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Abstract
As super-resolution methods make it possible to capture images at a resolution beyond the diffraction
limit, they have no straightforward measure for optical resolution. Consequently, signal-to-noise ratio-
based methods to determine resolution such as Fourier Ring Correlation (FRC) have seen increased
use. We look at a newmethod, called 1FRC, as it requires only a single image instead of two (2FRC, the
original method). It splits each pixel value into two values according to a binomial distribution, producing
two images usable in a standard FRC routine. We consider for which noise modalities and conditions
the results are equivalent to using 2FRC. If the image noise is only Poisson-distributed we derive
mathematically that 1FRC and 2FRC are equivalent. Using simulations on Siemens star test images
we find that the mean squared error between 1FRC and 2FRC curves is small for images containing
only Poisson noise and a combination of Poisson and low variance Gaussian noise. However, when
the mean variance ratio 𝜇/𝜎2 (image mean divided by variance of a pixel) is less than one, the 1FRC
curve no longer goes to zero at high frequencies, but instead fluctuates at an elevated level. We see
that this elevated 1FRC curve level is exactly 1 − 𝜇/𝜎2. For 𝜇/𝜎2 < 0.973 the difference in resolution
exceeds one standard deviation of the 1FRC resolution. From this point we the Kolmogorov-Smirnov
test confidently states that the 1FRC pixel sum distributions are not equal to 2FRC distributions. We
also test 1FRC on an experimental dataset made with varying STED intensity. The computed resolution
curves fit well to the modified Abbe equation for STED. However, the 1FRC resolutions are up to 30%
better than resolutions obtained using decorrelation analysis.
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1
Introduction

Measuring optical resolution is an important routine within the field of microscopy. Without an accurate
way to measure resolution, it becomes impossible to objectively compare different optical setups. For
the longest time, microscopes have been held back by the physical limit of diffraction. When light enters
an imaging system through an aperture, this aperture acts as a secondary source of light, causing
diffraction. As a result, light is not exactly focused into a point, but instead forms a diffraction pattern,
which puts a limit on resolution. In 1873, Ernst Abbe found that this limit could be calculated as follows:

𝑑 = 𝜆wave
2NA , (1.1)

where 𝑑 is the resolution, 𝜆wave is the wavelength of the light used and NA is the numerical aperture,
which characterizes the range of angles that can enter the camera, also taking into account the medium
in which the lens works.

Other effects, including aberration and construction imperfections, can negatively influence reso-
lution. However, most modern lenses, especially at smaller apertures, are diffraction-limited. Conse-
quently, any method to improve resolution would have to go beyond the diffraction limit. In the past
three decades, a variety of methods have done exactly that. These method are collectively called
super-resolution microscopy or optical nanoscopy.

One of the first super-resolution methods was stimulated emission depletion (STED) microscopy.1
In this method, a fluorophore is excited at the focal point. Around this focal point, a STED beam (of a
longer wavelength than the primary excitation) induces stimulated emission, depleting the excited state
and selectively deactivating the fluorescence in the primary excitation wavelength. As the area around
the target is now no longer fluorescent, the target itself becomes more resolvable. This improves
resolution. The stimulated-emission-depletion scales with the intensity of the beam. As a result, the
resolution depends on this parameter. Other super-resolution methods are also greatly dependent on
multiple parameters. Consequently, it is precisely super-resolutionmicroscopy that requires an effective
process to determine resolution.

One of the techniques that has been used to determine resolution based on acquired images is
Fourier Ring Correlation (FRC). This technique was originally introduced by Saxton and Baumeister in
19822, as well as by Van Heel et al.3,4,5 It has since been applied in a wide variety of fields, primarily
in cryo-EM, but more recently also in super-resolution microscopy.6 However, determining the resolu-
tion using FRC requires two independent images that differ only by noise content. These images are
acquired by different means, such as splitting the odd and even frames or by randomly assigning short
time series to one of two groups. However, in practice, it is not always possible to do this. Further-
more, in many cases images have already been made without any attention to applying methods to
make multiple images that are usable for FRC.

We discuss a new method, due to B. Rieger and S. Stallinga (department of Imaging Physics,
TU Delft), which we call 1FRC. This method, under certain conditions, allows the computation of the
resolution using a single image, hence the name (we will use the name 2FRC to indicate the original
technique using two separately captured images).

The core of this 1FRC method involves randomly splitting all pixels of the single image, element-
wise, into two new images. This random split occurs by sampling a binomial distribution for each pixel,
which is why we call it a binomial split. The distribution uses a value of one-half for the probability pa-
rameter and the pixel value (representing the photon count) as the number of trials parameter. The two
images are then used in a standard FRC routine to compute the resolution. For the resulting resolution
to be meaningful, it is required that 1FRC is equivalent to performing two separate measurements and
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1. Introduction

performing a standard FRC directly. This is only the case if the two images resulting from the binomial
split have the same probability distribution as if two independent measurements were taken.

The problem we consider in this report is under which conditions 1FRC gives similar results to
2FRC. We specifically look at how the 1FRC performs under different noise modalities. We study this
by finding when the binomial split preserves the probability distribution and by directly comparing 1FRC
and 2FRC curves and their resulting resolutions. We also apply 1FRC to experimental data.

If the original image contains only Poisson noise, we can mathematically derive that the split images
will also consist of only Poisson noise. These new images will look like independent noise realizations.
For other probability distributions, this is much more difficult. As it is not always known exactly what
noise is contained in an arbitrary microscopy image, it is important to study when it is possible to apply
the 1FRC method.

We will describe the process of the original Fourier Ring Correlation technique and the new 1FRC
technique. We will also describe the theory behind the binomial split for Poisson noise. The application
of 1FRC to a combination of Poisson and Gaussian noise, a common noise modality arising from,
for instance, a combination of shot noise and electronic readout noise, will also be studied. For this
noise, we are unable to derive analytically whether the binomial split works. Instead, we characterize
its statistical moments. These moments are important for the computation of the mean variance ratio
after a binomial split, which is the image mean divided by the variance of a single pixel.

To evaluate the performance of 1FRC, we use Siemens star images in our simulations, as these al-
low us to confirm if the FRC resolutions are in the right order of magnitude. We quantify the difference
between 1FRC and 2FRC using the mean squared error for different average image intensities and
different noise levels. We also use the two-sample Kolmogorov-Smirnov test on the sums of all pixels
in an image to see if the distributions of the original image and the split image are the same, specifically
for the case of Poisson-Gauss noise, for which we have no analytical result. We discuss a discrepancy,
which presents itself as an elevated FRC curve plateau at high frequencies. This discrepancy occurs
when the mean variance ratio is unequal to zero. We then show a linear relationship between this
elevated plateau and the mean variance ratio. We quantify the value of the mean variance ratio for
which the difference in resolution results falls outside one standard deviation of the 1FRC resolution.
Finally, we apply 1FRC to experimental STED data gathered by the Heilemann Group (Johann Wolf-
gang Goethe-University). This data includes images of the same samples captured at varying STED
intensity. We evaluate the performance of 1FRC on this data in two ways. We fit the 1FRC resolutions
to the modified Abbe equation for STED, which depends on the STED intensity. We also compare the
resolutions to those obtained using an alternative technique called decorrelation analysis.7
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2
FRC and imaging

Fourier Ring Correlation (FRC) is a technique used to determine the resolution of images. FRC allows
determining the resolution without detailed knowledge of the optical setup. Instead, it requires two
images that differ only in their noise content, which for each image must be independently realized. We
will seek to expand on a new technique, called 1FRC, which requires only a single image. This new
technique also performs an ordinary FRC computation, which we will explain in detail in the following
chapter.

2.1. FRC
We are concerned with two-dimensional images made with optical microscopes. For this reason, we
constrain ourselves to the two-dimensional FRC. The more general, three-dimensional case (known
also as Fourier Shell Correlation) will not be discussed. In two dimensions, we consider two functions
representing images 𝐴 and 𝐵: 𝑓𝐴(x), 𝑓𝐵(x), where x is the two-dimensional location vector. Each image
contains noise that is independent of the noise of the other image. The Fourier Ring Correlation is then
calculated as follows:

FRC(𝑞) =
∑q∈circle 𝑓𝐴(q)𝑓𝐵(q)*

√∑q∈circle|𝑓𝐴(q)|2√∑q∈circle|𝑓𝐵(q)|2
. (2.1)

Here 𝑞 is the radial component of the location vector q in Fourier space. 𝑓(q) = ℱ{𝑓(x)}, for images 𝐴
and 𝐵, where ℱ indicates the Fourier transform operator. We use a discrete Fourier transform, defined
as:

𝐹𝑘 =
𝑁−1

∑
𝑛=0

𝑥𝑛 ⋅ 𝑒−
𝑖2𝜋
𝑁 𝑘𝑛 , (2.2)

where {𝑥𝑘} is a sequence of complex numbers transformed to a new sequence of complex numbers
{𝐹𝑘}. No normalization is necessary, as the FRC denominator is already a normalization. To compute
the two-dimensional Fourier transform, two sequential Fourier transforms as in equation (2.2) are per-
formed, where {𝑥𝑘} are the rows and then the columns of a image. As we are in Fourier space after the
transformation, 𝑞 is the spatial frequency (inm−1), where 𝑞 = 0 corresponds to zero spatial frequency.
We can see an example of a 2D Fourier transform in figure 2.1. For an image of 𝑁 × 𝑁 pixels, the
FRC is computed for a radius up to 𝑁/2, as beyond this the radial circle no longer fits inside the square
image and results in no useful value. For the numerator, the complex conjugate of 𝑓𝐵(q) times 𝑓𝐴(q) is
computed for each pixel on the circle at radius 𝑞, which are then summed. The denominator normalizes
the result.
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2.1. FRC 2. FRC and imaging

Figure 2.1: Fourier transformation of a 2D image. The Fourier transformation of a square, 2D image is shown. Contrast
has been significantly increased for better visibility. We use an image captured using STED as input, specifically the Series 𝐶
sample at maximum STED intensity, which we will show in figure 6.2d. We see higher intensity at the center of the image, which
corresponds to the lower spatial frequencies, which contain most of the image content. A Fourier ”ring” over which we sum in
equation (2.1) is shown in pink, with the corresponding spatial frequency 𝑞 indicated by the blue dashed line.

The Fourier Ring Correlation (FRC) is a cross-correlation measure, individually evaluated at each
spatial frequency, which we will show now. Cross-correlation is defined as follows:

(𝑓 ⋆ 𝑔)(𝜏) ∶= ∫
∞

−∞
𝑓(𝑥)∗𝑔(𝑥 + 𝜏) 𝑑𝑥, (2.3)

where the the superscript ’∗’ indicates the complex conjugate. The Fourier transform is useful because
of two important properties relating cross-correlation and convolution. Here we define convolution as:

(𝑓 ∗ 𝑔)(𝑥) ∶= ∫
∞

−∞
𝑓(𝜏)𝑔(𝑥 − 𝜏) 𝑑𝜏. (2.4)

The following first identity shows the relationship between cross-correlation and convolution:

𝑓(𝑥) ⋆ 𝑔(𝑥) = 𝑓(−𝑥)∗ ∗ 𝑔(𝑥). (2.5)

The convolution theorem states that convolution equals multiplication in the Fourier domain, giving us
the following property:

ℱ{𝑓(𝑥) ⋆ 𝑔(𝑥)} = ℱ{𝑓(−𝑥)∗ ∗ 𝑔(𝑥)} = ℱ{𝑓(−𝑥)∗} ⋅ ℱ{𝑔(𝑥)} = ℱ{𝑓(𝑥)}∗ ⋅ ℱ{𝑔(𝑥)}. (2.6)

The final expression equals the expression inside the sum of the FRC. Consequently, we can see the
FRC at a particular frequency as equivalent to calculating a normalized cross-correlation summed over
that frequency.

Cross-correlation is a measure of similarity. Most noise sources for images, such as shot noise,
electronic noise and thermal noise, are broadband, meaning they are widely distributed over the fre-
quency spectrum. However, the meaningful signal tends to be concentrated at lower frequencies, as it
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2.2. Image detection 2. FRC and imaging

contains patterns and structures whose spatial frequency is usually in the lower region. Furthermore,
it is rare for it to vary so significantly to leave behind lots of traces in the higher frequencies.

Next, we note that correlation will be high for the frequencies that are dominated by the meaningful
signal, as they should be similar since image 𝐴 and 𝐵 should contain the same object. Very differently,
the noise is random and dissimilar for each image, meaning frequency components dominated by noise
will show little to no correlation. Combining these two facts, the FRC will start out near one at 𝑞 = 0,
as the (usually zero-mean) noise will barely affect the overall constant level of the image, meaning the
values are most likely equal. As noise starts to dominate and the images become more dissimilar at
increasing frequency levels, the FRC drops to zero.

Figure 2.2: Determining FRC resolution. We show a smoothed FRC curve. The correlation starts at 1, as the two independently
measured images should have the same mean and zero spatial frequency corresponds to the image mean. As the spatial
frequency increases, noise starts to dominate the signal and the correlation drops steeply, eventually fluctuating around zero as
there is no signal left at these frequencies. A 1/7 threshold is employed to determine the resolution. The FRC curve intersects
this threshold at a spatial frequency of 0.107 px−1, i.e. the resolution is 9.31 pixels.

At some spatial frequency, the FRC becomes ”low”, indicating the images are now dissimilar and
noise dominates. If this only occurs at a high frequency, this means the information content of the
images dominates the noise for lower frequencies and could be resolvable. If this occurs at a much
lower frequency, this means noise dominates much sooner and the image is resolvable for fewer fre-
quencies. These frequencies can be converted to a measure of distance. The point at which the FRC
becomes ”low” is the resolution of the image, since it cannot be resolved for higher frequencies (lower
spatial distances) as noise dominates the signal for these frequencies. To make ”low” more precise
and make the FRC comparable to other resolution measures, a standard threshold value is used. The
resolution is calculated by determining at which spatial frequency the intersection of the FRC curve
with the threshold curve is located. Commonly used thresholds curves include the 1/2-bit information
curve, 𝜎-based curves (usually 3𝜎) as well as the constant value of 1/7.8 There is no ”best” curve, as
FRC is fundamentally a measure of information content and is not completely equivalent to resolution.
Based on empirical research, the value of 1/7 (0.143) seems to correspond closely to visible resolution
and will be used in further results.6

2.2. Image detection
Before the new method is introduced, we seek to gain more insight in the general process of capturing
images. This allows to better understand the applicable constraints and use them to define our new
method.

Photons hitting the camera trigger electrons inside the camera, which are then counted. The number
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2.2. Image detection 2. FRC and imaging

of photons that are assumed to correspond to each measured count is known as the gain. The images
we use are assumed to already be gain-corrected, i.e. the number of electronic counts has already
been converted to the number of photons. This is important, as a gain can change the pixels’ probability
distribution. Generally, images are not gain-corrected as a multiplication factor does not matter much
for analysis. However, for the 1FRC, assumptions are made about the probability distribution, which
no longer hold if the gain is not corrected.

2.2.1. Probability distribution of pixel counts
In general it is a good assumption that the photons appear independently from each other at a constant
rate. In this situation, shot noise is an important source of noise. Shot noise is a Poisson process,
meaning the number of photons counted can be modelled by a Poisson distribution.

We now make this more precise. Our image is a uniform, square grid of pixel values. Assume
a pixel value 𝑁 follows the Poisson distribution with parameter 𝜆. The Poisson distribution models
independent events with a fixed rate, with its output being the number of events in a given time. The
parameter 𝜆 is the expected number of events in that time (the rate). In the rest of our report, 𝜆 will
refer only to the expectation parameter of a Poisson distribution.
Consider an observed value of 𝑛 for our random variable 𝑁 (𝑛 ∈ ℕ). The probability of this occurring is
(as known from the Poisson probability mass function):

ℙ(𝑁 = 𝑛) = 𝜆𝑛𝑒−𝜆
𝑛! . (2.7)

This probability distribution forms the basis for the new method, as it is well-behaved after subjecting it
to a binomial split, which we will introduce in the next chapter.
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3
1FRC

Now that we have introduced Fourier Ring Correlation (FRC), we will discuss our new method, 1FRC.
We begin by introducing the binomial split that makes it work and then apply it to Poisson and Poisson-
Gauss noise.

3.1. Binomial split
In this report, we use a binomial split to acquire two new images, which we call 𝐴 and 𝐵, from a single
image 𝐼, for later use in FRC. This is done by splitting individual pixel values according to the binomial
distribution.

Consider a pixel (in some image 𝐼) modeled by a random variable 𝑁, which follows some probability
distribution. When performing a binomial split, we sample from the binomial distribution with 𝑁 as the
number of trials and 𝑝 ∈ (0, 1) as the probability of success. The result of this sampling is a new random
variable 𝑋, defined as:

𝑋 ∼ Binomial(𝑁, 𝑝), (3.1)

where the binomial distribution is defined as:

ℙ(𝑋 = 𝑥) = (𝑛𝑥)𝑝
𝑥(1 − 𝑝)𝑛−𝑥 , (3.2)

with parameters (𝑛 ∈ ℕ, 𝑝) and 𝑥 ∈ ℕ, since the binomial distribution is discrete and the number
of successes is nonnegative. The probability distribution of 𝑋 is known as a compound probability
distribution, as a parameter of the distribution is itself a random variable distributed according to some
probability distribution. The result of this sampling is the new pixel value in the first new image, 𝐴. To
obtain the pixel value in image 𝐵, 𝑌, the difference between the original image 𝐼 and the pixel value in
image 𝐴 is calculated (since 𝑋 ≤ 𝑁, we have that 𝑌 is nonnegative):

𝐵 = 𝐼 − 𝐴, (3.3)

so for a single pixel, 𝑌 = 𝑁 − 𝑋.
The standard computation of the FRC involves making two measurements of the same object, with

independently realized noise. For equivalency between the original method (which we will call 2FRC)
and the new method, 1FRC, the split images 𝐴 and 𝐵 must follow the probability distribution they would
draw from if they were measured independently. Therefore, when𝑀 is a pixel in the independent mea-
surement following some probability distribution 𝑃 and 𝑋 and 𝑌 are arbitrary pixels of 𝐴, 𝐵, respectively,
we must have:

𝑀 ∼ 𝑃 ⇒ (𝑋 ∼ 𝑃 and 𝑌 ∼ 𝑃). (3.4)

In other words, for equivalency with 2FRC, images 𝐴 and 𝐵 should be realizations of the same proba-
bility distribution as an independently realized half-set of the original image.

3.2. Binomial split of Poisson distribution
We seek the probability distribution of the split pixel value 𝑋 in image 𝐴 after performing a binomial
split on the Poisson-distributed pixel value 𝑁. We want 𝑋 to also be a Poisson random variable. We
calculate the joint ℙ(𝑁 = 𝑛 and 𝑋 = 𝑥) using conditional probabilities as follows:

7



3.3. Poisson-Gauss distribution 3. 1FRC

ℙ(𝑁 = 𝑛 and 𝑋 = 𝑥) = ℙ(𝑋 = 𝑥 | 𝑁 = 𝑛) ⋅ ℙ(𝑁 = 𝑛) = (𝑛𝑥)𝑝
𝑥(1 − 𝑝)𝑥−𝑛 ⋅ 𝜆

𝑥𝑒−𝜆
𝑥! . (3.5)

Here, ℙ(𝑋 = 𝑥 | 𝑁 = 𝑛) is the conditional probability mass function of the binomial distribution, where
we know 𝑁 has been realized as 𝑛.

To now calculate the marginal distribution ℙ(𝑋 = 𝑥), the joint probability is summed for all possi-
ble values of 𝑁, which range from 𝑥 to infinity. This is because 𝑥 ≤ 𝑁, since 𝑥 is sampled from a
binomial distribution with 𝑁 as the number of trials and there cannot be more successes than trials.
Consequently, 𝑁 ≥ 𝑥.

ℙ(𝑋 = 𝑥) =∑
𝑛
ℙ(𝑋 = 𝑥 | 𝑁 = 𝑛) ⋅ ℙ(𝑁 = 𝑛)

=
∞

∑
𝑛=𝑥

(𝑛𝑥)𝑝
𝑥(1 − 𝑝)𝑛−𝑥 ⋅ 𝜆

𝑛𝑒−𝜆
𝑛!

=
∞

∑
𝑛=𝑥

1
𝑥!(𝑛 − 𝑥)! (

𝑝
1 − 𝑝)

𝑥
(1 − 𝑝)𝑛𝑒−𝜆𝜆𝑛

= 1
𝑥! (

𝑝
1 − 𝑝)

𝑥
𝑒−𝜆

∞

∑
𝑛=𝑥

(1 − 𝑝)𝑛𝜆𝑛
(𝑛 − 𝑥)! .

(3.6)

By performing the substitution 𝑘 = 𝑛 − 𝑥, we rewrite the final sum, resulting in:

ℙ(𝑋 = 𝑥) = 1
𝑥! (

𝑝
1 − 𝑝)

𝑥
𝑒−𝜆(1 − 𝑝)𝑥𝜆𝑥

∞

∑
𝑘=0

((1 − 𝑝)𝜆)𝑘
𝑘! . (3.7)

The infinite sum can be recognized as the power series definition of the exponential function with
variable (1 − 𝑝)𝜆. This allows us to rewrite the probability as follows:

ℙ(𝑋 = 𝑥) = 𝑒−𝜆
𝑥! (

𝑝
1 − 𝑝)

𝑥
(1 − 𝑝)𝑥𝜆𝑥𝑒(1−𝑝)𝜆

= (𝑝𝜆)𝑥𝑒−𝑝𝜆
𝑥! .

(3.8)

This is equal to the probability mass function of a Poisson distribution with parameter 𝑝 ⋅ 𝜆. For 𝑝 = 0.5,
we have a Poisson distribution with half the mean, which is equivalent to capturing half the original
image 𝐼 independently. This means we satisfy our requirement in equation (3.4). Consequently, we
expect 1FRC to work well on images with purely Poisson noise.

3.3. Poisson-Gauss distribution
In addition to the inherent Poisson noise of the photon generation process, the readout process often
introduces additional noise, which is generally modelled by Gaussian noise. Gaussian noise follows
the normal distribution, which is shown with mean 𝑎 and variance 𝑔2 in the following equation:

𝑓(𝑛) = 1
√2𝜋𝑔2

𝑒−
1
2
(𝑛−𝑎)2
𝑔2 . (3.9)

For the rest of this report, 𝑎 will only refer to the mean of the Gaussian noise and 𝑔2 to the Gaussian
variance.

In this case, the observed photon counts follow a compound distribution characterized by adding two
random variables that are Gaussian and Poisson. If we take 𝑁𝑝𝑔 to be the resulting random variable,
we can define it as:

8
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𝑁𝑝𝑔 = 𝑃 + 𝐺, (3.10)
if 𝑃 is a Poisson random variable and 𝐺 is a Gaussian random variable. The resulting probability density
function is a convolution of the Poisson and Gaussian probability functions. From hereon we call this
the Poisson-Gauss distribution. Assuming a gain of unity and zero mean Gaussian noise, we give the
probability density as follows9:

𝑝𝑁𝑝𝑔(𝑛) = 𝐴
1

√2𝜋𝑔2

∞

∑
𝑞=0

1
𝑞!𝑒

−𝜆𝜆𝑞𝑒−
1
2
(𝑛−𝑞)2
𝑔2 . (3.11)

Here 𝐴 is a normalization constant, 𝜆 is the expected number of photons in that pixel and 𝑔2 is the
variance of the Gaussian readout noise.

To determine whether the binomials split is valid also for the Poisson-Gauss distribution, we want
to compute the probability distribution of the compound random variable 𝑆𝑝𝑔, defined as:

𝑆𝑝𝑔 ∼ Binomial(𝑁𝑝𝑔, 𝑝), (3.12)
which is similar to equation (3.1), but 𝑁 replaced by 𝑁𝑝𝑔. For this purpose, we seek to evaluate the
marginal probability ℙ(𝑆 = 𝑠) from the joint probability as with the pure Poisson distribution (the process
in equations (3.5)-(3.8)).

However, equation (3.11) is a difficult expression not in a closed form (due to the infinite sum),
making it difficult to work with. We were unable to work out the marginal probability into a workable
expression that allows it to be compared to the original probability distribution, which should be of
the same type for the binomial split to be valid. This means we must resort to approximations and
simulations to study the behavior after the split empirically.

3.3.1. Analytical approximation
For small values of 𝑔2 compared to 𝜆 (as discussed by Huang et al.9), the expression in equation 3.11
can be approximated by a more manageable analytic function:

𝑝𝑁(𝑛) =
𝑒−(𝜆+𝑔2)(𝜆 + 𝑔2)𝑛

Γ(𝑛 + 1) (3.13)

If we assume a gain of unity and zero mean Gaussian noise (as we did before) and only look at integer
offsets and variance, we ensure that 𝑛 is integer, allowing us to write equation (3.13) as follows, since
Γ(𝑧 + 1) = 𝑧! for integer 𝑧:

ℙ(𝑁 = 𝑛) = 𝑒−(𝜆+𝑔2)(𝜆 + 𝑔2)𝑛
𝑛! (3.14)

This equation is an ordinary Poisson distribution with parameter 𝜆+𝑔2. Since it is a Poisson distribution,
the result derived in section 3.2 also holds. This means that, in cases where equation (3.13) is a good
approximation, we can assume the binomial split is mathematically valid also for Poisson-Gauss noise.
However, 𝑔2 is not always small compared to 𝜆 and in that case the approximation does not help us.
We shall not quantify exactly for which values of 𝑔2 this is the case and instead look directly at the
performance of the 1FRC for different values 𝑔2 compared to 𝜆.

3.3.2. Analysis of pure Gaussian binomial split
Since we could not analytically derive the distribution function of 𝑆𝑝𝑔, defined as in equation (3.12), we
seek to simplify the situation by considering noise that is only Gaussian. The new compound random
variable 𝑆𝑔 is defined as:

𝑆𝑔 ∼ Binomial(𝑁𝑔, 𝑝), (3.15)
where 𝑁𝑔 is a Gaussian random variable with a probability distribution function as defined in equation
(3.9). However, this requires modifying the normal distribution as it involves mixing a discrete dis-
tribution (binomial) and a continuous distribution (normal), as can be seen in the incorrect equations
below:

9
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ℙ(𝑆 = 𝑠 and 𝑁 = 𝑛) = ℙ(𝑆 = 𝑠 | 𝑁 = 𝑛) ⋅ ℙ(𝑁 = 𝑛) = (𝑛𝑠) 𝑝
𝑠(1 − 𝑝)𝑛−𝑠 ⋅ 1

𝑔√2𝜋
𝑒−

1
2 (

𝑛−𝜆
𝑔 )

2

ℙ(𝑆 = 𝑠) =∑
𝑛
ℙ(𝑆 = 𝑠 and 𝑁 = 𝑛)𝑑𝑛 =

∞

∑
𝑠
(𝑛𝑠) 𝑝

𝑠(1 − 𝑝)𝑛−𝑠 ⋅ 1
𝑔√2𝜋

𝑒−
1
2 (

𝑛−𝜆
𝑔 )

2

𝑑𝑛.
(3.16)

In the final part of equation (3.16), the normal distribution component becomes a different distribution,
as only integer values of 𝑛 would be evaluated.

In practice, the data is rounded before a binomial split is performed. An example of a probability
mass function that represents a discrete normal distribution is10:

Φ((𝑛 + 1 − 𝜆)/𝑔) − Φ((𝑛 − 𝜆)/𝑔). (3.17)

Here, Φ is the cumulative distribution function of a standard normal, which has no analytical form.
For increasing values of 𝜆, we can expect the effect of rounding to become negligible. Furthermore,
for high 𝑛 (𝑛𝑝(1 − 𝑝) ≥ 10) it is well-known that a binomial distribution (𝑛, 𝑝) is approximated by a
normal distribution with mean 𝑛𝑝 and variance 𝑛𝑝(1−𝑝). Subsequently, we instead try to compute the
probability density function by using two normal distributions instead, which are both continuous:

𝑝𝑆,𝑁(𝑠, 𝑛) = 𝑝𝑆|𝑁(𝑠|𝑛)𝑝𝑁(𝑛) =
1

√2𝜋𝑛𝑝(1 − 𝑝)
𝑒−

1
2
(𝑠−𝑛𝑝)2
𝑛𝑝(1−𝑝) ⋅ 1

𝑔√2𝜋
𝑒−

1
2 (

𝑛−𝜆
𝑔 )

2

𝑝𝑆(𝑠) = ∫𝑛𝑝𝑆|𝑁(𝑠|𝑛)𝑝𝑁(𝑛)𝑑𝑛 = ∫
∞

0

1
2𝜋𝑔√𝑛𝑝(1 − 𝑝)

𝑒
− 12(

(𝑠−𝑛𝑝)2
𝑛𝑝(1−𝑝)+(

𝑛−𝜆
𝑔 )

2
)
𝑑𝑛.

(3.18)

For 𝑛 < 0 we assume that 𝜆 will be sufficiently high that the probability is near zero (for example,
for 𝜆 = 100 and 𝑔2=500, this probability is less than 0.01%. For lower levels of 𝑔2, the probability
becomes even smaller). From this integral, we can make no more progress. Furthermore, if we seek
to numerically evaluate it, this gives us no hints as to why Gaussian noise leads to problems for 1FRC.
This would require further analyzing the resulting probability distribution (which we would only know
numerically) when subjected to Fourier Ring Correlation, which itself is non-trivial to compute even on
known distribution functions.

3.3.3. Moments of compound binomial-Poisson-Gauss distributions
While we could not analytically derive the distribution functions of 𝑆𝑝𝑔 (compound binomial and Poisson-
Gauss) and 𝑆𝑔 (compound binomial and pure Gaussian), we can instead characterize the distributions
by looking at their moments. From the law of total variance we know, if we have two random variables
𝑁 and 𝑆:

Var(𝑆) = 𝔼 [Var(𝑆|𝑁)] + Var(𝔼 [𝑆|𝑁]). (3.19)

Furthermore, the expected value for a random variable 𝑆, distributed according to a compound proba-
bility distribution with parameter 𝑁 a random variable, can be computed in a straightforward way:

𝔼 [𝑆] = 𝔼𝑁 [𝔼𝑆 [𝑆|𝑁]] . (3.20)

Pure Gauss
We first look at the case where 𝑆𝑔 is a binomial random variable (𝑛, 𝑝) and 𝑁𝑔 is a purely Gaussian
random variable (𝑎, 𝑔2) that determines the binomial parameter 𝑛. This makes 𝑆𝑔’s distribution a
compound probability distribution. However, the support of𝑁𝑔 includes any real value, while the support
of 𝑆𝑔 consists of only the non-negative integers. However, with a high 𝑎 and corresponding 𝑔2, negative
values can be mostly eliminated. Furthermore, we are only interested in large values of 𝑎, as the range
of outcomes is large and even after rounding values to the nearest integer the curve remains quite
smooth and well-normalized. Under these conditions, the normal distribution and binomial distribution
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have nearly identical support, justifying the use of the law of total variance. We now calculate the
variance of our random variable 𝑆𝑔:

Var(𝑆𝑔) = 𝔼 [𝑁𝑔𝑝(1 − 𝑝)] + Var(𝑁𝑔𝑝)
= 𝑎𝑝(1 − 𝑝) + 𝑔2𝑝2

= 1
4𝑎 +

1
4𝑔

2 (𝑝 = 0.5).
(3.21)

We also compute the expectation, which is 𝔼 [𝑆] = 𝔼 [𝑁𝑝] = 𝑝𝜆, equal to 𝑎/2 for 𝑝 = 0.5. We see that
for the range 𝑔2 < 𝑎/4, the variance is less than the expectation.

Poisson-Gauss
We can also derive the variance of the Poisson noise with added Gaussian noise. In this case the
parameter 𝑛 of our random variable 𝑆𝑝𝑔 is determined by a different random variable, 𝑁𝑝𝑔. This variable
𝑁𝑝𝑔 is the sum of a Poisson random variable 𝑃 (parameter 𝜆) and Gaussian random variable 𝐺 (mean
𝑎 = 0, variance 𝑔2). We compute:

Var(𝑆𝑝𝑔) = 𝔼 [𝑁𝑝𝑔𝑝(1 − 𝑝)] + Var(𝑁𝑝𝑔𝑝)
= 𝑝(1 − 𝑝)𝔼 [𝑃 + 𝐺] + 𝑝2Var(𝑃 + 𝐺)
= 𝑝(1 − 𝑝)(𝔼 [𝑃] + 𝔼 [𝐺]) + 𝑝2(Var(𝑃) + Var(𝐺))
= 𝑝(1 − 𝑝)𝜆 + 𝑝2(𝜆 + 𝑔2)

= 1
2𝜆 +

1
4𝑔

2 (𝑝 = 0.5),

(3.22)

where we assume that 𝑃 and 𝐺 are independent, in which case the variance of the sum is the sum of
the variances. For 𝑝 = 0.5, the value is 𝜆/2 more than only Gaussian noise (if we associate 𝜆 with 𝑎).
More importantly, since the expected value is 𝔼 [𝑆] = 𝔼 [𝑁𝑝] = 𝑝𝔼 [𝑃]+𝔼 [𝐺] = 𝑝𝜆, equal again to 𝜆/2,
we see that the variance is always greater than or equal to (the latter only if there is no Gaussian noise,
i.e. 𝑔2 = 0) the expected value.

Comparison to pure Poisson
For Poisson noise, we have already mathematically derived the exact distribution after performing a
binomial split. We can still compute the moments as above for comparison:

Var(𝑆𝑝) = 𝔼 [𝑁𝑝𝑝(1 − 𝑝)] + Var(𝑁𝑝𝑝)
= 𝑝(1 − 𝑝)𝔼 [𝑁𝑝] + 𝑝2Var(𝑁𝑝)
= 𝑝(1 − 𝑝)𝜆 + 𝑝2(𝜆)

= 1
2𝜆 (𝑝 = 0.5).

(3.23)

Here, the expectation is simply 𝔼 [𝑆] = 𝔼 [𝑁𝑝] = 𝑝𝜆, equal to 𝜆/2 for 𝑝 = 0.5. We see that the
expectation and variance are equal. We can also observe that for 𝑔2 = 0, the moments of Poisson-
Gauss reduce to the moments of pure Poisson noise. Furthermore, if 𝜆 ≫ 𝑔2, we have:

1
2𝜆 +

1
4𝑔

2 ≈ 1
2𝜆. (3.24)

In that case, we see that the moments again reduce to Poisson and that the variance is approximately
equal to the expectation.
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4
Evaluation of 1FRC

While we can mathematically justify the use of 1FRC on Poisson-distributed images, we must also
evaluate it on simulated and real-world images. Furthermore, due to the complexity of the Poisson-
Gauss distribution, no mathematical derivation could be made that shows 1FRC works also on images
with Poisson-Gauss noise. The analytical approximation for Poisson-Gauss is Poisson and we know
1FRC works for Poisson, but we must still quantitatively show under which conditions.

We first introduce the primary sample image for our simulations, after which we discuss the mean
variance ratio, an important quantity related to the coefficient of variance. We then discuss how we
compare 1FRC and 2FRC curves using the mean squared error (MSE). Finally, we explain a method
used to determine the distribution of a sample image by analyzing the distribution of the sum of its pixel
values.

4.1. Siemens star
For most simulations, we will use a Siemens star as test image, shown in figure 4.1. Its primary use is
that the resolution of the image can be discerned visually by inspecting the center of the Siemens star.
At infinite resolution, the arms only meet exactly at the center. However, at some point away from the
center, the arms cannot be distinguished as the distance between them has become too small. At this
radius, which we call 𝑟, the actual distance between the arms can be calculated, which offers a value
close to the image’s resolution.

Figure 4.1: Siemens star. A Siemens star is used for most simulation images as it is a simple object that also provides a
convenient way to estimate the resolution visually. This can be done by looking at the distance between two arms at the radius
from the center where the arms can just be resolved. This Siemens star image is 512x512 pixels and has ten arms. The distance
between the arms at the edge of the image is 80.1 pixels, decreasing linearly towards the center.

The distance between 𝑛arms (white) arms at the star’s outer radius can be calculated by constructing
a regular polygon with 2𝑛arms sides as the star has arms. Then, the length of its side is calculated by
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considering a 2𝑛arms-polygon, which consists of 4𝑛arms right triangles with inner angle 2𝜋/4𝑛arms. We
can then derive the arm side length 𝐿 for a star with 𝑛arms arms and radius 𝑅 to be:

𝐿 = 2 sin( 𝜋
2𝑛arms

)𝑅. (4.1)

Since the distance between the arms decreases linearly to zero from 𝐿 as you near the center, an
estimate for the resolution 𝑑 of the image is:

𝑑 = 𝑟
𝑅𝐿 = 2𝑟 sin(

𝜋
2𝑛arms

) , (4.2)

where 𝑟 is the distance at which the arms can no longer be resolved (where they start to blur together).
To ensure a clear resolution cut-off and to prevent sharp edges throwing off the Fourier transform and
achieve greater similarity to a real image, a Gaussian filter is applied to the simulation images. The
Gaussian filter smooths the image by removing high spatial frequency components. This is shown in
figure 4.2.

Figure 4.2: Base Siemens star with Gaussian filter (𝜎 = 3 pixels). Average pixel intensity 𝐼avg = 130.

Furthermore, the background is set to a nonzero level. If this is not done, the Poisson noise would also
be zero there, meaning the Poisson noise will have little impact on the resolution of the Siemens star
arms. An example of an image with Poisson noise is shown in 4.3a.
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(a) (b)

(c)

Figure 4.3: Determining resolution of a Siemens star image. (a)-(c) show a 512x512 pixel Siemens star. (a) shows the full
image without markings. The image has an average pixel intensity 𝐼avg of 130. It is Gaussian filtered as in image 4.2 with a
strength of 𝜎 = 3 pixels. Poisson noise was added afterward. The purple line in (b) shows the maximum distance between the
stars 𝐿, while the red line shows the radius 𝑟 at the point where the arms can no longer be distinguished. The blue line shows
the the vertical location where the distance between the arms indicates the resolution. The resolution 𝑑 can then be determined
according to equation (4.2). Figure (c) shows the same blue and red lines as (b), but with the area outside a circle around the
red line blacked out. To estimate the resolution, the largest circle where the arms cannot be resolved should be chosen. We
cannot resolve the arms in (c).

4.2. Mean variance ratio
To evaluate different strengths of Gaussian noise added to simulation images, we use the following
quantity:

𝜇
𝜎2 , (4.3)

where 𝜇 is the mean of the signal and 𝜎2 is the variance of an arbitrary pixel (so not including
inherent variance from the structure of the image, but including e.g. the variance caused by performing
a binomial split). We will use these symbols exclusively for these quantities in the rest of this report.
We continue to use 𝑔2 for the variance of just the Gaussian noise. The mean variance ratio 𝜇/𝜎2 is
related to the signal-to-noise ratio and coefficient of variance. We will use this quantity as it strongly
influences the performance of the 1FRC, independent of factors such as image size or the height of
the input pixel values.
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4.2.1. Theoretical computation from moments
We derived the moments of the binomial distribution compounded with the Gaussian, Poisson and
Poisson-Gauss distributions in section 3.3.3. Subsequently, we can compute the theoretical values for
the mean variance ratio, all for a binomial split with 𝑝 = 0.5.

For pure Gaussian noise:

𝜇
𝜎2 =

1
2𝑎

1
4𝑎 +

1
4𝑔

2

= 2𝑎
𝑎 + 𝑔2 ,

(4.4)

for pure Poisson noise:

𝜇
𝜎2 =

1
2𝜆
1
2𝜆
= 1, (4.5)

and finally for Poisson-Gauss noise:

𝜇
𝜎2 =

1
2𝜆

1
2𝜆 +

1
4𝑔

2

= 2𝜆
2𝜆 + 𝑔2 .

(4.6)

We will use these equations extensively to compute the mean variance ratio, which allows us to predict
when problems with 1FRC occur in the case of high variance Gaussian noise.

4.2.2. Comparison with signal-to-noise ratio
A metric more widely used than the mean variance ratio is the signal-to-noise ratio (SNR), which we
define as follows, where we assume 𝐼 to correspond to 𝜇:

SNR( in dB) = 20 log10 (
𝐼
𝜎) . (4.7)

As 𝜇 is often constant in the experiment, with the Gaussian variance set so a desired 𝜇/𝜎2 is achieved,
we prefer to compute the SNR with 𝜇/𝜎2 and 𝜇. If we set 𝜇/𝜎2 = 𝑣, we can compute:

𝜇
𝜎2 = 𝑣

𝜎2 = 𝜇
𝑣

𝜎 = √𝜇𝑣 ,

(4.8)

Since we can calculate:

𝜇
𝜎 =

𝜇

√𝜇
𝑣

= √𝜇 ⋅ 𝑣,
(4.9)

the mean variance ratio 𝑣 = 𝜇/𝜎2 as in equation (4.3) can be converted to SNR as follows:

SNR = 20 log10 (√𝜇 ⋅ 𝑣) . (4.10)
We wil use the SNR to make the values we use for the mean variance ratio more insightful, as the SNR
is more widely used.
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4.3. Comparing with 2FRC
Another method to evaluate the performance of the 1FRC is comparing the curve directly to a 2FRC
curve, as our goal is achieving the same results. We compare both the resolution estimates as well as
the difference between the two curves.

We quantify the difference between the curves using the mean squared error (MSE):

MSE = 1
𝑁curve

𝑁curve
∑
𝑖=1

|𝑦1FRC,𝑖 − 𝑦2FRC,𝑖|
2 . (4.11)

Here, 𝑁curve is the number of points in the FRC curves, and 𝑦1FRC,𝑖 and 𝑦2FRC,𝑖 are the 𝑦-values of the
1FRC and 2FRC curves, respectively. While the noisiness of the curves near the end does contribute
to the MSE, we empirically found the difference between the curves at the start to be greater than the
noise at the end, justifying also computing the MSE over the entire curve.

4.4. Pixel sum method to compare image distributions
In section 3.2 we derived that if a pixel is Poisson distributed and it is subjected to a binomial split, it
remains Poisson-distributed. This is a requirement for 1FRC to work, as we seek results equivalent to
the 2FRC, where the two independent images will also be Poisson-distributed. However, we are unable
to mathematically derive the same fact for Poisson-Gauss noise. Independent measurements for 2FRC
will both have Poisson-Gauss distributions, so we must also have that a Poisson-Gauss image remains
Poisson-Gauss-distributed after a binomial split. Again, we aim to satisfy equation (3.4).

In a mathematical derivation, we can consider an arbitrary pixel. However, in our simulation we aim
to show that an entire picture remains Poisson-Gauss-distributed. If we can use all pixels in the image
at once on a realistic test image, we get more information than from simulating a single pixel. We do
this by performing a statistical test against the sum of all pixel values in an image, the pixel sum.

We again define an original image 𝐼, with a binomial split of this image giving two new images 𝐴 and
𝐵. Wewill aim to show that the distributions of the pixel sums of 𝐴 and 𝐼 are identical (after compensating
for a different mean). For this, we will make use of Raikov’s theorem11 and Linnik’s theorem.12 We will
state Linnik’s theorem, from which it is known Raikov’s theorem immediately follows.

4.4.1. Decomposition using Linnik’s theorem
First, let 𝐺 be a normal random variable with parameters 𝑎, 𝑔2 according to equation (3.9). Next, let 𝑃
be a Poisson random variable with parameter 𝜆 according to equation (2.7). Suppose 𝐺 is independent
of 𝑃 and let us construct the random variable

𝑍 = 𝐺 + 𝑃. (4.12)

Suppose we have another decomposition of 𝑍 into the sum of two independent quantities 𝑍1 and
𝑍2:

𝑍 = 𝑍1 + 𝑍2. (4.13)

Linnik’s Theorem. A convolution of Gaussian and Poissonian laws can only be decomposed into
similar convolutions. More precisely: Let 𝑔2 > 0 and 𝜆 > 0. For the existence of a decomposition of the
form (4.13) it is necessary (and, trivially, sufficient) that there should exist the decompositions

𝑍𝑗 = 𝑍𝑗1 + 𝑍𝑗2, (4.14)

where the random variables 𝑍𝑗𝑘 are all independent and moreover the 𝑍𝑗1 are normal and the 𝑍𝑗2 are
Poissonian random variables. Here 𝑍𝑗 is either 𝑍1 or 𝑍2 as in equation (4.13).

Raikov’s theoreom is analagous to Linnik’s theorem and follows directly from it. However, for
Raikov’s theorem we have that 𝑍 is Poisson-distributed and 𝑍1 and 𝑍2 are both also Poisson random
variables.

We can use Linnik’s theorem by considering the sum of all pixel values in an image (each a random
variable 𝑃𝑖). Let Σ be this sum, defined as:
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Σ = 𝑃1 + 𝑃2 + ... + 𝑃𝑁×𝑁 (4.15)

If we show that the sum Σ follows a Poisson-Gauss (or Poisson) distribution, that must mean that ac-
cording to Linnik’s (or analogously according to Raikov’s) theorem any decomposition into independent
random variables must consist of Poisson-Gauss (or Poisson) random variables. So we decompose Σ
into two random variables:

Σ = Σ1 + Σ2. (4.16)

We repeat this process again for Σ1 and Σ2, and then keep applying it for each resulting decomposition,
eventually arriving at a decomposition of 𝑁×𝑁 random variables, exactly as in equation (4.15). As we
have repeatedly applied Linnik’s theorem, we know each pixel 𝑃𝑖 must also be distributed as a Poisson-
Gauss random variable. Analogously, we can use Raikov’s theorem if the sum follows a Poisson
distribution. In that case, each individual pixel follows the Poisson distribution.

We now have a single value, the pixel sum Σ, which represents the entire image, that we can perform
a statistical test on to determine if it is indeed the Poisson-Gauss (or Poisson) distribution.

4.4.2. Pixel sum statistical test
The Kolmogorov-Smirnov (K-S) test is used to evaluate the total pixel sum Σ (as in equation (4.15)).
To perform a K-S test, the empirical (cumulative) distribution function (ECDF) must be computed. The
ECDF converges to the underlying cumulative distribution function. The ECDF �̂�𝑚 is defined as follows
for 𝑚 independent and identically distributed observations 𝑋𝑖:

�̂�𝑚(𝑥) =
# of observations ≤ 𝑥

𝑚 = 1
𝑚

𝑚

∑
𝑖=1
1[−∞,𝑥](𝑋𝑖), (4.17)

where 1[−∞,𝑥](𝑋𝑖) is the indicator function, equal to 1 if 𝑋𝑖 ≤ 𝑥 and equal to 0 otherwise. Based on this,
the one-sample K-S test uses the following test statistic:

𝑇𝑚 = sup
𝑥
|�̂�𝑚(𝑥) − 𝐹(𝑥)| , (4.18)

where 𝑇𝑚 is the test statistic and 𝐹(𝑥) is the known distribution function. However, using a known
distribution function is not practical, as the exact parameters of the Poisson-Gauss/Poisson distribution
that the pixel sum would be compared to are unknown. Furthermore, the rounding and clipping applied
prior to the binomial split modifies the distributions slightly, meaning that a pure Poisson-Gauss/Poisson
distribution is not an appropriate comparison, as the K-S test is very sensitive. Therefore, the two-
sample K-S test is performed, which uses the following test statistic, with �̂�1,𝑘(𝑥) the ECDF of the first
sample and �̂�2,𝑘(𝑥) the ECDF of the second sample:

𝑇𝑚,𝑘 = sup
𝑥
|�̂�1,𝑚(𝑥) − �̂�2,𝑘(𝑥)| . (4.19)

To apply the two-sample K-S test to the pixel sum, we take one sample from binomially split images
and another from two images with independent noise. We can then compute the test statistic based on
the ECDF of both samples. Furthermore, this allows us to compute a 𝑝-value. For low values, we can
reject with confidence the fact they have the same distribution, which would undermine our expectation
that the binomial split preserves the distribution.

Unfortunately, no test exists that allows the opposite, i.e. rejecting that the two distributions are
different. This is a consequence of the fact that there can always be tiny differences between distribu-
tions that no test statistic could pick up. As a result, the best we can do is to provide evidence that the
distributions before and after the binomial split are not too dissimilar to be the same distribution.

A possible objection to this method is that as a result of the central limit theorem, these sums
(which are of the order of tens of thousands to millions of pixels) might approximate a simple normal
distribution. To verify if this is the case, the sums are also to be compared to realizations of normally
distributed pixels. However, even if they are indeed nearly normally distributed, this is not a problem
as this will also be the case for the distribution of the pixels in the non-split image.
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5
Simulations

In this chapter, we evaluate the performance of 1FRC for test images with simulated Poisson and
Poisson-Gauss noise. We first compare 1FRC curves to 2FRC curves using the Fréchet distance and
also look at the difference between their resolution estimates. We then use the pixel sum method to
investigate the probability distribution of the images after the binomial split to justify the use of 1FRC.
This is done both for images with simulated Poisson and Poisson-Gauss noise. Finally, we investigate
the problems that occur with the 1FRC when Gaussian noise with high variance is added to images.

5.1. Comparing 1FRC and 2FRC simulation results
5.1.1. Images with simulated Poisson noise
The performance of 1FRC and 2FRC is compared using the images introduced in section 4.1. We
use the 512 × 512 pixels Siemens star of figure 4.1. A Gaussian filter is then applied as in figure 4.2.
Next, Poisson noise is added to the picture, where each pixel value is the parameter for a draw from
a Poisson distribution, with the new pixel value set to the result from that draw. An example of added
Poisson noise can be seen in figure 5.1, for two values of the average pixel intensity 𝐼avg (100 and
1000).

(a) (b)

Figure 5.1: Two examples of the 512x512 Siemens star simulation images. For (a) we have that average pixel intensity
𝐼avg = 100 and for (b) 𝐼avg = 1000. Both have a Gaussian filter of 𝜎 = 3 pixels applied before Gaussian noise is applied.

We can estimate the resolution using the Siemens star as seen in figure 4.3. This is a subjective method
and not highly accurate, but serves as a good baseline and provides an order of magnitude. In figure
5.2 we compare the 1FRC and 2FRC for different values of the average pixel intensity 𝐼avg, where the
background pixels are set to 55% of the white foreground star pixels. The value of 55% is constant
throughout this report and was chosen empirically. This value allows a meaningful estimation of the
resolution using the visual method of section 4.1, as at that level the Gaussian filter and Poisson noise
have a visible effect on the resolution.
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5.1. Comparing 1FRC and 2FRC simulation results 5. Simulations

(a) 𝑛 = 10. 𝑟1𝐹𝑅𝐶: 13.10 ± 0.14 px. 𝑟2𝐹𝑅𝐶: 13.0 px. (b) 𝑛 = 100. 𝑟1𝐹𝑅𝐶: 10.90 ± 0.09 px. 𝑟2𝐹𝑅𝐶: 10.6 px.

(c) 𝑛 = 500. 𝑟1𝐹𝑅𝐶: 9.06 ± 0.08 px. 𝑟2𝐹𝑅𝐶: 9.1 px. (d) 𝑛 = 1000. 𝑟1𝐹𝑅𝐶: 8.61 ± 0.03 px. 𝑟2𝐹𝑅𝐶: 8.5 px.

Figure 5.2: Comparison of 1FRC and 2FRC for simulated Poisson noise. Figures (a)-(d) contain FRC curves computed using
a Siemens star image as a base with simulated Poisson noise added. Before noise is added, the image is adjusted so the average
pixel count equals a certain intensity 𝐼avg. The background is a constant 55% of the intensity of the foreground. Furthermore, a
Gaussian filter with 𝜎 = 3 pixels is also applied before the noise is added. The 1FRC resolution 𝑟1𝐹𝑅𝐶 is computed by averaging
five 1FRC curves per image (by splitting five different times). The uncertainty is the standard deviation of the resolution results
of the individual curves. The MSE between the curves is less than 0.002 for all four values of 𝐼avg. The Poisson noise is a
limiting factor, as reducing the count 𝐼avg worsens the resolution. The 1FRC and 2FRC methods agree well for this simulation.
On average, the 1FRC resolution 𝑟1𝐹𝑅𝐶 differed 1.3% from the 2FRC resolution 𝑟2𝐹𝑅𝐶 for these four figures.

Figure 5.2 shows the basic comparison of 1FRC and 2FRC for simulated Poisson noise added to a
Siemens star image. The simulation is performed for four average pixel values 𝐼avg (10, 100, 500 and
1000). The background is 55% of the pixel value of the foreground. This value is chosen to allow for
significant variance in the background to increase the influence of the Poisson noise on the resolution.

A Gaussian filter with 𝜎 = 3 pixels is used to ensure a cutoff of spatial frequencies, which allows
for a well-defined resolution for a simulation image. The specific value ensures enough blur that the
resolution is not so high that determining the resolution visually using the Siemens star becomes too
difficult. Furthermore, the value also does not cause not too much blur so as to completely overshadow
the effect of the Poisson noise on the resolution.

The MSE between the curves never exceeds a value of 0.002. The 1FRC resolutions differ 1.3%
from the 2FRC resolutions on average. Three times the 1FRC gives worse resolutions, once it is
indistinguishable.
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Figure 5.3: 1FRC vs. 2FRC resolutions for different 𝐼avg. Different values of the average pixel value 𝐼avg are used to generate
different versions of the Siemens star (again, with the background pixels set to 55% of the foreground). For each value of 𝐼avg,
the average of ten 2FRC and 1FRC resolution computations is taken. Furthermore, the 1FRC curve is the average of three
1FRC curves for each of those computations.

We can see in figure 5.3 that the resolutions computed by 1FRC and 2FRC lie very close together
across a wide range of signal levels. Ten FRC curves were computed for each value of 𝐼avg. On
average, 1FRC resolution gives 0.4% lower values than the 2FRC.

For each image, the resolution was also estimated using the Siemens star method by looking at
the radius where the arms could no longer be resolved. For all pictures, this resulted in resolutions
of the same order of magnitude as the resolutions given by the 1FRC. This is expected, as the 1FRC
corresponds well with the 2FRC and the performance of 2FRC has already been proven.

5.1.2. Images with simulated Poisson-Gauss noise
Similar to images generated with Poisson noise, we can also compare FRC curves made of images
with simulated Poisson-Gauss noise. However, while the choice of parameter for Poisson noise is
clear, as it relates directly to the count, this is not the case for the normal distribution. The Gaussian
noise is mostly caused by readout noise, which can vary significantly depending on the setup. For
this reason, different variance levels are simulated, namely for 𝜇/𝜎2 = 0.99, 0.98, 0.97, 0.95, 0.9, 0.5
(1 is equivalent to pure Poisson noise), where this quantity is to be understood as in equation (4.3),
i.e. the final image mean and split image pixel variance. Two examples of the effect of Gaussian
noise on an image can be seen in figure 5.4. The mean of the Gaussian noise is always taken to
be zero, as we also did in section 3.3. If we convert these values to a more standard measure, such
as the signal-to-noise ratio (SNR) as defined in equation (4.10), we must also take the average pixel
intensity 𝐼avg (which is equal to 𝜇) into account. For 𝐼avg = 500, we have that the SNR values are
26.95 dB, 26.90 dB, 26.86 dB, 26.77 dB, 26.53 dB, 23.98 dB for the above values of 𝜇/𝜎2, respectively.
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(a) (b)

Figure 5.4: Two examples of the 512x512 Siemens star simulation images with average pixel intensity 𝐼avg = 100. For (a) we
have that 𝜇/𝜎2 = 0.99 and for (b) 𝜇/𝜎2 = 0.5. Both have a Gaussian filter of 𝜎 = 3 pixels applied before Gaussian noise is
applied.

Figure 5.5 shows six different comparisons between 1FRC and 2FRC for images with Poisson-
Gauss noise. For the first time, we see evidence that the binomial split is not always equivalent to the
2FRC. We see that, instead of dropping to zero, the 1FRC curve fluctuates around a nonzero plateau
at higher frequencies. The higher the variance, the higher the final plateau. In further sections, we will
seek to further quantify and investigate this difference between the 1FRC and 2FRC curves. However,
it is clear that for low, practical values of the Gaussian noise (a)-(c), the 1FRC and 2FRC curves are
nearly indistinguishable and have similar resolution values.
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(a) 𝜇/𝜎2 = 0.99. 𝑟1𝐹𝑅𝐶: 9.85 ± 0.04 px. 𝑟2𝐹𝑅𝐶: 9.94 px. (b) 𝜇/𝜎2 = 0.98. 𝑟1𝐹𝑅𝐶: 9.14 ± 0.14 px. 𝑟2𝐹𝑅𝐶: 9.06 px.

(c) 𝜇/𝜎2 = 0.97. 𝑟1𝐹𝑅𝐶: 8.75 ± 0.15 px. 𝑟2𝐹𝑅𝐶: 8.68 px. (d) 𝜇/𝜎2 = 0.95. 𝑟1𝐹𝑅𝐶: 8.90 ± 0.16 px. 𝑟2𝐹𝑅𝐶: 8.83 px.

(e) 𝜇/𝜎2 = 0.9. 𝑟1𝐹𝑅𝐶: 8.33 ± 0.43 px. 𝑟2𝐹𝑅𝐶: 9.10 px. (f) 𝜇/𝜎2 = 0.5. 𝑟1𝐹𝑅𝐶: N/A. 𝑟2𝐹𝑅𝐶: 10.00 px.

Figure 5.5: Comparison of 1FRC and 2FRC for simulated Poisson-Gauss noise. (a)-(e) contain FRC curves computed
using a Siemens star image as a base with simulated Poisson and Gaussian noise added, for different values of 𝜇/𝜎2 =
0.99, 0.98, 0.97, 0.95, 0.9, 0.8, 0.5. These values are chosen to highlight the region where we are interested in, namely the case
of low Gaussian variance where the results can still be accurate. The average pixel value is set to 𝐼avg = 500. As before, the
background pixels are set to 55% of the foreground pixels. Furthermore, a Gaussian filter with 𝜎 = 3 pixels is also applied
before the noise is added to the image. The 1FRC resolution 𝑟1𝐹𝑅𝐶 is computed by averaging five 1FRC curves per image
(by splitting five different times). The uncertainty is the standard deviation of the resolution results of the individual curves. For
curves (a)-(c), not much difference can be observed. However, for (d) the MSE starts rising faster and (e) shows a significant
difference between the resolutions. For (f) it even becomes impossible to compute the 1FRC resolution as there is no crossing
with the threshold.
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5.2. Pixel sum method to investigate distributions of split images
From observing the 1FRC and 2FRC curves and comparing their resolutions and the MSE between
them, we have established that images with Poisson noise agree well, while problems occur for images
with Poisson-Gauss noise once the variance becomes high. We will seek to further study these findings
by comparing the probability distribution of images after a binomial split to the probability distribution
they should have if they were independently captured (as in 2FRC).

Due to Linnik’s theoreom applied to the case of Poisson-Gauss noise (and Raikov’s in the case of
pure Poisson noise), we know that if the sum of all pixel values in an image follows a Poisson-Gauss
distribution, the individual pixels must do so as well. We will use the empirical distribution function
(ECDF) of pixel sums of many images for the Kolmogorov-Smirnov (K-S) test to determine whether
the binomially split pixel sums have the same distribution as the reference pixel sums. The series
of reference pixel sums is computed from images 𝐻𝑗 (where 𝑗 is 1, 2, ..., 𝑘). No binomial split will
be performed as they represent the 2FRC case. The images all have a fixed average pixel value
of 𝐼avg=250. The images 𝐻𝑗 differ only in their noise content, which is an independent realization of
Poisson-Gauss (or Poisson) noise. Subsequently, we compute the pixel sum Σ, giving us the series
Σ𝐻,𝑘. From all these pixel sums, we compute the reference ECDF �̂�𝐻,𝑘.

The series of 1FRC pixel sums is computed from images 𝐴𝑖 (where 𝑖 is 1, 2, ..., 𝑚). These images
are identical to the original images 𝐻𝑗, except that they have a fixed average pixel value of 𝐼avg=500.
This is double the value for 𝐻𝑗 and compensates for the fact that the binomial split exactly halves the
average pixel value (as we use 𝑝 = 0.5). Like the reference series, Poisson-Gauss (or Poisson) noise
is added to the image. Unlike for the reference series, we now perform a binomial split on each image
and then compute the pixel sums. This gives us the series Σ𝐴,𝑚, from which we compute the 1FRC
ECDF �̂�𝐴,𝑚.

We do not necessarily need to have that 𝑚 = 𝑘, as this is not necessary to compute the K-S
test. Furthermore, as the computation of �̂�𝐴,𝑚 is much more computationally intensive due to having to
perform a binomial split for each image, it might be useful to have 𝑘 > 𝑚 to improve the accuracy of
the K-S test. For the images, we use the Siemens star with Gaussian filter (figure 4.2). However, as
this routine is computationally intensive, a smaller version is used, of only 64 × 64 pixels.

From the ECDFs �̂�𝐴,𝑚 and �̂�𝐻,𝑘 we compute the Kolmogorov-Smirnov (K-S) test statistic and com-
pute the corresponding 𝑝-value. If the 𝑝-value of the K-Stest performed on these two sample series is
below 0.05, the null hypothesis that these samples come from the same distribution is rejected (and we
conclude the distributions are different). For higher values, the test sees little distinction and the null
hypothesis is not rejected. However, this is not sufficient statistical proof that they are from the same
distribution, only that they are not so different as to rule out them being identical. It does, however, give
confidence that they could come from the same distribution.

Poisson results
We compute the ECDFs �̂�𝐴,𝑚 and �̂�𝐻,𝑘 for 𝑚, 𝑘=10,000, which are shown in figure 5.6. While we have
already shown, both mathematically and from simulations, that 1FRC and 2FRC correspond closely
for pure Poisson noise, we will first demonstrate the pixel sum method on pure Poisson noise. Con-
sequently, we only add Poisson noise to the images, with the pixel value as the parameter. We also
compute a third ECDF �̂�𝐺,𝑙 with 𝑙=10,000, which is similar to �̂�𝐻,𝑘 but instead of Poisson noise we use
normally distributed noise with mean and variance equal to the pixel value, approximating the Poisson
distribution.

The distributions of the pixel sums of the split and original images correspond closely in the figure.
The sums with Poisson-like normal distributed noise added are also similar. This is a result of the fact
that for high values, the normal distribution is a close approximation of the Poisson distribution. This
does not undermine the validity of this method, as the non-split sums are also very close to the normal
distribution sums.

Small random fluctuations can have large impacts on the 𝑝-value of the K-S test performed on the
ECDFs. This is a consequence of the fact that the K-S test statistic looks only at themaximum difference
between the ECDFs. For this reason, we compute the ECDFs on a large number of samples (10,000).
Unfortunately, increasing the amount of samples increases the computation time significantly. Due to
the fluctuating 𝑝-value, the entire experiment is run ten times to quantify the uncertainty. From this, the
average 𝑝-value is 0.61 ± 0.17.
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(a) (b)

Figure 5.6: Pixel sum empirical distribution function of Poisson noise images. (a) shows the empirical distribution func-
tions �̂�𝐴,𝑚 (split images), �̂�𝐻,𝑘 (halved independent images) and �̂�𝐺,𝑙 (halved independent images with normal approximation of
Poisson), where 𝑚,𝑘, 𝑙=10,000. Furthermore the 𝑝-values are computed for the Kolmogorov-Smirnov test between the pixel
sums of the images 𝐴 and 𝐻 as well as for 𝐴 and 𝐺, with values 0.769 and 0.5, respectively. (b) shows the average over 5 times
of the absolute difference between �̂�𝐴,𝑚 and �̂�𝐻,𝑘 for 10,000 samples. The K-S test statistic is computed from the maximum of
this graph, which in this case is near 0.01 and concentrated in the center.

The null hypothesis is that the distributions are equal. As such, it cannot be rejected for 𝑝=0.61.
This further corroborates the validity of the 1FRC method for Poisson noise. However, the uncertainty
is still high and a K-S test cannot prove that distributions are indeed equivalent. Furthermore, if they
were indeed exactly equal, we would expect a 𝑝-value closer to 1.

Poisson-Gauss results
In figure 5.7, we compute the ECDFs for the split images 𝐴𝑖 and halved images 𝐻𝑗 with Poisson-Gauss
noise instead of pure Poisson noise, again with 10,000 samples per ECDF. The graphs of the ECDFs
are shown for three different variance levels of the added Gaussian noise. Here, the split clearly affects
the distribution for higher levels of variance. In practice, finding such high levels of variance is rare,
but it still shows that for Poisson-Gauss noise, the binomial split only approximately preserves the
distribution.
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(a) 𝜇/𝜎2=0.99

(b) 𝜇/𝜎2=0.97 (c) 𝜇/𝜎2=0.95

Figure 5.7: Pixel sum empirical distribution function for Poisson-Gauss noise images. (a)-(c) show the empirical distri-
bution functions �̂�𝐴,𝑚 (split images), �̂�𝐻,𝑘 (halved independent images) and corresponding 𝑝-values for three different values of
𝜇/𝜎2, the split image 𝐴’s mean divided by the split single pixel variance. The corresponding variance of the Gaussian noise
𝑔2 is shown in the diagram, which is also applied to the non-split image 𝐻. As the variance level increases, the ECDF curves
correspond less closely and the 𝑝-value is below 0.05 for 𝜇/𝜎2=0.95, which corresponds to a Gaussian variance of 𝑔2=94.2
(compare this to the image mean of 894). Both ECDF curves are computed from 10,000 samples each (𝑚,𝑘=10,000).

Figure 5.8 shows a more extreme example of high variance. In this picture, the final variance is around
two times the image mean. At this point, the difference curve between the two ECDFs also takes a
more stable form, as can be seen in subfigure 5.8b.
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(a) (b)

Figure 5.8: Pixel sum empirical distribution function for Poisson-Gauss noise images with very high Gaussian variance.
(a) shows the empirical distribution functions �̂�𝐴,𝑚 (split images), �̂�𝐻,𝑘 (halved independent images). Both ECDF curves are
computed from 10,000 samples each (𝑚,𝑘=10,000). (b) shows the average over 5 times (differences of 5 runs are averaged)
of the absolute difference between �̂�𝐴,𝑚 and �̂�𝐻,𝑘, each computed from 10,000 samples. For this high level of variance, it can
be seen that the ECDF curves diverge strongly near the edges, indicating the binomial split distorts the variance.

5.3. Relation between 1FRC discrepancy and moments
We have seen that if the Gaussian variance reaches a high level, the 1FRC no longer drops to zero,
but instead levels off at some value greater than zero. This value is dependent on the variance and
mean of the final distribution. In section 3.3.3 we derived the following general relations for the variance
of the compound probability distributions of 𝑆𝑔 (pure Gaussian binomial split) and 𝑆𝑝𝑔 (Poisson-Gauss
binomial split):

Var(𝑆𝑔) =
1
4𝑎 +

1
4𝑔

2 (𝑝 = 0.5)

Var(𝑆𝑝𝑔) =
1
2𝜆 +

1
4𝑔

2 (𝑝 = 0.5).
(5.1)

We will first empirically verify these findings.

5.3.1. Compound distribution moment simulations
In section 3.3.3, we derived the moments of compound probability distributions of pure Gaussian and
Poisson-Gauss random variables subjected to a binomial split. Those results assume an ideal normal
distribution. However, we showed earlier it is not ideal as it must be rounded and clipped to account for
values lower than zero. To test if the calculation of moments is applicable also to this slightly modified
distribution, we perform two simulations, one for the compound binomial-pure Gaussian random vari-
able 𝑆𝑔, the other for the compound binomial-Poisson-Gaussian random variable 𝑆𝑝𝑔. In the first, 100
million values are drawn from a normal distribution (𝑎 = 1000, 𝑔2 = 10) and in the second, 100 million
values from the sum of a draw from a Poisson distribution (parameter 𝜆 = 1000) and normal distribution
(zero mean, variance 𝑔2 = 100). These are then rounded to the nearest integer and negative values
set to zero. For each resulting value, a draw from a binomial distributions is made, with the rounded,
clipped normal sample as the 𝑛 parameter.

Random variable Sample mean Sample variance
𝑁𝑔 1000.0000 ± 0.0002 10.084 ± 0.002
𝑁𝑝𝑔 999.999 ± 0.003 1100.1 ± 0.01

Table 5.1: Rounded normal and Poisson-Gauss distribution. Mean and variance of 100 million samples from a normal
distribution 𝑁𝑔 (mean 𝑎=1000, variance 𝑔2=10) and sum of a normal distribution (zero mean, variance 𝑔2=100) and Poisson
distribution (𝜆=1000), rounded to the nearest integer and with negative values clipped to zero. The experiment was conducted
10 times to compute the standard deviation of the variance and mean.

26



5.3. Relation between 1FRC discrepancy and moments 5. Simulations

We now look at the mean and variance of the underlying distributions, the rounded and clipped
normal and Poisson-Gauss distributions. The results can be seen in table 5.1. The means are barely
influenced by the rounding and clipping, falling easily within one standard deviation. However, the
variance is slightly higher than expected for both distributions, but the discrepancy is very small.

Table 5.2 shows the simulation results for the moments of the compound probability distributions.
Again, the values are very close, with only the sample variance slightly outside a single standard devi-
ation, but not too far out to disregard the moments.

Random variable Var(𝑆) Sample variance 𝔼 [𝑆] Sample mean
𝑆𝑔 252.5 252.59 ±0.04 500 500.000 ±0.002
𝑆𝑝𝑔 525 525.07 ± 0.04 500 499.999 ± 0.002

Table 5.2: Binomial from normal and Poisson-Gauss. Computed variance and expected value of 𝑆𝑔 and 𝑆𝑝𝑔, binomial random
variables with parameters (𝑛, 𝑝 = 0.5) where 𝑛 is a realization of random variable 𝑁𝑔 for 𝑆𝑔, which is normally distributed
(mean 𝑎=1000, variance 𝑔2=10), but rounded to the nearest integer and with negative values clipped to zero. For 𝑆𝑝𝑔, 𝑛 is
a realization of random variable 𝑁𝑝𝑔, which is the sum of a normal distribution (zero mean, variance 𝑔2=100) and Poisson
distribution (parameter 𝜆=1000), again rounded to the nearest integer and with negative values clipped to zero. The experiment
was conducted 10 times to compute the standard deviation of the variance and mean.

Now that we know we can accurately estimate the moments of the compound probability distribu-
tions, even after rounding and clipping, we will look at the relation between expectation, variance and
the 1FRC discrepancy.

5.3.2. Discrepancy relation
Empirically, we found that for both the pure Gaussian noise and Poisson-Gauss noise, the 1FRC begins
to give different results from the 2FRC once the pixel variance after the split 𝜎2 exceeds the mean after
the split 𝜇, as defined in section 4.2. This different result manifests itself as an elevated plateau for
the FRC values at high spatial frequencies, which we denote as ⟨1FRC⟩high 𝑓. Generally, it fluctuates
around zero for higher spatial frequencies, with the average near zero. However, for higher relative
levels of variances, this average is nonzero.

We plot the discrepancy relation in figure 5.9. The plot does not extend beyond 1 as for Poisson-
Gauss noise, we know from equation (4.6) that 𝜇/𝜎2 cannot be higher than 1. In the plot, we first
determine which values of 𝜇/𝜎2 we want to show and then compute the associated value of 𝑔2 from
equation (4.6) for Poisson-Gauss noise and equation (4.4) for pure Gaussian noise. The ⟨1FRC⟩high 𝑓
is then calculated by taking the average of the 1FRC values in the second half of the spatial frequency
range. Figure 5.9 shows how the erroneous increase in the 1FRC vs the 2FRC (of which the latter
stays around zero for any level of variance) decreases as 𝜇/𝜎2 decreases. This increase is identical
for pure Gauss and Poisson-Gauss at identical levels of 𝜇/𝜎2. To illustrate that this effect is an inherent
product of the 1FRC, we also show this for a constant image input. Even for such a picture, the elevated
plateau can be observed. In fact, we can see the increase can be predicted using the computed value
of 𝜇/𝜎2. We can write the observed relation as follows:

⟨1FRC⟩high 𝑓 = 1 −
𝜇
𝜎2 (5.2)

Here, 𝜇/𝜎2 is computed using equations (4.4) (pure Gaussian noise) and (4.6) (Poisson-Gauss noise).
This requires knowledge of the variance parameter 𝑔2 of the Gaussian noise.

In figure 5.10, we compute �̂�/�̂�2, where �̂� is the sampled mean of the split image and �̂�2 is the
sample variance of a constant value pixel in the split image. This is different from the previous figure,
as we now compute �̂�/�̂�2 from observed pixel values, instead of pre-computing it using known image
and noise parameters. To compute �̂�2, we calculate the variance of a sample of pixels that have the
same value in the input image, as the noise and binomial split work independently on each pixel. This
is not possible if the noise is already applied, as in that case it is unknown which pixels have the same
value in the input image. We see that for pixel samples with a different value, the curve is different,
although the beginning and starting points remain the same. We are unable to determine if this is a
result of some sampling artifact or an actual effect relevant to 1FRC. We do see that if we look at the
variance of pixels that are close to the overall image mean, we again have the relationship of equation
(5.2).
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(a)

(b)

Figure 5.9: Incorrect 1FRC from variance, computed mean variance ratio. Average of the second half of the 1FRC curve
plotted against 𝜇/𝜎2. This value is computed using equation (4.6) for Poisson-Gauss noise and equation (4.4) for pure Gaussian
noise, using a known value for 𝑔2 as the Gaussian noise variance parameter. The parameters 𝑎 and 𝜆 correspond to the input
images’ mean. For (a) the input image is 512 by 512 pixels of constant value 100. For (b) the input image is a 512 by 512
Siemens star with Gaussian filter applied (𝜎 = 3 pixels), with 𝐼avg = 100 and the background pixels set to 55% of the foreground.
For the Poisson-Gauss noise, first Poisson noise is added to the constant image. Next, zero mean Gaussian noise is added
with a variance set for the desired final value of 𝜇/𝜎2. For pure Gaussian noise, only the Gaussian noise is added. 𝜇/𝜎2
does not go higher than 1 as this is impossible for Poisson-Gauss noise. The relation is very close to a simple straight line of
the form 𝑦 = −𝑥 + 1, with the maximum divergence from the straight line at 0.0078 for pure Gaussian noise and 0.0090 for
Poisson-Gauss noise in the case of (a). For (b), the maximum divergence is equal to 0.0080 for pure Gaussian noise and 0.011
for Poisson-Gauss noise.
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(a)

(b)

(c)

Figure 5.10: Incorrect 1FRC from variance, sample mean variance ratio. Average of the second half of the 1FRC curve
plotted against �̂�/�̂�2, where �̂� is the sampled mean of the split image and �̂�2 is the sample variance of a constant value pixel in
the split image. The input image is a 512 by 512 Siemens star, as for figure 5.9b. Taking the variance over the entire picture would
include variance inherent in the image, namely the difference between the star foreground and background. To remedy this, the
variance is taken only over 50,000 different pixels of equal value (all in the star foreground for (a), all in the star background
for (b) and for pixels with an absolute difference of less than two from the image mean for (c)). Furthermore, this is done for
5 different noise realizations and subsequent splits for each Gaussian variance 𝑔2 input value. Since only around 1,200 pixels
have a value near the image mean, for (c) we perform 50 different noise realizations and splits instead of 5. While the starting
points are on the straight line, a curve can be observed for (a) and (b), with the maximum divergence from the line for (a) equal
to 0.083 for pure Gaussian noise and 0.085 for Poisson-Gauss noise, a factor 10 larger than in the case the computed 𝜇/𝜎2 is
used. For (c), we see that it is much closer to the line, with a maximum divergence of 0.016 for pure Gaussian noise and 0.017
for Poisson-Gauss noise.
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In the previous figures we have plotted 𝜇/𝜎2 between 0 and 1 as these are the only values allowed
by equation (4.6). However, equation (4.4) allows values between 0 and 2. While pure Gaussian noise
is not the primary type of noise we are interested in, it is useful to see whether the relation holds more
generally. We plot the results in figure 5.11. We observe that the relation indeed holds more generally
for pure Gaussian noise. In fact, we can state that if this relation holds for all types of noise, 1FRC only
works in the narrow region where 𝜇/𝜎2 is roughly one, making this an important condition for its use.

Figure 5.11: Incorrect 1FRC from variance, pure Gaussian noise. Average of the second half of the 1FRC curve plotted
against 𝜇/𝜎2, with the same input image and parameters as figure 5.9b. However, here we plot 𝜇/𝜎2 between 0 and 2. We see
that the relation of equation (5.2) continues to hold, with 1FRC indicating full anticorrelation for 𝜇/𝜎2 = 2. At this 𝜇/𝜎2, we see
from equation (4.4) that 𝑔2 = 0. This means that in this case no noise is added at all. Since we are simply splitting an image
with no noise, we are in effect only halving the image mean. Since we compute the second image by subtracting the first from
the original image, described by equation (3.3), with no randomness full anticorrelation can be expected.

We now know that for 𝜇/𝜎2 higher than the FRC threshold value (e.g. 1/7), the 1FRC becomes
useless, as the 1FRC will no longer intersect the threshold. In earlier sections, we saw that even for
values close to 1, the discrepancy leads to inaccurate resolution results. More research is needed to
determine the underlying process that creates this relation, which only applies to 1FRC, not standard
2FRC.

5.3.3. Maximum Gaussian variance
We have now seen in many ways that for increasing variance levels of Gaussian noise, the 1FRC
plateau at higher frequencies does not drop to zero as the 2FRC always does. For zero variance
Gaussian noise, we can see that the situation reduces to pure Poisson, in which case 1FRC works
well. Furthermore, the approximation in section 3.3.1 suggests the same. We seek to quantify for what
level of Gaussian variance this is the case. We do this by comparing the standard deviation of 1FRC
𝑆𝐷1𝐹𝑅𝐶 over different noise realizations (and subsequent binomial splits) to the absolute difference in
resolution Δ𝑑 between 1FRC and 2FRC. We plot this in figure 5.12. In the figure, we observe that the
difference crosses the 1FRC standard deviation at 𝜇/𝜎2 = 0.973. If we compare this to figure 5.5c,
where 𝜇/𝜎2 = 0.97, 0.973 seems like a reasonable value from which we can say that for lower values,
the 1FRC gives incorrect results.
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Figure 5.12: Standard deviation 1FRC and 2FRC vs. difference 1FRC and 2FRC.We measured standard deviation of 1FRC
and 2FRC resolution (using the 1/7 threshold) by computing the sample standard deviation across 20 Poisson-Gauss noise
realizations (and 20 subsequent binomial splits for the 1FRC) for each value of the mean variance ratio 𝜇/𝜎2, which we compute
in steps of 0.0007. The curves are smoothed using LOESS (with the fraction of points considered equal to 0.3).13 We only plot
for 𝜇/𝜎2 > 0.86 as for lower values ⟨1FRC⟩high 𝑓 lies above the threshold value. For 𝜇/𝜎2 > 0.973, the absolute difference
between 1FRC and 2FRC exceeds the 1FRC standard deviation. From this point on, the difference cannot be explained by
simple uncertainty and we characterize 1FRC as unreliable compared to the 2FRC. The input image is a 512 by 512 Siemens
star with Gaussian filter applied (𝜎 = 3), with 𝐼avg = 200. For this imagemean, we know from equation (4.6) that at 𝜇/𝜎2 = 0.973,
we have 𝑔2 = 11.1. Equivalently, we have SNR = 22.9 dB.

It is not immediately clear if the intersection between Δ𝑑 and 𝑆𝐷1𝐹𝑅𝐶 occurs at constant 𝑔2, SNR
or 𝜇/𝜎2 = 0.973 (constant for different values of 𝐼avg). There is high uncertainty in the 𝜇/𝜎2 value
found from the intersection in the plot, as heavy smoothing is required to remove the fluctuations in
the curves. Furthermore, this is a computationally expensive process, as many realizations must be
computed for many values of 𝜇/𝜎2. From empirical investigation, we found that for 𝐼avg = 70 we have
that 𝜇/𝜎2 = 0.979 (𝑔2 = 3.00, SNR = 18.3 dB) and for 𝐼avg = 1000, 𝜇/𝜎2 = 0.970 (𝑔2 = 61.9,
SNR = 29.9 dB). For these different image means, 𝑔2 and the SNR vary far more than 𝜇/𝜎2 does.
These facts make it plausible that 𝜇/𝜎2 = 0.973 is a more fundamental limit, although simulations on
far more noise realizations and for finer values of 𝜇/𝜎2 are necessary to make this statement more
confident.

Another way to quantify for which value of 𝜇/𝜎2 the 1FRC results become too inaccurate is by
using the pixel sum statistical test. If the 𝑝-value drops below 0.05, we can confidently reject that the
two distributions are equal. Unfortunately, the 𝑝-value of the Kolmogorov-Smirnov test we employ is
very sensitive, leading to significant uncertainties and different values in each simulation. If we look at
figure 5.7, we can see that the 𝑝-value drops below 0.05 between 𝜇/𝜎2 = 0.97 and 𝜇/𝜎2 = 0.95. This
is in rough accordance with our 0.973 result from the intersection we found in figure 5.12. It is important
to note that the widely used statistical significance level of 0.05 is quite arbitrary.

5.3.4. Heuristic modification to ensure correct resolution
Without modification, the resolution cannot be computed for high variance levels as the 1FRC curve
has no intersections with the threshold. However, a simple transformation of the curve can ensure that
it does. Consider a 1FRC curve 𝑓(𝑥) with initial value 𝑓(0) (this should be 1). If we define ̄𝑓 to be the
average level of the end of the curve (in this example we use the second half, but by investigating the
slope of the curve a more accurate point could be found), we can calculate a transformed curve:

𝑓∗(𝑥) = 𝑓(𝑥) − ̄𝑓
𝑓(0) − ̄𝑓 (5.3)

This moves the final average down while transforming the curve so it still starts at 1. Figure 5.13 shows
the result. While it does allow for the computation of a resolution, the curve remains slightly shifted,
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which was not the case for low variance 1FRC curves without this transformation. More investigation
and mathematical justification is necessary to evaluate the performance of this ad hoc transformation.

Figure 5.13: Transformed 1FRC with high variance. A 1FRC curve with high variance Gaussian noise is indicated with blue.
We use the same input image and parameters as in figure 5.5f. This figure also includes the transformed curve 𝑓∗(𝑥), modified
according to equation (5.3). The resolution for the 2FRC curve is 10.0 pixels, while for the modified 1FRC curve it is 9.7 pixels.

.
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6
Experimental data

We have shown the performance of 1FRC for simulated data, but not yet for experimental data. Here,
we will use 1FRC to determine the resolution of a series of images captured using stimulated emission
depletion (STED) microscopy and try to show a well-known relation between STED intensity and reso-
lution. STED is a common technique used for super-resolution microscopy, which is the primary area
of interest for applying 1FRC. STED was one of the first super-resolution methods to be introduced.1

6.1. STED dataset
The dataset was compiled by the HeilemannGroup at the JohannWolfgangGoethe-University (Institute
of Physical and Theoretical Chemistry) in Frankfurt am Main. Three different biological samples were
imaged, all using Nile red membrane stain. The samples were imaged at different STED laser settings
intensity settings, all using 561 nm excitation and a 775 nm STED laser.

One of the images of the first series, series 𝐴, is shown in figure 6.2. Six pictures were taken for
this series, with STED intensity settings of 0%, 13%, 25%, 50% and 100% (relative to the maximum
intensity). The object has a size of 22.55×22.55 µm and is imaged at 1024×1024 pixels. The numerical
aperture was 1.2.

The second series (series 𝐵) and third series (series 𝐶) both consist of 13 images of 20.41 × 20.41
and 20.06×20.06 µm, respectively. Both were imaged at 1024×1024 pixels with a numerical aperture
of 1.4. For these series, STED intensity settings included 0%, 25%, 50% and 100%.

This dataset was not acquired in a way that allowed standard FRC; there is only a single image
available per measurement. For this reason, the 1FRC is a good fit. The results are also compared
with another recent technique utilizing decorrelation analysis.7

6.2. 1FRC on STED images
To showcase the utility of the 1FRC method, it is applied to real world data. For this, a data set of STED
images is used. This data set consists of three series, each corresponding to a different biological
sample. Figure 6.1 shows the 1FRC for the first of those, consisting of six images taken at increasing
intensity levels of the STED microscope.
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(a) STED intensity: 0%. 𝑑1/7: 206 ± 6 nm. 𝑑1/2-bit: 226 nm. Diffraction
limit: 234 nm. (b) STED intensity: 13%. 𝑑1/7: 158 ± 1 nm. 𝑑1/2-bit: 169 nm.

(c) STED intensity: 25%. 𝑑1/7: 139 ± 2 nm. 𝑑1/2-bit: 148 nm. (d) STED intensity: 50%. 𝑑1/7: 124 ± 4 nm. 𝑑1/2-bit: 129 nm.

(e) STED intensity: 100%. 𝑑1/7: 103 ± 1 nm. 𝑑1/2-bit: 113 nm. (f) STED intensity: 100%. 𝑑1/7: 102 ± 1 nm. 𝑑1/2-bit: 108 nm.

Figure 6.1: Series A 1FRC curves. Six 1FRC curves of real-world STED data (Series 𝐴) are shown here, as well as the
corresponding computed resolutions for two standard threshold curves (1/7=0.143 and 1/2-bit information). Each curve was
computed from an image taken using different STED parameters, with the STED intensity as the parameter of interest. The
intensity values are 0%, 13%, 25%, 50% and twice 100%, respectively. It can be seen from the curves that the resolution
improves as the intensity increases.
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(a) (b)

(c) (d)

Figure 6.2: STED images. Low-resolution versions of the images in the STED dataset. (a) and (b) show Series 𝐴, the first at 0%
STED intensity (meaning it is equivalent to a standard confocal microscope image and is diffraction limited), the latter is taken
at maximum STED intensity. 𝑑(a) = 223 ± 2.6 nm and 𝑑(b) = 108 ± 1.2 nm. (c) and (d) show Series 𝐵 and 𝐶 at maximum STED
intensity, respectively. 𝑑(c) = 89.7 ± 0.78 nm and 𝑑(d) = 108 ± 1.8 nm. We use the 1/2-bit threshold for these resolutions.

We expect from the theory of STED microscopy that the resolution can be computed using a modi-
fied version of the Abbe equation (1.1):

𝑑 = 𝜆exc
2NA√1 + 𝜍

, (6.1)

where 𝜆exc is the excitation wavelength and 𝜍 is the STED saturation factor, equal to 𝐼/𝐼saturation.14 After
some empirical investigation, we found that the 𝜍 scales with the square root of the aforementioned
STED intensity. As we know the excitation has a wavelength of 561 nm, we use the following fit function:

𝑑 = 561nm

2NA√1 + 𝛼𝐼STED %
1/2
, (6.2)
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where 𝛼 is our fit parameter and 𝐼STED % is the STED intensity setting of the experiment.
Table 6.1 shows the 1FRC resolutions next to the associated STED intensity. Resolution clearly im-

proves as intensity increases. The table also contains a comparison with the resolution computed using
decorrelation analysis. This alternative technique gives more conservative results for this situation.

It is hard to judge which is more accurate, as there exists no objective resolution nor theoretical
maximum resolution that allows a choice between the two. However, for the 0% STED intensity figure,
the microscope should behave as an ordinary confocal microscope, which should be bound by the
diffraction limit. Based on the 𝑁𝐴 of 1.2 of the setup and the roughly 561 nm wavelength, the diffraction
limit can be estimated to be around 233 nm.

The fact that the 1FRC result lies below this means that for this specific situation, it most likely
overestimates the resolution. However, there should be very few other limiting factors, so a resolution
of 308 nm seems also too conservative.

STED intensity Saturation factor 𝜍 (fit) 1FRC resolution (nm) Decorr. resolution (nm)
0% N/A 223 ± 2.6 308
13% 1.1 ± 0.20 169 ± 1.8 203
25% 1.6 ± 0.41 148 ± 1.1 167
50% 2.3 ± 0.82 129 ± 1.7 152
100% 3 ± 1.6 112 ± 1.1 120
100% 3 ± 1.6 108 ± 1.2 127

Table 6.1: Comparison of STED intensity, 1FRC resolution (using the 1/2-bit threshold) and resolution computed with decorrela-
tion analysis7 for the Series 𝐴 STED images (in ascending order). The saturation factor as estimated from a fit to equation (6.2)
is also included. No value is reported for zero STED intensity as these were not included in the fit. As expected, the resolution
increases as STED intensity increases. There is a clear difference between decorrelation analysis and 1FRC, with the difference
larger for worse resolutions / lower intensities.

A more comprehensive analysis of the computed resolutions and the corresponding STED intensi-
ties is shown in figure 6.3, which also contains fits for all three measurement series. These fits are not
ideal, as there is only a single fit parameter and it is unknown if the square root of the STED intensity
scales exactly with the saturation factor 𝜍 (a fact we found empirically). However, there is still a good
agreement. These curves provide evidence that there is indeed a dropoff in improved resolution as the
STED intensity is increased, although they are not accurate enough to challenge the exact formula, as
it is just as likely that there are issues with the 1FRC method or specific images.
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Figure 6.3: STED resolutions and fits. The resolutions are computed using 1FRC of Series 𝐴, 𝐵 and 𝐶, which are each a
series of STED images at different STED intensities. The STED wavelength is 775 nm, while the excitation wavelength is 561
nm. These curves are fits to the theoretical STED resolution equation, specifically to equation (6.2).
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7
Conclusion

Fourier Ring Correlation with two images generated from a single measurement, which we call 1FRC,
is studied for different noise modalities, specifically pure Poisson noise and a sum of Poisson and
Gaussian noise (Poisson-Gauss noise). To investigate problems that occur for Poisson-Gauss noise,
we also withok at pure Gaussian noise. For Poisson noise, we derive exactly that a binomial split
preserves the Poisson distribution, validating the use of 1FRC. Furthermore, we show with simulations
that 1FRC gives results that are nearly identical to using two independent measurements (2FRC). By
using a Siemens star as a test image, we verify that Fourier Ring Correlation gives the resolution in the
right order of magnitude.

If we add Poisson noise combined with Gaussian noise with high variance, we see that the 1FRC
in its current form is not a suitable alternative to using two independent measurements and using the
standard 2FRC routine. If we increase the variance of the noise, the FRC curve no longer drops to zero,
but instead levels off at a nonzero value, even for higher frequencies (with high we mean the latter half
of the spatial frequencies). If it stays above the threshold, the resolution can no longer be computed at
all. Using a Kolomgoronov-Smirnov test on the sum of all pixels in an image, we found that for these
high levels of Gaussian noise, we can reject the hypothesis that the distribution after a binomial split is
equal to the distribution of a reference image (equivalent to an independent measurement as in 2FRC).
This is required for the use of 1FRC to make sense. However, as the uncertainty in the 𝑝-value results
of the test are high, we cannot exactly quantify what counts as ”high” variance using this method alone.

As we are unable to analytically derive the probability distribution of Poisson-Gauss noise (after a
binomial split) to find the cause of the discrepancy in the 1FRC curve plateau at high frequencies, we
instead looked at its statistical moments. We observe that the mean variance ratio is a good predic-
tor for the discrepancy. The mean variance ratio 𝜇/𝜎2 is the image mean divided by the variance of
one pixel (over many noise and split realizations). We can directly compute 𝜇/𝜎2 from the Gaussian
variance parameter and the average pixel intensity of the input image. The elevated curve level where
the 1FRC tends to for high spatial frequencies is linearly dependent on 𝜇/𝜎2, with the curve plateau at
zero for 𝜇/𝜎2 = 1 (equivalent to zero Gaussian noise, i.e. pure Poisson noise) and 1 near 𝜇/𝜎2 = 0
(Gaussian noise completely dominates the signal). By comparing the difference between the resolu-
tions computed by 1FRC and 2FRC Δ𝑑 to the standard deviation of 1FRC resolution (over many noise
and split realizations), we found that for 𝜇/𝜎2 < 0.973, this difference Δ𝑑 is greater than one standard
deviation of the 1FRC resolution. This value was computed for an image with an average pixel inten-
sity of 200, but remained consistent for other intensities, while the values where this happens for other
measures such as the absolute Gaussian variance and SNR varied significantly. Simulations on more
average intensities and more values of 𝜇/𝜎2 < 0.973 are necessary to confirm this value works for all
those situations.

We conclude that for levels of Gaussian noise where we have 0.973 < 𝜇/𝜎2 ≤ 1, the 1FRC gives
nearly identical results to 2FRC. This value is corroborated by the pixel sum statistical tests, as they
transitioned to a 𝑝-value below 0.05 in the range 0.95 < 𝜇/𝜎2 < 0.97. It is important to note that
the 𝑝-value for these tests showed a 𝑝-value of 0.61 ± 0.17 even in the case of pure Poisson noise,
which indicates significant uncertainty in the 𝑝-value. We also found that for pure Gaussian noise,
the linear relation between 𝜇/𝜎2 and the 1FRC curve plateau at high frequencies continues even for
𝜇/𝜎2 > 1. The 1FRC curve goes to -1 (full anticorrelation) for the extreme case of zero Gaussian
variance (𝜇/𝜎2 = 2). This indicates that the 1FRC most likely only works when the mean variance
ratio is close to 1. Further research is required to determine why the binomial split method generates
correlation at high frequencies for 𝜇/𝜎2 < 1.

On experimental data, gathered using STED microscopy (one particular super-resolution method),

38



7. Conclusion

the 1FRC curve behaved well, giving more optimistic results than results obtained using decorrelation
analysis, which can also be applied to a single image. The difference between 1FRC and decorrelation
analysis lies between 15-30%, with 1FRC always giving lower resolutions. For images captured using
zero STED intensity (equivalent to confocal microscopy), the results were better than the theoretical
diffraction limit of the setup (up to 5% better). This indicates 1FRC results might be a slightly optimistic
measure, although they remain in the right order of magnitude. The resolution values for different
STED intensities agree well with a fit to the theoretical curve. These good results indicate that for this
particular dataset, there was most likely little Gaussian noise. This gives good confidence that similar
STED datasets can also be analyzed with 1FRC, making it a useful tool regardless of its problems with
high variance Gaussian noise.
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Appendix A

A.1. Implementation
All analysis was done using Python. For most image transformations (e.g. Fourier transform), the DIPlib
package was employed15, while NumPy was used as a utility tool.

Furthermore, the Python package FRC16, built specifically for this project, was used for the imple-
mentation of the ”binomial split” for 1FRC. This package uses an extension module written in the Rust
programming language, called RustFRC17 and also created for this project. Rust has similar perfor-
mance to C++, but avoids its common memory pitfalls and generally makes it much easier to write
multithreaded code.

Furthermore, a third package called AnalyzeFRC18 wasmade to help with the analysis of the curves,
with significant attention paid to configuration, so it can also be used by other researchers.

Locally weighted smoothing (LOESS) was performed using the LOESS Python package. Their
implementation is described in Cappellari et al (2013).13

A.1.1. Binomial split
A binomial split, necessary for the calculation of the 1FRC, is a computationally expensive task as it
requires a separate computation for each array element (a pixel/voxel). An array (2D or 3D) is mapped
in-place, with each element value serving as parameter 𝑛 for a sample from a binomial (𝑛, 𝑝 = 0.5)
distribution. The result of the sampling is the new array element value. This mapping takes place in
parallel, speeding up the computation significantly.

The result is an array with, on average, half the intensity of the original image. To generate the
second array, the generated array is subtracted from the original image, resulting in two arrays of
similar intensity.

A.1.2. 1FRC
An image is loaded as an array-like structure. It is important the image is square (or cubic), as this is
required for the 2D discrete Fourier transform. The image is subjected to a binomial split, resulting in
two images with half the intensity of the original image.

Tukey windows (cosine-tapered windows) are applied to these two images, with parameter 𝛼 = 1/8.
These windows are necessary to prevent DFT-artifacts occuring on the image edges. The windowed
images are then Fourier transformed (DFT with the origin in the center). The FRC is then calculated
using the Fourier transformations for each, resulting in a single curve.

To find the appropriate spatial frequencies, the x-axis values are divided by the pixel dimension of
the image. These then have the unit 1/𝑑 where 𝑑 is the size of the original pixel.

To calculate the resolution, the intersection for the FRC curve with the fixed threshold of 1/7 is
calculated. As no exact function exists for the FRC curve, the intersection is calculated by a heuristic
that looks for the center of the x-values of FRC curve values that are close to the threshold curve.
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