
Analysis of components in the manifest file of spam call blocking applications on
Android

Colin Busropan
Supervisors: Dr. Apostolis Zarras, Dr. Yury Zhauniarovich
EEMCS, Delft University of Technology, The Netherlands

22-6-2022

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering

Abstract
Spam calls are a widespread problem as people re-
ceive about 14 spam calls per month on average.
In response, tens of applications are available in
Google’s Play Store that aim to block these calls.
While these apps have hundreds of millions of in-
stallations, there’s a lack of research into these ap-
plications. Research has been done on the user ex-
perience of these apps, but the inner workings of
the apps have not been explored. Analyzing the in-
ner workings can provide useful insights to com-
bat spam calls more effectively. In this paper, we
analyze the elements of the AndroidManifest.xml
file of a set of 10 spam call blocking applications
to identify aspects that are related to the blocking
of spam calls and to find commonalities among the
apps. Occurrences of specific elements and their
attributes are summarized in this paper. Permis-
sions related to managing phone calls and access-
ing the internet were found to be common, and ser-
vices were identified that screen and manage phone
calls. 2 apps were found to allow other apps to use
their phone number information database, but this
analysis did not identify usages by other apps. A
complete analysis of all available spam call block-
ing apps could show the general usage of these and
other components.

1 Introduction
In 2021, people received about 14 spam calls per month on
average (Hiya, 2022b). Unknowing victims sometimes lose
thousands of euros while also suffering from the mental stress
afterwards (van der Veldt, 2022). Spam calls are becoming a
more prevalent problem as scammers use more sophisticated
methods to automate these calls, making it easier to target
more people. In the US alone, more than 68 million Ameri-
cans have been estimated to have fallen for phone scams be-
tween May 2021 and May 2022, having lost almost $40 bil-
lion USD in total (Truecaller, 2022b).

In response to this problem, tens of applications are avail-
able in Google’s Play Store to automatically block these mali-
cious phone calls. However, there is not much research avail-
able on these applications. Sherman et al. (2020) analyzed
spam call blocking applications but focused on the user ex-
perience. Pandit et al. (2018) performed a study on existing
blocklists, which are lists containing a large number of mali-
cious phone numbers, to gain more insight into their efficacy
in blocking scam calls. Still, there is no available study that
explores what applications actually use to decide if a call is
malicious and whether or not applications make use of these
blocklists. Most research in this area instead focuses on the
techniques to block spam calls, such as the work by Salehin
and Ventura (2007) and Li et al. (2018).

Questions that still remain are about what these applica-
tions have in common, what they commonly use to decide
whether a phone call is spam or not, and where they get
their information about a phone number from. Answering

these questions could for example help future developers or
researchers in creating a spam call blocker that is more effec-
tive than others. In general, it could also provide researchers
with more insight into spam call-blocking applications before
they perform research into other aspects of these applications.

In this research, the AndroidManifest.xml file of 10 spam
call blocking applications will be investigated to find the com-
monalities and differences of these applications, and to find
specific aspects related to the blocking of spam calls.

The paper is organized as follows. Section 2 provides back-
ground information about the components in the Android-
Manifest.xml file. Section 3 discusses related research on
manifest files and spam call blocking applications. Section 4
describes the methodology and the tools that were used. Sec-
tion 5 reports the apps that have been analyzed and the find-
ings for each of the analyzed components in the manifest file.
Discussion of the findings has also been incorporated in Sec-
tion 5. Section 6 reviews the reproducibility of this research
and ethical aspects of reverse-engineering. Finally, Section 7
highlights the conclusions and explores the limitations of this
work.

2 Background
2.1 APK and manifest file
An Android application is distributed in the form of an An-
droid Package. This is an archive file with the file extension
.apk, and is referred to as an APK.

The AndroidManifest file is an XML file within the APK
that describes essential information to build and run the ap-
plication on Android. In this paper, we concentrate on the
following elements in the manifest file:

• Activities are essentially the different views of an appli-
cation. All activities must be declared in the manifest
file for them to be run by the system.

• Services are described as ”a facility for the application
to tell the system about something it wants to be doing in
the background” and as ”a facility for an application to
expose some of its functionality to other applications”
(Google, 2022d). An example is playing music in the
background, even when the user switches to another ap-
plication.

• Broadcast receivers are components of an app that
specify to the Android system that it wants to be noti-
fied when a certain broadcast is sent, such as the device
starting to charge.

• Content providers encapsulate data managed by the ap-
plication and provide other applications structured ac-
cess to it.

• Required permissions are those that the app requires to
operate, such as camera or contacts access.

• Declared permissions are those that the app can define
to protect its components from being accessed.

• API Levels indicate different versions of the Android
platform. The minimum API level, the target API level,

and the maximum API level can be indicated in the man-
ifest file to check compatibility with a device. How-
ever, indicating a maximum API level is not recom-
mended since new Android versions are designed to be
backward-compatible, and indicating a maximum may
unnecessarily prevent an app from being installed even
though it should be compatible.

2.2 Component attributes
Activities, broadcast receivers, content providers, and ser-
vices are the 4 different types of app components in Android
apps. These components can declare attributes in the mani-
fest file and this subsection describes the attributes that were
analyzed in this research. Not all attributes are present in each
component type.

• directBootAware indicates if the component can run be-
fore the user unlocks the device.

• enabled indicates if the component can be instantiated
by the system.

• exported indicates if the component is available to other
apps.

• foregroundServiceType is an attribute for services that
run in the foreground and that specify a particular use
case, such as phoneCall or microphone.

• process indicates the name of the process in which the
component should run if it is not in the default process
created by the application.

• permission indicates the name of the permission that the
calling entity must have to target the component.

• multiprocess indicates if an activity can run in multiple
processes.

• syncable indicates if the data from a content provider is
to be synchronized with data on a server.

Content providers can also protect their data by specifying
a readPermission or writePermission that clients must
have. The grantUriPermissions can specify if these re-
strictions can temporarily be overcome for one-time access.

2.3 Intent filters and actions
Intent filters and actions are also analyzed in this research.
Activities, broadcast receivers, and services can contain in-
tent filters to receive specific intents. An Intent is a mes-
saging object that can request an action from another app
component. If the contents of an intent match an intent fil-
ter, the corresponding activity or service can be started, or a
broadcast can be delivered to the broadcast receiver.

An action is part of an intent and specifies the action that
took place in case of a broadcast intent. For activities and
services, it specifies the action to perform.

3 Related work
The manifest file of Android applications is analyzed in many
research works. Often times it is analyzed to detect or char-
acterize malware in applications, such as the work done by
Dashevskyi et al. (2020) on apps that mine cryptocurrency.

Furthermore, the work done by Jha et al. (2017) focuses on
detecting mistakes in the manifest file of more than 10,000
apps. They developed a tool that takes a manifest file as input
and detects errors such as incorrect attribute values for given
components.

With respect to the research on spam call blocking, Pan-
dit et al. (2018) analyzed multiple data sources with phone
numbers that were reported as spam and analyzed the effec-
tiveness of those data sources in blocking future unwanted
calls. They also compared them to publicly available black-
lists from spam call blocking applications Truecaller (True-
caller, 2022a) and Youmail (Youmail, 2022), but did not dive
deeper into the workings of these applications.

Sherman et al. (2020) did analyze spam call blocking ap-
plications but focused on the efficacy of the user interface
and user experience in alerting users of spam calls. Although
some activities were investigated, they did not analyze the
properties of activities in the manifest file, nor that of other
components.

4 Analysis of the AndroidManifest file
The first step before analyzing the manifest file of an app is
to obtain its APK file. There are various websites available
to obtain APK’s and in this research, apkcombo.com is used.
The manifest file of an app can then be obtained from its APK
file. For the analysis of the APK, Androguard (Desnos et al.,
2018) is used, which is a tool to interact with Android files
in an interactive Python shell. To manually inspect the man-
ifest file, Apktool (Wiśniewski & Tumbleson, 2022) is used
to obtain the decompiled file, although the raw content is also
available through Androguard. The former was used for the
convenience of getting the file directly instead of creating a
file manually from the raw content. Furthermore, the An-
droid documentation (Google, 2022a), other third-party doc-
umentation, Play Store information, and information on the
websites corresponding to the apps, were used to understand
the purpose of the obtained data.

5 Findings
5.1 App selection
10 Android apps were selected by searching for apps that
mention terms related to ‘spam call blocker’ in Google’s Play
Store in April 2022. The apps selected are shown in Table
1 with their unique package name, since there could be mul-
tiple apps with a similar app name in the Play Store. Some
apps were not selected due to them being paid apps, having
solely a manual blocklist, or being exclusive to customers of
a certain phone carrier. The number of downloads indicated
in the Play Store and the ratings given by users of these apps
are also summarized in Table 1.

The following findings in this subsection were obtained
from the websites of the apps to identify data sources con-
taining phone number information that the apps may use or
provide. A closer look can then be given to specific instances
of components in the analysis of the manifest file.

Information on Hiya’s website (Hiya, 2022a) showed that
any developer could integrate some of Hiya’s spam call
blocking functionalities in their app. However, none of the

App Downloads Rating (/5.0) versionCode versionName Package name
Showcaller 10M+ 4.3 266 2.2.5 com.allinone.callerid
CallApp 100M+ 4.2 1806 1.806 com.callapp.contacts
Caller ID 10M+ 4.4 151 1.6.5 com.callerid.block
Call Control 5M+ 4.1 40142 2.12.1 com.flexaspect.android.everycallcontrol
Stop Calling Me 1M+ 4.3 382 2.3.21 com.mglab.scm
telGuarder 1M+ 3.7 748 1.0.41 com.telguarder
Truecaller 500M+ 4.5 1221006 12.21.6 com.truecaller
Call Blocker 100K+ 4.4 129 2.4 com.unknownphone.callblocker
Hiya 10M+ 4.2 110001 11.0.1-8647 com.webascender.callerid
Should I Anwer? 1M+ 4.4 191 0.7.191 org.mistergroup.shouldianswer

Table 1: The number of downloads, Play Store ratings, versionCode, versionName, and package name of the analyzed applications.

other apps’ manifest components showed usage of Hiya’s
functionalities.

Similarly, Call Control was found to provide an API and
a content provider to request information about a caller (Call
Control, 2022), but none of the other apps were found to make
use of this. Subsection 5.7 elaborates on this content provider.

Moreover, Should I Answer? (ShouldIAnswer, 2022), tel-
Guarder (telGuarder, 2022), and Call Blocker (unknown-
phone.com, 2022) allow anyone to see a report about a phone
number on their website to assess the trustworthiness, but
they were not found to provide an API.

5.2 Required permissions
The number of permissions required by each app is shown in
Table 4, with Truecaller requiring the most permissions.

All analyzed apps used the permissions in Table 2.
ACCESS NETWORK STATE and INTERNET are required permis-
sions to access the internet, which are for example necessary
to retrieve (up-to-date) blocklists or ads. The CALL PHONE,
READ CALL LOG and READ PHONE STATE permissions are re-
quired in order to make new calls, view previous calls, and
monitor the status of calls and cellular network informa-
tion. READ CONTACTS is also necessary to view the user’s
contacts and know which contacts should never be blocked.
RECEIVE BOOT COMPLETED allows the apps to start running
as soon as the system has finished booting up, and as such can
start receiving phone calls. WAKE LOCK is in place to prevent
the phone from sleeping, for instance during a call. Lastly,
the BIND GET INSTALL REFERRER SERVICE permission al-
lows installation information to be retrieved from the Play
Store, such as the date of installation and version.

Permission

android.permission.ACCESS NETWORK STATE
android.permission.CALL PHONE
android.permission.INTERNET
android.permission.READ CALL LOG
android.permission.READ CONTACTS
android.permission.READ PHONE STATE
android.permission.RECEIVE BOOT COMPLETED
android.permission.WAKE LOCK
com.google.android.finsky.permission.BIND GET INSTALL REFERRER SERVICE

Table 2: The permissions that were required by all apps.

Other permissions were also required frequently. 9 out of
the 10 apps declared the BILLING permission, enabling the

apps to sell digital products and content. The CallApp and tel-
Guarder app were the only apps that surprisingly did not re-
quire the ANSWER PHONE CALLS permission. The ACCESS -
COARSE LOCATION and ACCESS FINE LOCATION permission
were required by respectively 4 and 3 apps, as seen in Table
3. Interestingly, Showcaller did not require location permis-
sions, even though its privacy policy indicates that the loca-
tion of the device can be collected.

ACCESS COARSE
LOCATION

ACCESS FINE
LOCATION

CallApp X X
Call Control X
telGuarder X
Truecaller X X
Hiya X

Table 3: The location permissions required by the apps. The other 5
apps did not require these permissions.

Furthermore, the Truecaller app required camera access,
which is likely due to the fact that this app also provides a chat
service in which images can be sent. Some apps also serve as
an SMS app and therefore require permissions to read and
send SMS messages. Interestingly, the maxSdkVersion at-
tribute of the CALL PHONE permission for telGuarder was set
to 27, meaning that the system will not grant this permission
for devices with a higher API level.

5.3 Declared permissions
Only two apps were found to have declared permis-
sions, Truecaller and CallApp. Truecaller declared 9
permissions, such as com.truecaller.permission.-
USE NUMBER SERVICE and com.truecaller.-
permission.SDK ACTION HANDLER, which is likely
required for apps that make use of their mobile number ver-
ification service (Truecaller, 2022c). CallApp only declares
com.callapp.contacts.permission.MAPS RECEIVE as
permission.

5.4 Targeted API Levels
All analyzed apps target an Android API level released in or
after 2018. API levels 29 (2019) and 30 (2020) were targeted

Permissions Services Broadcast receivers

App amount amount permissions direct
BootAware

enabled exported
foreground
ServiceType

external
process amount permissions direct

BootAware
enabled exported

external
process

Showcaller 34 30 12 3 28 3 0 2 15 2 0 10 2 0
CallApp 52 36 20 3 34 4 2 0 20 3 0 15 6 0
Caller ID 34 27 8 2 25 4 0 2 18 3 0 13 1 0
Call Control 29 25 10 2 24 6 0 0 21 3 1 16 3 1
Stop Calling Me 37 17 5 1 15 3 0 0 14 1 0 9 3 0
telGuarder 15 9 3 5 9 1 0 0 12 0 0 7 0 0
Truecaller 79 72 33 1 69 10 4 1 60 10 2 54 8 0
Call Blocker 15 9 3 1 9 2 0 0 11 1 0 6 1 0
Hiya 25 23 13 3 22 3 0 0 23 4 0 17 6 0
Should I Answer? 16 12 4 2 12 3 1 0 10 3 1 10 4 0

Table 4: Summary of the number of instances of permissions, services, and broadcast receivers present in each app, with the number of
instances of attributes appearing in those components. Specifically, the following is indicated: total number of required permissions, the
number of instances with the exported, directBootAware, and enabled attribute set to true, and the number of services that specified a
foregroundServiceType or run in a non-default process.

most frequently, as can be seen in Table 5. The minimum API
level was 21 (2014) for 7 apps, 23 (2015) for 2 apps, and 16
(2012) for 1 app.

App Minimum API level Targeted API level

Showcaller 21 31
CallApp 21 29
Caller ID 16 30
Call Control 21 29
Stop Calling Me 21 32
telGuarder 21 30
Truecaller 23 30
Call Blocker 21 28
Hiya 21 29
Should I Answer? 23 29

Table 5: The minimum and the targeted Android API level of the 10
apps.

5.5 Services
The 10 most commonly declared services are all services
from external libraries. These include libraries for app usage
measurements, database management, and advertisements.

The number of services and number of instances of at-
tributes that are declared by each app are shown in Table 4,
again with Truecaller declaring the largest amount of ser-
vices. The directBootAware attribute was enabled for
a few services, which were mainly for Firebase (Google,
2022c), a development platform for back-end functionalities.

7 services in total declared at least one foreground-
ServiceType, indicating a specific use case for a fore-
ground service. Truecaller contained 4 services with both
phoneCall and microphone as foregroundServiceType.
The phoneCall service type was also present in CallApp and
Should I Answer?. Lastly, CallApp declared a service with the
dataSync service type.

All permissions that were required by services are shown
in Table 6, with their occurrences. The most appearing per-
mission BIND JOB SERVICE is a required permission for any
job service, which are services that execute jobs. Notably,
the BIND SCREENING SERVICE is a permission required for
services that screen incoming calls, meaning that the service

Service permission Occurrences

android.permission.BIND JOB SERVICE 79
com.google.android.gms.auth.api.signin.permission.
REVOCATION NOTIFICATION 6

android.permission.BIND SCREENING SERVICE 6
android.permission.BIND INCALL SERVICE 5
android.permission.BIND NOTIFICATION LISTENER SERVICE 4
android.permission.BIND ACCESSIBILITY SERVICE 3
android.permission.SEND RESPOND VIA MESSAGE 2
com.google.android.gms.permission.BIND NETWORK TASK SERVICE 2
android.permission.BIND REMOTEVIEWS 1
com.truecaller.permission.USE NUMBER SERVICE 1
android.permission.BIND CHOOSER TARGET SERVICE 1
android.permission.BIND TELECOM CONNECTION SERVICE 1

Table 6: All permissions required for services.

can choose to block a call by letting it go to voicemail or let
the call go through to the user. This type of service also al-
lows developers to provide a custom user interface containing
identifying information of a call. Not all apps have such a ser-
vice, so they may be using other means to achieve this func-
tionality. Similarly, the BIND INCALL SERVICE is a required
permission for apps that implement the InCallService, a
service for managing phone calls. Not all apps implemented
this service, which means that these apps cannot function as
the default dialer/phone app.

Intent filter action Occurrences

com.google.firebase.MESSAGING EVENT 14
android.telecom.CallScreeningService 6
android.telecom.InCallService 5

Table 7: The top 3 intent filter actions for starting a service.

5.6 Broadcast receivers
Only a handful of broadcast receivers that were de-
fined in the manifest file appeared in more than 1 app.
The only broadcast receiver declared in all apps was
Google’s AppMeasurementReceiver, which is used to
monitor how users engage with the app. Furthermore,
all apps except Should I Answer? declared broadcast
receivers that prevent background work from being
done unless the system broadcasts a message such as
the battery not being low anymore. The following 6

broadcast receivers were related to this: androidx.work.-
impl.background.systemalarm.ConstraintProxy-
$BatteryChargingProxy, ConstraintProxy$Battery-
NotLowProxy, ConstraintProxy$StorageNotLowProxy,
ConstraintProxy$NetworkStateProxy, Reschedule-
Receiver, and ConstraintProxyUpdateReceiver.

5 apps also seemed to make use of Facebook’s API as they
declared a broadcast receiver for when an access token ex-
pires.

All apps declared some custom broadcast receivers, but
none of them declared a broadcast receiver that listens for
broadcasts from another spam call blocking app.

Broadcast receivers with the frequency of attributes are
summarized in Table 4. Truecaller again defined the most
broadcast receivers, of which 2 were directBootAware.
These components were related to Huawei’s API. The other
2 directBootAware receivers were custom broadcast re-
ceivers defined by the app.

A number of broadcast receivers were protected by per-
missions, which can be found in Table 8. For instance, the
BROADCAST SMS permission is required such that the app can
be certain that an SMS RECEIVED broadcast originated from
the system. Similarly, the most frequent permission com.-
google.android.c2dm.permission.SEND is for broad-
cast receivers facilitating communication between apps and
server applications through Google Cloud Messaging.

Permissions Occurrences

com.google.android.c2dm.permission.SEND 9
android.permission.DUMP 5
android.permission.BROADCAST SMS 4
android.permission.INSTALL PACKAGES 4
android.permission.BROADCAST WAP PUSH 3
com.truecaller.permission.PROCESS PUSH MSG 2
com.truecaller.permission.SDK ACTION HANDLER 1
com.truecaller.permission.ACTION HANDLER 1
com.hiya.hiyaconfig.permission 1

Table 8: The permissions that broadcast senders need to have for
broadcast receivers to receive the broadcast.

Table 9 lists the top 3 system event subscriptions for
broadcast receivers. The CONNECTIVITY CHANGE event is
important to monitor the network connectivity, and the
PHONE STATE event monitors the phone state and will, for
example, indicate if an incoming call arrives.

Android system event Occurrences

android.intent.action.BOOT COMPLETED 19
android.net.conn.CONNECTIVITY CHANGE 13
android.intent.action.PHONE STATE 10

Table 9: The top 3 system event subscriptions of broadcast receivers.

5.7 Content providers
Most of the common content providers that were found
seemingly did not actually provide content and were added

through dependencies on libraries. The most common con-
tent provider is Firebase’ FirebaseInitProvider, which is
actually in place to initialize its SDK (Firebase, 2016). They
claim that using content providers for this purpose is advan-
tageous since content providers are the first components ini-
tialized when an app is started. The SDK can then do its work
as long as the app process is alive.

Another advantage that they claim, is manifest merging.
When an Android library project defines a content provider in
its own manifest file, it is merged into the final manifest file.
Developers will then only need to declare a dependency to the
library, and they won’t have to write any code to initialize the
SDK. This is also the reason why external content providers
appear in the app’s manifest file.

Two other common content providers, MobileAdsInit-
Provider and FacebookInitProvider, likely serve a sim-
ilar purpose as FirebaseInitProvider.

As shortly mentioned before, Call Control declares a con-
tent provider that can provide information about a caller. This
com.callcontrol.datashare.DataShareProvider can
be accessed by other apps to see whether a phone call or SMS
message may be malicious, and what the caller ID may be
(Call Control, 2019). Normally, to use content providers, ap-
plications have to specify a ’read access’ permission for that
content provider in their manifest (Google, 2022b). How-
ever, the developers described that this DataShare content
provider requires a specific <meta-data> element to be
added in the manifest instead. Therefore, a manual inspec-
tion was done in the manifest file of the other applications to
find out if they made use of this content provider, but none of
them were found to make use of this.

Furthermore, the number of content providers and the pres-
ence of attributes are summarized in Table 10. For some
of the content providers, the multiprocess attribute indi-
cated that multiple instances of the content provider are cre-
ated if the app runs in multiple processes. None of the
content providers, however, specify a specific process they
should run in, indicated by the process attribute. The
directBootAware attribute was again set mainly for Fire-
base components. The exported content providers for
the Call Control app were in place for the aforementioned
DataShare functionality, and were not protected by per-
missions. A number of content providers also indicated
that temporary access to its data can be granted through the
grantUriPermissions attribute.

5.8 Activities
The activities common in a number of apps were intended for
functionalities of Google and Facebook such as billing, log-
ging in, and advertisements. The MainActivity in the Call-
Control app specified intent filters for 5 actions related to the
DataShare functionality mentioned in subsection 5.7. The
online documentation about these actions indicated that other
activities can be accessed, such as the blocked list, lookup, or
number reporting activity.

Furthermore, the top 3 intent filter actions are shown in
Table 11. The DIAL action is intended to open the number
dialer interface of an app such that the user can initialize a

Content providers

App amount direct
BootAware

enabled exported
grantUri
Permissions

multiprocess permission process readPermission syncable writePermission

Showcaller 5 1 5 0 1 1 0 0 0 0 0
CallApp 11 1 11 0 1 2 0 0 0 0 0
Caller ID 7 1 7 0 2 2 0 0 0 0 0
Call Control 9 1 9 2 1 2 0 0 0 0 0
Stop Calling Me 7 1 7 0 1 0 0 0 0 0 0
telGuarder 6 1 6 0 0 1 0 0 0 0 0
Truecaller 19 0 18 2 6 2 0 0 2 0 1
Call Blocker 4 0 4 0 0 1 0 0 0 0 0
Hiya 9 1 9 0 3 2 0 0 1 0 0
Should I Answer? 4 0 4 0 0 1 0 0 0 0 0

Table 10: Summary of the number of instances of content providers present in each app, with the number of instances of attributes appearing
in those components. Specifically, the following is indicated: the number of instances with the directBootAware, enabled, exported,
grantUriPermissions, multiprocess, and syncable attribute set to true, and the number of times that a permission, process,
readPermission, and writePermission was declared.

call, with optionally a phone number that was supplied in the
intent.

Finally, the total number of activities can be seen in Ta-
ble 12, along with the number of instances of attributes. The
InCallActivity in Should I Answer? was the only activity
that was direct-boot aware. A small fraction of the activi-
ties were exported, allowing components of other apps to
launch the activity. None of the activities were protected by
permissions.

Intent filter action Occurrences

android.intent.action.VIEW 35
android.intent.action.MAIN 11
android.intent.action.DIAL 8

Table 11: The top 3 intent filter actions for starting an activity.

Activities

App amount direct
BootAware

enabled exported multiprocess permissions

Showcaller 84 0 82 3 0 0
CallApp 118 0 116 4 0 0
Caller ID 38 0 36 0 0 0
Call Control 27 0 27 2 0 0
Stop Calling Me 18 0 17 1 0 0
telGuarder 28 0 28 1 0 0
Truecaller 209 0 208 15 0 0
Call Blocker 21 0 21 1 0 0
Hiya 37 0 37 2 0 0
Should I Answer? 30 1 30 0 0 0

Table 12: Summary of the number of instances of activities present
in each app, with the number of instances of attributes appearing in
those activities. Specifically, the following is indicated: the number
of instances with the directBootAware, enabled, exported, and
multiprocess attribute set to true, and the number of times that a
permission was declared.

6 Responsible Research
It is important that research is transparent, truthful, and does
not omit details to present ’good’ results. One way to make
this clear is to show that the research is reproducible, such
that the results can be verified. Section 4 already described
the tools that were used, but as tools can change their behavior
through software updates, the version numbers of the tools are

provided in this section to show what is needed to reproduce
the results. The used Androguard version was 3.3.5 and the
used Apktool version was 2.6.1.

Similarly, the applications that were analyzed, can also be
updated which could mean that the manifest file is different
from the version analyzed in this research. Therefore, these
app versions are indicated in Table 1. The versionCode is
the internal version code that is used to check the downgrade
or upgrade relationship between two versions. This prevents
users from downgrading their app. The versionName is dis-
played to users, for instance in the Play Store, usually to give
an indication of the significance of the changes with respect
to other versions. The package names are also given in Table
1 to uniquely identify the app in the Play Store.

Furthermore, it is important to discuss the ethical aspects of
decompiling and reverse-engineering an application, as this is
done for each app. While this research aims to provide useful
information to improve spam call blocking and consequently
protect people from falling victim to malicious callers, the de-
velopers and the companies behind the spam call blocking ap-
plications are important stakeholders too. Decompilation or
reverse-engineering can threaten the investments of compa-
nies by revealing important functionality and therefore laws
exist to protect them (The European Parliament and the Coun-
cil of European Union, 2009). Although in this research de-
compilation of the applications is performed, I believe this re-
search does not reveal any important details as this is a rather
high-level analysis of the applications.

7 Conclusions & Future work
7.1 Conclusions
The main objective of this research was to analyze the mani-
fest file of a set of 10 spam call blocking applications to see
what they have in common and what components they contain
related to the blocking of spam calls. Various elements were
found that are reasonable for spam call blocking applications
to have. All apps required permissions to manage phone calls
and to use the internet, except for 1 app that did not require
the permission to answer phone calls. 6 apps were also found
to declare services to screen an incoming phone call, meaning
that they can choose to block a call instead of letting the call
go through to the user. Moreover, a common system event

that apps subscribed to was the PHONE STATE event, which
will be sent when the call state changes, such as the arrival of
an incoming call.

Furthermore, most content providers did not actually seem
to be utilized in the way content providers were designed
to be, and instead were in place to initialize an SDK. How-
ever, an interesting content provider declared by Call Control
was found, which can be accessed by other apps to query in-
formation about a phone number to get an indication of the
trustworthiness of the caller. None of the apps analyzed were
found to make use of this service.

Lastly, a common intent filter action for activities was in
place to open the phone dialer activity of the app, such that
a phone call can be initialized with a phone number supplied
with the intent.

7.2 Future work
The performed analysis would be more complete if it were to
be done with a larger set of applications. For example, the us-
age of Call Control’s content provider could be investigated
by analyzing the manifest file of more apps. Similarly, it was
found that Hiya offers its spam call blocking service to devel-
opers, but none of the analyzed apps were found to use this
either. Analyzing a larger set of applications could highlight
usages of these and possibly other services.

Additionally, this analysis could be put in a broader context
if it was compared to apps that are not related to blocking
spam calls. It is possible that some components found in these
spam call blocking apps are more prevalent in these apps than
other apps, and these components may then be interesting to
investigate further.

Lastly, as this work is a high-level analysis of the elements
in the manifest file, a sensible next step is to investigate the
usages of the elements on a lower level. The possible usages
of elements have been suggested in this research, but finding
out what exactly they are used for, could be of great interest.

References
Call Control. (2019). Call control datashare [Online; accessed

06. June. 2022]. https : / / github. com / CallControl /
Call-Control-DataShare/wiki

Call Control. (2022). Call control protect api [Online; ac-
cessed 09. June. 2022]. https : / / www. callcontrol .
com/documentation/#call-control-protect-api

Dashevskyi, S., Zhauniarovich, Y., Gadyatskaya, O., Pilgun,
A., & Ouhssain, H. (2020). Dissecting android cryp-
tocurrency miners. Proceedings of the Tenth ACM
Conference on Data and Application Security and
Privacy. https://doi.org/10.1145/3374664.3375724

Desnos, A., Gueguen, G., & Bachmann, S. (2018). Andro-
guard [Online; accessed 19. May. 2022]. https : / /
androguard.readthedocs.io/en/latest/

Firebase. (2016). How does firebase initialize on android?
[Online; accessed 06. June. 2022]. https://firebase.
blog/posts/2016/12/how- does- firebase- initialize-
on-android

Google. (2022a). Android documentation [Online; accessed
30. May. 2022]. https : / / developer . android . com /
reference

Google. (2022b). Content provider basics [Online; accessed
07. June. 2022]. https : / / developer . android . com /
guide / topics / providers / content - provider - basics #
RequestPermissions

Google. (2022c). Firebase. https://firebase.google.com/
Google. (2022d). Service [Online; accessed 19. May. 2022].

https: / /developer.android.com/reference/android/
app/Service

Hiya. (2022a). Hiya protect [Online; accessed 08. June.
2022]. https://www.hiya.com/products/protect

Hiya. (2022b). State of the call - 2022 [Online; accessed 22.
Apr. 2022]. https : / / f . hubspotusercontent30 . net /
hubfs/6751436/2022/Reports- and- Studies/State-
of-the-Call-2022/2022 SOTC report.pdf

Jha, A. K., Lee, S., & Lee, W. J. (2017). Developer mistakes
in writing android manifests: An empirical study of
configuration errors. 2017 IEEE/ACM 14th Interna-
tional Conference on Mining Software Repositories
(MSR), 25–36. https://doi.org/10.1109/MSR.2017.
41

Li, H., Xu, X., Liu, C., Ren, T., Wu, K., Cao, X., Zhang, W.,
Yu, Y., & Song, D. (2018). A machine learning ap-
proach to prevent malicious calls over telephony net-
works. 2018 IEEE Symposium on Security and Pri-
vacy (SP), 53–69. https://doi.org/10.1109/SP.2018.
00034

Pandit, S., Perdisci, R., Ahamad, M., & Gupta, P. (2018).
Towards measuring the effectiveness of telephony
blacklists. NDSS.

Salehin, S. M. A., & Ventura, N. (2007). Blocking unsolicited
voice calls using decoys for the ims. 2007 IEEE In-
ternational Conference on Communications, 1961–
1966. https://doi.org/10.1109/ICC.2007.326

Sherman, I. N., Bowers, J., McNamara Jr, K., Gilbert, J. E.,
Ruiz, J., & Traynor, P. (2020). Are you going to an-
swer that? measuring user responses to anti-robocall
application indicators. NDSS.

ShouldIAnswer. (2022). About the service [Online; accessed
09. June. 2022]. https://nl.shouldianswer.net/about

telGuarder. (2022). Protect your phone [Online; accessed 09.
June. 2022]. https://www.telguarder.com/

The European Parliament and the Council of European
Union. (2009). Directive 2009/24/ec of the european
parliament and of the council of 23 april 2009 on the
legal protection of computer programs. https://eur-
lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:
32009L0024

Truecaller. (2022a). Truecaller. https://www.truecaller.com/
Truecaller. (2022b). Truecaller insights 2022 u.s. spam &

scam report [Online; accessed 09. June. 2022]. https:
/ / truecaller.blog /2022/05 /24 / truecaller- insights -
2022-us-spam-scam-report/

Truecaller. (2022c). Truecaller sdk documentation [Online;
accessed 03. June. 2022]. https : / / docs . truecaller.
com/truecaller-sdk/

unknownphone.com. (2022). Who is calling me? [On-
line; accessed 09. June. 2022]. https : / / www .
unknownphone.com/

https://github.com/CallControl/Call-Control-DataShare/wiki
https://github.com/CallControl/Call-Control-DataShare/wiki
https://www.callcontrol.com/documentation/#call-control-protect-api
https://www.callcontrol.com/documentation/#call-control-protect-api
https://doi.org/10.1145/3374664.3375724
https://androguard.readthedocs.io/en/latest/
https://androguard.readthedocs.io/en/latest/
https://firebase.blog/posts/2016/12/how-does-firebase-initialize-on-android
https://firebase.blog/posts/2016/12/how-does-firebase-initialize-on-android
https://firebase.blog/posts/2016/12/how-does-firebase-initialize-on-android
https://developer.android.com/reference
https://developer.android.com/reference
https://developer.android.com/guide/topics/providers/content-provider-basics#RequestPermissions
https://developer.android.com/guide/topics/providers/content-provider-basics#RequestPermissions
https://developer.android.com/guide/topics/providers/content-provider-basics#RequestPermissions
https://firebase.google.com/
https://developer.android.com/reference/android/app/Service
https://developer.android.com/reference/android/app/Service
https://www.hiya.com/products/protect
https://f.hubspotusercontent30.net/hubfs/6751436/2022/Reports-and-Studies/State-of-the-Call-2022/2022_SOTC_report.pdf
https://f.hubspotusercontent30.net/hubfs/6751436/2022/Reports-and-Studies/State-of-the-Call-2022/2022_SOTC_report.pdf
https://f.hubspotusercontent30.net/hubfs/6751436/2022/Reports-and-Studies/State-of-the-Call-2022/2022_SOTC_report.pdf
https://doi.org/10.1109/MSR.2017.41
https://doi.org/10.1109/MSR.2017.41
https://doi.org/10.1109/SP.2018.00034
https://doi.org/10.1109/SP.2018.00034
https://doi.org/10.1109/ICC.2007.326
https://nl.shouldianswer.net/about
https://www.telguarder.com/
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32009L0024
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32009L0024
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32009L0024
https://www.truecaller.com/
https://truecaller.blog/2022/05/24/truecaller-insights-2022-us-spam-scam-report/
https://truecaller.blog/2022/05/24/truecaller-insights-2022-us-spam-scam-report/
https://truecaller.blog/2022/05/24/truecaller-insights-2022-us-spam-scam-report/
https://docs.truecaller.com/truecaller-sdk/
https://docs.truecaller.com/truecaller-sdk/
https://www.unknownphone.com/
https://www.unknownphone.com/

van der Veldt, M. (2022). Tu delft students scammed out of
thousands of euros [Online; accessed 22. Apr. 2022].
https : / / www . delta . tudelft . nl / article / tu - delft -
students-scammed-out-thousands-euros

Wiśniewski, R., & Tumbleson, C. (2022). Apktool - a tool
for reverse engineering android apk files. https : / /
ibotpeaches.github.io/Apktool/

Youmail. (2022). Youmail. https://www.youmail.com/

https://www.delta.tudelft.nl/article/tu-delft-students-scammed-out-thousands-euros
https://www.delta.tudelft.nl/article/tu-delft-students-scammed-out-thousands-euros
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://www.youmail.com/

	Introduction
	Background
	APK and manifest file
	Component attributes
	Intent filters and actions

	Related work
	Analysis of the AndroidManifest file
	Findings
	App selection
	Required permissions
	Declared permissions
	Targeted API Levels
	Services
	Broadcast receivers
	Content providers
	Activities

	Responsible Research
	Conclusions & Future work
	Conclusions
	Future work

