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Abstract—Sensing people with mmWave radars is gaining
significant attention. This growing interest is due to two factors:
radar monitoring provides more privacy than camera-based
alternatives, and radio waves are not as easily blocked as light
waves. Most mmWave studies, however, have three common
characteristics. They are done indoors, without protecting the
sensor (no casing), and the evaluation is performed for short
periods of time. To assess the suitability of mmWave sensing in
realistic outdoor scenarios, we deploy two nodes to track the
flow of pedestrians over a period of three months. This long-
term deployment provides three main contributions. First, we
follow a detailed process to design a casing that can protect the
sensors from harsh environmental conditions. Second, we install
our nodes close to a set of cameras that were already deployed in
the area. To compare the performance of both types of sensors,
we propose a framework that considers the different coverage
patterns of cameras and radars. Third, the time frame of our
evaluation considers various types of weather, from sunny days
to rainy and windy. Our results indicate that mmWave sensors
need to be explored further outside the comfort zone of indoor
spaces. To the best of our knowledge, this is the first long-term
study assessing the reliability of radar sensors in the 60 GHz ISM
band.

I. INTRODUCTION

A. Motivation
The modernization of the urban infrastructure promises

efficient and safe delivery of services in public places. Many
of these services require sensing people’s flow. For instance,
pedestrian monitoring can avoid unsafe crowding situations.
Similarly, through active crowd management at tourist desti-
nations, it is possible for civic authorities to intervene in a
timely manner [1].

There are two popular mechanisms for sensing people-
traffic, viz., device-based and vision-based. The device-based
mechanisms count the number of devices, such as mobile
phones, to estimate the traffic in a particular area [2]. The
main limitation of this method is that it assumes that ev-
ery individual carries one device. On the other hand, the
affordability of cameras and the simultaneous advancement in
vision processing algorithms have made vision-based systems
a popular choice for monitoring people-movement. The city
of Amsterdam alone has more than 1000 registered cameras
deployed for crowd sensing [3].

While the deployment of sensors is necessary for monitoring
the crowd flow, the increasing number of cameras in public
spaces can be problematic. Cities such as London, with more
than six hundred thousand surveillance cameras, have triggered
concerns amongst privacy advocates [4]. To circumvent this

concern, a few privacy-friendly cameras are commercially
available. Some cameras blur the faces, while others can be
configured not to share any images and instead pass only
the people count for further analysis. However, such software
mechanisms may still be prone to hacking. More importantly,
there is the issue of perceived privacy, which cause many
citizens to have strong reservations even with privacy-aware
cameras [5].

B. Challenges in mmWave sensing
Millimeter wave (mmWave) radar is emerging as a promis-

ing alternative for privacy-preserving crowd monitoring.
mmWave radar detects people and objects as point clouds,
making it difficult to collect personal information. The
mmWave radars are available as compact single-chip solutions,
and this improved availability and affordability has encouraged
their wider acceptance and deployment.

While recent works have explored the possibility of
mmWave radar deployment for sensing people’s flow [6]–[8],
they have several limitations. First, most deployments have
been done under indoor conditions. For urban applications,
the mmWave sensor must be deployed outdoors. This implies
that the radar must be enclosed in a radome1. The design
of the radome –which comprises its material, thickness, and
placement of radar– significantly influences the performance
of the system. Secondly, the studies have been conducted for
a short duration, thus not capturing the impact of sustained
operations under varying weather conditions. Thirdly, most of
the current literature captures the performance of the radar
under a controlled flow of people. Through this work, we
design a suitable radome and investigate the performance of
mmWave sensing with a flow of real-world pedestrians and
bikers in the license-free band (60 GHz).

C. Our contribution
To overcome the above limitations, we perform a thorough

evaluation of mmWave radar using the IWR6843ISK plat-
form [9]. In particular, our contribution is three-fold.

• A careful radome design [Section III]. We perform a care-
ful set of experiments to design an appropriate radome.
Our design considers important parameters such as the
width of the material and the exact location of the radar
sensor inside the radome. We compare the performance

1A radome is a structure to protect radar equipment, and it has to be made
from material that is transparent to radio waves
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Fig. 1: Point Cloud Tracking

of our prototype with a commercial alternative and show
that we perform better in terms of coverage.

• A real-world deployment [Section IV]. We deploy two
mmWave radar sensors to monitor real-world people’s
movement and compare their outputs with those from
commercial camera-based sensors. The location is reg-
ularly used by cyclists and pedestrians. We gather per-
minute data over a period of three months. The time frame
considers sunny, foggy, rainy, and windy days.

• A detailed evaluation [Sections V and VI]. We utilize pre-
cision, recall, and correlation metrics with different levels
of granularity to quantify the performance of mmWave
sensing. Our results show that, compared to the high
accuracy of indoor scenarios, radar systems outdoors still
need to improve. Detecting empty spaces has an accuracy
of 85% and estimating the flow of people has correlation
coefficients between 60% and 85%, depending on the
weather condition. We believe that, compared to the error
rate provided by people-counting cameras (below 10%),
the current performance of radars still needs to improve.

II. BACKGROUND

A. Properties of mmWave sensing

Frequency Modulated Continuous Wave (FMCW) radars are
a special class of mmWave radars, that are commercially avail-
able in a miniaturized form-factor for wide-scale deployment.
FMCW radars have a carefully designed array of transmitter
and receiver antennas. The radar sends chirp signals, which
are reflected by the environment and processed by the system
to provide point clouds for all the moving objects, as shown
in Figure 1. The point clouds provide angular information of
the objects, as well as the range and velocity [10].

The fact that people, or any dynamic element, are repre-
sented as points is the key strength of mmWave sensors to
maintain privacy. In the GHz bands, the wavelengths are in the
order of a few millimeters, which are too long to capture the
fine granularity present in human faces. Thus, even if the radar
platform is hacked to obtain the raw signals, the attacker will
be fundamentally limited regarding the depth of information
that can be attained.

To capture mobile elements as cloud points, the mmWave
radar has algorithms that remove static clutter [11]. Since
indoor scenarios offer a stable static background, mobile ele-
ments reflect clear signals. Furthermore, indoor evaluations do
not require adding a case, and hence, do not need to consider
the attenuation and distortion that is inherent to mechanical
enclosures. These two properties, static background and no
need for casings, allow mmWave studies to deliver indoor

applications that not only provide tracking [12] but also 3D
skeleton reconstruction [13] and vital sign monitoring [14].
Outdoors, the radars need casing and the background is not
static. Animals can be under the field of view and weather
conditions can affect the quality of the reflected signal (rain
or fog). Furthermore, wind also has a pernicious effect because
it blows leaves, plants, grass and other objects that appear in
the point cloud measurements. It is, hence, more challenging
to perform mmWave sensing in outdoor scenarios.

B. Frequency ranges for mmWave sensing
Another element that is often overlooked in mmWave stud-

ies is the operational band. mmWave radars are available in
three bands: 24GHz, 60GHz and 77GHz. The 77GHz band
is generally reserved for automotive applications. Initially, we
wanted to use a sensor on this band (to complement the traffic
information gathered by cars), but we consulted a municipality
that did not approve of its use. The 24GHz band has two main
components, an Ultra-Wide Band (UWB) and a NarrowBand
(NB). Spectrum regulations and standards developed by the
European Telecommunications Standards Institute (ETSI) and
Federal Communications Commission (FCC) prohibit new in-
dustrial products from using the 24GHz UWB. The NB offers
a limited bandwidth of 250MHz, adversely affecting people-
detection in this spectrum. On the contrary, the 60GHz sensor
operates in the free ISM band and offers a wide bandwidth
of 4GHz, providing richer point clouds and thus better object
identification and tracking [15]. In our deployment, we use
the IWR6843ISK platform from Texas Instruments (TI) in the
60GHz band.

III. RADOME DESIGN

An important consideration for any outdoor radar deploy-
ment is the design of the casing to protect the hardware
from weather-related phenomena. This enclosure is called the
radome and it needs to be transparent to radio waves.

We considered using a commercial product that already has
a radome but each node costs 600 $ and the node is designed
for indoor scenarios [16]. Given that the price of the mmWave
chip is 120 $, significant savings can be achieved if we design
our own casing. Later in this section, we compare our design
with the commercial product and show that our prototype not
only saves costs but also attains a better performance.

A. Parameter analysis
To design a radome, one needs to take into account two main

aspects. The first one is simple: To consider the mechanical
and electronic requirements for placing the radar chip, the
microcontroller, and the power circuitry. The second aspect
is more complex: To analyze electromagnetic effects in order
to minimize distortions to the emitted and received signals.

A thorough design of a radome requires full electromagnetic
simulations [17], [18]. Our objective is not to make an optimal
design from an electromagnetic perspective, but to build an
inexpensive casing that does not hinder performance. With
that goal in mind, we focus on three key parameters: the type
of material, its thickness, and the distance of the radome to the
radar’s antennas. These parameters are captured in Figure 2a.
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(a) Key parameters for a radome’s design.

(b) Experimental setup for
radome design, the radar has
a front aluminum plate.

(c) Results of the tests with PTFE (Teflon)
sheets of different thicknesses and dis-
tances from the radar antennas.

Fig. 2: The experiments for radome design.

Material. Following the suggestion from the manufacturer
(Texas Instruments), we use PTFE (Teflon) as the material for
our casing. Teflon has a relatively low cost and it is easy to
cut (manipulate) into the desired shape. Furthermore, there are
off-the-shelf sheets available with different thicknesses, which
is important because the thickness is another critical parameter.

Thickness. In mmWave systems, the signal’s bandwidth
usually spans several GHz. This means that the wavelength
value will vary across such bandwidth and thus the optimal
radome thickness will vary as well. Thus, in our evaluation
we test sheets with nine thickness values, equal to 0.5, 1.0,
1.5, 2.0, 2.9(∼ 3.0), 4.0, 4.9(∼ 5.0), 5.1, and 6.0 mm.

Radome-antenna distance. The radome-antenna distance
is determined by the signal’s wavelength. Theoretically, it
can be demonstrated that the optimal distance to minimize
reflections caused by the radome is an integer multiple of half
the wavelength in air [17], [18]. Using the central frequency
as the reference point, our evaluation considers four distance
values: 1.25 mm, 2.5 mm, 5 mm, and 10 mm, corresponding
in terms of wavelength to λ/4, λ/2, λ and 2λ.

Shape. For imaging applications, the best shape is a spher-
ical casing to ensure that the waves’ propagation distance
traveled within the dielectric radome is constant with respect
to the angle of the radar’s field of view [17], [18]. Similar
to the commercial product we use as a benchmark (explained
next), we use a flat surface due to its simplicity and the fact
that we are not focused on exact imaging applications, but on
simple tracking.

B. Evaluation.

To obtain the final radome’s design, we test Teflon sheets
considering all 36 combinations of thicknesses (9 values), and
antenna-teflon distances (4 values).

To test the different configurations we use a flat aluminum
plate as a target (due to its strong reflection). This plate is
placed in front of the radar at the boresight, at a distance of
approximately 6m. Figure 2b captures the setup used for the
radome design.

As a quantitative metric to compare the different configu-
rations, we use the Integrated Side Lobe Ratio (ISLR). This

TABLE I: Costs of Materials

Component Price($)/piece(excl. Taxes)
mmWave sensor: IWR6843ISK 120.87
Processor: RaspberryPi 4B 49.77
Casing: Front Radome (Teflon) 101.12
Casing: Back (Plastic) 12.74
Other (adapters, cables, etc.) ≈26.50
Total Price($) (excl. taxes) 311

is the ratio between the energy of the sidelobes in the radar
range profile and the energy of the main lobe associated with
the target response. Lower values indicate better performance
in the sense that the target lobe will be more easily detectable.

Figure 2c shows the ISLR results. It can be seen that the
best values are obtained for PTFE sheets of thickness equal
to 1 mm and a distance from the antennas of λ/4, i.e. 1.25
mm. These are the values used for the final fabrication of the
radome, shown in Figure 4. It is important to highlight the
importance of the empirical evaluation because the theoretical
values for thickness and distance are not optimal.

C. Comparison with commercial product

We bought one unit of a commercial product, viz., WAYV
Air from Ainstein, to benchmark the performance of our sys-
tem. It uses the same mmWave chipset we use in the 60 GHz
band. The brochure states that the sensor is designed for indoor
scenarios with a maximum range of 6 m. Considering that
the sensor is not designed for outdoor use (the casing does
not appear to be weatherproof), our evaluation is done on a
clear day in the same setup as our platform, c.f. Figure 3. In
this outdoor evaluation, the range was around 2.5 m, and the
system had trouble detecting more than three people. The cost
of the Ainstein sensor is 600 $, while the total cost of our
system is 310 $. The itemized costs are presented in Table I.
Besides reducing our costs by half, we also triple the range. In
the next section, we describe the configuration used to achieve
a range around 8 m. We cannot make conclusive remarks about
the reasons for the differences in the design of our systems
since all the design details of the Ainstein sensor are not
available.
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Fig. 3: Scenario. The gray path is for pedestrians and the
orange path is for bikes. The scenario has two cameras (outside
our control) and two of our mmWave sensors.
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Fig. 4: The mmWave modules installed on poles.

IV. EXPERIMENT SETUP

Two mmWave sensors are deployed on our university cam-
pus. The data analyzed for this submission corresponds to
three months: from January 2022 until April 2022. During this
time, the sensors experienced diverse weather conditions. We
collected the temperature, humidity, wind, precipitation and
fog parameters through a weather station located in proximity
to our deployment.

A. Installation setup

Figure 3 shows our deployment. The radome-enclosed sen-
sors are placed on lamp posts adjacent to a road frequently
used by pedestrians and cyclists. The nodes are installed
close to two people-counting cameras that were present in
the scenario to benchmark the performance of the mmWave
sensors. The nodes are placed at a height of 3.54 m to avoid
any pilferage. The orientations have an elevation angle of
25◦, and azimuth angles of 30◦ and 150◦. The casings have
rubber gaskets, cable glands and pressure valves to ensure the
radomes are resilient to water leakage.

B. System configuration

Sensor node: Figure 4 shows two sensor nodes. The left
sensor is closed and ready to be deployed, and the right
sensor is open. Each node consists of a TI IWR6843ISK as
the mmWave chipset and a Raspberry Pi (RPi) 4B as the
computational unit. The mmWave sensor computes the point
clouds and counts the number of passing objects. This data

Fig. 5: Eagle-eye view of deployment

is shared with the RPi through a UART link, and the RPi
uploads the data to the cloud via WiFi. The power supply unit
is connected to the AC mains and generates a regulated DC
voltage suitable for the mmWave module and RPi.

The computation of point clouds, static-noise removal, and
overall tracking is done by the firmware provided by the
manufacturer (Texas Instruments). The firmware allows se-
lecting different configurations, through empirical evaluation,
we choose the configuration for ‘Sense and Direct HVAC
Control’. The configuration generates a 2-dimensional point
cloud and covers the range and velocity parameters for our
use-case. The range and velocity are 10.35m and 6.065 m/s
respectively, while their resolutions are 0.089 m and 0.047
m/s.

C. An indirect measurement of accuracy
As stated before, we co-locate the mmWave sensors with

people counting cameras. The cameras, however, are not under
our control. These cameras only report the number of people in
the Field-of-View (FoV), but their FoV differ in shape and size
from the mmWave’s FoV. Figure 5 shows that while the FoV
of the cameras is rectangular (two yellow boxes), the mmWave
sensor has a conical FoV (blue cones). Thus, the objects seen
by the cameras and mmWave sensors differ. For instance,
while objects 3 and 4 are detected by mmWave sensors as well
as the corresponding cameras; only the cameras will observe
objects 1 and 2; and only the mmWave sensors will observe
objects 5 and 6. Overall, due to their bigger coverage, the
cameras will see more people on an average.

One approach to overcome this disagreement would be
to modify the orientation of the cameras and utilize basic
signal processing to bound the cameras’ coverage to match
the radars’ coverage. However, due to stringent privacy regu-
lations, we were not allowed to access the camera’s images or
modify their FoV in any way2.

The inability to change the parameters or configuration of
infrastructure that is already deployed is an important and
frequent challenge in real urban setups. These constraints are
in place to avoid jeopardizing in any way the safety, security
or privacy of citizens.

To alleviate the disagreement between the different cover-
ages, in the next section we propose a framework with different
metrics to compare the performance of these two systems.

2The Ethics Review Board gave us permission to deploy the mmWave
nodes.
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Fig. 6: Confusion matrix. The heatmap follows a log scale.

V. EVALUATION FRAMEWORK

Considering that the cameras and mmWave sensors have
different coverages, we first need to identify the appropriate
metrics, periods and quantization levels to make sure that we
do not distort the comparisons further. We start by formally
defining the metrics, and then, we use those metrics to analyze
the effect of different monitoring periods and quantization
levels. Our analysis first focuses on empty areas and then on
scenarios with one or more people.

A. Analysis of empty areas

Our sensors have a sampling rate of one image per minute.
Thus, during the three-month period, we gather around 130K
samples for each sensor. Figure 6 shows the confusion matrix
for one of the cameras and its corresponding mmWave sensor.
Given that the coverage of the sensors is different, this matrix
has to be considered carefully because the camera does not
provide the ground truth, only an approximation of it. In
spite of these differences, we are able to obtain one important
insight.

Insight 1: Outdoors, mmWave sensors have an error of
15% detecting empty scenarios. Despite the differences in
coverage, the fact that the camera’s view is greater than the
radar’s, allows us to state –with high probability– that if the
camera does not detect any person, the radar should not detect
any either. Thus, using the confusion matrix in Figure 6, we
could use precision and recall to quantify the performance of
mmWave sensors in detecting if an area is indeed empty. The
precision of the system is 94%, that is, if the mmWave sensor
indicates that the area is empty, very likely it is. The recall,
on the other hand, is 76%, which means that almost a quarter
of the empty scenarios are deemed as busy, i.e. the mmWave
sensor indicates that there are one or more people when there
are none in fact. The low recall is an artifact of the high
background noise present in outdoor scenarios, any mobile
element –an animal or a moving object – may be confused
as a person. Overall, combining the precision and recall of
the mmWave sensor into the F1 metric gives an accuracy of

84%, which is lower than the high accuracy reported for indoor
scenarios (error ≤ 1 person for 97.8% [19]).

B. Analysis of occupied areas (one or more people)

The analysis done for empty areas cannot be applied to busy
areas (one or more people). Given that the camera has a bigger
coverage, it can detect the presence of persons that are not
under the radar’s coverage. Partly due to this smaller coverage,
the radar’s recall for presence detection drops to 67%, that is,
around 30% of the time when the camera reports a person (or
persons), the radar reports an empty scenario. The confusion
matrix in Figure 6 also captures this underestimating behavior
due to the larger coverage of the camera: the lower triangle
has more points than the upper triangle. Next, we propose
using correlation metrics to overcome the different coverages
for scenarios with one or more people.

To analyze occupied periods, we first filter out all the
samples where the camera indicates zero presence, and then,
use correlation coefficients to analyze the count-similarity
between the sensors. The use of a correlation metric builds
upon the assumption that, over time, the flow of people
observed by the mmWave sensor is proportional to the flow
observed by the camera.

1) Correlation coefficient: The Pearson correlation coeffi-
cient is a widely accepted measure to evaluate the correlation
between two variables, X and Y . The coefficient has a range
between [-1,+1]. Values around ±0.8 are considered to have a
high correlation, values around ±0.4 are deemed as a medium
correlation and 0 implies that there is no dependency between
the variables. Equation 1 gives the mathematical definition.

ρX,Y =

∑N
i=1(xi − x̄)(yi − ȳ)√∑N

i=1(xi − x̄)2
√∑N

i=1(yi − ȳ)2
(1)

where, N is the sample size in X and Y . xi, yi are the ith

individual sample points of X and Y . x̄, ȳ are sample means

for X and Y , i.e., x̄ = 1
N

∑N
i=1 xi.

2) People-Flow: Most crowd-sensing applications are not
interested in an instantaneous view, but the flow over a period
of time. Thus, instead of correlating the individual samples,
we correlate the flow of people. The people’s flow is the
total number of people detected over a certain period of
time. Formally, if we denote aj as the number of people
sampled at time j, the flow (xi) for a period τ is given by:
xi=t =

∑t+τ
j=t aj .

In our analysis, we denote xτ
i and yτi as the flows measured

at the mmWave sensor and camera, respectively, for a period τ .
These flows are inserted in Equation 1 to obtain the correlation
between the two types of sensors.

Figure 7 shows the comparison of correlation coefficients
for different durations, viz., 15 minutes, 30 minutes, 1 hour
and 2 hours. We see that the correlation coefficients increase as
the period increases, but the difference is not significant. Thus,
for simplicity, we use only the hourly flow for the remainder
of our evaluation.

244

Authorized licensed use limited to: TU Delft Library. Downloaded on October 19,2023 at 13:04:20 UTC from IEEE Xplore.  Restrictions apply. 



15 mins 30 mins 1 hour 2 hour
Aggregation duration

0

0.2

0.4

0.6

0.8

1

C
or

re
la

tio
n

mmWave 1 Vs Camera 1
mmWave 2 Vs Camera 2

Fig. 7: Correlation under dif-
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Fig. 8: Correlation under dif-
ferent quantization levels.

3) Quantization levels: Often, crowd-monitoring applica-
tions do not require the exact number of people but labels
such as ‘Sparse’ or ‘Busy’. Thus, we compare the correlation
of three granularity levels, viz., (i) No quantization, where
the original xτ

i and yτi values are used in the correlation; (ii)
Fine-quantization, where the crowd levels are divided into five
categories and only the crowd levels are correlated; and (iii)
Coarse-quantization, with three crowd levels. Tables II and
III define the thresholds for the fine and coarse quantization,
respectively.

Figure 8 shows the correlation coefficients for the two
mmWave radars and their corresponding cameras at different
quantization levels. We observe that the correlation increases
for more fine-granular levels. The coarse quantization shows a
correlation of around 0.4 while the fine- and no-quantization
are around 0.6. This difference is not due to limitations of
the hardware or the algorithms to measure low granularity
levels, but it is rather an artifact of Pearson’s equation, which
penalizes the inaccuracy introduced by reducing the maximum
range of the coarse quantization, capped at 31 people in
Table III. To avoid this artificially generated error, we consider
the no-quantization in our next results.

VI. WEATHER OBSERVATIONS

Until now we have analyzed the aggregated data. In this sec-
tion, we evaluate the impact of individual weather conditions.
This evaluation is imperative for outdoor deployment. Using
the information from a weather station close to our university,
we divide the samples based on different weather parameters:
temperature, humidity, precipitation, solar radiation, wind and
fog. There were also a few days with snow but the samples
were too few to analyze that condition. It is important to
highlight that the weather station only provides data every six
hours. Hence for true representation, we label only the samples
close to the reporting time (± 1 hour). In effect, this means
that over a period of six hours, we only have two samples for
the hourly flow, instead of six.

To measure the correlation between both sensors, we first fil-
ter out the samples where the camera indicates zero presence.

TABLE II: Threshold levels for fine-quantization

Flow Levels Empty Sparse Normal Busy Crowded
Hourly people flow 0 1-12 13-30 31-60 � 61

TABLE III: Threshold levels for coarse-quantization

Flow Levels Empty Normal Crowded
Hourly people flow 0 1-30 � 31

This is done for two reasons. First, 85% of the samples show
no people, and hence, we do not want to skew the analysis.
Second, the assessment of basic presence has been already
done with precision and recall. After filtering the data, we use
the hourly flow of people considering no quantization. The
unquantized data for the radar and camera are then evaluated
with the correlation coefficient.

To assess the impact of each weather condition, we seg-
ment them into bins. While the temperature, humidity, solar
radiation and wind speed are divided based on different
intervals, precipitation and fog are binned depending upon
their presence. For example, Figure 10b shows four bins
for temperature, but Figure 10d only shows two bins for
precipitation: rain and no rain.

There are two important aspects that need to be considered
for correlation analysis. First, we need a sufficient number of
samples because, statistically, having few samples may incor-
rectly represent the impact. Second, the range of the values
needs to be similar, otherwise, the Pearson equation adversely
skews the correlation for lower ranges (as we saw during the
analysis of different quantization levels, c.f. Figure 8).

To obtain the number of samples and ranges for all weather
conditions (and their bins), we use the data from camera-1.
Figure 9 show the box-plots for temperature, humidity, solar
radiation, precipitation, wind speed and fog; and Figure 10 plot
their respective correlation coefficients. The boxplots capture
the quantiles and mean (red asterisk), and at the top of the
plot, we state the number of samples. The correlations for
the two sensors are represented in different colors: blue for
radar/camera 1 and red for radar/camera 2 in Figure 10.

We divide the results into two main groups: benign and
harsh conditions. Benign conditions are those where we do
not expect the sensor to be impacted much, such as changes
in temperature, humidity or solar radiation. Harsh conditions
capture more challenging parameters, such as precipitation
wind and fog.

A. Benign conditions

For temperature, humidity and solar radiation, the corre-
lation values in Figure 10 follow the mean (red asterisks)
in Figure 9. For example, for solar radiation the correlation
increases for the first three bins and then drops (Figure 10a),
following the same pattern of the mean in Figure 9a. There
are some cases where the correlation coefficient does not
follow the mean, but this effect can be explained by the
lower number of samples. For example, for temperature, the
correlation coefficients of the first three bins (Figure 10b)
follow the mean of Figure 9b, but the last point drops because
the number of samples decreases significantly from 118 to
37. The trends for humidity are more stable, the correlation
coefficients (Figure 10c) capture the slow decreasing trend of
the mean (Figure 9c) but without major differences. Overall,
the above observations provide a second important insight.

Insight 2: Under benign weather conditions, radar sensors
provide correlation coefficients that lay mainly between 60%
and 85%. Correlation coefficients cannot be used strictly as
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Fig. 9: People Flow

metrics for accuracy, i.e. we cannot state that radars are 60%-
85% accurate, but they indicate that even though radar sensors
cannot track the people-flow in a fine-grained manner (as they
do indoors), they can provide coarse-grained flow information.

B. Harsh conditions

We now focus our attention on more challenging weather
conditions: precipitation, wind and fog. A positive result is that
precipitation does not seem to have a negative impact on the
radar sensor. Even though we have more sample points for the
no-rain case, there is still a sufficient number of samples for the
rain case (Figure 9d), and the correlation coefficients remain
stable across the board, between 70% and 85% (Figure 10d).

The wind speed has a slightly higher impact than precipi-
tation but the effect is not so detrimental. All wind categories
have a similar mean (Figure 9e), and in spite of the differences
in the number of samples, the correlation coefficients remain
between 70% - 80% across the range (Figure 10e).

For the case of fog, the situation is more complex, when
there is no fog, the correlation reaches a value higher than the
aggregated data, around 70% (Figure 10f) compared to the
60% with no quantization in Figure 8. This better correlation
makes sense because without fog all measurements are clearer.
The problem we faced is that with fog we have limited data
(only seven samples) and the pair of sensors-2 (red) were
malfunctioning during some of this time. For sensors-1 (blue)
the correlation is around 50%, but no conclusions can be made
because of the limited amount of data and because cameras
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are less accurate on foggy days as well. Overall, the evaluation
under harsher conditions provides a third important insight.

Insight 3: Precipitation and wind speed do not seem to
affect the performance further, compared to the benign
scenarios. Rain seems to have little to no effect, compared
to clear days. Wind can cause false positives with radars, and
thus, an important research problem for the community is the
removal of background clutter with mmWave sensors, but the
correlation coefficient during busy periods remains stable. Fog,
on the other hand, is the situation where cameras are more
vulnerable and a longer study with accurate ground truth data
is required to assess the performance of radar sensors.

All in all, our outdoor evaluation provides a fourth overar-
ching insight.

Insight 4: mmWave radars in the ISM band (60 GHz) are
not yet ready to provide accurate information in outdoor
setups. The research community could balance the effort
put into analyzing radar sensors between indoor and outdoor
setups. The tracking accuracy of radars indoors is high (above
95%) and hence there is no major gap compared to using
cameras. Outdoors, however, the gap between cameras and
radars increases to levels that prevent mmWave being used
for fine-granular analysis.

VII. RELATED WORK

To the best of our knowledge, there is no study evaluating
the performance of mmWave radar for crowd tracking in the
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ISM band (60 GHz). Thus, we position our work within the
following related areas.

Outdoor people counting: The majority of outdoor people
counting solutions are implemented with video-based methods.
Sacchi et. al. exploit novel image processing methods for real-
time estimation of tourist-flows [20]. Under different weather
conditions, they report a counting error of about 10% for up
to 300 tourists. Hou et. al. estimate the number of people in
complicated outdoor scenarios (up to 100 people) [21], with
a best average error of around 10%. Overall, camera-based
solutions are a reliable alternative for people counting but they
raise up serious privacy concerns.

Another alternative for people counting is based on charac-
teristics of Wifi signals. Depatla et. al. develop an analytic
model mapping the probability distribution of the received
signal amplitude to people count [22]. Their accuracy with
count error less than 1 is 92% for up to nine people. This WiFi
solution preserves privacy but requires dedicated antennas and
extensive training data.

mmWave for indoor applications: mmWave radars are
finding a wide range of applications including vital sign
monitoring [14], activity recognition [23], people identifica-
tion [6] and 3D pose reconstruction [13]. All these applications
however are performed in controlled indoor setups with min-
imal background clutter and specific instructions to the users.
Through digital beamforming, multi-target detection and a
robust clustering technique, Wu et. al. can count people (up to
5) with an error ≤ 1 person for 97.8% of the time [19]. Weiss
et. al. use an adaptive OS-CFAR peak detection algorithm
and a vital sign verification algorithm to detect and check
targets. They can achieve 85.4% accuracy for indoor counting
for 0-4 people [24]. Similarly, the study by Gross et. al. [25]
demonstrates an accuracy of nearly 97% for up to 5 people in
indoor scenarios. All these indoor counting studies provide
high accuracy but cannot be directly mapped to outdoor
environment.

Automotive radar for outdoor people tracking: The 77-
81 GHz frequency band is licensed for automotive applica-
tions, limiting the amount of work for people detection. For
example, Scheiner et. al. propose a method to detect and track
an object/person around corners with an automotive radar
[26]. Through an image formation model for Doppler radar
non-line-of-sight (NLOS) measurements, they can derive the
position and velocity of people via reflections. Our work com-
plements the studies done in the automotive bands, as we target
a long-term urban scenario providing relevant information for
traffic management.

VIII. CONCLUSION

We analyze the performance of mmWave sensing by de-
ploying them outdoors for a period of three months and under
different weather conditions. We provide a step-by-step design
for a radome to enable outdoor deployment. Our study shows
that the performance of mmWave sensors drops in the outdoor
deployment as compared to the indoor case. In general, our
study indicates that radar sensors need to be further studied
outside controlled indoor setups. We plan to continue our

investigations by gaining access to camera images, comparing
them with mmWave point clouds, and developing advanced
algorithms for improving the accuracy, thus paving the way
for the deployment of mmWave radars in urban infrastructure.
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