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Abstract
Visible light positioning (VLP) systems enable in-
door positioning through a deployment of light-
emitting diodes (LEDs) as transmitters and photo-
diodes (PDs) as receivers. A promising approach in
VLP involves recording the received signal strength
(RSS) to construct fingerprint samples for later use
in positioning. However, achieving high accuracy
demands a labor-intensive data collection process.
In this study, we propose improvements to a data
cleaning and augmentation pipeline. Our improve-
ments focus on preserving more source data during
cleaning and data-based LED position estimation
for more reliable data augmentation. Experimen-
tal results show that our approach maintains com-
parable positioning accuracy while reducing data
collection efforts by over 99%. Furthermore, we
conduct experiments to investigate the impact of
spatially irregular data collection strategies on po-
sitioning accuracy. Finally, we deploy a machine
learning model on a microcontroller to demonstrate
the practical feasibility of our proposed methods.

1 Introduction
Outdoor localization systems, such as the Global Positioning
System (GPS), have completely transformed how we deter-
mine our location in the world. However, with the rise of In-
ternet of Things (IoT) devices envisioned for the future, there
is also a growing need for accurate indoor positioning. This
technology is crucial for industries such as smart manufac-
turing, smart cities, and smart homes. Unfortunately, outdoor
systems like GPS perform poorly inside buildings and cannot
provide the high levels of precision often required in these
environments.

To address this demand, several potential solutions have al-
ready been proposed. These range from using wireless tech-
nologies such as Bluetooth [1], Wi-Fi [2], ultra-wideband [3],
or Zigbee [4], to using camera imagery [5]. Each of these so-
lutions suffers from several issues. Radio frequency-based
solutions are prone to electromagnetic interference, tend to
achieve lower accuracy, and compete for crowded spectrum
resources [6]. Moreover, their deployment is often expensive
and complex [7]. Meanwhile, image-based localization re-
quires significant computational power, making it suboptimal
for IoT devices.

The widespread adoption of light-emitting diode (LED)
technology, alongside the advancements in visible light com-
munication (VLC) technology, has made visible light posi-
tioning (VLP) a promising candidate in the field [8]. This
technology offers several advantages, including better accu-
racy compared to other technologies [9], use of widely avail-
able lighting infrastructure, and high security characteristics.
Additionally, LED light operates in the license-free spectrum
and is safe for humans.

Visible light positioning is an umbrella term for various
techniques, including angle-of-arrival (AOA) [10], time-of-
arrival (TOA), time-difference-of-arrival (TDOA) [11], and

received signal strength (RSS) [12]. These methods rely on
a similar setup comprising LEDs and photodiodes to capture
signals. While AOA offers high accuracy, it demands signifi-
cant computational resources and costly equipment. TOA and
TDOA require precise synchronization and sensitive hard-
ware. In contrast, RSS stands out as the most cost-effective
and readily deployable option.

RSS VLP operates on a straightforward principle: an ar-
ray of LEDs serves as transmitters, while a photodiode (PD)
acts as the receiver, capturing signal strengths from each light
source. These intensity readings form a distinctive fingerprint
for the location. Maintaining a comprehensive database of
such fingerprints is impractical, particularly for IoT devices.
However, leveraging machine learning enables extrapolation
from existing data points, enabling position estimation.

The main challenge associated with the RSS method lies
in the labor and resource-intensive data collection process.
Achieving sufficient accuracy requires a dense fingerprint
dataset. Zhu et al. [13] proposed data cleaning and augmenta-
tion techniques to enable sparser data acquisition, using an 8
cm resolution instead of the original 1 cm, while maintaining
comparable accuracy. However, we believe there are oppor-
tunities to improve their methods and enhance the accuracy
of the augmentation.

Moreover, their approach required collecting data points in
a rigid grid pattern. In this study, we aim to additionally as-
sess the impact of utilizing spatially irregular sampling on the
accuracy of the positioning system. We conduct experiments
simulating different data collection strategies to allow more
flexibility in data acquisition, thereby reducing the effort re-
quired even further.

With the ultimate aim of enabling indoor positioning on
IoT devices, our focus remains on showcasing real-world ap-
plicability. To this end, we deploy the developed solutions on
an Arduino Nano 33 BLE Sense microcontroller. This device
is readily available off-the-shelf, making it an ideal candidate
for widespread deployment.

In Section 2, we discuss previous work on data cleaning
and augmentation and describe the dataset used for the ex-
periments. Section 3 outlines our approach to improving
the pipeline and details further experiments on data collec-
tion. The experimental setup is briefly discussed in Section 4,
while Section 5 presents and analyzes the obtained results. In
Section 6, we reflect on the ethical aspects and reproducibil-
ity of our work. Finally, Section 7 places our experimental
results in a broader context, and Sections 8 and 9 summarize
conclusions and suggest possible future developments.

2 Background
This section discusses the dataset used in this work, as well
as, summarizes the previous contributions of Zhu et al. [13]
on improving data quality and reducing the data collection
effort.

2.1 DenseVLC RSS Dataset
To perform our experiments, we use RSS dataset from the
DenseVLC testbed [14] as opposed to simulation. This
grounds our research in the real world, closely mimicking the
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Table 3: Frame structure (Controller to VLC TXs; B: bytes)

ETH PHY + MAC header TX ID Pilot sig. Preamble SFD Length Dst Src Protocol Payload Reed-Solomon
8B 32 symbols 32 symbols 1B 2B 2B 2B 2B xB !x/200" 16B

{0, Isw,max } for each VLC TX based on our ranking algorithm
presented in Sec. 5.

8 PERFORMANCE EVALUATION
In this section we evaluate the performance of DenseVLC.

Experimental setup. We evaluate the performance of DenseVLC
in a system of 36 VLC TXs and 4 RXs. The TXs are deployed 6 × 6
within an area of 3m × 3m, with 0.5 m inter-TX distance, and a
height of 2 m from the !oor. The 4 RXs are placed on the !oor,
controlled by 4 OpenBuilds ACRO System [2] and can be moved to
any position within the 3m × 3m area. The experimental setup is
depicted in Fig. 17.

Illuminance distribution. DenseVLC provides an average illumi-
nation of 530 lux and an uniformity of 81%. The measurements
were performed with the HS1010 lux meter.

8.1 Synchronization evaluation
The synchronization between TXs is one of the key enablers in
DenseVLC. To evaluate the proposed method that exploits NLOS
VLC for synchronization, we "rst randomly choose two neighbor-
ing TXs, TX2 and TX3. TX2 is appointed as the leading TX to send
the pilot signal for synchronization. The symbol rate ftx at TX2
and the sampling rate frx at TX3 are set to 100 Ksymbols/s and 1
Msamples/s, respectively. We connect the anodes of the LEDs at
TX2 and TX3 to an oscilloscope (RIGOL MSO1104) to capture the
transmitted signals. The delay between the corresponding symbol
edges of the two signals are measured. As in Sec. 6.1, we calculate
the median of the synchronization delay and compare it to those
from the method based on NTP/PTP and to the one without syn-
chronization. The results are shown in Table 4. We can see that the
median synchronization delay of our method with NLOS VLC is
only 0.575 µs, improving the synchronization granularity by nearly
an order of magnitude compared to the one using NTP/PTP. Note

Figure 17: Experimental setup

Table 4: Evaluation of the proposed synchronization

No Synchronization NTP/PTP NLOS VLC
Median error 10.040 µs 4.565 µs 0.575 µs

Table 5: Experimental result using iperf

Scenario Throughput [Kbit/s] PER [%]

2 TXs 33.9 0.19
4 TXs (no sync) 0 100
4 TXs (with our sync) 33.8 0.55

that with advanced devices supporting a higher sampling rate of
frx, the synchronization granularity supported by our NLOS VLC
based method can be further improved.

To test the synchronization performance, we perform iperf mea-
surements for 100 seconds under three di#erent scenarios. For all
scenarios, there is one RX, located in the center of TX2, TX3, TX8
and TX9. The results are shown in Table 5. In the "rst scenario, only
TX2 and TX8 serve the RX. Since TX2 and TX8 are managed by the
same BBB, no synchronisation is required. The packet error rate
(PER) is low, due to the strong signal strength and low noise at the
RX. The achieved throughput is lower than the used symbol rate
of 100 Ksymbols/s, due to Manchester encoding, PHY and MAC
layer overhead and Reed-Solomon error correcting. In the second
scenario, TX3 and TX9, managed by another BBB, also serve the RX.
However, no synchronization is enabled. No packets are received,
due to improper alignment of the frames in time. In the last scenario,
synchronization is added. Very low packet loss is observed again,
showing that our NLOS VLC based synchronization works.

8.2 Heuristic evaluation
To evaluate our proposed ranking algorithm in DenseVLC, we carry
out experiments under three representing scenarios, for which the
RX positions are listed in Table 6:
• Scenario 1: interference-free; no dominating TX.
• Scenario 2: with interference; no dominating TX.
• Scenario 3: with interference; with dominating TX.

First, we perform experimental channel measurements from the
36 TXs to the 4 RXs. Afterwards, the path loss is computed as the
received swing level at the RX and reported to the controller. Using
the path loss data, the controller runs the ranking-based heuristic
as presented in Algorithm 1 for di#erent values of κ. We assign the
TXs from the ranked list one by one (i.e. increasing the allowed
power budget on communication step by step) to the corresponding
RXs, and calculate the SINR based on Eq. (12) with the experimental
data. The system throughput is obtained based on Eq. 5.
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(b) Testbed

Figure 1: The setup used to obtain the RSS dataset for VLP, an il-
lustration in (a) and the actual testbed in (b).

potential difficulties with imperfect data when deploying a
VLP system. Additionally, Zhu et al. used this exact data set
in their works, allowing us to directly compare the obtained
results. Figure 1 showcases the testbed used for acquiring the
data.

The setup comprises 36 LED transmitters (TXs) and 4 re-
ceivers (RXs). The TXs are arranged in a 6 × 6 array on a
height-adjustable ceiling with an inter-TX distance of about
0.5 m. The system utilizes high-performance CREE XT-E
LEDs, each equipped with a lens TINA FA10645 to limit the
field of view to 30◦. The RXs, controlled by OpenBuilds
ACRO Systems, are positioned on the floor, each equipped
with a photodiode S5971.

The floor area, measuring 3 m × 3 m, is divided into 4
square grids with a cross-like gap in the middle. Each grid
covers an accessible area of approximately 1.2 m × 1.2 m,
enabling movement in both the x and y directions.

Each sample fingerprint in the dataset consists of the mea-
sured RSS values from the 36 LEDs and the corresponding
x, y coordinates of the measurement position. Specifically,
the measurements are conducted at 1 cm intervals in both
x and y directions. For each RX at a specific height (172
cm and 196 cm), there are 121 steps in both x and y direc-
tions in each quadrant. Additionally, at every sampling posi-
tion, the measurement is repeated three times. This results in
121× 121× 4× 3× 2 = 351, 384 data points per each LED.

2.2 RSS Data Cleaning and Augmentation
The performance of RSS-based VLP is highly dependent on
the density and quality of collected fingerprint data, which
traditionally requires labor-intensive data collection efforts.
To mitigate this, recent research in [13] proposed data pre-
processing techniques, including data cleaning and augmen-
tation, to construct reliable and dense fingerprint datasets.

The proposed data cleaning strategy addresses the inher-
ent noise in RSS measurements, which can arise from device
thermal noise, sampling errors, and varying ambient light
conditions. They employed a two-stage cleaning process that
retains the most consistent measurement for each location and
estimates missing or erroneous values. More precisely, the
first stage begins by computing “continuity scores” for each
sample at each location. The sample with the best score is se-
lected, or if none meets the required threshold, all samples are
discarded. In such cases, the second stage of the data cleaning
pipeline is activated. This stage uses the surrounding clean

samples to estimate the true light intensity value based on the
Lambertian radiation model, described by the equation:

Ir =

{
ItA(d) cosm(ϕ) cos(ψ), 0 ≤ ψ ≤ ψc

0, otherwise,
(1)

with It being the lamp emission power, ψ – the incident an-
gle, ψc – the FoV of the LED lamp, ϕ – the inradiation angle,
m – the LED’s Lambertian order, A(d) – a propagation loss
function over the distance d between RX and TX.

To further increase the density of samples, the researchers
proposed a data augmentation step. For example, if the data
was collected at 8 cm intervals, this method allows increasing
the resolution to 1 cm, enabling higher positioning accuracy
in machine learning systems. The generation of new samples
follows a similar approach to the second stage of the cleaning
pipeline – it uses surrounding data samples to approximate
the expected values using the Lambertian model.

Experimental results validate the effectiveness of these
methods, demonstrating an average positioning error of
around 2 cm while using an 8 cm resolution dataset. Over-
all, these methods reduced the data collection effort by 98%
while maintaining accuracy.

3 Approach
Although the aforementioned work has achieved promising
performance through data preprocessing methods, there is
still room to explore more careful designs for data cleaning
and data augmentation to further improve data quality. In this
section, we outline our observations and propose an improved
approach to the pipeline.

3.1 Improving Data Cleaning
In looking for possible areas of improvement, we started
by reproducing the data cleaning and augmentation meth-
ods. In the cleaning stage, one measures how much a sample
point differs from its immediate neighborhood. This involves
calculating the average received signal strength (RSS) from
nearby points, and then finding the absolute value of the dif-
ference between this average and the sample’s RSS. Points
with the smallest differences are considered to conform to
their neighborhood the best.

Formally, the scoring metric is described by the equation:

Sx,y =

∣∣∣∣∣Ix,y − 1

|IN |
∑
I∈IN

I

∣∣∣∣∣ , (2)

where IN are the samples located in the neighborhood around
(x, y), usually a circular region. After calculating this score,
for each location (x, y) the sample that minimized Sx,y is
chosen. That was unless none of the samples managed to
land under a predefined threshold, in which case the sam-
ple point is discarded. While this works relatively well for
LEDs whose measurements consisted of within-standard val-
ues, like LED13 (Figures 2a and 2c), for excessively noisy
ones, like LED7 (Figure 2b), it means that many accurate
measurements are discarded due to surrounding noise (Fig-
ure 2b).
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(a) Raw data for LED13 (b) Raw data for LED7

(c) Good retention of samples
for LED13

(d) A lot of meaningful data be-
ing discarded for LED7

Figure 2: Comparison between overly noisy measurements and
comparatively clean ones, along with the implications on the data
cleaning process.

An obvious observation when looking at the structure of
the noise is that the vast majority of erroneous values result
in close-to-zero (dark) measurements. We can exploit this by
modifying the scoring function to reward points that exhibit
brightness above environment average. The revised scoring
metric looks as follows:

ĨN : =
1

|IN |
∑
I∈IN

I (3)

Sx,y =

{
(Ix,y − ĨN ) · r, if Ix,y ≥ ĨN

(ĨN − Ix,y), otherwise,
(4)

where r is the brightness reward that lowers the score for
bright points.

This method allows us to retain more valuable data points
needed to reconstruct missing values. Figure 3 shows what
effects the new scoring function had on the cleaning pipeline.
The reward value was chosen based on how well the data
looked visually, and we admit that a more rigorous method of
determining it would be more desirable. However, we deem
this outside the scope of this paper.

3.2 Improving Data Reconstruction
The data augmentation process proposed by Zhu et al. [13]
is based on the Lambertian radiation model. However, since
the exact emission power It of the LED is unknown, the re-
searchers used neighboring RSS measurements to predict the
value from a simple proportion equation:

Irx1,y1

Irx1,y1

=
A(d1)

A(d2)

[
cos(ϕ1)

cos(ϕ2)

]m+1

, (5)

(a) Cleaned data for LED13 (b) Cleaned data for LED7

Figure 3: The improved scoring function did not have a significant
effect on the already clean-looking LED13, while at the same time,
it dramatically improves data retention for LED7.

where the Ir’s are the RSS values, di is the distance between
the LED and the corresponding (x, y) point, and ϕi is the
angle between the light ray and the normal to the horizontal
plane.

This model, however, presumes that the LED positions are
both known and precise, which is not always the case. Figure
4 illustrates the discrepancy between the provided LED posi-
tions and their actual footprints. Consequently, the quality of
the augmentation is impeded. Figure 4b highlights the neg-
ative effects of inaccurate LED positioning on data sampled
at an 8 cm resolution, which was subsequently augmented to
a 1 cm resolution. This results in skewed data and an overall
lack of smoothness.

(a) The provided position of
LED11 (red) with raw RSS

(b) Augmented 8-to-1 cm reso-
lution data for LED11

Figure 4: Example of how inaccurate LED position estimates affect
data augmentation.

To address this issue, we propose a reliable and automated
method to estimate the (x, y) positions of the light-emitting
diodes. The core concept is to robustly fit a circle to the LED
footprint, with the center of the circle providing a more ac-
curate approximation of the source coordinates. The process
involves the following steps:

1. Initial Data Cleaning: As described in Section 3.1. Re-
moving anomalous data helps the accuracy of this esti-
mation.

2. Circular Strip Extraction: Create a circular strip of
RSS values by filtering positions that fall within specific
RSS thresholds (Figure 5a).

3. Kasa [15] circle fitting: Apply Kasa’s robust circle-
fitting and retrieve the new position estimate.
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The Kasa method’s robustness assures that the method is
effective even in cases where a significant portion of the cir-
cle is missing. Figure 5 illustrates the circle-fitting process for
LED11 with Subfigure 5d showing how the 8-to-1 cm aug-
mented data, refer to Figure 4b to compare how it would look
before.

(a) Thresholded RSS (b) Fitted circle using Kasa

(c) New estimation over RSS
map

(d) Augmented 8-to-1 cm data
with improved LED position

Figure 5: LED center position estimation processes for LED11.

Using the newly estimated LED positions we can better
clean the data, and later if desired, use it to increase the data
resolution. The entirety of the revised process is summarized
in Figure 6.

A final enhancement to the data augmentation process in-
volves applying an alternative augmentation technique for
data points that fall outside the LED’s light cone. The Lam-
bertian model fails to predict these points. We suggest em-
ploying a simple inverse-distance weighting (IDW) to esti-
mate values for such points. The predicted RSS values for a
point p can be computed according to the formula:

Ĩrp =

∑
p′∈IN

Irp′
1

d(p,p′)∑
p′∈IN

1
d(p,p′)

, (6)

where IN is some neighborhood around p and d(p, p′) de-
notes the Euclidean distance between the two locations.

3.3 Experimentation on Spatially Irregular Data
The goal of these experiments is to evaluate the impact of
alternative sample collection strategies on the quality of the
model. Specifically, we aim to determine whether focusing
data acquisition efforts on certain areas in the testbed can en-
hance model accuracy. This could involve prioritizing loca-
tions where higher accuracy is required or targeting areas that
maximize information gain for the system.

We propose the following three experimental scenarios:

1. Uniformly Distributed Data Points: This scenario in-
volves data points that are uniformly distributed. The
aim is to evaluate whether the augmentation benefits
from structured grid data samples as opposed to unor-
ganized structure. Illustrated in Figure 7b.

2. Normally Distributed, LED Centered Data Points:
This scenario involves data points that are normally dis-
tributed around each LED. The objective is to focus data
collection efforts on areas with the highest potential in-
formation gain and measure its influence. Shown in Fig-
ure 7d.

3. Normally Distributed, Globally Centered Data
Points: In this scenario, data points are normally dis-
tributed with a global center. The goal is to simulate a
more extensive data collection effort concentrated in the
center, where high positioning accuracy could be more
important. Example in Figure 7c.

4 Experimental Setup
It is important to design careful and transparent experiments
to measure whether the proposed methods actually reflect in
tangible improvements. To this end, we will detail the pro-
cess of obtaining the test data, while specifying the parame-
ters used. Additionally, we will describe the machine learning
model employed to evaluate our experiments.

4.1 RSS Dataset for Experimentation
To conduct our experiments, we utilized a part of the dataset
with samples collected at a height of 176 cm. We developed a
script designed to perform data cleaning and data augmenta-
tion with modifiable parameters. Initially, all measurements
were normalized to the range of 0 to 1 using MinMax nor-
malization1.

In the first stage of creating clean data from the 1 cm res-
olution dataset, we employed a 15 mm radius around each
position to compute the continuity score. Using the revised
scoring method, we discarded samples that differed from their
neighborhood average by more than 0.08, applying a bright-
ness reward of 1

3 (Equation (4)). In the baseline version, we
discarded samples if their score exceeded 0.13. We inten-
tionally set different thresholds in the baseline to retain more
samples at the expense of less effective noise filtering.

To estimate improved LED positions, we thresholded the
RSS values to the range of 0.4 to 0.43 of the clean data be-
fore any sample reconstructions. We then used an unmodified
implementation of the Kasa algorithm to obtain improved es-
timates.

In the second stage of data cleaning, missing points were
reconstructed using the proportion from Equation (5). We
took the average of surrounding points within a 100 mm ra-
dius, provided at least three samples were present. We em-
ployed the standard propagation loss function A(d) = 1

d2 .

1MinMax normalizarion – https://en.wikipedia.org/wiki/
Feature scaling
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Select / discard
samples based
on the revised

continuity scoring

Estimate LED
positions using
Kasa’s method

Estimate dis-
carded positions

using Lam-
bertian / IDW

Increase the
data set res-
olution using

Lambertian / IDW

Data Cleaning Data augmentation

Figure 6: Summarized pipeline of data cleaning and augmentation. The estimated LED positions are used both to reconstruct missing points
and increase the density of the dataset.

(a) Grid data - 8 cm (b) Uniformly distributed data

(c) Normally distributed, LED-
centered data

(d) Normally distributed,
globally-centered data

Figure 7: Showcase of different sampling methods imitating differ-
ent data collection strategies. All approaches sample around 1000
points.

The revised version differed from the baseline only in the im-
proved LED positions and the use of inverse distance weight-
ing (IDW) estimation for points outside the LEDs’ cone of
light.

To simulate the collection of lower-density fingerprint sets,
we employed various strategies. For grid sampling, samples
were taken every 8 or 16 cm. For uniform sampling, ran-
dom x and y coordinates were generated until their count
matched the number of samples in the 8 and 16 cm grids,
respectively. A similar approach was used for LED-centered
normal samples, with a standard deviation (σ) of 1250 mm
for each dimension. For globally-centered normal data, we
used σ = 750 mm.

Finally, the augmentation of sampled data followed the
same steps and parameters as the second stage of data clean-
ing. This process was repeated until the entire testbed area
was recreated.

4.2 Experimental Environment
To assess the accuracy of the proposed methods, we con-
ducted experiments using a simple 2-layer Multi-Layer Per-
ceptron (MLP) with 64 and 32 neurons, respectively. This
network configuration was chosen to demonstrate its suf-
ficiency in extracting relevant information from the RSS
dataset, while being more suitable for embedded environ-
ments compared to the larger 2.5k-neuron network utilized
by Zhu et al. [13].

The experiments were performed using the tensorflow2 li-
brary. The ‘Sequential‘ MLP used ‘relu6‘(ReLU limited to
value of 6) activation function for the first hidden layer and
‘selu‘(Scaled Exponential Linear Unit) for the second hidden
layer, as we have observed this combination to converge the
fastest. We compiled the model to use the Adam optimizer
with default parameters and employed the Euclidean distance
metric as the loss function. Additionally, data normalization
was performed using the ‘StandardScaler‘ from sklearn3 prior
to training.

The network was trained using a 70-20-10% training-test-
validation split to adhere to best machine learning practices.
For each experiment, the network was trained for 50 epochs
with a batch size of 32.

To simulate different environments, we tested various LED
configurations, ranging from very dense to sparse setups. Fig-
ure 8 illustrates the different LED configurations tested.

5 Evaluation
After running the experiments, we detail the results on how
the modified pipeline performed in comparison to the origi-
nal. On top of that, we examine how alternative data collec-
tion approaches compare to the standard rigid grid data.

5.1 Improvements on Data Preprocessing
Table 1 summarizes the errors obtained across various LED
configurations. Initially, we establish a baseline using a
model trained on raw data (column ”Raw data”), providing an
initial assessment of the challenges posed by each scenario.

Confs 1, 2, 4, and 5 yield reasonably accurate results, all
achieving average errors under 10 cm. In contrast, Confs 3

2TensorFlow – https://tensorflow.google.cn/
3scikit-learn – https://scikit-learn.org/stable/index.html
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Table 1: Summary of average errors (in cm) arising from the original and revised cleaning-augmentation methods. The table also shows
error variations when measured against raw, clean, and source datasets (the dataset on which the network was trained). Improvements of the
revised pipeline compared to the original are highlighted.

Raw data Clean data Augmented data (from 16 cm)
Original Revised Original Revised

Error against Raw Raw Clean Raw Clean Raw Clean Aug. Raw Clean Aug.
Conf 1 1.64 5.84 0.76 6.06 0.79 7.86 1.70 0.61 6.68 1.38↓18.8% 0.60
Conf 2 4.55 13.66 2.59 13.52 2.91 14.39 4.66 2.03 14.01 4.09↓12.2% 2.04
Conf 3 40.53 50.12 25.04 49.65 24.20 51.49 27.13 22.40 51.20 26.93↓0.7% 22.41
Conf 4 2.55 7.14 1.43 7.61 1.51 9.84 3.33 1.52 8.71 3.08↓7.5% 1.44
Conf 5 6.61 11.02 5.78 11.32 5.93 15.96 9.23 3.52 16.30 9.44↑2.3% 3.43
Conf 6 12.28 17.62 10.68 17.26 10.17 25.14 16.08 6.10 25.21 15.31↓4.8% 6.03

0 31 2 4 5

6 97 8 10 11

12 1513 14 16 17

18 2119 20 22 23

24 2725 26 28 29

30 3331 32 34 35

1
2
3
4
5
6

Figure 8: Evaluated LED configurations. The colors denote the sub-
sets of LEDs used for each experiment. For example, Conf 1 (light
blue) used all LEDs, while Conf 6 (black) only used the four middle
ones.

and 6 prove to be the most challenging, with average errors
of 40 cm and 12 cm, respectively. This increased error can
be attributed to the limited visibility of LEDs from many po-
sitions within the testbed. For instance, predicting the exact
measurement position for LED 7 in Conf 3 (see Figure 8) on
an arbitrary ring of equal RSS values around it is inherently
difficult.

Next, we compare the original data cleaning pipeline to
the revised one (column ”Clean Data”), which incorporates
more accurate LED positioning and additional inverse dis-
tance weighting augmentation. Overall, the differences be-
tween the two methods are minimal. In some scenarios, one
method achieves slightly better results, but the differences are
generally insignificant. This minimal impact is likely because
only a few points required reconstruction, limiting the overall
effect of the modifications.

The final column presents the errors for the augmented
data, with resolutions refined from 16 cm to 1 cm. We present
the results at 16 cm granularity to highlight the most signif-
icant differences, as denser sample sets (≤8 cm) show only
negligible error differences. We expect these differences to
become more pronounced with even sparser datasets.

Errors against clean data are highlighted for both imple-

mentations to illustrate the accuracy of the pipeline in recon-
structing the data. The revised method reduces errors by up
to 20% compared to the original. This improvement is most
noticeable in the denser configurations: Confs 1, 2, and 4.
However, the improvement is much less significant for Confs
3 and 6, and for Conf 5, the error actually increased by 2.3%.

The likely reason for the less significant improvement in
Conf3 is that this scenario is particularly challenging, mak-
ing the behavior of the multi-layer perceptron (MLP) more
unpredictable. For Confs 5 and 6, the poorer performance
can probably be attributed to the use of the four central LEDs.
These LEDs were more difficult to reconstruct because they
are located very close to the central non-accessible area, hav-
ing fewer reference data points.

Several predictable trends follow from the results. Firstly,
errors against the training datasets decrease from raw to clean
to augmented data, which is expected: cleaning the data re-
moves noise, making it more structured and easier for the
MLP to learn its properties. When the data is sampled and
augmented, it becomes even simpler. Conversely, errors
against raw data are smallest when the MLP is trained on raw
data, and they increase when the data is cleaned and further
when it is sampled and augmented. This trend is expected, as
each step moves further away from the originally taken RSS
measurements.

Overall, we uphold the belief that augmentation is a vi-
able approach to achieve high-granularity datasets. The errors
were within 1-2 cm of the model trained on the entirety of the
clean dataset, except for Confs 5 and 6, where the differences
were slightly larger.

5.2 Alternative Sampling Strategies
We investigated how the augmentation of data from struc-
tured grid-like data (Figure 7a) compares to the augmentation
of data from uniformly distributed samples (Figure 7b), as
well as, created from samples that were normally distributed
around each LED (Figure 7d). Specifically, we examined two
scenarios: ∼1000 samples ≈ 8 cm resolution, and ∼250 sam-
ples ≈ 16 cm resolution. Table 2 presents the results obtained.

When comparing the sampling methods at around 1000
samples, the results are quite inconclusive. Random uniform
sampling performed comparably in Confs 1, 3 and 6. Conf
5 offered a minor improvement, while Conf 2 and especially
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Table 2: Comparison of accuracies between models trained on aug-
mented datasets constructed from structured, grid-like and from uni-
formly distributed samples.

Grid Uniform Normal
∼1000 samples

Conf 1 1.16 1.17↑0.9% 1.13↓2.6%
Conf 2 3.65 3.90↑6.8% 3.76↑3%
Conf 3 26.12 25.60↓2% 25.64↓1.8%
Conf 4 2.18 2.57↑17.9% 2.48↑13.8%
Conf 5 8.62 8.21↓4.8% 8.38↓2.8%
Conf 6 15.47 15.70↑1.5% 15.01↓3%

∼250 samples

Conf 1 1.38 1.54↑11.6% 1.42↑2.9%
Conf 2 4.09 4.87↑19.1% 5.02↑22.7%
Conf 3 26.93 27.19↑1% 27.42↑1.8%
Conf 4 3.08 3.97↑28.9% 3.69↑19.8%
Conf 5 9.44 9.66↑2.3% 10.05↑6.5%
Conf 6 15.31 16.86↑10.1% 18.73↑22.3%

Conf 4 performed worse compared to the grid data. Normal
LED-centered sampling performed all-around slightly better.
Confs 1, 2, 3, 4 and 6 were all within a couple of percent-
age points of the baseline. Curiously enough, Conf 4 again
achieved significantly worse performance.

Moving onto 250 samples, the results are more clear. Uni-
form samples performed slightly worse in Confs 3 and 5,
and significantly worse for other scenarios. For normally dis-
tributed samples the situation is quite similar except for Conf
1 where it did not perform that bad.

Overall, the general trend is that grid samples tend to result
in more accurate reconstruction of the dataset. When one is
allowed a bit more data collection, making denser measure-
ments around the LED position can offer improved accuracy.
On the other hand, uniform sampling is consistently inferior
to rigid grid data.

5.3 Concentrated data collection

In this experiment, we sampled the data points using the nor-
mal distribution positioned at the center of the testbed. The
goal was to evaluate whether this approach boosts the accu-
racy of the model in some area of more interest. Figure 9
presents a comparison of accuracies over the testbed area be-
tween normally distributed and the baseline grid data.

The model trained on the new dataset achieved worse av-
erage errors across all scenarios. However, Confs 1, 2 and 4
(denser TX topologies) seem to be confirming our hypothesis
– the area closer to the center testbed actually exhibit supe-
rior accuracies in comparison to grid data, while the areas
towards the edges and corners of the testbed achieve higher
average errors. Confs 5 and 6 tend to also adhere to a similar
trend. However, the errors near the center of the testbed are
quite similar. Lastly, it seems that Conf 3 is too unstable to
be able to draw any meaningful conclusions.

(a) Conf 1 (b) Conf 2

(c) Conf 3 (d) Conf 4

(e) Conf 5 (f) Conf 6

Figure 9: Comparison of error differences between two sampling
methods: grid sampling at 16 cm resolution and normal distribu-
tion sampling (approximately 250 samples) centered at the testbed’s
center. Blue regions indicate areas where the normal distribution
sampling method outperformed grid sampling, while red regions in-
dicate areas where grid sampling performed better.

5.4 Deployment on a microcontroller
To demonstrate the practical applicability of our work, we de-
ployed the trained MLP model on an Arduino Nano 33 BLE
Sense microcontroller. This deployment used a model trained
with clean data under Conf 1, utilizing all 36 LEDs. Initially,
the model size was 75 KB. After quantization, the model size
was reduced to 21 KB. The quantized model efficiently pro-
vides position predictions in under 2000 µs, illustrating its
suitability for real-time applications in IoT devices.

6 Responsible Research
6.1 Reproducibility
In order to make our research reproducible, we have provided
all external software and configuration parameters that were
part of the experiments. Using those, any knowledgeable per-
son should be able to reproduce our methods. Additionally,
the source code is available to view online4. However, due to

4https://github.com/Trzyq0712/TinyML-VLP
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time constraints it is poorly maintained and not documented
well.

6.2 Usage of Generative AI
Throughout the project, generative AI was used to get to
know the basic syntax of the tensorflow and matplotlib li-
braries, as those were outside the area of our expertise. Addi-
tionally, large language models helped with LATEX, including
writing small scripts and formatting tables.

Lastly, GPT models were used to improve the readability
and flow of the text. They were tasked to revise paragraphs of
the paper to avoid stylistic issues such as repetitions and poor
sentence structure. The output of the models were then fur-
ther tweaked manually to match our preferred style of writing
and proofread to remove any inaccuracies.

6.3 Ethical Concerns
Visible light positioning (VLP) systems only record received
signal strength (RSS) data, which is non-sensitive and does
not allow for the identification of individuals. While there
is a potential for surveillance, this would require individuals
to carry a microcontroller equipped with a photodiode, and
it would only be effective within the pre-mapped area of a
building.

Moreover, since VLP systems utilize LEDs operating
within the visible light spectrum, they pose no inherent health
risks to humans. However, it is important to consider the
safety of photosensitive individuals, as the rapid blinking of
LEDs in a deployed system could trigger unwanted reac-
tions.

7 Discussion
To fully interpret the results, it is essential to place them in a
broader context and compare them with previously reported
findings. Additionally, it is important to address potential
shortcomings of the approach and offer explanations for any
unexpected behaviors.

7.1 Data Preprocessing Pipeline
We successfully reproduced the results of Zhu et al. [13]
for the MLP trained on raw data, with errors differing by at
most 2 cm across all 6 TX configurations. However, when
evaluating the results for clean data, Confs 1 and 4 slightly
outperformed the solution proposed by Zhu et al. In con-
trast, Confs 2, 3, 5, and 6 exhibited errors up to three times
worse than the previous work. This indicates that the smaller
96-perceptron network performs comparably well with the
larger 2.5k-perceptron network in dense LED deployment
scenarios. However, in sparser scenarios, the smaller network
seemed to struggle to capture subtle fluctuations in the data,
resulting in reduced accuracy.

As a general guideline, when designing a VLP system us-
ing RSS values for localization, it is especially important to
ensure that at least three different LEDs are visible from every
position. This allows the network to utilize principles of tri-
lateration[16] to recognize these positions effectively. While
denser TX deployments can achieve this, an alternative, more
cost-effective approach is to employ lenses with a wider field
of view (FoV).

Another consideration is the performance of a model
trained on clean data in real-world deployments. As shown
in Table 1, the model trained on raw data performs best on
raw data as well. This could be due to the model either learn-
ing to disregard noise or overfitting to it. Deploying a model
trained on clean data involves a tradeoff between speed and
accuracy: either longer measurements are taken to suppress
noise, or a single measurement is taken, accepting lower ac-
curacy for reduced latency.

Finally, we recognize the need for a more challenging
dataset to further evaluate and refine our methods. Although
the testbed occasionally generated a substantial amount of
noise, it had very little ambient light and no multipath re-
flections. The primary advantage of the RSS method is its
ability to perform effectively in those more complex environ-
ments. Therefore, it would be worthwhile to experiment with
the proposed pipeline on more varied datasets.

7.2 Alternative Sampling Methods

While there was no expectation for uniform sampling, con-
trary to our initial expectations, normal sampling did not out-
perform rigid grid data. The dataset constructed from LED-
centered normally distributed data points exhibited notably
poor performance. Specifically, using fewer samples resulted
in disproportionately worse outcomes compared to the base-
line.

It was anticipated that normally distributed data would
at least match the performance of uniformly sampled data.
However, this assumption did not hold, particularly at 250
samples, where normally distributed data led to significantly
worse accuracies in some configurations. This indicates
deeper underlying issues.

Visual inspection of the augmented datasets revealed es-
timation inaccuracies. It appeared that the LED’s light was
spilling into the surrounding area. This phenomenon can be
explained by the inverse-distance weighting (IDW) method
used to estimate points outside the LED’s cone of light. IDW
considers only the distance of samples, not their direction.
Consequently, with a normal distribution, more samples are
concentrated close to the light source, introducing bias in the
estimation.

Several approaches can address this issue. One approach
is to select samples in a more balanced manner. For instance,
when determining the neighborhood, we can strive to balance
the number of source samples from each quadrant around the
point.

Another approach involves choosing an alternative estima-
tion method, such as fitting some 2D function to the neigh-
borhood around the sample point.

Finally, a hybrid approach could be employed. This in-
volves using grid data collection with variable resolution. For
example, within the LED’s neighborhood, samples could be
collected at a 6 cm resolution, while using a 20 cm resolution
elsewhere. This approach leverages the advantages of grid-
structured data, which works effectively with IDW, while at
the same time being more accurate where the data is more
varied.
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7.3 Usage of MLP for Evaluating Data
Augmentation

There is a question to be asked about the viability of an
MLP to assessing the quality of the augmentation. If the end
goal is not necessarily to use a multi-layer perceptron net-
work, but some other algorithm, this choice becomes ques-
tionable. MLPs are not easily explainable and quite unpre-
dictable. They are somewhat resistant to noise and are able
to generalize even when one would not necessarily expect it.
It might be worth considering some other benchmark to com-
pare augmentation pipelines.

8 Conclusions
We proposed a revised cleaning and augmentation pipeline,
including an updated scoring function to retain more relevant
data points and a method for estimating LED positions. These
improvements, combined with our updated estimation algo-
rithm, enabled more accurate RSS data reconstruction. Our
benchmarks demonstrated that these modifications increase
the accuracy of a multi-layer perceptron (MLP) by up to 20%.
Furthermore, we successfully deployed the model on an Ar-
duino Nano microcontroller.

Additionally, we experimented with alternative data acqui-
sition strategies. Our findings indicated that collecting data
in a rigid grid remains the superior method with the current
RSS interpolation algorithm. However, collecting data more
extensively in chosen areas improved the local accuracy, par-
ticularly in denser LED deployments.

9 Future Work
Several opportunities for future research can be extrapolated
from this study. Firstly, it is crucial to test these methods
in more challenging environments where light reflection and
multipath effects are present. Secondly, there is a recognized
need for improved interpolation algorithms capable of han-
dling non-grid data. A thorough analysis of different estima-
tion methods and selection of the most promising one could
substantially improve the accuracy of our experiments. Addi-
tionally, exploring hybrid approaches to data collection, such
as variable density grids, would be valuable due to their rela-
tively straightforward deployment and potential for improved
accuracy.
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monte, and J. Huerta, “Comprehensive analysis of dis-
tance and similarity measures for wi-fi fingerprinting
indoor positioning systems,” Expert Systems with Ap-
plications, vol. 42, no. 23, pp. 9263–9278, 2015. DOI:
10.1016/j.eswa.2015.08.013.

[7] H. Chan, C.-W. Chow, L.-S. Hsu, et al., “Utilizing
lighting design software for simulation and planning
of machine learning based angle-of-arrival (AOA) vis-
ible light positioning (VLP) systems,” IEEE Photonics
Journal, vol. 14, no. 6, 2022, ISSN: 1943-0655. DOI:
10.1109/JPHOT.2022.3212628.

[8] Z. Xu, C. Gong, and B. Bai, “Visible light positioning
and communication,” in Visible Light Communication,
2015, pp. 88–106. DOI: 10.1017/CBO9781107447981.
005. [Online]. Available: https : / /www.scopus . com/
inward/record.uri?eid=2-s2.0-84952648450&doi=10.
1017%2fCBO9781107447981.005&partnerID=40&
md5=3131adff8a9a2dbbf5d33ee3ea1755b5.

[9] Y.-C. Wu, C.-W. Chow, Y. Liu, et al., “Received-
signal-strength (RSS) based 3d visible-light-
positioning (VLP) system using kernel ridge
regression machine learning algorithm with sig-
moid function data preprocessing method,” IEEE

Access, vol. 8, pp. 214 269–214 281, 2020. DOI:
10.1109/ACCESS.2020.3041192.

[10] A. Gradim, P. Fonseca, L. Alves, and R. Mohamed,
“On the usage of machine learning techniques to im-
prove position accuracy in visible light positioning
systems,” presented at the 2018 11th International
Symposium on Communication Systems, Networks
and Digital Signal Processing, CSNDSP 2018, 2018.
DOI: 10.1109/CSNDSP.2018.8471773.

[11] P. Du, S. Zhang, C. Chen, A. Alphones, and W.-D.
Zhong, “Demonstration of a low-complexity indoor
visible light positioning system using an enhanced tdoa
scheme,” IEEE Photonics Journal, vol. 10, no. 4, 2018.
DOI: 10.1109/JPHOT.2018.2841831.

[12] S. Zhang, P. Du, C. Chen, and W.-D. Zhong, “3d in-
door visible light positioning system using RSS ra-
tio with neural network,” presented at the 23rd Opto-
Electronics and Communications Conference, OECC
2018, 2018. DOI: 10.1109/OECC.2018.8729887.

[13] R. Zhu, M. Van Den Abeele, J. Beysens, J. Yang, and
Q. Wang, “Centimeter-level indoor visible light po-
sitioning,” IEEE Communications Magazine, vol. 62,
no. 3, pp. 48–53, 2024. DOI: 10 .1109/MCOM.002 .
2300296. [Online]. Available: https : / / www. scopus .
com/inward/record.uri?eid=2- s2.0- 85179779242&
doi=10.1109%2fMCOM.002.2300296&partnerID=
40&md5=3bf9e7e87a4d4188c7d24b6d45fc42f3.

[14] J. Beysens, A. Galisteo, Q. Wang, D. Juara, D. Gius-
tiniano, and S. Pollin, “Densevlc: A cell-free mas-
sive mimo system with distributed leds,” in Proceed-
ings of the 14th International Conference on Emerg-
ing Networking EXperiments and Technologies, 2018,
pp. 320–332.

[15] I. Kasa, “A circle fitting procedure and its error analy-
sis,” IEEE Transactions on Instrumentation and Mea-
surement, vol. IM-25, no. 1, pp. 8–14, 1976, ISSN:
0018-9456. DOI: 10.1109/TIM.1976.6312298.

[16] V. Rekkas, L. Iliadis, S. Sotiroudis, et al., “Artificial
intelligence in visible light positioning for indoor IoT:
A methodological review,” IEEE Open Journal of the
Communications Society, vol. 4, pp. 2838–2869, 2023.
DOI: 10 . 1109 / OJCOMS . 2023 . 3327211. [Online].
Available: https : / /www.scopus .com/inward/record .
uri ? eid = 2 - s2 . 0 - 85176335454 & doi = 10 . 1109 %
2fOJCOMS . 2023 . 3327211 & partnerID = 40 & md5 =
1d9d7b24ebcc828cc744030d9328ed91.

10

https://doi.org/10.1145/3143361.3143385
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85040241402&doi=10.1145%2f3143361.3143385&partnerID=40&md5=4cdfcd75fd89c10902c601948b15ba8e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85040241402&doi=10.1145%2f3143361.3143385&partnerID=40&md5=4cdfcd75fd89c10902c601948b15ba8e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85040241402&doi=10.1145%2f3143361.3143385&partnerID=40&md5=4cdfcd75fd89c10902c601948b15ba8e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85040241402&doi=10.1145%2f3143361.3143385&partnerID=40&md5=4cdfcd75fd89c10902c601948b15ba8e
https://doi.org/10.1109/TIM.2021.3074403
https://doi.org/10.1109/ICMLC.2010.5580783
https://doi.org/10.1109/ICMLC.2010.5580783
https://doi.org/10.1109/CVPR.2017.694
https://doi.org/10.1016/j.eswa.2015.08.013
https://doi.org/10.1109/JPHOT.2022.3212628
https://doi.org/10.1017/CBO9781107447981.005
https://doi.org/10.1017/CBO9781107447981.005
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84952648450&doi=10.1017%2fCBO9781107447981.005&partnerID=40&md5=3131adff8a9a2dbbf5d33ee3ea1755b5
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84952648450&doi=10.1017%2fCBO9781107447981.005&partnerID=40&md5=3131adff8a9a2dbbf5d33ee3ea1755b5
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84952648450&doi=10.1017%2fCBO9781107447981.005&partnerID=40&md5=3131adff8a9a2dbbf5d33ee3ea1755b5
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84952648450&doi=10.1017%2fCBO9781107447981.005&partnerID=40&md5=3131adff8a9a2dbbf5d33ee3ea1755b5
https://doi.org/10.1109/ACCESS.2020.3041192
https://doi.org/10.1109/CSNDSP.2018.8471773
https://doi.org/10.1109/JPHOT.2018.2841831
https://doi.org/10.1109/OECC.2018.8729887
https://doi.org/10.1109/MCOM.002.2300296
https://doi.org/10.1109/MCOM.002.2300296
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85179779242&doi=10.1109%2fMCOM.002.2300296&partnerID=40&md5=3bf9e7e87a4d4188c7d24b6d45fc42f3
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85179779242&doi=10.1109%2fMCOM.002.2300296&partnerID=40&md5=3bf9e7e87a4d4188c7d24b6d45fc42f3
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85179779242&doi=10.1109%2fMCOM.002.2300296&partnerID=40&md5=3bf9e7e87a4d4188c7d24b6d45fc42f3
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85179779242&doi=10.1109%2fMCOM.002.2300296&partnerID=40&md5=3bf9e7e87a4d4188c7d24b6d45fc42f3
https://doi.org/10.1109/TIM.1976.6312298
https://doi.org/10.1109/OJCOMS.2023.3327211
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85176335454&doi=10.1109%2fOJCOMS.2023.3327211&partnerID=40&md5=1d9d7b24ebcc828cc744030d9328ed91
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85176335454&doi=10.1109%2fOJCOMS.2023.3327211&partnerID=40&md5=1d9d7b24ebcc828cc744030d9328ed91
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85176335454&doi=10.1109%2fOJCOMS.2023.3327211&partnerID=40&md5=1d9d7b24ebcc828cc744030d9328ed91
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85176335454&doi=10.1109%2fOJCOMS.2023.3327211&partnerID=40&md5=1d9d7b24ebcc828cc744030d9328ed91

	Introduction
	Background
	DenseVLC RSS Dataset
	RSS Data Cleaning and Augmentation

	Approach
	Improving Data Cleaning
	Improving Data Reconstruction
	Experimentation on Spatially Irregular Data

	Experimental Setup
	RSS Dataset for Experimentation
	Experimental Environment

	Evaluation
	Improvements on Data Preprocessing
	Alternative Sampling Strategies
	Concentrated data collection
	Deployment on a microcontroller

	Responsible Research
	Reproducibility
	Usage of Generative AI
	Ethical Concerns

	Discussion
	Data Preprocessing Pipeline
	Alternative Sampling Methods
	Usage of MLP for Evaluating Data Augmentation

	Conclusions
	Future Work

