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Abstract 

 

The growing importance of rare earth elements (REEs) in sustainable technologies necessitates an 

efficient assessment of potential resource targets within the European Union. Traditional analytical 

techniques for REE determination have drawbacks like destructive and time-consuming sample 

preparation, but hyperspectral imaging (HSI) and laser-induced fluorescence (LiF) offer promising 

alternatives. This project aims to use a combined HSI and LiF method to qualitatively characterize 

REE mineralization and alteration in drill core samples from the Storkwitz deposit, Germany. The 

goal is to develop a transferrable mapping approach for REEs, while enhancing our understanding 

of the Storkwitz deposit. It aims to check the robustness of HSI conducted across the extended 

wavelength range as a tool in effectively characterizing the lithologies associated with REE 

mineralization in the Storkwitz breccia. It also tests if the combined HSI-LiF can provide new 

insights into the presence of REEs and its associated minerals in the Storkwitz breccia.  

 

The proposed workflow involves acquiring hyperspectral data of the Storkwitz drill core and block 

sections in three wavelength ranges (VNIR-SWIR, MWIR, and LWIR). Automatic and manual 

endmember extraction is performed on the smaller subsection of data to create spectral libraries, 

which are then used for spectral unmixing and mapping of the entire hyperspectral dataset to 

identify lithologies. LiF is used to identify and map rare earth elements (REEs) in selected REE-

rich zones identified from the hyperspectral data. 

 

The results indicated that the Storkwitz Breccia is primarily composed of ankerite in the matrix, 

along with minor amounts of white mica, clay, iron oxides, and REE-fluorcarbonates. The breccia 

contains different clasts, including granitoid clasts rich in orthoclase and quartz-albite-biotite, as 

well as carbonatitic clasts dominated by ankerite, dolomite, and ankerite-calcite. The breccia also 

underwent four alteration phases, including fenitization, biotite alteration, white mica-clay 

alteration, and ferric alteration. Laser-induced spectroscopy confirmed the presence of REEs, with 

apatite and REE-fluorcarbonates, particularly bastnäsite, being the main REE-bearing minerals. 

The specific REEs identified include Nd3+, Sm3+, Pr3+, and possibly Eu3+. The comprehensive 

workflow combining hyperspectral imaging and laser-induced fluorescence spectroscopy proved 

to be a successful approach for characterizing lithologies and mapping rare earth element 

mineralization in the Storkwitz breccia. The study opens up new possibilities for efficient REE 

exploration in similar geological settings, providing valuable information for geological logging 

and interpretation.  
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Chapter 1 – Introduction  

 

Rare earth elements (REE) are necessary components for the production of wide variety of items 

like glass, ceramics, lasers, superconductors, batteries, and high-strength alloys with vital 

applications in the aerospace, defense, telecommunications, and medical sectors. Additionally, 

REEs are also essential for the manufacturing of permanent magnets. These magnets, typically 

composed of neodymium, iron, and boron (NdFeB), are critical components in electric vehicle 

motors, wind turbines, computer hard drives, and many other electronic devices. The strong 

magnetic properties of rare earth elements contribute to the miniaturization and improved 

performance of these technologies. With their recently growing demand linked to their utilization 

in current and future green technologies, REEs are important for the progress of society. Following 

the mounting risks associated with susceptibility to disruption of their supply chains, REEs have 

been identified as critical materials in the European Union (Critical Raw Materials Resilience 

Report, 2020). Given the rising importance of REEs for modern civilization focused on 

sustainability, there is an increased need for efficient assessment of potential resource targets for 

these materials also within the EU territory.  

  

Geologically speaking, REEs are formed as constituents in a wide range of mineral groups, 

including phosphates (e.g., monazite and xenotime), carbonates (bastnäsite and synchysite), 

silicates (e.g. allanite and steenstrupine) and halides (e.g. fluocerite). Carbonatites (typically 

containing monazite and bastnäsite minerals) and their associated alkaline igneous rocks are 

considered the most important source of REEs and make for popular targets for mineral 

exploration companies (Simandl et al., 2018). In this context, some key REE occurrences have 

been identified and explored across Europe that could be exploited in the future. An example of 

such an occurrence is the Storkwitz Carbonatite. The Storkwitz carbonatite is characterized by 

breccias with a fine-grained matrix. It forms part of the Late Cretaceous ultramafic lamprophyre-

carbonatite Delitzsch complex, located in Saxony, Germany.  

  

Typically, ICP-MS (Inductively coupled plasma mass spectrometry), ICP-OES (Inductively 

coupled plasma optical emission spectrometry), NAA (neutron activation analysis), and XRF (X-

ray fluorescence) are some of the most commonly used analytical techniques for REE 

determination in resource programs (Bhatt et al., 2017). While these techniques provide valuable 

insights into mineralogy and geochemistry, they also pose certain drawbacks. For ICP-MS and 

ICP-OES methods, the sample must be prepared either using corrosive acids or fusion with fluxes 

which can be destructive and time-consuming. Alternatively, these techniques must be combined 

with laser ablation sampling to yield direct analysis of solid samples (Bhatt et al., 2018; 

Fedorowich et al., 1993). NAA is a highly precise technique for REE analysis, but it requires 

access to a nuclear reactor and long irradiation time. While XRF can present a convenient direct 

analysis of solid samples, it is unsuitable for lighter elements (Bhatt et al., 2018). Therefore, the 

use of a non-destructive and fast analytical method for the detection and mapping of REEs like 
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hyperspectral imaging (HSI) and Laser-Induced Fluorescence spectroscopy (LiF) can be viable 

alternatives to these techniques. 

  

Drilling is an integral part for mineral resource assessment. Drill cores provide important 

information on the structure, size, quality, and value of the deposit as well as samples for chemical, 

processing, metallurgical, and geotechnical analyses. Drill cores are traditionally characterized 

through the method of core logging performed by experienced geologists. However, this process 

can be subjective and time-consuming and for bulk geochemistry data, destructive analytical 

techniques like ICP-OES, ICP-MS or Fusion-XRF must be performed. Moreover, obtaining drill 

cores is expensive. Given the high costs, it is important maximize the information gained from 

available drill cores. Within this context, hyperspectral imaging can be used to rapidly obtain 

continuous, high-resolution mineralogical data over the entire length of drill cores, adding value 

to exploration campaigns. 

Hyperspectral data is based on the evaluation of radiance data measured in a large number of 

spectrally continuous bands in the visible and infrared part of the electromagnetic spectrum. Using 

different hyperspectral sensors, reflected radiance is registered in the visible-near infrared (VNIR), 

short-wave infrared (SWIR), mid-wave infrared (MWIR) and long-wave infrared (LWIR) ranges. 

Based on diagnostic spectral signatures within these different spectral ranges, minerals or mineral 

mixtures can be identified and their spatial distribution and relative abundances can be mapped 

(Acosta et al., 2021). REE-bearing minerals typically have complex yet diagnostic absorption 

patterns in the visible to shortwave infrared (Turner et al., 2015). Significant research has been 

conducted where hyperspectral imaging is used as a tool for characterizing alteration assemblages 

associated with hydrothermal ore deposits in different magmatic, and sedimentary environments 

(e.g., Gering et al., 2022; Kruse, 2015, Arne et al., 2016; Wang et al., 2017; Jakob et al., 2016). 

Hyperspectral data has also been used to characterize REE-bearing rocks (Booysen et al., 2020; 

Boesche et al., 2015; Neave et al., 2015). For the Storkwitz carbonatite, only petrographic and 

geochemical studies have been undertaken (Loidolt et al., 2022; Müller et al., 2021, Niegisch et 

al., 2022), but there has not been a hyperspectral study, particularly using the extended VNIR-

SWIR-MWIR-LWIR wavelength ranges, to map the REE mineralization in drill cores. 

An additional sensitive technique to detect and map REEs is laser-induced fluorescence (LiF) 

spectroscopy. This method involves the excitation of atoms or molecules using laser light and the 

subsequent emission of fluorescent light which can be detected and analyzed. It is highly suited 

for REE detection due to the combination of targeted excitation and narrow emission lines, along 

with the element-specific characteristic features observed in LiF spectra (Fuchs et al., 2021). 

Kauppinen et al. (2013) showcased the utilization of LiF for mapping drill core samples from the 

Kevitsa Ni-Cu-PGE deposit containing nickel, copper, cobalt, platinum, palladium, and gold. 

Seidel et al. (2019) utilized laser-induced fluorescence spectroscopy to map REEs in natural rock 

samples, but not at drill core scale, and not in combination with reflectance spectroscopy. A 

combination of HSI and LiF would provide superior sensitivity for the detection of REEs, and a 
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means of cross-validating data, thus becoming an important tool for drill-core logging in REE 

exploration. 

  

Due to the reasons outlined above, this project plans to investigate the application of HSI for the 

qualitative characterization of the REE mineralization and alteration using drill core samples from 

the Storkwitz deposit. It also plans to implement a combined HSI-LIF mapping approach for REE 

detection to create qualitative maps of the REE-rich zones. Preexisting geological studies will 

provide ground truthing of the data acquired using the HSI-LIF approach. Not only does this 

project test the capabilities of these analytical techniques but also further increase our 

understanding of mineralization associated with the Storkwitz deposit. In addition, the combined 

HSI-LIF approach for the mapping of REEs will be transferrable to other carbonatite-hosted REE 

deposits and may be a useful tool in exploration programs worldwide.  
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1.1 Project Specifications  

  

Goal: The goal of the project is to develop a workflow utilizing hyperspectral imaging and laser-

induced fluorescence spectroscopy to spectrally characterize the lithologies associated with REE 

mineralization in the Storkwitz breccia using the entire VNIR-SWIR-MWIR-LWIR range and gain 

insights into the presence of REEs and their association with specific minerals in the Storkwitz 

Carbonatite. 

  

Objectives: The specific objectives for this project could include: 

  

1.     Acquiring and analyzing hyperspectral imaging data across the entire extended 

wavelength range of the Storkwitz breccia to characterize the lithologies associated 

with REE mineralization. 

2.     Acquiring laser-induced fluorescence spectroscopy data using an integrated line scan 

setup on the selected REE-rich samples to determine the presence of REEs and their 

mineral associations. 

3.     Correlating the results from hyperspectral imaging and laser-induced fluorescence 

spectroscopy to understand the relationship between lithologies, REE distribution, and 

associated minerals in the Storkwitz breccia. 

  

Research Questions: The study plans to address the following research questions:  

  

1.  Can hyperspectral imaging be utilized to spectrally characterize the lithologies 

associated with REE mineralization in the Storkwitz breccia? 

2.   Can laser-induced fluorescence spectroscopy be used to determine the presence of 

REEs in the selected REE-rich samples? 

3.     What insights can be gained from correlating the results of hyperspectral imaging and 

laser-induced fluorescence spectroscopy regarding lithologies, REE distribution, and 

associated minerals in the Storkwitz breccia? 

4.     What are the implications of the proposed workflow for its application in other similar 

deposits and the exploration industry overall? 

  

Hypothesis: The hyperspectral imaging conducted across the extended wavelength range has the 

potential to provide spectral signatures that can used to map mineral occurrences in the Storkwitz 

breccia, while the laser-induced fluorescence spectroscopy offers an enhanced sensitivity to REEs, 

enabling the identification of REE-bearing minerals associated with this carbonatite. 
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Chapter 2 – Instrumentation & Technique Background 

  

The goal of this chapter is to provide some introduction to the technique of hyperspectral imaging 

and laser-induced fluorescence spectroscopy. Additionally, it aims to give a brief overview of the 

characteristic features of minerals observed while discussing previous relevant research related to 

these techniques in the context of this thesis project. Since the project is focused on REEs, their 

associated spectral features are clearly stated. As a background, REEs are a group of seventeen 

chemically similar elements that are found in the Earth's crust. Despite their name, they are not 

actually rare in terms of their overall abundance, but they are typically found in low concentrations 

and are often challenging to extract economically. The seventeen rare earth elements include 

fifteen lanthanides—lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), 

promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium 

(Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), and lutetium (Lu). Additionally, 

two non-lanthanide elements, scandium (Sc) and yttrium (Y), are also classified as rare earth 

elements due to their similar chemical properties. These elements are often divided into two groups 

based on their atomic number and properties: light rare earth elements (LREEs) and heavy rare 

earth elements (HREEs). LREEs include lanthanum to europium, while HREEs include 

gadolinium to lutetium, as well as yttrium. This division is primarily based on their atomic weight 

and differentiating chemical and physical characteristics. 

2.1    Hyperspectral Imaging (HSI) Spectroscopy  

  

Spectroscopy is commonly utilized to detect, analyze, and quantify solids, liquids or gaseous 

materials across different disciplines ranging from chemistry to astronomy. Spectroscopic 

measurements can identify absorption features related to specific chemical bonds and thus, the 

abundance and physical state of the absorbing molecular species. With the development of 

advanced sensors, spectroscopic measurements were combined with imaging methods to create a 

new field of hyperspectral imaging, also known as imaging spectroscopy or reflectance 

spectroscopy (Clark et al., 2003; Rencz, 1999) 

Hyperspectral imaging is a remote sensing discipline wherein an image spectrometer can map 

absorption features by acquiring data with the sufficient spectral range, resolution, and sampling 

at every pixel contained in a raster image (Clark et al., 2003; Goetz et al., 1985). The high spatial 

resolution combined with the little to no sample preparation makes this non-destructive technique 

attractive for mineral exploration at sample, near-field, and space-borne scale. 

A hyperspectral sensor exploits the photoelectric effect by collecting pairs of free electron holes 

in the detector element, and hence, the number of collected electrons is a function of the incident 

photons. The radiometric calibration process for each detector element determines the function of 
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illumination which is a mathematical function relating the incident light intensity and wavelength 

to the corresponding signal produced by the detector (number of collected electrons) (Boesche et 

al., 2015). Hyperspectral sensors particularly like a push broom line scanner include at least one 

detector array and detectors that are simultaneously illuminated by incident electromagnetic 

radiation which is spatially and spectrally dispersed. A push broom sensor is a type of imaging 

device that scans the sample surface by continuously moving along a pre-defined fixed trajectory 

while collecting data across multiple spectral bands. During this process, energy is emitted or 

reflected by the material atom or ion that is not equal to the discrete energy of absorption of the 

incident light. This results in energy emissions at a different wavelength and creating distinct 

absorption bands or absorption features (Koerting et al., 2021; Clark, 1999; Hunt, 1989). Each 

detector element, which is essentially an individual sensor, captures and quantifies the photons 

within a specific wavelength range from a particular solid angle which refers to the three-

dimensional angle that the element captures within its field of view. The system is structured in a 

manner to allow continuous acquisition of spatial and spectral information. The process enables 

the collection of a hyperspectral data cube where the number of detectors is represented though 

the x-axis (spatial information) and the number of frames with the y-axis (spectral information). 

The z-axis denotes the spectrum wavelengths. Thus, each pixel denotes a single spectrum that can 

be individually evaluated (Boesche et al., 2015).  

Hyperspectral data can be acquired across a wide range of the electromagnetic spectrum with the 

use of different sensors. The four wavelength ranges that are considered in this thesis study include: 

visible to near infrared (VNIR: 350 –1000 nm), shortwave infrared (SWIR: 1000 – 2500 nm), mid-

wave infrared (MWIR: 2700 – 5300 nm), and long-wave infrared range (LWIR: 8000 – 12000 

nm). These ranges coincide with ranges from commercially available spectrometers and extensive 

research on the spectral properties of minerals and rocks has already been undertaken in these 

wavelength regions (Laukamp et al., 2021; GMEX. 2008; Thompson et al., 1999).  

2.1.1 Spectral Properties of Minerals  

The internal structures and chemical composition determine how metals, minerals and organic 

materials absorb electromagnetic radiation. This, in turn, determines the position, shape, depth, 

and width of absorption and emission features observed in the respective spectra (Koerting et al., 

2021; Clark et al., 2003). It is important to note that different minerals exhibit distinct diagnostic 

features in specific wavelength ranges. For example, minerals like micas, clays, chlorites, and 

amphiboles reveal suitable diagnostic responses in the short-wave infrared region but only 

moderate responses in the long-wave infrared (Laukamp et al., 2021; GMEX. 2008; Thompson et 

al., 1999). 

In the visible-near infrared (VNIR) region, minerals show characteristic features due to electron 

transition processes in the form of crystal field arrangement, charge transfer absorptions, or 

conduction band transition (Savitri et al., 2021; Clark, 1999; Sherman & Waite, 1985; Hunt & 
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Ashley, 1979; Hunt, 1977). Minerals having spectral features in VNIR include iron-bearing 

minerals, nickel, copper, manganese, chromium, and REE-bearing minerals (Savitri et al., 2021; 

Turner et al., 2016, 2014;  Hunt & Ashley, 1979;  Hunt, 1977). In the SWIR range, spectral 

responses are a result of vibrational processes mainly of OH and functional groups such as H2O, 

Al-OH, Fe-OH, Mg-OH and/or CO3 (Savitri et al., 2021; Pontual et al., 2008; Clark et al., 1990; 

Hunt et al., 1973; Hunt 1971, 1970). The MWIR range comprises the fundamental stretching 

vibrations of O-H bonds like that seen in sheet silicates, amphiboles, and borosilicates, but studies 

indicate that sulphates, carbonates, phosphates also have distinct features in this range (Laukamp 

et al., 2021; Yitagesu et al., 2011; Murad & Bishop et al., 2005). Anhydrous silicates such as 

quartz, feldspars, pyroxenes, olivines and garnets exhibit their diagnostic features in the LWIR 

range due to the fundamental vibrations of the SiO4 tetrahedra (Schodlok et al., 2016). The LWIR 

is dominated by surface scattering processes instead of volume scattering like that seen in SWIR 

and MWIR (Laukamp et al., 2021) and mineral features in this range are induced by a combination 

of Restrahlen, Christiansen and transparency features (Laakso et al., 2019; Salisbury et al., 1987).  

Previous research focused on the behavior of REE-bearing minerals in the VNIR and SWIR 

wavelength regions state that REEs display a series of well-defined sharp absorption features in 

this range (Laakso et al., 2019; Rowan et al., 1986; Hunt et al., 1972; Dieke, 1968). Rowan et al. 

(1986) and White (1967) stated that the absorption bands of REEs in visible, and near-infrared 

regions can be explained through electronic field transitions. This is explained by the 4f orbitals 

of almost all lanthanides being partially occupied (Boesche et al., 2015, Dieke & Crosswhite, 

1963).  There are 14 different electron configurations with a maximum of two electrons occupying 

the 7f orbitals. Except for lanthanum and lutetium, whose f orbitals are either completely filled or 

empty, respectively, incident electromagnetic radiation is absorbed in the appropriate energy, 

resulting in electron excitations (Boesche et al., 2015; Rowan et al., 1986; White, 1967). The 

position of the absorption features related to the lanthanides depends on the coordination of cations 

and the asymmetry of the crystal host structure (Turner et al., 2014a, b). The reflectance spectra 

are formed by many closely overlapping absorption bands, which primarily arise from 4f- 4f intra-

configurational electron transitions of Nd3+, Pr3+, Sm3+, and Eu3+ ions. The peak positions of 

certain REEs in the VNIR region is seen in Fig 2.1. As an example, it is observed that the peak 

positions of the key spectral characteristic absorption bands for neodymium (Nd) are present ~580 

nm, ~750 nm, ~800 nm, and ~880 nm (Booysen et al. 2020, Lorenz et al., 2018, Turner et al., 

2014, Hernandez & Filho, 2013; Rowan & Mars, 2003; Rowan et al. 1986, White, 1976). Due to 

its significantly distinct absorption features among the REEs, Nd can be employed as a key 

pathfinder element for REEs as a whole (Neave et al., 2016; Booysen at al., 2020). While 

absorption bands associated with REEs indicate the presence of rare earth ions, it is important to 

note that they do not always provide specific information about their associated mineralogy (Clark, 

1999). 

https://www.sciencedirect.com/science/article/pii/S0375650521001383#bib0118
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Figure 2.1: Position of most characteristic REE absorption features in the VNIR range according to the 

chemical analysis and literature review (from Lorenz et al., 2018) 

More recent studies (Turner et al., 2014, 2016, 2018) evaluated the features of REEs and REE-

bearing minerals in the SWIR region. They observed that less abundant and less pronounced 

absorptions occur, and these can be generally explained by REE-OH vibrations overtones in the 

crystal lattice or chemical bond lengths (Laakso et al., 2019; Boesche et al., 2015). Research 

conducted by Laakso et al. (2019) investigating REE-bearing samples suggested that REEs do not 

induce any specific resolvable diagnostic features in the LWIR region. An example VNIR-SWIR 

spectra of common REE-bearing minerals are shown in Fig 2.2.  

 

Figure 2.2: Spectral library plot of common REE -bearing minerals (from Koerting et al., 2021). 
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2.1.2 Previous Research and Toolboxes  

  

The use of hyperspectral imaging in the context of mineral exploration and mapping has steadily 

increased during the last decade. This is partly attributed to sensor development and better 

processing routines (Booysen et al., 2022). Extensive research has been undertaken using ground 

based HSI like when Snyder et al. (2016) merged such ground-based data with 3D information to 

map sedimentary structures. The application of this ground-based data in combination with drone-

borne techniques allowed for the mapping of geological and lithological units (Kirsch et al., 2018; 

Boesche et al., 2015). There has also been significant research in the application of HSI in 

combination with LIDAR and photogrammetric data to successfully 3D model geological 

structures (Thiele et al., 2021a; Krupnik et al., 2016; Kurz et al., 2013; Buckley et al., 2013) 

  

Extensive research have the highlighted the support for HSI in its application for characterization 

of lithologies and alteration assemblages associated with mineralization in different ore deposit 

environments, like magmatic (e.g., Thiele et al., 2021b; De la Rosa et al., 2021; Herrmann et al., 

2001; Jones et al., 2005; Zamuido, 2009; Riley et al., 2009; Ngcofe et al., 2013; Swayze et al., 

2014; Kruse, 2015; Thiele et al., 2021a), orogenic (e.g., Bierwirth et al., 2002; Mateer, 2010; 

Laukamp et al., 2011; Arne et al., 2016; Wang et al., 2017) and in sedimentary environments (e.g., 

Géring et al., 2022, Taylor et al., 2005; Jakob et al., 2016). Booysen et al. (2022) undertook a 

multi-scale hyperspectral imaging approach evaluating drill core and outcrop scale data to map 

lithium-bearing minerals and their spatial distribution in pegmatites across these scales. Similarly, 

for REEs, several studies particularly demonstrated the application of HSI in close-range scanning 

of drill cores and outcrops or with drone-borne data of large-scale areas (Booysen et al., 2019; 

Zimmermann et al., 2016; Neave et al., 2016; Boesche et al., 2015; Turner, 2015).  

  

As an increasing amount of hyperspectral data has become available due to the growing interests 

in its application in the raw materials industry, the development of new toolboxes and workflows 

is required to effectively analyze these data. Previously, MEPHySTO (Jakob et al., 2017) was a 

toolbox created to perform sensor- and platform-specific geometric distortion and topographical 

corrections for drone-borne hyperspectral data. While this toolbox for frame-based HSI systems 

has been adapted for the complex corrections required for drone imaging, it has been used to 

perform preliminary data corrections for smaller core-scale data studies as well (Booysen et al., 

2022; Loidolt et al., 2022). Similar to MEPHySTO, a new open-source python toolbox called 

‘hylite’ was developed by Thiele et al. (2021). The hylite toolbox can effectively fuse geometric 

information of the pixels with data from several hyperspectral imaging sensors. It has the capacity 

to apply geometric and atmospheric corrections for drone and space-borne data and illumination 

corrections to compensate for variations in lighting conditions during image acquisition. It also 

has a variety of built-in analysis techniques that can be used to generate a hyper cloud which is a 

combination of point and hyperspectral data, giving both geometric and spectral information in 

one. It can pre-process and analyze drill core data as well.  
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In drill core spectral data processing and analysis, typical approaches have relied on the visual 

interpretation of the spectra and performing a comparison with the reference spectral libraries like 

the USGS Spectral library (Kokaly et al., 2017), and CSIRO library (Pejcic et al., 2022). Other 

analytical techniques used to evaluate and visualise drill core data include dimensionality 

reduction, minimum wavelength mapping, band ratios, spectral angle mapping, endmember 

extraction, and unmixing (Van de Meer et al. 2018; Calvin & Pace, 2016; Van Ruitenbeek et al. 

2014; Kruse et al. 2012; Littlefield et al. 2012; Van de Meer, 2004). For quantitative estimations 

of geochemistry and mineralogy along drill cores, a number of supervised approaches have been 

developed (e.g., Tusa et al., 2020; Acosta et al., 2019,2020; Khodadadzadeh & Gloaguen, 2019).  

2.2    Laser Induced Fluorescence (LiF) Spectroscopy 

Laser-induced fluorescence (LiF) is a useful well-studied emission spectroscopic measurement 

technique that has vast applications in biochemical, medical, and chemical research fields (Kwásny 

& Bombalska, 2022; Wulf et al., 2008; Muraoka & Maeda, 1993). It involves the excitation of a 

molecular target when aimed at with a beam of laser radiation (Aliabadi & Soboyejo, 2023). The 

excited chemical species will eventually de-excite and emit light at a wavelength longer than the 

excitation wavelength. The frequency of excitation-emission is correlated to the specific transition 

of a molecule or ion from its ground state to a higher excited state and thus the fluorescence is 

linearly proportional to the input laser irradiance. The emitted fluorescent light is typically 

recorded with a photomultiplier tube (PMT) or filtered photodiodes.  

Studies have supported that LIF has better detection sensitivity to other spectroscopic methods 

because a signal is observed against a dark background (Aliabadi & Soboyejo, 2023) while being 

easy to implement. The typical methods for LIF analysis are based on evaluating the measured 

fluorescence spectrum of minerals (Kauppinen et al., 2014). Colorful emissions of the fluorescent 

minerals suggest the idea of mineral detection using those colors. Typically, luminescent minerals 

are composed of a lattice and luminescent centers that are known as activators. The different color 

radiations of the luminescent minerals that are observed are the result of different activators 

(Kauppinen et al., 2014, Gaft et al., 2005). Generally, these activators inside minerals are 

interpreted to be impurities. These impurities are primarily transition metals or rare earth element 

ions (Kauppinen et al., 2014 Waychunas, 1988).  

2.2.1 Behavior of REEs in LIF   

Laser-induced fluorescence spectroscopy is a well-suited technique for REE identification due to 

the increased sensitivity of this method and the unique spectral characteristics of these elements. 

Given the electronic configuration of the elements (i.e., the trivalent REE with a partially filled 4f-

shell) as well as their elemental configuration in relation to other elements within the crystal lattice, 

REEs exhibit distinct and narrow emission lines that correspond to specific electron excitation and 

radiative relaxation processes associated with each element.  



21 

 

Fuchs et al. (2021) studied the behavior of various rare earth element species by recording their 

representative spectra in the UV-visible to near-infrared spectral range (340 - 1080 nm) after 

utilizing three standard laser wavelengths (325, 442, 532 nm). The study indicated that excitation 

at all three wavelengths generated characteristic spectra with distinguishable emission lines for 

EuPO4, TbPO4, DyPO4 and YbPO4. However, in some samples where high-energy excitation at 

325 nm resulted in broad and non-specific defect emissions, it was observed that such non-REE-

related emissions could be effectively suppressed by using a lower-energy laser excitation. For 

PrPO4, SmPO4, and ErPO4, diagnostic emission lines were observed at 442 nm excitation. 532 

nm wavelength produced the most efficient excitation for NdPO4 and HoPO4. The emission lines 

characteristic of GdPO4 were outside the detection range, and none of the three laser wavelengths 

were suitable for TmPO4 excitation. A summary of the different emission features observed in the 

various REE phosphates with the three laser wavelengths, as observed by Fuchs et al. (2021), is 

seen in Fig 2.3. These diagnostic LIF signatures deliver the spectral fingerprints that can be used 

to characterize the behavior of REEs in a sample.  
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Figure 2.3: LIF reference spectra obtained with 325 nm, 442 nm, and 532 nm laser excitation with the 

respective diagnostic emission lines for the REE phosphates (modified from Fuchs et al., 2021).  
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2.2.2 Previous LiF Research and Combined Approach       

Past research has been undertaken on the fluorescence spectrum of minerals in laboratory 

conditions (Gaft et al., 2008; Waychunas, 1988; Reisfeld et al., 1996). Other studies investigated 

the application of LiF for horizon control of mining machines (Nienhaus & Bayer, 2003) or quality 

control of mineral processing and sorting (e.g., Broicher, 2000, 2005). Also, Bozlee et al. (2005) 

presented an approach for remote LIF spectral analysis of natural minerals and rocks that yields 

information complementary to Raman spectroscopy. 

Kauppinen et al. (2014) demonstrated the effective application of laser-induced fluorescence (LiF) 

for rapid mineral mapping of drill core samples extracted from the Kevitsa mine. The study focused 

on identifying and quantifying nickel, copper, cobalt, platinum, palladium, and gold concentrations 

within the samples. This research highlights the potential of LiF as a valuable tool for efficient 

mineral analysis in mining exploration and resource characterization. Though, it is important to 

note that in such mapping application cases, the broad emission intensities or their ratios were 

primarily studied instead of distinct features within the LIF spectra. In terms of LiF research 

specific to REEs, Fuchs et al. (2021) developed the spectral reference library for REEs by 

capturing diagnostic spectra in the UV-visible to near-infrared range under different laser 

excitation conditions, as mentioned. This helps to facilitate applications of LIF for REE detection 

in mineral exploration through the identification and characterization of such elements in potential 

samples. Additionally, research on REE detection in natural rock samples using laser-induced 

fluorescence spectroscopy mapping (Reisfeld et al., 1996; Gaft et al., 2005; Lorenz et al., 2019; 

Seidel et al., 2019) has shown to have high promise.  
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Chapter 3 – Geological Setting 

3.1    Regional Geology  

  

The late Cretaceous ultramafic lamprophyre-carbonatite (UML-CR) Delitzsch Complex is located 

in northwestern Saxony, Germany, approximately 20 km north of Leipzig. It extends over an area 

of 450 km2 and consists of lamprophyre and carbonatite intrusions and the associated Storkwitz 

and Serbitz breccia pipes. This complex is positioned at the southern boundary of the Mid-German 

Crystalline Zone (as seen in Figure 3.1) and corresponds to the former suture between Laurussia 

and Gondwana that was active during the closure of the Rheic Ocean (Kruger et al., 2013). The 

complex intruded the subsurface at a depth of approximately 100–120 meters below the pre-

Cenozoic land surface (Loidolt et al., 2022). Subsequently, the complex became covered by ~100 

meters of Cenozoic glacio-fluvial sediments (Loidolt et al. 2022; Niegisch et al., 2020; Krüger et 

al., 2013). The basement in the region consists of Carboniferous to Lower Permian sediments. To 

the south, Neoproterozoic to Cambrian sedimentary and volcano-sedimentary units of the Saxo-

Thuringian zone underlie the basement layer, while to the north, metamorphic rocks of the Mid-

German Crystalline Zone underlie it (Loidolt et al., 2022; Röllig et al., 1990). 

  

The basement layer includes Paleozoic sedimentary rocks that were significantly reworked during 

the Variscan orogeny (Krüger et al., 2013). This region experienced repeated reactivations of the 

Variscan structural elements during the periods where the regional stress field was reorganized, 

like during the development of the Oslo Rift, the opening of the Tethys and Atlantic oceans, and 

the Alpine Orogeny. These led to the formation of horst and graben structures with substantial 

uplift (Wagner et al., 1997). The Delitzsch Complex is located at the intersection of an east-west 

trending structural low and a long-lived, north-south trending zone that is seismically active today. 

(Kruger et al., 2013; Bankwitz et al., 2003). According to Röllig et al. (1990), the later forming 

northwest-southeast trending structures played a significant role in controlling the emplacement 

of melts and determining the location and shape of the breccia pipes, including the Storkwitz 

Carbonatite. 
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Figure 3.1: (a) Regional overview map of Germany showing the location of the Delitzsch ultramafic 

complex. (b) Geological map of the Delitzsch area with Cenozoic cover removed (c) Schematic cross-

section of the Storkwitz diatreme, RHZ - Rheno-Hercynian zone; SX-TH - Saxo-Thuringian zone; UML - 

ultramafic lamprophyre (taken from Loidolt et al. 2022; modified from Krüger et al., 2013 and Mockel, 

2015) 

3.2    Geology and Magmatic Evolution of the Delitzsch complex 

  

Previous research on the Delitzsch complex (Kruger et al., 2012; Rollig et al., 1990) primarily 

investigated the petrographic characteristics of carbonatites and lamprophyres in order to gain 

insights into the timing and magmatic evolutionary process of the complex. To outline the 

evolution of this complex, a multi-stage intrusive sequence was initially proposed by Röllig et al., 

(1990) which was further developed by Seifert et al., (2000) and Krüger et al., (2013). This 

sequence suggested the progression of the complex in six stages: (i) intrusion of dolomite 

carbonatite magmatic body (ii) intrusion of ultramafic and alkaline lamprophyre (iii) beforsitic 

(different term also used to refer to dolomite carbonatite) diatremes, including xenoliths of 

dolomite carbonatite and ultramafic lamprophyre forming (iv) ultramafic and alkali lamprophyres 

intruding diatremes of previous stage, followed by the final development of (v) beforsite and (vi) 
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alvikite dykes. Kruger et al. (2013) demonstrated that the main phase of the emplacement (ii to iv) 

occurred during 75-71 Ma and that the carbonatite and lamprophyre magmatism appear to have 

occurred around the same time. This and the cross-cutting relationships observed by Röllig et al., 

(1990) suggest a close genetic relationship between the lamprophyres and carbonatites.  

  

Within the Delitzch complex, the associated ultramafic lamprophyres and carbonatites developed 

as unique bodies that form dikes, sills, and pipe-shaped small intrusions (Kruger et al., 2012; Rollig 

et al., 1990)., Lamprophyres are defined as a diverse group of igneous hypabyssal rocks, normally 

occurring as dykes, that contain euhedral to subhedral phenocrysts of biotite and/or amphibole 

occasionally with clinopyroxene, where feldspars and/or feldspathoids if present are matrix 

restricted (Le Maitre et al., 2005). The ultramafic lamprophyres found within this complex most 

commonly occur as centimeter to meter thick, fine-grained, steeply dipping, homogenous dikes. 

They are observed predominantly as alönite with small occurrences of aillikites and alkali-

lamprophyres (Loidolt et al., 2022; Kruger et al., 2013; Seifert et al., 2000; Gruner 1990). In 

comparison, the carbonatites in this complex form steeply dipping dikes, veins, and pipe-shaped 

bodies up to tens of meters in diameter and mainly occur as intrusive breccias with abundant 

xenoliths (Röllig et al., 1990). The two subgroups observed here are the dominating dolomite-

ankerite-carbonatites and the minor calcite-carbonatites. The breccia pipes at Storkwitz and Serbitz 

exhibit a wide range of lithologically diverse clasts, including angular to subangular rhyolites and 

metasedimentary rocks from the surrounding wall rocks. Additionally, they contain rounded to 

sub-rounded fragments of carbonatite and ultramafic lamprophyre, which indicates that these 

occur at depths greater than that reached by the drilling campaign (Loidolt et al. 2022, Kruger et 

al. 2013, Röllig et al., 1990). 

3.3    Exploration History  

  

Historically, the Delitzsch complex was examined during two exploration drilling campaigns 

consisting of over 500 holes that reached depths of 1100 meters (Seifert et al., 2000). The initial 

efforts, carried out in collaboration between SDAG Wismut and the Central Geological Institute 

(ZGI) in Berlin, focused on uranium prospecting and exploration around the known Permian 

intrusions in the Delitzsch–Halle area during the late 1960s to 1989. This led to the accidental 

discovery and confirmation of rare earth resources hosted within the Storkwitz breccia (Mockel 

2015). Kormeier & Miroschnitschenko (1979) stated that the drilling activities captured 

carbonatite and carbonatite breccia hosted REE mineralization in 143 drill holes. These holes are 

distributed over an area of 20 km2. The rock intervals in these holes contained elevated 

concentrations of niobium (Nb), tantalum (Ta), phosphorus (P), and thorium (Th).  

  

The renewed interest in the rare earth element resources prompted further drilling between 2011 

and 2015 by Seltenerden Storkwitz AG currently called Ceritech. The objective of this drilling 

campaign was to delineate the extent of the resource and resulted in the resource estimation of 4.4 
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million metric tons (Mt) according to the JORC standards. The average grade of the rare earth 

oxides was appraised to be 0.45 wt.% (Deutsche Rohstoff AG 2013). While potential resources do 

presently exist, the deposit was considered not to be economically viable due to several factors 

outlined by Kormeier & Miroschnitschenko (1979) and Deutsche Rohstoff AG (2013). These 

include (1) the absence of a known uniform carbonatite massif, (2) large spatial distances between 

the ore bodies and (3) the presence of a thick Cenozoic cover over the complex that contains crucial 

groundwater aquifers. 

3.4    Previous Research on SES 1/2012 Drill core  

  

The interval investigated in this project is part of the SES 1/2012 drill core and was recovered by 

Ceritech, in 2012. The aim of this drilling was to intercept the entire Storkwitz breccia. The 

coordinates of the drill hole collar are 51.534998 N, 12.283838 E, with an azimuth of 327º and a 

dip of 12.1º. The hole reached a total length of 700 meters (Figure 3.1). 

  

The drill hole logging was carried out by Ceritech in 2012 and has been extensively discussed in 

Loidolt et al. (2022). This borehole consists of 138 m of Cenozoic glacial fluvial overburden, 

which is then traversed by ~138 to 246 m of porphyry granitoid wall rock. The porphyry granite 

is intruded by a lamprophyre dike at 182 to 188 m and by calcite-carbonatite dike at 242 to 244 m. 

The Storkwitz breccia (252 to 640 m) underlies altered lamprophyres (246-252 m). Additionally, 

fine-grained calcite-carbonate dikes intrude the breccia at ~381-385 m and ~615 m, and a 

lamprophyre dike at 626-628 m. The breccia itself is categorized into two distinctive zones: an 

upper zone (252–269 m) and a lower zone (372– 640 m). A series of faulted brecciated porphyry 

granite and an extensive fracture zone at 361–372 m delineate the two zones. The drill core also 

intersects several fault zones including the intensely chloritized fault zone at 435.8–437 m and 

additional faults that cut the breccia at ~417 and ~556 m. Beyond 640 m, metasedimentary rocks 

are observed in the drill core, which include veins of intrusive carbonate material and silty 

mudstone 

  

This thesis evaluates the 419 - 491 m core interval. This interval examined comprises well-

cemented breccia containing country rock and granitoid clasts. The clasts are present abundantly 

as coarse-grained granitoids or in specific intervals as porphyritic granitoids and sedimentary rock 

clasts. The core log from Ceritech (2012) for this interval is seen in figure 3.2. 
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Figure 3.2: Downhole lithological logs for 419–491 m interval with Nb% and REE% based on m-scale 

geochemical assaying (modified from Ceritech, 2012).  

 

Recently, detailed multi-method geochemical and mineralogical investigations using the SES 

1/2012 drill core have been conducted to better evaluate the Storkwitz carbonatite. These include 

a study by Niegisch et al. (2020) that examined the upper zone of carbonatite breccia (240 - 273 

m) in this drill core, REE mineralization that was predominantly LREE enriched was observed to 

be hosted in the fine-grained alvikite veins and the heterogeneous carbonatitic igneous breccia 

body. The principal REE-bearing mineral phases are monazite as well as bastnaesite-synchisite 

group minerals and are suggested to be formed mainly by secondary processes (Niegisch et al., 

2020). Strong evidence for supergene alteration includes the mineral paragenesis, textural features, 

the formation of supergene iron oxyhydroxides and, recrystallization of the breccia matrix. 

However, Niegisch et al. concluded that this did not lead to significant enrichment of the REEs 

but only a redistribution of REE to new mineral phases in the portion of the Storkwitz carbonatite 

near the surface (Niegisch et al., 2020).  

  

Loidolt et al. (2022) examined an upper part of the lower zone of the breccia (425 - 542 m) where 

the effect of supergene processes as observed by Niegisch et al. (2020) was stated to be lower. 

High REE concentrations in this interval were indicated in past studies using hyperspectral 

imaging spectroscopy (Loidolt, 2018; Müller et al., 2021).  Loidolt et al. (2022) found that the 

breccia hosts an assortment of clasts that are cemented chiefly by an ankeritic matrix. The clasts 

are representative of different lithologies like country rock, mixed medium-grained ankerite-

dolomite-calcite-carbonatites, fine-grained dolomite-carbonatites, and fine grained ankerite-
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carbonatites with associated REE mineralization (Loidolt et al. 2022). Through geochemical 

analyses like X-ray diffraction (XRD) and mineral liberation analyses, Loidolt et al. (2022) 

suggested a multistage intrusive and mineralization sequence which consists of the intrusion of an 

early carbonatite magma at depth which was followed by the fine-grained ankerite-carbonatites 

intruding at shallow depth and then the REE mineralization in the fine-grained ankerite 

carbonatites resulting from the late-stage REE enrichment of a residual ‘brine-melt’. Subsequently, 

the explosive brecciation of the complex resulted in minor REE mineralization by a hot, evolving 

hydrothermal fluid and finally ended with a supergene alteration of Fe-(Mg-Mn)-rich carbonate 

minerals in the breccia matrix (Loidolt et al., 2022). The fenitization and biotitization at Storkwitz 

is also suggested to have occurred in multiple stages. Ultimately, the REE mineralization in 

Storkwitz carbonatite was not caused by externally introduced sources but rather by the 

accumulation of REE and other incompatible elements due to the primary magmatic fractionation 

prior to depressurization (Loidolt et al., 2022).  
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Chapter 4 – Methods  

  

A summary of the steps employed are described below, along with the measurement parameters 

for the different data acquisition techniques. In the end, a two-stage workflow for the acquisition 

and processing of hyperspectral and LiF data of the Storkwitz drill core is proposed (Fig 4.4, Fig. 

4.5). This workflow is developed to address the research question about the capability of these 

techniques for mapping and characterization of the Storkwitz lithologies and the associated REE 

mineralization.   

  

To provide some background on the available data: As part of the previous study by Loidolt et al. 

(2022), a total of 26 block samples were extracted from the drill core interval of 425–542 m. These 

samples are considered to be representative of the mineralogy in that interval. In preparing these 

samples for mineral liberation analysis (MLA), the samples were cut into two portions: ~200 µm 

thick sections on which the MLA analysis was conducted and 40 x 25 x 10 mm offcut counterpart 

blocks. While the thick sections themselves were not available for this study, I had access to the 

mineralogical data acquired from them. Of the 26 samples from the 425–542 m interval in Loidolt 

et al. (2022), 10 block sections in the 419–491 m interval evaluated here were accessible for this 

project (Figure 4.1).  

  

 
Figure 4.1: Sample blocks from the Storkwitz drill cores with available SEM-MLA mineralogical data 

used for qualitative hyperspectral interpretation. 
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4.1    SEM-MLA Data Acquisition 

  

Mineralogical data of the ten thick section used in this study were acquired as part of the mineral 

liberation analysis (MLA) done on Scanning electron microscopy (SEM) and energy dispersive 

X-ray spectroscopy (EDS) data by Loidolt et al (2022). For these samples, the mineral liberation 

analysis (MLA, automated EDS mineral identification system) was performed using a FEI Quanta 

650 MLA-FEG. Details about the equipment parameters used for the acquisition of the data can 

be found in Loidolt et al. (2022). Lithological and depth information about the ten thick sections 

of the corresponding blocks chunks which are used in this thesis is provided in Table 4.1. 

 

Table 4.1: Block samples extracted from the drill core with their depth and associated lithology (from 

Loidolt et al. 2022).  

 

4.2    Hyperspectral Data Acquisition 

The hyperspectral reflectance data for the 419–491 m drill core interval as well as the ten offcut 

blocks of the Storkwitz drill core were acquired utilizing the SisuROCK drill core scanner with a 

mounted sensor setup (Fig. 4.2). It is important to note that interval 485–486 m was missing in the 

interval and therefore not included in the scans. As an advantage of hyperspectral scanning, no 

intensive sample preparation was required.  The samples were only brushed clean and arranged to 

ensure that all samples are in the same focus plane. Some small sections of the drill core were 

covered with epoxy from previous sampling efforts. These were avoided were possible by turning 

them over.  
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Figure 4.2:  SisuROCK drill core scanner (left) with mounted sensors (right) in the visible to near-infrared 

and shortwave infrared (VNIR-SWIR), mid-wave infrared (MWIR), and long-wave infrared (LWIR) 

range. 

 

The drill core scanner used for data acquisition is equipped with three hyperspectral push-broom 

sensors, a SPECIM AisaFENIX, an FX50 and an AisaOWL (Spectral Imaging Ltd., Oulu, 

Finland; Table 4.2) as well as a high-resolution RGB camera with a spatial resolution of 250 µm. 

The scanner is equipped with internal lighting and the samples are placed on a moving tray that 

travels under the scan line of each sensor and a conventional white panel like a Spectralon R90 

was used as reference when measuring the samples. 

 

Table 4.2: SisuROCK drill core scanner acquisition parameters for the visible to near-infrared and 

shortwave infrared, mid-wave infrared, and long-wave infrared range. 
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4.2.1 HSI Data Pre-Processing  

 

The acquired hyperspectral data was processed using hylite (Thiele et al., 2021) built into an in-

house real-time preprocessing system (as seen in Fig. 4.4). This system is a framework 

encompassing numerous modular functions that can be tailored to accommodate specific 

experimental requirements. After sensor-specific calibrations are done based on an available 

calibration file, dark current corrections are performed to remove hot pixels and other fixed-pattern 

noise. Other preprocessing steps include bad pixel replacement, lens distortion and geometric 

correction, and radiance to reflectance value conversion. This produces individual image files from 

each hyperspectral sensor that are geometrically and radiometrically corrected. The images are 

then coregistered, meaning they are aligned spatially to match the calibration image or reference 

coordinate system. This step ensures that all images have consistent positioning and orientation.  

 

The calibrated, corrected, and co-registered data must be masked so that only relevant sample 

pixels are available for analyses. For this step, an automatic image segmentation tool was used. 

This masking system integrates the Napari image viewing python tool with Segment Anything 

Model algorithm from Meta AI (Kirillov et al., 2023) to automatically identify and delineate 

regions of interest within the images. The resulting masks were inspected for quality and manually 

corrected before being applied to the data. Next, the first 20 bands of the Fenix sensor data (VNIR-

SWIR) were removed, because that part of the data is very noisy. Only the data that was HSI block 

data which was used for endmember extraction was smoothened using a Savitzky-Golay filter. 

This function works by fitting a least-squares polynomial regression to a small window of 

neighboring data points and then estimating the smoothed value for the central point of that 

window. The window length i.e number of coefficients of 7 and a 2nd order polynomial was used 

to fit the data. Through this process, it effectively removes high-frequency noise components while 

preserving the underlying trend or shape of the data resulting in better noise reduction without 

significantly distorting the signal. 

 

As an additional processing step, principal component analysis (PCA) was performed. The purpose 

of implementing this technique was to visualize and understand the spectral variability present in 

the dataset before subsequent analyses like endmember extraction and spectral unmixing and 

mapping are undertaken. It transforms the original variables into a new set of uncorrelated 

variables called principal components. These components are ordered in terms of their contribution 

to the overall variance of the dataset meaning the first component illustrates the most variance in 

the data. Using the hylite toolbox (Thiele et al., 2021), PCA was performed on the block section 

data for each wavelength region dataset. The hyperspectral data was visualized using the first three 

components.  
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4.3    Band Ratios  

  

Band ratios are a common technique for spectral feature mapping. This method involves dividing 

one or more spectral bands to obtain relative intensity maps that reflect variations within a specific 

spectral range. Essentially band ratios are calculated using the reflectance value at the shoulder of 

an absorption feature and dividing it by the value of the minimum. An increase in this ratio is 

proportional to the absorption depth of the feature. By employing this technique, specific spectral 

characteristics related to mineral compositions can be enhanced (Mars & Rowan, 2011). The band 

ratio method is particularly effective when applied to high spectral resolution data, where the 

precise location of narrow absorption features provides sensitivity to distinct mineral 

compositions. The performance of different band ratios was initially evaluated on the block section 

data for which the mineralogical information is available. Following this step, the most effective 

band ratios were applied to the spectral data of the drill cores. The band ratios we applied to 

characterize the Storkwitz cores are listed in Table 4.3. In the end, the three band ratio results were 

compiled into a single map referred to as Fe-oxide band ratio map of the drill core. 

  

Table 4.3: Spectral indices for relevant features for band ratios. 

 

4.4    Minimum Wavelength Mapping for Hyperspectral Data 

  

Minimum wavelength (MWL) mapping is an unsupervised technique to visualize the position and 

depth of characteristic absorption features within specific spectral ranges at the same time (Hecker 

et al., 2019). This process of feature fitting is repeatable but computing power intensive. It gives a 

per-pixel overview map of the dominantly abundant mineral present. It is performed by selecting 

specific wavelength ranges and fitting mathematical functions, such as asymmetric Gaussian 

functions (Thiele et al., 2021), to hull corrected spectra. In resulting maps, the hue represents the 

feature position, while the brightness value represents the absorption depth and therefore, the 

feature position and depth estimates create maps within the HSI color space (Hecker et al., 2019). 

This method is effective when implemented on high spectral resolution data and when the position 

of absorption features is sensitive to specific mineral compositions. Similar to the approach for 

band ratios, the suitability of different spectral ranges for distinguishing minerals, taking into 
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account potential overlapping features, was initially tested using the combination of block section 

reflectance and the corresponding MLA mineral data. Minimum wavelength maps were generated 

for the hyperspectral data using the hylite toolbox (Thiele et al., 2021). The MWL technique was 

also utilized to map the emission features in the LiF spectroscopy data and is discussed within that 

context further below.  

  

The main spectral ranges that were mapped using the MWL technique, and the interpretation of 

these maps, are listed in Table 4.4. However, it is important to note that Nd is used as a pathfinder 

for the overall presence of REEs due to its very prominent features observed in the VNIR region 

(Turner et al., 2014), similar to the approach by Neave et al. (2016). Therefore, the Nd minimum 

wavelength map plays a critical role in the selection of assumed REE-rich zones for further LiF 

spectroscopy measurements.  

 
Table 4.4: Spectral ranges used to extract the position and depth of specific absorption features using 

minimum wavelength mapping. 

 

4.5    Endmember Extraction & Library Creation 

  

For the spectral unmixing and spectral angle mapping that were employed to map the distribution 

of the different geological lithologies (see below), a spectral library of endmembers was required. 

Hyperspectral endmembers are “basis spectra” assumed to be pure, or unmixed, pixels in the 

image. These were extracted using an endmember extraction algorithm called NFINDR (Winter, 

1999). It exploits the geometric properties of convex sets to identify endmembers. To prepare the 

dataset and help determine the data sample volume in an easier manner, orthogonal subspace 



36 

 

projection (OSP) and maximum noise fraction (MNF) transformations were applied to the dataset 

to minimize the data dimensionality inherently as part of the algorithm. The algorithm then 

searches for a simplex, a geometric shape with maximum volume, using these endmembers. The 

algorithm assumes that in an L-spectral dimensional space, the volume enclosed by a simplex 

formed by the purest data sample is greater than any other combination of data samples (V. Kale 

et al., 2020). A larger volume implies that the simplex spans a broader range of the spectral space, 

indicating a better representation of the underlying endmembers. For each data sample and 

endmember, the endmember is replaced with the spectra of the data sample, and the volume is 

recalculated. If the volume increases, the new data sample replaces the endmember. This process 

continues until no further replacements occur. While typically the algorithm starts with a randomly 

selected set of pixels and progressively expands the simplex within the dataset, this has shown to 

have drawbacks where the algorithm converges at a local optimum and thus, affects the final 

outcome (V. Kale et al., 2020).  

 

It is important to note that different diagnostic features exist for minerals across different 

wavelength regions. Therefore, the three wavelength regions (VNIR-SWIR, MWIR, and LWIR) 

are regarded as separate datasets that are collected using different sensors in the context of 

endmember identification rather than combining them because an endmember pixel identified 

from the VNIR-SWIR data will not necessarily represent an endmember in the MWIR or LWIR 

range.  

  

To solve the limitation caused by the randomized initialization, an automatic target generation 

process (ATGP) algorithm is applied when performing the N-FINDR algorithm. This unsupervised 

target detection technique searches for potential pure members with the maximal orthogonal 

projections using an orthogonal subspace projector (Zhang et al., 2009). This implies that these 

potential targets have the strongest presence or distinctiveness in the data. Thus, using the ATGP 

algorithm, the initial spectra and abundances of target endmembers are first generated which then 

improves the performance of the endmember extraction algorithm overall. 

 

The N-FINDR algorithm extracts a predefined number of endmembers set by the user. The 

optimum number of endmembers in each dataset was determined iteratively using a combination 

of domain knowledge and data analytical techniques. Therefore, the results obtained from the 

principal component analysis are visualized to understand the heterogeneity in the block data and 

recognize potential domains that share similar characteristics. Additionally, the elbow method 

(Syakur et al., 2018) and silhouette score technique (Shahapure & Nicholas, 2020), used in 

unsupervised K-means clustering algorithm to find the optimal number of clusters, were also used 

in this context to estimate the ideal number of endmembers. In the elbow method, the distortion 

score is the sum of square distances from each point to its assigned center. With an increase in the 

number of clusters (k), the average distance decreases and thus, to find the optimal number of 

clusters in a plot, the value of k is found which corresponds to a sharp and steep fall in the distortion 
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score i.e., where an elbow occurs. For the silhouette score plot, the optimal number of clusters is 

calculated using the silhouette coefficients of each point. This coefficient is determined by dividing 

separation measure by cohesion measure and subtracting that value by 1 if separation measure is 

bigger than cohesion measure or by 1 subtracted by the value of cohesion measure divided by 

separation measure if the cohesion is bigger the separation (Saputra et al., 2019). The highest 

silhouette coefficient value corresponds to the best overall cluster number.  

 

After the number of endmembers to be extracted is determined, the spectra of these endmembers 

were then evaluated with the available mineralogical information. This mineralogical data also 

allowed for the manual addition of certain endmembers that were not well represented in the 

automatically extracted endmembers but are important minerals in the deposit. In the end, 

following the interpretation of the spectra of the extracted endmembers, a spectral library for each 

wavelength range was created.   

4.6    Spectral Unmixing 

  

The unmixing algorithm used on this data is the fully constrained least-squares method (FCLS) 

(Heinz & Chein-I-Chang, 2001). This method is a combination of two approaches, nonnegativity 

constrained least-squares algorithm (NNLS) and sum-to-one constrained least-squares algorithm 

(SCLS). Generally, spectral unmixing is based on the assumption that the reflectance spectra of 

any given pixel is comprised of a combination of different endmember signals. In this case, the 

spectral library created from the block sections data represents these endmembers and a vector a 

is of the mixing coefficients (ratios) of these endmember signals. Therefore, this function aims to 

perform this operation by minimizing the reconstruction error associated with the inversion and 

estimation of this mixing coefficient. However, two key requirements must be fulfilled to perform 

this method: (1) The coefficients need to be non-negative and (2) all coefficients of one pixel need 

to sum up to one (Michelsburg & Léon, 2018). The individual NNLS and the SCLS algorithm 

respectively ensure that these constraints are met. An only NNLS algorithm was not used because 

when testing the result of the algorithm in contrast to the results of the FCLS, the NNLS algorithm 

led to errors in the accurate classification of the classes. This was visibly evidenced by the 

inaccurate classification of biotite and muscovite zones within the VNIR-SWIR data. Therefore, 

FCLS was chosen to be implemented instead.  

  

Using the spectral libraries created for each dataset, spectral unmixing is performed (as seen in Fig 

4.4). This generates abundance maps for each endmember in the respective wavelength range. 

These individual abundance maps for each tray set were then compiled and to allow for 

interpretations about the endmember distribution across the entire drill core length. Additionally, 

a maximum classification map for each of the three datasets was created. Each pixel in this map is 

classified to represent the most abundant class across that pixel in all the individual endmember 

abundance maps.  
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4.7    Spectral Angle Mapping (SAM) Algorithm  

  

The SAM algorithm is a supervised image classification method that enables efficient comparison 

between image spectra and reference spectra, allowing for rapid mapping of their similarity (Kruse 

et al., 1993). The reference spectra can be derived from laboratory or field spectra or extracted 

from the image itself. SAM operates by measuring the angle between the reference spectrum and 

each pixel vector in a multi-dimensional space. Smaller angles indicate a closer match between the 

pixel spectrum and the reference spectrum. The hylite toolbox is used to implement the spectral 

angle mapping algorithm on the hyperspectral data of the drill cores, using the endmember library. 

A spectral angle threshold of 10° is applied to prevent overestimation of the low intensity-matrix 

endmember or any pixels spectra that are very dissimilar to any of the endmembers. Thus, an 

additional unclassified class is also generated that includes the pixels which represent the pixels 

that are greater than the specified spectral angle threshold and therefore could not be classified into 

any of the respective endmember groups. Ultimately, this algorithm creates one map each in the 

VNIR-SWIR, MWIR and LWIR region that represents the distribution of the respective reference 

endmembers across the entire length of drill core scanned.  

4.8    Selection of Samples for LiF Measurements 

 

The LiF stage of the workflow begins with identification of REE-rich zones in the blocks and drill 

cores which is done by primarily done by examining the Nd MWL map and using Nd as a REE 

pathfinder (seen in Fig 4.5). From the REE MWL map of the block sections that was created, 

Block 05, Block X and Block 10 are identified as Nd rich samples and were selected for further 

scanning using the LiF setup. For the drill core, selection of REE rich core pieces was more 

complex. While the REE MWL map did reveal several zones with high concentrations of Nd, as 

mentioned before, large portions of these REE-rich zones in the core pieces were covered in epoxy. 

The LiF sensor is sensitive to the epoxy mixture and would produce poor results for REEs if 

scanned. Therefore, two less intensely concentrated pieces of drill core were selected. These core 

pieces are located between 486.3 to 486.5 m interval.  

4.9    LiF Data Acquisition 

 

The selected blocks and core pieces were scanned using an experimental integrated line-scan 

sensor system (Abend et al. 2019) using a sCMOS 50-v10E camera from Specim (Fig. 4.5) 

(Spectral Imaging Ltd., Oulu, Finland). The ions are excited at the corresponding sample surface 

line using two continuous wave laser diodes of 447 nm (blue) and 525 nm (green). By collimating 

and focusing the laser diode emission cones with specifically designed modular cylindrical lenses 

built for beam shaping, the line excitation required is achieved (Abend et al., 2019). In order to 
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have good resolution at considerable detection speed, the camera utilized has a spectral range of 

range between 400–1000 nm with a spectral and spatial resolution of 2.9 nm and 2184 pixels 

respectively. The camera also has a frame rate of up to 100 images per second.  

  

In the current setup used for the data acquisition on the Storkwitz samples, the two lasers, which 

can be operated independently, are used simultaneously to provide greater excitation energy and 

an integration time of 300 ms is used. The samples are placed on a belt that moves at 0.003 m/s 

travelling under the laser and camera structure. It is also important to note that a 550 nm long-pass 

filter is fitted in front of the lens of the sCMOS camera to block out light from the laser LEDs. No 

particular sample preparation is required. Additionally, a small REE-rich sample from Sillinjärvi, 

Finland is scanned alongside all the samples and used as a reference sample with known peak 

features to calibrate the instrument   

 
Figure 4.3: Schematic diagram illustrating the LiF line scanning experimentational setup used for data 

acquisition. 
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4.9.1 LiF Data Pre-Processing 

  

The obtained fluorescence data was corrected in three steps. Firstly, the dark current was subtracted 

using reference calibration data. Secondly, the data was converted into radiance values. Lastly, the 

dataset was spectrally cropped at 540 nm outside of the laser bands so that only real emission peaks 

can be evaluated, and the feature of lasers can be omitted. Following these preprocessing steps, 

the LiF data for the block sections and core pieces was manually masked. After checking the 

quality of the corrected and masked data, it was stored as a 3D data cube.  

4.10 Minimum Wavelength Mapping for LiF Spectroscopy Data 

 

Initially, various points which showed a visual differences in intensity or luminosity were chosen 

and a spectral library was created that included most variance in the spectra observed. Following 

this, the main emission peaks were identified. Similar to hyperspectral data processing and using 

the hylite toolbox, the minimum wavelength mapping method was used on the LIF data from the 

block section and core pieces, fitting asymmetrical gaussian functions to the peaks within the 

specified spectral ranges. The two main spectral ranges that were mapped using the MWL 

technique, and their correlating interpretation, are listed in Table 4.5.  

  

To understand the correlation amongst the several identified peaks, false color images of the 

samples were created where the R-G-B bands were assigned to specific peak wavelengths. This 

created a visual representation of the distribution of peaks within the samples. In the end the results 

of the minimum wavelength mapping along with the false color images of the block sections are 

correlated to the SEM-MLA mineralogical data to allow for geological interpretations about the 

distributions of the potential REEs. These interpretations are then extrapolated onto the drill core 

pieces which provides information about their distribution in relation to the entire drill core.  

  

Table 4.5: Spectral ranges of the specific emission peaks using minimum wavelength mapping techniques. 
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4.11 Validation 

  

To provide validation for the qualitative data produced through this workflow (as seen in Fig 4.4), 

visual inspection of the drill cores was conducted. This visual inspection consisted of using 

common field-based identification approaches like hand lens inspection, scratch test and acid test. 

Several points were deliberately chosen in the different resulting maps to match the distribution of 

the mapped mineral to the actual drill core present. Given the fine-grained nature of the samples, 

a portable XRF was not chosen as a validation tool. The spot diameter of the equipment would be 

too large to accurately classify the different fine-grained clasts within the matrix. Moreover, the 

detection limit of the machine would not be sufficient to recognize and distinguish the distribution 

and concentration of the REEs.  

4.12 Proposed Workflow Overview 

 

As mentioned before, a proposed workflow is developed that provides the organized sequence of 

method and steps needed to spectrally characterize the lithology using HSI and to identify REEs 

using LiF set up. The first phase of the proposed workflow involves the acquisition and analysis 

of the hyperspectral data which will eventually allow for the selection of key samples for further 

evaluation with LiF spectroscopy.  

 

The workflow begins by acquiring and correcting hyperspectral data of the drill core and the block 

sections. Hyperspectral data collected in the VNIR-SWIR, MWIR and LWIR are considered as 

three different datasets since data is collected using different sensors. A combination of automatic 

endmember extraction and manual selection is then conducted on each dataset to create a 

corresponding spectral library. Only the block hyperspectral data is used since the blocks are 

assumed to be representative of all the existing mineralogies and would be less processing power 

intensive to use than the entire drill core interval. The mineralogical data from the corresponding 

thick sections was used as a basis for the spectral analyses of these endmembers. After the three 

equivalent spectral libraries are generated, they are used for spectral unmixing that is performed 

on the entire hyperspectral drill core dataset. This yields abundance maps for each of the 

endmembers in each of the three wavelength ranges. These libraries are also used to perform 

spectral angle mapping (SAM) on the drill cores to create mineral maps. Additionally, other 

techniques like band ratios and minimum wavelength mapping are implemented on the drill core 

data to qualitatively map relevant mineral groups and REE rich zones. While there have been 

workflows developed that utilize machine learning methods to create quantified mineral 

abundance estimations (Khodadadzadeh & Gloaguen, 2019; Acosta et al., 2019, 2021; Tusa et al., 

2019, 2020), these methods require the MLA and HSI datasets to be co-registered. Due to the 
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thickness of the saw blade used during sample preparation, material between the thick section and 

the corresponding offcut block was removed, which prohibits easy co-registration. Hence, the 

mineralogical mapping of the drill cores is qualitative rather than quantitative, guided by the MLA 

mineral maps, and validated based on a visual inspection of the drill core. 

  

 
Figure 4.4: First stage of the developed workflow showing the processing steps of the hyperspectral dataset 

and the resulting outcomes. 

 

The second phase of the workflow involves the identification and mapping the distribution of rare 

earth elements using laser-induced fluorescence spectroscopy. Nd-rich blocks and core pieces 

were identified primarily using the Nd feature minimum wavelength map generated from the 

hyperspectral data acquired in the previous stage. These selected samples were then scanned using 

the LiF setup and the data was corrected and masked. Using similar minimum wavelength mapping 
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techniques, peaks for different REEs were identified. In the end, the minimum wavelength maps 

created using the LiF data acquired on the block sections were compared to the available MLA 

maps to identify associations between minerals and REEs. This information was then extrapolated 

onto the core pieces and interpretations about the distribution of the REE across the drill core were 

made.  

 

 
Figure 4.5: Second stage of the developed workflow to acquire and process LiF data.  



44 

 

Chapter 5 – Results & Interpretations 

5.1    Sample Block MLA Mineralogical Results  

  

The SEM-MLA data acquired from the thick sections formed the basis of all the mineralogical 

data used in this project by providing information needed during the manual verification of the 

endmembers and to correlate the regions of interest LiF to mineralogical zones in the blocks. The 

MLA Suite 3.1 software produced GXMAP maps for the ten thick sections that showed all the 

mineral classes present. However, for this project, this specific level of differentiation in classes 

was not required. Therefore, from the 52 mineral classes identified through the MLA analysis, the 

maps were regrouped and reclassified into 20 mineral classes which are based on similar chemical 

compositions or spectral responses. Most mineral classes are monomineralic but there are some 

exceptions. The plagioclase group is chiefly composed of albite with certain smaller quantities of 

other sodium-calcium feldspars. The amphibole class consists primarily of richterite with some 

lower amounts of unspecified Na-Ca amphibole and can be broadly considered as alkali-amphibole 

group here. The clay group represents the modal occurrence of both kaolinite and illite. The apatite 

class comprises mainly of the more abundant apatite, but very minor amounts of monazite 

observed in the samples is also considered within this group. The REE-fluorcarbonate class here 

only represents the bastnäsite mineral that was detected in these samples. The accessory mineral 

class is a broad class group that represents minerals that do not exhibit clear diagnostic features in 

reflectance spectroscopy like pyrite, zircon, sphalerite, rutile, ilmenorutile, and baddeleyite. The 

background material includes all the unknown, low count, epoxy, and glass zones. 

  

The new mineral maps for each thick section are listed in Appendix 1.1. A granitoid lithology 

dominated by quartz, plagioclase and orthoclase with muscovite, chlorite, and clay is inferred for 

Block 01. Block 04 is inferred to show a similar granitoid mineralogy of quartz and feldspar but 

has also been biotized and has an alkali-amphibole and aegirine vein across the sample. In Block 

03, the granitoid clast has also been fenitized which is observed by the presence of alkali amphibole 

and aegirine. Block 02 and Block 03 contain an intrusive breccia matrix mixture with granitoid 

clasts. It is observed that the matrix of the intrusive breccia is primarily composed of an ankeritic 

matrix but also contains varying concentrations of very fine-grained clasts or groups of orthoclase, 

quartz, sulfides, accessory minerals, chlorite, biotite, REE-fluorcarbonate, pyrochlore, and 

amphibole. This mixture is the primary lithology observed in Block 06. Block 13 also represents 

this intrusive breccia mineralogy but contains a large sulfide crystal and fragments of biotite. Block 

10 contains a granitoid lithology, as seen in other samples crosscut by an REE-fluorcarbonate-

ankeritic carbonatitic vein containing high amounts of calcite. It is interpreted that the lithologies 

observed here have been significantly altered based on the high abundances of biotite, amphibole, 

and aegirine. A similar lithology is observed in Block 08 which cuts granitoid mineralogy which 

is overprinted by fenitization. Block 05 depicts also ankeritic-carbonatitic lithology that shows 
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significant zones of REE-fluorcarbonate concentrations as well as biotite bands. Block X 

comprises an ankeritic-carbonatitic clast containing a large bleb of REE-fluorcarbonate in an 

intrusive breccia matrix. Block 05 only includes ankeritic-carbonatite with large zones of REE-

fluorcarbonates between biotite mineral-rich bands.  

  

  

  

  
Figure 5.1: MLA maps showing the distribution of the 20 mineral classes for the ten thick sections. 

 

For the easier visualization of the modal composition of each of the thick sections, the abundances 

of the mineral groups are illustrated in the bar graph in Figure 5.2. Across these samples, quartz, 

plagioclase, and orthoclase which is interpreted to represent the granitoid lithology of the host 

rock, occur in varying concentrations. These minerals are present in almost all the samples except 

Block 05. Block 06 is also the only sample containing plagioclase and orthoclase without quartz. 

Ankerite is the most abundant carbonate mineral found in all samples except in Block 01 and Block 

04. It is observed to be the primary mineral of the intrusive breccia matrix and is also associated 

with the ankeritic-carbonatite. The concentration of ankerite varies depending on the extent of the 

breccia matrix or carbonatite that is present; however, the highest concentration is in Block 05, 

which contains 77.2% ankerite, followed by Block 06 with 64.50%. Dolomite and calcite are the 

other two carbonate minerals present in these samples. Dolomite is present in most samples where 

the ankerite is present except for Block 05 and 08 and calcite is only present with in these samples 

in Block 10 and X. The modal abundance of apatite mineral is minor in all samples except those 

containing the intrusive breccia lithology which contain 3.80% apatite on average. Small amount 

of apatite is also observed in the ankeritic-carbonatite between the large REE-fluorcarbonate zones 
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in Block 05. In most samples, the average REE-fluorcarbonate value is ~0.5% except for Block 

05, Block X and Block 8 that contain 7.9%, 2.6% and 1.5% respectively. 

 

 
Figure 5.2: Modal abundances of each mineral class within the ten thick sections. 

5.2    PCA and Elbow Plot Results 

  

The results from visual assessment of the principal component analysis maps, elbow method, and 

silhouette score along with manual identification led to the final selection of the endmembers that 

are used further.  

  

The results of the principal component analysis on the VNIR-SWIR, MWIR and LWIR data of the 

block samples are shown in Figure 5.3, only displaying the first three components with the highest 

variance. The visual assessment of the PCA map is a crude method to approximate the idea number 

of classes that can exist in the data. This approximation is fundamentally subjective since the 

number of different colored zones that can differentiated in the image is determined by the viewer. 

Different zones are identified that represent spectrally distinct areas. This provides an 

understanding of the spectral variation in the data. In general, the number of unique regions of 

interest roughly represent the number of endmembers that could exist. From the VNIR-SWIR data, 

it can be observed that between 8 and 10 different colored zones exist; for the MWIR and LWIR 

data, it can be argued that ~7 and ~9 separate regions can be distinguished respectively.  
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Figure 5.3: Visualization of the PCA maps for the block sections and the elbow method and silhouette 

score plots of the block data for each wavelength dataset. 

 

On evaluation of the elbow plots generated on the three datasets (Fig 5.3), the elbow point and 

thus the optimal number of endmembers according to the elbow method for all the datasets was 

found to be four. However, from the mineralogical information combined with the PCA results, 

this number of endmembers would be too small to accurately represent the data. The resulting 
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endmembers would primarily be defined by the spectrally dominant minerals in that wavelength 

range which would not be wholly representative of the mineralogies present.  

 

In comparison, the silhouette score plot (Fig 5.3) provided dissimilar results. For the VNIR-SWIR, 

MWIR and LWIR dataset, the number of optimal endmembers in these datasets would be 14. 

These would not be the optimal number of endmember classes for any of the datasets due to the 

over separation of co-existing spectral features that would occur. The process would ultimately 

create convoluted maps that would be significantly differentiated and would contain redundant 

information which would be detrimental to the subsequent geological evaluation.  

 

Assessing the visual evaluation and other analytical metrics provided contrasting and varying 

results in the optimal number of classes. However, it was ultimately decided that nine endmembers 

would be extracted using the automatic extraction algorithm from each dataset.  

5.3    Selected Endmembers for Each Dataset 

 

After the nine endmembers were extracted and identified by evaluating the spectra, a manual 

verification of the endmembers was done using the mineralogical information and public spectral 

libraries (e.g., iSpec). Following this, the endmember library for each dataset was compiled where 

the first endmember always was a low reflectance value, highly mixed spectral signal, which is 

interpreted to represent the matrix and epoxy. An overview of each identified endmember for the 

three datasets can be seen in Table 5.1.   

 

Table 5.1: All identified endmembers in the VNIR-SWIR, MWIR, and LWIR datasets (Cb: Carbonate, 

Amp: Amphibole, Bt: Biotite, Qz: Quartz, Aeg: Aegirine, Or: Orthoclase, Ab: Albite, REE-Fl: REE-

fluorcarbonate, Wm: White Mica). (Abbreviations based on Whitney & Evans, 2010) 

 
 

In terms of the VNIR-SWIR data (Fig 5.4), one extracted endmember was removed because of the 

complex mixed spectral signal. A spectral library was created for eight endmembers in the VNIR-

SWIR dataset. The second endmember shows REE features in the VNIR along with ~1250 nm and 

features for REE-fluorcarbonates. It also shows diagnostic features between 2300–2400 nm that 

are typical for amphibole (Kokaly et al., 2017). These features are also seen in FEM 3 which 

contains an additional carbonate feature between 2300-2360 nm (Kokaly et al., 2017). FEM 5 

shows carbonate features along with characteristic features for biotite including an absorption at 

~2350 nm (Kokaly et al., 2017). FEM 6 is a white mica-clay class because of the Al-OH feature 
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at ~2200 nm and the OH feature at 1400 nm are observed (GMEX, 2008). The seventh endmember 

is a carbonate-clay-REE-fluorcarbonate class. The term clay used in these endmembers is used as 

a broad label for the smectite group that is likely to be present based on the small 1400 nm OH 

feature, deep-water feature at ~1900 nm and the Al-OH feature at ~2210 nm. Although features 

specific to montmorillonite are observed, considering the variation between the spectral features, 

an inclusive label of clay is used. Based on the spectral features of the biotite endmembers 

observed, the magnesium-rich phlogopite endmember of the biotite solid solution series is likely 

to be present, however it is generalized as a biotite mineral.  

 

 
Figure 5.4: Pixel locations of the VNIR-SWIR endmembers as well as their respective hull-corrected 

spectra. (Reflectance spectra for each endmember offset for clarity) 
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In terms of the MWIR data (Fig 5.5), the overall characteristics observed between endmembers 

were similar in nature and only differentiated slightly in intensity and feature combination. This 

can be attributed to the fact that while characteristic spectra for different minerals do exist in the 

MWIR range, only some minerals have diagnostic features that can be easily distinguished 

(Laukamp et al., 2021). Consequently, only five endmembers were chosen to represent the data in 

the MWIR wavelength range. The second endmember identified showed features along with 

specific biotite associated features. The third endmember had a specific spectrum in this 

wavelength region that is diagnostic for a broad mica mineralogy (Laukamp et al., 2021). Within 

the observed spectra it was not possible to accurately distinguish features for specific mica 

minerals and therefore the endmember was largely identified as mica endmember. The fourth 

endmember had the characteristic features for carbonate around characteristic peak ~3900 nm and 

minimum ~3700 nm which can be attributed to carbonate (Gering et al., 2022). The final class 

contained features that allowed for it to be identified as carbonate-amphibole class. 
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Figure 5.5: Pixel locations of the MWIR endmembers as well as their respective hull-corrected spectra. 

(Reflectance spectra for each endmember offset for clarity) 

 

In terms of the LWIR data (Fig 5.6), the typical approach of the manual identification and 

evaluation of the endmembers within the available mineralogical context was done. Unlike the 

other dataset, the endmembers extracted from the block for this wavelength range were concluded 

to be sufficiently representative of the data. Therefore, no endmembers were removed or added, 

and a spectral library was created with nine endmembers. After the first matrix-epoxy class 

endmember, the next endmember class is quartz as distinguished by the typical restrahalen bands 

(~8250 nm & ~9200 nm peaks) as seen in its spectrum (Laukamp et al., 2021). The third 

endmember identified is a carbonate endmember detected by the characteristic ~11250 nm peak 

observed for carbonates (Laukamp et al., 2021). The next endmember groups represent mixtures 

that are prevalent within this sample. LEM 4 corresponds to a mixture of albite and aegirine 
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endmember which is indicated by the 8700 nm, 9200 and 9700 nm peaks (Kokaly et al., 2017) and 

8700 nm, 9500 nm, and 9850 nm peaks (Hermann, 2019) respectively. LEM 5 indicates an 

orthoclase and carbonate endmember which is identified by the carbonate feature and the 8400 nm 

peak and 9020 absorption feature of orthoclase (Laukamp et al., 2021). The sixth endmember is 

aegirine-orthoclase-carbonate endmember that shows the characteristic peaks for aegirine. LEM 7 

displayed a 9700 nm and a 10350 nm maxima attributed to biotite along with the carbonate peak 

(Kokaly et al., 2017). The next endmember had characteristic peaks and represented aegirine and 

biotite class. The last endmember was identified and categorized as an orthoclase-aegirine-biotite 

endmember.   

 

 
Figure 5.6: Pixel locations of the LWIR endmembers as well as their respective hull-corrected spectra. 

(Reflectance spectra for each endmember offset for clarity) 
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It is important to note that although this detailed approach for selection of the endmember was 

followed, given the limited spatial resolution of the hyperspectral data and the fine-grained nature 

of the Storkwitz Breccia, some endmember classes are still identified as mineral mixtures here. 

These mixed endmember classes are assumed to be sufficiently representative of the real 

mineralogy observed.  

5.4    Fe-Oxide Band Ratio Map  

  

By exploiting the band ratio technique, the abundance of different iron oxides was mapped as a 

false-color RGB composite of Fe2+, Fe3+ and Fe-OH (Fig. 5.7). The different oxidation states 

observed here are associated with different mineralogical regions. Ferrous iron is the most 

abundant iron oxide. This iron feature is pervasive and present in almost every meter of the drill 

core interval. The ferrous iron ion is seen in the matrix of the central region of the Storkwitz breccia 

as well as associated with some clasts throughout the breccia. Some minerals that contain ferrous 

iron oxidation state that are associated with Storkwitz include ankerite, biotite, chlorite, and pyrite.  

 

The iron-hydroxide phases are the second most abundant iron phase which is typically associated 

with amphibole or clay. In the upper margin section of the core, this iron hydroxide class can be 

seen in several rock fragments especially along the fault zone between 434 - 437 m. Several core 

fragments in this section are completely composed of this Fe-OH phase which is in contrast to the 

rest of the drill core. Within the central area of the intrusive breccia, iron hydroxide is observed to 

be associated with certain clasts and fragments and generally occurs randomly dispersed across 

this section.  

  

Lastly, the ferric iron phase is the least abundant iron oxide detected. The Fe3+ ion is present 

abundantly within the upper margin section of the Storkwitz drill core and with certain core pieces 

that are closely associated with the iron hydroxide class. Within the central area of the Storkwitz 

core, the modal abundance of this oxide class is lower but still prevalent. The ferric oxides are 

found associated with the matrix of the intrusive breccia in random sections of the core as well as 

with certain clasts groups.  
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Figure 5.7: Band ratio map generated for three iron oxide band ratios utilized in the data. 

5.5    Hyperspectral MWL Maps 

  

Using minimum wavelength technique is useful for separating closely associated features within 

a spectral range due to the difference in position (hue) and intensity (brightness). It is used here to 

illustrate four spectral ranges and the associated minerals. It is important to note that the minimum 

wavelength maps chosen here were first verified by application on the blocks and then verified 

with the mineralogical data. The results of the minimum wavelength maps for the block section 

are in Appendix 1.3. and for the drill core interval is in Appendix 2.5.   
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5.5.1 Nd MWL Map 

  

The resulting Nd MWL Map for the entire studied interval of the Storkwitz breccia can be found 

in Appendix 2.5. The brighter regions indicate a more concentrated accumulation of the 

neodymium and therefore potentially other REEs. The Nd MWL map shows the 419 - 437 m upper 

margin section of the core which includes this upper zone of the breccia, and only shows minor 

interspersed accumulations of REE rich zones. No REE rich areas are observed between 

specifically in the 434 - 437 section which is the fault zone region. The REE accumulations are 

higher in abundances in the rest of the drill core especially beginning from 439 m in the intrusive 

breccia lithology of the Storkwitz drill core. The REE rich zones (few cm in size) are seen 

associated with clasts in the drill core and are randomly distributed within the matrix. This result 

can be correlated to specific clasts within the Storkwitz breccia. An example of this observation is 

shown in Fig 5.8. 

 

 
Figure 5.8: Comparison between the REE rich zones in the MWL map generated to the RGB image of the 

same core piece illustrating the accumulation of REEs in clasts. 

5.5.2 Al-OH Feature MWL Map 

  

The 2200 nm feature correlates to the AL-OH associated absorption feature for clays and micas 

(Laukamp et al., 2021; GMEX, 2008). As expected, a high modal abundance of white mica and 

clay exists in the upper zone of the Storkwitz especially visible in the fault zone (as seen in Fig 

5.9). Within the intrusive breccia, the mica and clay content are minor and mostly present as a 
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pervasive material within the core pieces. The Al-OH feature and the inferred mineralogy is 

observed in certain clasts within the lower section of the intrusive breccia. 

 

There are two Al-OH bearing minerals present here. After examining the spectral features of this 

class across the shortwave range, the group exhibiting spectral features at ~2210 nm is considered 

as white mica and a ~2200 nm feature is considered as clay. Based on this minimum wavelength 

map, it is inferred that this white mica is a muscovite with likely phengitic composition, and the 

clay can be further classified as smectite potentially montmorillonite. For the sake of simplicity, 

the mineralogies are only referred to as white mica and smectite. 

 

 
Figure 5.9: 434 – 437m section of core indicating the fault zone with high mica and clay content. 

5.5.3 Quartz – Plagioclase – Aegirine – Mica MWL Map 

 

The minimum wavelength map generated for the 8180 – 8900 nm range is important in 

differentiating quartz, plagioclase, aegirine and mica. Typically, the main feature for quartz is 

observed at 8260 nm, for plagioclase at ~8400 nm and for aegirine is at ~8600 nm. Within this 

spectral range a distinguishing feature at the higher wavelength (~8780 nm) is also observed which 

is correlated to the presence of mica.  

  

 
Figure 5.10: 467-470 m section of core indicating the different clasts associated with quartz, plagioclase, 

aegirine and mica. 
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On examination of the generated map, four combinations of quartz, aegirine, and plagioclase clasts 

exist. This can be observed in Fig 5.10 which shows 467–470 m section of the core. Firstly, distinct 

quartz regions (seen in orange) exist throughout the matrix as fine and large sized clasts. Secondly, 

there are distinct clasts where the quartz and plagioclase exist together which are characterized by 

the quartz peak being shifted to a higher wavelength representing a mineral mixture between quartz 

and plagioclase. These clasts are also associated with plagioclase rich zones (seen in green). 

Thirdly, plagioclase and aegirine rich clasts are observed. The plagioclase is seen to be shifted to 

a higher wavelength and in close association with the aegirine zones (seen in blue). Lastly, in lesser 

abundance, clasts containing quartz, plagioclase and aegirine are also observed within the sample. 

These are observed by the shifted wavelengths for quartz and plagioclase along with their close 

association to aegirine.  

  

The majority of the mica rich regions are observed around the fault zone and in the upper margin 

of the drill core between 430 - 437 m. However, in the rest of Storkwitz interval, scattered mica 

dominated regions are observed in lower abundance and usually exist as a pervasive zone within 

the core pieces rather than distinct clasts. The mica rich zones are not found to be closely 

intermingled with the quartz, plagioclase or aegirine zone but rather in close proximity around 

these regions.  

5.5.4 Carbonate MWL Map 

  

For the Storkwitz samples, the distinct carbonate feature in LWIR was used to map the distinct 

carbonate mineralogy that exists within the Storkwitz lithologies. The map (in Appendix 2.5), 

which was generated for all the entire drill core interval, clusters the carbonate-bearing lithologies 

into three main groups that are identified: dolomitic (~11220 nm), ankeritic (~11300 nm), and 

calcitic (~11400 nm). This map particularly highlights the widespread distribution of the ankeritic 

carbonate class. This map also highlights the different mineralogies of the carbonatitic clasts that 

are dispersed within the drill core interval. Given the close mineral association and mixtures 

observed within these carbonatitic clasts, two subcategories are also identified which indicate the 

presence of a dolomite-ankerite mixture and an ankerite-calcite mixture.  

5.6    Abundance Maps from Spectral Unmixing 

  

The FCLS spectral unmixing that was performed on the drill core data produced individual 

abundance maps for each endmember in each wavelength range. These were organized together 

based on the wavelength ranges (Appendix 2.1). The resulting individual map illustrating the 

abundance of each endmembers were compiled to create three maximum classification maps for 

each dataset (Appendix 2.2).  
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According to the abundance maps from the first dataset (FENIX 1-8), the white mica-clay 

endmember is the most abundant mineral group in the VNIR-SWIR data. Additionally, it is 

observed that the carbonate-clay-REE-FL endmember is also an abundant class in the VNIR-

SWIR data which is closely associated with white mica-clay class. It is typically found in higher 

quantities in zones where lower quantities of white mica-clay are present. The biotite-amphibole-

REE-Fl endmember is closely associated with the carbonate-clay group but only occurs in minor 

quantities associated with some clasts within the interval. The compiled maximum abundance map 

for the VNIR-SWIR data, also referred to as the FENIX classification map is found in Appendix 

2.2.  

 

There are five abundance maps (FX50 1-5) that were generated from the mid-wave data 

corresponding to the respective endmembers. It is important to note that the mid-wave data for the 

first drill core tray scanned (419-422 m) was corrupted and therefore the data is not included in 

any interpretation or discussion. Within the individual abundance maps, the highest modal 

abundance is seen for matrix endmember which covers significant portions of the drill cover 

interval. This endmember is associated with the low-intensity background data. Subsequently, the 

second most abundant class is the carbonate class. This either exists as dispersed with the sample 

or in the form of distinct clasts around 437-440 m, and in small sections between 455-467 m and 

476–485 m. The carbonate-amphibole, biotite and carbonate-biotite endmembers are present in 

smaller quantities in the interval and typically closely associated with the carbonate class. The 

carbonate-biotite is generally observed as a pervasive class in the core piece, but the biotite/mica 

and carbonate-biotite endmembers are seen associated with clasts.  

 

In the LWIR dataset with nine endmembers, the most abundant endmember similar to the mid 

wave data was found to be the matrix endmember. The second most abundant class was the 

orthoclase-carbonate class which covers significant portions of the core piece in the lower section 

of the Storkwitz breccia. Quartz and carbonate endmembers are seen as clasts distributed randomly 

within the orthoclase-carbonate class. The biotite-carbonate endmembers also form similarly 

distinct clasts across the core.  The orthoclase-aegirine-biotite endmembers are also seen in higher 

quantities in the upper margin of the core but are present as minor quantities of clasts within the 

rest of the section as well. The aegirine-albite endmember is seen to exist in close relationship with 

the quartz endmember. The individual abundance maps of the nine endmembers for this range 

(OWL 1-9) are found in Appendix 2.1.  

  

Comparing the generated individual abundance maps between the datasets provides information 

about the relationship between different mineralogies as well as provides validation of the similar 

mineralogies identified in the different wavelength ranges. The abundance maps for the carbonate-

amphibole endmember in shortwave and mid-wave data show a similar distribution of classes. 

However, the data in the mid-wave is significantly less abundant and only categorizes the 

concentrated features seen in the shortwave abundance map. Across the three wavelength ranges, 
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the distribution of the carbonate and carbonate-biotite endmembers are relatively similar. However 

more regions are identified as carbonate biotite zones in mid wave abundance maps than the 

shortwave and long wave maps. The white-mica-clay and carbonate-clay clasts in the shortwave 

are seen to exist closely with the regions that contain abundant orthoclase-carbonate class. The 

abundance of the carbonate-amphibole class is also comparable to the orthoclase-carbonate class. 

The modal distribution of the carbonate-biotite endmember can also be attributed to that of the 

orthoclase-aegirine-biotite endmember.  

5.7    SAM mapping 

  

Spectral angle mapping technique utilized with the respective endmember data generated spectral 

angle maps for each wavelength range. The individual SAM maps can also be found in Appendix 

2.3. Using the eight endmembers selected for the VNIR-SWIR data; the spectral angle mapping 

algorithm can map its occurrences throughout the drill core. This resulting spectral angle map 

created is referred to as the FENIX-SAM map. In the midwave dataset, the first tray is not included 

in the generated SAM map since the data acquired from this sensor for this tray set (419 - 422m) 

was corrupted. The FX50 SAM map that refers to the spectral angle mapping result conducted on 

mid wave dataset. As it can be observed, the most abundant class here is the matrix endmember. 

Minor abundances of the unclassified class are observed in the data. The OWL-SAM map refers 

to the result of the spectral angle mapping that was performed on the long-wave data using the 

relevant endmembers. Across cores interval small sections of the matrix endmember are present 

along with minor abundance of the unclassified class  

5.8    Validation 

  

Several points across the generated maps were chosen to be verified with existing lithologies 

using common field techniques. In terms of carbonate validation, the acid test was used to 

differentiate and confirm the occurrence of the different clasts observed in the carbonate MWL 

map as well as the spectral angle mapping and abundance maps. The difference between the 

calcitic abundant, dolomitic dominated and ankeritic clasts that is observed in the carbonate 

minimum wavelength map is confirmed based on the speed of the reaction of the acid test. The 

reaction seen from ankeritic matrix and ankeritic clasts was significantly slower and produced 

less noticeable effervescence than that for dolomite. Calcite rich clasts had the fastest reaction. 

These carbonate tests were used to check the core piece at 486.4 m (Fig. 5.11). The two clasts 

were confirmed as ankerite carbonatitic clasts in an ankeritic matrix. While the MWIR-SAM 

map, and OWL-SAM represented this result for the clast and the FENIX classification map 

depicted the carbonate matrix, the FENIX-SAM map incorrectly classified both the clast and the 

matrix. Field tests using acid across various points in the matrix portion of the cores confirmed 

that the majority of the matrix is carbonate hosted. This again differs from the map that was 
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FENIX-SAM map which illustrated that the matrix was primarily amphibole dominated with 

only some regions being carbonate dominated.   

 

 
Figure 5.11: RGB image of the core piece at 486.4 nm and the corresponding maps short-wave, mid-

wave, and long-wave maps to compare the lithologies identified to the ones mapped. 
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The difference between quartz and plagioclase was done based on the color as well as a scratch 

test. Color was used to differentiate between orthoclase and aegirine. Orthoclase rich were 

observed to have a dark pink hue whereas, aegirine could easily be identified and differentiated 

based on its green-dark green color. Biotite clasts were successfully identified in the field using a 

scratch test and comparing the color, luster, and cleavage. The results of comparing these 

lithologies which are seen in the OWL-SAM map are shown in Fig. 5.12. This test confirmed the 

mapping accuracy for the OWL-SAM map where the zones classified as aegirine, albite, quartz 

and orthoclase could be accurately correlated to the clast mixtures observed in the core.  

 

 
Figure 5.12: RGB image of the two core pieces at 454.1 m and 452.9 m and their corresponding long-

wave SAM map to verify the quartz, plagioclase, aegirine and biotite mineralogy. 

As mentioned before several regions of the drill core were covered in epoxy. One zone was 

identified and compared to the two maps generated for the VNIR-SWIR range. The epoxy zones 

are incorrectly classified as the REE-fluorcarbonate-amphibole class in the FENIX-SAM but 

accurately classified as a matrix background class in the FENIX classification map. Ultimately, 

this comprehensive approach provided the validation necessary to verify the quality of the maps 

generated from the identified endmembers. It was concluded that for the visible-shortwave data, 

the FENIX abundance map provides the most accurate representation of the existing lithologies. 

Alternatively, the FX50-SAM and OWL-SAM maps are the most appropriate at correctly 

illustrating the variation that is observed in the mid-wave and long-wave data respectively.  
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5.9      Spectral Characterization of Storkwitz Breccia 

 

The following interpretations on the composition and texture of the Storkwitz Breccia are primarily 

based on FENIX-classification map, the FX50 and OWL SAM maps as well as the iron oxide band 

ratio and the HSI minimum wavelength maps. The main lithological units within the breccia in 

this study interval include the matrix and the diverse clasts that have undergone varying degrees 

of alteration. Based on the OWL-SAM map and particularly the Carbonate MWL map, it can be 

interpreted that the breccia matrix predominantly composed of ankerite. Additionally minor 

amounts of white-mica, clay iron oxides and REE-fluorcarbonates are also present. The breccia 

matrix is the groundmass that hosts the clasts discussed below.  

  

Clasts  

  

The first most abundant clast observed is predominantly in association with orthoclase. As 

observed in the OWL-SAM, extensive regions of the sample are covered in the orthoclase-

carbonate class which is fundamentally indicative of fine sized orthoclase rich clasts in a carbonate 

rich matrix. A close relationship between the distribution of the orthoclase-carbonate class and 

other classes like albite-orthoclase-biotite, aegirine-orthoclase, and quartz-albite-biotite, is 

extensively observed across the core. The regions where this clast exists are also regions in the 

core sample characterized by the abundance of amphibole and aegirine. Therefore, it can be 

inferred that these clasts represent the one type of the granitoid lithology of the host rock which 

has been variably altered and is mainly composed of orthoclase with plagioclase and lower 

quantities of quartz, biotite, aegirine and amphibole (Fig. 5.13)  

 

 
Figure 5.13: OWL-SAM maps illustrating the two types of granitoid clasts that are observed. 

 

Another set of clasts are characterized by the mutual occurrence of quartz with minor biotite and 

the quartz-albite-biotite class. This clast group is separated out from the previous clast category 

due to the lower orthoclase abundance associated with these clasts. This clast group occur 

widespread across the matrix and are accompanied by the presence of biotite, aegirine and 
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amphibole. They also exhibit alteration towards clay and white mica. In the end, this clast group 

is interpreted as the second type of granitoid lithology that is composed of high quantities of quartz 

and albite with lower abundance of orthoclase and with the presence of biotite, aegirine, and 

amphibole. Similar to the first identified country rock clast group, this granitoid lithology also 

displays a low degree of alteration dominated by clay formation.  

 

 
Figure 5.14: 482-485 m section of core indicating the different carbonatitic clasts present in the drill core. 

Carbonate class clasts are significantly widespread in distribution throughout the drill core. The 

mineral maps particularly OWL-SAM maps identify a group of carbonate clasts within the matrix, 

these clasts refer to the carbonatites that are dispersed throughout the sample. By correlating the 

clasts identified carbonate MWL map generated, three types of carbonatitic clasts can be inferred 

(Fig. 5.14): (1) several small ankerite clasts that are identified by their jagged shapes (seen in 

green), (2) dolomite dominated clasts (seen with orange color) and (3) ankerite clast with some 

amount of calcite also present (seen in blue and purple). Firstly, the ankeritic carbonatites are the 

most abundant clast group present within the core interval. These clasts are observed to contain 

varying amounts of amphibole, and REE-fluorcarbonates. The associated bright ferrous features 

also observed in the Fe-Oxide map suggests the presence of iron sulfides and oxides within these 

clasts. Some minerals that contain ferrous iron oxidation state that are associated with Storkwitz 

include biotite, chlorite, and pyrite. Occasionally, some minor alteration of clay is also observed 

to be associated with this clast group. The second group of carbonatites is the dolomite dominated 

carbonatites with smaller quantities of ankerite. Given the close association of these classes with 

these clasts, these clasts likely contain minor quantities of REE-fluorcarbonates, amphibole, and 

biotite. Additionally, these typically form large clasts that exist within the matrix and correlate to 
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some REE-rich clasts seen in the REE MWL map. Lastly, the least abundant is the ankerite- calcite 

carbonatites which are observed as small, rare clasts within the core interval. These clasts likely 

contain the highest amount of calcic content within the breccia and the REE-fluorcarbonates 

associated with these clasts can be inferred to be synchysitic in composition.  

  

Other than the different granitoid clasts and the carbonatitic country clasts, two other sedimentary 

clast types are observed. Across the core interval, quartz clasts of varying sizes are observed within 

the sample. Additionally, the biotite clasts are also observed. Although biotite is predominantly 

seen accompanying the granitoid and carbonatitic clasts, it also occurs as large crystals within the 

samples. Across several biotite clasts in the Storkwitz core, carbonate is also closely associated. 

Several biotite clasts are also categorized as biotite-carbonate class. This can be potentially 

explained by the presence of carbonate veins cross cutting the biotite crystals.  

 

Alteration 

 

Within Storkwitz breccia, four types of alterations are observed across the drill core interval. The 

first alteration phase identified is the fenitization that is observed in the drill core. The extent of 

fenitization is indicated by the widespread occurrence of alkali rich amphibole and aegirine. The 

individual abundance maps for the mineral classes with aegirine and amphibole indicate that these 

minerals typically always exist together. As evidenced by the FENIX-abundance map and the 

OWL-SAM map, a significant majority of the clasts have been affected by the fenitization. The 

second alteration sequence is associated with the occurrence of biotite which is typically observed 

to exist both independently and closely associated with aegirine, amphibole and clay. The regions 

of extensive biotite alteration are observed to be in close relationship with the fenitized zones. It 

is important to note that the distribution of these two alteration assemblages depict pervasive 

alteration sequences within the core. Both these alteration events are abundantly observed to be 

associated with the granitoid clasts and with carbonatitic clasts to a lower extent.   

 

The third alteration phase refers to the distribution of white mica and clay that is observed across 

the drill core. White mica and clay associated together as one assemblage because of the intimate 

relationship between these minerals. As seen in the FENIX-classification map, white mica-clay 

endmember is the most abundant mineral group in the VNIR-SWIR data and is found to exist in 

almost every meter of core. While this class is generally found in low amounts intermixed 

throughout the core, it is found in the higher quantities in specific intervals between 437 - 440 m, 

458 - 468 m and 488 - 491 m and is most concentrated in the upper margin section of the core (i.e., 

419 - 437 m). The white mica alteration is primarily demonstrated by the occurrence of muscovite. 

On examination of the Fe-oxides map, regions with high Fe-OH contents are observed throughout 

the sample especially within the upper margin section of the drill core. These regions are observed 

to co-exist with the clay rich zones seen in the FENIX-classification map. Therefore, the potential 

existence of montmorillonite as the primary clay feature is also strengthened by the coexistence of 
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the Fe-OH regions. Montmorillonite can contain is Fe-OH bond and can be thus attributed with 

the supergene alteration of the core. This clay alteration within the lower portion of this drill core 

is also largely correlated with the alteration of granitoid clasts. This can be indicated that the 

country rock clasts underwent significant muscovite and smectite alteration in the later stages of 

the Storkwitz carbonatite evolution.  

 

Lastly, a prevalent ferric alteration is seen with the groundmass of the breccia on examination of 

the Fe-oxide band ratio map. It is also observed that biotite clasts that contain minor amounts of 

carbonates also contain presence of these iron oxides. It is inferred that the Fe-rich minerals like 

ankerite and biotite are locally partially broken down, resulting in the exsolution of Fe-oxides. 

Some minerals that contain ferric iron oxidation state that could be associated with this iron phase 

include hematite, goethite, and limonite. 

5.10    Laser Induced Spectroscopy of Storkwitz Samples 

  

The results and interpretations of the LIF spectroscopy data are divided into two sections. The first 

section considers the library of spectra that was created from the block sections that is 

representative of the spectral mixture observed within the core pieces as well. It also displays the 

results of the peak detection that was done on the block section spectra along with false color 

images to map the spatial correlation of the peaks. The second section considers the minimum 

wavelength maps that were created for the block sections as well as the core piece.  

5.10.1  Peak Detection  

  

Initially, a minimum wavelength map which was created across the broad VNIR range (580 – 900 

nm) for the block section and core piece is shown in Fig. 5.15. This visualization shows areas with 

similar emission peaks and confirms the likeness in spectral variation that exists in the blocks 

sections and core pieces. This ensures that the interpretations made in the blocks can be applied 

onto the core interval.  
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Figure 5.15: LiF data based minimum wavelength map across the broad 580 – 900 nm range for the block 

sections and the core pieces. 

 

A total of nine points in three block sections were selected to represent a library of most of the 

spectral variations that exist within those samples as well as the core pieces. The pixel location 

along with the individual spectra of all these points is shown in Fig 5.16.  
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Figure 5.16: Individual emission spectra for all points identified in the block sections with certain peaks 

outlined. 

 

Following this a point ‘P6’ which was found to contain all the main clearly visible features in one 

spectrum was chosen to be evaluated using a peak detection technique. The program highlighted 

the precise locations of all the features. The results of the peak detection for the point P6 are shown 

in Fig. 5.17 below.  
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Figure 5.17: Result of peak detection technique used on the P6 identifying all the possible emission points 

existing in the spectra. 

As illustrated in Fig 5.16, the 552 nm peak is observed in every sample point. This is interpreted 

as the emission peak related to the background class which does not indicate any real elemental 

signature. The 692 nm peak and 803 nm peak were considered to be too small to be correlated as 

major emission peaks of some specific rare earth element. These peaks are used as supplemental 

information in deciding which REEs can potentially exist.  

The small 722 peak that is observed in spectra of P6 in Fig 5.16 is correlated to the broad emission 

feature that is seen in P9 in Fig 5.16. The regions with this peak are seen as cyan-colored discreet 

areas indicating a peak feature ~720 nm in LiF MWL map (in Fig 5.18). Based on past studies 

(Seidel et al., 2019; Cazenave et al., 2003), this peak can be assigned to the luminescence center 

of Fe3+ or other transition metal ions. Compared to HSI image, the same zones are also highlighted 

with a greenish-yellow color with features around ~650 nm. This feature in the HSI image can also 

be correlated to the presence of the Fe3+ ion (GMEX, 2008). Gaft et al. (2005), specifically 

highlighted that luminescence center for Fe3+ in feldspars particularly anorthoclase can be located 

at ~716 nm. This interpretation coincides well with the mineralogical information available for the 



69 

 

data where feldspar-plagioclase clusters are present in the same regions. Consequently, the 722 

nm feature is not considered for further REE spectral conversation.  

 
Figure 5.18: MWL comparison between maps generated for the blocks with LiF data (left) and 

hyperspectral data (right) for spectral range of 580-900nm along with the MLA mineralogical data of the 

respective blocks. 

 

600 nm, 605 nm, 643 nm, and 871 nm were chosen as the main distinguishing spectral peaks. To 

understand the spatial distribution and correlation of the peaks, a set of false color images was 

created. In these images, the different R-G-B bands are assigned a specific channel. Essentially, 

these channels refer to specific deepest feature that is mapped using minimum wavelength 

mapping method within an encompassing specified spectral range. The 600 nm channel represents 

both the 600 and 605 nm peaks that coexist together and could not be spectrally separated out in 

the 590 – 615 nm range. The 645 nm channel represents the distribution of the 643 nm peak in 635 

– 655 nm range, and the 870 nm channel illustrates the ~871 nm peak that exists within 860 – 900 

nm range. Using this information, Fig 5.19 was created where the R+G band (yellow color) was 

assigned to one channel and B band (blue color) was assigned to another.  
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Figure 5.19: False color images indicating the co-distribution of the three emission peaks as well as the 

three identified zones. (Yellow – R+G; White – R+G+B) 

5.10.2  Minimum Wavelength Mapping for LiF data  

  

A minimum wavelength map created for the spectral range of 855 nm to 885 nm was used to map 

the 870 nm peak. The first minimum wavelength map is generated for the spectral range of 590 – 

610 nm for both the core piece and block sections (Fig 5.20). It is observed that most of the features 

are primarily centered around ~597 nm (seen in green) across most of the region in the blocks and 
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core pieces. However, small specific regions with each map indicate a zone where peaks are 

generally observed ~600 nm (seen in cyan) and in some areas ~607 nm (seen in pink).  

 

 
Figure 5.20: LiF minimum wavelength map identifying the peak between 590 – 610 nm range in the 

blocks and core pieces. 

 

The other minimum wavelength map created for the spectral range of 855 nm to 885 nm was used 

to map the 870 nm peak. The resulting figure (Fig 5.21) across the blocks and the core piece shows 

two separate regions of interest. The first region (seen in green) exhibits a maximum peak within 

this spectral range at ~865 nm. The second region within these samples displays the peak emission 

spectra at ~872 nm.  
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Figure 5.21: LiF minimum wavelength map identifying the peak between 855 – 885 nm range in the 

blocks and core pieces. 

 

By comparing of the two minimum wavelength maps for the blocks with the false color images in 

Fig. 5.19, it is inferred that regions that exhibited similar behavior across the blocks and core pieces 

must belong to the same mineralogical zone. Regions that show ~865 nm (in Fig. 5.21) peak can 

be assigned as Zone A. Region that shows the ~597 nm peak (in Fig. 5.20) also displays a peak 

around ~870 nm (in Fig. 5.20) and can be assigned as Zone B. The other regions which show a 

peak at ~600 and ~607 nm (in Fig. 5.20) and ~872 nm (in Fig. 5.21) can be described as Zone C. 

These three zones defined in the blocks are correlated to the available mineralogical information. 

Zone A represents an ankerite carbonatite that is primarily contains in REE-fluorcarbonates with 

minor quantities of apatite whereas Zone B refers to the matrix of the intrusive breccia with 

significant quantities of apatite and REE-fluorcarbonates are dispersed. Zone C represents a 

regions with high accumulation of apatite. 
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Chapter 6 – Discussion  

6.1 Discussion About the Storkwitz Carbonatite.  

 

The results presented in this study demonstrate that most of the rock-forming and alteration 

minerals associated with the Storkwitz breccia can be mapped, at least qualitatively, using 

extended-range (VNIR-SWIR-MWIR-LWIR) for hyperspectral drill core scanning. This includes 

the recognition of different mineralogical variations that might not be evidently visible to the naked 

eye given the fine-grained texture of the Storkwitz breccia. The spectral lithologies identified 

through this workflow correlate well with the observations of texture and composition of the 

Storkwitz breccia by Loidolt et al. (2022). The first and second granitoid type clasts that are 

inferred to exist correspond to the coarse-grained granitoid clasts and the porphyritic granitoid 

clasts that are discussed by Loidolt et al. (2022). Loidolt et al. (2022) also identifies similar 

carbonatitic and other clasts within the matrix.  

 

The effect of the alteration is prevalent and widely recognizable as demonstrated in the results and 

the subsequent interpretations. The major main alteration phases seen here are the fenitization, 

biotization and white mica-clay and ferric oxidation events. Due to the close inter relationship 

between the alkali amphibole, aegirine and biotite, it is not possible to accurately estimate the 

timing of biotization and fenitization events by solely using the mineral maps generated from the 

hyperspectral data. However, the complex intertwined association of fenitization minerals and 

biotite can indicate that fenitization and biotitization at Storkwitz occurred in multiple stages and 

conforms with the multi-stage sequence events that Loidolt et al. (2022) suggest. 

 

The white mica – clay alteration and the formation of ferric oxides within the drill core interval is 

correlated to some supergene alteration processes. These can be definitively linked to later stage 

events since they overprint a vast majority of the Storkwitz interval. As previously mentioned, the 

effect of the muscovitic and smectitic alteration of the granitoids and carbonatitic clasts is 

evidently extensive throughout the drill core. The evidence for ferric alteration is still seen in the 

drill core interval studied here although not as extensively widespread as in the upper zone of the 

breccia observed by Neigisch et al. (2020). Niegisch et al. (2020) attribute this extensive oxidation 

to supergene processes as the result of deeply percolating meteoric waters. Loidolt et al. (2022) 

argued that there is a decreasing influence of supergene processes with increasing depth and 

expected that the extent of supergene alteration within this interval would be minimal. However, 

the HSI results here indicate a more pervasive presence of the white-mica and clay within the 

samples and some lower quantities of ferric oxidation phases. This indicates that the effect of the 

supergene alteration processes is greater than previously considered which can be attributed to the 

percolating meteoric waters reaching deeper depths than originally thought. Due to the 

significantly high modal abundances of the white mica – clay class seen in the fault zone of the 
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drill core at the 435-437 m interval, it can be reasonably stated that the fault could have acted as a 

conduit for these meteoric waters and could explain the reason for the higher abundance of 

supergene altered products seen here. With the available results and subsequent interpretations 

here, only speculative conclusions about sequence and controlling factors of the alteration 

assemblages can be made.   

 

An important point to consider here is that while the effect of ferric oxidation can be a part of the 

evolution of the Storkwitz drill core, these drill cores were extracted ten years ago and could have 

also undergone recent oxidation of the iron phases unrelated to the oxide amounts associated with 

the assemblages of the lithologies. This could lead to the appearance of widespread occurrence of 

the secondary ferric iron oxides within samples due to the increased Fe3+ signal  

 

In the context of the LiF data, Lorenz et al. (2018) demonstrated that the ~870 nm peak feature 

that is observed in their samples belongs to Nd3+ and its position can shift depending on the host 

material. Within this context and other studies (Fuchs et al., 2021; Gaft et al., 2005), the 870 nm 

feature here is indicative of the presence of neodymium within the samples. As the 870 nm MWL 

map outlines (Fig 5.22, Fig. 5.23), two spectral regions exist with the emission peak at ~865 nm 

and ~872 nm. Based on the findings from Lorenz et al. (2018), these must correlate to difference 

in host material. The study suggested that the primary peak for bastnäsite is ~865 nm and for REE 

bearing phosphate is ~870 nm and that depending on the host mineral, a certain peak shape is also 

observed. The findings of the Lorenz et al. (2018) study about the peak shape and position can 

accurately be correlated to mineralogical information of the blocks (as seen in Fig 5.22). The 

regions with high REE-fluorcarbonate content i.e Zone A is shown with a peak position around 

~865 nm whereas regions that contain apatite (Zone B and Zone C) have a peak around ~872 nm.  
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Figure 6.1: LiF 870 nm MWL map for blocks along with spectra from two different peak regions along 

with the MLA data to illustrate the REE-fluorcarbonate and apatite rich areas. 

On examination of the core pieces in the 870 MWL map (see Fig 6.1), it is reasonable to infer the 

same mineralogy must exist in the core pieces if spectral behavior is similar to the blocks is 

observed. Following this assumption, the majority of the matrix of core pieces shows similar 

behavior as with Zone B in the blocks and are inferred as the groundmass of the core piece (breccia 

matrix) which contains dispersed amounts of REE-fluorcarbonates and apatite. The two clasts 

zones that exist in the core piece can be correlated to Zone C since they display all the identified 

peaks (Fig 6.1, Fig 6.2).  This leads to the interpretation that the two clasts are apatite rich. The 

FX50-SAM and OWL-SAM maps classify these regions as a carbonate clasts and by evaluating 

the Carbonate MWL map, these clasts can be identified dolomite carbonatites clasts (as seen in 

Fig 6.2). Subsequently, this finding implies that the dolomite carbonatite clasts seen here have high 

concentrated abundance of apatite which is associated with REEs.  
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Figure 6.2: LiF 870 nm MWL map of core pieces with the correlating Carbonate MWL map illustrating 

the dolomitic composition of the two carbonatitic clasts. 

In terms of the 600 nm MWL map (Fig 5.20), the intrusive breccia matrix containing apatite and 

REE-fluorcarbonates in the blocks and the core piece exhibits the peak around ~597 nm. However, 

since no peak features are observed in Zone A i.e region containing high concentration of REE-

fluorcarbonates. This peak is attributed primarily to the apatite present in the intrusive breccia 

matrix. In case of the apatite-rich regions in the blocks and the clasts in the core piece, a peak is 

generally observed ~600 nm along with areas that exhibit a peak at ~606 nm. These features could 

potentially be attributed to Sm3+ and Pr3+ based on their typical behavior (Fuchs et al., 2021; Gaft 

et al., 2005).  

 

Based on the LiF MWL results and interpretations, the primary REE bearing mineral assemblage 

in the Storkwitz breccia is apatite hosted in dolomite carbonatitic clasts followed by the REE 

fluorcarbonates predominantly bastnäsite in the ankerite carbonatite clasts and lastly the apatite 

and REE-fluorcarbonates present in the breccia matrix. However, a key point to note in this finding 

is that apatite grouping that is depicted in the MLA images also considers very minor amounts 

(~0.05% avg. vol) of monazite that were detected in the block sections. When discussing the REE 

bearing phosphates particularly within the core piece, the REEs could be hosted within the 

monazite phase or the apatite phase.  
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As seen from the HSI generated maps, the REE-fluorcarbonates are associated with the different 

carbonatitic clasts especially ankerite carbonatites and with aegirine and amphiboles. The REE 

fluorcarbonates are also dispersed within the breccia given the widespread cover of the carbonate-

clay-REE-fluorcarbonate class across the FENIX abundance map. Based on the LiF results, REE 

bearing REE-fluorcarbonate particularly bastnäsite exists in in ankerite-carbonatite clasts and is 

widely dispersed in the groundmass of the breccia. Specifically, within the breccia matrix, the 

REE-fluorcarbonate is seen forming rims around other clasts.  

 

Since no characteristic spectral features corresponding to apatite were identified in any of the 

endmembers across the three wavelength range datasets, a class containing apatite was not present 

in resulting maps. However, based on the previous study by Loidolt et al. (2022), some general 

constraints for the occurrences of these REE bearing phosphates can be applied. Loidolt et al. 

(2022) stated that apatite is abundant in dolomite carbonatites and the breccia matrix while 

monazite can be found in ankerite carbonatites. Müller et al. (2021) and Niegisch et al. (2020) 

observed REE-fluorcarbonates and monazite forming thin rims around clasts within the matrix. 

Therefore, the primary REE bearing phosphates within the dolomite-ankerite clasts is likely apatite 

but within the matrix of intrusive breccia, the REE bearing phase could be apatite or monazite but 

likely the latter. The minor quantities of REE phosphate that are found with the REE-

fluorcarbonates in the ankerite carbonatite could possibly be monazite.  

 

The findings from this project contradict the inferences from previous research by Loidolt et al. 

(2022) which studied a similar interval length and stated that the majority of the REEs are mainly 

hosted in a REE-fluorcarbonate mineral assemblage within the fine-grained ankerite-carbonatites 

with only minor quantities incorporated into primary magmatic phases like apatite and in REE-

fluorcarbonates in the matrix. Alternatively, Niegisch et al. (2020) that examined the upper zone 

of the Storkwitz breccia classified all REE-containing phosphates as monazite with lesser but 

significant REE-fluorcarbonate mineralization. Based on the MLA data of the blocks studied by 

Loidolt et al. (2022), their study observed that REE-fluorcarbonates only exist in matrix in rare 

occurrences. However, the results from my LiF measurements indicate that the REE-

fluorcarbonates and REE-bearing phosphates are abundant across the breccia matrix. 

 

Within the Storkwitz breccia, the REE bearing apatite could be representative of the early mineral 

crystallizing out of the carbonatitic magma. According to Chakhmouradian et al. (2017), during 

the initial stages of crystallization, apatite can undergo early fractionation which can remove 

substantial amounts of REEs from the carbonatite melt. The composition of apatite is 

fundamentally determined by the presence of other rock-forming minerals, such as phlogopite, 

amphiboles, calcite, and dolomite, which have a limited ability to incorporate REE. While 

Niegisch et al. (2020) considered apatite as accessory minerals with very minor quantities of REEs 

and Müller et al. (2021) detected only low quantities of REE concentrations in apatite, Seifert et 

al. (2000) observed a greater variation in REE concentrations in apatite. It can be presumed that 
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the REE bearing apatite in the dolomite carbonatite clasts here have potentially formed during the 

earlier magmatic stages of evolution of the deposit. 

 

In the context of the REE bearing phosphates in the matrix, Loidolt et al. (2022) discussed that the 

presence of these minerals in the matrix is correlated to minor syn- and / or post brecciation REE 

transport. This resulted in the local redistribution of REEs and is most likely to be the result of a 

hydrothermal fluid. This is also supplemented by Niegisch et al. (2020) who suggest that late-stage 

hydrothermal or supergene processes caused the recrystallization of primary REE minerals to 

secondary monazite and REE-fluorcarbonates in the matrix. Given that significant quantities of 

REE bearing minerals are found to exist around clasts within the matrix, the conclusion that the 

effect of supergene alteration goes deeper than previously thought can be further validated if the 

redistribution of REEs is confirmed to be associated with supergene processes as stated by 

Neigisch et al. (2020). This can also be true especially considering that the core pieces analyzed 

with the LiF set up are found at ~486.3 m, towards the end of the studied interval.  

 

Ultimately, the exact identification and differentiation between the REE-bearing phosphates i.e 

apatite and monazite across the samples in the context of the available information is not possible 

within this discussion. Additionally, further detailed discussion about definitively correlating these 

new insights about REE-bearing phosphates and REE-fluorcarbonates to the broad geological 

evolution of Storkwitz breccia and the possible REE-enrichment processes that could have 

occurred is beyond the capabilities of the equipment and therefore outside the scope of this project.  

  

In terms of the identification of specific REEs, given the peaks identified along with the excitation 

wavelength used, only speculative discussion about the existence of certain REEs can be made. 

The 870 nm can be definitively related to presence of Nd3+ as also confirmed by the hyperspectral 

data. This indicates that the apatite and REE-fluorcarbonates both host Nd3+. Fuchs et al. (2021) 

and Gaft et al. (2005) indicate that Sm3+ can have peak features around ~598 nm and ~643 nm 

with blue-green excitation wavelengths. They also suggest that Pr3+ can have feature around ~600 

nm and ~650 nm. Since 600 nm, 645 nm and 870 nm are identified as the primary REE emission 

peaks, Sm3+, Pr3+, Nd3+ are the main suspects exhibiting these peaks. It can also be argued that 

Eu3+ could also be present since it typically shows a feature ~601 nm. However, a prominent 

feature ~700 nm must also be evident. The minor peak observed at ~692 nm could be 

representative of this element, but insufficient information makes this conclusion highly 

speculative. In the end, it can be discussed that the REE-fluorcarbonate likely hosts Nd3+ and the 

apatite or generally the REE bearing phosphate is likely to contain Sm3+, Pr3+ and/or Eu3+. 

Although the existence of certain REEs could not definitively be suggested, the peaks were 

primarily correlated to elements that are grouped as light rare earth elements (LREE).  

 

Additionally, no distinct peaks for any heavy rare earth elements (HREE) were observed, even 

Dy3+ which can typically have prominent features even in low concentrations similar to Nd3+ 
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(Seidel et al., 2019; Lorenz et al., 2018). This finding is also validated by the research by Niegisch 

et al. (2020) that suggesting that the Storkwitz carbonatites are chiefly LREE enriched instead of 

HREE enriched.  

6.2 Features and Limitations of Proposed Workflow  

 

The proposed workflow integrates the whole VNIR-SWIR-MWIR-LWIR range for analyses, by 

dividing the range into three datasets. As demonstrated through the validation of the results the 

maps, generated with the different techniques on these datasets using the endmembers extracted 

from the blocks, produced mixed results.  

 

The product of the linear unmixing algorithm in the VNIR-SWIR range produced accurate 

individual abundance maps where the concentrations of the matrix endmember associated the low 

intensity background spectra was low. This implies that the endmember library used for the 

spectral unmixing for this dataset was adequately representative of the all the spectral variation 

within that dataset. Consequently, as a result of the low matrix class abundance, the final maximum 

classification map generated accurately depicted the distribution of the mineralogies associated 

with the visible and short-wave minerals based on the validation that was conducted. The FENIX 

classification map provides the most information about the distribution of the identified 

endmembers amongst the three maps since the matrix or background class is only present in small 

quantities. In contrast, the spectral unmixing results for the MWIR and LWIR datasets revealed 

sub optimal results. While the individual abundance maps for these endmembers revealed a good 

distribution of the actual mineral endmember classes, in both cases, the matrix endmember was 

the most predominantly abundant class. When creating the maximum classification map, this 

background class that is present in large quantities hides features that would otherwise be seen. 

Mineral associations between the endmembers can still be interpreted from the individual 

abundance maps but the maximum classification map for these revealed little information about 

existing mineralogical distribution and therefore do not provide any valuable information needed 

for the spectral characterization of the lithologies. Ultimately, OWL and FX50 classification map 

were excluded from any further evaluation.  

 

While the exact reason for the dominant abundance of the matrix class is not known, a possible 

explanation can be that the selected endmembers were not representative of all the materials in 

those data ranges. Since spectral unmixing aims to find the best linear combination of endmembers 

to approximate the observed spectrum, the resulting pixels are computed to largely be composed 

of the low intensity background matrix values making that class the most abundant as a result. 

Although an intensive endmember selection process was undertaken, the endmembers could 

potentially not be representative of the data.  
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When assessing the results of the spectral angle mapping technique, an opposite trend is noticed. 

As demonstrated by the validation studies, the FENIX-SAM which was generated using the 

visible-shortwave endmembers misrepresents the actual distribution of the minerals within the 

sample. This is contrasted by the more accurate results that are generated from applying the 

endmembers to the other two datasets (FX50-SAM; OWL-SAM). A possible explanation for the 

poor spectral angle mapping result for the VNIR-SWIR dataset could be due to the higher noise 

within the dataset. Although the block data was smoothened before endmember extraction, no 

smoothening filter was applied to the whole drill core data. Spectral angle mapping as a technique 

is sensitive to noise in the data. If the shortwave data has a high level of noise or lower data quality 

compared to the other datasets, it can negatively impact the spectral angle mapping results, even 

if the endmembers are representative. On the other hand, spectral unmixing might be less affected 

by noise, leading to relatively better results. Conversely in the case for the MWIR and LWIR 

datasets, despite getting sub optimal results using the spectral unmixing technique, the respective 

maps generated with this method could be validated accurately. In the case of spectral unmixing 

despite these datasets not being considered as representative, since spectral angle mapping utilizes 

a different method where the angular difference between spectra is measured, the method leads to 

more robust results. These results could also be attributed to the fact that spectral angle mapping 

and spectral unmixing have different sensitivities to spectral similarity. The MWIR and LWIR 

datasets can contains minerals with similar or overlapping diagnostic features in the specific 

wavelength ranges. This is especially true for MWIR as discussed by Laukamp et al. (2021). In 

this case spectral unmixing might struggle to accurately estimate their abundances, whereas 

spectral angle mapping based on a different can still provide reasonable results.  

 

Despite some discrepancies in the mapping of the data, the results overall indicated that the 

application of the entire hyperspectral range (VNIR-SWIR-MWIR-LWIR) is beneficial for the 

spectral characterization process. Although the MWIR range containing spectral features for a 

wide variety of minerals like carbonates, amphiboles, micas, and quartz (Laukamp et al. 2021), it 

is still considered to be poorly understood in terms of its application for geological mapping. The 

results in this study not only suggest that the MWIR is suitable for mapping the carbonates and 

mica features for the Storkwitz carbonatite, but it is also found to be valuable for cross-validating 

absorption features observed in the SWIR and LWIR ranges. This results in a greater confidence 

in the suggested spectral interpretations and also helps to untangle the complex mixtures that can 

occur in the SWIR region. Within this geological environment, the 2300-2360 nm range in the 

SWIR was found to be too complex for accurate feature extraction due to the presence of features 

for carbonates, amphiboles, and biotite within this range. In this scenario, utilization of the MWIR 

and LWIR wavelength ranges was evidenced to be extremely beneficial. 

 

The utilization of combined HSI-LIF approach followed here highlights the higher sensitivity of 

LIF data in providing clear distinct signals within the dataset in comparison to the HSI results. In 

HSI map features mainly related to Nd3+ dominate the spectra, whereas other REE ions exhibit no 
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substantial signal. This is clearly observed in the Fig 5.18 where only the prominent Nd features 

within the samples are observed. In contrast, the brightest feature observed ~600 nm could be 

correlated to the presence of Sm3+ or Pr3+. No sharp absorption features are visible in the ~600 nm 

range in the hyperspectral map implying that the concentration of these elements must be below 

the detection limit of the sensor.  Despite Nd3+ existing in the sample, the feature for Nd3+ in LiF 

data is hidden by the brighter Sm3+ or Pr3+ peak. In both the images the general local structures 

similar to the LIF map however, the individual REE signals are more pronounced in the latter 

image. 
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Chapter 7 – Future Outlook  

  

This study is the first of this kind where REE bearing minerals in drill core have been mapped by 

the combined application of hyperspectral imaging across the extended wavelength range and an 

integrated line scan set up for laser induced fluorescence measurement set up for drill core samples.  

While this proposed workflow does require certain previous knowledge of the lithology and the 

type of mineralization and alteration present, it can aid geologists in making faster decisions for 

further structural, geochemical, and petrological investigations. This novel approach is meant to 

supplement geochemical studies by providing a quick qualitative discrimination of geological 

domains and a better identification and understanding of the REE-hosting minerals. Thus, this 

integrated approach of lithology and REE mineralization mapping using HSI and LiF has 

significant potential in its application in the exploration industry. This is due to its key advantage 

in providing a greater sensitivity to REE detection which also results in the fingerprinting of host 

minerals associated with certain REEs particularly Nd. This thereby provides additional 

information for performing geological logging and further geological interpretation.  Additionally, 

LiF interpretation can also be extrapolated onto the drill core interval without the need for scanning 

extensive lengths of core with LiF set up. 

 

A key distinct feature of the proposed workflow in this study includes the utilization of the MLA 

blocks for endmember extraction leading to the effective and quick creation of a reference 

endmember library used in further unmixing and mapping techniques. Typically, a sampling 

scheme is needed for drill cores where small samples are extracted for detailed analysis using e.g., 

transmitted light microscopy, MLA or XRD. Generally, performing endmember extraction using 

the hyperspectral data for the entire drill core interval can be time consuming and processing power 

intensive especially if long intervals of drill cores are to be evaluated. This issue is mitigated by 

the use of blocks can be effectively processed to produce representative endmembers. This thereby 

maximizing the amount of information that can be obtained from a small subset of the materials. 

Moreover, having the mineralogical information also provides the necessary validation for the 

identification of the extracted endmembers. It is important to consider that mixed quality results 

can be produced when using the extracted endmembers for mapping as seen here. However, with 

the use of different mapping techniques and performing visual validation of the rocks, accurate 

maps can still be produced which can be used for subsequent geological interpretations. 

  

Through combined LiF approach, the REE rich zones that are identified through the hyperspectral 

data analysis can be initially analyzed to evaluate the behavior REEs. For the future 

implementation the results of initial set of laser induced fluorescence measurements can also guide 

the next stage of further LiF experiments. For instance: within the Storkwitz breccia, the main 

REE-bearing phosphates were found to be hosted primarily in dolomite carbonatites. This can lead 

to the next set of potential measurements to be focused on these clasts to better understand the 
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associated behavior of the hosted REEs. It is also important to note that all of the mineral maps 

produced are qualitative surface estimates and do not serve to provide any quantitative information 

about the REEs or associated mineralogies. 

7.1  Recommendations 

  

Some suggestions for the future prospects of studies in relation to hyperspectral imaging and 

laser induced fluorescence spectroscopy as well as the Storkwitz mineralization overall include:   

  

1.     In the future, for better endmember extraction, a different strategy for the endmember 

extraction where one endmember can be extracted from each meter of core and then 

manually checked for quality and added to the spectral library ensuring that pure 

good quality endmembers are used for further studies 

  

2.     Instead of using three datasets that would be complementary information for the same 

region, potentially identify endmembers that have the best features by combining the 

PCA wavelengths and choosing points that are unique across all wavelengths for 

better endmember extraction.  

  

3.     Developing a machine learning workflow that co-registers the hyperspectral data with 

smaller regions where laser induced measurements were taken to extrapolate that 

information to the entire drill core length allowing for qualitative representation of the 

behavior of the REEs across the drill core without the need for extensive scanning 

using the LiF setup. This can also be applied in cases where a region is scanned using 

preprogrammed raster that takes point measurements across a small region.  

  

4.     Implementing a more efficient workflow for the acquisition of LiF data using the 

integrated line scan set up to allow for scanning of the entire drill core length.  

  

5.     Conducting electron probe micro-analyzer (EPMA) analysis of the apatite and REE-

fluorcarbonates to determine trace element and exact REE concentrations through 

which a more reliable and robust REE mineralization sequence can be suggested.  
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Chapter 8 – Conclusions  

 

In conclusion, the proposed workflow integrating the entire VNIR-SWIR-MWIR-LWIR range 

for hyperspectral analyses has provided valuable insights into the spectral characterization and 

REE mineralization of the Storkwitz breccia. The results demonstrate both successes and 

challenges in utilizing different techniques for mineral characterization and mapping. Despite 

discrepancies, the application of the entire VNIR-SWIR-MWIR-LWIR range proved beneficial 

for spectral characterization, especially in mapping carbonates and mica features in the MWIR 

range, which otherwise remain poorly understood in geological mapping. The study also 

emphasized the higher sensitivity of LIF data in providing distinct signals within the dataset 

compared to HSI, allowing for better identification of light rare earth elements (LREE). 

 

In terms of the Storkwitz breccia, the spectral interpretations using the combined HSI-LIF 

approach correlated well with previous observations of rock-forming minerals and alteration 

phases. The presence of fenitization, biotization, white mica-clay, and ferric oxidation events 

suggested multiple stages of fenitization and biotitization. The extensive presence of white mica-

clay and ferric oxides in the drill core interval indicated a greater influence of supergene 

processes than previously considered, possibly due to deeper percolating meteoric waters 

potentially via fault conduits. 

 

Regarding REE mineralization, the primary REE-bearing mineral assemblage in the Storkwitz 

breccia is apatite hosted in dolomite carbonatitic clasts, followed by REE-fluorcarbonates in 

ankerite carbonatitic clasts and in the breccia matrix. Contrary to previous studies, apatite, rather 

than REE-fluorcarbonates, is suggested to be the primary host of REEs. The apatite can 

potentially be formed as a result of early fractionation from the carbonatitic magma and the 

presence of REE-bearing minerals in the matrix may be attributed to deeper supergene processes. 

 

The utilization of hyperspectral imaging and laser-induced fluorescence spectroscopy in the 

characterization of lithologies and rare earth element mineralization within the Storkwitz breccia 

has demonstrated its potential for applications in the exploration industry. This two-stage 

workflow proposed in this study was able to spectrally characterize the lithologies in the 

Storkwitz while identifying the key REE-bearing minerals. However, further research is required 

to definitively identify the REE-bearing phosphates and to understand the broader geological 

evolution and REE-enrichment processes in the Storkwitz deposit. 

  

  



85 

 

Appendix  

 

A digital appendix is created for this project to best preserve the resolution of all the generated 

maps. The appendix can be accessed here:  

 

https://www.dropbox.com/sh/n5t51xcxdq6fj3g/AADhORtcajD8XnCFVq4RaK1xa?dl=0 

 

The appendix provided here is divided into two primary sections.  

 

• Appendix 1 - contains all the hyperspectral data acquired from the blocks.  

 

o Appendix 1.1 - Folder containing maps generated by the MLA software for all the 

blocks after the mineral reclassification was done. The folder also contains the 

color legends for all the mineral groups present in the MLA maps.  

 

o Appendix 1.2 - Folder containing the Fe-Oxide band ratio result for the blocks. 

 

o Appendix 1.3 - Folder containing the all the minimum wavelength map results for 

the blocks. 

 

• Appendix 2 - contains all the maps created using hyperspectral data acquired from the 

entire drill core. 

 

o Appendix 2.1 - Three Mosaic files for the three wavelength datasets which 

contain all of the individual abundance maps for the respective endmembers along 

with the maximum classification map for that dataset. 

 

o Appendix 2.2 - Three files of the maximum classification map for that dataset. 

The folder also contains the respective legends identifying the endmember classes 

for each map.  

 

o Appendix 2.3 - Three files of the resulting maps from the spectral angle mapping 

(SAM) that was done for each dataset. The folder also contains the respective 

legends identifying the endmember classes for each map.  

 

o Appendix 2.4 - The Fe-Oxide band ratio map that is the combined result of the 

Fe3+, Fe2+, and Fe-OH band ratios.  

 

o Appendix 2.5 - Folder containing the resulting HSI minimum wavelength maps 

for REE (Nd) feature, AlOH feature, LWIR Carbonate feature and Quartz-Plag-

Aegirine difference. The folder also contains the respective legends for each 

image. 

 

https://www.dropbox.com/sh/n5t51xcxdq6fj3g/AADhORtcajD8XnCFVq4RaK1xa?dl=0


86 

 

References  

 

Abend, T., Sharma, S. K., Fuchs, M., Beyer, J., Heitmann, J., & Gloaguen, R. (2019). Line-scan 

detection system to identify rare earth elements in rocks. 2019 IEEE SENSORS, 1–3. 

https://doi.org/10.1109/SENSORS43011.2019.8956697 

 

Acosta, I. C. C., Khodadadzadeh, M., Tolosana-Delgado, R., & Gloaguen, R. (2020). Drill-Core 

Hyperspectral and Geochemical Data Integration in a Superpixel-Based Machine Learning 

Framework. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 13, 4214–4228. 

https://doi.org/10.1109/JSTARS.2020.3017242 

 

Acosta, I. C. C., Khodadadzadeh, M., Tusa, L., Ghamisi, P., & Gloaguen, R. (2019). A Machine 

Learning Framework for Drill-Core Mineral Mapping Using Hyperspectral and High-Resolution 

Mineralogical Data Fusion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 12, 4829–4842. 

https://doi.org/10.1109/JSTARS.2019.2934366 

 

Aliabadi, F. M. H., & Soboyejo, W. (Wole). (2023). Comprehensive structural integrity (Second 

edition.). Elsevier Science & Technology. 

 

Bankwitz, P., Schneider, G., Kämpf, H., & Bankwitz, E. (2003). Structural characteristics of 

epicentral areas in central Europe: Study case Cheb Basin (Czech Republic). Journal of 

Geodynamics, 35, 5–32. 

 

Barker, S. D., Barker, S. L. L., Wilson, S. A., & Stock, E. D. (2020). Quantitative Mineral Mapping 

of Drill Core Surfaces II: Long-Wave Infrared Mineral Characterization Using mXRF and 

Machine Learning. Econ. Geol., 116, 821–836. https://doi.org/10.5382/econgeo.4693 

 

Bhatt, C. R., Jain, J. C., Goueguel, C. L., McIntyre, D. L., & Singh, J. P. (2018). Determination of 

Rare Earth Elements in Geological Samples Using Laser-Induced Breakdown Spectroscopy 

(LIBS). Applied Spectroscopy, 72(1), 114–121. https://doi.org/10.1177/0003702817734854 

 

Boesche, N., Rogass, C., Lubitz, C., Brell, M., Herrmann, S., Mielke, C., Tonn, S., Appelt, O., 

Altenberger, U., & Kaufmann, H. (2015). Hyperspectral REE (Rare Earth Element) Mapping of 

Outcrops—Applications for Neodymium Detection. Remote Sensing, 7(5), 5160–5186. 

https://doi.org/10.3390/rs70505160 

 

Booysen, R., Jackisch, R., Lorenz, S., Zimmermann, R., Kirsch, M., Nex, P. A. M., & Gloaguen, R. 

(2020). Detection of REEs with lightweight UAV-based hyperspectral imaging. Scientific 

Reports, 10(1), 17450. https://doi.org/10.1038/s41598-020-74422-0 

 

Booysen, R., Lorenz, S., Thiele, S. T., Fuchsloch, W. C., Marais, T., Nex, P. A. M., & Gloaguen, R. 

(2022). Accurate hyperspectral imaging of mineralised outcrops: An example from lithium-

bearing pegmatites at Uis, Namibia. Remote Sensing of Environment, 269, 112790. 

https://doi.org/10.1016/j.rse.2021.112790 

https://doi.org/10.1109/SENSORS43011.2019.8956697
https://doi.org/10.1109/JSTARS.2020.3017242
https://doi.org/10.1109/JSTARS.2019.2934366
https://doi.org/10.5382/econgeo.4693
https://doi.org/10.1177/0003702817734854
https://doi.org/10.3390/rs70505160
https://doi.org/10.1038/s41598-020-74422-0
https://doi.org/10.1016/j.rse.2021.112790


87 

 

Booysen, Zimmermann, Lorenz, Gloaguen, Nex, Andreani, & Möckel. (2019). Towards Multiscale 

and Multisource Remote Sensing Mineral Exploration Using RPAS: A Case study in the Lofdal 

Carbonatite-Hosted REE Deposit, Namibia. Remote Sensing, 11(21), 2500. 

https://doi.org/10.3390/rs11212500 

 

Bozlee, B. J., Misra, A. K., Sharma, S. K., & Ingram, M. (2005). Remote Raman and fluorescence 

studies of mineral samples. Spectrochim. Acta A, 61, 2342–2348. 

 

Broicher, H. F. (1999). Ore and waste identification and quality control by means of laser induced 

fluorescence. CIM Bull., 92(1034), 59–63. 

 

Buckley, S. J., Kurz, T. H., Howell, J. A., & Schneider, D. (2013). Terrestrial lidar and hyperspectral 

data fusion products for geological outcrop analysis. Computers & Geosciences, 54, 249–258. 

 

Calvin, W. M., & Pace, E. L. (2016). Mapping alteration in geothermal drill core using a field 

portable spectroradiometer. Geothermics, 61, 12–23. 

 

Cazenave, S., Chapoulie, R., & Villeneuve, G. (2003). Cathodoluminescence of synthetic and natural 

calcite: The effects of manganese and iron on orange emission. Mineralogy and Petrology, 78(3–

4), 243–253. https://doi.org/10.1007/s00710-002-0227-y 

 

Ceritech. (2012). Daten-CD der Bohrung SES-1/2012 mit Anlagen 4 bis 13 zum Abschlussbericht 

Erlaubnisfeld “Delitzsch.” 

 

Chakhmouradian, A. R., Reguir, E. P., Zaitsev, A. N., Couëslan, C., Xu, C., Kynický, J., Mumin, A. 

H., & Yang, P. (2017). Apatite in carbonatitic rocks: Compositional variation, zoning, element 

partitioning and petrogenetic significance. Lithos, 274–275, 188–213. 

https://doi.org/10.1016/j.lithos.2016.12.037 

 

Clark, R. N. (1999). Spectroscopy of rocks and minerals, and principles of spectroscopy. In Remote 

sensing for the earth sciences: Manual of remote sensing, Vol. 3 (pp. 3–58). 

https://doi.org/10.1111/j.1945-5100.2004.tb00079.x 

 

Clark, R. N., King, T. V. V., Klejwa, M., Swayze, G. A., & Vergo, N. (1990). High spectral 

resolution reflectance spectroscopy of minerals. Journal of Geophysical Research, 95(B8), 

12653. https://doi.org/10.1029/JB095iB08p12653 

 

Clark, R. N., Swayze, G. A., Livo, K. E., Kokaly, R. F., Sutley, S. J., Dalton, J. B., McDougal, R. R., 

& Gent, C. A. (2003). Imaging spectroscopy: Earth and planetary remote sensing with the USGS 

Tetracorder and expert systems: IMAGING SPECTROSCOPY REMOTE SENSING. Journal of 

Geophysical Research: Planets, 108(E12). https://doi.org/10.1029/2002JE001847 

 

Contreras Acosta, I. C., Khodadadzadeh, M., & Gloaguen, R. (2021). Resolution Enhancement for 

Drill-Core Hyperspectral Mineral Mapping. Remote Sensing, 13(12), 2296. 

https://doi.org/10.3390/rs13122296 

https://doi.org/10.3390/rs11212500
https://doi.org/10.1007/s00710-002-0227-y
https://doi.org/10.1016/j.lithos.2016.12.037
https://doi.org/10.1111/j.1945-5100.2004.tb00079.x
https://doi.org/10.1029/JB095iB08p12653
https://doi.org/10.1029/2002JE001847
https://doi.org/10.3390/rs13122296


88 

 

De La Rosa, R., Khodadadzadeh, M., Tusa, L., Kirsch, M., Gisbert, G., Tornos, F., Tolosana-

Delgado, R., & Gloaguen, R. (2021). Mineral quantification at deposit scale using drill-core 

hyperspectral data: A case study in the Iberian Pyrite Belt. Ore Geology Reviews, 139, 104514. 

https://doi.org/10.1016/j.oregeorev.2021.104514 

 

Dieke, G. H. (1968). Spectra and Energy Levels of Rare Earth Ions in Crystals. John Wiley and Sons. 

 

Dieke, G. H., & Crosswhite, H. M. (1963). The Spectra of the Doubly and Triply Ionized Rare Earths. 

Appl. Opt., 2(7), 675–686. https://doi.org/10.1364/AO.2.000675 

 

Fuchs, M. C., Beyer, J., Lorenz, S., Sharma, S., Renno, A. D., Heitmann, J., & Gloaguen, R. (2021). 

A spectral library for laser-induced fluorescence analysis as a tool for rare earth element 

identification. Earth System Science Data, 13(9), 4465–4483. https://doi.org/10.5194/essd-13-

4465-2021 

 

Gaft, M., Reisfeld, R., & Panczer, G. (2005). Modern Luminescence Spectroscopy of Minerals and 

Materials. Springer. 

 

Gaft, M., Reisfeld, R., Panczer, G., & Dimova, M. (2008). Time-resolved laser induced luminescence 

luminescence of uv–vis emission of nd3+ in fluorite, scheelite and barite. J. Alloys Compd., 451, 

56–61. 

 

Géring, L., Kirsch, M., Thiele, S., De Lima Ribeiro, A., Gloaguen, R., & Gutzmer, J. (2022). Spectral 

characterisation of hydrothermal alteration associated with sediment-hosted Cu-Ag 

mineralisation in the Central European Kupferschiefer [Preprint]. Crustal structure and 

composition/Geochemistry, mineralogy, petrology, and volcanology/Mineralogy. 

https://doi.org/10.5194/egusphere-2022-825 

 

Goetz, A. F., Vane, G., Soloman, J. E., & Rock, B. N. (1985). Imaging spectrometry for Earth remote 

sensing. Science, 228, 1147. 

 

Gruner, B. (1990). Ultramafische und Alkalilamprophyre im Lamprophyr-KarbonatitKomplex von 

Delitzsch. 

 

Hecker, C., Van Ruitenbeek, F. J. A., Bakker, W. H., Fagbohun, B. J., Riley, D., Van Der Werff, H. 

M. A., & Van Der Meer, F. D. (2019). Mapping the wavelength position of mineral features in 

hyperspectral thermal infrared data. International Journal of Applied Earth Observation and 

Geoinformation, 79, 133–140. https://doi.org/10.1016/j.jag.2019.02.013 

 

Heinz, D. C. & Chein-I-Chang. (2001). Fully constrained least squares linear spectral mixture analysis 

method for material quantification in hyperspectral imagery. IEEE Transactions on Geoscience 

and Remote Sensing, 39(3), 529–545. https://doi.org/10.1109/36.911111 

 

Hernandez, E. A., & Filho, C. R. (2013, April). Spectral reflectance and emissivity features of PO4-

bearing carbonatitic rocks from the Catalão I and Tapira complexes: New constraints for 

https://doi.org/10.1016/j.oregeorev.2021.104514
https://doi.org/10.1364/AO.2.000675
https://doi.org/10.5194/essd-13-4465-2021
https://doi.org/10.5194/essd-13-4465-2021
https://doi.org/10.5194/egusphere-2022-825
https://doi.org/10.1016/j.jag.2019.02.013
https://doi.org/10.1109/36.911111


89 

 

detection of igneous phosphates with remote sensing data. Anais XVI Simpósio Brasileiro de 

Sensoriamento Remoto-SBSR. 

 

Herrmann, S. (2019). Capacity of imaging spectroscopy for the characterisation of REO, REE bearing 

minerals and primary REE-deposits [PDF]. Scientific Technical Report - Data ; 19/08, 26 MB. 

https://doi.org/10.2312/GFZ.B103-19089 

 

Hunt, G. R. (1970). Visible and near-infrared spectra of minerals and rocks: I silicate minerals. 

Modern Geology, 1, 283–300. 

 

Hunt, G. R. (1971). Visible and near-infrared spectra of minerals and rocks: II carbonates. Modern 

Geology, 2, 23–30. 

 

Hunt, G. R. (1977). SPECTRAL SIGNATURES OF PARTICULATE MINERALS IN THE 

VISIBLE AND NEAR INFRARED. GEOPHYSICS, 42(3), 501–513. 

https://doi.org/10.1190/1.1440721 

 

Hunt, G. R. (1989). Spectroscopic Properties of Rocks and Minerals. In R. S. Carmichael (Ed.), 

Practical Handbook of Physical Properties of Rocks and Minerals (pp. 599–669). CRC Press. 

 

Hunt, G. R., & Ashley, R. P. (1979). Spectra of altered rocks in the visible and near infrared. 

Economic Geology, 74(7), 1613–1629. https://doi.org/10.2113/gsecongeo.74.7.1613 

 

Hunt, G. R., Salisbury, J. W., & Lenhoff, C. J. (1972). Visible and near-infrared spectra of minerals 

and rocks: V. Halides, phosphates, arsenates, vanadates and borates. Modern Geology, 3, 121–

132. 

 

Hunt, G. R., Salisbury, J. W., & Lenhoff, C. J. (1973). Visible and near infrared spectra of minerals 

and rocks. VI. Additional silicates. Modern Geology, 4, 85–106. 

 

Jakob, S., Zimmermann, R., & Gloaguen, R. (2017). The Need for Accurate Geometric and 

Radiometric Corrections of Drone-Borne Hyperspectral Data for Mineral Exploration: 

MEPHySTo—A Toolbox for Pre-Processing Drone-Borne Hyperspectral Data. Remote Sensing, 

9(1), 88. https://doi.org/10.3390/rs9010088 

 

Jones, S., Herrmann, W., & Gemmell, J. B. (2005). Short Wavelength Infrared Spectral 

Characteristics of the HW Horizon:Implications for Exploration in the Myra Falls Volcanic-

Hosted Massive SulfideCamp, Vancouver Island, British Columbia, Canada. Economic Geology, 

100(2), 273–294. https://doi.org/10.2113/gsecongeo.100.2.273 

 

Kauppinen, T., Khajehzadeh, N., & Haavisto, O. (2014). Laser-induced fluorescence images and 

Raman spectroscopy studies on rapid scanning of rock drillcore samples. International Journal 

of Mineral Processing, 132, 26–33. https://doi.org/10.1016/j.minpro.2014.09.003 

 

Khodadadzadeh, M., & Gloaguen, R. (2019). Upscaling High-Resolution Mineralogical Analyses to 

Estimate Mineral Abundances in Drill Core Hyperspectral Data. IGARSS 2019 - 2019 IEEE 

https://doi.org/10.2312/GFZ.B103-19089
https://doi.org/10.1190/1.1440721
https://doi.org/10.2113/gsecongeo.74.7.1613
https://doi.org/10.3390/rs9010088
https://doi.org/10.2113/gsecongeo.100.2.273
https://doi.org/10.1016/j.minpro.2014.09.003


90 

 

International Geoscience and Remote Sensing Symposium, 1845–1848. 

https://doi.org/10.1109/IGARSS.2019.8898441 

 

Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T., Whitehead, S., Berg, 

A. C., Lo, W.-Y., Dollár, P., & Girshick, R. (2023). Segment Anything. ArXiv:2304.02643. 

 

Kirsch, M., Lorenz, S., Zimmermann, R., Tusa, L., Möckel, R., Hödl, P., Booysen, R., 

Khodadadzadeh, M., & Gloaguen, R. (2018). Integration of terrestrial and drone-borne 

hyperspectral and photogrammetric sensing methods for exploration mapping and mining 

monitoring. Remote Sensing, 10(9), 1366. 

 

Koerting, F., Koellner, N., Kuras, A., Boesche, N. K., Rogass, C., Mielke, C., Elger, K., & 

Altenberger, U. (2021). A solar optical hyperspectral library of rare-earth-bearing minerals, rare-

earth oxide powders, copper-bearing minerals and Apliki mine surface samples. Earth System 

Science Data, 13(3), 923–942. https://doi.org/10.5194/essd-13-923-2021 

 

Kokaly, R. F., Clark, R. N., Hoefen, T. M., Livo, K. E., Pearson, N. C., Swayze, G. A., & others. 

(2017). USGS Spectral Library Version 7 (1035; Data Series). U.S. Geological Survey. 

https://doi.org/10.3133/ds1035 

 

Kormeier, M., & Miroschnitschenko, W. (1979). Informationsbericht über das Auftreten einer 

Seltenen Erden-Mineralisation im Gebiet Delitzsch. 

 

Krüger, J. C., Romer, R. L., & Kämpf, H. (2013). Late Cretaceous ultramafic lamprophyres and 

carbonatites from the Delitzsch Complex, Germany. Chemical Geology, 353, 140–150. 

https://doi.org/10.1016/j.chemgeo.2012.09.026 

 

Krupnik, D., & Khan, S. (2019). Close-range, ground-based hyperspectral imaging for mining 

applications at various scales: Review and case studies. Earth-Science Reviews, 198, 102952. 

 

Kruse, F. A., Bedell, R. L., Taranik, J. V., Peppin, W. A., Weatherbee, O., & Calvin, W. M. (2012). 

Mapping alteration minerals at prospect, outcrop and drill core scales using imaging 

spectrometry. International Journal of Remote Sensing, 33(6), 1780–1798. 

https://doi.org/10.1080/01431161.2011.600350 

 

Kruse, F. A., Lefkoff, A. B., Boardman, J. W., Heidebrecht, K. B., Shapiro, A. T., Barloon, P. J., & 

Goetz, A. F. H. (1993). The spectral image processing system (SIPS)—Interactive visualization 

and analysis of imaging spectrometer data. Remote Sensing of Environment, 44(2–3), 145–163. 

https://doi.org/10.1016/0034-4257(93)90013-N 

 

Kurz, T. H., Buckley, S. J., & Howell, J. A. (2013). Close-range hyperspectral imaging for geological 

field studies: Workflow and methods. International Journal of Remote Sensing, 34(5), 1798–

1822. 

 

Kwaśny, M., & Bombalska, A. (2022). Applications of Laser-Induced Fluorescence in Medicine. 

Sensors, 22(8), 2956. https://doi.org/10.3390/s22082956 

https://doi.org/10.1109/IGARSS.2019.8898441
https://doi.org/10.5194/essd-13-923-2021
https://doi.org/10.3133/ds1035
https://doi.org/10.1016/j.chemgeo.2012.09.026
https://doi.org/10.1080/01431161.2011.600350
https://doi.org/10.1016/0034-4257(93)90013-N
https://doi.org/10.3390/s22082956


91 

 

 

Laakso, K., Turner, D. J., Rivard, B., & Sánchez-Azofeifa, A. (2019). The long-wave infrared (8-12 

μm) spectral features of selected rare earth element—Bearing carbonate, phosphate and silicate 

minerals. International Journal of Applied Earth Observation and Geoinformation, 76, 77–83. 

https://doi.org/10.1016/j.jag.2018.11.005 

 

Laukamp, C., Rodger, A., LeGras, M., Lampinen, H., Lau, I. C., Pejcic, B., Stromberg, J., Francis, N., 

& Ramanaidou, E. (2021). Mineral Physicochemistry Underlying Feature-Based Extraction of 

Mineral Abundance and Composition from Shortwave, Mid and Thermal Infrared Reflectance 

Spectra. Minerals, 11(4), 347. https://doi.org/10.3390/min11040347 

 

Le Maitre, R. W., & International Union of Geological Sciences (Eds.). (2004). Igneous rocks: A 

classification and glossary of terms: recommendations of the International Union of Geological 

Sciences, Subcommission on the Systematics of Igneous Rocks (2nd ed). Cambridge University 

Press. 

 

Littlefield, E., Calvin, W., Stelling, P., & Kent, T. (2012). Reflectance spectroscopy as a drill core 

logging technique: An example using core from the Akutan. Geothermal Resources Council 

Annual Meeting 2012 - Geothermal: Reliable, Renewable, Global, GRC 2012, 36(2), 1281–

1283. 

 

Loidolt, C. (2018). Petrographic characterisation of the Storkwitz carbonatite REE mineralisation for 

validation of hyperspectral drill core data [Unpublished M.Sc. thesis]. University of Exeter, 

Camborne School of Mines. 

 

Loidolt, C., Zimmermann, R., Tusa, L., Lorenz, S., Ebert, D., Gloaguen, R., & Broom-Fendley, S. 

(2022). New Insights into the Rare Earth Element Mineralization of the Storkwitz Carbonatite, 

Germany. The Canadian Mineralogist, 60(6), 913–932. https://doi.org/10.3749/canmin.2100061 

 

Lorenz, S., Beyer, J., Fuchs, M., Seidel, P., Turner, D., Heitmann, J., & Gloaguen, R. (2018). The 

Potential of Reflectance and Laser Induced Luminescence Spectroscopy for Near-Field Rare 

Earth Element Detection in Mineral Exploration. Remote Sensing, 11(1), 21. 

https://doi.org/10.3390/rs11010021 

 

Michelsburg, M., & León, F. P. (2018). Spectral and spatial unmixing for material recognition in 

sorting plants. Of Materials, 179. 

 

Möckel, F. (2015). Der Karbonatit-Komplex Delitzsch. 

 

Müller, S., Meima, J. A., & Rammlmair, D. (2021). Detecting REE-rich areas in heterogeneous drill 

cores from Storkwitz using LIBS and a combination of k-means clustering and spatial raster 

analysis. Journal of Geochemical Exploration, 221, 106697. 

https://doi.org/10.1016/j.gexplo.2020.106697 

 

Murad, E., & Bishop, J. L. (2005). The visible and infrared spectral properties of jarosite and alunite. 

American Mineralogist, 90(7), 1100–1107. https://doi.org/10.2138/am.2005.1700 

https://doi.org/10.1016/j.jag.2018.11.005
https://doi.org/10.3390/min11040347
https://doi.org/10.3749/canmin.2100061
https://doi.org/10.3390/rs11010021
https://doi.org/10.1016/j.gexplo.2020.106697
https://doi.org/10.2138/am.2005.1700


92 

 

 

Muraoka, K., & Maeda, M. (1993). Application of laser-induced fluorescence to high-temperature 

plasmas. Plasma Physics and Controlled Fusion, 35(6), 633. 

 

Neave, D. A., Black, M., Riley, T. R., Gibson, S. A., Ferrier, G., Wall, F., & Broom-Fendley, S. 

(2016). On the Feasibility of Imaging Carbonatite-Hosted Rare Earth Element Deposits Using 

Remote Sensing. Economic Geology, 111(3), 641–665. 

https://doi.org/10.2113/econgeo.111.3.641 

 

Niegisch, M., Kamradt, A., & Borg, G. (2020a). Geochemical and mineralogical characterisation of 

the REE-mineralisation in the upper zone of the Storkwitz Carbonatite Complex from drill core 

SES1/2021. Geoprofilheft Des LfULG, Heft 15/2020. 

 

Niegisch, M., Kamradt, A., & Borg, G. (2020b). The Upper Zone of the Storkwitz Carbonatite: 

Geochemical and Mineralogical Characterization of the REE-mineralisation in the Upper Zone 

of the Storkwitz Carbonatite Complex from Drill Core SES-1/2012. Sächsisches Landesamt für 

Umwelt und Geologie. https://books.google.co.uk/books?id=EZ0lzgEACAAJ 

 

Nienhaus, K., & Bayer, A. K. (2003). Innovative systems for horizon control of mining machines by 

means of laser induced fluorescence (lif). Mine Planning and Equipment Selection, 1–7. 

 

Pejcic, B., Shelton, T., LeGras, M., Laukamp, C., Francis, N., & Lau, I. (2022). Mid Infrared Spectral 

Reference Library [dataset]. CSIRO. https://doi.org/10.25919/E11N-Q040 

 

Pontual, S., Merry, N., & Gamson, P. (1997). G-Mex Volume 1: Special interpretation field manual. 

Ausspec International, Kew, 55p. 

 

Reisfeld, R., Gaft, M., Boulon, G., Panczer, G., & Jørgensen, C. K. (1996). Laser-induced 

luminescence of rare-earth elements in natural fluorapatites. J. Lumin., 69, 343–353. 

 

Rencz, Andrew. N. (1998). Manual of remote sensing (R. A. Ryerson & American Society for 

Photogrammetry and Remote Sensing, Eds.; 3rd. ed). J. Wiley. 

 

Röllig, G., Viehweg, M., & Reuter, N. (1990). The ultramafic lamprophyres and carbonatites of 

Delitzsch /GDR. Zeitschrift f"ur Angewandte Geologie, 36, 49–54. 

 

Rowan, L. C., Kingston, M. J., & Crowley, J. K. (1986). Spectral reflectance of carbonatites and 

related alkalic igneous rocks; selected samples from four North American localities. Economic 

Geology, 81(4), 857–871. https://doi.org/10.2113/gsecongeo.81.4.857 

 

Rowan, L. C., & Mars, J. C. (2003). Lithologic mapping in the Mountain Pass, California area using 

advanced spaceborne thermal emission and reflection radiometer (ASTER) data. Remote Sensing 

of Environment, 84, 350–366. 

 

Salisbury, J. W., Walter, L. S., & Vergo, N. (1987). Mid-Infrared (2.1-25 μm) Spectra of Minerals 

(Open-File Report 87–263). U.S. Geological Survey. https://doi.org/10.3133/ofr87263 

https://doi.org/10.2113/econgeo.111.3.641
https://books.google.co.uk/books?id=EZ0lzgEACAAJ
https://doi.org/10.25919/E11N-Q040
https://doi.org/10.2113/gsecongeo.81.4.857
https://doi.org/10.3133/ofr87263


93 

 

 

Saputra, D. M., Saputra, D., & Oswari, L. D. (2020). Effect of Distance Metrics in Determining K-

Value in K-Means Clustering Using Elbow and Silhouette Method. Proceedings of the Sriwijaya 

International Conference on Information Technology and Its Applications (SICONIAN 2019). 

  

Sriwijaya International Conference on Information Technology and Its Applications (SICONIAN 

2019), Palembang, Indonesia. https://doi.org/10.2991/aisr.k.200424.051 

 

Savitri, K. P., Hecker, C., Van Der Meer, F. D., & Sidik, R. P. (2021). VNIR-SWIR infrared 

(imaging) spectroscopy for geothermal exploration: Current status and future directions. 

Geothermics, 96, 102178. https://doi.org/10.1016/j.geothermics.2021.102178 

 

Savitzky, Abraham., & Golay, M. J. E. (1964). Smoothing and Differentiation of Data by Simplified 

Least Squares Procedures. Analytical Chemistry, 36(8), 1627–1639. 

https://doi.org/10.1021/ac60214a047 

 

Schodlok, M. C., Green, A., & Huntington, J. (2016). A reference library of thermal infrared mineral 

reflectance spectra for the HyLogger-3 drill core logging system. Australian Journal of Earth 

Sciences, 1–9. https://doi.org/10.1080/08120099.2016.1234508 

 

Seidel, P., Lorenz, S., Heinig, T., Zimmermann, R., Booysen, R., Beyer, J., Heitmann, J., & 

Gloaguen, R. (2019). Fast 2D Laser-Induced Fluorescence Spectroscopy Mapping of Rare Earth 

Elements in Rock Samples. Sensors, 19(10), 2219. https://doi.org/10.3390/s19102219 

 

Seifert, W., Kämpf, H., & Wasternack, J. (2000). Compositional variation in apatite, phlogopite and 

other accessory minerals of the ultramafic Delitzsch complex, Germany: Implication for cooling 

history of carbonatites. Lithos, 53(2), 81–100. https://doi.org/10.1016/S0024-4937(00)00010-4 

 

Shahapure, K. R., & Nicholas, C. (2020). Cluster Quality Analysis Using Silhouette Score. 2020 

IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA), 747–748. 

https://doi.org/10.1109/DSAA49011.2020.00096 

 

Simandl, G. J., & Paradis, S. (2018). Carbonatites: Related ore deposits, resources, footprint, and 

exploration methods. Applied Earth Science, 127(4), 123–152. 

https://doi.org/10.1080/25726838.2018.1516935 

 

Snyder, C. J., Khan, S. D., Bhattacharya, J. P., Glennie, C., & Seepersad, D. (2016). Thin-bedded 

reservoir analogs in an ancient delta using terrestrial laser scanner and high-resolution ground-

based hyperspectral cameras. Sedimentary Geology, 342, 154–164. 

 

Syakur, M. A., Khotimah, B. K., Rochman, E. M. S., & Satoto, B. D. (2018). Integration K-Means 

Clustering Method and Elbow Method For Identification of The Best Customer Profile Cluster. 

IOP Conference Series: Materials Science and Engineering, 336, 012017. 

https://doi.org/10.1088/1757-899X/336/1/012017 

 

https://doi.org/10.2991/aisr.k.200424.051
https://doi.org/10.1016/j.geothermics.2021.102178
https://doi.org/10.1021/ac60214a047
https://doi.org/10.1080/08120099.2016.1234508
https://doi.org/10.3390/s19102219
https://doi.org/10.1016/S0024-4937(00)00010-4
https://doi.org/10.1109/DSAA49011.2020.00096
https://doi.org/10.1080/25726838.2018.1516935
https://doi.org/10.1088/1757-899X/336/1/012017


94 

 

Thiele, S. T., Bnoulkacem, Z., Lorenz, S., Bordenave, A., Menegoni, N., Madriz, Y., Dujoncquoy, E., 

Gloaguen, R., & Kenter, J. (2021b). Mineralogical Mapping with Accurately Corrected 

Shortwave Infrared Hyperspectral Data Acquired Obliquely from UAVs. Remote Sensing, 14(1), 

5. https://doi.org/10.3390/rs14010005 

 

Thiele, S. T., Lorenz, S., Kirsch, M., Cecilia Contreras Acosta, I., Tusa, L., Herrmann, E., Möckel, R., 

& Gloaguen, R. (2021a). Multi-scale, multi-sensor data integration for automated 3-D geological 

mapping. Ore Geology Reviews, 136, 104252. https://doi.org/10.1016/j.oregeorev.2021.104252 

 

Turner, D. J. (2015). Reflectance spectroscopy and imaging spectroscopy of rare earth element-

bearing mineral and rock samples [PhD Thesis]. University of British Columbia. 

 

Turner, D. J., Rivard, B., & Groat, L. A. (2014). Visible and short-wave infrared reflectance 

spectroscopy of REE fluorocarbonates. American Mineralogist, 99(7), 1335–1346. 

https://doi.org/10.2138/am.2014.4674 

 

Turner, D. J., Rivard, B., & Groat, L. A. (2016). Visible and short-wave infrared reflectance 

spectroscopy of REE phosphate minerals. American Mineralogist, 101(10), 2264–2278. 

https://doi.org/10.2138/am-2016-5692 

 

Tuşa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M., Gloaguen, R., & 

Gutzmer, J. (2020). Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-

Resolution Mineralogical Data. Remote Sensing, 12(7), 1218. 

https://doi.org/10.3390/rs12071218 

 

V. Kale, K., M. Solankar, M., & B. Nalawade, D. (2020). Hyperspectral Endmember Extraction 

Techniques. In J. Chen, Y. Song, & H. Li (Eds.), Processing and Analysis of Hyperspectral 

Data. IntechOpen. https://doi.org/10.5772/intechopen.88910 

 

Van Der Meer, F. (2004). Analysis of spectral absorption features in hyperspectral imagery. 

International Journal of Applied Earth Observation and Geoinformation, 5(1), 55–68. 

https://doi.org/10.1016/j.jag.2003.09.001 

 

Van Der Meer, F., Kopačková, V., Koucká, L., Van Der Werff, H. M. A., Van Ruitenbeek, F. J. A., & 

Bakker, W. H. (2018). Wavelength feature mapping as a proxy to mineral chemistry for 

investigating geologic systems: An example from the Rodalquilar epithermal system. 

International Journal of Applied Earth Observation and Geoinformation, 64, 237–248. 

https://doi.org/10.1016/j.jag.2017.09.008 

 

Van Ruitenbeek, F. J. A., Bakker, W. H., Van Der Werff, H. M. A., Zegers, T. E., Oosthoek, J. H. P., 

Omer, Z. A., Marsh, S. H., & Van Der Meer, F. D. (2014). Mapping the wavelength position of 

deepest absorption features to explore mineral diversity in hyperspectral images. Planetary and 

Space Science, 101, 108–117. https://doi.org/10.1016/j.pss.2014.06.009 

 

Wagner, G. A., Coyle, D. A., Duyster, J., Henjes-Kunst, F., Peterek, A., Schroder, B., Stockhert, B., 

Wemmer, K., Zulauf, G., & Ahrendt, H. (1997). Post-Variscan thermal and tectonic evolution of 

https://doi.org/10.3390/rs14010005
https://doi.org/10.1016/j.oregeorev.2021.104252
https://doi.org/10.2138/am.2014.4674
https://doi.org/10.2138/am-2016-5692
https://doi.org/10.3390/rs12071218
https://doi.org/10.5772/intechopen.88910
https://doi.org/10.1016/j.jag.2003.09.001
https://doi.org/10.1016/j.jag.2017.09.008
https://doi.org/10.1016/j.pss.2014.06.009


95 

 

the KTB site and its surroundings. Journal of Geophysical Research – Solid Earth, 102(B8), 

18221–18232. https://doi.org/10.1029/96JB02565 

 

Waychunas, G. A. (1988). Luminescence, X-ray emission and new spectroscopies. In F. C. 

Hawthorne (Ed.), Spectroscopic Methods in Mineralogy and Geology (Vol. 18, pp. 639–698). 

Mineralogical Society of America. 

 

Whitney, D. L., & Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. American 

Mineralogist, 95(1), 185–187. https://doi.org/10.2138/am.2010.3371 

 

Winter, M. E. (1999). N-FINDR: An algorithm for fast autonomous spectral end-member 

determination in hyperspectral data (M. R. Descour & S. S. Shen, Eds.; pp. 266–275). 

https://doi.org/10.1117/12.366289 

 

Wulf, J. S., Rühmann, S., Rego, I., Puhl, I., Treutter, D., & Zude, M. (2008). Nondestructive 

Application of Laser-Induced Fluorescence Spectroscopy for Quantitative Analyses of Phenolic 

Compounds in Strawberry Fruits ( Fragaria x ananassa ). Journal of Agricultural and Food 

Chemistry, 56(9), 2875–2882. https://doi.org/10.1021/jf072495i 

 

Yitagesu, F. A., Van Der Meer, F., Van Der Werff, H., & Hecker, C. (2011). Spectral characteristics 

of clay minerals in the 2.5–14μm wavelength region. Applied Clay Science, 53(4), 581–591. 

https://doi.org/10.1016/j.clay.2011.05.007 

 

Zhang, X., Tong, X., & Liu, M. (2009). An improved N-FINDR algorithm for endmember extraction 

in hyperspectral imagery. 2009 Joint Urban Remote Sensing Event, 1–5. 

https://doi.org/10.1109/URS.2009.5137677 

 

Zimmermann, R., Brandmeier, M., Andreani, L., Mhopjeni, K., & Gloaguen, R. (2016). Remote 

Sensing Exploration of Nb-Ta-LREE-Enriched Carbonatite (Epembe/Namibia). Remote Sensing, 

8(8), 620. https://doi.org/10.3390/rs8080620 

 

https://doi.org/10.1029/96JB02565
https://doi.org/10.2138/am.2010.3371
https://doi.org/10.1117/12.366289
https://doi.org/10.1021/jf072495i
https://doi.org/10.1016/j.clay.2011.05.007
https://doi.org/10.1109/URS.2009.5137677
https://doi.org/10.3390/rs8080620

	List of Figures
	List of Tables
	Abstract
	Chapter 1 – Introduction
	1.1 Project Specifications

	Chapter 2 – Instrumentation & Technique Background
	2.1    Hyperspectral Imaging (HSI) Spectroscopy
	2.1.1 Spectral Properties of Minerals
	2.1.2 Previous Research and Toolboxes

	2.2    Laser Induced Fluorescence (LiF) Spectroscopy
	2.2.1 Behavior of REEs in LIF
	2.2.2 Previous LiF Research and Combined Approach


	Chapter 3 – Geological Setting
	3.1    Regional Geology
	3.2    Geology and Magmatic Evolution of the Delitzsch complex
	3.3    Exploration History
	3.4    Previous Research on SES 1/2012 Drill core

	Chapter 4 – Methods
	4.1    SEM-MLA Data Acquisition
	4.2    Hyperspectral Data Acquisition
	4.2.1 HSI Data Pre-Processing

	4.3    Band Ratios
	4.4    Minimum Wavelength Mapping for Hyperspectral Data
	4.5    Endmember Extraction & Library Creation
	4.6    Spectral Unmixing
	4.7    Spectral Angle Mapping (SAM) Algorithm
	4.8    Selection of Samples for LiF Measurements
	4.9    LiF Data Acquisition
	4.9.1 LiF Data Pre-Processing

	4.10 Minimum Wavelength Mapping for LiF Spectroscopy Data
	4.11 Validation
	4.12 Proposed Workflow Overview

	Chapter 5 – Results & Interpretations
	5.1    Sample Block MLA Mineralogical Results
	5.2    PCA and Elbow Plot Results
	5.3    Selected Endmembers for Each Dataset
	5.4    Fe-Oxide Band Ratio Map
	5.5    Hyperspectral MWL Maps
	5.5.1 Nd MWL Map
	5.5.2 Al-OH Feature MWL Map
	5.5.3 Quartz – Plagioclase – Aegirine – Mica MWL Map
	5.5.4 Carbonate MWL Map

	5.6    Abundance Maps from Spectral Unmixing
	5.7    SAM mapping
	5.8    Validation
	5.9      Spectral Characterization of Storkwitz Breccia
	5.10    Laser Induced Spectroscopy of Storkwitz Samples
	5.10.1  Peak Detection
	5.10.2  Minimum Wavelength Mapping for LiF data


	Chapter 6 – Discussion
	6.1 Discussion About the Storkwitz Carbonatite.
	6.2 Features and Limitations of Proposed Workflow

	Chapter 7 – Future Outlook
	7.1  Recommendations

	Chapter 8 – Conclusions
	Appendix
	References

