individual variable. The clustered
component planes represent the clusters in the output space, by representing them back onto
the input space. This is done by plotting the contours of the clusters back on each individual
component plane. The clustered component planes of the first initial data set is represented
in Figure D.1. The clustered component planes of the second initial data set is represented by
figure D.2. Finally the clustered component planes represented by the finalized data set can be
seen in figure D.3.

Figure D.1: All clustered component planes for the initial data set 1A.
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Figure D.2: All clustered component planes for the initial data set 1B.

77



D APPENDIX - CLUSTERED COMPONENTS PLANES

Figure D.3: All clustered component planes for the final data set.
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E. Appendix - Quantitative Characteristics Clusters

Appendix E represents the quantitative characteristics of both the main-clusters and sub-clusters.
Each variable contains it’s 25th percentile and 75th percentile. The bold results represent the
average value of each cluster. The characteristic slope of each individual variable is represented
in table 10. The characteristic starting value of each cluster is represented in table 11.

Table 10: All characteristic changes of the variables for both the main-clusters and the sub-
clusters.

Mean/Clusters 0 1 2A 2B 3 4A 4B 5A 5B

25% 0.004 -0.004 0.024 0.011 -0.040 0.013 0.062 0.003 0.011
DT_prim_ym [NAP/year] 0.013 0.005 0.069 0.046 -0.036 0.060 0.127 0.038 0.025
75% 0.005 0.029 0.121 0.048 0.007 0.089 0.171 0.085 0.044

25% -0.012 0.00 -0.15 0.01 0.03 -0.03 -0.07 -0.01 0.01
DT_prim_xm [m/year] -0.32 0.54 0.35 0.12 2.27 0.37 0.41 1.46 1.62
75% -0.04 0.45 0.50 0.32 4.53 0.86 0.63 1.79 2.44

25% 0.16 -0.17 -0.40 -0.08 -0.09 0.05 0.97 0.89 0.92
W_intertidal_varm [m/year] 0.38 0.23 0.17 0.60 0.23 0.45 1.28 1.03 0.98
75% 0.58 0.58 0.62 1.24 0.60 0.91 1.68 1.22 1.03

25% 0.29 0.43 0.58 0.42 1.57 -0.10 1.28 1.00 -0.36
landward_6m_xm [m/year] 0.29 0.77 0.95 1.01 2.45 0.23 1.43 1.50 -0.35
75% 0.29 1.09 1.43 1.52 3.07 0.53 1.62 1.81 -0.33

25% 1.50 0.88 1.02 0.06 2.57 -0.03 1.46 1.17 -0.35
Bma_xm [m/year] 2.00 1.10 1.56 1.28 3.14 0.38 1.51 1.73 -0.32
75% 2.51 1.30 2.16 2.21 3.28 0.86 1.60 2.46 -0.31

25% 8.72 8.60 1.25 0.09 2.61 0.34 0.46 2.02 2.15
seaward_FS_x_allm [m/year] 9.32 9.70 3.70 2.09 3.95 1.95 2.30 2.41 2.66
75% 11.56 12.61 5.09 3.67 5.72 3.42 3.99 3.63 3.06

25% 0.15 0.23 0.52 0.36 1.12 -0.23 1.41 0.98 -0.66
DF_x2m [m/year] 0.34 0.55 1.06 1.55 2.58 0.12 1.70 1.51 -0.64
75% 0.49 0.90 1.52 2.30 3.26 0.48 1.85 2.20 -0.63

25% 0.01 0.01 0.00 0.00 0.00 0.00 -0.02 0.00 0.02
DF_y2m [NAP/year] 0.03 0.03 0.02 0.00 0.01 0.01 0.00 0.02 0.02
75% 0.04 0.04 0.03 0.01 0.03 0.02 0.01 0.03 0.01

25% 2.32 0.57 0.33 -0.31 0.78 -0.04 -0.04 0.24 0.75
beachwidthvar2m [m/year] 2.67 0.83 0.69 -0.10 1.31 0.45 0.36 0.42 0.76
75% 3.25 1.15 1.19 0.31 1.77 0.77 1.12 0.66 0.77

25% 0.36 0.15 0.12 0.49 -0.53 -0.41 0.54 -0.82 -2.85
dunefront2m [m/year] 0.87 0.21 0.52 0.61 0.49 -0.13 1.01 0.08 -2.04
75% 0.84 0.92 1.08 0.65 1.39 0.36 1.80 1.55 -0.44

25% 6.96 7.58 4.27 -12.21 2.23 0.23 2.38 4.28 1.58
foreshorem [m3/year] 6.64 8.55 5.33 -6.20 4.05 1.63 3.85 5.01 1.98
75% 7.26 10.52 6.41 -3.13 5.37 2.97 5.01 5.80 2.58

25% 3.83 1.61 2.23 1.49 3.53 0.62 4.48 4.37 0.20
dunesm [m3/year] 5.13 2.99 3.69 3.56 4.53 1.51 5.18 5.56 0.35
75% 6.14 3.82 5.19 5.91 6.20 2.43 5.95 6.92 0.59

25% 2.6 -0.1 -0.5 1.0 -1.6 -5.0 -2.7 -2.1 -12
DFront_der_ [m] 6.7 1.0 3.4 2.8 0.00 -1.4 0.3 0.8 -8.7
prim_gradm [×10−3]
75% 10 3.5 8.1 2.6 1.9 2.0 4.1 3.2 -2.9

25% 0.46 0.19 0.08 -0.55 0.00 0.02 -0.22 -0.33 -0.24
B_grad_fixm [×10−3] 0.52 0.33 0.25 -0.36 0.02 0.13 -0.04 -0.21 0.32
75% 0.55 0.43 0.42 -0.22 0.06 0.22 0.11 0.07 0.44

79



E APPENDIX - QUANTITATIVE CHARACTERISTICS CLUSTERS

Table 11: All characteristic values of the variables for both the main-clusters and the sub-clusters.

Mean/Clusters 0 1 2A 2B 3 4A 4B 5A 5B

# of profiles [5] [22] [51] [5] [12] [77] [8] [19] [3]

25% 14.0 18.5 13.6 15.5 9.4 13.1 13.8 14.8 14.6
DT_prim_yb [NAP] 17.3 19.2 16.3 16.9 15.1 17.5 14.9 16.1 15.8
75% 19.0 20.5 18.8 17.7 20.9 20.8 15.8 17.6 16.4

25% 74 63 76 44 102 73 64 49 55
W_intertidal_varb [m] 77 65 82 46 107 77 67 53 57
75% 82 68 90 48 109 82 69 57 59

25% 102 77 90 68 145 81 84 74 65
beachwidthvar2b [m] 102 77 97 70 149 85 88 78 66
75% 107 81 101 74 157 91 93 81 66

25% -0.028 -0.039 -0.029 -0.038 -0.017 -0.032 -0.032 -0.039 -0.039
B_grad_fixb [-] -0.029 -0.037 -0.028 -0.037 -0.017 -0.030 -0.030 -0.037 -0.038
75% -0.027 -0.035 -0.027 -0.036 -0.016 -0.028 -0.028 -0.034 -0.037

25% -0.431 -0.235 -0.338 -0.257 -0.133 -0.408 -0.226 -0.210 -0.238
DFront_der_ -0.363 -0.208 -0.275 -0.209 -0.106 -0.315 -0.191 -0.152 -0.216
prim_gradb [-]
75% -0.348 -0.171 -0.188 -0.143 -0.057 -0.223 -0.157 -0.084 -0.179

25% -0.015 -0.012 -0.013 -0.028 -0.011 -0.014 -0.016 -0.021 -0.018
FS_gradb [-] -0.015 -0.012 -0.012 -0.024 -0.010 -0.013 -0.016 -0.020 -0.017
75% -0.015 -0.012 -0.013 -0.028 -0.011 -0.014 -0.016 -0.021 -0.018

25% 2.9 2.8 2.8 2.9 3.1 2.8 3.1 3.0 2.7
DF_y2b [NAP] 2.9 2.9 3.0 3.0 3.3 2.9 3.1 3.2 2.8
75% 3.0 3.1 3.1 3.1 3.5 3.0 3.2 3.5 2.8

25% 28 68 43 51 70 41 52 56 53
dunefront2b [m] 50 76 55 65 89 53 63 94 75
75% 70 83 60 71 84 64 73 125 87

25% 9.2 13.3 7.6 12.5 8.0 9.8 8.8 11.5 11.9
beachy [NAP] 10.6 15.6 10.5 14.2 12.0 13.1 10.2 13.6 13.5
75% 13.5 18.7 12.7 15.8 15.4 16.6 11.9 15.4 14.8

25% -5.8 -1.2 -1.0 -4.0 -0.6 0.8 -0.8 -2.3 0
Bma_y [NAP] -5.6 -0.6 0 -2.8 1.4 1.1 0.1 -1.6 0.4
75% -5.4 -0.4 1.1 -1.7 2.0 1.6 1.3 -1.6 1.0

25% -10.4 -8.9 -8.6 -19.8 -5.4 -6.9 -8.3 -11.9 -6.9
docy [NAP] -10.1 -8.9 -8.6 -19.8 -5.4 -6.9 -8.3 -11.9 -6.9
75% -9.8 -7.9 -8.2 -19.7 -4.9 -6.0 -7.6 -9.1 -6.6

25% 710 163 158 260 155 110 155 225 115
Dune_W [m] 713 192 213 254 232 144 222 257 135
75% 785 214 263 275 326 160 284 295 150

25% 1100 986 1103 1445 881 815 794 630 618
ActiveProfile_W [m] 1100 1016 1130 1554 1000 863 869 689 643
75% 1155 1049 1140 1595 1096 915 959 720 673

25% 370 820 873 1170 593 670 556 348 490
Foreshore_W [m] 387 824 918 1300 768 719 648 433 508
75% 395 839 980 1385 908 785 731 505 533

25% 12.7 68.9 14.0 53.7 0.0 0.0 14.0 21.4 12.7
Nourishmentforeshoreb [-] 12.7 73.3 34.7 62.7 0.0 8.2 16.1 21.9 12.7
75% 12.7 86.0 44.2 82.5 0.0 13.3 16.1 22.4 12.7

25% 393 2136 433 1666 0.0 0.0 433 664 393
Nourishmentforeshoreb [m3] 393 2272 1074 1943 0.0 255 498 677 393
75% 393 2667 1369 2557 0.0 411 498 693 393

25% 8.2 20.6 3.6 3.0 0.0 0.0 0.0 51.1 10.4
Nourishmentdunesb [-] 35.5 25.2 15.3 31.9 0.0 4.3 1.9 55.9 11.4
75% 12.8 33.0 22.9 51.1 0.0 6.5 5.2 65.0 13.5

25% 254 637 112 94 0.0 0.0 0.0 1584 321
Nourishmentdunesb [m3] 1099 782 474 988 0.0 134 60 1731 353
75% 396 1021 710 1584 0.0 200 160 2015 418
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