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Fault-tolerant quantum error correction on near-term quantum
processors using flag and bridge qubits

Lingling Lao * and Carmen G. Almudever
QuTech, Delft University of Technology, Delft, The Netherlands

(Received 9 January 2020; accepted 3 March 2020; published 20 March 2020)

Fault-tolerant (FT) computation by using quantum error correction (QEC) is essential for realizing large-scale
quantum algorithms. Devices are expected to have enough qubits to demonstrate aspects of fault tolerance in
the near future. However, these near-term quantum processors will only contain a small amount of noisy qubits
and allow limited qubit connectivity. Fault-tolerant schemes that not only have low qubit overhead but also
comply with geometrical interaction constraints are therefore necessary. In this work, we combine flag fault
tolerance with quantum circuit mapping, to enable an efficient flag-bridge approach to implement FT QEC on
near-term devices. We further show an example of performing the Steane code error correction on two current
superconducting processors and numerically analyze their performance with circuit level noise. The simulation
results show that the QEC circuits that measure more stabilizers in parallel have lower logical error rates. We
also observe that the Steane code can outperform the distance-3 surface code using flag-bridge error correction.
In addition, we foresee potential applications of the flag-bridge approach such as FT computation using lattice
surgery and code deformation techniques.

DOI: 10.1103/PhysRevA.101.032333

I. INTRODUCTION

Near-term quantum processors will consist of fifty to a
few hundred noisy qubits and allow a limited number of
faulty gates. They are also known as noisy intermediate-scale
quantum (NISQ) [1] processors. For instance, Google, IBM,
and Intel have respectively announced 72-qubit [2], 50-qubit
[3], and 49-qubit [4] superconducting processors which have
coherence times of ∼100 microseconds and two-qubit gate
error rates near 0.1% [5]. Many efforts have been focusing on
designing special quantum applications [6,7] and developing
compilation techniques [8,9] such that one can solve practical
problems and even demonstrate quantum supremacy on NISQ
processors only using noisy bare qubits.

However, fault tolerance will be necessary to reliably im-
plement large-scale quantum algorithms. This can be achieved
through the use of active quantum error correction (QEC). The
idea of QEC is to encode one logical qubit into many physical
qubits and repeatedly perform syndrome extraction to detect
and correct errors. Both the encoding and error detection pro-
cedure should be fault tolerant (FT). Furthermore, operations
on these logical qubits need to be performed fault-tolerantly.
Although the high qubit overhead of QEC makes it difficult
to realize scalable FT computation in the near future, we can
begin to learn how fault tolerance works in practice. The first
step is to demonstrate fault-tolerant quantum error correction,
that is, FT quantum memory.

General fault-tolerant quantum error correction protocols
such as those from Shor [10], Steane [11], and Knill [12] can
be applied to various stabilizer codes. However, these error
correction schemes all require many ancilla qubits, which are
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scarce resources in near-term quantum processors. In order
to perform FT QEC with low qubit overhead, a new error
correction protocol has been proposed [13–16]. It replaces
a non-FT syndrome extraction circuit by a circuit which can
detect correlated (or hook) errors by adding only one or a few
extra ancilla qubits, called flag qubits.

This flag QEC scheme provides an efficient way to demon-
strate fault tolerance in small experiments. However, many
orthodox flag circuits couple one qubit to many others, re-
quiring high-degree qubit connectivity. It is difficult or even
impossible to directly map available flag circuits onto near-
term quantum processors which have geometrical interaction
constraints such as the nearest-neighbor connectivity in super-
conducting processors [17–19]. One may need to apply extra
operations such as SWAP gates to move qubits to be adjacent,
increasing the circuit size in terms of depth and total gate
number, or even circuit width. More importantly, the resulting
circuit may not be fault tolerant, or may produce higher error
rates when used.

In this work, we extend the set of available flag circuits to
a variety of equivalent circuits that can perform the same sta-
bilizer measurement fault-tolerantly. In these circuits, the flag
qubits are also used as bridges to cope with the connectivity
constraints, called flag-bridge qubits. Using these circuits, one
can fault-tolerantly map a QEC code to a given processor with
low overhead by choosing appropriate flag-bridge circuits. We
also develop a simulation framework to automate the proce-
dure of fault tolerance checking, decoder design (including
a look-up-table decoder and a neural-network decoder) for
given flag-bridge circuits of some low-distance QEC codes.
This automation is desirable for demonstrating fault-tolerant
quantum error correction in small experiments. Moreover, we
present mapping examples of the Steane code on two different
qubit processor topologies and analyze their fault tolerance
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FIG. 1. The syndrome extraction circuits for the Za,b,c,d operator,
where s is the syndrome qubit and f is the flag qubit. (a) The
circuit only using one syndrome ancilla may not be fault tolerant.
For example, one fault (Zs) on the second CNOT gate could lead to
correlated weight-2 errors on data qubits (Za, Zb), which may not be
correctable. (b) and (c) The flag-based circuits can detect these hook
errors [13–15].

numerically. In addition, we show the proposed flag-bridge
approach can be applied to FT computation implemented by
lattice surgery and code deformation techniques.

The rest of this paper is organized as follows. We first
review the basics of flag-based quantum error correction in
Sec. II. Then we introduce the proposed flag-bridge approach
in Sec. III. Afterwards, the mapping of the Steane code onto
two qubit processor topologies and corresponding numerical
results are shown in Sec. IV. Moreover, we provide the
potential applications of flag-bridge circuits in Sec. V. Finally,
Sec. VI concludes the paper.

II. FLAG-BASED QUANTUM ERROR CORRECTION

In this section, we briefly introduce the flag-based error
syndrome extraction for stabilizer codes. For more details, we
refer the readers to [13–16,20].

Figure 1 shows the circuits for measuring a weight-4
Z-stabilizer (or check), similar circuits can be derived for
measuring other Pauli operators. In all the circuits presented
in this paper, a CNOT gate between a data qubit and an ancilla
qubit is called an s-CNOT and a CNOT gate between two ancilla
qubits is called an f-CNOT (thick blue lines). Generally, the
syndrome for this Z-check can be extracted using the circuit
with only one ancilla qubit [Fig. 1(a)]. However, this circuit
is not fault tolerant because one single fault could cause
two or more data errors. These correlated errors may lead to
failures of some QEC codes. The surface code is an exception
which can correct these hook errors if the two-qubit gates are
performed in a specific order [21]. In order to perform fault-
tolerant quantum error correction, one can use the flag circuits
in Figs. 1(b) and 1(c) that only add one extra ancilla qubit.
When there is no fault, each of these flag circuits behaves the
same as the non-FT one. When there is a fault that can lead
to hook errors, it will yield a nontrivial measurement outcome

FIG. 2. (Left) The qubit layout of the �7, 1, 3� Steane code.
Data qubits are on the vertices and each plaquette represents two
stabilizers: one weight-4 X -stabilizer and one weight-4 Z-stabilizer.
(Right) all the six stabilizer generators and logical X and Z operators.

of the flag qubit such that the hook errors are detected. For
instance, if the same fault in Fig. 1(a) happens in the circuit of
Fig. 1(b), then the measurement of qubit f will be 1 (raising a
flag).

Flag-based quantum error correction can be applied to
many codes such as the �5, 1, 3� code, Hamming codes,
surface codes, color codes, etc. For example, fault-tolerant
QEC for the smallest color code, the Steane code in Fig. 2, can
be realized as follows: first measure each stabilizer generator
one by one using flag circuits similar to those in Fig. 1; if
a flag raises or a syndrome appears, then stop this round1

and sequentially measure all the stabilizers using the non-FT
syndrome extraction circuit. Note that if connectivity is fixed,
we cannot necessarily change the syndrome measurement
circuit all of a sudden. One can use only two ancilla qubits to
perform FT QEC for the Steane code at the cost of using more
timesteps. However, many quantum systems have very short
coherence times [17,22,23]. Parallelizing stabilizer measure-
ment will be beneficial to achieve lower logical error rates.
Chao and Reichardt [14,16] have proposed several circuits to
perform two or three parity checks in parallel for the �7, 1, 3�
Steane code. The circuits they propose for measuring two and
three Z-checks at the same time using only one flag qubit are
shown in Fig. 3. If the measurement outcome of the shared
flag qubit f is trivial, one single fault can only lead to at most
one weight-1 Z error. If a flag raises, different Z errors (each of
which is caused by a single fault) can be distinguished based
on the observed syndromes. As shown in Fig. 3, more ancilla
qubits are required to achieve this parallelism compared to
the sequential stabilizer measurement circuits (Fig. 1). This
implies there is a trade-off between the number of qubits
required and the number of stabilizers that can be measured
simultaneously.

Flag-based syndrome extraction is promising for demon-
strating quantum error correction and fault tolerance in small
quantum experiments because of its low qubit overhead.
However, current or near-term quantum processors have many
hardware limitations. One of the main constraints is the degree
of qubit connectivity; that is, one qubit can only interact with
a limited number of other qubits. It is challenging to map
existing flag circuits onto connectivity-constrained quantum
processors meanwhile maintaining the fault tolerance with
low costs. For instance, the ancilla qubit s of the flag circuit

1A full round of error syndrome extraction is defined as measuring
all the stabilizer generators of the code for one time.
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FIG. 3. Flag circuits [14] of the �7, 1, 3� Steane code for
(a) measuring two weight-4 Z-checks in parallel using three ancillas
and (b) measuring three weight-4 Z-checks in parallel using four
ancillas. si is a syndrome qubit and f is the shared flag qubit.

in Fig. 1(b) needs to interact with five qubits, which cannot be
supported in a grid topology where each qubit only has at most
four neighbors such as the one in [18]. Besides, general circuit
mapping techniques [9,24–29] that move qubits to be adjacent
by applying SWAP gates will lead to high overhead in the
circuit size. More importantly, it may result in higher logical
error rates or even destroy the fault tolerance of the QEC
circuits because of the error propagation through two-qubit
gates. In this work, we propose a flag-bridge approach to solve
this mapping problem, which will be explained in the next
section.

III. FLAG-BRIDGE QUANTUM ERROR CORRECTION

In this section, we illustrate the proposed flag-bridge ap-
proach which allows fault-tolerant quantum error correction
with low qubit overhead on connectivity-limited quantum
processors.

A. Flag-bridge syndrome extraction circuits

We first provide a microscopic explanation of how a flag-
based circuit can perform a specific stabilizer measurement
using the stabilizer formalism [30]. Then we generalize this
flag scheme such that one can extend available flag circuits to
more equivalent ones that are different in terms of the total
number of gates, circuit depth, and connectivity requirement.
We will use the circuit in Fig. 1(c) as an example. A flag
syndrome extraction circuit can be understood as a circuit that
replaces the bare ancilla qubit by an “encoded” ancilla up to
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FIG. 4. Flag-bridge circuits for measuring one weight-4 Z-check
using (a) two ancillas and (b) three ancillas.

gate commutation. As shown in Fig. 1(c), the first f-CNOT gate
entangles ancilla qubit s and qubit f (the encoding circuit),
encoding a logical ancilla in a �2, 1, 1� error detection code
of which the stabilizer is

〈Xs ⊗ Xf 〉
and logical operators are

〈X = Xs, Z = Zs ⊗ Z f 〉.
This logical qubit is fixed in the Z basis. Then one can
perform stabilizer measurement using this logical ancilla.
Assume the four data qubits (a, b, c, d) are initially stabilized
by (−1)yZa,b,c,d ; the four subsequent s-CNOT gates between
data qubits and ancilla qubits will keep the stabilizers

〈Xs ⊗ Xf , (−1)yZ4,5,6,7〉
of all the qubits invariant, but they will gradually transform
the logical operators into

〈X = Xs, Z = Zs ⊗ Z f ⊗ (−1)yZ4,5,6,7〉.
More generally, since Xf and Xs have the same effect on

the encoded ancilla state, one can perform each s-CNOT gate
between the particular data qubit with any ancilla qubit.
Specifically, in the encoded ancilla area, ks and k f s-CNOT

gates can be applied on ancillas s and f respectively, where ks

and k f are integers and ks + k f = 4. For example, the circuit
shown in Fig. 4(a) also performs a weight-4 Z-stabilizer mea-
surement equivalent to this circuit [Fig. 1(c)], where ks = 3
and k f = 1.

Afterwards, the last f-CNOT (the decoding circuit) disentan-
gles these two ancillas, leading to the final stabilizer

〈(−1)yZ4,5,6,7〉
and the logical operators of these ancillas,

〈Xf , (−1)yZs〉.
This means the readout y of measurement Mz on ancilla
s indicates the measurement result of the stabilizer Za,b,c,d .
Therefore, this circuit indeed measures a weight-4 Z-check.
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Besides, the measurement result of ancilla f implies the
syndrome of the �2, 1, 1� code; that is, it can detect one single
Z error that occurs on any ancilla and then raises a flag.

Once a flag circuit based on the above approach is gen-
erated, one can transform it into other equivalent ones that
can perform the same stabilizer measurement by applying
gate commutation, e.g., the circuit in Fig. 1(b). Note that
the circuits generated by commuting gates may not be fault
tolerant.

Moreover, one can use a larger “encoded” ancilla to mea-
sure a weight-n Z-check (similar circuits can be applied to
other Pauli operators). This logical ancilla is encoded by m
physical qubits denoted by a set Q = {1, 2, . . . , m}, where
one is syndrome qubit (Qs = {1}) and the other m − 1 are
flag qubits (Q f = {2, . . . , m}). The underlying error detection
code �m, 1, 1� of this logical ancilla has stabilizers

〈Xj ⊗ Xk〉, j ∈ Qs, k ∈ Q f

and logical operators〈
X = Xj, Z =

⊗
i

Zi

〉
, i, j ∈ Q.

Similar to the two-ancilla flag circuits, this weight-n check
can be distributed to all m ancillas; ki s-CNOT gates will be
applied on ancilla i, where

∑m
i=1 ki = n. For example, the

circuit in Fig. 4(b) measures one weight-4 Z-stabilizer using
one syndrome qubit (s) and two flag qubits ( f1, f2); each qubit
only needs to interact with at most three others.

In addition, one can also measure p Z-checks in parallel
by encoding p logical ancillas into m physical ancillas. The
underlying �m, p, 1� code is stabilized by〈

Xi ⊗
⊗

j

Xj

〉
, i ∈ Q f , j ∈ Qs.

Its p logical operators are

〈Xk = Xi, Zk = Zi ⊗ Zj〉, i, j ∈ Q, i < j,

where Qs is the set of p syndrome qubits and Q f is the set of
m − p flag qubits. After the encoding of ancilla qubits, one
can simply assign all the s-CNOT gates for performing one
check to a particular syndrome qubit. In this parallel syndrome
extraction case, one can reduce the total number of s-CNOT

gates by applying gate commutation when two or more checks
are performed on the same data qubit(s). Figures 3(a) and
3(b) show the flag circuits to measure two and three Z checks
of the Steane code in parallel by using ancillas encoded in
a �3, 2, 1� code and in a �4, 3, 1� code, respectively, These
circuits use fewer s-CNOT gates than required by commuting
some CNOT gates out of the encoded area (generally 4 s-CNOT

gates are needed for each weight-4 check).
Moreover, one can achieve this gate reduction by distribut-

ing some s-CNOT gates to flag qubits, which can even help
to reduce the circuit depth. Figure 5(a) shows the example
circuit that measures two checks of the Steane code in parallel
but uses fewer timesteps than Fig. 3(a). Note that the s-CNOT

distribution for parallel syndrome measurement needs to be
designed carefully since one flag qubit is used for flagging
multiple checks. This distribution also depends on the de-
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Z

X
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s1 |0〉
s2 |0〉
s3 |0〉
f |+〉

Z

Z

Z
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FIG. 5. Flag-bridge circuits of the �7, 1, 3� Steane code which
measure (a) two and (b) three weight-4 Z-checks in parallel.

coding procedure of the �m, p, 1� code. Figure 5(b) shows
the example circuit that measures three checks using fewer
timesteps than Fig. 3(b). Besides, the circuits in Fig. 5 require
fewer degrees of qubit connectivity than the ones in Fig. 3.

By employing the ideas of encoding ancillas, distributing s-
CNOT, and commuting gates, we can generate more equivalent
syndrome extraction circuits that have different connectivity
requirements. Note that not all the equivalent circuits gener-
ated using this approach are fault tolerant. The fault tolerance
can be checked based on the error correction protocol, which
will be explained in the next section. For these FT circuits,
ancillas are not only used as syndrome and flag qubits to detect
errors, but also as bridges to allow the interaction between
data qubits and the encoded ancilla block. Such a syndrome
extraction circuit is called a flag-bridge circuit.

B. Fault-tolerant protocol for flag-bridge error correction

1. FT QEC condition

For distance-3 codes, a QEC circuit is fault-tolerant if it can
either immediately correct all errors from a single fault or only
leave a weight-1 error to the next cycle. A formal condition of
FT flag-bridge quantum error correction for distance-3 codes,
similar to the flag error correction in [15], can be defined as
follows:

Consider a stabilizer code S = 〈g1, g2, . . . , gr〉 and its
QEC circuit C which is composed of the flag-bridge cir-
cuits for measuring the stabilizer generators, that is, C =
{c(g1), c(g2), . . . , c(gr )}, where c(gi ) is the flag circuit of
measuring stabilizer gi. Note that the total number of flag-
bridge circuits is smaller than r if several stabilizers are
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measured simultaneously in one flag-bridge circuit. For all
generators g, all pairs of elements E , E ′ ∈ E (g) satisfy
s f (E ) �= s f (E ′) or E ∼ E ′, where E (g) is the set of all errors
caused by one fault and s f (E ) is the syndrome and flag string
caused by E . We define E ∼ E ′ to mean that there is an
element g in S such that E ′ ∝ gE ; that is, these errors are
stabilizer equivalent.

Based on this criterion, we check the fault tolerance of
each generated QEC circuit C through a brute-force simulation
under circuit level noise, analogous to [13]. It is implemented
by injecting each individual fault from a circuit-based error
model on every single-qubit or two-qubit gate in a given
QEC circuit and then collecting the final syndromes and flags.
If there are two or more sets of errors which lead to the
same syndrome-flag string but do not yield a stabilizer when
multiplied, then this QEC circuit is not fault tolerant.

2. FT QEC procedure

A full cycle of fault-tolerant error correction for distance-3
codes using flag-bridge circuits can be performed as follows:

(1) For the first round of syndrome extraction, each circuit
c(gi ) ∈ C is sequentially performed. If there are nontrivial
flags (form a set F1

i ) or nontrivial syndromes (form a set
S1

i ) of c(gi ), then this round will be terminated and another
full round for all circuits in C will be performed. All the
syndromes ∈ S2 = ⋃

i S2
i and flags ∈ F2 = ⋃

i F2
i of the

second round will be collected.
(2) If F1

i is not empty, one can decode using F1
i and S2

(and F2). If F1
i is empty, but S1

i is not empty, one can decode
using S2 (and F2). Otherwise, no corrections are needed.

In this FT QEC procedure, we use flag-bridge circuits for
both rounds of syndrome extraction because of the connec-
tivity constraint, which is different from the ones proposed in
[14–16], where non-FT syndrome extraction circuits that use
only one ancilla are executed for the second round.

For example, each stabilizer generator gi of the �7, 1, 3�
Steane code (Fig. 2) can be measured fault tolerantly by using
a flag-bridge circuit c(gi ) that is the same as (for Z-checks)
or similar to (for X -checks) the one in Fig. 1(c), where gi ∈
{Gj

X (Z )}, i ∈ {1, 2, . . . , 6}, j ∈ {1, 2, 3}. Then a full FT QEC
cycle of the Steane code can be performed by first sequentially
executing c(gi ). If the measurement outcome of either the
flag qubit ft or the syndrome qubit st in c(gt ) is nontrivial,
then terminate the first round [that is, c(gt+1), . . . , c(g6) will
not be executed] and perform the second round of syndrome
measurement by sequentially running each flag-bridge circuit
c(gi ) regardless of any flags or syndromes. Only the flag
(if ft raises a flag) in the first round and all the flags and
syndromes in the second round are collected and will be used
for decoding. If neither a flag nor a syndrome is detected in
the first round, then one will not perform the second round
and no corrections will be applied.

3. Error decoders

Normally, error corrections of topological codes like sur-
face codes have special structures for the measured syn-
dromes so that one can use heuristic algorithms to find
high-probability errors. These types of decoders such as the
minimum weight perfect matching decoder [31] and the belief

(a) (b)

FIG. 6. (a) The Surface-17 topology and (b) the IBM-20 topol-
ogy, where each node represents a qubit and each edge indicates the
connectivity between two qubits.

propagation decoder [32] can be applied to the same QEC
code with different distances. However, the flag-bridge error
correction circuits of a QEC code for a specific quantum
platform are ad hoc. Different circuits may be chosen based
on the qubit topology, leading to different error-syndrome
patterns and in turn requiring different decoding strategies. It
is difficult to design heuristic decoding algorithms that can
be applied to various syndrome extraction circuits. Since flag-
bridge circuits are likely to be used for low-distance codes
in small experiments, a simple decoding solution is to create a
look-up table (LUT) for each QEC circuit. A LUT decoder can
find the most likely Pauli errors from a single fault that leads
to the observed syndromes and flags. LUT decoders can be
easily derived from the brute-force checking procedure [13].

Another type of decoders are the neural-network (NN)
decoders [33–36]. They can provide high-speed decoding,
be adaptable to different error models, and be more easily
implemented on hardware. Moreover, a NN decoder can be
developed by training the network using only input-output
pairs without any knowledge of the QEC code, making it
favorable for flag-bridge circuits. For example, the inputs of
a NN decoder are the observed syndromes and its outputs can
be the actual physical errors that have occurred. The imple-
mentation details of the LUT decoder and the NN decoder
can be found in the Appendix.

In this work, we design a simulation framework to auto-
mate the procedure of fault tolerance checking, LUT gen-
eration, and NN decoder training for given flag-bridge syn-
drome extraction circuits of the Steane code. This automation
is desirable for demonstrating fault-tolerant quantum error
correction in near-term processors which may have different
geometrical interaction constraints.

IV. STEANE CODE ERROR CORRECTION ON TWO
PROCESSOR TOPOLOGIES

In this section, we show how to map the Steane code
error correction onto two different processors with limited
connectivity using the proposed flag-bridge circuits, namely,
the Surface-17 transmon processor (Surface-17) [18] and the
IBM Q Tokyo processor (IBM-20) [17] (Fig. 6). Furthermore,
we numerically analyze each flag-bridge quantum error cor-
rection procedure under circuit level noise. This error model
inserts depolarizing errors after each operation in a flag-bridge
circuit as follows: (1) each single-qubit gate is followed by

032333-5



LINGLING LAO AND CARMEN G. ALMUDEVER PHYSICAL REVIEW A 101, 032333 (2020)

4

1

7
5

3

6/-
-/6

2/-

-/2

(a) Steane-cl-L1

4

1
7

5

2

3

6

(b) Steane-c2-L1

FIG. 7. Mapping of the Steane code onto the Surface-17 topol-
ogy, where the qubits labeled with numbers are data qubits and the
qubits in the colored blocks are ancillas. (a) The mapping using
the two-ancilla flag-bridge circuits in Figs. 1(c) (G1

X (Z ) and G3
X (Z ))

and 4(a) (G2
X (Z )) in which only one stabilizer is measured at a

time. (b) The mapping using the three-ancilla flag-bridge circuits in
Figs. 4(b) (G3

X (Z )) and 5(a) (G1
X (Z ) and G2

X (Z )) that measure one and
two stabilizers, respectively.

an X , Y , or Z with probability p/3; (2) each two-qubit gate
is followed by an element of {I, X,Y, Z}

⊗
2\{II} with

probability p/15; (3) the preparation or measurement in the
Z basis is flipped with probability p. The elementary Clifford
operations used in this simulation are preparation and mea-
surement in the Z basis, H , and CNOT gates. Other operations
need to be further decomposed into these elementary opera-
tions. For example, each control-phase gate is replaced by two
H gates and one CNOT gate.

A. Mapping

Many current and NISQ processors have geometrical con-
nectivity constraints; that is, each qubit can only interact
with a few neighbors. It is challenging or even impossible to
directly perform existing flag-based quantum error correction
without adding more operations and/or without losing fault
tolerance. For example, the flag circuit which measures one
weight-4 Z-stabilizer of the Steane code in Fig. 1(b) cannot
be directly executed on the Surface-17 topology [Fig. 6(a)]
but can be supported by the IBM-20 topology [Fig. 6(b)].
This is because qubit s needs to interact with five qubits but
in Surface-17 each qubit has at most four neighbors. The flag
circuit in Fig. 1(c) can be performed on both processor topolo-
gies. However, a full round of error syndrome extraction
requires all the stabilizer generators of the Steane code to be
measured. The full syndrome extraction using only these two
flag circuits [Figs. 1(b) and 1(c)] can be directly performed on
the IBM-20 topology [e.g., a mapping in Fig. 8(a)] but not on
the Surface-17 topology.

As mentioned above, all the flag-bridge circuits shown
in this paper are used to measure Z-stabilizers; similar
circuits with the same ancillas can be derived for measuring
X -stabilizers. Figures 7 and 8 show examples of mapping
the Steane code error correction using the flag-bridge circuits
onto the Surface-17 topology and the IBM-20 topology,
respectively.

In these mapping figures, the qubits in each red (medium
gray with vertical lines), blue (dark gray with dots), or green
(light gray) block are the ancillas in each flag-bridge circuit
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6

3

(c) Steane-c3-L2

FIG. 8. Mapping of the Steane code onto the IBM-20 topology
(a) using the flag-bridge circuit in Fig. 1(c) to sequentially measure
each stabilizer; (b) using the flag-bridge circuits in Figs. 1(c) (G3

X (Z ))
and 5(a) (G1

X (Z ) and G2
X (Z )) to measure one and two stabilizers,

respectively; (c) using the four-ancilla flag-bridge circuit in Fig. 5(b)
to measure three stabilizers simultaneously.

and they are used to measure the corresponding X (or Z)-
stabilizer in the same color plaquette in Fig. 2. The flag-bridge
qubits in the yellow (gray with grids) block are used to mea-
sure the X (or Z)-stabilizers in both red and green plaquettes.
The flag-bridge qubits in the gray block with horizontal lines
measure the X (or Z)-stabilizers in all three plaquettes. The X -
and Z-stabilizers are measured separately, more specifically,
one first measures all the stabilizers in one type and then
measures the other type. Furthermore, each of the flag-bridge
circuits for the Steane code error correction needs to be
executed sequentially. On the Surface-17 topology, one can
measure all the stabilizers of the Steane code one by one when
using the mapping in Fig. 7(a). Maximally two stabilizers can
be measured in parallel in this topology, as shown in Fig. 7(b).
In contrast, three X (Z)-stabilizers can be measured at the same
time on the IBM-20 topology [Fig. 8(c)].

The circuit characterization of one full round of syndrome
extraction for the Steane code when using different mappings
is shown in Table I. This characterization includes the total
number of ancilla qubits, the total number of operations and
timesteps, and the number of f-CNOT and s-CNOT gates. To
show the mapping overhead, the characterization of the QEC
circuits (Steane-c1-nl, Steane-c2-nl, and Steane-c3-nl) of the
Steane code without considering the geometrical interaction
constraint is also described in Table I. In this case, if multiple
flag-bridge circuits in previous sections can measure the same
number of stabilizers, then the one that use fewest ancillas
and fewest timesteps is chosen. Specifically, in Steane-c1-nl
each stabilizer is measured sequentially by using the circuit in
Fig. 1(c). In Steane-c2-nl, two same-type (X or Z) stabilizers
are measured in parallel by using the circuit Fig. 5(a) and
then the other same-type stabilizer is measured separately
using the circuit in Fig. 1(c). In Steane-c3-nl all the three
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TABLE I. Comparison of the quantum error correction circuits
of the Steane code when different parallelism can be achieved and
when different mappings are applied.

Number of
Ancillas Operations f-CNOTs s-CNOTs Timesteps

Steane-c1-nl 2 72 12 24 48
Steane-c2-nl 3 62 12 20 36
Steane-c3-nl 4 54 12 18 26
Steane-c1-L1 6 72 12 24 50
Steane-c1-L2 6 72 12 24 48
Steane-c2-L1 6 72 16 20 40
Steane-c2-L2 5 62 12 20 36
Steane-c3-L2 4 54 12 18 26
SC d=3 8 48 0 24 8

same-type stabilizers are measured in parallel by using the
circuit in Fig. 5(b). As shown in Table I, when there is no
connectivity constraint, the FT QEC of the Steane code can be
implemented by only using two ancillas; that is, these ancillas
are reused by each stabilizer measurement circuit. However,
when the qubit connectivity of a given quantum processor is
limited, more ancilla qubits may be required to measure all
the stabilizers. For instance, Steane-c1-L2 is implemented by
using the same flag-bridge circuit as Steane-c1-nl but requires
two times more ancillas. Furthermore, flag-bridge circuits that

have more operations and/or more timesteps may be needed
to comply with the connectivity constraint. Moreover, the
circuits which can measure more stabilizers simultaneously
require fewer operations and fewer timesteps. Besides, we
also show these parameters of the rotated distance-3 surface
code (SC d=3) for comparison. Though the distance-3 surface
code uses more ancilla qubits, it always needs fewer opera-
tions and fewer timesteps than the Steane code.

B. Numerics

We further compare different mapping circuits in terms of
their fault tolerance, which is analyzed by numerical simula-
tion under circuit level noise. For each point in the numerics,
106 iterations of a full QEC cycle have been run and confi-
dence intervals at 99.9% are plotted. Moreover, NN decoders
are used for this comparison since it has better performance
than LUT decoders [see Figs. 9(a) and 14]. As shown in
Fig. 9, for the Steane code, the circuits that can measure
more stabilizers in parallel have lower logical error rates,
likely because they consist of fewer operations and require
fewer timesteps. Moreover, when there are no idling errors
[pI = 0 in Fig. 9(a)] or a small probability of idling errors
[pI = 0.01p in Fig. 9(b)], the Steane code can achieve similar
performance to, or even outperform, the distance-3 surface
code by parallelizing stabilizer measurements. This is because
the circuit for the surface code error correction consists of
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FIG. 9. Numerical simulation of the Steane code error correction based on different flag-bridge circuits using neural network decoders
(NND). The circuit level noise (p1 = p2 = pM ) with (pI �= 0) or without idling errors (pI �= 0).
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X
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Z

Z
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FIG. 10. Fault-tolerant circuits for performing an XZZX -check:
(a), (b), (c) using two ancillas but requiring different connectivity;
(d) using three ancillas, similar circuits can be generated by re-
distributing the s-CNOT gates for each weight-4 check to different
ancillas, as mentioned in Sec. III.

more s-CNOT gates than the QEC circuits that can measure
several stabilizers in parallel for the Steane code. When idling
errors are significant, we observe that the circuit with fewer
timesteps results in lower logical error rates [as shown in
Figs. 9(c) and 9(d) for pI = 0.1p and pI = p respectively].

V. OTHER APPLICATIONS
OF THE FLAG-BRIDGE CIRCUITS

In this section, we foresee some possible applications of
the flag-bridge circuits including both fault-tolerant quantum
error correction and fault-tolerant quantum computation.

A. Flag-bridge QEC for the five-qubit code

Analogous to the flag circuits, the flag-bridge circuits can
also be applied to other distance-3 error correction codes
such as the �8, 3, 3�, �10, 4, 3�, �11, 5, 3�, �5, 1, 3� codes,
Hamming codes �2r − 1, 2r − 1 − 2r, 3�, etc. In this section,
we consider the �5, 1, 3� code as an example. This code has
four stabilizers, which are cyclic permutations of XZZXI .
Figure 10 shows the flag-bridge circuits that can measure
an XZZX -stabilizer fault-tolerantly. Each stabilizer of the
five-qubit code can be measured using these circuits up to
data qubit permutation. Similar circuits using three ancillas
to measure one stabilizer are also proposed in [13]. All these
circuits have different connectivity requirements. By selecting
and combining some of them, one can map the five-qubit code
error correction onto different qubit topologies. Figure 11
shows the mapping of the five-qubit code to the Surface-17
processor topology using the two-ancilla flag-bridge circuits
and the IBM Q Melbourne (IBM-16) processor topology
using the three-ancilla flag-bridge circuits.

B. Flag-bridge circuits for FT computation

The geometrical interaction constraint in near-term quan-
tum processors has also limited the fault-tolerant implementa-

43
5

2
1

(a)

43

5

2

1

(b)

FIG. 11. Mapping of the five-qubit code onto (a) the Surface-17
topology by using the two-ancilla flag-bridge circuits in Figs. 10, and
(b) the IBM-16 topology using the three-ancilla circuit in Fig. 10(d).

tion of logical operations. For instance, a fault-tolerant CNOT

gate in planar surface codes and color codes in principle
can be implemented transversally in a three-dimensional (3D)
structure, that is, performing pair-wise CNOT gates between
data qubits of the two lattices. However, this transversal CNOT

is not realizable in near-term quantum technologies because
of the local qubit connectivity limitation in a 2D architecture.
Measurement-based protocols such as lattice surgery [37,38]
and code deformation [39,40] have been proposed to comply
with the 2D local interaction constraint. Figures 12 and 13
show the qubit layouts for performing lattice-surgery-based
operations on the distance-3 surface code and the distance-3
color code (the Steane code), respectively. The details of
implementing logical operations by lattice surgery can be
found in [37,38].

As shown in Figure 12, the merge operations can be
directly performed on a 2D grid topology. As mentioned
previously, the stabilizer measurement of surface codes can
be realized by only using the one-ancilla circuit similar to
Fig. 1(a). However, one ancilla qubit [the circled one in
Fig. 12(b)] is used by two stabilizers from different lattices
during the split operation. One may have to measure these
two stabilizers sequentially, which leads to more timesteps
and in turn may result in higher logical error rates. To preserve
parallelism of the stabilizer measurement, we propose to use

(a) (b) (c)

FIG. 12. Mapping lattice surgery-based operations for the
distance-3 surface code using flag-bridge circuits. Each red (light
gray) plaquette represents a weight-4 or weight-2 X -stabilizer. Each
blue (dark gray) plaquette represents a weight-4 or weight-2 Z-
stabilizer. Data qubits are on the vertices and ancilla qubits are on
the plaquettes. (a) and (b) Initial layouts for performing a merge and
a split operation using lattice surgery, respectively. (c) The layout
after mapping using the two-ancilla flag-bridge circuits.
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(a) (b)

FIG. 13. Mapping lattice surgery-based operations for the Steane
code using flag-bridge circuits. (a) Initial layout, where the gray
plaquettes between two lattices only contain one type of stabilizers,
depending on which joint measurement needs to be performed. Data
qubits are on the vertices and ancilla qubits are on the plaquettes.
(b) Mapping to a grid topology similar to Fig. 7(b) (Ancillas in each
left block and right block are used to measure one and two stabilizers
in parallel, respectively.).

the qubit layout in Fig. 12(c). By using this layout, one can
measure all the stabilizers in parallel when splitting lattices
since they no longer share ancillas. One can also perform the
merge operation by replacing the original syndrome extraction
circuit using one ancilla with the proposed flag-bridge circuits
using two ancillas [Fig. 1(c)] where ancillas are connected by
dash lines in Fig. 12(c). Similar mapping can be applied to
other code-deformation-based operations on surface codes.

Furthermore, lattice-surgery-based operations for the
Steane code in Fig. 13(a) cannot be directly realized in a 2D
grid topology. Similar to the mapping in Fig. 7(b), one can
map these operations fault-tolerantly using the three-ancilla
flag-bridge circuits as shown in Fig. 13(b). Compared to the
distance-3 surface code, the Steane code can achieve Clifford
gates transversally. Moreover, it requires fewer qubits for both
FT error correction and FT computation, which may be prefer-
able for demonstrating fault tolerance in small experiments.

VI. DISCUSSION AND CONCLUSION

We have shown that flag circuits can be interpreted as re-
placing bare ancillas by encoded ancillas in an error detection
code. Based on this formulation, we proposed a flag-bridge
approach to perform fault-tolerant quantum error correction
for distance-3 codes on connectivity-constrained near-term
quantum processors with low overhead. Furthermore, we
mapped the Steane code error correction onto two current
qubit topologies using the flag-bridge circuits. The numerical
simulation results show that QEC circuits that can measure
more stabilizers in parallel to achieve lower logical error
rates, providing insights for fabricating processors with more
connectivity. In addition, we have observed that the Steane
code that uses fewer qubits even outperforms the distance-3
surface code when qubit idling errors are negligible. Since
the Steane code also allows transversal Clifford gates, it may
be a better candidate than the distance-3 surface code for
demonstrating fault tolerance in small experiments. However,
because the numerics in this work were carried out with Pauli

errors, it will be interesting to test these circuits using more
realistic error models.

As mentioned previously, general circuit compilation tech-
niques [9,24–29] that enable two-qubit gates between non-
adjacent qubits by adding extra operations such as SWAP

gates or by performing gate reordering cannot be directly
used for mapping QEC codes. This is because errors can
propagate through two-qubit gates, and adding more two-
qubit gates and reordering gate sequences may destroy the
fault tolerance of a QEC circuit. For example, the two-qubit
gates in a FT syndrome extraction circuit of surface codes
need to be performed in a specific order [21], changing this
order will lead to failures of FT error correction. For ease of
implementation, the mapping procedure in this work was hand
optimized to ensure the fault tolerance of QEC circuits. Future
work will focus on automating the fault-tolerant mapping of
flag-bridge quantum error correction onto given processors
that have limited connectivity. One solution is to first generate
a large number of FT QEC circuits with different connectivity
requirements for a given code based on the proposed flag-
bridge approach in Sec. III and then find the ones that can be
supported on the underlying quantum hardware by a brute-
force searching algorithm. Another possible approach is to
apply circuit optimization algorithms that can mitigate errors,
as in [41–43]. Moreover, we have shown that the flag-bridge
circuits can be applied to the five-qubit code and lattice-
surgery-based operations for the surface codes and the Steane
code. The flag circuits can be used for arbitrary code distances
[15], future work should also investigate the extensibility and
scalability of flag-bridge circuits to higher distance codes and
fault-tolerant computation.
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TABLE II. The implementation details of the NN decoder.

Activation function

Loss Hidden Output hidden Learning Batch
function layers layer layer Optimizer rate size PER Samples

cross- ReLU Adam
3 sigmoid 0.002 50 ∼0.01 105

entropy (tanh) (Nadam)

Council. C.G.A. acknowledges support from the Intel Corpo-
ration.

APPENDIX: IMPLEMENTATION OF LUT
AND NN DECODERS

Based on the FT QEC procedure for distance-3 codes
in Sec. III, decoding is only needed when two rounds of
syndrome extraction (SE) are performed (the first round has
nontrivial syndromes or flags). If there are only nontrivial
syndromes (no flags) in the first round, then the decoders
will only decode using the measurement results in the second
round. If there is any nontrivial flag in the first round, then the
decoders will decode using these flags and the measurement
results in the second round. For the measurement information
in the second round, the simple LUT decoder only considers
the results of syndrome qubits, which is enough for cor-
recting all the errors caused by one fault. In contrast, the
NN decoder also takes the flags of the second round into
account. This means the NN decoder could potentially correct
some errors caused by more faults, outperforming the LUT
decoder.

The LUT decoder. As mentioned previously, we use a brute-
force search to check the fault tolerance of flag-bridge circuits.
After this search, all the errors from one single fault and the
corresponding syndrome-flag (SF) string are collected. For
FT flag-bridge circuits, these error-SF pairs can be directly
used to design a LUT decoder. Two look-up tables need to
be created. One is used for the case where only syndromes
are observed in the first round of SE with a size 2ms , where
ms is the total number of syndrome qubits in the QEC circuit
C = {c(g1), c(g2), . . . , c(gr )}. Note that if the same ancilla
qubits are reused in different cg, they are still considered as
different syndrome qubits, and similarly for flag qubits. The
other table is to decode for the case where flags are raised in
the first round of SE, which has a size of

∑
i 2m fi 2ms , where m fi

is the total number of flag qubits in cgi . The LUT decoder is

designed to correct all single faults, but not to correct the most
likely two faults correspond to measured syndromes. The
performance of different flag-bridge circuits for the Steane
code using LUT decoders is shown in Fig. 14. As can be
seen, the QEC circuits that can achieve more parallelism of
stabilizer measurement have lower logical error rates.

The NN decoder. Decoding can be seen as a classification
problem; that is, given the observed syndromes, the decoder
identifies the error or the logical coset of the error that has
occurred. It has been shown that neural networks are versatile
tools for decoding topological quantum error correction codes
[33–36]. The inputs xi for a neural network decoder are the
syndromes (and flags for flag QEC). In this paper, two rounds
of syndromes and flags will be collected when using the
flag-bridge error correction for distance-3 codes. Therefore,
the size of input layer will be 2 × m, where m is the total
number of syndrome and flag-bridge qubits. In this work, the
outputs yi are the suggested physical errors which can result
in the given syndromes and flags. For a CSS code with n
data qubits, the size of output layer is set to be 2 × n, which
can describe whether a X and/or a Z error has occurred on
each data qubit. The neural network will find an approximate
function f : x → y to describe the input-output relation from
the set of training data {(xi, yi )}. Note that for large-distance
codes it is more efficient to use logical errors as outputs and
a simple decoder (e.g., LUT decoder) is required to generate
the logical error information.

In this work, a simple NN decoder using the TENSORFLOW

library [44] is developed to analyze the fault tolerance of
different flag-bridge circuits. We use the “sigmoid” activation
function for the output layer, and 105 syndrome-error pairs
at a physical error rate (PER) around 0.01 are sampled for
each training; more details of the designed NN decoder are
described in Table II. Since the focus of this work is to
evaluate the flag-bridge quantum error correction, we leave
the performance and speed optimization of NN decoders for
future work.
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