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Abstract

The k-truncated metric dimension of a graph is the minimum number of sensors (a subset of the vertex
set) needed to uniquely identify every vertex in the graph based on its distance to the sensors, where the
sensors have a measuring range of k. We give an algorithm with the goal that given any tree and any
value for the measuring range of the sensors k, the algorithm finds the k-truncated metric dimension of
that tree. The algorithm presented in this thesis is a modification of the algorithm given by Gutkovich
and Song Yeoh [6]. The algorithm in this thesis improves on their algorithm in both validity and time
complexity. We show that given any tree and any value k, the algorithm returns a k-resolving set for
that tree. Moreover, we conjecture the difference in the k-truncated metric dimension of any tree and
the size of the k-resolving set found by the algorithm for that tree is never greater than one. The time
complexity of the algorithm is proven to be O(k3n), where k is the measuring range of the sensors and n
is the number of vertices in the tree. This implies that the time complexity is linear in n for fixed k.

1 Introduction

This section provides an introduction to the problem researched in this thesis, motivates research of this
problem and gives a mathematical overview of related problems.

1.1 Problem description

The metric dimension of a graph is a concept first introduced by Slater in 1975 [23] to solve a source-location
problem. The problem is as follows. Given a simple, undirected graph G = (V,E), we want to place sensors
on a subset S ⊆ V such that we can uniquely identify each vertex v ∈ V by its distance vector to the sensors
(d(v, s))s∈S . We call such a set of sensors S resolving. The metric dimension of a graph is the cardinality
of the smallest resolving set S. Slater later expanded on his idea of the metric dimension and introduced
locating-dominating sets [24]. The definition is similar; a locating-dominating set is a subset S ⊆ V which
measures each vertex v ∈ V (T ) and can uniquely identify each vertex based on the measurements from the
sensors, but now the measuring range of the sensors is limited to one, meaning a sensor can only measure
vertices adjacent to the sensor. In the same article, Slater presented a linear (O(n), n = |V |) algorithm for
finding the smallest locating-dominating set in a tree. Originally, Slater envisioned his ideas would be used
for safeguards analysis of facilities such as nuclear power plants, but recently computer scientists have found
new applications of these ideas in the detection of malware sources, reviving interest in the subject. These
new applications require a generalisation in the allowed values for the measuring range (k) of the sensors,
evolving the locating-dominating set into k-resolving sets. A k-resolving set (also referred to as a resolving
set, when the measuring range of the sensors is clear from context) is similar to a locating-dominating set,
but with sensors with a measuring range k, where k can be any natural number. The smallest k-resolving
set of a tree is called that tree’s k-truncated metric dimension. For practical purposes, an algorithm which
efficiently finds the k-truncated metric dimension is needed.

s s

Figure 1: Above are two examples to illustrate the requirements for a set to be a k-resolving set, with k = 2.
The yellow, square vertices have sensors placed on them. In the left graph, the sensor does not form a
k-resolving set, because the sensor can not distinguish between the two adjacent vertices. In the right graph,
the sensor does form a k-resolving set, because it measures the two vertices as being at different distances.
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1.2 Motivation

The mathematical field of source detection is a large and active field of research. Due to their ambiguous
nature, source detection problems have a wide range of applications, such as navigation [13], locating the
source of rumors in a social network [22], locating a contaminant in water distribution networks [21] or finding
the origin of a virus in social- and digital networks [25].

The truncated metric dimension of a graph is one of the many variants of the metric dimension of graphs
[14]. Finding an efficient algorithm for the truncated metric dimension of a family of graphs, such as trees,
can give insight into how the metric dimension, or any variants of the metric dimension, behave on that
family of graphs, or graphs which are similar to that family.

1.3 Related problems, results and mathematical overview

In a recent article, Gutkovich and Song Yeoh gave an algorithm for computing the truncated metric dimension
of a tree for fixed k [6]. Neither the validity nor the time complexity of their algorithm was proved. In this
thesis we modify their algorithm in order to improve it in both validity and time complexity.

Finding the metric dimension of general graphs is NP-Hard [13]. Nevertheless, the metric dimension of
different families of graphs has been studied extensively [9, 12, 8, 15]. Moreover, many variants of the metric
dimension have been studied, such as fault-tolerating metric dimension [7], k-metric dimension [4] and local
metric dimension [14].

The concept of r-locating dominating codes (also known as k-metric dimension) is similar to the k-truncated
metric dimension, in that every vertex must be uniquely identified by the sensors in the graph while placing
the minimum number of sensors. The difference between the truncated metric dimension and r-locating
dominating codes is that for r-locating dominating codes, the sensors do not reveal their distance to any
vertex which they measure. The only signal the sensors can give is whether they measure a vertex or not.
The concept was first introduced by Karpovsky et al. in 1998 to find faults in multiprocessor systems [11].

Recently, Bartha, Komjáthy and Raes disproved a conjecture by Tillquist et al. on the lower bound of the
k-truncated metric dimension for a tree of size n. The conjecture stated that the maximum size of a tree

with m sensors and a measuring range of k is Θ(mk2

4 ). In their article, they proved a lower bound which is

not only larger than previously conjectured (Θ(mk2

3 )), but also sharp, and gave a construction for an optimal
graph [2].

Stochastic source-detection in graphs is a large field of research. As opposed to deterministic source
detection problems, in stochastic source-detection the phenomenon which spreads through the network is
not assumed to spread in a deterministic manner. This makes the stochastic approach highly applicable to
studying the source of a virus or misinformation spreading in social- or digital networks [25]. Early research
assumed the underlying network sufficed the conditions to be a tree-network and used the standard SI-model
to model how the phenomenon spreads [20, 10, 16, 17]. Later, other models for disease spread were used in
order to study source-detection problems for other types of phenomenon which spread in a way which the
SI-model is not suited for, such as the SIR-model [28, 3] and the SEIR-model [27, 19]. Recent research is
focused on developing source-detection methods which are effective on general graphs, i.e. without assuming
the underlying network is a tree [5, 18].

2 Preliminaries

In the thesis, only rooted trees will be considered. In some definitions we mention the distance between two
points in a graph, by which we mean the graph distance. We give definitions necessary to understand this
thesis in the following subsection.

2.1 Definitions

First, we give a formal definition of the concept which is central to this thesis.

Definition 2.1. Fix k ∈ N. Define dk(·, ·) = min(d(·, ·), k + 1). A k-resolving set for a graph with vertex set
V is a subset S ⊆ V such that ∀v, w ∈ V \ S, ∃s ∈ S such that dk(v, s) ̸= dk(w, s).
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Note that taking k = 1 in this definition makes it identical to the definition of locating-dominating set as
given by Slater [23].

Definition 2.2. The k-truncated metric dimension of a graph is the cardinality of the smallest k-resolving
set of that graph.

Definition 2.3. Pxy is the ordered set of vertices on the shortest path from x to y. The set is ordered from
smallest distance to x to largest distance to x. In this thesis we only consider (rooted) trees, so this path is
unique.

Definition 2.4. In a tree with root v, we call a vertex u the parent of a vertex w if u ∈ Pwv and d(v, u) = 1.
We call w the child of u. The parent of a vertex v will be denoted as p(v).

The algorithm iterates over the vertices in the order of the endvertex list of the tree. We give the defintion
of an endvertex list.

Definition 2.5. Let T be a tree with n vertices. Then (v1, v2, ..., vn) is an endvertex list for T if
{v1, v2, ..., vn} = V (T ) and for 1 ≤ i ≤ p − 1 each vi is adjacent to at most one vj with j > i. An
endvertex list is a listing of the vertex set V(T) in which each vertex appears before its parent.

Definition 2.6. For the given endvertex list of some tree with root vn, EL = (v1, v2, ..., vn), the associated
adjacency list AL = (u1, u2, ..., un) satisfies ui = vi if vi is the root of the tree and ui is equal to the parent
of vi otherwise.

2.2 Results

We present the result of this thesis in the following theorem.

Theorem 2.7. Fix k ∈ N. Given a tree T of size n, there is an O(n) algorithm which finds a k-resolving set
for the tree T .

Proof. Combining Proposition 4.1 with proposition 5.7, it becomes clear the statement in the theorem
holds.

Optimality of the algorithm presented in this thesis has not been proved yet, therefore we conjecture that
for any tree, the size of the output of the algorithm is always at most one greater than the truncated metric
dimension of that tree.

Conjecture 2.8. Fix k ∈ N. Given a tree T of size n, there is an O(n) algorithm which finds a k-resolving
set for T of size at most one greater than the truncated metric dimension of T .

The following section explains the algorithm in detail.

3 Algorithm for k-truncated metric dimension

We give a heuristic explanation of the algorithm before we introduce the specific items the algorithm keeps
track of or any of its operations.

3.1 Heuristic explanation of the algorithm

In principal, the idea behind the algorithm for the k-truncated metric dimension of trees is simple; delay
placing a sensor for as long as possible. The complicating factor in the case of general (fixed) k is that there
are many options to measure a vertex, namely, all vertices within distance k. This issue is resolved by placing
sensors at the absolute latest moment possible, and then doing a case analysis to determine which of the
remaining options is optimal.

The algorithm iterates over an endvertex list (Definition 2.5) and its associated adjacency list (Definition
2.6). This means the algorithm will start processing the tree from the bottom, and it will process all children
of a vertex, before processing that vertex. Note that an endvertex list does not require any special ordering
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of vertices from the same ‘generation’, so the algorithm might process a vertex in one part of the tree one
step, and process a vertex in an entirely different part of the tree the next. By ‘processing’ a vertex, we mean
the algorithm is deciding to place a sensor on that vertex or not. After a vertex is processed, its status from
sensor to non-sensor will never change.

The algorithm processes the tree from the bottom up and it has no knowledge of the structure of the
tree before starting to process the tree. Every time the algorithm processes a vertex it expands its ‘view’ of
the structure of the tree by looking at the parent vertex of the vertex it is processing. When processing a
vertex, it does not handle that vertex as if it is independent from the rest of the tree. Instead, it sees that the
vertex it is processing is attached to a part of the tree which the algorithm has processed earlier (due to the
ordering in the endvertex list, Definition 2.5), and it will decide whether to place a sensor on the vertex it is
processing or not based on information from that earlier processed part of the tree. Therefore, it is important
for the algorithm to know which vertices are in the same part of the tree.

v1

v2

v3

(a)

v1

v2

v3

(b)

v1

v2

v3

(c)

Figure 2: Pictured in (a), (b) and (c) is a rooted tree with root vertex v3. Vertices which the algorithm views
as being connected, i.e. in the same part of the tree are in the same circle. In (a), the algorithm has not
processed any part of the tree yet, therefore it has no knowledge of the structure of the tree and no vertices
are viewed as being connected. In (b), the algorithm has processed the leaf, v1. When processing v1 the
algorithm looked up at the parent of v1, v2, and now sees they are connected. In (c), the algorithm has
processed v2. Again, the algorithm looked up at the parent of v2, v3, and now sees they are connected.

In any tree which is not a path, there is some vertex with multiple children, call such a vertex p. When
the algorithm processes the first child of p, it expands its view of the tree to include p, as shown in Figure 2.
Subsequently, when the algorithm processes the second child of p, it expands its view of the tree to include p
again, but p is already seen as a part of the tree, therefore the algorithm must merge these two parts of the
tree which it did not view as being connected into one single, connected part of the tree.
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p1

p

p2

(a)

p1

p

p2

(b)

Figure 3: Vertices which the algorithm views as being connected are drawn in the same circle. In (a), the
algorithm has processed p1, so it now sees p is the parent of p1. It has also processed the child of p2, so it
views p2 and its child as being connected. In (b), we draw how the algorithm views the tree after processing
p2. While processing p2, it looked to the parent of p2, p, and saw the parent was already known to be
connected to some part of the tree. Therefore these two parts of the tree which the algorithm did not view as
being connected are in fact connected, and the algorithm merges its knowledge of the two parts of the tree
together into one single part of the tree.

At every step of the algorithm, it is maintained that the sensors in any part of the tree which the algorithm
has processed either fully resolve that part of the tree or ‘almost’ resolve that part of the tree. With ‘almost’
resolve, we mean to say exactly one more sensor is required to resolve that part of the tree. The algorithm
keeps track of exactly how far that sensor would need to be placed. This property of the algorithm is what
will be called the fundamental property/requirement.

3.2 Notation

Before explaining the algorithm in detail, it is necessary to define the notation used in this thesis.

Definition 3.1. Given a tree T , we will refer to a vertex x as being measured through another vertex y if
for all sensors s in the tree T which measure x, the shortest path from x to s passes through y, i.e. if for all
sensors s ∈ T such that |Pxs| ≤ k, y ∈ Pxs.

Definition 3.2. A vertex v is processed when the algorithm has iterated over that vertex in the endvertex
list. In practice, this means the status of v as sensor or non-sensor will never change.

Earlier in our explanation of the algorithm, we referred to ‘part of the tree’. For ease of writing we
introduce a notation to specify what ‘part of the tree’ we mean exactly.

Definition 3.3. A subgraph of a tree which is also a tree will be called a subtree. Let T be a tree with root r.
Let v be a vertex in T and let m ∈ {1, 2, ..., ch(v)}. Then Tv,m ⊂ T is the subtree with root v, which contains
v and all vertices x ∈ T such that one of the first m children of v is on the path from x to r.
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v

Figure 4: The subtree inside the circle is Tv,2, because it contains v and all vertices for which one of the first
two children of v is on the path from that vertex to v.

Definition 3.4. Let Tv,m be a subtree. Let x, y ∈ V (Tv,m). We define dk(x, y) = min(d(x, y), k + 1).

Definition 3.5. We define ch(v) as the number of children of a vertex v.

Definition 3.6. In the subtree Tv,m, we define the pivotal vertex of x, w(x, v), as the vertex at which the
paths Pxv and Pxs split for all sensors s in Tv,m which measure x. A pivotal vertex may not exist, for instance
when two sensors s1, s2 in Tv,m measure x but Pvx and Pxs1 do not split at the same vertex as Pvx and Pxs2 .

∀s1, s2 ∈ S(v,m) s.t. |Pxs1 |, |Pxs2 | ≤ k : Pxv ∩ Pxs1 = Pxv ∩ Pxs2 := Pxw(x,v)

Note that s1, s2 do not need to be distinct sensors, so a vertex which is measured by only one sensor can still
have a pivotal vertex.

v

w(x1, v) = w(x2, v)

s1 s2x1

x2

Figure 5: k = 3. Both x1 and x2 are measured by s1 and s2, and for both x1 and x2 the paths to s1 and s2
have the same point at which they split from the path from x1 to v and from x2 to v, respectively, so the
vertex in blue, w(x1, v) = w(x2, v), is the pivotal vertex corresponding to x1 and x2.

3.3 Quantities the algorithm keeps track of

While running the algorithm we keep track of eight items, all are functions of their position in the tree:
Seen(v), S(v,m), DistS(v,m), NotM(v,m), P r1(v,m), P r2(v,m), P rf (v,m), l(v,m), where v ∈ V (T ) and
m ∈ {0, 1, .., ch(v)}. In the list below and in Section 3.3.1, we define each item and motivate why we need
them.

1. Seen(v) is the binary variable which equals 1 if the vertex v is part of a subtree for which the algorithm
has allocated sensors, 0 otherwise. When processing a vertex v the algorithm can perform two operations;
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adding the parent p(v) of the vertex v to the subtree Tv,ch(v), and merging the subtrees Tv,ch(v) and
Tp(v),m−1 together into Tp(v),m. Remember that in our definition of the notation, m ∈ {1, 2, ..., ch(p(v))}
(Definition 3.3). The algorithm decides which operation to perform based on whether Seen(p(v)) is
equal to 0 or 1. We will call a vertex v considered if the algorithm sees that vertex as being part of
a subtree (Seen(v) = 1) but v itself has not been processed yet. For example, for any subtree Tv,m

where v is not a leaf, the root of the subtree is the only vertex in Tv,m which has not been processed
yet. However, because v is considered part of a subtree (i.e. Seen(v) = 1), we say v is considered by
the algorithm.

2. We define S(v,m) as the already allocated sensor-vertices in a subtree Tv,m.

3. DistS(v,m) is the distance from v to the closest sensor to v in the subtree Tv,m. When the algorithm
merges subtrees it is necessary to know which of the vertices in one subtree are measured by the sensors
in the other subtree. For this, we need to know how far the closest sensor in a subtree is from its root.

4. l(v,m) is the largest distance such that, for any vertex s∗ outside of Tv,m with d(s∗, v) = l(v,m), the
set S(v,m) ∪ {s∗} is a k-resolving set for Tv,m. We set l(v,m) = null if S(v,m) already resolves Tv,m.
The idea that S(v,m) combined with a sensor outside Tv,m at distance l(v,m) from v resolves Tv,m is
very important and will be relied on many times to explain and prove the algorithm. Due to its great
importance, this property/requirement that for any subtree Tv,m, the allocated sensors S(v,m) in the
subtree either fully resolve that subtree or placing one more sensor no further than distance l(v,m)
from v resolves Tv,m is called the fundamental property/requirement. We use l(v,m) to keep track of
where we need to place a sensor at a later point in the algorithm, while still keeping our options open
for where exactly we place that sensor.

5. NotM(v,m) is the set of distances from v to all vertices y ∈ Tv,m which are not measured by the
sensors in its subtree S(v,m).

NotM(v,m) = {d(v, y) | y ∈ Tv,m : ∀s ∈ S(v,m), d(y, s) > k}

This set is used to check the fundamental requirement of the algorithm holds while processing a vertex.

3.3.1 Problematic vertices

The set of vertices in a subtree Tv,m which can cause problems when adding the parent vertex to the subtree or
when merging two subtrees will from now on be referred to as the set of problematic vertices in Tv,m, denoted
as Pr(v,m). By ‘problems’, we mean a contradiction in the fundamental requirement for the algorithm
that S(v,m) ∪ {s∗} (where s∗ is a vertex at distance l(v,m) from the subtree’s root v) is a k-resolving set
for Tv,m. We check this requirement holds throughout the algorithm. For instance, in the situation that
l(v, ch(v)) = null and the algorithm decides to add the parent vertex p(v) to the subtree, the algorithm
needs to check whether this parent vertex is still distinguished from all other vertices. If it is distinguished,
the sensors in Tv,ch(v) form a k-resolving set for Tp(v),1 and therefore we set l(p(v), 1) = null. If it is not
distinguished, we need a sensor somewhere which distinguishes p(v). The largest distance from p(v) such that
a sensor at that distance can distinguish p(v) from all other vertices in Tp(v),1 is k, so we set l(p(v), 1) = k.
We define two types of problematic vertices by how they are measured:

(Pr 1) We call a vertex x type-1 problematic if for all sensors that measure x, the path from x to that sensor
passes through the pivotal vertex of x, w(x, v) (Definition 3.6), and w(x, v) = v, so all sensors measuring
x measure x through its pivotal vertex, and this pivotal vertex is equal to the root of the subtree v.
All paths from p(v) to a sensor must go through v, so a vertex which is only measured through v is
indistinguishable from p(v) when it has the same distance to v as p(v), namely one. The reason we
keep track of all vertices measured only through v and not just those adjacent to v is because these
vertices can still become (type-2) problematic later in the algorithm, when the subtree containging x has
expanded. In Pr1(v,m), the set of of type-1 problematic vertices in Tv,m, where m ∈ {1, 2, ..., ch(v)},
we store a tuple of two values. Let x be type-1 problematic, then

(d(v, x), d(v, s)) ∈ Pr1(v,m)
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Remark 3.7. In the tuple (d(v, x), d(v, s)), s is the closest sensor to v.

x2

x1

v

p(v)

s

Figure 6: k = 4. The yellow, square vertex (s) has a sensor. The red, circle vertices (x1, x2) are measured
through the root v of the subtree, and are thus type-1 problematic. When adding the parent vertex p(v)
to the subtree, x1, x2 can become indistinguishable from p(v), depending on their distance from v. If a
second sensor is placed on one of the two circle-vertices, there would be no type-1 problematic vertices in this
graph. It is important to remember that type-1 problematic vertices are not necessarily indistinguishable
from p(v), we keep track of them because they might be indistinguishable now or because they might
become indistinguishable from the parent of the subtree’s root at some point later in the algorithm, when the
algorithm has added more vertices to that subtree. In this example, the leftmost type-1 problematic vertex
will never be indistinguishable from p(v) because there are no more vertices in the tree left to add to the
subtree.

(Pr 2) We call a vertex x ∈ Tv,m type-2 problematic if for all sensors that measure x, the path from x to that
sensor passes through the pivotal vertex of x, w(x, v), where w(x, v) ̸= v and two further requirements
hold: d(x,w(x, v)) = d(w(x, v), v) + 1 and there is no sensor s in S(v,m) which measures p(v) such
that w(x, v) is not in Psp(v). These two requirements state that the pivotal vertex is equally far away
from x as from p(v) and there is no sensor in S(v,m) which distinguishes x and p(v). In Pr2(v,m), we
store identical values to Pr1(v,m). Let x be type-2 problematic, then

(d(v, x), d(v, s)) ∈ Pr2(v,m)

Remark 3.8. In the tuple (d(v, x), d(v, s)), s is the closest sensor to v.
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p(v)

v

w(x, v)

x

s1

s2

Figure 7: k = 5. Sensors (yellow, square), pivotal vertex w(x, v) (blue, dot), type-2 problematic vertex x
(red, circle). The sensors resolve Tv,ch(v), but they do not resolve Tp(v),1, because x is only measured through
its pivotal vertex w(x, v), w(x, v) is equally far away from x as from p(v) and for all sensors that measure
p(v), w(x, v) is on the path from that sensor to p(v). This means that when the algorithm processes vertex v
and adds its parent, p(v), to the subtree, that subtree is now no longer resolved by the sensors in the subtree.

(Pr f) A vertex x is in Prf (v,m) if for all sensors that measure x, the path from x to that sensor passes through
the pivotal vertex of x, w(x, v), and two further requirements hold: d(x,w(x, v)) ̸= d(w(x, v)) + 1 and
there is no sensor s in S(v,m) which distinguishes a vertex outside Tv,m at distance d(x,w(x, v)) from
w(x, v) and the vertex x.

For algorithmic reasons we will explain in Section 3.7.5 and for the sake of computational complexity,
we require an efficient way to update Pr1 and Pr2. To this end, note there is a flow of vertices from
Pr1 to Pr2. A vertex in Pr1(v,m) is only measured through the root of the subtree v, and when the
algorithm has expanded the subtree enough, v becomes the vertex exactly in between x and the parent
of the new root, so the sensors measuring x can not distinguish between x and the parent of the new
root, therefore it is type-2 problematic. In fact, all vertices in Pr2 must, at an earlier point, have been
vertices in Pr1. To efficiently update Pr2, we keep track of another item while running the algorithm,
Prf (f stands for future). The set Prf consists of all vertices that used to be in Pr1 but are now no
longer type-1 problematic, but can still become type-2 problematic in the future.

Pr1 −→ Prf −→ Pr2

In Prf (v,m), we store two additional values to the values stored in Pr1(v,m). The additional values
are d(w(x, v), v) and d(w(x, v), x), where w(x, v) is the pivotal vertex through which x is measured
(3.6), and v is the current root of the subtree. When d(w(v, x), x) = d(w(x, v), v) + 1, x becomes type-2
problematic. We need these additional values to check when a vertex in Prf needs to go to Pr2 and in
order to perform Check-resolving (See 3.7.5 for an explanation of Check-resolving). To reiterate, when
x is in Prf (v,m), we store

(d(v, x), d(v, s), d(w(x, v), v).d(w(x, v), x)) ∈ Prf (v,m)

Remark 3.9. In this tuple, s is the closest sensor to v.

The set of problematic vertices is the set of all type-1 and type-2 problematic vertices combined:

Pr(v,m) = Pr1(v,m) ∪ Pr2(v,m)

9



We now give a formal definition of the types of problematic vertices. Let x be a vertex in a subtree Tv,m with
root v and let s be any sensor measuring x.

(Case 1) If Pxv ∩Pxs = {x}, then all sensors which measure x are part of the subtree with root x, i.e. s ∈ Tx,ch(x).
These vertices are always distinguished from any vertex outside Tv,m, so x /∈ Pr(v,m) ∪ Prf (v,m).

(Case 2) If ∃s1, s2 ∈ S(v,m), |Pxs1 |, |Pxs2 | ≤ k such that Pxv ∩ Pxs1 ̸= Pxv ∩ Pxs2 , then we know that for any
vertex outside Tv,m, either s1 or s2 distinguishes x and that vertex, so x /∈ Pr(v,m) ∪ Prf (v,m).

(Case 3) If ∀s1, s2 ∈ S(v,m) such that |Pxs1 |, |Pxs2 | ≤ k : Pxv ∩ Pxs1 = Pxv ∩ Pxs2 , then by how we defined the
pivotal vertex of x, this means for all sensors which measure x, the pivotal vertex w(x, v) is on the path
from x to that sensor (Definition 3.6). For such x, we separate three subcases:

(Case 3.1) If w(x, v) = v, then for all sensors which measure x, the root of the subtree v is on the path from
that sensor to x, so x ∈ Pr1(v,m).

(Case 3.2) If w(x, v) ̸= v and d(w(x, v), x) = d(w(x, v), v) + 1 and ∀s ∈ S(v,m) : dk(s, p(v)) = dk(s, x), then
the pivotal vertex has equal distance from x as p(v) and there is no sensor in S(v,m) which
distinguishes x and p(v), so x ∈ Pr2(v,m).

(Case 3.3) If w(x, v) ̸= v and d(w(x, v), x) ̸= d(w(x, v), v) + 1 and ∀s ∈ S(v,m) : min(k + 1, |Pp(v)s| +
d(x,w(x, v))− d(w(x, v), p(v))) = min(k + 1, |Pxs|), then the pivotal vertex w(x, v) is not in the
middle of x and p(v) yet, and there is no sensor in S(v,m) which distinguishes x and the vertex
outside Tv,m at distance d(w(x, v), x) away from w(x, v) which would clash with x, so the vertex
x can become type-2 problematic in the future. Therefore, x ∈ Prf (v,m).

(Case 3.4) Otherwise, x /∈ Pr(v,m) ∪ Prf (v,m).

It is possible for a vertex to move from Pr1 directly to Pr2, as illustrated by the figure below.

v = w(x1, v) = w(x2, v)

x1

s

x2

(a)

w(x1, p(v)) = w(x2, p(v))

x1

s

p(v)

x2

(b)

p2(v)

w(x1, p
2(v)) = w(x2, p

2(v))

x1

s

p(v)

x2

(c)

Figure 8: k = 4. In (a), x1 and x2 are measured only though their pivotal vertex which is the subtrees
root v, so x1, x2 ∈ Pr1(v, ch(v)). In the consecutive step, seen in (b), w(x1, p(v)) is now the unique
vertex with d(w(x1, p(v)), p(v)) + 1 = d(w(x1, p(v)), x1), so x1 ∈ Pr2(p(v), ch(p(v))). Vertex x2 is now in
Prf (p(v), ch(p(v))), because it is no longer type-1 problematic, but it can still become type-2 problematic in
the future. In the final step (c), x1 is no longer type-2 problematic and can never become problematic in the
future. Vertex x2 is still measured only through its pivotal vertex w(x2, p

2(v)) which is now placed exactly in
between x2 and the parent of the current root of the subtree, p3(v), so x2 ∈ Pr2(p

2(v), ch(p2(v))).

In the next subsection, we give a method to update all items.
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3.4 Updating quantities the algorithm keeps track of

The manner in which we update the quantities we keep track of is important for those interested in
implementing the algorithm and for analyzing the time complexity. How we update the quantities depends
on whether the algorithm decides to add the parent vertex of the vertex it is processing or whether it decides
to merge subtrees.

3.4.1 Updating quantities the algorithm keeps track of when adding parent

Suppose the algorithm is processing a vertex v and adds the parent of v, p(v), to the subtree Tv,ch(v), thereby
expanding the tree to Tp(v),1. We list the processes of updating quantites for when a sensor is placed on p(v)
and when no sensor is placed on p(v) separately:

Sensor on p(v), i.e. l(v, ch(v)) = 1

(a) Seen(p(v)) = 1. Vertex p(v) is now part of a subtree which the algorithm has considered, so Seen(p(v))
is set to 1.

(b) DistS(p(v), 1) = 0. If a sensor is placed on p(v), naturally the closest sensor in S(p(v), 1) has distance
0 from p(v), so DistS(p(v), 1) is set to 0.

(c) NotM(p(v), 1) = ∅. After placing a sensor on p(v), S(p(v), 1) forms a resolving set for Tp(v),1 by the
fundamental requirement of the algorithm. For S(p(v), 1) to be a resolving set, every vertex in Tp(v),1

must be measured, so NotM(p(v), 1) = ∅.

(d) Pr1(p(v), 1) = NotM(v, ch(v)). Every vertex which was not measured by S(v, ch(v)) is now measured
by the sensor on p(v), so moves to Pr1(p(v), 1). Every vertex which was in Pr1(v, ch(v)) was measured
only through v. After adding p(v) to the subtree, v is no longer the root of the subtree, therefore
everything that was in Pr1(v, ch(v)) is no longer type-1 problematic.

(e) Prf (p(v), 1) = ∅. Every vertex x which was in Prf (v, ch(v)) is not moved to Prf (p(v), 1), because the
sensor on p(v) distinguishes x from any vertex at distance d(x,w(w, v)) from v, so we set Prf (p(v), 1) = ∅.

(f) Pr2(p(v), 1) = ∅. Vertices in Pr2(v, ch(v)) are not distinguished from p(v) by the sensors S(v, ch(v)).
The sensor on p(v) distinguishes all vertices in Pr2(v, ch(v)) from p(v), so everything that was in
Pr2(v, ch(v)) is no longer type-2 problematic.

No sensor on p(v), i.e. l(v, ch(v)) ̸= 1

(a) Seen(p(v)) = 1. The parent of v, p(v) is now part of a subtree which the algorithm has considered, so
Seen(p(v)) is set to 1.

(b) DistS(p(v), 1) = DistS(v, ch(v)) + 1. The sensor in Tv,ch(v) which was closest to v is also the sensor
in Tp(v),1 closest to p(v), but the distance from p(v) to the sensor is naturally one greater than the
distance from v to the sensor, so we increase DistS(v, ch(v)) by 1.

(c) Since no sensor was placed on p(v), the vertices which were unmeasured by S(v, ch(v)) are still
unmeasured by S(p(v), 1), and now their distance from the root (the root of the subtree changes from
v to p(v)) is 1 greater than it was before, so all elements in NotM(v, ch(v)) are increased by 1 and
moved to NotM(p(v), 1). If p(v) is not measured by S(p(v), 1) (so if DistS(p(v), 1) > k), 0 is added to
NotM(p(v), 1). Otherwise, p(v) is measured so no new element is added to NotM(p(v), 1).

(d) Pr1(p(v), 1) = ∅. There is no sensor on the new root of the subtree p(v), so there is no sensor in
S(p(v), 1) which can measure any vertex in Tp(v),1 through p(v). Therefore Pr1(p(v), 1) = ∅.

(e) All vertices x in Prf (v, ch(v)) for which

Pr
(1)
f := {x ∈ Prf (v, ch(v)) | d(x,w(x, p(v)) ̸= d(w(x, p(v)), p(v)) + 1}
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are moved to Prf (p(v), 1). All vertices x ∈ Pr1(v, ch(v)) for which

Pr
(2)
f := {x ∈ Pr1(v, ch(v)) | d(x,w(x, p(v))) ̸= d(x, p(v)) + 1}

are moved to Prf (p(v), 1). Combining these sets, we find

Prf (p(v), 1) = Pr
(1)
f ∪ Pr

(2)
f

(f) All vertices in Pr2(v, ch(v)) are not moved to Pr2(p(v), 1), as they can no longer clash with the parent
of the new root of the subtree, p(v), by definition of type-2 problematic vertices (Definition 3.3.1). All
vertices x in Pr1(v, ch(v)) or Prf (v, ch(v)) for which

Pr2(p(v), 1) = {x ∈ Pr1(v, ch(v)) ∪ Prf (v, ch(v)) | d(x,w(x, p(v))) = d(w(x, p(v)), p(v)) + 1}

are moved to Pr2(p(v), 1), as these vertices are not distinguished from the parent of the new root of
the subtree (the new root of the subtree is p(v)) by the sensors in S(p(v), 1).

3.4.2 Updating quantities the algorithm keeps track of when merging subtrees.

Suppose the algorithm is processing a vertex v which is the m-th child of p(v) and the algorithm merges the
subtrees Tp(v),m−1 and Tv,ch(v) into the single subtree Tp(v),m. We list the processes of updating quantities
for when the algorithm merges subtrees:

(a) No value of the function Seen needs to be updated, because the algorithm does not expand its ‘view’ of
any subtree, it only merges two.

(b) DistS(p(v),m) = min(DistS(v, ch(v)) + 1, DistS(p(v),m− 1)). Both subtrees Tv,ch(v) and Tp(v),m−1

have a sensor which is closest to the root of their subtree, v and p(v) respectively. The algorithm takes
the distance from p(v) to the nearest sensor in S(p(v),m) as the new value for DistS(p(v),m).

(c) All vertices in NotM(v, ch(v)) which are not measured by the sensor corresponding to DistS(p(v),m−1)
are moved to NotM(p(v),m).

NotM(p(v),m)(1) := {x ∈ NotM(v, ch(v)) | d(x, v) + 1 +DistS(p(v),m− 1) > k}

These vertices were unmeasured by the sensors in their own subtree S(p(v),m − 1) and are still
unmeasured by the sensors in the other subtree S(v, ch(v)), so they remain unmeasured by the sensors
in the merged subtree. All vertices in NotM(p(v),m − 1) which are not measured by the sensor
corresponding to DistS(v, ch(v)) are moved to NotM(p(v),m).

NotM(p(v),m)(2) := {x ∈ NotM(p(v),m− 1) | d(x, p(v)) + 1 +DistS(v, ch(v)) > k}

These vertices were unmeasured by the sensors in their own subtree S(v, ch(v)) and are still unmeasured
by the sensors in the other subtree S(p(v),m− 1), so they remain unmeasured by the sensors in the
merged subtree. We find

NotM(p(v),m) = NotM(p(v),m)(1) ∪NotM(p(v),m)(2)

(d) All vertices in NotM(v, ch(v)) which are measured by the sensor corresponding to DistS(p(v),m− 1)
are moved to Pr1(p(v),m).

Pr1(p(v),m)(1) := {x ∈ NotM(v, ch(v)) | d(x, v) + 1 +DistS(p(v),m− 1) ≤ k}

These vertices in NotM(v, ch(v)) are unmeasured by the sensors in their own subtree S(v, ch(v)),
but they are measured by sensor(s) in the other subtree S(p(v),m − 1), which can only measure
vertices in Tv,ch(v) through the root of the merged subtree, p(v), therefore these vertices are now type-1
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problematic for the merged subtree. All vertices in NotM(p(v),m − 1) which are measured by the
sensor corresponding to DistS(v, ch(v)) are moved to Pr1(p(v),m).

Pr1(p(v),m)(2) := {x ∈ NotM(p(v),m− 1) | d(x, p(v)) + 1 +DistS(v, ch(v)) ≤ k}

These vertices in NotM(p(v),m− 1) are unmeasured by the sensors in their own subtree S(p(v),m− 1),
but they are measured by sensor(s) in the other subtree S(v, ch(v)), which can only measure vertices
in Tp(v),m−1 through the root of the merged subtree, p(v), therefore they are now type-1 problematic
for the merged subtree. Everything in Pr1(p(v),m− 1) moves to Pr1(p(v),m), because no sensor was
placed in Tp(v),m−1, so vertices in Pr1(p(v),m− 1) must still be measured only through the root of the
merged subtree, p(v). We find

Pr1(p(v),m) = Pr1(p(v),m)(1) ∪ Pr1(p(v),m)(2) ∪ Pr1(p(v),m− 1)

(e) Updating Prf (p(v),m) goes as follows. We observe that if a vertex x is type-1 problematic in subtree
Tv.ch(v), the pivotal vertex of x, w(x, v), is equal to v. All x ∈ Pr1(v, ch(v)) for which

Prf (p(v),m)(1) := {x ∈ Pr1(v, ch(v)) | d(x,w(x, v)) ̸= d(w(x, v), p(v)) + 1 and

DistS(p(v),m− 1) + d(x,w(x, v))− 1 > k}
(3.1)

are moved to Prf ((p(v),m)). The first of the two checks functions as a way to see if the vertex x might
move to Prf (p(v),m) or Pr2(p(v),m). If it is true, x might move to Prf (p(v),m), and definitely not
to Pr2(p(v),m). The second check makes this move definitive, it checks whether a vertex at distance
d(x,w(x, v)) from v is distinguished by the sensor corresponding to DistS(p(v),m− 1) or not. If not,
the vertex x moves to Prf (p(v),m). For understanding the syntax in the second check it is important
we show the following: Let y denote a vertex at distance d(x,w(x, v)) from w(x, v), so y is a vertex
which is indistinguishable from x iff x belongs in Prf (p(v),m) or Pr2(p(v),m). We will show d(p(v), y)
can be computed from the values stored earlier in Pr1(v, ch(v)):

d(x, y) = 2 ∗ d(x,w(x, v))
d(p(v), y) = 2 ∗ d(x,w(x, v))− d(x, p(v))

d(p(v), y) = d(x,w(x, v))− d(w(x, v), v)− 1

Because x is type-1 problematic in Tv,ch(v), d(x,w(x, v)) and d(w(x, v), v) are known (Definition 3.3.1),
so d(p(v), y) can be computed from values stored in Pr1(v, ch(v)). All x ∈ Prf (p(v),m− 1) for which

Prf (p(v),m)(2) := {x ∈ Prf (p(v),m− 1) |
1 +DistS(v, ch(v)) + d(x,w(x, p(v)))− d(w(x, p(v)), p(v)) > k}

are moved to Prf (p(v),m). This checks is equivalent to the second check in (3.1), so whether a vertex
outside Tp(v),m at distance d(x,w(x, p(v)) from w(x, p(v)) is measured by a sensor in S(v, ch(v)).
All x ∈ Prf (v, ch(v)) for which

Prf (p(v),m)(3) := {x ∈ Prf (v, ch(v)) | d(x,w(x, v)) ̸= d(w(x, v), p(v)) + 1 and

DistS(p(v),m− 1) + d(x,w(x, v))− d(w(x, v), v)− 1 > k}

are moved to Prf (p(v),m). In the first check, we check if the vertex x ∈ Prf (v, ch(v)) should move to
Prf (p(v),m) or Pr2(p(v),m). The second check is equivalent to the second check of (3.1). We find

Prf (p(v),m) = Prf (p(v),m)(1) ∪ Prf (p(v),m)(2) ∪ Prf (p(v),m)(3)

(f) Updating Pr2(p(v),m) goes as follows. All x ∈ Pr2(p(v),m− 1) for which

Pr2(p(v),m)(1) := {x ∈ Pr2(p(v),m− 1) | DistS(v, ch(v)) + 2 > k}
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are moved to Pr2(p(v),m). This checks if the parent of the root of the merged subtree is measured by
a sensor in S(v, ch(v)). If it is, this sensor distinguishes x and the parent of the root of the merged
subtree. If it is not, the vertex x is moved to Pr2(p(v),m). This check does not actually depend on x
itself, so in the implementation of the algorithm we do not need to iterate over Pr2(p(v),m− 1). We
could simply perform the check shown above if Pr2(p(v),m − 1) is not empty and not perform the
check above otherwise.
All x ∈ Pr1(v, ch(v)) for which

Pr2(p(v),m)(2) := {x ∈ Pr1(v, ch(v)) | d(x, v) = 2 and

DistS(p(v),m− 1) > k − 1}

are moved to Pr2(p(v),m). If a vertex x in Pr1(v, ch(v)) has distance 2 from v and no sensor in
S(p(v),m− 1) measures the parent of the root of the merged subtree, it is type-2 problematic because
it is not distinguished from the parent of the root of the merged subtree by any sensor in S(p(v),m).
All x ∈ Prf (v, ch(v)) for which

Pr2(p(v),m)(3) := {x ∈ Prf (v, ch(v)) | d(x,w(x, v)) = d(w(x, v), p(v)) + 1 and

DistS(p(v),m− 1) > k − 1}

are moved to Pr2(p(v),m). We find

Pr2(p(v),m) = Pr2(p(v),m)(1) ∪ Pr2(p(v),m)(2) ∪ Pr2(p(v),m)(3)

The following section provides a visual overview of the algorithm.
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3.5 Visualisation of the algorithm

In the figure below, we present a flowchart of the steps the algorithm takes when processing a vertex.

Processing a vertex v

Is Seen(p(v)) = 1?

Add parent vertex
of v, p(v), to the
subtree Tv,ch(v)

If l(v, ch(v)) = 1:
place sensor on
p(v) and set

l(p(v), 1) = null.
Update all

items. Process
the next vertex.

If 2 ≤ l(v, ch(v)) ≤
k: set l(p(v), 1) =
l(v, ch(v)) − 1.
Update all

items. Process
the next vertex.

If l(v, ch(v)) =
null: Does
S(v, ch(v))

distinguish p(v)
from all type-1,

type-2 problematic
vertices in Tv,ch(v)?

Set l(p(v), 1) =
null. Update all
items. Process
the next vertex.

Set l(p(v), 1) = k.
Update all

items. Process
the next vertex.

Merge sub-
trees Tp(v),m−1

and Tv,ch(v)

Set l′ = Check-
cases

Does Check-
resolving for
S(v, ch(v)),

S(p(v),m − 1),
l′, return True?

Set S(p(v),m) =
S(v, ch(v)) ∪
S(p(v),m − 1),
l(p(v),m) = l′.
Update all

items. Process
the next vertex.

Place a sensor
on v. Update all
items correspond-
ing to Tv,ch(v).

If l′ = null:
Set l′ = k.

Otherwise: Set
l′ = l′ − 1.

Set l′ = Check-
cases

Does Check-
resolving for
S(v, ch(v)),

S(p(v),m − 1),
l′, return True?

If l′ = null:
Set l′ = k.

Otherwise: Set
l′ = l′ − 1.

No

Yes

Yes No

Yes

No, l′ = 1.

Yes

No

No, l′ ̸= 1

Figure 9: A flowchart of how the algorithm processes a vertex. On each green bubble, the algorithm finishes
processing v, and will continue by processing the next vertex in the endvertex list. On each blue bubble, the
algorithm performs a Yes/No check.

With this visual aid in mind, we proceed to explain the steps of the algorithm in greater detail.
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3.6 Adding the parent vertex

The following subsection explains how the algorithm adds a parent vertex to a subtree. First, we give a
heuristic explanation of the ideas in Section 3.6.1. Second, the pseudocode for adding a parent vertex to a
subtree is shown in Section 3.6.2.

3.6.1 Heuristic explanation of adding the parent

As mentioned in the previous paragraph, the algorithm decides to add the parent (p(v)) of the vertex it is
processing (v) when Seen(p(v)) = 0.

p(v)

v

Figure 10: Vertices which the algorithm sees as being part of the same subtree are in the same circle. The
vertex v is being processed. The algorithm sees that its parent, p(v), is not seen as part of any subtree, so it
decides to add p(v) to the subtree with root v, Tv,ch(v). This expands the subtree to Tp(v),1.

When adding the parent vertex, we separate three cases, depending on the value of l(v, ch(v)). When v is
a leaf, l(v, 0) is assigned the value k (line 4-7 of the pseudocode). We list the separate cases for when v is not
a leaf:

• If l(v, ch(v)) = 1 (line 10-13 in the pseudocode), then we must place a sensor on p(v) as p(v) is
the only vertex outside of Tv,ch(v) with distance one from v. Therefore S(p(v), 1) = S(v, ch(v)) ∪
{p(v)}, Seen(p(v)) = 1, and update DistS(p(v), 1), NotM(p(v), 1), Pr(p(v), 1).

• If 2 ≤ l(v, ch(v)) ≤ k (line 14-17 in the pseudocode), we need a sensor outside Tv,ch(v) at distance
l(v, ch(v)) away from v, so naturally we need a vertex at distance l(p(v), 1) = l(v, ch(v))− 1 away from
p(v). Update DistS(p(v), 1), NotM(p(v), 1), Pr(p(v), 1).

• If l(v, ch(v)) = null (line 18-30 in the pseudocode), the set S(v, ch(v)) is a k-resolving set for Tv,ch(v).
When we add the parent p(v), we therefore need to check if S(v, ch(v)) is also a k-resolving set for Tp(v),1,
which is equivalent to checking whether p(v) is measured and distinguished from all vertices in Tv,ch(v)

by S(v, ch(v)). If so, naturally we set l(p(v), 1) = null. If p(v) is not measured and distinguished from
all vertices in Tv,ch(v) we need a sensor which distinguishes p(v), preferably as far from p(v) as possible,
so we set l(p(v), 1) = k. We state a claim which narrows down the vertices the algorithm needs to check:

Claim 3.10. Suppose the algorithm is processing a vertex v, which is the root of the subtree Tv,ch(v), and
allocated l(v, ch(v)) = null. All vertices x ∈ V (Tv,ch(v)) which are not in Pr(v, ch(v)) are distinguished
from p(v) by the sensors S(v, ch(v)).

We prove this claim in Section 4. The process of determining whether S(v, ch(v)) distinguishes p(v)
and x ∈ Pr(v, ch(v)) is as follows: First, the algorithm checks if p(v) is measured by checking if the
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closest sensor to v is within distance k− 1 from v. If this is true, the algorithm iterates over all vertices
x ∈ Pr1(v,m), and checks if they are all distinguished from p(v) by checking if x is not adjacent to
v. The algorithm proceeds to check if there are any type-2 problematic vertices (Definition 3.3.1). If
there are, they are by definition not distinguished from p(v). If none of the checks fail, S(v, ch(v))
measures and distinguishes p(v) and all vertices in Tv,ch(v) so we set l(p(v), 1) = null. Otherwise, set
l(p(v), 1) = k.

With this heuristic explanation complete, we continue by giving the pseudocode for adding the parent
vertex.

3.6.2 Pseudocode for adding the parent vertex

Algorithm 1 Pseudo-code for adding the parent vertex

1: V is the vertex which the algorithm is processing.
2: P is the parent vertex of V .
3: After updating all items corresponding to TP,1, the next vertex is processed.
4: if ch(V ) = 0 then
5: S(V, 0), S(P, 1)← ∅

Update all items corresponding to TP,1.
Seen(P ) = 1

6: l(V, 0)← k, l(P, 1)← k − 1
7: Seen(V ), Seen(P )← 1
8: else if ch(V ) ̸= 0 then
9: Note that in this case, S(V, ch(V )), DistS(V, ch(V )), NotM(V, ch(V )), P r(V, ch(V )) are known, and

that Seen(V ) = 1.
10: if l(V, ch(V )) = 1 then
11: S(P, 1)← S(V, ch(V )) ∪ {P}
12: l(P, 1)← null
13: Update all items corresponding to TP,1.

Seen(P )← 1
14: else if 2 ≤ l ≤ k then
15: S(P, 1)← S(V, ch(V ))
16: l(P, 1)← l(V, ch(V ))− 1
17: Update all items corresponding to TP,1.

Seen(P ) = 1
18: else if l(V, ch(V )) = null then
19: We will check if S(v, ch(v)) is indeed a k-resolving set for TP,1. If this is the case, we proceed with

l(P, 1) = null. If we encounter a contradiction, we proceed with l(P, 1) = k.
20: for (d(V, x), d(V, s)) ∈ Pr1(V, ch(V )) do
21: if d(V, x) ̸= 1 then
22: x and P are distinguished.
23: if Pr2(V, ch(V )) = ∅ then
24: S(V, ch(V )) is a k-resolving set for TP,1.

l(P, 1)← null.
Update all items corresponding to TP,1.
Seen(P ) = 1

25: else
26: x ∈ Pr2(V, ch(V )) and P are not distinguished.

l(P, 1)← k
S(P, 1)← S(V, ch(V ))
Update all items corresponding to TP,1.
Seen(P ) = 1

27: end if
28: else
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29: x and P are not distinguished.
l(P, 1)← k
S(P, 1)← S(V, ch(V ))
Update all items corresponding to TP,1.
Seen(P ) = 1

30: end if
31: end for
32: end if
33: end if

We return to the analysis and proof of this part of the algorithm in Section 4.1.1.

3.7 Merging subtrees

Below we give a heuristic explanation of how the algorithm merges subtrees in Section 3.7.1 and the pseudo-
code for merging subtrees in Section 3.7.2. In the pseudo-code for the final algorithm we separate the cases
when the vertex being processed v is a leaf and when v is not a leaf. We do this because adding the parent
vertex is a slightly different operation when v is a leaf as opposed to not a leaf. In the pseudo-code for
merging subtrees, there is no need to distinguish between cases when v is a leaf and v is not a leaf, so this is
left out of the pseudo-code in Section 3.7.2.

3.7.1 Heuristic explanation of merging subtrees

When the algorithm is processing a vertex v which is the m-th child of p(v) and decides to merge subtrees, it
will merge the two subtrees Tv,ch(v)) and Tp(v),m−1 into the single subtree Tp(v),m, so the subtree with root v
will merge with the subtree of its parent p(v).

p(v)

v

Figure 11: Vertices which the algorithm sees as being part of the same subtree are in the same circle. The
vertex v is being processed. The algorithm sees that its parent, p(v), is already part of a subtree which the
algorithm has seen, so it decides to merge the subtrees Tv,ch(v) and Tp(v),m−1 into one subtree, Tp(v),m. In
this case, m = 3, because v is the third child of p(v).

The idea behind merging subtrees is that we see if we can postpone placing a sensor, and only when
we encounter a contradiction in our requirement that S(p(v),m) combined with a sensor outside Tp(v),m at
distance l(p(v),m) from p(v) is a k-resolving set for Tp(v),m do we place a new sensor. We do not allocate
l(p(v),m) immediately. Instead, we allocate a ‘temporary’ value for l(p(v),m), denoted by l′. We use this
temporary value l′ to check if using this value for l(p(v),m) would contradict the aforementioned requirement.
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If the algorithm finds a contradiction, this value l′ would not work as a value for l(p(v),m), so a new value
for l′ must be chosen or, if there are no more values for l′ left to try, a sensor must be placed on v.

For the merged subtree Tp(v),m to be resolved means all possible vertex-vertex pairs in the subtree are
distinguished by S(p(v),m) = S(p(v),m− 1)∪S(v, ch(v)) combined with a sensor at distance l(p(v),m) from
p(v). We separate two kinds of vertex-vertex pairs: The first is a pair where both vertices are from the same
subtree (from the same subtree before merging, that is), the second is a pair where the vertices are in different
subtrees. To make sure all vertex-vertex pairs where both vertices are from the same subtree are distinguished,
we use the ‘sub’-algorithm Check-cases (Section 3.7.3). Check-cases determines the largest value l′ such that
all vertex-vertex pairs in Tp(v),m−1 and all vertex-vertex pairs in Tv,ch(v) are resolved by the sensors in the
merged subtree S(p(v),m) combined with a sensor outside the merged subtree at distance l′ from the root of
the merged subtree, p(v). To summarize; Check-cases finds the largest value l′ such that all vertex-vertex
pairs where both vertices are from the same subtree are resolved by S(p(v),m) = S(p(v),m− 1)∪ S(v, ch(v))
combined with a sensor outside Tp(v),m at distance l′ from p(v). This means that any value larger than the
value for l′ found by Check-cases would certainly not result in a k-resolving set for Tp(v),m. To determine if
all vertex-vertex pairs with the vertices in different subtrees are distinguished, we use another sub-algorithm:
Check-resolving (Section 3.7.5). Given the set of sensors in the two subtrees and some value l′, Check-resolving
returns True if all vertex-vertex pairs with the vertices from different subtrees are distinguished by the
combined set of sensors and a sensor outside the merged subtree Tp(v),m at distance l′ from the root p(v),
False if some such vertex-vertex pair is not distinguished.

The algorithm merges subtrees Tv,ch(v) and Tp(v),m−1 as follows: As a first step, we set l′ equal to
the output of the sub-algorithm Check-cases. With this l′, we perform Check-resolving on S(p(v),m) =
S(p(v),m−1)∪S(v, ch(v)) and l′. If Check-resolving returns True, the requirement that S(p(v),m) combined
with a sensor outside Tp(v),m at distance l′ from p(v) resolves Tp(v),m holds. We set the temporary l′ as
permanent l(p(v),m) and we can continue with processing the next vertex in the endvertex list (Definition
2.5). If Check-resolving returns False, we need to try the next-largest value for l′: We set l′ = l′ − 1 and run
Check-resolving again. This is repeated until Check-resolving returns True or there are no more values for
l′ left to try (when l′ = 1 failed). When the latter is the case we place a sensor on the vertex v which the
algorithm is processing, and repeat the whole process explained in this paragraph.

3.7.2 Pseudocode for merging subtrees

Algorithm 2 Pseudo-code for merging subtrees

1: The algorithm is processing a vertex V with parent vertex P . It merges the subtrees TP,m−1 and TV,ch(V )

into the single subtree TP,m.
2: l′ ← Check− cases(S(P,m−1), l(P,m−1), DistS(P,m−1), S(V, ch(V )), l(V, ch(V )), DistS(V, ch(V )))
3: if Check−resolving(S(P,m−1), l(P,m−1), DistS(P,m−1), S(V, ch(V )), l(V, ch(V )), DistS(V, ch(V )), l′)

= TRUE then
4: S(P,m)← S(P,m− 1) ∪ S(V, ch(V ))
5: l(P,m)← l′

6: Update all items corresponding to TP,m.
7: else
8: if l′ ̸= null then
9: l′ ← l′ − 1

10: while Check − resolving(S(P,m − 1), l(P,m − 1), DistS(P,m − 1), S(V, ch(V )), l(V, ch(V )),
DistS(V, ch(V )), l′) = FALSE do

11: if l′ ̸= 1 then
12: l′ ← l′ − 1
13: Continue the while-loop
14: else
15: S(V, ch(V ))← S(V, ch(V )) ∪ {V }.

Update all items corresponding to TV,ch(V ).
Run this algorithm again for V and P .

16: end if
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17: end while
18: else
19: l′ ← k
20: while Check − resolving(S(P,m − 1), l(P,m − 1), DistS(P,m − 1), S(V, ch(V )), l(V, ch(V )),

DistS(V, ch(V )), l′) = FALSE do
21: if l′ ̸= 1 then
22: l′ ← l′ − 1
23: Continue the while-loop
24: else
25: S(V, ch(V ))← S(V, ch(V )) ∪ {V }.

Update all items corresponding to TV,ch(V ).
Run this algorithm again for V and P .

26: end if
27: end while
28: end if
29: end if

We call in two ‘sub-’algorithms in lines 4,12 and 5,13. These algorithms, Check-cases and Check-resolving are
explained in Section 3.7.3 and 3.7.5 respectively.

3.7.3 Heuristic explanation of Check-cases for merging subtrees

Suppose the algorithm is processing a vertex v and decides to merge subtrees Tv,ch(v) and Tp(v),m−1 into a
single subtree Tp(v),m. The Check-cases algorithm finds the ‘temporary’ value for l(p(v),m), l′, which the
algorithm needs to proceed (Section 3.5). Check-cases assigns l′ a value such that increasing it any further
would certainly contradict the requirement for the algorithm that S(p(v),m) combined with a sensor outside
Tp(v),m at distance l′ from p(v) is a k-resolving set for Tp(v),m. This value for l′ is the largest value such
that all vertex-vertex pairs in Tp(v),m where both vertices are from the same subtree before merging are
distinguished by S(p(v),m) combined with a sensor outside Tp(v),m at distance l′ from p(v). For any value
larger than this, we know there would be a vertex-vertex pair in the merged subtree which is not distinguished,
so we do not need to try it. If a subtree was allocated a value for l, then any value l′ < l would also resolve
that subtree, as is stated in the following claim, proven in Section 4.1.2:

Claim 3.11. Suppose the algorithm is processing a vertex v and allocated S(v, ch(v)) and l(v, ch(v)) such
that S(v, ch(v)) combined with a sensor outside Tv,ch(v) at distance l(v, ch(v)) from the root v is a k-resolving
set for Tv,ch(v). Then for any l′ ≤ l(v, ch(v)), S(v, ch(v)) combined with a sensor outside Tv,ch(v) at distance
l′ from the root v is also a k-resolving set for Tv,ch(v).

Because of this, any value for l′ smaller than the first value for l′ which Check-cases tries will always
individually resolve each of the two subtrees. By individually resolve, we mean all vertex-vertex pairs where
both vertices are from the same subtree are distinguished.

We separate seven cases, based on whether the subtrees are individually resolved by some sensor in the
other subtree or not. The cases are as follows:

(Case 1) Tp(v),m−1 is resolved by S(v, ch(v)) and Tv,ch(v) is resolved by S(p(v),m− 1).
This is the case when l(p(v),m− 1) ≥ DistS(v, ch(v)) + 1 and l(v, ch(v)) ≥ DistS(p(v),m− 1) + 1.
Each of the subtrees individually is resolved by a sensor in the other subtree, so any value for l′ might
work.
We set l′ ← null, if Check-resolving returns True, update all items and continue processing the next
vertex in the endvertex list (Definition 2.5). If Check-resolving returns False, we set l′ ← k, run
Check-resolving again and continue this loop, decreasing l′ on each iteration until Check-resolving
returns True.

(Case 2) Tp(v),m−1 is resolved by S(v, ch(v)) and Tv,ch(v) is not resolved by S(p(v),m− 1).
This is the case when l(p(v),m− 1) ≥ DistS(v, ch(v)) + 1 and l(v, ch(v)) < 1 +DistS(p(v),m− 1).
We know any sensor further than distance l(v, ch(v))− 1 from p(v) would not distinguish between all
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vertex-vertex pairs in Tv,ch(v).
We set l′ ← l(v, ch(v))− 1.
If Check-resolving returns False, we decrease l′ by 1 and run Check-resolving again. This loop continues
until Check-resolving returns True or until Check-resolving returns False for l′ = 1.

(Case 3) Tp(v),m−1 is not resolved by S(v, ch(v)) and Tv,ch(v) is resolved by S(p(v),m− 1).
Analogous to Case 2; If l(p(v),m− 1) < 1 +DistS(v, ch(v)) and l(v, ch(v)) ≥ DistS(p(v),m− 1) + 1.
We know any sensor further than distance l(p(v),m− 1) from p(v) would not distinguish between all
vertex-vertex pairs in Tp(v),m−1.
We set l′ ← l(p(v),m− 1).
If Check-resolving returns False, we decrease l′ by 1 and run Check-resolving again. This loop continues
until Check-resolving returns True or until Check-resolving returns False for l′ = 1.

(Case 4) Tp(v),m−1 is not resolved by S(v, ch(v)), Tv,ch(v) is not resolved by S(p(v),m− 1).
This is the case when l(p(v),m− 1) < DistS(v, ch(v)) + 1 and l(v, ch(v)) < DistS(p(v),m− 1) + 1.
To resolve both subtrees individually, we can not take l′ to be any value larger than the smallest l of
the two. Set l′ ← min(l(p(v),m− 1), l(v, ch(v))− 1).
If Check-resolving returns False, we decrease l′ by 1 and run Check-resolving again. This loop continues
until Check-resolving returns True or until Check-resolving returns False for l′ = 1.

(Case 5) l(p(v),m− 1) = null and l(v, ch(v)) ̸= null.
We separate two cases;

(5.1) When l(v, ch(v)) ≥ DistS(p(v),m − 1) + 1, the subtree Tv,ch(v) is resolved by some sensor in
S(p(v),m− 1). Naturally, the sensors S(p(v),m− 1) already resolve Tp(v),m−1, so both subtrees
are resolved individually and the new value for l(p(v),m) can be any value. Then we use Check-
resolving to find the optimal l′. First, we set l′ ← null and run Check-resolving. If Check-resolving
returns True, update all items and continue processing the next vertex in the endvertex list
(Definition 2.5). If Check-resolving returns False, we set l′ ← k, run Check-resolving again and
continue this loop, decreasing l′ on each iteration until Check-resolving returns True or until
Check-resolving returns False for l′ = 1.

(5.2) When l(V, ch(V )) < 1 + DistS(p(v),m − 1), the subtree Tv,ch(v) is not resolved by any sensor
in S(p(v),m − 1). Then the merged subtree still needs a sensor at distance no greater than
l(v, ch(v))− 1 from p(v) to resolve all vertex-vertex pairs in Tv,ch(v).
We set l′ ← l(v, ch(v))− 1. If Check-resolving returns False, we decrease l′ by 1 and run Check-
resolving again. This loop continues until Check-resolving returns True or until Check-resolving
returns False for l′ = 1.

(Case 6) l(p(v),m− 1) ̸= null and l(v, ch(v)) = null.
This is analogous to Case 5, so we separate two cases again;

(6.1) When l(p(v),m − 1) ≥ DistS(v, ch(v)) + 1, the subtree Tp(v),m−1 is resolved by some sensor in
S(v, ch(v)). Naturally, the sensors S(v, ch(v)) already resolve Tv,ch(v), so both subtrees are resolved
individually and the new value for l(p(v),m) can be any value. Then we use Check-resolving to find
the optimal l′. First, we set l′ ← null and run Check-resolving. If Check-resolving returns True,
continue. If Check-resolving returns False, we set l′ ← k, run Check-resolving again and continue
this loop, decreasing l′ on each iteration until Check-resolving returns True or until Check-resolving
returns False for l′ = 1.

(6.2) When l(p(v),m− 1) < 1 +DistS(v, ch(v)), the subtree Tp(v),m−1 is not resolved by any sensor in
S(v, ch(v)). Then the merged subtree still needs a sensor at distance no greater than l(p(v),m− 1)
from p(v) to resolve all vertex-vertex pairs in Tp(v),m−1.
We set l′ ← l(p(v),m− 1).

(Case 7) l(p(v),m− 1) = null and l(v, ch(v)) = null.
Each of the subtrees individually is resolved. Because every vertex is measured by a sensor in its own
subtree, we know Check-resolving will return True for l′ = null. This statement will be elaborated on
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in Claim 3.12 and proved in Section 4.1.2.
We set l′ ← null.

3.7.4 Pseudocode for Check-cases algorithm

Algorithm 3 Check-cases for merging subtrees

1: The algorithm is processing a vertex V with parent vertex P . It merges the subtrees TP,m−1 and TV,ch(V )

into the single subtree TP,m.
2: if l(P,m− 1) ≥ DistS(V, ch(V )) + 1 and l(V, ch(V )) ≥ DistS(P,m− 1) + 1 then
3: l′ ← null
4: else if l(P,m− 1) ≥ DistS(V, ch(V )) + 1 and l(V, ch(V )) < 1 +DistS(P,m− 1) then
5: l′ ← l(V, ch(V ))− 1
6: else if l(P,m− 1) < 1 +DistS(V, ch(V )) and l(V, ch(V )) ≥ DistS(P,m− 1) + 1 then
7: l′ ← l(P,m− 1)
8: else if l(P,m− 1) < DistS(V, ch(V )) + 1 and l(V, ch(V )) < DistS(V, ch(V )) + 1 then
9: l′ ← min(l(P,m− 1), l(V, ch(V ))− 1)

10: else if l(P,m− 1) = null and l(V, ch(V )) ̸= null then
11: if l(V, ch(V )) ≥ DistS(P,m− 1) + 1 then
12: l′ ← null
13: else
14: l′ ← l(V, ch(V ))− 1
15: end if
16: else if l(P,m− 1) ̸= null and l(V, ch(V )) = null then
17: if l(P,m− 1) ≥ DistS(V, ch(V )) + 1 then
18: l′ ← null
19: else
20: l′ ← l(P,m− 1)
21: end if
22: else if l(P,m− 1) = null and l(V, ch(V )) = null then
23: l′ ← null
24: end if

With the explanation for the Check-cases algorithm complete, we move on to the second sub-algorithm:
Check-resolving.

3.7.5 Heuristic explanation of Check-resolving for merging subtrees

The Check-resolving algorithm checks whether, when merging subtrees Tp(v),m−1 and Tv,ch(v), the sensors in
the two subtrees combined with a vertex at distance l′ from the root p(v) of the merged subtree is indeed
a k-resolving set for Tp(v),m, as required to proceed with the algorithm. The natural way to do this is by
checking for each vertex-vertex pair possible in the merged subtree Tp(v),m if the pair is distinguished by the
set of sensors in Tp(v),m or not. In practice, the algorithm can skip certain vertex-vertex pairs because we
know they are already distinguished, such as the vertex-vertex pairs where both vertices are from the same
subtree. This is due to Claim 3.11 combined with the fact that the output of Check-cases is a value l′ which
is smaller or equal to any of the value(s) of l of the subtree(s) which are not resolved by any sensor in the
other subtree. So when merging subtrees, the value of l′ which Check-cases determines is such that each of
the two subtrees individually are resolved by the set of sensors in the merged subtree S(p(v),m) and a sensor
at distance l′ from the root of the merged subtree, p(v). This implies that Check-resolving only needs to
check vertex-vertex pairs in Tp(v),m where the two vertices are not from the same subtree before merging.

For these vertex-vertex pairs in Tp(v),m where the vertices are not from the same subtree before merging
we separate four cases:

(Case 1) x is measured by its own subtree S(p(v),m− 1), y is measured by its own subtree S(v, ch(v)).
We state the following claim, proven in Section 4:
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Claim 3.12. Suppose the algorithm is processing a vertex v and merges subtrees Tv.ch(v) and Tp(v),m−1.
Let x ∈ V (Tp(v),m−1) be measured by any sensor in S(p(v),m− 1) and let y ∈ V (Tv,ch(v)) be measured
by any sensor in S(v, ch(v)). Then x, y are distinguished by S(p(v),m) = S(p(v),m− 1) ∪ S(v, ch(v)).

This claim implies this type of vertex-vertex pair must always be distinguished from each other, so
Check-resolving does not need to run any checks.

(Case 2) x is not measured by any sensor in its own subtree S(p(v),m − 1), y is not measured by
any sensor in its own subtree S(v, ch(v)).
Within Case 2, we separate three subcases. If the checks of one of the subcases is true, we conclude x, y
are distinguished and Check-resolving continues with checking the next vertex-vertex pair. If none of
the subcases are true, x, y are not distinguished by S(p(v),m) ∪ {s∗}, so Check-resolving returns False.

(2.1) x is measured by a sensor in S(v, ch(v)).
For this, we check if the closest sensor to v in S(v, ch(v)) can measure x.

d(x, p(v)) + 1 +DistS(v, ch(v) ≤ k

(2.2) y is measured by a sensor in S(p(v),m− 1).
For this, we check if the closest sensor to p(v) in S(p(v),m− 1) can measure y.

d(y, v) + 1 +DistS(p(v),m− 1) ≤ k

(2.3) x, y are distinguished by a vertex corresponding to l′.
A sensor on a vertex corresponding to l′ would not distinguish x, y iff it would not measure either
x or y, or if it measures both x and y to be equally far. We check if

min(k + 1, d(x, p(v)) + l′) ̸= min(k + 1, d(y, v) + 1 + l′)

(Case 3) x is measured by its own subtree S(p(v),m− 1), y is not measured by any sensor in its own
subtree S(v, ch(v)).
We state a claim which narrows down the vertex-vertex pairs within Case 3 and Case 4 which Check-
resolving needs to check.

Claim 3.13. Suppose the algorithm is processing a vertex v and merges subtrees Tp(v),m−1 and
Tv,ch(v). If a vertex x is measured and x /∈ Pr1(v, ch(v)) ∪ Prf (v, ch(v)) ∪ Pr2(v, ch(v)), then it is
distinguished from any vertex y ∈ NotM(p(v),m − 1). Conversely, if a vertex y is measured and
y /∈ Pr1(p(v),m − 1) ∪ Prf (p(v),m − 1) ∪ Pr2(p(v),m − 1), then it is distinguished from any vertex
x ∈ NotM(v, ch(v)).

We prove this claim in Section 4.

Therefore, we can assume x ∈ Pr1(p(v),m− 1) ∪ Prf (p(v),m− 1) ∪ Pr2(p(v),m− 1). Remember that
this means (d(p(v), x), d(p(v), s)) is known (Definition 3.3.1). Now, we separate four subcases:

(3.1) x ∈ Pr1(p(v),m− 1).
Then x is measured only though p(v). x, y are distinguished iff they do not have the same distance
from p(v). We check if

d(x, p(v)) ̸= d(y, v) + 1

When this check fails, x, y are not distinguished and the algorithm returns False.

(3.2) x ∈ Prf (p(v),m− 1).
Let s ∈ S(p(v),m− 1) be a sensor measuring x, and w(v, x) the pivotal vertex through which x is
measured. Note that, because x ∈ Prf (p(v),m− 1), d(p(v), w(v, x)) and d(x,w(v, x)) are known
(Definition 3.3.1). Then x, y are distinguished if they do not have the same distance from the
pivotal vertex w(v, x). We check if

d(y, s) =d(y, p(v)) + d(p(v), s) ̸= d(x, s)

=d(y, v) + 1 + d(p(v), s) ̸= d(x, s)

⇐⇒ d(y, v) + 1 + d(p(v), w(v, x)) ̸= d(x,w(v, x))
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When this inequality does not hold, x, y can still be distinguished by a sensor on a vertex
corresponding to l′ if such a sensor measures y. We check if

d(v, y) + 1 + l′ ≤ k

If both checks fail, x, y are not distinguished and the algorithm returns False.

(3.3) x ∈ Pr2(p(v),m− 1).
Then x is measured only through w(x, p(v)) (Definition 3.3.1). By definition of Pr2, x, y are
distinguished if y is not distance one from p(v).

d(y, p(v)) ̸= 1 ⇐⇒ d(y, v) ̸= 0

When this check fails, x, y are distinguished iff a sensor on a vertex corresponding to l′ measures
y, we check that

l′ ≤ k − 1

If both checks fail, x, y are not distinguished and the algorithm returns False. Both of these checks
do not depend on x, so in the implementation of the algorithm and in the pseudocode we do not
iterate over Pr2(p(v),m− 1), but instead we check if Pr2(p(v),m− 1) is empty or not. If it is not
empty, we do the two checks explained in this case, if it is empty, we do not perform the checks.

(Case 4) x is not measured by any sensor in its own subtree S(p(v),m− 1), y is measured by its own
subtree S(v, ch(v)).
This case is analogous to Case 3.

(4.1) y ∈ Pr1(v, ch(v)).
Then y is measured only through v. x, y are distinguished if they do not have the same distance
from v. We check if

d(y, v) ̸= d(x, p(v)) + 1

When this check fails, x, y can still be distinguished by a sensor on a vertex corresponding to l′ iff
a sensor at distance l′ from p(v) measures x. We check that

d(x, p(v)) + l′ ≤ k

When both checks fail, x, y are not distinguished and the algorithm returns False.

(4.2) y ∈ Prf (v, ch(v)).
Let s be a sensor measuring y, and w(v, y) the pivotal vertex through which y is measured.
Because y ∈ Prf (v, ch(v)), d(v, w(v, y)) and d(y, w(v, y)) are known (Definition 3.3.1). Then x, y
are distinguished if they do not have the same distance from the pivotal vertex w(v, y). We check
if

d(x, s) = d(x, p(v)) + 1 + d(v, s) ̸= d(y, s)

⇐⇒ d(x, p(v)) + 1 + d(v, w(v, y)) ̸= d(y, w(v, y))

When this check fails, x, y can still be distinguished by a sensor on a vertex corresponding to l′ iff
a sensor at distance l′ from p(v) measures x. We check that

d(x, p(v)) + l′ ≤ k

When both checks fail, x, y are not distinguished and the algorithm returns False.

(4.3) y ∈ Pr2(v, ch(v)).
Then y is measured only through pivotal vertex w(y, v) and this pivotal vertex has the property
that d(y, w(v, y)) = d(p(v), w(v, y)) (Definition 3.3.1). By definition then, all vertices in Tp(v),m−1

except p(v) are distinguished from y. We check if x is p(v):

d(x, p(v)) ̸= 0
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When this check fails, x, y can still be distinguished by a sensor on a vertex correspondnig to l′ iff
a sensor at distance l′ from p(v) measures x. We check that

l′ ̸= null

When both checks fail, x, y are not distinguished and the algorithm returns False. Both of these
checks do not depend on y, so in the implementation of the algorithm and in the pseudocode we
do not iterate over Pr2(v, ch(v)), but instead we check if Pr2(v, ch(v)) is empty or not. If it is not
empty, we do the two checks explained in this Case, if it is empty, we do not perform the checks.

3.7.6 Pseudocode for Check-resolving algorithm

Algorithm 4 Check-resolving for merging subtrees

1: The algorithm is processing a vertex V with parent vertex P . It merges the subtrees TP,m−1 and TV,ch(V )

into the single subtree TP,m.
2: for x ∈ NotM(P,m− 1), y ∈ NotM(V, ch(V )) do
3: if d(x, P + 1 +DistS(V, ch(V )) ≤ k then
4: Continue
5: else if d(y, V ) + 1 +DistS(P,m− 1) ≤ k then
6: Continue
7: else if min(k + 1, d(x, P ) + l′) ̸= min(k + 1, d(y, V ) + 1 + l′) then
8: Continue
9: else

10: x, y are not distinguished.
11: return FALSE
12: end if
13: end for
14: for x ∈ Pr1(P,m− 1), y ∈ NotM(V, ch(V )) do
15: if d(x, P ) ̸= d(y, V ) + 1 then
16: Continue
17: else
18: return FALSE
19: end if
20: end for
21: for x ∈ Prf (P,m− 1), y ∈ NotM(V, ch(V )) do
22: if d(y, V ) + 1 + d(P,w(V, x)) ̸= d(x,w(x, V )) ∨ d(V, y) + 1 + l′ ≤ k then
23: Continue
24: else
25: return FALSE
26: end if
27: end for
28: for x ∈ Pr2(P,m− 1), y ∈ NotM(V, ch(V )) do
29: if d(y, V ) ̸= 0 ∨ l′ ≤ k − 1 then
30: Continue
31: else
32: return FALSE
33: end if
34: end for
35: for x ∈ NotM(P,m− 1), y ∈ Pr1(V, ch(V )) do
36: if d(y, V ) ̸= d(x, P ) + 1 ∨ d(x, P ) + l′ ≤ k then
37: Continue
38: else
39: return FALSE
40: end if
41: end for
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42: for x ∈ NotM(P,m− 1), y ∈ Prf (V, ch(V )) do
43: if d(x, P ) + 1 + d(V,w(V, y)) ̸= d(y, w(V, y)) ∨ d(x, P ) + l′ ≤ k then
44: Continue
45: else
46: return FALSE
47: end if
48: end for
49: for x ∈ NotM(P,m− 1), y ∈ Pr2(V, ch(V )) do
50: if d(x, P ) ̸= 0 ∨ l′ ̸= null then
51: Continue
52: else
53: return FALSE
54: end if
55: end for
56: After performing all checks, if the algorithm has not yet returned False, it returns True.
57: return TRUE

We prove the claims required to show this sub-algorithm works in Section 4.

3.8 Processing the root

When the algorithm is processing the root v of the tree which the algorithm was given as input, it is not
possible to add the parent vertex of the root or to merge subtrees with the parent of the root as the root has
no parent. The way we process the root is as follows: If l(v, ch(v)) ̸= null, the algorithm places a sensor on v
to make sure the output of the algorithm is a k-resolving set. If l(v, ch(v)) = null, the sensor set is already a
k-resolving set for the tree so no sensor is placed.

3.9 Algorithm for finding k-truncated metric dimension

Finally, we put everything together for the pseudo-code for the full algorithm for finding the k-truncated
metric dimension of a tree.

Algorithm 5 Algorithm for finding k-truncated metric dimension

Require: k > 0, k ∈ N. EL and AL are the endvertex and its associated adjacency list, respectively. Set
I = 0
STEP 2

1: I ← I + 1
2: V ← EL(I)
3: P ← AL(I)
4: if V = P and l(V, ch(V )) ̸= null then
5: S(V, ch(V ))← S(V, ch(V )) ∪ {V }

l(V, ch(V ))← null.
Go to Terminating Step (line 106).

6: else if V=P then
7: Go to Terminating Step (line 106).
8: end if
9: if ch(V ) = 0 then

10: if Seen(P ) = 0 then
11: S(V, 0) = S(P, 1)← ∅
12: l(V, 0)← k, l(P, 1)← k − 1

Update all items corresponding to TP,1.
13: Seen(P ), Seen(V )← 1
14: Return to Step 2
15: else if Seen(P ) = 1 then
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16: S(V, 0)← ∅
l(V, 0)← k
Update all items corresponding to TJ,0.

17: l′ ← Check − cases(S(P,m− 1), l(P,m− 1), DistS(P,m− 1), S(V, 0), l(V, 0), DistS(V, 0))
18: if Check − resolving(S(P,m− 1), S(V, 0), l′) = TRUE then
19: S(P,m)← S(P,m− 1) ∪ S(V, 0)
20: l(P,m)← l′

21: Update all items corresponding to TP,m.
22: else
23: if l′ ̸= null then
24: l′ ← l′ − 1
25: while Check − resolving(S(P,m− 1), S(V, 0), l(V, 0), l′) = FALSE do
26: if l′ ̸= 1 then
27: l′ ← l′ − 1
28: Continue the while-loop
29: else
30: S(V, 0)← S(V, 0) ∪ {V }.

Update all items corresponding to TV,0.
Go back to line 20.

31: end if
32: end while
33: else
34: l′ ← k
35: while Check − resolving(S(P,m− 1), S(V, ch(V )), l′) = FALSE do
36: if l′ ̸= 1 then
37: l′ ← l′ − 1
38: Continue the while-loop
39: else
40: S(V, 0)← S(V, 0) ∪ {V }.

Update all items corresponding to TV,0.
Go back to line 20.

41: end if
42: end while
43: end if
44: end if
45: end if
46: end if
47: *Now V is not a leaf*
48: if Seen(P ) = 0 then
49: if l(V, ch(V )) = 1 then
50: S(P, 1)← S(V, ch(V )) ∪ {P}
51: l(P, 1)← k
52: Update all items corresponding to TP,1.
53: Return to Step 2
54: else if 2 ≤ l ≤ k then
55: S(P, 1)← S(V, ch(V ))
56: l(P, 1)← l(V, ch(V ))− 1
57: Update all items corresponding to TP,1.
58: Return to Step 2
59: else if l(V, ch(V )) = null then
60: To determine l(P, 1), we check whether S(V, ch(V )) distinguishes P and v,∀v ∈ V (TV,ch(V ))
61: for (d(V, x), d(V, s)) ∈ Pr1(V, ch(V )) do
62: if d(V, x) ̸= 1 then
63: x and P are distinguished.
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64: if Pr2(V, ch(V )) = ∅ then
65: S(V, ch(V )) is a k-resolving set for TP,1.

l(P, 1)← null.
Update all items corresponding to TP,1.
Seen(P ) = 1

66: else
67: x ∈ Pr2(V, ch(V )) and P are not distinguished.

l(P, 1)← k
S(P, 1)← S(V, ch(V ))
Update all items corresponding to TP,1.
Seen(P ) = 1

68: end if
69: else
70: x and P are not distinguished.

l(P, 1)← k
S(P, 1)← S(V, ch(V ))
Update all items corresponding to TP,1.
Seen(P ) = 1

71: end if
72: end for
73: end if
74: else if Seen(P ) = 1 then
75: l′ ← Check−cases(S(P,m−1), l(P,m−1), DistS(P,m−1), S(V, ch(V )), l(V, ch(V )), DistS(V, ch(V )))

76: if Check − resolving(S(P,m− 1), S(V, ch(V )), l′) = TRUE then
77: S(P,m)← S(P,m− 1) ∪ S(V, ch(V ))
78: l(P,m)← l′

79: Update all items corresponding to TP,m.
80: else
81: if l′ ̸= null then
82: l′ ← l′ − 1
83: while Check − resolving(S(P,m− 1), S(V, ch(V )), l′) = FALSE do
84: if l′ ̸= 1 then
85: l′ ← l′ − 1
86: Continue the while-loop
87: else
88: S(V, ch(V ))← S(V, ch(V )) ∪ {V }.

Update all items corresponding to TV,ch(V ).
Run this algorithm again for V and P .

89: end if
90: end while
91: else
92: l′ ← k
93: while Check − resolving(S(P,m− 1), S(V, ch(V )), l′) = FALSE do
94: if l′ ̸= 1 then
95: l′ ← l′ − 1
96: Continue the while-loop
97: else
98: S(V, ch(V ))← S(V, ch(V )) ∪ {V }.

Update all items corresponding to TV,ch(V ).
Run this algorithm again for V and P .

99: end if
100: end while
101: end if
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102: end if
103: end if
104: Terminating Step
105: return S(I, ch(I)), the k-resolving set.

Now, having explained and given the pseudocode for the full algorithm, we continue in Section 4 with the
analysis and proof of this algorithm.

4 Proving the algorithms validity

Proving the algorithm requires proving two statements. We give the first statement now as a proposition,
then give the proof in Section 4.1. The second statement has not been proved yet, so we will present it as a
conjecture.

Proposition 4.1. For any subtree Tv,m for which the algorithm has allocated a set of sensors S(v,m) and a
value for l(v,m), S(v,m) and a sensor outside Tv,m at distance l(v,m) from v fully resolve Tv,m.

This proposition implies the output of the algorithm is a k-resolving set for the tree given as input. We
repeat Conjecture 2.8 about optimality of the algorithm:

Conjecture. Fix k ∈ N. Given a tree T of size n, there is an O(n) algorithm which finds a k-resolving set
for T of size at most one greater than the truncated metric dimension of T .

We will present our reasons for this conjecture in Section 4.2.

4.1 Proving Proposition 4.1

We will prove Proposition 4.1 inductively, by showing that if Proposition 4.1 holds for some subtree Tv,ch(v)

(and Tp(v),m−1, if the algorithm has already allocated S(p(v),m − 1) and l(p(v),m − 1)), the algorithm
maintains that assumption after adding the parent vertex of v to the subtree or after merging Tv,ch(v) together
with Tp(v),m−1. To prove Proposition 4.1 inductively, we need a proof of the base case, which would be the
leaves of the tree.

Claim 4.2. Suppose the algorithm processes a leaf-vertex v. Then Tv,ch(v) is resolved by a sensor at distance
k from v.

Proof. Any sensor at distance k from the leaf v measures v, and since v is the only vertex in Tv,0, that sensor
fully resolves Tv,0.

4.1.1 Proving Proposition 4.1 for adding the parent vertex

In the explanation for adding the parent vertex (Section 3.6.1), in Claim 3.10 we stated that when
l(v, ch(v)) = null, it suffices to only check the vertices in Pr(v, ch(v)) are distinguished from p(v). We now
give a proof of this claim:

Proof of Claim 3.10. Let x /∈ Pr((v, ch(v)). We will prove x must be distinguished from p(v) by the sensors
in the subtree S(v, ch(v)) by separating two cases:

1. If the pivotal vertex of x does not exist, there must be some s1, s2 ∈ S(v.ch(v)) such that
Pxv ∩Pxs1 ̸= Pxv ∩Pxs2 (Definition 3.6). We define two vertices by where the path from x to v and the
path from x to s1, s2 split, respectively:

Pxw1
:= Pxv ∩ Pxs1

Pxw2
:= Pxv ∩ Pxs2
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We show either s1 or s2 distinguishes x and p(v). Suppose s1 does not distinguish x and p(v), so
|Ps1x| = |Ps1p(v)|. These paths split at vertex w1, so this implies |Pw1x| = |Pw1p(v)|. We write the paths
from s2 to x and p(v) as

Ps2x = Ps2w2
∪ Pw2x

Ps2p(v) = Ps2w2
∪ Pw2p(v)

(4.1)

Both w1 and w2 are on the path from x to p(v) and by assumption w1 ̸= w2, therefore |Pw2x| ≠ |Pw2p(v)|
(no two vertices on the same path can have the same distance to the endpoints of that path). Looking
at Equation 4.1 it becomes clear this implies s2 distinguishes x and p(v).

2. If the pivotal vertex of x does exist, for all sensors the path from x to that sensor contains the pivotal
vertex w(x, v). We assumed x /∈ Pr(v, ch(v)), so w(x, v) ̸= v and d(w(x, v), x) ̸= d(w(x, v), v) + 1. Let
s be any sensor measuring x. We write the paths from s to x and p(v) respectively:

Psx = Psw(x,v) ∪ Pw(x,v)x

Psp(v) = Psw(x,v) ∪ Pw(x,v)p(v)

The sensor s distinguishes x and p(v) if |Pw(x,v)x| ̸= |Pw(x,v)p(v)|, which holds by our assumption that
x /∈ Pr(v, ch(v)).

Remark 4.3. This implies that in the situation that l(v, ch(v)) = null, in order to check if p(v) is distinguished
from all vertices in V (Tv,ch(v)) it suffices to check if all vertices in Pr(v, ch(v)) are distinguished from p(v).

We will prove inductively Proposition 4.1 holds for the add-parent operation by case distinction. We
separate cases based on the value of l(v, ch(v)).

Claim 4.4. Suppose the algorithm has processed all children of v and, while processing some vertex earlier
(the last child of v to be exact), allocated S(v, ch(v)) and l(v, ch(v)) = 1 such that S(v, ch(v))∪{s∗}, where s∗

is a sensor outside Tv,ch(v) at distance l(v, ch(v)) from v, forms a k-resolving set for Tv,ch(v). The algorithm
now processes v and decides to add the parent vertex of v, p(v), to the subtree. Then Tp(v),1 is resolved by
S(v, ch(v)) ∪ {p(v)}.

Proof. The induction hypothesis states that the algorithm has allocated S(v, ch(v)) and l(v, ch(v)) such that
S(v, ch(v)) combined with a sensor outside Tv,ch(v) at distance l(v, ch(v)) from v is a k-resolving set for
Tv,ch(v). We see that l(v, ch(v)) = 1, and p(v) is the only vertex outside of Tv,ch(v) with distance 1 from v, so
by the induction hypothesis Tv,ch(v) is resolved by S(v, ch(v)) ∪ {p(v)}. When a sensor is placed on p(v) it
must be measured and distinguished from all vertices in Tv,ch(v), so S(v, ch(v)) ∪ {p(v)} forms a k-resolving
set for Tp(v),1. Thus l(p(v), 1) = null and the induction is advanced for the new subtree Tp(v),1.

Claim 4.5. Suppose the algorithm has processed all children of v and, while processing some vertex earlier
(the last child of v to be exact), allocated S(v, ch(v)) and 2 ≤ l(v, ch(v)) ≤ k such that S(v, ch(v)) ∪ {s∗},
where s∗ is a sensor outside Tv,ch(v) at distance l(v, ch(v)) from v, forms a k-resolving set for Tv,ch(v). The
algorithm now processes v and decides to add the parent vertex of v, p(v), to the subtree. Then Tp(v),1 is
resolved by S(v, ch(v)) and a sensor at distance l(v, ch(v))− 1 from p(v).

Proof. The induction hypothesis states that the algorithm has allocated S(v, ch(v)) and l(v, ch(v)) such that
S(v, ch(v)) combined with a sensor outside Tv,ch(v) at distance l(v, ch(v)) from v (we will denote this sensor
as s∗) is a k-resolving set for Tv,ch(v). We know d(p(v), s∗) = l(v, ch(v)) − 1 because p(v) must be on the
shortest path from v to s∗, and because l(v, ch(v)) is not greater than k, we can conclude p(v) is measured
by s∗. Moreover, p(v) is distinguished from all other vertices in Tv,ch(v) by being the closest vertex to s∗ in
Tp(v),1. We conclude Tp(v),1 is resolved by S(v, ch(v)) ∪ s∗, where s∗ is a vertex outside Tp(v),1 at distance
l(v, ch(v))− 1 from p(v). Thus l(p(v), 1) = l(v, ch(v))− 1 and the induction is advanced for the new subtree
Tp(v),1.
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Claim 4.6. Suppose the algorithm has processed all children of v and, while processing some vertex earlier
(the last child of v to be exact), allocated S(v, ch(v)) and l(v, ch(v)) = null in such a way that S(v,m) forms
a k-resolving set for Tv,ch(v). The algorithm now processes v and decides to add the parent vertex of v, p(v),
to the subtree. Then Tp(v),1 is resolved by S(v, ch(v)) if either of the following two cases is true:

1. DistS(v, ch(v)) ≤ k − 1 and Pr(v, ch(v)) = ∅. So when the parent of v, p(v), is measured by a sensor
in S(v, ch(v)) and there are no problematic vertices (Definition 3.3.1).

2. DistS(v, ch(v)) ≤ k−1 and Pr2(v, ch(v)) = ∅ and Pr1(v, ch(v)) ̸= ∅, ∀(d(v, x), d(v, s) ∈ Pr1(v, ch(v)) :
d(v, x) ̸= 1. So when the parent of v, p(v), is measured by a sensor in S(v, ch(v)) and there are only
type-1 problematic vertices, and none of them are adjacent to v.

If neither case is true, i.e. if p(v) is not measured by any sensor in S(v, ch(v)), Pr2(v, ch(v)) is non-empty
or there is some type-1 problematic vertex which is adjacent to v, Tp(v),1 is resolved by S(v, ch(v)) and a
sensor at distance at most k away from p(v).

Proof. The induction hypothesis states that the algorithm has allocated S(v, ch(v)) and l(v, ch(v)) such that
S(v, ch(v)) combined with a sensor outside Tv,ch(v) at distance l(v, ch(v)) from v is a k-resolving set for
Tv,ch(v). In the case that l(v, ch(v)) = null, S(v, ch(v)) is a k-resolving set for Tv,ch(v).

1. Through Claim 3.10, it is clear that if the induction hypothesis, DistS(v, ch(v)) ≤ k − 1 and
Pr(v, ch(v)) = ∅ all hold, Tp(v),1 is resolved by S(v, ch(v)), thus l(p(v), 1) = null and the induc-
tion is advanced for the new subtree Tp(v),1.

2. Let (d(v, x), d(v, s) ∈ Pr1(v, ch(v)) such that d(v, x) ̸= 1. For all sensors in S(v, ch(v)) which measure
p(v), v is on the path from sensor to p(v). By definition of type-1 problematic vertices, the same holds
for x (Definition 3.3.1). For all s ∈ S(v, ch(v)) which measure x:

Psx = Psv ∪ Pvx

Psp(v) = Psv ∪ Pvp(v)

|Pvx| ≠ 1 = |Pvp(v)|

So x and p(v) are distinguished by S(v, ch(v)). Combining this with the induction hypothesis S(v, ch(v)),
it becomes clear S(v, ch(v)) is a k-resolving set for Tp(v),1. Therefore l(p(v), 1) = null and the induction
is advanced for the new subtree Tp(v),1.

If neither case is true either p(v) is not measured by any sensor in S(v, ch(v)), there is a type-2 problematic
vertex or p(v) is not distinguished from some vertex x ∈ Pr1(v, ch(v)) at distance 1 from v. Either way,
we can measure and distinguish p(v) from all vertices in Tv,ch(v) with a sensor at distance at most k from
p(v). This sensor measures p(v) to be the closest sensor to itself in the subtree Tp(v),1, thereby distinguishing
p(v) from any vertex in Tv,ch(v). Combining this with the induction hypothesis, we see Tp(v),1 is resolved
by S(v, ch(v)) and a sensor at distance at most k from p(v). Therefore l(p(v), 1) = k and the induction is
advanced for the new subtree Tp(v),1.

We combine all claims to prove that adding the parent vertex of v to the subtree Tv,ch(v) maintains the
assumption that Proposition 4.1 holds.

Claim 4.7. Suppose the algorithm is processing a vertex v and, while processing some vertex earlier (the last
child of v to be exact), allocated S(v, ch(v)), l(v, ch(v)) such that S(v, ch(v)) combined with a sensor outside
Tv,ch(v) at distance l(v, ch(v)) from v k-resolves Tv,ch(v). Then after adding the parent vertex p(v) to the
subtree, the algorithm allocates sensors and a value for l(p(v), 1) such that S(p(v), 1) combined with a sensor
outside Tp(v),1 at distance l(p(v), 1) also k-resolves Tp(v),1.

Proof. Combining Claims 3.10, 4.2, 4.4, 4.5, 4.6, it follows that S(p(v), 1) combined with a sensor outside
Tp(v),1 at distance l(p(v), 1) k-resolves Tp(v),1.
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4.1.2 Proving Proposition 4.1 for merging subtrees

Proving Proposition 4.1 for merging subtrees relies on proving the Check-cases and Check-resolving algorithms
work as intended. Before we can prove Proposition 4.1 for merging subtrees, we need to prove some claims
which decrease the number of vertex-vertex pairs the Check-resolving algorithm needs to iterate over. We
start by proving Claim 3.11 given in Section 3.7.3, which states that when the algorithm has allocated S(v,m)
and l(v,m) for some subtree Tv,m such that S(v,m) combined with a sensor outside Tv,m at distance l(v,m)
from v resolves Tv,m, S(v,m) combined with a sensor outside Tv,m at any distance smaller or equal to l(v,m)
also resolves Tv,m.

Proof of Claim 3.11. Denote a vertex outside Tv,m at distance l(v, ch(v)) from v as s∗. Denote a vertex
outside Tv,m at distance l′ from v as s′ (s′ can also be a sensor on the vertex v if we so choose). Because
l′ ≤ l(v, ch(v)):

∀x ∈ V (Tv,m) : Ps∗x = Ps∗s′ ∪ Ps′x

Let x, y ∈ V (Tv,m), then
dk(x, s

∗) ̸= dk(y, s
∗) =⇒ dk(x, s

′) ̸= dk(y, s
′) (4.2)

By assumption S(v,m) ∪ {s∗} resolves Tv,m. Through (4.2), it becomes clear S(v,m) ∪ {s′} also resolves
Tv,m.

Remark 4.8. This claim implies that when merging two subtrees together, both subtrees individually are
resolved by the set of sensors inside that subtree and a vertex at distance l′ away from the root of the merged
subtree, with l′ the output of the Check-cases algorithm. Therefore, the Check-resolving algorithm does not
need to check vertex-vertex pairs where both vertices are from the same subtree.

In Claim 3.12, we state that when the algorithm is processing a vertex v and merges subtrees Tv,ch(v)

and Tp(v),m−1, if any vertex-vertex pair x, y exists where x ∈ Tp(v),m−1 and x is measured by some sensor in
S(p(v),m− 1), y ∈ Tv,ch(v) and y is measured by some sensor in S(v, ch(v)), then x and y are distinguished
from each other by the sensors in the merged subtree. We now give a proof of this claim.

Proof of Claim 3.12. We repeat the proof which was given in [6] by Gutkovich and Yeoh. Denote the sensor
in S(p(v),m− 1) which measures x as sx, and the sensor in S(v, ch(v)) which measures y as sy. We will show
one of sx, sy distinguishes x and y.

The proof is a proof by contradiction. Assume d(x, sx) = d(y, sx) and d(x, sy) = d(y, sy). Let a = lca(x, sx),
b = lca(y, sy). lca stands for lowest common ancestor, a term first introduced in [1] by Aho, Hopcroft and
Ullman. Due to the nature of a tree, any path between two vertices with no repeating vertex is the unique
shortest path between two vertices. This allows us to express the distances from x,y to the sensors sx, sy as
the following:

d(y, sx) = d(y, a) + d(a, sx)

d(x, sx) = d(x, a) + d(a, sx)

d(y, sy) = d(y, b) + d(b, sy)

d(x, sy) = d(x, b) + d(b, sy)

Now, we are ready to show a contradiction.

0 = d(x, sx)− d(y, sx)

= d(x, a)− d(y, a)

= (d(x, sy)− d(a, sy))− d(y, a)

= d(y, sy)− d(a, sy)− d(y, a)

= d(y, b)− d(a, b)− d(y, a)

= −2d(a, b) < 0,

a contradiction, as desired.
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Remark 4.9. This claim implies that when merging subtrees together, Check-resolving does not need to
iterate over any vertex-vertex pairs where the vertices are not from the same subtree but both are measured by
their respective subtrees.

In Claim 3.13 we state the following: Suppose the algorithm is processing a vertex v and merges subtrees
Tp(v),m−1 and Tv,ch(v). If a vertex x is measured and x /∈ Pr1(v, ch(v)) ∪ Prf (v, ch(v)) ∪ Pr2(v, ch(v)),
then it is distinguished from any vertex y ∈ NotM(p(v),m − 1). Conversely, if a vertex y is measured
and y /∈ Pr1(p(v),m − 1) ∪ Prf (p(v),m − 1) ∪ Pr2(p(v),m − 1), then it is distinguished from any vertex
x ∈ NotM(v, ch(v)). We now give a proof of this claim.

Proof. Let y ∈ NotM(p(v),m− 1), x measured and x /∈ Pr1(v, ch(v)) ∪ Prf (v, ch(v)) ∪ Pr2(v, ch(v)). This
implies one of the following must hold, according to our definitions of Pr1, Pr2, Prf (Definition 3.3.1):

1. Pxv ∩ Pxs = {x}.
This means the sensors measuring x are in Tx,ch(x). For all sensors s which measure x, Psy = Psx ∪Pxy,
so clearly |Pxs| ≠ |Pys|, and x, y are distinguished.

2. ∃s1, s2 ∈ S(v, ch(v)), |Pxs1 |, |Pxs2 | ≤ k s.t. Pxv ∩ Pxs1 ̸= Pxv ∩ Pxs2 .
Then there are two distinct vertices w1 and w2 where the paths Pxv, Pxs1 and Pxv, Pxs2 split, respectively.
One of s1, s2 must distinguish x and y. Suppose |Pxs1 | = |Pys1 |, this is equivalent to |Pxw1

| = |Pyw1
|.

We know w2 is also on the path Pxy and there can not be two vertices on a single path with equal
distance from its endpoints, so |Pxw2 | ≠ |Pyw2 |, which implies s2 distinguishes x and y.

3. ∀s1, s2 ∈ S(v,m) s.t. |Ps1x|, |Ps2x| ≤ k : Pxv ∩ Pxs1 = Pxv ∩ Pxs2 and d(w(x, v), x) ̸= d(w(x, v), v) + 1
and ∃s ∈ S(v,m) s.t. min(k + 1, |Pp(v)s|+ d(x,w(x, v))− d(w(x, v), p(v))) ̸= min(k + 1, |Pxs|)).
This statement means x is measured only through its pivotal vertex w(x, v), w(x, v) does not have
equal distance from p(v) as to x and there is a sensor s in S(v,m) which distinguishes x and a vertex
at distance d(w(x, v), x) away from w(x, v) outside the subtree Tv,m. We show y and x are always
distinguished. If |Pw(x,v)y| ̸= |Pw(x,v)x|, the sensors measuring x distinguish x and y, because we can
write the paths from any sensor which measures x, call this sensor s1 to x and y respectively as

Ps1x = Ps1w(x,v) ∪ Pw(x,v)xPs1y = Ps1w(x,v) ∪ Pw(x,v)y

Clearly s1 distinguishes x and y by our assumption that |Pw(x,v)y| ≠ |Pw(x,v)x|. If |Pw(x,v)y| = |Pw(x,v)x|,
by assumption the sensor s distinguishes x and y.

For x ∈ NotM(v, ch(v)) and y /∈ Pr1(p(v),m− 1) ∪ Prf (p(v),m− 1) ∪ Pr2(p(v),m− 1), the argument that
x, y are distinguished is the same.

Remark 4.10. This Claim implies Check-resolving does not need to iterate over vertex-vertex pairs where
one vertex is measured by the sensors in its own subtree but not in any of the problematic items and the other
vertex is unmeasured by the sensors in its own subtree.

We are now ready to prove Proposition 4.1 for merging subtrees.

Claim 4.11. Suppose the algorithm is processing a vertex v and decides to merge the subtrees Tv,ch(v) and
Tp(v),m−1 together into a single subtree Tp(v),m. Suppose also that the algorithm has allocated S(v, ch(v)),
l(v, ch(v)) and S(p(v),m− 1), (l(p(v),m− 1) such that Proposition 4.1 holds for each of the subtrees Tv,ch(v)

and Tp(v),m−1 individually. Then the algorithm finds S(p(v),m) and l(p(v),m) such that Proposition 4.1 still
holds for the merged subtree Tp(v),m.

Proof. We show the Check-resolving algorithm only returns True if the sensor set of the merged subtree
S(p(v),m) and a sensor outside Tp(v),m at distance l(p(v),m) resolve Tp(v),m. We have shown in Claim 3.11
Check-resolving does not need to check vertex-vertex pairs when both vertices are from the same subtree. For
the remaining vertex-vertex pairs where the vertices are in distinct subtrees, Check-resolving separates four
cases based on whether each vertex is measured by the sensors in its own subtree.

(Case 1) x is measured by its own subtree S(p(v),m− 1), y is measured by its own subtree S(v, ch(v)).
Through Claim 3.12, x and y must be distinguished.
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(Case 2) x is not measured by its own subtree S(p(v),m− 1), y is not measured by its own subtree
S(v, ch(v)).
x and y can be distinguished by a sensor from three different sources: S(p(v),m− 1), S(v, ch(v)) and l′,
as handled by subcases 2.1, 2.2 and 2.3. If x and y are not distinguished by any sensor, Check-resolving
returns False.

(Case 3) x is measured by its own subtree S(p(v),m− 1), y is not measured by any sensor in its own
subtree S(v, ch(v)).
Through Claim 3.13, we know Check-resolving only needs to check those vertex-vertex pairs in Case
3 where x ∈ Pr1(p(v),m− 1) ∪ Prf (p(v),m− 1) ∪ Pr2(p(v),m− 1). Each of these three subcases is
handled by one of 3.1, 3.2 or 3.3, by first checking whether x and y are distinguished by the sensors
which measure x. If they are not, we check if x and y are distinguished by a sensor corresponding to
l′. No other sensors can distinguish x and y, so these two checks determine conclusively if x, y are
distinguished. If some vertex-vertex pair fails both checks, Check-resolving returns False.

(Case 4) x is not measured by its own subtree S(p(v),m − 1), y is measured by its own subtree
S(v, ch(v)).
Case 4 is analogous to Case 3.

We see Check-resolving iterates over all vertex-vertex pairs in Tp(v),m which might not be distinguished from
each other and returns False when some vertex-vertex pair is not distinguished from each other. Therefore,
whenever Check-resolving returns True we know S(p(v),m)∪s∗, where s∗ is a sensor outside Tp(v),m at distance
l(p(v),m) is a k-resolving set for Tp(v),m, and the induction is advanced for the new subtree Tp(v),m.

4.1.3 Proof of Proposition 4.1

We are now ready to prove Proposition 4.1, which states that for any subtree Tv,m for which the algorithm
has allocated S(v,m), l(v,m), S(v,m) combined with a sensor outside Tv,m at distance l(v,m) from v is a
k-resolving set for Tv,m.

Proof of Proposition 4.1. Combining Claim 4.2, Claim 4.7 and Claim 4.11, it follows Proposition 4.1 must
hold by induction.

4.2 Conjecture of near-optimality

An important detail in Conjecture 2.8 is that we do not conjecture the algorithm always finds the k-truncated
metric dimension of a tree. Instead, we conjecture the difference between the k-truncated metric dimension
and the size of the k-resolving set the algorithm finds is always smaller or equal to one. The reason for this
is that we have found examples where the algorithm is sub-optimal, but we have not been able to find an
example where the difference in size between the smallest k-resolving set and the k-resolving set the algorithm
finds is greater than one. We present an example where the algorithm produces a sub-optimal output:

Figure 12: A counterexample against optimality of the algorithm for all k ≥ 3. Square, yellow vertices are
vertices where the algorithm would place sensors. The purple, circle vertex is a k-resolving set smaller than
the k-resolving set the algorithm finds.
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We have not been able to find an example where the difference between the k-truncated metric dimension
and the size of the k-resolving set which the algorithm finds is greater than one. Repeating the structure of
Figure 12 does not grow the gap between the size of the smallest k-resolving set and the size of the k-resolving
set which the algorithm finds. We do not have an explanation for this phenomenon.

5 Proving the algorithms time complexity

In this section, we prove the time complexity of the algorithm is O(k3n), where k is the measuring range of
the sensors and n is the size of the tree used as input for the algorithm. We do this by expressing the number
of steps the algorithm takes when processing the i-th vertex as a polynomial function of k with degree three.

Before analyzing the time complexity, we need to prove some bounds on the size of the items the algorithm
might iterate over.

Claim 5.1. For any subtree Tv,m for which the algorithm has allocated NotM(v,m) (Definition 5),
|NotM(v,m)| ≤ k.

Proof. The fact that NotM(v,m) is allocated means S(v,m) and l(v,m) have also been allocated. Through
Proposition 4.1, we know S(v,m) ∪ s∗ forms a k-resolving set for Tv,m, with s∗ a vertex outside Tv,m at
distance l(v,m) from v. When l(v,m) = null, every vertex in Tv,m must be measured so |NotM(v,m)| = 0.
Otherwise, the vertices in NotM(v,m) must be resolved by S(v,m) ∪ s∗ and they are not measured by
S(v,m), so they must be measured by s∗. Since l(v,m) ≥ 1, vertices in NotM(v,m) can not be further than
distance k (k − 1 to be exact, but we write k for convenience) from the subtrees root v. Moreover, no two
vertices in NotM(v,m) can have the same distance from the root v, as this would contradict that s∗ resolves
these two vertices. Thus, |NotM(v,m)| ≤ k.

Claim 5.2. For any subtree Tv,m for which the algorithm has allocated Pr1(v,m) (Definition 3.3.1),
|Pr1(v,m)| ≤ k.

Proof. This proof is similar to the proof of Claim 5.1. The fact that Pr1(v,m) is allocated means S(v,m)
and l(v,m) have also been allocated. By definition, vertices in Pr1(v,m) are measured through the root of
the subtree v (Definition 3.3.1), so vertices in Pr1(v,m) can not be further than distance k from v. Two
vertices in Pr1(v,m) can not have the same distance from v, as this would contradict Proposition 4.1, which
states S(v,m)∪ s∗, where s∗ is a sensor outside Tv,m at distance l(v,m) forms a k-resolving set for Tv,m.

Claim 5.3. For any subtree Tv,m for which the algorithm has allocated Prf (v,m) (Definition 3.3.1),
|Prf (v,m)| ≤ k.

Proof. The fact that Prf (v,m) is allocated means S(v,m) and l(v,m) have also been allocated. Let x and y
be two distinct vertices in Prf (v,m). We take px and py to be the vertex outside Tv,m at distance d(x,w(x, v))
from w(x, v) and d(y, w(y, v)) from w(y, v) respectively. As a first step of the proof, we show there can not
be two distinct vertices x, y in Prf (v, ch(v)) such that px = py. We will prove this by contradiction. Suppose
x, y are such that px = py. We will derive a contradiction by distinguishing two cases.

1. If w(x, v) = w(y, v), for lack of confusion we will refer to w(x, v) = w(y, v) as simply w. Notice that
our assumption that px = py implies d(x,w) = d(y, w). We will derive a contradiction by showing x
and y violate Proposition 4.1, which states x, y are distinguished by S(v,m) ∪ s∗, where s∗ is a vertex
outside Tv,m at distance l(v,m) from v. For all sensors which measure x and y, w is on the shortest
path from x,y to that sensor (per definition of Prf , Definition 3.3.1), respectively. Therefore the sensors
in S(v,m) can not distinguish x and y. By definition of the pivotal vertex, w is on the paths Pxv and
Pyv (Definition 3.6), so x, y can also not be distinguished by a sensor outside Tv,m at distance l(v,m)
from v. Therefore, x, y violate Proposition 4.1, a contradiction as desired.

2. If w(x, v) ̸= w(y, v), we derive a contradiction by showing y violates the conditions for being in
Prf (v,m). The condition y violates is the condition that no sensor in S(v,m) distinguishes py and
y. We will show a sensor which measures x distinguishes py and y. Remember that for any sensor
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sx which measures x, w(x, v) is on the path from that sensor to x. We know this sensor measures py

through the following

d(sx, p
y) = d(sx, p

x) = d(sx, w(x, v)) + d(w(x, v), x) ≤ k

The first equality holds by the assumption that px = py. Moreover, due to the assumption that
w(x, v) ̸= w(y, v), and per the definition of problematic vertices w(y, v) is the unique vertex with
the property that d(w(y, v), y) = d(w(y, v), py) (Definition 3.3.1), so sx must distinguish py and y, a
contradiction as desired.

Now we have shown no two vertices in x, y ∈ Prf (v,m) can have the same px = py.
In the second step of the proof, we show that for any x ∈ Prf (v,m), d(v, px) ≤ k must hold. By how we

defined px at the start of this proof, we know d(sx, p
x) = d(sx, x) ≤ k. We also know that

d(sx, p
x) = d(sx, w(x, v)) + d(w(x, v), v) + d(v, px)

Therefore d(v, px) ≤ k.
To finalise the proof, we combine the fact that for any x ∈ Prf (v,m), d(v, px) ≤ k and that there is no other

vertex y in Prf (v,m) with distance from v to py equal to d(v, px) in order to show that |Prf (v,m)| ≤ k.

Next, we examine the number of steps the algorithm takes when adding the parent vertex and when
merging subtrees, independently.

5.1 Time complexity of adding the parent

Claim 5.4. Suppose the algorithm is processing a vertex v in Tv,ch(v) and adds the parent of v, p(v), to the
subtree. The number of computational steps the algorithm performs is upper-bounded by a function of k.

Proof. We separate cases based on the value of l(v, ch(v)).

(Case 1) When l(v, ch(v)) = 1, the algorithm takes a fixed (not a function of k or n) number of steps before
updating all items corresponding to Tv,ch(v). Looking at Section 3.4.1, we see updating all items does
not require iterating over anything, so updating items is constant time.

(Case 2) When 2 ≤ l(v, ch(v)) ≤ k, the algorithm takes a fixed (not a function of k or n) number of steps before
updating all items corresponding to Tv,ch(v). Looking at Section 3.4.1, we see that updating all items
requires iterating over NotM(v, ch(v)), Pr1(v, ch(v)) and Prf (v, ch(v)).

(Case 3) When l(v, ch(v)) = null, the algorithm iterates over Pr1(v, ch(v)) in order to determine the value for
l(p(v), 1). After this, it updates all items corresponding to Tv,ch(v). Looking at Section 3.4.1, we see
updating all items requires iterating over NotM(v, ch(v)), Pr1(v, ch(v)), Prf (v, ch(v)).

Worst-case, the algorithm sees that l(v, ch(v)) = null and it proceeds to iterates once over NotM(v, ch(v)),
Prf (v, ch(v)) and twice over Pr1(v, ch(v)). Using Claims 5.1, 5.2 and 5.3, we see the number of computational
steps of adding the parent vertex to the subtree is smaller or equal to 4k.

5.2 Time complexity of merging subtrees

When the algorithm is processing a vertex v and decides to merge the subtrees Tv,ch(v) and Tp(v),m−1, it
performs the Check-cases and Check-resolving sub-algorithms until Check-resolving returns True. Therefore,
before upper-bounding the number of computational steps of the merging subtrees operation, we require an
upper-bound on these two sub-algorithms individually. Looking at Section 3.7.3, it is clear the Check-cases
algorithm does not iterate over any item, so the number of computational steps it takes is upper-bounded by
a constant function. We turn our attention to upper-bounding Check-resolving.

Claim 5.5. The number of computational steps of the Check-resolving sub-algorithm is upper-bounded by a
function of k.

36



Proof. Looking at Section 3.7.5, we see the Check-resolving algorithm iterates over five types of vertex-vertex
pairs:

1. x ∈ NotM(p(v),m− 1), y ∈ NotM(v, ch(v))

2. x ∈ NotM(p(v),m− 1), y ∈ Pr1(v, ch(v))

3. x ∈ NotM(p(v),m− 1), y ∈ Prf (v, ch(v))

4. y ∈ NotM(v, ch(v)), x ∈ Pr1(p(v),m− 1)

5. y ∈ NotM(v, ch(v)), x ∈ Prf (p(v),m− 1)

Using Claims 5.1, 5.2 and 5.3, we see the number of computational steps of the Check-resolving algorithm is
upper-bounded by 5k2 because the size of each item listed above is upper-bounded by k.

Now that we have bounded the number of computational steps of Check-cases and Check-resolving, we
can prove an upper-bound on the number of computational steps it takes to merge two subtrees.

Claim 5.6. Suppose the algorithm is processing a vertex v and decides to merge the subtrees Tp(v),m−1 and
Tv,ch(v). The number of computational steps the algorithm performs to merge the subtrees is upper-bounded
by a function of k.

Proof. Computationally, the worst-case scenario is Check-cases determines Case 1 or Case 5.1 hold, Check-
resolving returns False for all k + 1 possible values for l′ and the algorithm places a sensor on v. It needs
to update all items corresponding to Tv,ch(v) as well, which, looking at 3.4.1, we see this can be done in
constant time. After placing a sensor on v, worst-case the algorithm finds Case 6.1 holds and it proceeds to
run Check-resolving k times, until finally Check-resolving returns true for l′ = 1.

In this scenario, Check-resolving must return True after placing a sensor on v and trying l′ = 1. The
reasoning is as follows: There is a sensor on v, so l(v, ch(v)) = null and Tv,ch(v) is resolved by S(v, ch(v)).
Then every vertex in Tv,ch(v) is naturally measured by sensors in its own subtree, so the only vertex-vertex
pairs Check-resolving still needs to check are x ∈ NotM(p(v),m− 1) and y ∈ Pr1(v, ch(v)) ∪ Prf (v, ch(v)) ∪
Pr2(v, ch(v)). We know from the definition of problematic vertices that all sensors measuring y measure y
through its pivotal vertex w(y, v) (Defintion 3.3.1)(Definition 3.6). Vertices x and y are not distinguished by
the sensors in the merged subtree S(p(v),m) if their distance from the pivotal vertex is equal, so if

d(x,w(y, v)) = d(y, w(y, v))

Supposing this holds, a sensor outside Tp(v),m at distance 1 from p(v) (denote this sensor s∗) would distinguish
x and y, because

d(x, s∗) = d(x, p(v)) + 1

d(y, s∗) = d(y, v) + 1 + 1 = d(y, w(y, v)) + d(w(y, v), v) + 2

d(y, w(y, v)) = d(x,w(y, v)) = d(x, p(v)) + d(p(v), w(y, v))

=⇒ d(y, s∗) = d(x, p(v)) + d(p(v), w(y, v)) + d(w(y, v), v) + 2

=⇒ d(x, s∗) < d(y, s∗)

Therefore after placing a sensor on v, in this worst-case scenario Check-resolving returns True after trying k
values for l′. After finding Check-resolving is True, the algorithm updates all items corresponding to the merged
subtree Tp(v),m. Looking at 3.4.2, we see this requires iterating over NotM(v, ch(v)), NotM(p(v),m − 1),
Pr1(p(v),m− 1), Pr1(v, ch(v)), Prf (p(v),m− 1) and Prf (p(v),m− 1). Using Claims 5.1, 5.2 and 5.3, the
number of computational steps for updating all items is upper-bounded by

6k

Combining everything mentioned, we see in the worst-case scenario the algorithm runs Check-resolving 2k+ 1
times. We know the number of computational steps for Check-resolving is upper-bounded by 5k2 (Claim 5.5),
therefore the number of computational steps of merging subtrees is upper-bounded by

(2k + 1)(5k2) + 6k = 10k3 + 5k2 + 6k
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Now that we have proven the time complexity of merging subtrees, we have all the tools we need to prove
the time complexity of the algorithm in its entirety.

5.3 Proof of the time complexity of the algorithm

We are ready to prove the algorithm is O(k3n).

Proposition 5.7. The time complexity of the algorithm explained in this thesis is O(k3n).

Proof. We will prove the time complexity by showing the maximum number of computational steps possible
when processing a vertex v is a function of k. Using Claim 5.4 and Claim 5.6, we see the maximum number
of computational steps when processing a vertex v is

10k3 + 5k2 + 6k

Therefore, the number of computational steps for running the algorithm on a tree of size n is upper-bounded
by

n∑
i=1

10k3 + 5k2 + 6k = (10k3 + 5k2 + 6k)n

Therefore we conclude the algorithm is O(k3n).

6 Conclusion

Source-detection is a large, active field of research with a great catalogue of problems. Finding the k-truncated
metric dimension of trees is one of the open problems in this field [26]. In this thesis, we took the algorithm
for k-truncated metric dimension of trees which was given by Gutkovich and Song Yeoh [6], modified their
algorithm to improve it in both validity and time complexity, and proved the output of the algorithm as
given in this thesis is a k-resolving set. Moreover, we proved the time complexity of the algorithm is O(k3n).

7 Discussion

Further research could attempt to prove Conjecture 2.8 by proving the difference between the truncated
metric dimension and the size of the output of the algorithm given in this thesis is never greater than one.
After proving near-optimality of the algorithm, one could study the truncated metric dimension of other
families of graphs. There is much work to be done concerning the truncated metric dimension of graphs, as
to our knowledge, there is no known method of finding the truncated metric dimension of any (non-trivial)
family of graphs.

A method to find the truncated metric dimension of a family of graphs could be a powerful tool to study
the metric dimension of those graphs. A result by Tillquist et al. suggests that for any graph, the k-truncated
metric dimension approaches the metric dimension as the measuring range of the sensors increases [26].
Researching a method to find the k-truncated metric dimension of general graphs could therefore lead to a
breakthrough in the problem of finding the metric dimension of general graphs, which is NP-Hard [13]. As a
first step, one could modify the algorithm for the truncated metric dimension of trees in order to use it as
a heuristic for finding the truncated metric dimension and the metric dimension of graphs which could be
considered ‘locally tree-like’.
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