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Chapter 12 
“Eyes on the Street”: Estimating Natural 
Surveillance Along Amsterdam’s City 
Streets Using Street-Level Imagery 

Timo Van Asten, Vasileios Milias, Alessandro Bozzon, and Achilleas Psyllidis 

Abstract Neighborhood safety and its perception are important determinants of citi-
zens’ health and well-being. Contemporary urban design guidelines often advocate 
urban forms that encourage natural surveillance or “eyes on the street” to promote 
community safety. However, assessing a neighborhood’s level of natural surveil-
lance is challenging due to its subjective nature and a lack of relevant data. We 
propose a method for measuring natural surveillance at scale by employing a combi-
nation of street-level imagery and computer vision techniques. We detect windows on 
building facades and calculate sightlines from the street level and surrounding build-
ings across forty neighborhoods in Amsterdam, the Netherlands. By correlating our 
measurements with the city’s Safety Index, we also validate how our method can be 
used as an estimator of neighborhood safety. We show how perceived safety varies 
with window level and building distance from the street, and we find a non-linear 
relationship between natural surveillance and (perceived) safety. 
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12.1 Introduction 

Safe outdoor environments contribute substantially to a neighborhood’s level of 
livability. A growing body of literature has shown that the design and structure 
of the built environment can influence both actual safety risks and how safety is 
perceived by different population groups, subsequently impacting citizens’ phys-
ical and mental health and well-being (Foster and Giles-Corti 2008; Jackson and 
Stafford 2009; Mason et al. 2013; Stafford et al. 2007). Especially in neighborhoods 
where the fear of crime is disproportionate to the actual crime rates, there is evidence 
of significant associations with lower levels of physical activity (e.g., limited play 
among children and walking in older populations, or women being discouraged from 
using parts of the neighborhood), leading to increased levels of childhood obesity 
and social isolation amongst the elderly (Barnett et al. 2017; Groshong et al. 2020; 
Won et al. 2016). 

Design and planning approaches to community safety in urban spaces, including 
Newman’s defensible space theory (Newman 1972) and the Crime Prevention 
Through Environmental Design (CPTED) strategic framework (Crowe 2000), often 
advocate for neighborhoods with increased density, mixture of land uses, well-
maintained walkways, and permeable street networks with high connectivity, even 
though there has been some recent criticism about the universality of these features in 
reducing actual crime risk and the fear of crime (Barton 2010; Cozens 2015; Cozens 
and Hillier 2012; Rydin et al. 2012). Similar principles are also adopted by the recent 
United Nations’ guidelines on safer cities and human settlements (UN-Habitat 2020). 

A common denominator across theories and design approaches aimed at 
improving actual and perceived safety is the provision of natural (or passive) surveil-
lance in urban public spaces (Crowe 2000). Originating in what Jane Jacobs referred 
to as “eyes on the street” (Jacobs 1961), enhancing a neighborhood’s level of 
natural surveillance has become a widely adopted design guideline towards safer 
urban environments (Carmona 2021; UN-Habitat 2020). Natural surveillance is a 
byproduct of how citizens normally and routinely use public spaces (Crowe 2000). 
Even though there are several factors that can influence the level of natural surveil-
lance, it is generally assumed that characteristics such as good street lighting, abun-
dance of unobstructed windows overlooking walkways, and more permeable streets 
contribute to an increased level of natural surveillance (Cozens 2015; Foster et al. 
2011). However, evidence of how much of these built-environment characteristics 
contribute to increased natural surveillance and lead to improved perceptions of 
safety is still lacking. Several approaches to measuring natural surveillance have 
been proposed to date, ranging from collecting observations on the ground (Lee 
et al. 2017; Peeters and Vander Beken, 2017; Reynald and Elffers 2009) to computa-
tional models for estimating sightlines (Amiri and Crain 2020; Shach-Pinsly 2019). 
Yet, measurements across large spatial extents remain a challenge even for compu-
tational approaches, primarily due to the subjective nature of surveillance and the 
lack of relevant fine-grained data.
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This paper addresses these knowledge gaps, first, by introducing a method for 
measuring natural surveillance at scale using street-level imagery and computer 
vision techniques and, second, by providing evidence of a non-linear relationship 
between natural surveillance and (perceived) safety. We collected and analyzed 
street- level imagery along all street segments across 40 neighborhoods in the city of 
Amsterdam, the Netherlands. Unlike related approaches that use generic proxies of 
visibility such as the distance between buildings (De Nadai et al. 2020; Shach-Pinsly 
2019), street-level imagery gives us the opportunity to capture built-environment 
features that can affect natural surveillance, such as the location of windows on a 
building facade and any visibility blockages by fences or vegetation. 

We extracted these features with geolocalization and computer vision (i.e., facade 
labeling) techniques. We calculated sightlines from the windows to each street and 
vice versa, as well as the windows of surrounding buildings, using the extracted 
features. Drawing on the work of (Peeters and Vander Beken 2017) and (Amiri and 
Crain 2020), we calculated two types of surveillance for each street segment: (1) 
street surveillance, which captures the surveillance of windows from the street level 
and vice versa, and (2) occupant surveillance, which captures the surveillance of 
windows from surrounding buildings. We then correlated the resulting surveillance 
values per street segment with publicly available data on (perceived) safety, crime, 
and nuisance in Amsterdam. Our research goes beyond defining the magnitude of 
associations between natural surveillance and (perceived) safety by identifying street-
segment surveillance threshold values above which the feeling of safety remains 
unchanged. Such evidence can have significant implications for the design of safer 
neighborhoods and communities. 

The remainder of this paper is structured as follows. We first present our research 
methods and describe the data sources, the study area, and how we calculated the 
sightlines and measure street and occupant surveillance. We then report the results of 
our analysis of Amsterdam’s neighborhoods, and correlate them with the Amsterdam 
Safety Index. Next, we discuss the outcomes of our analysis, identify threshold values 
and implications for the design of safer communities. Finally, we summarize the 
conclusions and suggest future lines of research. 

12.2 Method 

We estimated natural surveillance at the street-segment level considering both street 
and occupant surveillance1 . Both of these surveillance types depend on the degree 
to which people are able to observe the street from a specified distance; what is 
usually referred to as sightline. We grouped sightlines according to three parameters. 
The first parameter was based on the assumption that surveillance from ground floor 
windows is associated with lower levels of street crime than surveillance from up-

1 The source code of our method is available on GitHub: https://github.com/timovanasten/natural-
surveillance. 

https://github.com/timovanasten/natural-surveillance
https://github.com/timovanasten/natural-surveillance
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per floor windows, which is supported by previous research (Lee et al. 2017). We 
grouped sightlines based on their altitude amax to study the impact surveillance from 
different window levels has on street safety. Assuming that each building story is 
approximately 3 m high, the value of amax for first-floor windows is 3 m, for first and 
second-floor windows it is 6 m, and for first, second, and third-floor windows it is 
9 m. Second, existing literature indicates that the most reliable distance to observe 
and interpret an event is 15 m (Amiri and Crain 2020; Jong et al. 2005; Lindsay 
et al. 2008). Furthermore, events witnessed from a 43-m distance produce weak but 
reliable eyewitness accounts. Therefore, we divided sightlines into two types: those 
with dmax ≤ 15 m and those with dmax ≤ 43 m. Finally, we defined an angle θ fov as 
the field of view visible through a window. Outside of this field of view, sightlines 
were excluded. 

Detection and geolocalization of windows. The first step in the calculation of 
sightlines is the detection of windows on building facades along streets. We collected 
street-level imagery along the streets of interest and detected windows using the 
facade labeling algorithm developed by Li et al. (2020). The algorithm detects a 
set of four key-points (i.e., top-left, bottom-left, bottom-right, and top-right) using 
2D heatmaps. Then, it links them together using a neural network trained on labeled 
images with varying facade structures, viewing angles, lighting, and occlusion condi-
tions. Following this, we calculated the geolocation of each detected window by using 
and adapting the geolocalization algorithm that was originally developed in Qiu et al. 
(2019) and later modified in Sharifi Noorian et al. (2020). For each of the detected 
windows, this process calculates the latitude, longitude, and altitude of the four key-
points in the street-level images (Fig. 12.1). We then computed the center-point and 
stored it as the window’s geolocation. 

Street and occupant surveillance. To calculate street surveillance, we counted 
all sightlines that have as a starting point the windows with an altitude lower than 
amax and as an endpoint the location of the street-car camera, with a length lower 
than dmax. The number of these sightlines reflects the number of windows that have 
unobstructed views to points sampled across the street network (i.e., every 10 m). 
Regarding occupant surveillance, we calculated for each window the number of

Fig. 12.1 Indicative outputs of the facade labeling algorithm developed by Li et al. (2020) on  
street-level images collected in Amsterdam 
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neighboring windows that have an unobstructed view (i.e., sightline) to it. Specifi-
cally, for each detected window oviewpoint with an altitude lower than amax, we selected 
all neighboring windows that had an altitude lower than amax and were at a maximum 
distance dmax from each oviewpoint. Next, we calculated all sightlines from the neigh-
boring windows to the oviewpoint and removed the ones that were obstructed by the 
presence of intermediate buildings. In particular, for each sightline s, we calculated 
the angle θs between s and the building segment that contains oviewpoint. If  θs > 1 2 θ f ov , 
we considered s outside the field of view of the neighboring window and removed 
it from the set of sightlines to be considered. Due to the restriction of the sight-
line angle, a sightline originating from each window (oviewpoint) to each neighboring 
window (oneighbor) does not imply that the reverse also exists. By repeating these 
steps for each detected window, we calculated how many neighboring windows have 
unobstructed views of each window at hand. 

To calculate the overall natural surveillance scores, we linked all points with a 
street and occupant surveillance score to a given street segment q. We defined a street 
segment as a section of the street between two junctions, or between a junction and 
the end of the street, if the street has a dead end. More specifically, each window 
was linked to the image where it was detected, and this is, in turn, linked to the 
corresponding street segment. We calculated the following two scores, normalized 
by the street segment’s length: 

Sq = 
1 

qL

Σ

i∈Pq 

si (12.1) 

Oq = 
1 

qL

Σ

i∈Pq 

oi (12.2) 

where Sq and Oq respectively denote the street and occupant surveillance scores, 
Pq denotes the set of points linked to a street segment q, qL is the length of street 
segment q in meters, and si and oi denote the number of sightlines observing point i. 

We further aggregated our scores at the neighborhood level by calculating the 
sum of the sightlines of all points within each neighborhood, and dividing it by the 
length of each street segment using the following formulas: 

Sn =
Σ

i∈Pn 
siΣ

i∈Qn 
qLi 

(12.3) 

Pn =
Σ

i∈Pn 
oiΣ

i∈Qn 
qLi 

(12.4) 

where Sn and On respectively denote the sum of street and occupant surveillance 
scores within a neighborhood n, Qn is the set of sampled street segments within n, 
and Pn is the set of sampled points linked to the street segments within n. As previously 
stated, we further grouped our scores according to whether the distance between the
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windows and the corresponding street segment was reliable for witnessing an event 
(dmax = 15 m) or dependable (dmax = 43 m). 

Correlation analysis. To investigate the relationship between natural surveillance 
and safety (both actual and perceived), we correlated the street surveillance and occu-
pant surveillance scores with the Amsterdam Safety Index (Gemeente Amsterdam 
2015). We first tested the normality of the estimated natural surveillance scores using 
the Kolmogorov–Smirnov test, which indicated a non-normal distribution. There-
fore, for each of the considered neighborhoods, we used Spearman’s rank correla-
tion coefficient (rho) to calculate the correlation between the natural surveillance 
scores and the Index’s aggregate values and sub-components (i.e., crime, nuisance, 
and perceived safety). 

12.3 Data 

We used the city of Amsterdam in the Netherlands as a case study to illustrate and 
validate how our method could be used to assess a neighborhood’s level of natural 
surveillance. Amsterdam is the capital and most populated city in the Netherlands, 
characterized by a variety of neighborhoods with equally varying levels of reported 
(perceived) safety. The city combines a medieval center bustling with tourists all year 
round with new developments and strictly residential areas in the outskirts. A well-
substantiated dataset on (perceived) safety for the entire city of Amsterdam is publicly 
available, making it an exemplary case to compare our measurements with real-
world data on actual and perceived safety. The Amsterdam Safety Index (Gemeente 
Amsterdam 2015) covers 104 neighborhoods in the city and is composed of three 
sub-components. These are, namely, the levels of crime, nuisance, and perceived 
safety in each neighborhood. The lower the index value, the safer the neighborhood is 
considered to be. We used OpenStreetMap (OSM), an open-source mapping platform, 
to collect data about the street network and the building footprints. We made use of 
the OSMnx (Boeing 2017) Python library to extract street network data, and the OSM 
Overpass Application Programming Interface (API) to collect the building footprints. 
Moreover, we used the Google Street View Static API to detect the location of 
windows on the building facades along the street segments. Due to budget limitations, 
we focused on 40 out of the 104 Amsterdam neighborhoods covered by the Safety 
Index. Neighborhoods were selected such that they are spatially contiguous (i.e., they 
share a common administrative boundary) and are characterized by a variety of safety 
index scores. In the final subset of 40 neighborhoods (Fig. 12.2), we collected 6,667 
street segments from OSM and 109,988 street-level images from Google Street View 
along the street segments, with the maximum allowed resolution of 640 × 640 pixels 
and with orthogonal field of view and zero pitch to capture the building facades. 
The window detection and geo-localization algorithms provided a total of 872,360 
windows, extracted with the use of the ResNet18 model for facade labeling.
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Fig. 12.2 Left: The 40 neighborhoods and their streets considered in our analysis. Right: An ex-
ample of the geolocations of street-level images collected along street segments in Amsterdam’s 
Grachtengordel-West neighborhood 

12.4 Results 

This section provides an overview of the application of our method for estimating 
natural surveillance in Amsterdam, the Netherlands. We also present the correla-
tion results between our measurements of street and occupant surveillance and the 
2019 Amsterdam Safety Index and its sub-components, namely crime, nuisance, and 
perceived safety in each of the considered neighborhoods. Furthermore, we compared 
the influence of considering windows from different floor levels and distances from 
the street on indicating a neighborhood’s actual and perceived safety levels. 

Figure 12.3 illustrates the calculated street and occupant surveillance scores, 
considering windows within a distance of 43 m from the streets and up to the first floor 
of the buildings, together with the overall Safety Index values of the 40 considered 
neighborhoods. We converted each of these scores into three categorical variables, 
namely, low, medium, and high, according to the tertile they belong to. This allows 
for easier visual comparison, given that each of the presented metrics is originally 
expressed in different units.

Most neighborhoods showcased consistency across the three scores, routinely 
resulting in high or low safety areas. Indicative examples of this include the 
Burgwallen- Oude Zijde (BOZ) and Burgwallen-Nieuwe Zijde (BNZ) neighbor-
hoods, both in the historical center of Amsterdam, consistently scoring low across all 
metrics. Similarly, neighborhoods such as Museumkwartier (MU) and Staatslieden-
buurt (ST) consistently scored among the safest. Examples of the opposite include 
Buitenveldert-West (BW), which scored low in terms of street surveillance, medium 
in occupant surveillance, and high in the Safety Index values. Figure 12.3 further
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Fig. 12.3 a Street surveillance scores; b Occupant surveillance scores; c Amsterdam Safety Index 
values for the 40 considered Amsterdam neighborhoods, classified into tertiles
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zooms in on the street structure of select neighborhoods to elucidate the individual 
contributions of street segments to the overall street and occupant surveillance scores. 

Table 12.1 shows the results of the correlation between our street and occupant 
surveillance scores and the Amsterdam Safety Index and its sub-components, using 
the Spearman’s rank correlation coefficient (rho). The results yielded a moderate 
negative and statistically significant correlation (r = −  0.49, p < 0.001) between 
street surveillance and Safety Index values in the case of sightlines with dmax = 43 m 
and up to the first floor of buildings (i.e., 1F). The correlation became weaker when 
we considered sightlines from buildings within a 15 m distance, or from higher floors. 
Looking at the Index’s sub-components, the correlation between street surveillance 
and crime or nuisance also became weaker when we considered sightlines originating 
from floors higher than the first. Also, street surveillance scores generally presented 
strong negative correlations with perceived safety values, with sightlines of 15-m 
length yielding the strongest results. The correlations of occupant surveillance scores 
with the Safety Index and its sub-components were generally weaker in comparison 
with their street surveillance counterparts. The occupant surveillance scores had the 
highest correlation with the average Safety Index values (r = 0.34). 

The use of a locally weighted scatter plot smoothing (LOWESS) regression to 
examine the linearity of the relationship between the different scores, as shown in 
Fig. 12.4, provided additional insight into the correlations. Specifically, the compar-
ison of the street surveillance scores with the overall Safety Index (Panel I) and the 
perceived safety sub-component (Panel II) yielded an interesting non-linear pattern.

Table 12.1 Spearman correlations of the street and occupant surveillance scores with the 2019 
Amsterdam Safety Index 

Correlations of street and occupant surveillance with the Amsterdam Safety Index 

Index and 
sub-components 

Maximum sightline length 

15 m (reliable) 43 m (dependable) None 

Included floors 

1F ≤2F ≤3F 1F ≤ 2F ≤ 3F All 

Street surveillance 

Safety Index −0.45 ** −0.38* −0.39* −0.49** −0.42** −0.40* −0.45** 

Crime −0.34* −0.30 −0.31 −0.40* −0.37* −0.34* −0.33* 

Nuisance −0.23 −0.18 −0.15 −0.29 −0.21 −0.18 −0.27 

Perceived Safety −0.48** −0.43** −0.44** −0.45** −0.36* −0.38* −0.43** 

Occupant surveillance 

Safety Index −0.34* −0.38* −0.39* −0.40* −0.41* −0.38* 

Crime −0.23 −0.33* −0.34* −0.31* −0.35* −0.31 

Nuisance −0.25 −0.22 −0.20 −0.32* −0.24 −0.19 

Perceived Safety −0.36* −0.35* −0.36* −0.32** −0.33* −0.35* 

* = p < = 0.05, ** = p < = 0.01 
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Fig. 12.4 Scatter plots and corresponding trendlines depicting the relationship between estimated 
street surveillance scores and the Amsterdam Safety Index (I) and its sub-components: perceived 
safety (II); nuisance (III); crime (IV)

We observed that as the street surveillance score increased, the trendline became 
relatively horizontal from a certain point onward. This suggests that even though 
an increased level of street surveillance is generally associated with higher safety— 
either actual or perceived—this association becomes weaker after a certain value 
(approximately 0.3 for safety and 0.8 for perceived safety). However, this does not 
seem to be the case when it comes to the association of street surveillance with the 
levels of nuisance (Panel III) and crime (Panel IV). The corresponding scatter plots 
and trendlines did not indicate any particular pattern. 
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12.5 Discussion 

The application of our method in several neighborhoods in Amsterdam demonstrated 
that the combination of street-level imagery with computer vision techniques offers 
a promising approach to measuring natural surveillance across large spatial extents. 
As such, it can provide a pathway to integrate the widely advocated, yet difficult 
to capture, notion of “eyes on the street” into the planning and design for safer 
neighborhoods. We also showed that different aspects of surveillance (i.e., street 
or occupant-based) have varying contributions to a neighborhood’s overall level of 
safety and elicit interesting non-linear relationships. 

Our results suggest an overall significant negative correlation between our aver-
age natural surveillance scores and the Safety Index. Given that lower Index values 
indicated safer neighborhoods, an increased level of natural surveillance corre-
spondingly indicated a safer neighborhood. This aligns with related expectations 
from the CPTED literature (Cozens and Love 2015; Crowe  2000). We specifically 
detected stronger correlations between street surveillance scores and the Safety Index, 
whereas the correlations with occupant surveillance scores appeared weaker. This 
suggests that the degree of street visibility from surrounding windows is a stronger 
predictor of a street’s level of natural surveillance compared to window visibility 
from surrounding buildings. 

Our analysis also uncovers aspects of natural surveillance that have largely been 
overlooked in the existing evidence base. Our findings, in particular, support our 
hypothesis that window levels and the distance of buildings from the street influence 
how natural surveillance correlates with overall safety. However, variations do exist 
between the two different facets of natural surveillance. Specifically, street visibility 
(i.e., street surveillance) from first-floor windows correlates most with the average 
values of the Safety Index and this association becomes stronger as the distance from 
the street increases. This appears to be less the case when it comes to the visibility of 
windows from surrounding buildings (i.e., occupant surveillance). We also observed a 
strong correlation between street surveillance and perceived safety. The consideration 
of different floor levels barely influenced this correlation. However, the distance of 
the windows from the street did influence this association, with windows closer to 
the street (i.e., sightlines with a length of 15 m) leading to stronger correlations. 

The overall strong association between street surveillance and perceived safety 
would generally suggest that the higher the level of street surveillance, the more 
it would correlate with an increased perception of safety. However, our analysis of 
linearity indicates a natural surveillance threshold value above which the level of 
perceived safety remains relatively stable. Figure 12.4 (Panel I) shows that street 
segments with street surveillance score up to 0.3—this corresponds to an average of 
three windows overlooking a 10-m-long street segment—accordingly led to a grad-
ually increasing level of neighborhood safety. However, street surveillance scores of 
0.3 and above did not lead to any increases in the overall level of safety. Figure 12.5 
provides indicative examples of streets with street surveillance scores of 0, 0.15, 0.3, 
and 0.7 to showcase what streets of low or high street surveillance are like. This
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Fig. 12.5 A selection of Amsterdam streets, along with their street surveillance scores (1F reliable). 
Streets included in the figure, from left to right: Havenstraat, De Rijpgracht, Chasse’ straat and 
Amaliastraat. As the street surveillance score rises to 0.3, neighborhoods feel safer. An increase to 
0.7 does not appear to be associated with increased (perceived) safety 

result provides an interesting insight into how much and what kinds of street features 
lead to increased (feelings of) safety and requires further research in different urban 
environments. 

There are several limitations in this study that could be addressed in future re-
search. First, our method depends on how well windows are depicted in street-
level imagery. Some windows, however, are excluded from the street-level images 
either due to a lack of imagery along certain street segments or because the view 
from the street to the window is obstructed (e.g., by a tree). Second, the facade 
labeling algorithm used for window detection is occasionally inaccurate. Indicative 
inaccuracies include windows that are in shadow or with occluded openings, as well 
as storefront windows that may go undetected by the algorithm because it was trained 
on images of residential buildings (Li et al. 2020). Nonetheless, the facade labeling 
algorithm we used was tested on several datasets of building facade images and 
achieved a pixel accuracy of 90% on average (Korc and Förstner 2009; Riemen-
schneider et al. 2012; Teboul et al. 2011). Third, the geolocalization algorithm can 
introduce errors (namely, mean error of 1.07 m and standard deviation of 1.09 m), 
the most significant of which are caused by inaccurate GPS metadata in street-level 
images. Fourth, natural surveillance is a broad concept that encompasses more than 
window-based surveillance. In fact, active street observation is largely dependent 
on residents’ time, willingness, and capacity to watch and defend their streets and 
communities (Cozens 2015). Therefore, our research could be expanded to take 
into account other factors that influence natural surveillance, such as citizens’ daily 
activity patterns, time of day, or street lighting quality. Lastly, we only tested and
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evaluated our method in a few Amsterdam neighborhoods. For this reason, we intend 
to broaden the applicability of our method by implementing it in other cities. 

12.6 Conclusion 

Natural surveillance has drawn a lot of interest and is now a crucial component of 
design strategies aimed at improving actual and perceived safety in urban spaces. 
This paper introduced a method for measuring natural surveillance at scale by lever-
aging a combination of street-level imagery and computer vision techniques. Our 
work has practical value for built-environment professionals who seek to under-
stand and improve the levels of actual and perceived safety in urban neighbor-
hoods. Specifically, our method draws on the new possibilities offered by street-level 
imagery in capturing built-environment features, such as the location of windows 
and any visibility blockages that have been shown to affect natural surveillance. It 
also employs geolocalization and facade labeling techniques to estimate the surveil-
lance of windows from the street level and surrounding buildings across large spatial 
extents. We applied our method in neighborhoods of Amsterdam and correlated our 
measurements with various components comprising the city’s Safety Index to vali-
date its use as an estimator of neighborhood safety. Our analysis showcased that 
our method can be a promising and scalable alternative to the manual collection of 
observations around aspects of natural surveillance. Our results align with existing 
evidence from the CPTED literature and suggest that surveillance of windows from 
the street contributes more to the overall safety than surrounding buildings. More-
over, the window level and distance of buildings from the street appear to have 
varying influences on the feeling of safety. Another intriguing finding from our anal-
ysis is the identification of a natural surveillance threshold point, with scores above 
it not resulting in increased (perceived) safety. However, more research in different 
urban settings is required to provide more evidence of this. In particular, it presents 
an interesting avenue of future research in the fields of environmental criminology 
and next-generation CPTED (Saville and Cleveland 2008) that can contribute to an 
improved understanding of what kinds of built-environment characteristics lead to 
increased (feelings of) safety. 
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