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A B S T R A C T

Traffic flow can be described using three dimensions, i.e., space x, time t and cumulative flow N.
This study considers estimating the cumulative flow over space and time, i.e., N x t( , ), using
relative flow data collected by stationary and moving observers. Stationary observers, e.g., loop-
detectors, can observe flow at fixed position over time. Furthermore, automated or other
equipped and connected vehicles can serve as moving observers that observe flow relative to
their position over time. To present the value of relative flow data, in this paper, we take the
perspective of a model-based estimation approach. In this approach, the data is used in two
processes: (1) information assimilation of real-time data and models and (2) learning of the
models used in information assimilation based on historical data. This paper focuses on traffic
state estimation on links. However, we explain that, in absence of stationary observer that are
positioned at the link boundaries, it is valuable to consider the information propagation over
nodes. Throughout this study a LWR-model with a triangular fundamental diagram (FD) is used
to develop the principles that can be used for the two processes. These principles are tested in a
simulation (VISSIM) study. This study shows that we can find the traffic flow model parameters
and can partially estimate the link boundary conditions based on relative flow data collected by
moving observers alone. It also shows that the traffic flow behavior differs partially from the
LWR-model with triangular FD, and therefore, we recommend the option to learn and use other
traffic flow models in future research. Overall, relative flow data is considered valuable to obtain
model learning datasets and to estimate the traffic state.

1. Introduction

Traffic state estimation (TSE) is an important element in road traffic operations management and planning (Seo et al., 2017). It is,
for instance, important in infrastructure planning, dynamic traffic management (DTM) systems and navigation services. For each
application the desired estimation output can differ in terms of accuracy, reliability and semantics. For instance, navigation services
and DTM systems require real-time information, while this time-constraint is not there for infrastructure planning applications.
Furthermore, the required spatial resolution can differ, e.g., a local DTM system requires less spatial coverage than a navigation
service that needs information for all elements on each potential route.

A road traffic network can be represented as a set of links (roads), nodes (intersections or discontinuities like lane drops) and
network boundaries (source and sink nodes) (Seo et al., 2017). This paper focuses on TSE on links; however, as will be explained in
this paper, information that propagates over a network of links and nodes can also be valuable for link TSE. Therefore, we will discuss
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how information can propagate over such a network.
On a link, traffic flow can be described using three dimensions, i.e., space x, time t and cumulative flow N (Makigami et al., 1971).

The cumulative flow N x t( , ) is defined as the number of vehicles that have passed location x at time t, where it is important that we
include the same set of vehicles at all locations. If N x t( , ) is smoothed and continuously differentiable, the macroscopic traffic flow
variables flow q, density and mean speed u can be obtained by taken the derivatives of N x t( , ) to time and space. Furthermore,
overall link properties, i.e., the link travel-time and link vehicle accumulation (number of vehicles on the link), can be obtained from
the cumulative flow at the link boundaries, i.e., x0 (upstream boundary) and xL (downstream boundary). Due to large informative
value of the cumulative flow, in this study, we focus on estimating N x t( , ) within a space-time domain.

This study presents the value of relative flow data for TSE. This variable (relative flow) describes the change in cumulative flow,
i.e., N , over a path in space-time (which we denote as an observation path). Automated or other equipped and connected vehicles
could serve as moving observers that collect these data by observing the vehicles that they overtake and that overtake them (Redmill
et al., 2011; Florin and Olariu, 2017; Van Erp et al., 2018a). Furthermore, stationary observers, e.g., loop-detectors or road-side
camera-systems, can be used to observe the flow at a fixed position over time. For stationary observers the observation path is a
horizontal line in space and time. Although both describe the flow relative to the observation path, only stationary observers con-
sistently observe the macroscopic variable flow q.

To present the value of data, we take the perspective of a model-based estimation approach, see Fig. 1. In this approach, the data
are used for two processes (which are highlighted using the blue1 boxes): (1) Real-time data and models are fused, which we denote
as information assimilation (IA), to estimate the traffic state. And, (2) historical data are used to learn the models that are used in IA.
This study focuses on explaining the principles that can be used for both processes and how relative flow data can be transformed into
valuable information using these principles. Therefore, the principles help us to understand why the characteristics of relative flow
data (i.e., the combination of the observed variable and spatial-temporal characteristics) have a large value in traffic state estimation.
Designing and testing full methodologies for the two processes, which are aimed at extracting the potential information in the data, is
beyond the scope of this study.

Throughout this study, we consider data scenarios that rely on a combination of stationary and moving observers, and that rely on
moving observers alone. Positioning stationary observers at the link boundaries aligns with existing studies, e.g., Claudel and Bayen
(2010a) and Sun et al. (2017), as the resulting boundary observations play a crucial role in the estimation of N x t( , ). However,
multiple studies opt to limit the dependence of these stationary observers due to the high installation and operation costs (Seo et al.,
2017). Therefore, we will focus on scenarios in which we solely rely on moving observers to collect the relative flow data.

The main contributions of this paper are: (1) We show which valuable information relative flow data provide to learn the link
traffic flow model. For this purpose, we first explain which learning dataset can be constructed using relative flow data and then
explain which informative value this dataset has to find the model parameters. (2) We show how relative flow data can be fused with
the link traffic flow model to connect observation paths, estimate the link boundary conditions, and estimate the link supply and
demand. These principles can be used to estimate the traffic state based on moving observers alone. Furthermore, we explain that, in
absence of stationary observers that are positioned at the link boundaries, it may be valuable to consider information propagation
over nodes and that the estimates (i.e., link boundary conditions, supply and demand) may be used for this purpose. (3) Based on
these principles, we explain why it is valuable to observe the change in cumulative flow using observers that travel at different speeds
with respect to each other and with respect to the characteristic wave speeds of the link traffic flow model.

This paper is organized as follows. In Section 2, the potential relative flow data characteristics are discussed are compared to other
data types. Section 3 explains why the relative flow data are valuable in the two processes that are part of the model-based estimation
approach. In that section, different principles are explained that can be used to learn the link traffic flow model and estimate the
cumulative flow over space and time. To test and provide a better understanding of these principles, a simulation (VISSIM) case study
was conducted and is presented in Section 4. Finally, the conclusions are presented in Section 5.

Throughout this paper many different symbols are used. A description of these symbols is provided in Table 1.

2. Collecting relative flow data with stationary and moving observers

This section discusses the potential characteristics of relative flow data. We make a distinction between data collected with
stationary observers and data collected with moving observers. The former are collected with road-side sensing equipment, e.g., loop-
detectors (Treiber and Helbing, 2002; Wang and Papageorgiou, 2005; Van Hinsbergen et al., 2012). The latter may be collected with
vehicles equipped with sensors that observe the other road-users (Redmill et al., 2011; Florin and Olariu, 2017; Van Erp et al.,
2018a,b).

Below, we first discuss the potential characteristics of relative flow data that are collected with stationary or moving observers
(Section 2.1). Next, Section 2.2 discusses which types of data are used in studies that propose methodologies that estimate the traffic
state in or via the cumulative flow plane.

2.1. Potential data characteristics

Stationary and moving observers both observe the flow relative to a path in space-time. We refer to this path as the observation

1 For interpretation of color in Figs. 1, 6, 7, 11, 12, the reader is referred to the web version of this article.
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path. The position and speed of observer o at time t are respectively given by X t( )o and V t( )o , where V t X t( ) ( )o t o= . The observation
path of a stationary observer is a horizontal line in the space-time plane, i.e., it observes the flow with respect to a fixed position over
time. Moving observers observe the flow with respect to their position over time, i.e., their trajectory. Depending on the sensing
equipment and the infrastructure moving observers may also observe the flow for the traffic flow in the other direction. In this case,
the moving observer is not part of the traffic in the direction of interest and moves with a negative speed through space-time. Fig. 2
shows the observation paths for stationary observers, and moving observers that are part of the traffic flow or move in opposing
direction. The observer speeds of these types of observers will respectively be V t V t( ) 0, ( ) 0o o= and V t( ) 0o .

Fig. 1. Schematic representation of the considered model-based estimation approach.

Table 1
Description of symbols that are used in this article.

Description Notation Unit

Position x m
Time t s
Location upstream link boundary x0 m
Location downstream link boundary xL m

Flow q veh/s
Density veh/m
Mean speed u m/s
Cumulative flow N veh

Position of observer o at time t X t( )o m
Speed of observer o at time t V t( )o m/s
Cumulative flow on the observation path of observer o at time t N t( )o veh
Time when observer o is at position x T x( )o s

Triangular fundamental diagram:
Free-flow speed v f m/s
Wave speed w m/s
Passing rate r veh/s
Capacity qC veh/s
Critical density cr veh/m
Jam density j veh/m

Newell’s method:
Boundary over which the cumulative flow is known
Space-time point for which the cumulative flow is estimated P
Change in cumulative flow over v f -wave from to P N P

ff veh/s

Change in cumulative flow over w-wave from to P N P
cg veh/s

Speed of potential characteristic waves vc m/s
Model parameter p guess p Depends on parameter
Error in model parameter guess Depends on parameter
Error in element of Eq. (4) m/s

Supply S veh/s
Demand D veh/s
Upper bound restriction of the cumulative flow N+ veh
Lower bound restriction of the cumulative flow N veh
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Traffic sensing data can be disaggregated or aggregated (Seo et al., 2017). We solely use this categorization to define the flow
data. Disaggregated flow data describe all individual passings, i.e., time and direction. For stationary observers the direction is always
the same, i.e., the vehicle overtakes the stationary observer. In this case the cumulative flow N increases by one, i.e., +1. Moving
observers that travel in flow direction can be overtaken by another vehicle (N increases by one) or overtake another vehicle (N
decreases by one). Aggregated flow data describe the sum of all passings within a time-period. Fig. 2 visually shows the difference
between disaggregated or aggregated relative flow data for the different observers.

The observation path for stationary observers is fixed. Therefore, information related to the passing (disaggregated) or flow
(aggregated) suffices. However, spatial-temporal information, i.e., its position over time, is needed for moving observers. This in-
formation may be shared with a fixed time-interval (temporal-sampling), with a fixed space-interval (spatial-sampling), in case of an
event, e.g., passing, or a combination of these options. If the flow data is disaggregated it may be logical that the spatial-temporal
information is provided in case of an event. However, even if the cumulative flow does not change along an observation path, i.e.,
there is no event, it is still valuable to known the paths along which N is constant.

The observed cumulative flow is a discrete variable. However, to understand the relation of the relative flow to the macroscopic
variables flow q, density and mean speed u, we can consider the smoothed and continuously differential cumulative flow. Following
(Makigami et al., 1971) the three macroscopic variables can be determined for points in space-time by taking the derivatives to space
and time, where q x t N x t x t N x t( , ) ( , ), ( , ) ( , )t x= = and u x t q x t x t( , ) ( , )/ ( , )= . The smoothed cumulative flow along an ob-
servation path is given by N X t t( ( ), )o , which we denote as N t( )o . This allows us to describe the relative flow along an observation
path, which is the derivative to time of the cumulative flow along this path, i.e., N t X t t u X t t V t( ) ( ( ), )[ ( ( ), ) ( )]t o o o o= .

2.2. Data used in existing studies that estimate in or via the cumulative flow plane

Multiple methodologies have been proposed to estimate the traffic state in the cumulative flow plane. For instance, Newell’s
(three-detector) method (Newell, 1993a,b,c; Laval et al., 2012), Claudel’s method (Claudel and Bayen, 2010a,b) and Sun’s method
(Sun et al., 2017) can be used to estimate the cumulative flow for points in space-time. Other methodologies have been proposed to
estimate traffic flow features that can be directly derived from the cumulative flow curves at link boundaries, e.g., the vehicle
accumulation (Van and Hoogendoornn, 2015; Amini et al., 2016) and the travel-time (Bhaskar et al., 2010).

All these studies work with stationary observers that are positioned at the link boundaries. Furthermore, some studies, e.g.,
Claudel and Bayen (2008, 2010a,b), Bhaskar et al. (2010), Van and Hoogendoornn (2015) and Sun et al. (2017), consider probe
trajectory (or vehicle reidentification) data to describe N over a path (the probe trajectory) or between specific points in space-time.
Here, it is assumed that the probe vehicles do not overtake other vehicles or are overtaken by other vehicles, i.e., they assume N 0=
over the probe trajectory. The reason for adding the probe trajectory data to the stationary observers is twofold. Firstly, it yields
internal conditions (constraints) that can be used in estimation, e.g., Claudel and Bayen (2010a,b). Secondly, intersecting observa-
tions paths can be used to initialize the cumulative flow over observation paths and mitigate the cumulative error problem, e.g.,

Fig. 2. Aggregation level and spatial-temporal characteristics of (relative) flow data collected by different observers.
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Bhaskar et al. (2010) and Van and Hoogendoornn (2015).
However, there are important differences between probe trajectory data and relative flow data collected by moving observers. In

multi-lane traffic, i.e., if overtaking is possible, the cumulative flow can change over the probe or moving observer trajectory (Sun
et al., 2017). This change is not observed by the probes, but is observed by the moving observers. Therefore, moving observers that
are part of the traffic flow provide a more accurate representation of the change in cumulative flow over the observation path.
Furthermore, depending on the road infrastructure and equipment installed in the vehicle, moving observers can observe the change
in cumulative flow for other traffic flows, e.g., opposite traffic flows (Redmill et al., 2011) or parallel traffic flows. For these reasons
relative flow data is a good addition and/or alternative to the data considered in Claudel and Bayen (2008, 2010a,b), Bhaskar et al.
(2010), Van and Hoogendoornn (2015) and Sun et al. (2017).

3. Model-based traffic state estimation in the cumulative flow plane

This section discusses the principles that can be used for the two processes that are part of a model-based estimation approach,
i.e., (1) learning the models that are used in estimation based on historical data and (2) real-time estimation by assimilating real-time
data and models, and why the characteristics of relative flow data are valuable for applying these principles. Prior to discussing the
two processes, Section 3.1 explains the considered link traffic flow model (L-TFM) and Newell’s method (Newell, 1993a,b,c), which is
the foundation for the principles introduced in this section. Both processes take part in the cumulative flow plane. For learning the L-
TFM, see Section 3.2, this means that we remain in the cumulative flow plane to learn the model parameters. For traffic state
estimation, see Section 3.3, this means that we want to estimate N x t( , ). Section 3.4 discusses which spatial-temporal data char-
acteristics are desired to apply the principles explained in Sections 3.2 and 3.3.

3.1. Estimation using Newell’s method and a triangular fundamental diagram

Newell’s method (Newell, 1993a,b,c) can be used to estimate the cumulative flow value for points in space-time. This method
requires a LWR-model with a concave and continuous fundamental diagram (FD). For the sake of simplicity, we will illustrate the
principles in this paper based on a triangular FD (see Fig. 3a). However, the principles can be extended to other concave and
continuous FDs, e.g., piecewise-linear FDs (triangular FD is a two-piece-linear FD), Greenshields FD and Smulders FD. In Section 4,
we will apply the principles on data from a stochastic microscopic simulation, where drivers are not bound to a FD, let alone a
triangular FD. Hence, Section 4 will also show the accuracy of the results if the assumptions behind the LWR-model with a triangular
FD are partially violated.

The conventional LWR-model (Lighthill et al., 1955; Richards, 1956) can be re-written where the cumulative flow is the state
variable (Newell, 1993a,b,c):

N x t Q N x t( , ) ( ( , )) 0t x = (1)

where Q (·) is the flow-density FD of traffic flow.
The triangular FD is widely used in traffic state estimation ‘because of its simplicity, theoretically preferable features and some

empirical evidence’ (Seo et al., 2017). This FD can be described by three parameters: free-flow speed v f , wave speed w and passing
rate r, where r describes the relative flow observed by a moving observer that travels at w through any state on the congested branch
of the FD. The FD defines the minimum (lower bound) and maximum (upper bound) N between two points in space-time, which are
important the variational theory presented by Daganzo (2005). The lower and upper bounds depend on the speed of the line between

Fig. 3. Estimation using Newell’s method.
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these points. In some studies this line is referred to as a path, e.g., Daganzo (2005); however, to avoid confusion with observation
paths, we use the term ‘wave’. The triangular FD has two characteristic wave speeds, i.e., v f and w, which yield two restrictive waves
with respectively upper bounds for N of 0 and r t . Following Newell (1993a,b,c), we can estimate the cumulative flow in a point P
given a boundary over which N is known and from which we can draw a v f -wave and a w-wave to P. In this special situation, the
minimum of the two restrictions yields N for P. Fig. 3b provides an example in which N is known for (solid black lines) and we want
to estimate N for P. The restrictive paths are obtained by drawing lines starting from with the characteristics speeds. Next, the
cumulative flow for P, i.e., N x t( , )P P , is estimated using:

N x t N x t N x t r t t( , ) min[ ( , ), ( , ) ·( )]P P L P0 2 1 1= + (2)

This approach can be followed to estimate N x t( , ) for the full space-time domain if we have the initial condition (IC) and
boundary conditions (BCs). The IC and BCs describe the cumulative flow curves over the solid black lines that are shown in Fig. 3b
i.e., the IC describes N x t( , )min and the upstream and downstream BCs respectively describe N x t( , )0 and N x t( , )L .

3.2. Learning the link traffic flow model

The aim of this section is to explain how relative flow data can be used to learn the link traffic flow model (L-TFM) parameters.
For this purpose, we explain how a learning dataset can be constructed using relative flow data that contains combinations of the
change in cumulative flow and time over potential characteristic waves, see Section 3.2.1. This part yields fundamental insights that
can be used to explain which spatial-temporal (relative) flow data characteristics are valuable to learn the model parameters, see
Section 3.4. Next, in Section 3.2.2, we provide the theoretical relations between the t- and N -observations over potential char-
acteristics waves and the model parameters.

To learn the L-TFM parameters, an approach is considered for which we remain in the cumulative flow plane. This approach
differs from the approaches followed by Dervisoglu et al. (2009), Knoop and Daamen (2017) and Van Erp et al. (2018b), which use
flow and density estimates, i.e., q{ , }-estimates, to learn the triangular FD. These approaches fit the free-flow and congested branch
in the q{ , }-plane based on the difference between the fitted FD and the q{ , }-estimates. Although this may yield the ‘best’ fit in the
q{ , }-plane, it may not be the most accurate L-TFM for traffic state estimation in the cumulative flow plane.

As explained in the introduction, this study does not design full methodologies as our focus lies on understanding the value of
relative flow data. However, the principles explain in this section provide the basis for methodologies that can learn the model
parameters based on relative flow data. It is left to future research to design and test such full methodologies and algorithms.

3.2.1. Construct a learning dataset that contains cumulative flow and time over potential characteristic waves
As explained in Section 3.1, a L-TFM can be used to estimate the cumulative flow N for a point P in space-time given that we know

N over a boundary , where all potential restrictive paths can be drawn between and P. Following earlier assumptions, we define
the model structure of the L-TFM that we want to learn: a LWR-model with a triangular fundamental diagram (FD), see Fig. 3a. In this
case, this model has three unknown parameters, i.e., the passing rate r, free-flow speed v f and wave speed w.

To learn the L-TFM, we want to obtain a learning dataset that describes the change in cumulative flow and time over all potential
restrictive waves for points in space-time. Here, all potential restrictive waves are straight lines in space-time that travel with a
certain speed, i.e., the potential values of v f and w. Stationary and moving observers can yield a set of observations paths that allow
us to construct a learning dataset that combines N and t over potential characteristic waves. If observation paths intersect, the

N -observations can be related to each other (Van Erp et al., 2018a). In this way, we can obtain N between two points that lie on
the same or different observation paths. Depending on the spatial-temporal characteristics of individual observation paths, we can
have a set of intersecting observation paths for which we can draw backwards (in time) propagating waves from a point P that all
intersect with an observation path that is part of the set. Fig. 4a and b illustrate two situations in which it is possible to find N and t
for the potential values of vc, where vc is used to describe the speed of a potential characteristic wave. In this figure, we only show a
selection of potential values of vc around v f and w. However, it is possible to draw waves for other values of vc.

3.2.2. Learn traffic flow model parameters
This section explains the theoretical relations between the learning dataset, i.e., combinations of N t, and vc, and the L-TFM

model parameters. Below, we first explain which values of N and t are expected given that the traffic flow follows a known
triangular FD. Next, we describe the rate errors, i.e., , over the characteristic waves that are induced by error in the model para-
meters.

The learning dataset contains the information that is needed to learn the traffic flow model parameters, i.e., v w,f and r, following
Newell’s method. For this purpose, Eq. (2) can be rewritten to:

N N r t0 min[ , ]P P P
ff cg cg= (3)

Note that this relation includes the change in cumulative flow and time from P to . Let us define cg as the point-of-intersection
of the w-wave and , which means that N N x t N x t( , ) ( , )P P P

cg cg cg= and t t tP P
cg cg= .

This function can be rewritten to describe the rates that are observed instead of the counts, i.e., N t/ instead of N :
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In the remainder of this section, we consider the second relation, i.e., Eq. (4). This relation can be interpreted as follows: The
cumulative flow in point P is restricted by the v f -wave, the w-wave or both (at capacity). We use the variable R to describe the
restrictive wave, where R R1, 2= = and R 3= respectively denote that the v f -wave, w-wave or both waves are restrictive. There-
fore, for each P the restrictive wave is given by RP :

R r

R r

R r
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cg
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= = <

= < =

= = =
(5)

Eq. (4) holds if traffic flow follows a triangular FD and the model parameters are known or correctly estimated. However, without
having the correct parameter values, it becomes more challenging to find the restrictive wave.

Let us explore the influence of error in the model parameters on the two elements of Eq. (4), i.e., N t/P P
ff ff and N t r/P P

cg cg .
In the remainder of this work, v w,f and r are used to denote the (potentially incorrect) parameter-guesses. Furthermore, is used to
denote the parameter errors, where the error in v f is given by v vv

f ff = . The observations related to the v f -wave, i.e., NP
ff and

tP
ff , are affected by v f , while the observations related to the w-wave, i.e., NP

cg and tP
cg , are affected by w. The errors related to

the two elements of Eq. (4) are denoted by , where cg describes the error related to N t r/P P
cg cg . The parameter errors v f and w

influence which backwards propagating waves are drawn from point P. The errors ff and cg can be quantified if the mean state
through which this wave travels still lies on the restrictive traffic state, e.g., cg can be quantified if the w-wave still fully travels
through congested (including capacity) states:

¯v
ff f= (6)

¯w r
cg = + (7)

These equations provide insight in relations between N t/P P for different potential values of the characteristics wave speeds,
i.e., v f and w. Fig. 5 provides a visual interpretation of the expected relations given that traffic flow follows a triangular FD for points
P that are restricted by the w-wave, i.e., the black line (jam state) and the orange line (queue discharge state), and that are restricted
by the v f -wave, i.e., the blue line. The exact shapes of the lines also depend on the non-restrictive traffic conditions and can therefore
differ. However, a line related to a point that is restricted by the w-wave should cross (r w, ), which is indicated by the red square, and
a line related to a point that is restricted by the v f -wave should cross ( v0, f ), which is indicated by the green dot. As every P is
restricted by one or both waves, see Eq. (5), every line should intersect with one or both characteristic points, i.e., the red square and/
or green dot. Furthermore, if P is not restricted by the characteristic wave related to that characteristic point, it should lie below the
characteristic point. As depicted by Eqs. (6) and (7), the slope of the lines depends on the average density. The wave traveling at the
wave speed that is restrictive for a point P travels through a single state, e.g., the jam state where j= . Therefore, the slope of the
lines in the related characteristic point depends on the density at P. This means that slopes of the black, orange and blue lines will be

Fig. 4. Examples of sets of observation paths (solid lines) that allow us to draw potential backwards (in time) propagating waves from a point P
(dashed lines) and obtain combinations of the change in cumulative flow and time over the different waves.
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equal to the jam density j, the critical density cr and a free-flow density ff at the characteristic point that relates to their restrictive
wave. These slopes and densities are indicated in Fig. 5.

3.3. Traffic state estimation using relative flow data and a link traffic flow model

This section explains how relative flow data combined with the L-TFM can be used to (partially) estimate the traffic state for
different data availability scenarios. This allows us to evaluate the potential value of relative flow data. The difference in these
scenarios lies in the inclusion of stationary observers positioned at the link boundaries.

Fig. 6 shows a data scenario in which all observation paths can be related to each other through intersection. In this scenario,
stationary observers positioned at the link boundaries are combined with a set of moving observers. The dots shown in Fig. 6a are
used to illustrate the intersection points between the observation paths. The green dots illustrate the initial intersection points of the
observers that can be used to define the cumulative flow over all observation paths in one framework. As explained in Van Erp et al.
(2018a), this is also a favorable scenario to mitigate the cumulative error problem (CEP), which is also referred to as the cumulative
drift problem (Van and Hoogendoornn, 2015), due to the intersection of already initialized observation paths (indicated by the blue
dots in Fig. 6a). As all observation paths are connected, Newell’s method can be applied to estimate the cumulative flow for points
that do not lie on an observation path. The space-time domain for which N x t( , ) can be estimated using this method is indicated with
a grey area in Fig. 6b.

In the remainder of this section, we will consider a more restrictive data scenario that solely includes moving observers.
Compared to the data configuration shown in Fig. 6, no stationary observers are positioned at the link boundaries. By removing the
stationary observers at the link boundaries, the observation paths are no longer connected at these boundaries and there are no
observation paths that fully cover the link boundaries. As a result, the boundary conditions (BCs) are not obtained and the remaining
observation paths can be (partially) unconnected.

However, by combining these observation paths with information in the form of traffic flow models, we may obtain information

Fig. 5. Expected relations between the observed rates dependent and the considered characteristic wave speed given that traffic flow follows a
triangular FD for points that are restricted by the w-wave (black and orange lines) and v f -wave (blue line). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Data scenario that combines stationary observers positioned at the link boundaries and a set of moving observers.
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on the link BCs and connect observation paths. The principles that can be used for this purpose are discussed below. First, Section
3.3.1 discusses which information remains without the availability of stationary observers on an individual link. Next, we explain
why it is beneficial to estimate the traffic state in a network of links and nodes, where information can propagate over a node, i.e.,
from link to link (Section 3.3.2).

The principles explained below can be used to design a full methodology that assimilates relative flow data and the traffic flow
model to estimate the traffic state on a single or set of links. Such a to-be-developed full methodology should be able to exploit the
valuable interactions of information (i.e., data and models) in space-time and thereby estimate ‘the most probable state’. For this
purpose, different assimilation techniques can be considered (Seo et al., 2017).

3.3.1. Information propagation on an individual link when relying on moving observers only
This section explains how relative flow data and the link traffic flow model (L-TFM) can be combined to connect observation paths

and estimate the BCs. Furthermore, we explain how the demand D (downstream boundary) and supply S (upstream boundary) can be
estimated, which are valuable for information propagation in a network, see Section 3.3.2. To explain which information is available
on an individual link, we often refer to Fig. 7. This figure shows the observation paths of four moving observers (solid black lines) that
are numbered at the point they enter the link in Fig. 7a. Again, a LWR-model with a known triangular FD is considered.

Intersecting observation paths can form sets that allow us to describe the relation in N between certain points on the link
boundaries (see Fig. 7b). A moving observer that crossed both boundaries describes N x T x N x T x( , ( )) ( , ( ))m L m L0 0 , where T x( )m 0 and
T x( )m L respectively denote the times at which moving observer m crossed the upstream and downstream link boundary. Furthermore,
if observation paths intersect, more points on the boundaries can be related to each other. Out of the four observation paths shown in
Fig. 7b only those of moving observers m2 and m3 intersect. The cumulative flow over these paths can thus be related to each other
based on their intersection point.

From one set of connected observation paths, using Newell’s method we may be able to estimate N for points that lie observation
paths that are not connected via intersection (see Fig. 7c). For instance, for the case shown in Fig. 7c, we can estimate N x t( , )P P in the
N-framework used for moving observers m2 and m3. As point P lies on the observation path of moving observer m4, the cumulative
flow over that observation path can be described in the same framework. However, we still miss information to describe the ob-
servation path of moving observer m1 in the same framework. With this information the link outflow between T x( )m L1 and T x( )m L2 and
link inflow between T x( )m 01 and T x( )m 03 remain unknown. However, the two unknowns are related, i.e., if information related to
N x T x N x T x( , ( )) ( , ( ))L m L L m L2 1 is obtained we can describe N x T x N x T x( , ( )) ( , ( ))m m0 0 0 03 1 .

In the case of a triangular FD (as is assumed here), Newell’s method relies on two forward (in time) propagating waves, i.e., one
traveling at free-flow speed v f and one traveling at wave speed w. The FD describes the maximum change in N as a function of time
over these waves, i.e., 0 for the v f -wave and r t for the w-wave. Combined with the knowledge that one of these two upper bounds is
restrictive, we can estimate N for the point where these two waves intersect. Newell’s method (in this form) cannot be used to
estimate N for a point in space-time on the link boundary as only one of the two time-forward propagating waves intersects with the
link boundary, i.e., v f -wave and w-wave respectively intersect with the downstream and upstream boundary. However, the individual
waves do yield restrictions on N , where forward and backward (in time) propagating waves respectively yield an upper and lower
bound for N . Fig. 7d shows a point (grey dot) in space-time together with two backwards (blue dashed arrow lines) and forward (red
dashed arrow lines) propagating waves. Given that we know N for the point indicated by the grey dot, the waves provide upper and
lower bounds for points on the link boundaries. We focus on these four paths as they play an important role in the remainder of this
section. However, we can find upper and lower bounds for N for any two points in space–time. Therefore, if we have a set of
observation paths for which N is initialized (i.e., N is defined in the same framework for all paths that are part of the set), we can use
all point that lie on these observation paths to find upper and lower bounds for N x t( , )0 and N x t( , )L .

By exposing the restrictive wave we can (partially) estimate the boundary conditions. As stated above, we cannot reach a point on
the link boundaries with a forward propagating v f -wave and w-wave that start from a point on the link. However, in some cases, we
can find that a forward propagating wave originating from the boundary is restrictive. The forward propagating waves from the
upstream and downstream boundaries are respectively the v f -wave and w-wave. A forward propagating wave starting from a point on
the link boundary (with unknown N) can intersect with the other forward propagating wave starting from a point and in a point for
which N is known. If the forward propagating wave between the two points with known N is not restrictive, the forward propagating
wave from the link boundary has to be restrictive. This information allows us to estimate N at the link boundaries. To explain this we
consider the examples shown in Fig. 7e and f, which respectively relate to estimating N for a point on the downstream and upstream
boundary. In these figures the two black dots indicate points in space-time for which we known N (as they both lie on a set of
connected observation paths). If this wave (indicated by the red dashed arrow line) is not restrictive, i.e., N 0< for Fig. 7e and

N r t< for Fig. 7f, the wave from the link boundary has to be restrictive. Therefore, we can use a backwards propagating wave to
the link boundary (indicated by the blue dashed arrow line) to estimate N on the link boundary.

Supply S and demand D can be partially estimated based on the BC estimates and direct upper bound restrictions of the boundary
conditions (see Fig. 7g and h). Direct upper bound restrictions are obtained using by drawing forward propagation waves with the
speeds v f and w, i.e., the red dashed arrow lines in Fig. 7d, from points on the observation paths to the link boundaries. We use the
notations N x t( , )0

+ and N x t( , )L
+ are used for these upper bound restrictions, which are respectively obtained using w-waves and

v f -waves. Demand and supply depend on the density at the link boundaries, see Fig. 8a and b. The critical density cr plays an
important role in estimating D and S. As can be seen in Fig. 8a and b, D and S are respectively equal to the capacity qC in over-critical
( cr) and under-critical ( cr) densities. Furthermore, D and S are respectively described by the free-flow and congested FD
branch in under-critical ( cr) and over-critical ( cr) densities. We include cr= both in under- and over-critical densities as
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D and S are equal to qC and are correctly described by the FD branches in this point. By comparing the link BC estimates and direct
upper bound restrictions, we can find whether the density at the link boundary is under-critical or over-critical. For the upstream
boundary, N x t N x t( , ) ( , )0 0>+ and N x t N x t( , ) ( , )0 0=+ respectively describe under-critical and over-critical densities. For the up-
stream boundary, N x t N x t( , ) ( , )L L>+ and N x t N x t( , ) ( , )L L=+ respectively describe over-critical and under-critical densities. For the
cases in which the link boundary condition estimates and direct upper bound restrictions are equal, D and S are equal to respectively
the outflow and inflow, i.e., N x t( , )t L and N x t( , )t 0 .

In some cases, we may not be able to determine the boundary conditions, while we can determine whether the link boundary
density is under- or over-critical. If we known that the upstream and downstream boundary densities are respectively under-critical
and over-critical, we known that supply and demand are equal to the capacity qC. As an example, we consider a moving observer that

Fig. 7. Example of information that is available on an individual link.
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travels in the opposing flow direction with free-flow speed. Starting on this observation path, we can draw forward propagating
v f -waves and w-waves that allow us to estimate N with respect to the observation path for an area in space–time. If a v f -wave is not
the restrictive wave for at least one point that it crosses, D qC= at the intersection of this v f -wave and the downstream boundary.
Similarly, if a w-wave is not the restrictive wave for at least one point that it crosses, S qC= at the intersection of this w-wave and the
upstream boundary.

The techniques discussed in this section allow us to partially determine the boundary conditions, demand and supply, based on
the information that is available on an individual link. Below, we explain why it is beneficial to use information that is available in a
network of links and nodes to estimate the traffic state. Furthermore, we explain why the link boundary estimates from one link can
help to estimate the boundary conditions on an other, connected link.

3.3.2. Information within a network of links and nodes
As explained above, the information available on individual links may yield estimates of the link inflow, outflow, demand and

supply. However, the moving observers combined with the L-TFM may not provide sufficient information to estimate the full link
boundary conditions. To overcome this problem, it is valuable to add information that is available for other parts of the road network.

The road network can be represented using links and nodes, where the nodes connect multiple in-flowing and out-flowing links.
There are many different types of nodes in the road traffic network, e.g., inhomogeneous nodes, merge nodes, diverge nodes, cross
nodes (Yperman, 2007). In general, motorway intersection nodes are less complex than urban intersection nodes. For instance,
motorway nodes will often connect less links and there is no turn delay. The latter means that a vehicle that exits an in-flowing link
will instantaneously enter an out-flowing link.

The conservation-of-vehicles condition can be used for information propagation over nodes. Especially, for simple nodes (e.g.,
those that are used to describe a lane drop, on-ramp or off-ramp) this condition can suffice to (partially) estimate the flow over the
node and in this way estimate the link boundary conditions from the node. For instance, in case of a lane drop (i.e., an in-
homogeneous node), we may be able to estimate the outflow of the in-flowing link during a period, while this is not possible for the
inflow of the out-flowing link. By applying the conservation-of-vehicles conditions, the inflow of the out-flowing link can be esti-
mated.

However, additional information may be added in the form of node traffic flow models (N-TFMs), which can be used to describe
the traffic behavior over a node. These models can describe the flow over a node as a function of the demand and supply. As explained
in Section 3.3.1, relative flow data combined with a L-TFM can provide (partial) estimates for the link boundary conditions, i.e.,
N x t( , )0 and N x t( , )L . Furthermore, the demand D (which relates to the downstream link boundary) and supply S (which relates to the
upstream link boundary) can be (partially) estimated. Partial information (i.e., if we are able to estimate a part of the flows, demands
and supplies) in combination with a N-TFM may suffice to estimate the other variables (i.e., the flows, demands and/or supplies that
we could not estimate on the individual links). Furthermore, for some periods we may be able to estimate all variables (potentially by
involving the conservation-of-vehicles conditions). This yields a learning dataset that combines the dependent and explanatory
variables of a N-TFM, which therefore may be used to learn the N-TFM.

Learning N-TFMs and estimating the traffic state in a network of links and nodes is left for future research. It is important to
understand that estimation in a network can be valuable to overcome the limitation of not observing the link boundaries using
stationary observers, and that estimates from individual links provide the information valuable to apply and learn N-TFMs.

Fig. 8. Demand and supply curves.
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3.4. Desirable spatial-temporal data characteristics

The spatial-temporal characteristics of the relative flow data affect the intersections of observation paths and the space–time areas
for which it is possible to draw forward or backwards propagating characteristics waves from the observation paths. Both play an
important role in the two processes that were discussed in Sections 3.2 and 3.3.

Observation paths only intersect if they have different speeds. A set of moving observers that travel at the same speed or a set of
stationary observers (which all travel at 0m/s) will not intersect. Therefore, combining stationary observers with moving observers
or moving observers that observe both their own and opposite travel direction is beneficial to learn traffic flow models.

Furthermore, the area in space-time for which it is possible to draw forward or backwards propagating characteristics waves
depends on the observer speed, see Fig. 9. In this figure, we consider three observers that travel at 0, v f and v f m/s, and which
collect relative flow data for the same time period. These three observers illustrate a stationary observer (or moving observer at
standstill), and moving observers traveling freely in the direction of interest and in opposite direction. The figures show that an
increase in the absolute difference between the observer and characteristics wave speeds yields an increase in the spatial-temporal
area for which the characteristic wave can be drawn.

For a certain set of observers it may be possible to (partially) estimate the traffic state while it does not provide observations for
the learning dataset. The link traffic flow model can be learned based on historical data. This means that we can rely on relative flow
data that is collected over a longer period, e.g., months or years. Therefore, is does not have to be a problem that real-time data
provide insufficient observations to learn the link traffic flow model.

To obtain observations for the link traffic flow model learning dataset, we need to be able to draw both backwards (in time)
propagating waves for the potential values of the characteristic wave speeds between points that lie on observation paths that are
connected through intersection. In estimating the traffic state, we work with a single value instead of a potential range for the
characteristic wave speeds. Furthermore, each principle presented in Section 3.3.1 puts less requirements on the data than obtaining
observations for the learning dataset does: (1) To connect observation paths using Newell’s method, we need to draw both backwards
moving characteristic waves from a point P to points that lie on the same or connected observation paths, but do not have to be
connected to the observation path of point P. (2) To judge whether a characteristic wave is not restrictive for a point on an ob-
servation path (which is the basis for estimating the boundary conditions), we need to draw one backwards moving characteristic
wave to a point on a connected observation path. And, (3) To estimate supply and demand, we need to draw one forward propagating
characteristic wave to points on the link boundary conditions or intermediate points that can be estimated.

4. Testing the principles using simulated data

In this section, the principles explained in Sections 3.2 and 3.3 are tested on simulated data that is collected using the microscopic
simulation program VISSIM, which is empirically validated (Fellendorf and Vortisch, 2001). Fig. 10a shows the road network for
which traffic is simulated. To test the principles, we consider a single one-lane link, which is highlighted with a white arrow in
Fig. 10a. The outflow of this link is constricted by a traffic light, which causes queues to build up on the link. Fig. 10b shows the
trajectories on the considered link during the 1800 s simulation period.

Different examples are considered to understand and to test the principles and thereby show how relative flow data can be used in
model-based estimation. In these examples, it is assumed that a set of moving observers, which are part of the observed link and
opposing link, collect disaggregated relative flow data. It is thus assumed that all individual passings are observed by the moving

Fig. 9. Visualization of the spatial-temporal area for which forward or backwards propagating characteristic waves can be drawn.
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observers, which allows us to find the change in cumulative flow between any two points that lie on the same or different intersecting
observation paths.

The principles used to extract the valuable information from the relative flow data depend on the process, i.e., learning the link
traffic flow model parameters (see Section 4.1) or estimating the traffic state (see Section 4.2). Therefore, each section starts with an
explanation of the steps that will be taken in that section.

4.1. Learning the link traffic flow model parameters

To learn the link traffic flow model parameters the following steps are taken: (1) Define the points P. (2) Define the potential
characteristics wave speeds and draw the backwards propagating potential characteristic waves. (3) Determine NP and tP for
each combination of P and potential characteristics wave speeds. (4) Visualize and interpret the observed rates, i.e., N t/P P . And,
(5) Approximate the model parameters free-flow speed v f , wave speed w and passing rate r. In the last step, we approximate the
model parameters based on the considered examples. These approximated model parameters will be used to estimate the traffic state
in Section 4.2.

Fig. 11(a–d) show space-time plots in which the moving observer observation paths (thick black lines) and other vehicle tra-
jectories (thin blue lines) are visualized. Six points P that lie on an observation path of a moving observer traveling on the opposing
road are considered, which are indicated with six different shapes and colors. From the trajectory plots, we know that the restrictive
wave for the green square and the cyan hexagram (see Fig. 11a and d) is the v f -wave, while the others (see Fig. 11b, c and d) are
restricted by the w-wave.

Backwards traveling potential v f -waves and w-waves can be drawn that originate from the points P. In our example, seven
potential values are considered for both characteristic waves. The potential values selected for the v f -wave are 13.0, 13.5, 14.0, 14.5,
15.0, 15.5 and 16.0m/s and the potential values selected for the w-wave are −3.0, −3.5, −4.0, −4.5, −5.0, −5.5 and −6.0m/s.
These are visualized in Fig. 11(a–d) using green (v f -wave) and red (w-wave) lines.

In these examples, all potential characteristic waves intersect with the observation paths of connected moving observers, which
allows us to determine NP and tP for each wave. Fig. 11e and f show the observed rates, i.e., N t/P P , for the potential
characteristic wave speeds. Here, the shape and color describes the point P that relates to the N t/P P -observation.

The figures provide three main insights: (1) The restrictive characteristic wave is clear for each point. The points for which the
v f -wave is restrictive, i.e., the green square and the cyan hexagram, show near-zero values of N t/P P in Fig. 11e, while the rates of
the potential v f -waves for the other points show clear negative values. In Fig. 11f the smallest N t/P P -value is observed for the
points for which the v f -wave is restrictive. (2) The spread in the rates observed by the different potential characteristic wave speeds is
proportional to the density. For instance, the spread in the rates related to the considered w-wave speeds is larger for waves that
travel through jam density (i.e., the black diamond and the yellow circle) than for those that travel through a queue discharge state
(i.e., the blue triangle and the red pentagram), see Fig. 11f. (3) There seem to be two different queue discharge states, which occur
dependent on whether or not vehicles are able to exit the link within that green period. This difference can be observed in Fig. 11f,
where the N t/P P -value indicated by the red pentagram are higher than those indicated by the blue triangle. When comparing the
space–time plots related to these points, we observe that the waves related to the red pentagram cross the trajectories of vehicle that

Fig. 10. VISSIM road network and simulated vehicle trajectories.
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exit the link in that green period. These plots also show that these vehicles have a smaller headway than the vehicles that need to wait
at least one more red period. It seems that the vehicles ‘anticipate’ that they will not be able to catch the green light and therefore
accelerate slower.

The first two insights are in line with the principles explained in Section 3; however, the third insight indicates that Newell’s
method in combination with a triangular FD will not yield perfect estimates. As explained in Section 3.2.2: If all points that are
restricted by the w-wave would lie on the congested branch of a triangular FD, the lines related these points would all intersect in the
same point in Fig. 11f. In the ( N t w/ ,P P )-plane this intersection point would lie at (r w, ). Instead, we approximate two inter-
section points in Fig. 11f, i.e., (0.815 veh/s,-5.70m/s) and (0.485 veh/s, −3.40m/s), which respectively include the queue discharge
states related to vehicles that exit the link within that green period and related to the vehicles that have to wait at least one more red
period. Therefore, we will respectively refer to these parameter sets as ‘queue-to-queue congested wave parameters’ and ‘link outflow
congested wave parameters’. In Section 4.2 both combinations of w and r will be used to estimate the traffic state. This allows us to
discuss the effect on the estimation accuracy of selecting one of the two combination. Furthermore, for traffic state estimation, we
need to define the free-flow speed. Therefore, based on Fig. 11e, v f is set to 14.5m/s because the N t/P P for the green square and
cyan hexagram are closest to zero for this value.

4.2. Estimating the boundary conditions based on moving observers alone

The principles explained in Section 3.3 are applied to estimate the traffic state. In this case study, the focus lies on partially
estimating the link boundary conditions based on moving observers alone. For this purpose the following two steps are taken: (1)
finding the restrictive wave for points along the observation paths and (2) estimating the link boundary conditions, i.e., N x t( , )0 and
N x t( , )L . Fig. 12a shows the example case that is considered in this section. Again, the moving observers and the other vehicle
trajectories are respectively plotted with thick black and thin blue lines. In this case, all observation paths can be related to each other
through intersection.

Fig. 11. Examples that are considered to learn the link traffic flow model parameters.
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The restrictive wave for points along the observation paths are found by excluding that the other wave is restrictive. For this
purpose, characteristics waves are drawn between points of connected observation paths. Given that the change in cumulative flow
and time are known for waves drawn between points of connected observation paths, it is possible to judge whether these waves are
not restrictive for the point furthest in time. As traffic behavior has a stochastic component, we use a threshold value to judge whether
a wave is not restrictive. A v f -wave and w-wave are respectively said to be non-restrictive if N t/ 0.05P P

ff ff < veh/s and

Fig. 12. Explanation of principles that can be used to estimate the traffic state.
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N t r/ 0.05P P
cg cg < veh/s. In these cases, the other backwards propagating wave is said to be restrictive. Fig. 12b and c show the

results of this approach for the two different parameter sets that we found in Section 4.1. In these figures, the colors green, red and
cyan respectively denote that the v f -wave is restrictive, the w-wave is restrictive or that the restrictive wave is not found. The
differences in w and r cause a few differences in the points for which the v f -wave is found to be restrictive. These points are indicated
using a black circle in Fig. 12c.

To estimate the upstream and downstream boundary conditions, i.e., N x t( , )0 and N x t( , )L , we respectively draw backwards
propagating v f -waves and w-waves origination from the points on the observation paths for which these waves were found to be
restrictive. The estimated change in cumulative flow over these waves depends on the characteristic wave, i.e., N 0ff = veh and

N r tcg cg= veh. An additional assumption that follows from the assumed traffic flow model is used in estimation. After a vehicle
that is part of the observed flow is initially restricted by the w-wave, it remains restricted by this wave for the remaining time it is on
the link. Again, we consider the two model parameter sets. This yields four figures that depict the estimated (upstream or down-
stream) boundary conditions related to one of the parameter sets, see Fig. 12(d–g). The figures show the true cumulative curves
together with the estimates related to the observation paths of individual moving observers that travel in opposite direction than the
related characteristic wave. For instance, for the upstream boundary (which relates to the v f -wave) the moving observers (MOs) that
travel with a negative speed in space–time are shown. In all figures the cumulative flow is set to zero for the point in space–time at
which the first moving observer enters the link, i.e., N x( , 354) 00 = .

Fig. 12d and e show that the upstream boundary conditions are accurately estimated for the periods that information is available.
These figures are equal as both parameter sets use the same v f and in both cases the observation paths are found to be restricted by
the v f -wave starting from the same time instances. Fig. 12f and g show a larger difference between the estimates related to the two
model parameters sets. The downstream boundary conditions are more accurately estimated for the second set, see Fig. 12g. In
Fig. 12f, both the w and r seem to contribute to the errors in found in the boundary condition estimates. As a result, the slope during
the green periods (link outflow) and the shockwave-speed (which according to kinematic wave theory should be w in this case) are
respectively underestimated and overestimated (i.e., w should have a larger negative value). The overestimation of w leads to an
earlier estimated start of the green period. Although the model parameters set used in Fig. 12g lead to more accurate estimates of the
link outflow cumulative curves, it seems that w is underestimated. This may be caused by stochasticity in the traffic behavior in
combination with the fact that we only used a limited set of observations to approximate the model parameters.

The case study presented in this section shows that relative flow data collected with moving observers provides information that is
valuable to learn the traffic flow model parameters and estimate the unobserved boundary conditions. Furthermore, we observe that
the traffic flow simulated using VISSIM has two different queue outflow states, i.e., one related to vehicles that are able to leave the
link within this green period and one related to vehicles that have to wait at least one more red period. Therefore, the assumptions
behind the LWR-model with triangular FD are partially violated, which negatively influences the estimation accuracy. The voilation
of the model assumptions was exposed using relative flow data, see Fig. 11e and f. We may use the same learning dataset to expose
which traffic phenomena occur and find the model that best describes traffic flow behavior. As stated in Section 3.1, the principles
explained in this paper may be extended the LWR-model with other concave and continuous fundamental diagrams since this still
allows us to apply Newell’s method. However, the anticipation-behavior exposed in this simulation cannot be captured by the first-
order LWR-model. This anticipation-behavior is included in second-order models such as the PW-model. Traffic behavior captured by
such higher-order traffic flow models may still be captured in the cumulative flow plane using relative flow data. Further research
into this topic is beyond the scope of the current paper.

5. Conclusions and insights

This paper presents the value of relative flow data in estimating the cumulative flow in space-time. To present the value of data,
we take the perspective of a model-based estimation approach. In model-based estimation two processes are important: (1) in-
formation assimilation (IA) of real-time data and models and (2) learning models that are used in IA based on historical data. This
study shows how relative flow data can be used for both processes and why the data characteristics (i.e., the observed variable in
combination with the spatial-temporal characteristics) are valuable in traffic state estimation.

This study shows that relative flow data can be used to learn the link traffic flow model and to estimate the traffic state in the
cumulative flow plane. If traffic flow follows the LWR-model with a triangular fundamental diagram (FD), relative flow data can be
used to find the model parameters. Furthermore, relative flow data can be used to expose that the assumptions behind the LWR-model
with a triangular FD are violated. The case study showed that these model assumptions were partially violated for the simulated
(using VISSIM) traffic. Furthermore, this study explains that to estimate the traffic state, it is valuable to rely on a combination of
moving observers and stationary observers positioned at the link boundaries. However, it also presents principles that can be used to
relate the observation paths to each other, estimate the boundary conditions, and estimate the link supply and demand, for the
scenario in which we rely on moving observers alone. The simulation study shows that it is possible to partially estimate the link
boundary conditions using relative flow data that is collected by moving observers alone. The accuracy of these boundary conditions
estimates depends on the ability to learn the model parameters that best describe the traffic flow behavior.

The principles explained in this study yield insights for the valuable characteristics of the relative flow data in model-based traffic
state estimation. The valuable characteristics are: (1) Relative flow data provide information on the change in cumulative flow over
paths in space-time. For this purpose the observer needs to observe all passings (overtakings), which means that all lanes should be
observed, i.e., the full width of the road lie in the sensors range. (2) The observers that collect relative flow data should travel at
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different speeds through space and time. This is valuable as the observation paths of observers that travel at different speeds can
intersect, which allows us to relate the cumulative flow observation to each other. Furthermore, the speeds at which observers travel
influence to which points in space-time the characteristic waves can be drawn. Here, differences in the observer and characteristics
wave speeds are beneficial. Therefore, it is desirable to have both relatively slow (e.g., trucks) and fast (e.g., passenger cars) vehicles
that collect relative flow data, have observers that observe the opposite traffic flow, and combine stationary and moving observers.

There are multiple interesting future research directions. A first is a systematic (and analytical) extension of the effects of traffic
properties, e.g., other FD shapes or higher order effects such as anticipation-behavior. Furthermore, based on the principles presented
in this study, full methodologies and algorithms that exploit the informative value of the relative flow data can be developed. An
important addition for this would be to apply the provided insights to information propagation over nodes.
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