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Modelling sensory integration for ankle- and
hip control in human balance

Peterke van der Zwaag

Abstract—Falling is a problem in elderly, affecting
30% of people over 65 years old, and leading to serious
injuries in 10% of the cases. Because balance is controlled
in a closed loop system with a high level of redundancy,
the cause of impaired balance control is often unknown.
A balance control model in combination with perturbed
balance experiments could be a useful aid to detect the
underlying cause of balance impairment, which would
allow for better treatment. A disturbance estimation and
compensation (DEC) model has a strong neurological
basis and is able to describe multiple conditions with
one set of parameters.

An existing DEC model, containing separate ankle
and hip control, was extended by adding visual and
mechanical disturbance estimations. The model was fitted
to experimental data of elderly subjects maintaining
balance in three conditions containing four disturbances
simultaneously; visual and ankle proprioceptive pertur-
bations and mechanical perturbations at the hip and
shoulder level. To validate the fitting procedure, the
model parameters were also fitted to data simulated by
the model, and a sensitivity analysis was done.

Being fitted to experimental data, the model could
reproduce about 60% of the behaviour. Mainly the
low frequency behaviour could not fully be tracked.
Parameter estimation proved challenging, with some
parameters consistently estimated larger or smaller than
expected or physiologically plausible. Fitting the model
on its own simulated data could reproduce >99.9% of
the behaviour, but with some parameters consistently
estimated up to a factor 10 too small or too large.

Many adaptations and extensions to the existing DEC
model were made simultaneously and with the available
experimental data it was not possible to investigate the
individual influence of each adaptation. If a broader
range of experimental data is available, with conditions
where only one, two or three perturbations are applied, it
is possible to validate each model adaptation separately.
This would likely improve the model. With the suggested
improvements, the multisegmental DEC model opens up
the way towards better treatment for balance impair-
ment.

I. INTRODUCTION

Falling is a serious problem in elderly [1]. Of people
aged over 65 years old, about 30% fall at least once a
year [2], [3], [4], leading to serious injuries in about
10% of the cases [5] or even death [6]. Serious injuries
include fractures and subdural haematomas. Impaired
standing balance control is one of the main causes

of falling [5]. Unfortunately, the cause of impaired
balance control is often unknown.

Human balance in the sagittal plane is inherently
unstable, because any disturbance causes the centre of
mass (COM) to move from its equilibrium position and
subsequently creates a moment around the ankle joint
in the same direction, which leads to a fall if it is not
corrected. The intrinsic stiffness of the ankle joint is
not enough to keep a person stable [7], so humans need
to actively control the muscles around their ankles
to maintain a standing position. To efficiently control
their balance, humans have a sophisticated, closed loop
balance control system, of which a schematic overview
is shown in Figure 1. The vestibular system is used to
measure the orientation and acceleration of the head
relative to the direction of gravity. Visual information
is used to determine the position of the head relative
to the visible environment. Proprioception is done by
two types of sensors, muscle spindles and Golgi tendon
organs. Muscle spindles measure the angles between
the different body segments relative to each other. The
measured angles are used to determine the orientation
of the rest of the body from the head orientation [8].
Golgi tendon organs measure the amount of active
torque produced by the muscles. Lastly, the somatosen-
sory system can determine the amount of active ankle
torque from the centre of pressure (COP) on the foot
soles.

There are two reasons why identification of impair-
ments in the balance control system is difficult. The
first is inherent to closed loop systems; the source of
errors is difficult to determine from the output. Distur-
bances can enter the balance control system via noisy
or incorrect signals in different systems, and errors in
different involved systems can result in the same symp-
toms. Thus determining the cause of symptoms cannot
easily be done. For example, decreased muscle mass
and increased neural time delays both cause increased
body sway [9], [10]. The second difficulty is that there
is a high level of redundancy present in the balance
control system. Redundancy allows for compensation
strategies in the presence of impairments. For example,
in the presence of decreased vestibular function, there
is an increased reliance on the visual information [11],
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Figure 1: Schematic representation of the control system that humans use to control their balance. The control
system consists of three main elements, which are linked in a closed loop feedback system. Sensory systems
provide the feedback by measuring some information about the state of the system, which is the position of the
body relative to its environment. The nervous system uses the information from the sensory systems to generate
motor commands that direct the body toward the equilibrium position. The musculoskeletal system is the plant
that generates the actual movement of the body. Sensory and mechanical perturbations can be applied.

which in turn can mask impairments that are present.
Currently, two methods exist that are used by clini-

cians to assess balance impairment: static and dynamic
posturography. In static posturography tests, patients
are asked to perform tasks such as maintaining balance
with their eyes closed or on a narrow platform. These
tests are inexpensive and easy to conduct because no
advanced equipment is necessary. Dynamic posturog-
raphy tests, such as the sensory organization test [12],
are more advanced and involve patients standing in
balancing devices. Dynamic conditions include body
sway referencing a visual screen and/or the base
plate, disabling visual or proprioceptive information
or both. During experiments, body sway and pressure
distribution on the foot soles are measured. Although
both clinical methods are capable of describing the
symptoms of balance impairment, neither can detect
the underlying cause of the impairment. To improve
treatment using targeted interventions, it would be
useful to know what the underlying cause of impaired
balance control is.

Perturbed posturography, a third type of posturog-
raphy, can help open the control loop. In perturbed
posturography, different reactions are measured to dif-
ferent, well known, perturbations in an experimental
setup. Closed loop system identification techniques can
be applied to the data to determine the effect of the
different perturbations [13]. The Balance test Room
(BalRoom), shown in Figure 2, is a sophisticated
balance room that was designed to perturb and measure
human balance in many different conditions [13]. Four
disturbances can be applied to a subject at once: Visual
screen rotation, base plate rotation, and mechanical
pushes to the hips and shoulders. Simultaneously,

body sway is measured at the hip and shoulder level,
allowing sway of the legs and trunk to be measured
separately. This extra degree of freedom adds much
value to the experiments. It has been shown that
balance impairment influences the intersegmental co-
ordination [14], [15], indicating that measuring ankle
and hip angles separately is necessary to identify
underlying impairment.

BalRoom data has already been used for system
identification purposes, by determining the frequency

Figure 2: Schematic figure of the BalRoom. Subjects
stand on a rotating base plate in front of a rotating
visual screen while subjected to mechanical forces to
the hips and shoulders and while wearing a safety
harness. Figure was taken from [13].
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response functions (FRFs) of the applied perturbations.
However, no parameter estimation has been done. For
clinical purposes, it is necessary to analyze the data in
a way that gives physical or physiological meaning to
the parameters. A balance control model is a powerful
tool that can give physical and physiological meaning
to the BalRoom data.

The Disturbance Estimation and Compensation
(DEC) model was developed from a neurological
background and was first presented in 2003 [16]. The
model is nonlinear and combines sensory input signals
to make estimates of disturbances that are present
in or applied to the body, for example a body sway
angle forward or backward, or a foot space tilt angle
different from horizontal. The disturbance estimations
are scaled with a gain between 0 and 1, to reflect
the quality of the signal, and a detection threshold
is applied to the signal, which is hypothesized to be
the method in which the neural system distinguishes
between noise and relevant disturbances [16].

What makes the DEC model unique, is that the
model structure provides the sensory reweighting that
is present in human balance. Sensory reweighting is
responsible for the adaptation to sensory disturbances,
such as the saturation in body sway amplitude in the
presence of visual disturbances with increasing ampli-
tude [11]. This means that only one set of parameters is
necessary to describe balance in different conditions.
This is in contrast to other commonly used balance
control models, such as the independent channel (IC)
model [17], in which different conditions are explained
with different weights for the sensory channels.

The DEC model has mainly been used as a single
segment model around the ankle joint [16], [18], [19].
One multisegmental DEC model has been published
with both an ankle and hip joint [20]. The published
model can only be applied to a limited amount of
experimental conditions because it does not incorpo-
rate vision or external forces applied to the body.
However, because of its modular nature, the model
can be extended to make it applicable to conditions
that are applied by the BalRoom.

Experimental conditions of multiple perturbations
signals and multisegmental body sway measurement
in multiple conditions are exactly the experimental
conditions that are necessary for detecting balance
impairment [13]. Therefore, if we can apply the DEC
model to the BalRoom data in multiple conditions, this
indicates that the DEC model is also a strong candidate
for application in detecting balance impairment. How-
ever, the application of the DEC model to BalRoom
data is challenging. It has never been attempted to fit a
multisegmental balance control model to experimental
data in conditions with so many disturbances at once.

The scientific gap that this study aims to fill is captured
in the following research question:

“To what extent is the DEC model able to capture
human balance in the presence of visual, proprio-
ceptive and mechanical disturbances, with different
conditions of applied perturbations?”

To answer this question, data was used of elderly
subjects in the BalRoom with three different pertur-
bation conditions and the multisegmental DEC model
was extended to incorporate visual and mechanical
disturbances. The method section describes the adap-
tations of the DEC model and the procedure that
was used to fit and validate the model. The results
show that although some changes are necessary, the
DEC model is indeed a promising tool for finding
underlying cause of balance impairment.

II. METHOD

The goal of this study is to fit the DEC model
to BalRoom data. To this end, the research method
consisted of several steps. The first was the collection
of experimental data recorded with the BalRoom. The
second was the development of the extended multiseg-
mental DEC model. The third step was the design of a
fitting procedure, which was used for several purposes.
The first was to find parameter values that produce
stable simulations. Then, the model was fitted to the
BalRoom data. The model was also fitted to its own
simulated data and a sensitivity analysis was done.

A. Experimental data

Experimental data used for this research was avail-
able from a previous study that investigated the relia-
bility of closed loop system identification techniques
to assess balance control [13].

1) Subjects: Experiments were done with 12 par-
ticipants aged 70 years or older. All participants were
healthy and had no existing balance impairment. Par-
ticipants were excluded in the case of low cognitive
function (Mini Mental State Examination (MMSE) ≤
26 [13], [21]), clinical significant morbidity, postural
hypotension and use of medication. The experiment
was approved by the Medical Ethics Committee of
Leiden University Medical Centre and was performed
in accordance with the principles of the Declaration of
Helsinki and the International Conference on Harmo-
nization/Good Clinical Practice (ICH/GCP) [13]. All
subjects gave written informed consent [13].

2) Experimental setup: The BalRoom device is able
to measure perturbed stance by performing several per-
turbations and measurements all at once. Four pertur-
bations can simultaneously be applied to a subject. A
visual screen can rotate around the ankle axis, creating
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Figure 3: Perturbation signals applied to the subjects.
The force perturbation applied to the shoulders (Fs),
the force applied to the hips (Fh), the visual screen
tilt (V ) are the same for all experiments. The support
surface rotation (FS) is varied between high (zero-to-
peak amplitude of 0.04 rad), medium (0.03 rad) and
low (0.02 rad).

a visual perception of body sway. The base plate on
which the subject stands can also rotate around the
ankle axis, disturbing the ankle proprioception that
is used to estimate body sway [9]. The remaining
two disturbances that can be applied are mechanical
pushes and pulls applied by two rods, one at the hip
level and one at the shoulder level. Measurements that
are performed include the body sway measurement
in the sagittal plane at the hip and shoulder level,
thereby measuring the sway of the leg and head-arms-
trunk (HAT) segment separately. Lastly, the base plate
rotation and the rod forces are measured to quantify
the applied disturbances.

The experimental protocol was extensive and in-
cluded many experiments, but only a fraction of the
data was necessary for this study. The first session on
the first day was chosen to serve as the data for this
study, to minimize learning effects present in the data.
The session consisted of three trials with different base
plate rotation (FS) amplitudes.

The leg length (ll), trunk length (lt), shoulder height
(hs) and body mass (mb) were measured for all
subjects. Other biomechanical parameters were esti-
mated from the measured parameters using the body
anthropometrics from [22].

3) Perturbation and response signals: All four per-
turbations were applied simultaneously. All perturba-
tions were multisine signals, each containing different

frequencies. The signals are shown in Figure 3. The
perturbation signals have a duration of 16 seconds.
Each trial, the same perturbation signals are repeated
eight times, resulting in trials with a duration of
128 seconds. Sampling was done at a frequency of
1000 Hz. Every trial, the perturbation signals start at
some point within the 16-second time frame of the
signals. The starting point of the perturbation signals
is random, but is always the same for all for four
perturbation signals within one trial. Therefore, the
starting point is different for each trial, but the mutual
timing of the four perturbation signals is always the
same. A window of seven perturbation cycles was
selected from each trial so that all experiments start
at time point 0 within the perturbation signals in
Figure 3, where all signals have a value of 0. The
average of the measured perturbations, FS, Fs, and
Fh, was taken from the experimental data as the input
of the simulations. Because V S is not measured, the
theoretical signal was used.

The average over the seven perturbation repetitions
was also taken of the two responses, the trunk segment
angle (TS) and the leg segment angle (LS) relative
to space. These signals serve as the signals for the
model to fit on. Body sway was measured with string
potentiometers, of which the exact length of the string
is unknown. Therefore, it was not possible to recon-
struct the absolute angles. To eliminate the effect of
a possible offset, both the experimental body sway
signals and the simulated body sway signals were
made zero-mean signals.

B. Model
The principle of a DEC model is that the model

structure provides the sensory reweighting that is ob-
served in human balance control. Only one multi-
segmental DEC model has been published yet [20],
which was used as the basis for the model developed
in this study. The model was extended to describe
human balance in a wider variety of conditions and
several improvements were made. The model was
implemented in Matlab Simulink (The MathWorks,
Natick, MA, United States) and is shown in Figure 4.
A large number of parameters determine the behaviour
of the model. An extensive description of the model
is given in Appendix A. The short description of the
model, focused on the elements that are different from
the published model [20], is given below. A list of
parameters and their abbreviations can be found in
Tables AI, AII, AIII and AIV in Appendix A.

1) Model description: As shown in Figure 4, phys-
ical variables, represented in capital letters, enter the
control system through the sensory systems. The in-
ternal representations of the physical variables are
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Figure 4: Overview of the DEC model that was used in this study. Signals of physical variables, originating
from the plant, enter the control loop through the sensory systems. The fusion level fuses the sensory signals of
the vestibular and visual system. The seven disturbance estimations are made by combining different sensory
signals. The leg and foot space tilt estimates contain a gain and threshold. The grey conversion boxes contain
the gains and thresholds of the torque estimates and convert the torques into angle equivalents. In the COM
block, the estimated angles of the trunk and leg segments are combined to estimate the horizontal position of
the COM of the whole body. The hip controller is a proportional-derivative (PD) controller that controls the
COM of the trunk on top of the hip joint. The ankle module controls the COM of the whole body. The time
delays represent the total neural time delays of the balance control system.

represented in lowercase letters. The sensory fusion
level, in detail explained in Section II-B2, is an extra
level that combines the vestibular and visual trunk
angle signals and makes a visual disturbance esti-
mation. The sensory signals are combined to form
a meta level, in which seven disturbance estimations
are made. Balance is controlled through two separate
control loops, the hip module and the ankle module.
The hip module controls the trunk angle on top of the
hip joint and the ankle module controls the combined
COM of the leg and trunk segments (BS) on top of
the ankle joint. The three hip torque estimates are
converted to ts angle equivalents by scaling the torques
with a factor 1/(mt · g · ht) and the leg space tilt
estimate is summed with the hip angle to form a ts

signal equivalent to the total effect of all estimated
disturbances. The sum of the four angles is the error
signal for the hip controller. Equivalently, the two
torque estimates of the ankle module are transformed
into their angle equivalents by scaling them with the
factor 1/(mb ·g ·hb) and summed with a bs estimate to
form the error signal of the ankle controller. Both hip
and ankle controllers are proportional-derivative (PD)
controllers. The resulting active torques are delayed
to represent the total neural time delays present in the
balance control system. The active torques are summed
with the passive torques resulting from the intrinsic
muscle properties. The plant transforms the torques
and applied disturbances into movement by means of
the TMT method [23]. In this study, the dynamics were
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not linearized, in contrast to the dynamics in the earlier
presented multisegmental DEC model [20].

2) Visual disturbance estimation: Only one DEC
model had been published that incorporates visual
information in the model structure [19]. The published
model is a single segment model that incorporates
visual information only in the absence of visual dis-
turbance. In the absence of visual disturbance, visual
and vestibular systems provide the same information,
which is the trunk angle relative to space (tsvis and
tsves). In this case, simple fusion can be done by
taking a (weighted) average of the two signals [19].
When a visual disturbance is present, the visual system
is not able to determine the trunk in space angle,
but instead measures the trunk angle relative to the
visual screen angle (tv). The vestibular and visual
systems both provide the balance control system with
a proportional signal, tsves and tv respectively, and a
derivative signal, ṫsves and ṫv respectively. Fusion of
vestibular and visual signals including calculation of
the visual disturbance estimation happens before cal-
culation of the other disturbance estimations (Fusion
1 and Fusion 2 in Figure 4). This is done because
the trunk angle estimation ts is used for 5 of the 7
remaining disturbance estimations. The design of the
sensory fusion, Fusion 1 in Figure 4, is shown in
Figure 5. Fusion of the derivative signals in Fusion
2 in Figure 4 is done in the same way, with its own
weighting factor, Wf2, and detection threshold, Tf2.

3) Model structure: An important change in the
model structure is the position of the gains, thresholds
and low-pass filters of the disturbance estimations.
The model structure has been changed so that the
disturbance estimations are modified after instead of
before they are used for other disturbance estimations.
Practically, this means that the gains and thresholds
are applied in the grey ts and bs conversion boxes in
Figure 4. This change was made to make the external
torque estimates more accurate. In the absence of a
visual disturbance, all sensory input is assumed to
be accurate. The accurate sensory signals are used to
calculate the disturbance estimations. Calculation of
the disturbance estimations is therefore also accurate
(up to the small angle approximations used) before
scaling and thresholding takes place. External torque
estimates are made by calculating the total torque from
the angular accelerations and subtracting all known
torques. In the model published in [20], the modified
signals are used to calculate the external ankle torque
estimate (external hip torque is not present). The
consequence is that the external torque signal is highly
dependent on the gain and threshold value of the
gravitational and inertial torque estimates, resulting in
an unreliable external torque signal when the gains of

Figure 5: Fusion of the vestibular and visual informa-
tion. An estimate of the visual screen tilt vs is made
by taking the difference between tsves and tv, and is
used to determine if the visual information is reliable.
When vs is small, it is seen as noise and the signals are
fused. When the vs is above the detection threshold,
tv is largely attenuated. Wf1 can be used to favour the
tsves signal in the presence of a visual disturbance. In
the absence of a visual disturbance, the visual signal
is less noisy than the vestibular signal and the visual
signal should be favoured slightly [24], [25].

the gravitational and inertial torque estimates are low
and/or the thresholds are high. The model presented in
this study uses the unmodified signals to calculate the
external torque estimates, resulting in more accurate
estimations of the external torque. This makes the
external torque estimates more similar to the other dis-
turbance estimations, where the estimates are accurate
until scaling, thresholding and filtering take place.

In the presence of visual disturbance sensory signal
of ts resulting from the fusion is not fully accurate,
and therefore also the disturbance estimations are also
somewhat inaccurate. However, using the unmodified
disturbance estimation signals for the calculation of
the external torque estimates will still result in a much
more accurate estimate than when the signals are used
that have been passed through a gain and threshold.

4) External ankle torque estimate: The external
ankle torque estimate, shown in Figure 6, was already
present in the DEC model published in [20], although
there it is used to calculate the internal reaction force
caused by the trunk segment acceleration instead of
calculating an actual external torque. In our model, an
external force is applied to the hips. Because of the
way the external torque is calculated, it is not possible
to determine the contributions of the internal reac-
tion torque and the external ankle torque separately.
Therefore the external ankle torque estimate is used to
calculate the sum of the two.
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Figure 6: Calculation of the external ankle torque.
The calculation is done by determining the total ankle
torque from the angular acceleration of the body and
subtracting all other estimated torques.

5) External hip torque estimate: The external hip
torque estimate, shown in Figure 7, was added to the
hip module to make the model fit conditions where an
external force is applied to the trunk segment. Apart
from the position of the gain, threshold and filter, the
external hip torque is calculated in the same way as the
external ankle torque estimate in the model presented
in [20].

In summary, the multisegmental DEC model was
improved with five elements. Vision was added, in-
cluding a visual disturbance estimation, an external hip
torque estimate was added, the external ankle torque
is now the sum of the external ankle torque and the
internal reaction torque, and lastly, the position of the
gains and thresholds was changed. A fitting procedure
was developed to fit and validate the model.

C. Fitting procedure

The model was fitted on several different signals.
The basic procedure was the same for all fits and is
shown in Figure 8. With this fitting procedure, the
first task was to find a base set of parameters which

Figure 7: Calculation of the external hip torque esti-
mate. Calculation of the external hip torque is done in
the same way as the calculation of the external ankle
torque.

𝑖 Random points1. Initialization

𝑘 Neighbors2.   Exploring

Gradient search3.   Optimization

𝑙 best

𝑗 best

1 best

Parameters Θ

𝑚 best

Figure 8: Flow scheme of the fitting procedure. The
fitting procedure always consists of three phases. The
initialization phase searches for parameters that pro-
duce stable and realistic simulation. In the exploring
phase, the neighbourhood of the j best points is
searched. The l best points serve as starting points
for l gradient searches in the optimization phase. The
gradient search that results in the best fit produces the
final parameter vector Θ, or the m best results can
serve as starting points for a new exploring phase.

produces stable and realistic behaviour, because it was
found that the parameter values used in [20] were
not able to keep the improved model upright. With
a working model and a base set of parameters, three
types of simulations were done:

• Fitting the model to experimental data,
• fitting the model to its own simulated data, and
• a sensitivity analysis.
The procedure consists of three phases: Initializing,

exploring and fitting. Because there are so many
variables, it was not feasible to perform full grid
searches. Also because of the structure of the model,
a large interdependence of the varied parameters was
expected, making the effective parameter space dimen-
sions smaller than the number of parameters. Therefore
it was chosen to search randomly, choosing random
points in the parameter space between set boundaries.

1) Initialization: In the initialization phase, the
search for the right area within the parameter space
was done. This was done by selecting i points in
the parameter space, where every parameter had a
random value between 70% and 130% of the starting
point value. The initialization could be repeated several
times. An error function determined which parameter
set resulted in the best fit. The j best parameter sets
served as starting points for the exploring phase.

2) Exploring: In the exploring phase, the neigh-
bourhood of the j best parameter sets was searched.
For each starting point, k neighbours were selected in
the same way as in the initialization phase. The l best
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parameter sets were determined with an error function,
which could be the same or different from the error
function used in the initialization phase.

3) Optimization: The l best parameter sets served
as starting points for gradient searches. All gradient
searches had a maximum of 200 function evaluations.
The error function that was used in the exploring phase
was used to select the final parameter set Θ, which
was the parameter set that produced the best fit. The
m best results could also serve as starting points for a
new exploring phase.

D. Starting point search

Finding a working operating point for the extended
model was done by first simulating the model with
only the base plate rotation signal, FS, with the largest
amplitude. All other perturbation signals were turned
off. The largest FS amplitude was chosen because
in this condition the influence of FS on the body
sway is largest, thus the effect of the remaining three
disturbance signals in the experimental data, which
were left out in the simulations, is relatively low.
Simulations were done for 8 perturbation repetitions.

To find a stable operating point of the model, 31
of the parameters present in the model were chosen to
vary. These parameters include the 22 fitted parameters
given in Table AI plus the 9 gains, thresholds and
cutoff frequencies of the Butterworth filters (listed
in Table AII) that are fixed in a later stage. Only
the mechanical parameters, such as subject weight
and height, listed in Table AIII, and the passive joint
stiffness and damping in Table AII were fixed.

Initialization was done with i = 2000 random
points, with boundaries of 50% lower and higher than
the starting values, which were empirically found by
starting with the values presented in [20] and altering
them until the model could recover from a small
impulse force.

The points that resulted in a stable simulation were
scored with an error function based on the total vari-
ance accounted for (VAF). The VAF is a measure to
quantify the quality of a non-linear model, expressed
in percentages, given by

VAF = 1 −

N∑
k=1

(ŷ(t) − y(t))
2

N∑
k=1

(y(t))
2

, (1)

where y(t) is the experimental signal and ŷ(t) is the
model fit of the signal. To give the points with the
highest VAF the best, thus lowest, score, the sum

squared error function made up of two concatenated
error vectors given by

Etot =

N∑
k=1

E2, where (2)

E = [2 ·ELS ETS ] , where (3)

ELS =
LSs −LSe

LSe
, and (4)

ETS =
TSs − TSe

TSe
. (5)

The vector LSs contains the simulated LS angles
over time and LSe contains the measured leg angles
over time of one of the experiments done with the
first subject, averaged over the seven perturbation
repetitions. Similarly, TSs is a vector containing the
simulated trunk angles and TSe the experimental trunk
angles over time. The vector ELS in Equation 3 is
weighted double to put more emphasis on the leg sway
for two reasons. First, it is easier to first stabilize the
lower segment and later stabilize the trunk on top of
the stabilized hip joint. Second, FS is expected to
have the most influence on the leg segment, along
with Fh, while Fs and V S are expected to have a
larger influence on the trunk segment than the support
surface rotation.

The j = 3 best scoring points were used as starting
points in the exploring phase, with k = 1000 neigh-
bours. The five best points served as starting points
for gradient searches using the lsqnonlin function in
Matlab, using the error vector given in Equation 3,
which is automatically squared by the lsqnonlin algo-
rithm. The best scoring parameter sets, the sets with
the smallest error vectors, served as starting points
for new neighbour searches, with k = 1000, with
parameter values between 70% and 130% of the given
parameter starting point. This procedure was repeated
several times. With FS disturbance only, the model
could fit around 50% of the leg segment sway.

The second perturbation that was added to the
simulations was Fh. The three best scoring parameter
sets resulting from the FS-only simulations served
as starting points from which the same procedure
was followed. In the same way, Fs was added to
the simulations after the best scoring points of the
simulations containing FS and Fh were found. The
error vector was now changed to

E = [ELS ETS ] , (6)

because with already stable LS sway and with the
shoulder perturbation present, the emphasis on LS
was no longer desired. Lastly, V S was added using
the same procedure and with the error shown in
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Equation 6. Model fits with VAFs of around 60% for
both segments were found in this way.

E. Model fits to experimental data

The model was fitted to the experimental data of
6 random subjects. For each subject, one parameter
set was fitted to the experimental data in the three
conditions. The model simulations consisted of 8
perturbation repetitions. The responses, TS and LS,
averaged over the perturbation repetitions, served as
the fitted signals. The 22 fitted parameters were the
two weighting factors and thresholds of the fusion,
and the gains and thresholds of all seven disturbance
estimations (Table AI). Each fitting has the same
parameter set as basis. With this parameter set, ini-
tialization was done with i = 1000 random values
between 70% and 130% of the starting value for all
parameters. Each starting point was given a VAF-based
sum squared error vector (Equation 2) made up of the
concatenated error vectors of three simulations in the
different conditions. The concatenated error vector is
given by

E = [Elow Emed Ehigh] , (7)

where Elow, Emed and Ehigh are the error vectors
given by Equation 6 of the three conditions.

Exploring was done with k = 1000 neighbours of
the j = 1 best scoring parameter set and boundaries
between 70% and 130%. With the l = 5 best scoring
points as starting points, five gradient searches were
done with the error vector given in Equation 7. For
both the random search and the gradient search, lower
boundaries were applied, making sure parameter val-
ues did not become negative.

F. Model fits to simulated data

To determine how well the model parameters are
able to fit, the model was also fitted to simulated
data. To create the simulated “experimental” data,
the model was simulated with the parameter set that
resulted in the highest VAF with experimental data.
This was done three times, with the parameter sets
corresponding to the model fits to experimental data
of three subjects. The same fitting procedure was used
as for the experimental data. No noise was added
to the simulated “experimental” signals to eliminate
unwanted extra effects.

G. Sensitivity analysis

A sensitivity analysis was done to test the robustness
of the model against measurement and estimation
errors of the biomechanical parameters. The sensitivity

analysis was done by taking the parameter set resulting
from the fitting of the model to the experimental data
of subject 1 as the base parameter set. The model
was simulated twice for each biomechanical parameter.
Each biomechanical parameter (Table AIII) was once
decreased and once increased with 10%, while all
other parameters were kept the same. The amount of
influence of the parameter change on the simulation
was calculated using the ∆VAF, which is defined as

∆VAF = VAFp − VAFO , (8)

where VAFp is the VAF of the simulation on the
experimental data with one parameter increased of
decreased, and VAFO is the VAF of the original
simulation on the experimental data of subject 1. The
model was simulated in all three conditions, and for
both segment signals, the average ∆VAF was taken
over all three conditions.

III. RESULTS

A. Model fits to experimental data

To get a general idea of what the experimentally
measured sway signals and the fitted sway signals look
like, the signals of a representative subject are shown
in Figure 9. The figure shows the model fit loosely
following the experimental signal but not being able
to reproduce all signal behaviour. For example, the
experimental LS signal shows an angle of about 1 deg
after about 3 seconds in all conditions, but the model
is not able to reproduce this LS sway peak in any of
the conditions.

To investigate the experimental and simulated be-
haviour in more detail, a zoomed-in view of the signals
of a representative subject is shown in Figure 10.
The figure shows that for both the experimental and
simulated signals, the differences between the three
conditions are small. The figures indicate that for both
the experimental and the simulated signals the dif-
ference in behaviour between the different conditions
lies mainly in the lowest frequencies, while the higher
frequencies, which show oscillating-like behaviour, are
quite similar over the three conditions. The same
holds for the differences between the experimental
signals and the fitted signals. The difference between
the experimental signals and the simulated signals is
largely present in the low frequencies, while the higher
frequencies are fitted quite well by the model. Also,
the highest, noisy-like frequencies are not present in
the simulations.

The parameter search for realistic model behaviour
resulted in a set of fixed parameter values, listed in
Table I, and a set of starting values for the fitted
parameters, listed in Table IIa. Table IIa also lists the
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Figure 9: Angles of the trunk segment (top) and leg segment (bottom) over time for subject 1 in the three different
conditions. The experimental signals are the average of 7 consecutive perturbation periods. The simulation was
fitted to maximize the VAF between the experimental sway and simulated sway.

values of the fitted parameters that resulted from the
fitting of the model to the experimental data of the
six subjects, as well as the mean values and standard
deviation for each parameter. A number of parameters
show a large standard deviation, indicating a large
variance between the different subjects. Furthermore,
the time delays, tdh and tda, are consistently fitted
extremely small.

Fitting the model to experimental data resulted in
six VAFs per subject, two for each of the three
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Figure 10: Sway signals of the trunk segment and leg
segment of subject 4. The experimental signals (solid
lines) and fitted signals (dashed lines) for the three
different conditions are shown within a 4 second time
frame.

conditions, one for the TS signal and one for the
LS signal. The six VAFs for each subject, and the
mean VAF of LS and TS for each subject are listed
in Table IIb. For some subjects, the model simulations
fitted better than for others, resulting in differences in
the mean VAFs per subject of about 10%. But also
within subjects, there are differences in the quality
of the fit in the different conditions. For almost all
subjects, the FSmed condition is fitted best. Lastly,
for some subjects, one of the two body segments was
consistently better fitted by the model than the other,
in all conditions.

B. Model fits to simulated data

When the model was fitted to simulated data, the
fit always converged, resulting in VAFs > 99.5%
for every signal for all subjects. Of the 22 fitted

Table I: Values of the fixed parameters. The list of
parameter abbreviations is given in Table AII.

Parameter Value
Fi,h (rad/s) 2
Fp,h (rad/s) 0.01
Fe,h (rad/s) 2
Fp,a (rad/s) 0.01
Fe,a (rad/s) 2
kp,h (Nm/rad) 0.15 ·mtght

kd,h (Nm s/rad) 0.03 ·mtght

kp,a (Nm/rad) 0.15 ·mbghb

kd,a (Nm s/rad) 0.045 ·mbghb

Kp,h (Nm/rad) 1.5 ·mtght

Kd,h (Nm s/rad) 0.3 ·mtght

Kp,a (Nm/rad) 1.5 ·mbghb

Kd,a (Nm s/rad) 0.3 ·mbghb
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Table II: a. The values of the fitted parameters of the starting point and for the fits to the experimental data of
six subjects, including the mean and standard deviation for each parameter. The list of parameter abbreviation
is given in Table AI. b. VAFs of the model fits to the six different signals for each subject, including the means
per condition and per body segment.

a.
Subject

Param. Start 1 2 3 4 5 6 Mean (std)
Wf1 0.995 1.00 1.00 0.994 0.903 1.00 0.997 0.98 (0.036)
Tf1 (rad) 0.00196 0.0230 0.0268 0.00136 0.00469 0.00252 0.00237 0.010 (0.011)
Wf2 0.768 0.861 1.00 0.647 0.999 1.00 1 0.92 (0.13)
Tf2 (rad/s) 0.00130 0.00974 1.57e-6 0.00227 7.94e-6 0.0475 6.29e-7 0.010 (0.017)
Gi,h 0.0941 0.0858 0.283 0.170 0.337 0.190 0.394 0.24 (0.10)
Ti,h (Nm) 0.00696 0.0911 0.0291 0.00421 0.0999 0.0394 3.70e-4 0.044 (0.039)
Gg,h 0.967 0.928 0.182 0.544 0.200 6.28e-6 0.626 0.41 (0.32)
Tg,h (Nm) 0.0165 0.00841 0.00446 8.82e-4 0.00804 0.0948 0.00364 0.020 (0.034)
Gp,h 0.131 0.0332 0.00292 0.00221 0.019 1.00 0.00399 0.18 (0.37)
Ge,h 0.154 0.178 0.752 0.327 0.608 0.00156 0.611 0.41 (0.27)
Te,h (Nm) 0.00470 0.0947 0.0871 0.068 6.01e-5 0.0973 0.0988 0.074 (0.035)
Gls 2.39 1.97 1.48 1.62 1.40 1.45 2.01 1.7 (0.25)
Tls (rad/s) 5.94e-4 1.73e-5 0.00113 0.00289 4.75e-4 3.57e-5 0.0164 0.0035 (0.0059)
Gg,a 0.975 1.18 0.911 0.921 0.647 0.607 0.579 0.81 (0.22)
Tg,a (Nm) 0.0225 1.24e-4 5.83e-4 0.00390 0.093 0.0166 0.0294 0.024 (0.033)
Gp,a 6.16e-4 0.00454 0.0103 0.240 1.54e-4 0.0172 5.53e-7 0.045 (0.087)
Ge,a 0.748 0.834 0.846 0.586 0.530 0.586 0.541 0.65 (0.13)
Te,a (Nm) 0.00183 0.0250 0.0197 1.09e-5 1.13e-4 0.0754 0.0994 0.037 (0.038)
Gfs 1.88 2.21 2.30 2.32 2.31 1.82 1.75 2.1 (0.24)
Tfs (rad/s) 0.0988 0.138 0.148 0.150 0.148 0.100 0.0872 0.13 (0.025)
tdh (s) 0.0349 0.0303 0.0359 0.0328 0.0406 0.0477 0.0481 0.039 (0.0069)
tda (s) 0.0823 0.0576 0.0502 0.0674 0.0534 0.0556 0.0789 0.061 (0.010)

b.

Condition Signal 1 2 3 4 5 6 Mean
FSlow LS 62,8% 56,6% 41,0% 45,3% 50,3% 49,8% 51,0%

TS 60,5% 44,9% 61,6% 49,0% 46,3% 50,8% 52,2%
Mean 61,7% 50,8% 51,3% 47,2% 48,3% 50,3% 51,6%

FSmed LS 72,4% 70,6% 65,9% 58,5% 73,7% 61,1% 67,0%
TS 67,6% 44,0% 61,1% 54,2% 49,5% 61,1% 56,3%
Mean 70,0% 57,3% 63,5% 56,4% 61,6% 61,1% 61,6%

FShigh LS 68,7% 68,5% 57,8% 51,5% 49,5% 59,8% 59,3%
TS 65,5% 44,3% 66,4% 49,2% 55,2% 64,7% 57,5%
Mean 67,1% 56,4% 62,1% 50,4% 52,3% 62,2% 58,4%

Mean LS 68,0% 65,2% 54,9% 51,8% 57,8% 56,9% 59,1%
TS 64,5% 44,4% 63,0% 50,8% 50,3% 58,9% 55,3%
Mean 66,3% 54,8% 59,0% 51,3% 54,1% 57,9% 57,2%

parameters, 13 converged to a value within 5% of
deviation of the correct value. Of the remaining 9
parameters, the parameters that converged to a value
larger than 5% deviant from the correct value of at
least one of the five gradient searches, the values are
plotted in Figure 11. For increased visibility, the values
were normalized with the experimental value, so a
value of 1 means that the estimate is correct. The
figure shows that some parameters are consistently
estimated several factors too large or too small. The
figure also shows that the fourth gradient search, which
converged slower than the other four gradient searches
by coincidence, estimates the parameters visibly worse
for at least five of the parameters, though the VAF is
only 0.10% lower than that of the other four gradient
searches.

C. Sensitivity analysis

To test the model’s robustness against imprecise
measurements and estimations of the biomechanical
parameters, a sensitivity analysis was done. The aver-
age ∆VAF of the trunk segment sway and leg segment
sway over three conditions is given in Figure 12. For
the trunk segment sway, the most influential biome-
chanical parameters are the trunk mass (mt), the COM
height of the trunk (ht) and moment of inertia of the
body around the ankle (Ja), all resulting in a ∆VAF
in the order of 1%. For the leg sway, most parameters
have even less influence on the fit. All ∆VAF values
are smaller than 0.7% for the leg segment signals.
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Figure 11: The resulting VAFs and normalized param-
eter values of the five gradient searches of the fitting
on the simulated data of subject 1 are shown. Only 9
out of 22 are shown, the parameters that fitted within
5% smaller or larger than the simulation value for all
five fits were left out.

IV. DISCUSSION

The goal of this study was to investigate to what
extent the multisegmental DEC model is able to fit to
the experimental data containing multiple sensory and
mechanical disturbances. To this aim, the multiseg-
mental DEC model was extended and its ability to de-
scribe experimental data of subjects enduring multiple
disturbances in multiple conditions was investigated.

The results presented in Table IIb and Figure 9 show
that the extended DEC model was able to balance
itself in the applied conditions. More importantly, the
model is able to capture important aspects of human
balance in these conditions. With only one set of
parameters per subject, the model was able to fit to
experimental data in three different conditions for all
subjects, obtaining a VAF between 40% and 70%
for all individual signals and obtaining an average
VAF of around 57%. Figure 10 shows that the higher
frequencies are fitted quite well, while the fit is worse
for the lower frequencies.

The results in Table II show that the parameter
estimations are quite divergent. Some parameters, such
as Gp,h and Tf2, show large differences in estimated
values between subjects. Although differences between
subjects are expected, it is not likely that, for ex-
ample, subject 1 uses the gravitational hip torque
estimate for 100%, while subject 5 almost completely
ignores the signal (Gg,h in Table IIa). Other parameters
are consistently estimated too high or too low. For
example, time delays tdh and tda are consistently
estimated smaller than physiologically possible [26].
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Figure 12: The change in variance unaccounted for
(∆VAF) of the simulation when each biomechanical
parameter is decreased or increased by 10%, compared
to the simulation with the unchanged parameters.

These results indicate that parameter estimation of the
model is still a challenge.

A comparison of the five gradient searches of the
model fits to simulated data, in Figure 11, shows that
a small difference in the quality of the fit can be caused
by a large difference in parameter values. The figure
shows that even if only 0.1% of the variance is not
captured by the model, some parameter values can be
estimated over a factor 10 too small or too large. These
findings indicate that small improvements in model
fits to experimental data could lead to bigger improve-
ments in parameter estimation for some parameters.

A. Scientific importance

A big strength of this study lies in the combining of
neurological knowledge and engineering tools. For the
first time, a model with a strong neurological founda-
tion has been applied to an advanced experimental data
set designed for system identification. To that aim, an
extensive multisegmental DEC model was developed,
making the multisegmental DEC model more widely
applicable to even the most advanced experimental
setups used in balance control research. The model
structure has also been improved by reducing the in-
terdependence of the disturbance estimates and related
parameters.

Analysis of the DEC model simulations has been
improved as well, by which more insight into the
working of the DEC model was gained. Analysis of the
model was fully done in the time domain. Because the
model is non-linear, commonly used analysis methods
in the frequency domain, as done in [20], cannot be
applied without obtaining biased results. Therefore
comparing the results obtained with the DEC model
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presented here with the earlier published model poses
a problem. Because of the non-linearities in the model,
it is possible that the applied methods of analysis have
not been used correctly and the results presented in
[20] paint a more positive picture than the reality. By
doing the analysis in the time domain, such biases
have been eliminated, although the use of sophisticated
frequency analysis methods for non-linear systems
could add value.

Lastly, the sensitivity analysis of the developed DEC
model to the biomechanical parameters has proven the
model’s robustness against errors and inaccuracies in
the measurements and estimations of the biomechani-
cal parameters. The sensitivity analysis also confirms
that the fits have not yet reached the local or global
minimum after the fitting procedure, because decreas-
ing or increasing parameters sometimes leads to better
fits for both segments.

B. Limitations

Many limitations of this study can be traced back
to one cause, which is the amount of time and com-
putational power that was available. All choices in
the fitting procedure were made based on a trade-off
between time efficiency and the quality of the results.
A total of 49 parameters determine the behaviour of
the model, of which only a few can be measured
or reliably estimated in advance. With the time and
computational power that was available, it was not
possible to systematically search the parameter space
of the remaining parameters by means of a grid search
to get a global idea of the error landscape. When
looking only at the 22 fitted parameters, even a grid
with a resolution of two values per parameter would
have required 222 function evaluations. And with a
simulation rate of approximately 10 function evalu-
ations per minute that would equal a total simulation
time of roughly 10 months. Therefore, operating points
had to be found randomly, making the found parameter
values somewhat arbitrary and making the experiment
difficult to repeat.

The visual information that was added to the model
had some unexpected results. The estimated values of
the weighing factors Wf1 and Wf2 suggest that the
visual information is almost completely ignored in the
present conditions with the visual disturbance. From
literature though, we know that visual disturbance does
have an influence on human balance [11], [13]. This
indicates that the model is not yet able to capture
the effect that the visual disturbance has on human
balance.

When the model is applied to the BalRoom data
set, gains and thresholds of the disturbance estimations

vary widely, often approaching the lower limit or
exceeding the theoretical upper limit when allowed.
It appears that the disturbance estimations of segment
orientations are favoured over torque estimates. For
example, the gains Gls and Gfs are always higher than
the theoretical upper limit of 1, and gains such as Gi,h

and Gg,a, that rarely exceed the theoretical upper limit,
but often approach the lower limit of 0. These results
indicate that the way in which disturbance estimations
are calculated and used can still be improved.

Thresholds show an equal amount of variance. For
some thresholds, such as Ti,h and Te,a, this can pos-
sibly be explained by the effect of the low pass filters
that are applied to the signals after the thresholds. The
low pass filters have a low cutoff frequency compared
to the filters used in [20], eliminating a large amount
of high-frequency behaviour. Because the thresholds
have a similar function of eliminating high frequencies,
regarded as noise, it is possible that their function is
partially taken over by the filters. Additionally, the low
gains preceding some of the thresholds suggest that
the signal is almost completely ignored, thus in these
cases the value of the threshold is expected to have
little influence on the model behaviour.

C. Future work

The DEC model was designed from a neurolog-
ical perspective. A large number of parameters are
present in order for the model to represent known and
hypothesized neurological aspects of human balance
control. Redundancy in the model and in the param-
eters is therefore inevitable. However, the redundancy
makes fitting difficult. The nature of the closed loop
control system makes it difficult to determine how
the parameters influence each other. If more time and
computational power are available, a more extensive
investigation into the parameters space could reveal
some interdependences and could gain more insight
into the behaviour of the model in the applied experi-
mental conditions.

A suggested improvement, that is easily made is and
improves redundancy as well as computation time, is
fixing Gp,h and Gp,a. The parallel low pass component
of the gravitational torque estimates have the mere
purpose of preventing the subject from falling over
due to very low frequencies over a long time and
are not expected to have a large influence on the
model behaviour. By fixing the gains on a value
that is expected, around 0.1 or 0.15, the parameters
space that has to be searched is decreased from 22
to 20 dimensions. Fixing the low pass component
also reduces the amount of redundancy in the fitted
parameters. For subject 5 Gg,h was fitted to a value of
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almost 0, while Gp,h is 1, indicating that the low pass
component took over the function of main gravitational
torque estimate signal, which is not desirable. With
fixed low pass gains, this would not happen and the
model is expected to behave more in the way it was
designed.

The model that was presented in Chapter II was
largely based on the model presented in [20]. However
many additions and adaptations were done to the
model. Visual information was added, which had only
been done before in a single-segment DEC model [19],
and a visual disturbance estimation was created to
deal with the effect of the visual screen tilt in the
experimental data. An external torque estimate was
added to the hip module to deal with the pusher to
the hips. Furthermore, the external torque estimate in
the ankle module is now actually used to estimate an
external torque instead of estimating internal reaction
forces. The model structure was also changed so that
the external estimate is not anymore dependent on the
gains and thresholds of the other disturbance estimates
in the hip module.

All adaptations to the existing DEC model were
made simultaneously, because the nature of the avail-
able experimental data did not allow for the changes to
the model to be made one by one. Therefore, it was not
possible to investigate the influence of each adaptation
separately. It would be a huge improvement to add
each new or adapted feature of the model separately
and analyze the effect thoroughly before adding the
next feature. To do this, a broader experimental data
set is necessary, in which subjects are also subjected
to a subset of perturbations at once. The desired data
set would contain trials in which each perturbation
signal is applied separately, while the remaining three
perturbations are turned off, and combinations of two
or three perturbations. With the extended data set, each
element can be added separately while validating the
adaptation with experimental data before adding the
next.

V. CONCLUSION

In this study, an extensive multisegmental DEC
model was developed. The model has a strong phys-
iological foundation and is able to perform sensory
reweighing implicitly, meaning that only one set of
parameters can describe human balance in multiple
conditions. Both features make the multisegmental
DEC model a good candidate for diagnostic purpose
in balance impairment.

The model was put to trial by fitting model simula-
tions to one of the most challenging data sets available,
of humans enduring visual, proprioceptive and two
mechanical disturbances all at once in the BalRoom.

With only limited time and computational power, the
DEC model was already able to fit up to 70% of the
experimental behaviour, showing that the model has
much potential for improvement with more available
resources.

With the development of a complete multisegmental
DEC model and the application of the model to the
BalRoom data set, a big step towards diagnosing
underlying cause of balance impairment has been
made. With the proposed improvements, the diagnosis
of balance impairment could be possible in the near
future, allowing for better treatment and quality of life
in patients.
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APPENDIX A
MODEL DESCRIPTION

The multisegmental DEC model consists of several
levels: the sensory systems, the disturbance estimations
(including the sensory fusion), the controller and the
plant. The four levels are explained in detail below.
The involved parameters are listed in Tables AI, AII
and AIII. The physical variables that are present in the
control loop are listed in Table AIV.

A. Sensors
The sensor level is where information of the state

of the system enters the control loop. Information
that is available to the control system is limited to
the information that the sensory systems are able to
measure. The sensory systems transform the physical
parameters, written with capital letters, into internal
signals of the neural system, written in lowercase
letters. There are four sensory systems included in the
model.

1) Vestibular system: The vestibular system pro-
vides the balance control system with three signals,
the trunk space angle, the trunk space velocity and the
horizontal acceleration of the head, tsves, ˙tsves and
ẍves respectively.

Table AI: The abbreviations of the 22 model parame-
ters that are fitted.

Fitted parameters
Fusion 1

Weighting factor Wf1

Threshold Tf1

Fusion 2
Weighting factor Wf2

Threshold Tf2

Inertial hip torque estimate
Gain Gi,h

Threshold Ti,

Gravitational hip torque estimate
Gain Gg,h

Threshold Tg,h

Gain parallel component Gp,h

External hip torque estimate
Gain Ge,h

Threshold Te,h

Leg space tilt estimate
Gain Gls

Threshold Tls

Gravitational ankle torque estimate
Gain Gg,a

Threshold Tg,a

Gain parallel component Gp,a

External ankle torque estimate
Gain Ge,a

Threshold Te,a

Foot space tilt estimate
Gain Gfs

Threshold Tfs

Neural time delays
Hip module tdh
Ankle module tda

Table AII: The abbreviations of the 13 fixed model
parameters.

Fixed parameters
Inertial hip torque estimate

Cutoff frequency Fi,h

Gravitational hip torque estimate
Cutoff frequency parallel component Fp,h

External hip torque estimate
Cutoff frequency Fe,h

Gravitational ankle torque estimate
Cutoff frequency parallel component Fp,a

External ankle torque estimate
Cutoff frequency Fe,a

Intrinsic muscle properties
Passive hip stiffness kp,h
Passive hip damping kd,h
Passive ankle stiffness kp,a
Passive ankle damping kd,a

Controller parameters
Hip controller proportional gain Kp,h

Hip controller derivative gain Kd,h

Ankle controller proportional gain Kp,a

Ankle controller derivative gain Kd,a

2) Vision: The visual system provides the balance
control system with the angle of the trunk relative to
the visual screen, tv, and the derivative of the same
angle, ṫv. In the absence of a visual disturbance, this
is essentially the same information as the vestibular
system provides, ts and ṫs.

3) Hip proprioception: Hip proprioception senses
the angle and change in angle between the trunk and
the legs, tl and ṫl respectively. Additionally, the active
torque around the hip caused by muscle contractions,
Ta,h is sensed by the proprioceptive system.

4) Ankle proprioception: Analogous to hip propri-
oception, ankle proprioception senses the angle and
change in angle of the ankle, which is the angle
between the feet and the legs, lf and ˙lf . Additionally
the active ankle torque Ta,a is measured.

Table AIII: The abbreviations of the 14 biomechanical
model parameters.

Biomechanical parameters
Measured parameters

Length legs ll
Length head-arms-trunk (HAT) lt
Hip-shoulder distance hs

Estimated parameters
Center of Mass (COM) height legs hl

COM height HAT (above hip) ht

Height vestibular system ht

Mass legs ml

Mass HAT mt

Moment of inertia (MOI) legs Jl
MOI HAT Jt

Calculated parameters
Mass body mb

COM height body hb

MOI HAT around hip Jh
MOI body around ankle Ja
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Table AIV: Physical variables that are used in the
balance control feedback loop.

Physical variables
Vestibular system

Horizontal head accleration ddXV
Trunk-space angle TS
Trunk-space angular velocity dTS

Vision
Trunk-screen angle TV
Trunk-screen angular velocity dTV

Hip proprioception
Active hip torque T A,h
Hip angle TL
Hip angular velocity dTL

Ankle proprioception
Active ankle torque T A,a
Ankle angle LF
Ankle angular velocity dLF

B. Disturbance estimations

1) Fusion: Fusion of vestibular and visual sig-
nals including calculation of the visual disturbance
estimation happens before calculation of the other
disturbance estimations (see Fusion 1 and Fusion 2 in
Figure 4). This is done because the trunk angle esti-
mation ts is used for 5 of the 7 remaining disturbance
estimations. The design of the sensory fusion, Fusion
1 block in Figure 4, is shown in Figure 5. Fusion of
the derivative signals in Fusion 2 in Figure 4 is done in
exactly the same way, with its own weighting factor,
Wf2 and detection threshold value, Tf2.

2) Inertial hip torque estimate: As a result of rota-
tional acceleration of the legs, l̈s, there is a horizontal
acceleration of the hip joint. It is assumed that the
nervous system can calculate this acceleration using
the ẍves signal of the vestibular system and the ṫs
signal from the fusion block, differentiated to become
ẗs. The horizontal acceleration of the hip causes an
inertial torque on the hip, caused by the inertia of the
trunk segment. The resulting torque is given by

Ti,h = −mt · ht · ẍh, (9)

which represents the inertial force of the trunk multi-
plied by the distance between the hip and the COM of
the trunk. The estimate Ti,h is passed through a gain,
thresholded and low-pass filtered. The low-pass filter
is necessary to remove the high frequencies that result
from the acceleration terms.

3) Gravitational hip torque: The Gravitational hip
torque estimate is the estimate of the torque resulting
from the gravitational force on the trunk. The gravita-
tional hip torque is, using the small angle approxima-
tion of sin(ts) = ts, given by

Tg,h = mt · g · ts. (10)

The signal is assumed to be split into a thresholded
signal and a low-pass component that removes the very
lowest frequencies.

4) External hip torque: The external hip torque
estimate is used to make an estimation of the torque
caused by the externally applied forces on the trunk.
In this case, that is the result of the force perturbation
applied to the shoulders. It takes the rotational accel-
eration of the trunk, calculates the corresponding net
torque and subtracts all other, known, torques. The ṫs
signal is differentiated and multiplied by the moment
of inertia of the trunk around the hip joint, which is
given by

Jt,h = Jt + mt · h2
t , (11)

resulting in the net torque in the hip joint

Ttoth = Jt,h · ẗs. (12)

The external torque is calculated from all known
torques by

Te,h = Ttot,h − Tg,h − Ti,h − Ta,h. (13)

The resulting signal is passed through a gain, a thresh-
old, and passed through a low-pass filter.

5) Leg space tilt: The leg space estimator uses the
ṫs signal from the fusion level and ṫl signal from the
hip proprioception to make an estimate of the leg space
tilt, by

˙ls = ṫs− ṫl. (14)

The signal is passed through gain, a threshold and then
integrated.

6) Gravitational ankle torque: The gravitational
ankle torque estimator uses ts and ls = ts − tl to
calculate the sway angle of the combined COM of the
leg and trunk segment. The sway angle of the whole
body, bs is determined by

bs =
ml · hl · ls + mt(ll · ls + ht · ts)

ml · hl + mt(ll · ht)
, (15)

when using the small angle approximation. From this,
the gravitational torque Tg,a is calculated by

Tg,a = mb · hb · bs, (16)

where mb = ml + mt and hb is the height of the
combined COM, given by

hb =
ml · hl + mt(ll + ht)

mb
. (17)

The signal Tg,a is processed in the same way as Tg,h.
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7) External ankle torque: In the ankle module there
are two unknown torques, so the external ankle torque
estimator is used to make an estimation of the sum of
the two torques. The first is the torque resulting from
the external force perturbation applied to the hips, and
the second is the internal coupling force that is a result
of the movement of the trunk. The net ankle torque is
calculated by

Ttot,a = b̈s · Jb,a, (18)

where b̈s is the bs signal calculated in the gravitational
torque estimate, differentiated twice. Ja is the moment
of inertia of whole body around the ankle, calculated
by

Jb,a = Jl + ml · h2
l + Jt + mt(ll + ht)

2, (19)

when applying the small angle approximation.
8) Foot space tilt: The Foot space tilt estimator is

analogous to the leg space estimator

ḟ s = ṫs− ṫl − ˙lf , (20)

where the resulting signal ḟ s is passed through a filter,
a threshold and an integrator.

C. Controller

The disturbance estimations are used to create an
error signal for the controllers. The system consists
of two control loops: the hip module and the ankle
module.

1) Hip module: In the hip module, the trunk is
balanced on top of the hip joint. The inertial torque
estimate, gravitational hip torque estimate and the
external hip torque estimate are summed and converted
to a ts representation of the torque, by

tsT,h =
Th

mt · g · ht
. (21)

The ts estimate stemming from the sum of the leg
space tilt estimate and the tl signal from the hip
proprioception are added to form the error signal for
the hip controller. The hip controller is a PD controller.
A time delay is present to represent the total neural
time delay of the hip module. A small passive hip
stiffness and damping is added without a time delay to
represent the intrinsic and reflexive muscle properties.

2) Ankle module: The ankle module controls the
COM of the combined leg and trunk segment. The
gravitational ankle torque estimate and the external
ankle torque estimate are summed and converted to
a bs representation, using

bsT,a =
Ta

mb · g · hb
. (22)

This is summed with a bs estimate that is converted
from the ls estimate, coming from the sum of fs from

the foot space tilt estimate and the lf estimate from the
ankle proprioception, and the ts estimate coming from
the fusion block. The error signal is the sum of bsT,a

and the bs estimate. The error signal is fed into the
ankle controller, which creates an active ankle torque
using a PD controller.

D. Plant

In the plant, the control signals are transformed into
a movement. The TMT method [23] was used to deter-
mine the equations of motion of the double pendulum,
shown in Figure 13. The bodies are described in terms
of the generalized coordinates

q =

[
LS
TS

]
, (23)

where LS and TS are the angles of the legs and trunk
segments, respectively, with respect to the vertical.

The coordinates of the two bodies are expressed in
terms of the generalized coordinates

xi = Ti(q) =


xl

yl
LS
xt

yt
TS

 =


hl sin(LS)
hl cos(LS)

LS
ll sin(LS) + ht sin(TS)
ll cos(LS) + ht cos(TS)

TS

 ,

(24)
where xl and yl are the horizontal and vertical move-
ment of the COM of the leg segment, LS is orientation
of the legs with respect to the vertical, and xt, yt and

𝑥

𝑦

𝐴
ℎ௟

𝑙௟

ℎ௧

𝑙௧

𝐻

𝑇𝑆

𝐿𝑆

(𝑥௟ , 𝑦௟)

(𝑥௛ , 𝑦௛)

Figure 13: Double pendulum representation of the
human body in the sagittal plane, where A is the ankle
joint and H is the hip joint.
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TS describe the same properties of the trunk segment.
Furthermore, ht is the distance between the ankle joint,
A, and the COM of the legs, ll is the length of the leg
segment and ht is the distance between the hip joint,
H , and the COM of the trunk.

The TMT method says that the movement of a
multibody system can be described with the formula

M · q̈ = f, (25)

where M is the reduced mass matrix, q̈ is the second
derivative of the generalized coordinates, and f is the
reduced force vector. The reduced mass matrix and
force vector are given by

M = TT ·M · T (26)

f = TT (Σf −M · g) , (27)

where T is the first order kinematic transfer function,
given by

T =
∂Ti

∂q
. (28)

The force vector, which consists of all the forces
and torques applied to the bodies, is given by

Σfi =


Fxl

Fyl

Tl

Fxt

Fyt

Tt

 =


Fh

−ml · g
Ta − Th + Fh(ll − hl) cos(LS)

Fs

mt · g
Th + Fs(hs − ht) cos(TS)

 ,

(29)
where Fxl

, Fyl
and Tl are respectively the horizontal

force, vertical force and torque applied to leg segment,
and Fxt , Fyt and Tt are the same forces and torques,
but acting on the trunk segment. Fh is the external
force applied to the hips, Fs is the external force
applied to the shoulders, Ta is the sum of active and
passive muscle torque around the ankle and Th is the
sum of active and passive muscle torque around the
hip joint. The mass matrix M is given by a diagonal
matrix with the vector

dm =
[
ml ml Jl mt mt Jt

]
, (30)

on the diagonal, where ml is the mass of the leg
segment, Jl is the moment of inertia of the leg segment
around the COM, and mt and Jt are mass and moment
of inertia of the trunk.

The differential equation given in 25 was imple-
mented in Simulink using a Matlab function block,
where the input consists of the external forces Fh and
Fs, the internally generated torques Ta and Th and
the state variables LS, TS, L̇S and ˙TS. The output
is given by the derivatives of the four state variables,
thus L̇S, ˙TS, L̈S and T̈ S, the last two determined
by the differential equation 25 and the first two are

simply equal to the inputs L̇S and ˙TS. The four output
variables are integrated using integrator blocks.
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