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(Nederlandse titel: Gëısoleerde periodieke trillingen
in massa-veer systemen met klikmechanismen)

Verslag ten behoeve van het
Delft Institute of Applied Mathematics

als onderdeel ter verkrijging

van de graad van

BACHELOR OF SCIENCE
in

TECHNISCHE WISKUNDE

door

LUCY SMEETS

Delft, Nederland
Juni 2019

Copyright c© 2019 door Lucy Smeets. Alle rechten voorbehouden.





BSc verslag TECHNISCHE WISKUNDE

“Limit cycles in mass-spring systems with snap-through mechanisms”
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Abstract

Mass-spring systems are commonly used in structural components. Understanding their char-
acteristics and pitfalls is an important issue, combining physics and mathematics to prevent
such systems from resonating and causing structures to weaken or collapse. This way, suitable
solutions can be found such as the use of dampers with the right characteristics.

In this paper we focus on such systems, in particular with a snap-through mechanism. Their
dynamical behaviour and the influence of a small disturbance on the mechanism, such as a wind
force, are analyzed. A behavioral model is set up to which Melnikov’s Method is applied, in
order to analyze the behaviour numerically. The latter is done using the Trapezoidal method.
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1: Frequently used notations

Notation Description Dimension

x Vertical displacement m
y Vertical velocity m

s
l Initial spring length m
l0 Original spring length m
m Mass of the particle kg

k Vertical spring constant kg
s2

k1 Horizontal spring constant kg
s2

ε = ρdβζ
2m Wind force m·kg

s2

β =
√

3γl2

ζ Tool to make variables dimensionless s

x̄ Dimensionless version of vertical displacement
ȳ Dimensionless version of vertical velocity

µ = l0
l Ratio of original and initial spring length

k̄ = kβ2

m Dimensionless version of vertical spring constant

k̄1 = k1β2

m Dimensionless version of horizontal spring constant

9
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2: Introduction

Figure 2.1 shows a mass-spring set-up with a snap-through mechanism. It consists of a mass
attached to three springs: two horizontal springs with spring constant k1, and a vertical spring
with spring constant k. The original length of the horizontal springs is denoted by l0, and their
initial length when stretched out or pressed in by l. The vertical spring is in its initial state
neither pressed in nor stretched out. The problem can be divided into two cases: l ≥ l0 (the
horizontal springs are stretched out or of original length) and l < l0 (pressed in).

Figure 2.1: The mass-spring set-up in its original state, where l = l0.

For simplicity, the mass is assumed to move in vertical direction only. This means that the
horizontal springs will always be of the same length. Therefore, it is important to know the
force of these springs on the mass in vertical direction. The displacement is a function of time,
but for clarity, it is denoted as x. When the displacement x equals 0, just like in Figure 2.1, the
force for each horizontal spring is equal to

Fspring = −k1 (l − l0) , (2.1)

with k1 > 0. This equation holds for l < l0, l = l0 and l > l0. The minus sign makes sure the
forces point in the correct direction. When the springs are pressed in, such that l < l0, l − l0
will be negative, but the force will be positive, because the springs want to push out. The same
reasoning holds for the other cases.
When the mass has a displacement of x = x with an angle of θ with respect to the horizontal
axis, the length of the spring becomes

√
l2 + x2 (see Figure 2.2).

This results in the following force in each horizontal spring:

Fspring = −k1

(√
l2 + x2 − l0

)
, (2.2)

and in vertical direction it gives

Fspring,x = sin θ · −k1

(√
l2 + x2 − l0

)
. (2.3)

Since sin θ can also be written as x√
l2+x2

, the final force in vertical direction for each horizontal

spring is as follows:

Fspring,x = −k1 · x
(

1− l0√
l2 + x2

)
. (2.4)

11



12 2. INTRODUCTION

(a) l ≥ l0 (b) l < l0

Figure 2.2: The mass-spring set-up for stretched out (a) and pressed in (b) springs. The arrows
indicate the forces acting on the mass due to the non-vertical springs.

The total force of both horizontal springs on the mass will be (2.4) with a factor of 2. For the
vertical spring, it is assumed that no force is acting on the mass at x = 0. The final equation of
motion for the mass according to Newton’s second law of motion will be

mẍ = −kx+ 2k1x

(
l0√

l2 + x2
− 1

)
+ ”other external forces”, (2.5)

with k > 0 and m the weight of the mass. In (2.5), −kx denotes the force of the vertical spring
and has a minus sign to make sure it points in the right direction. The ”other external forces”
will be set to zero for now, but will represent wind forces later on.



3: Mathematical model

Equation (2.5), found in Chapter 2, contains a lot of parameters. To reduce this amount, the
variables x̄ and t̄ are introduced as dimensionless versions of x and t:{

x = lx̄,
t = βt̄.

(3.1)

Substituting these dimensionless variables into (2.5) results in the following:

¨̄x+ k̄x̄− 2k̄1x̄

(
µ√

1 + x̄2
− 1

)
= ”other external forces”, (3.2)

where k̄ = kβ2

m , k̄1 = k1β2

m and µ = l0
l . First, we study the case without any external forces.

Later on, we will add a wind force.

3.1 No external forces

We study the equation with no external forces acting on the mass:

¨̄x+ k̄x̄− 2k̄1x̄

(
µ√

1 + x̄2
− 1

)
= 0. (3.3)

Multiplying (3.3) with ˙̄x gives the first integral:

F(x̄, ˙̄x) =
1

2
˙̄x2 +

1

2
k̄x̄2 − k̄1

(
2µ
√

1 + x̄2 − x̄2
)

= constant. (3.4)

The Taylor series of (3.4) is calculated in the equilibrium points of the model to use Morse’s
Theorem [5] to get the phase portraits of the different cases. In the case where the horizontal
springs are stretched out, so where µ < 1, there is one equilibrium point at (x̄, ˙̄x) = (0, 0). When

µ > 1, there are two additional equilibrium points at

(
±
√

µ2

(1+ k̄
2k̄1

)2
− 1, 0

)
.

Morse’s Theorem needs only the constant and quadratic terms of the Taylor series. The Taylor
series around (0, 0) gives

−2k̄1

k̄
µ+

1

2

(
1− 2k̄1

k̄
(µ− 1)

)
x̄2 +

1

2
˙̄x2. (3.5)

According to Morse’s Theorem, the phase portrait has a saddlepoint in (0, 0) when µ > 1 + k̄
2k̄1

and a centerpoint when µ < 1 + k̄
2k̄1

. This means that in the case that the horizontal springs are

stretched out, there is always a centerpoint at (0, 0). When the springs are pressed in, the phase

portrait has a saddlepoint at (0, 0), but only when µ > 1 + k̄
2k̄1

. So if the springs are pressed in,

13



14 3. MATHEMATICAL MODEL

but 1 < µ < 1 + k̄
2k̄1

and k̄ is big with respect to k̄1, there is still a centerpoint at (0, 0).
The Taylor series around the other equilibrium points with regard to Morse’s Theorem gives

F(x̄, ˙̄x) =
1

2
˙̄x2 +

1

2
k̄x̄2 − k̄1

(
2µ
√

1 + x̄2 − x̄2
)

= F

±√√√√ µ2

(1 + k̄
2k̄1

)2
− 1, 0

+
1

2
Fx̄x̄

±√√√√ µ2

(1 + k̄
2k̄1

)2
− 1, 0

x̄−√√√√ µ2

(1 + k̄
2k̄1

)2
− 1

2

+
1

2
F ˙̄x ˙̄x

±√√√√ µ2

(1 + k̄
2k̄1

)2
− 1, 0

 ( ˙̄x− 0)2

=
1

2

 µ2

(1 + k̄
2k̄1

)2
− 1

− 1

2

2k̄1

k̄

 2µ2

1 + k̄
2k̄1

− µ2

(1 + k̄
2k̄1

)2
+ 1


+

1

2

1− 2k̄1

k̄

(1 + k̄
2k̄1

)3

µ2
− 1

 x̄2 +
1

2
˙̄x2.

Linear terms are automatically eliminated because of the Taylor expansion. Following from
Morse’s Theorem, there are two centerpoints at both equilibrium points when µ > 1 + k̄

2k̄1
. The

results for k̄1 > 0 are shown in Figure 3.1. The case when k̄1 = 0, which means there are no
horizontal springs, gives a phase portrait similar to Figure 3.1(a).

(a) µ ≤ 1 (b) 1 < µ ≤ 1 + k̄
¯2k1

(c) µ > 1 + k̄
¯2k1

Figure 3.1: Phase portraits for different ratios of the spring lengths and constants.
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3.2 External force: wind

Now a wind force is added to the equation of motion. Figure 3.2 shows a cross section of the
mass with the drag (D) and lift (L) forces as a result of the wind (v0) acting on it.

Figure 3.2: Wind force acting on a cross section of the mass.

Again, only the vertical displacement is important. This results in the following equation of
motion:

mẍ+ kx− 2k1x

(
l0√

l2 + x2
− 1

)
= D sinφ+ L cosφ, (3.6)

with D and L defined as follows [4]:

D =
ρdcD(α)

2
v2
s , (3.7)

L =
ρdcL(α)

2
v2
s . (3.8)

Here, d denotes the diameter of the mass, ρ the air density, cD and cL the drag and lift coefficients
respectively, vs the wind force in the same direction as the drag, and α the angle between vs
and the symmetry-axis (the dotted line). The drag and lift coefficients are approximated by (see
[4]):

cD(α) = cD0 , (3.9)

cL(α) = cL1 (α− α0) + cL3 (α− α0)3 . (3.10)

Furthermore, the following is known:

v2
s = ẋ2 + v2

0, cosφ =
v0

vs
, sinφ = − ẋ

vs
, tanφ = − ẋ

v0
, α = αs + φ. (3.11)

By expressing all expressions in ẋ
v0

, the right-hand side of (3.6) becomes

ρd

2

−cD0 v2
0

√
1 +

(
ẋ

v0

)2 ẋ

v0
+ cL1 arctan

(
−ẋ
v0

)
v2

0

√
1 +

(
ẋ

v0

)2

+ cL3 arctan3

(
−ẋ
v0

)
v2

0

√
1 +

(
ẋ

v0

)2
 .

(3.12)
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The Taylor series of this equation around ẋ
v0

= 0 is

ρd

2

(
−v0

(
cD0 + cL1

)
ẋ−

(
1

2
cD0 +

1

6
cL1 + cL3

)
ẋ3

v0

)
. (3.13)

Eventually, the equation of motion of the particle when taking wind forces into account is found:

mẍ+ kx− 2k1x

(
l0√

l2 + x2
− 1

)
=
ρd

2

(
ζẋ− γẋ3

)
. (3.14)

Here, ζ = −v0

(
cD0 + cL1

)
and γ =

(
1
2c
D
0 + 1

6c
L
1 + cL3

)
1
v0

. Again, using x = lx̄ and t = βt̄ to make
x and t dimensionless variables, a new equation of motion with less variables is found:

¨̄x+ k̄x̄− 2k̄1x̄

(
µ√

1 + x̄2
− 1

)
= ε

(
˙̄x− 1

3
˙̄x3

)
. (3.15)

Here are k̄ = kβ2

m , k̄1 = k1β2

m , µ = l0
l , β2 = 3γl2

ζ and ε = ρdβζ
2m , with 0 < ε� 1.



4: Problem

From now on, the focus will be on the problem regarding a small disturbance (a wind force)
working on the mass. How many periodic solutions exist for a small disturbance like this and
what is their stability? For this, we consider the equation of motion (4.1).

¨̄x+ k̄x̄− 2k̄1x̄

(
µ√

1 + x̄2
− 1

)
= ε

(
˙̄x− 1

3
˙̄x3

)
. (4.1)

The problem can be categorized in four subproblems:

1. k̄1 = 0

2. k̄ = 0, 0 < µ ≤ 1

3. k̄ = 0, µ > 1

4. k̄1, k̄ 6= 0

This division is made based on increasing difficulty. Subproblem 1 describes a problem with a
linear oscillator, as the other subproblems are non-linear. As seen in Chapter 3, subproblem 2
studies stretched out springs and has only one equilibrium point, while subproblem 3 studies
pressed in springs and has three equilibrium points. It is important to distinguish cases based
on these characteristics. Lastly, subproblem 4 is the most difficult one since it describes both the
linear and non-linear oscillator. It is further split into three categories as seen before: 0 < µ < 1,
1 < µ < 1 + k̄

2k̄1
and µ > 1 + k̄

2k̄1
. The first category studies the system with stretched out

springs, while the other two study a pressed in system. When pressed in, the division is made
based on the amount of equilibrium points again (one and three respectively).

In this paper, only subproblems 1 to 3 are analyzed. Therefore, a study of the needed the-
ory is presented next.

17



18 4. PROBLEM



5: Theory

To be able to study the problem, some theory is needed. The theory behind Melnikov’s Method
(see [3]) normally covers the general situation where x ∈ Rn. Since this problem only uses
two-dimensional vectors, this chapter will limit the theory to x ∈ R2. Later on, the theory will
be applied to each of the subproblems as described in Chapter 4. Melnikov’s Method can be
used to show the existence of limit cycles of perturbed planar systems of the following form:

ẍ+
dV

dx
(x) = εf(x, ẋ). (5.1)

Rewriting (5.1) as a system of differential equations gives the following:{
ẋ = y,

ẏ = −dV
dx (x) + εf(x, y).

(5.2)

When ε = 0, the Hamiltonian of (5.1) is given by:

H(x, y) =
1

2
y2 + V (x). (5.3)

Knowing this, (5.2) can be rewritten as follows:{
ẋ = ∂H

∂y ,

ẏ = −∂H
∂x + εf(x, y).

(5.4)

To use Melnikov’s Method, dH
dt needs to be known. The following can be concluded, using (5.4):

dH

dt
=
∂H

∂x

dx

dt
+
∂H

∂y

dy

dt
(5.5)

= HxHy + Hy · (−Hx + εf(x, y)) (5.6)

= εHyf(x, y). (5.7)

Let H(x, y) = h be a closed orbit in the (x, y)-plane and let Th be the period of this orbit. Now,
we get the Melnikov function:∫ Th

0

dH

ds
(x(s), y(s))ds = ε

∫ Th

0
y(s) · f(x(s), y(s))ds. (5.8)

The left-hand side of (5.8) can also be written as H(x(Th), y(Th)) − H(x(0), y(0)). When this
equation equals zero, it depicts a periodic solution of the problem with ε 6= 0. So, zeros of
ε
∫ Th

0 y(s) · f(x(s), y(s))ds determine periodic solutions of this problem. See for an example
Figure 5.1.

19



20 5. THEORY

Figure 5.1: A periodic solution.

In Figure 5.1, it is clear that the orbit is symmetric in the x-axis. This is a result of H(x, y)
being equal to both h and 1

2y
2 + V (x). Now consider the following integral (part of (5.8)).

M(h) =

∫ Th

0
y(s) · f(x(s), y(s))ds. (5.9)

Using the symmetry in the x-axis, (5.9) can be simplified to the following:

M(h) = 2 ·
∫ 1

2
Th

0
y(s) · f(x(s), y(s))ds. (5.10)

Figure 5.2 shows the part of the orbit that (5.10) covers.

Figure 5.2: The first half of a periodic solution, from Xh1 to Xh2.

To determine the zeros of (5.10), it should be an integral of x or y instead of t. It turns out that
it is most convenient to make it an integral of x, with Xh1 as the x̄-coordinate of the curve at
t = 0 (see Figure 5.2) and Xh2 as the x̄-coordinate at t = 1

2Th:

M(h) = 2 ·
∫ Xh2

Xh1

y(s) · f(x(s), y(s))ds (5.11)

= 2 ·
∫ Xh2

Xh1

y(s) · f(x(s), y(s))
dx
dx
ds

(5.12)

= 2 ·
∫ Xh2

Xh1

f(x(s), y(s))dx. (5.13)



21

Equation (5.13) holds because of dx
ds = y(s), according to (5.2). This integral concludes the

general part of the theory.
This theory will be applied to the subproblems of this paper stated in Chapter 4, with equation of
motion (4.1). The zeros of (5.13) will represent the limit cycles of each subproblem respectively.
Using the book of Perko [3], the stability of these limit cycles will be investigated.



22 5. THEORY



6: Analysis

In Chapter 3, we found phase portraits for different subproblems. It is interesting to see what
will happen to them when adding a little distortion. In order to do so, Melnikov’s Method will
be applied to the equation of motion:

¨̄x+ k̄x̄− 2k̄1x̄

(
µ√

1 + x̄2
− 1

)
= ε

(
˙̄x− 1

3
˙̄x3

)
. (6.1)

In this paper, we will apply this method to subproblems 1 to 3. An analysis on the complete
equation of motion (subproblem 4) can be made in further research.

6.1 Linear oscillator

First, we consider subproblem 1, as described in Chapter 4. This is the case where k̄1 = 0,
which means that there are no horizontal springs, but only one vertical spring attached to the
mass (see Figure 6.1).

Figure 6.1: The mass-spring set-up with k̄1 = 0.

This means the following equation, which describes a linear oscillator, has to be studied:

¨̄x+ k̄x̄ = ε

(
˙̄x− 1

3
˙̄x3

)
. (6.2)

According to Chapter 5, the Hamiltonian gives H(x̄, ȳ) = 1
2 ȳ

2 + 1
2 k̄x̄

2 = h and we get the
following system of differential equations:

F(x̄, ȳ) =

{
˙̄x = ȳ,
˙̄y = −k̄x̄+ ε

(
ȳ − 1

3 ȳ
3
)
.

(6.3)

When no distortion is added, meaning ε = 0, (6.2) has the following solutions: ˙̄x(t) = c1 cos
(√

k̄t
)

+ c2 sin
(√

k̄t
)

= A sin
(√

k̄t+ α
)
,

˙̄y(t) = −c1

√
k̄ sin

(√
k̄t
)

+ c2

√
k̄ cos

(√
k̄t
)

= A
√
k̄ cos

(√
k̄t+ α

)
.

(6.4)

23



24 6. ANALYSIS

From (6.4), it follows that the period equals Th = 2π√
k̄
. In combination with the Hamiltonian, it

also follows that A =
√

2h
k̄

. Taking α = 0, gives the curve of Figure 6.2, starting at (0,1). The

curve is oriented clockwise without loss of generality, because ˙̄y < 0 in (6.3) for ȳ = 0 and x̄ > 0.

Figure 6.2: A periodic solution of the problem with k̄1 = 0.

The integral from (5.9) is studied for this case:

M(h) =

∫ Th

0
ȳ(s) · f(x̄(s), ȳ(s))ds (6.5)

=

∫ 2π√
k̄

0

√
2h cos

(√
k̄t
)
·
(√

2h cos
(√

k̄t
)
− 1

3

(√
2h cos

(√
k̄t
))3

)
dt (6.6)

=

∫ 2π√
k̄

0
2h cos2(

√
k̄t)dt− 1

3

∫ 2π√
k̄

0
4h2 cos4(

√
k̄t)dt (6.7)

=
2πh√
k̄
− 1

3

3πh2

√
k̄

(6.8)

=
πh(2− h)√

k̄
. (6.9)

As described in Chapter 5, zeros of M(h) depict periodic solutions of the problem. M(h) = 0 is
true when h = 2 (and h = 0). It follows from the Hamiltonian and X̄h = h that h = 2

k̄
and thus

k̄ = 1.

To study the stability of this solution, the Corollary of paragraph 3.4 [3] is used. It says that

the periodic solution γ(t) of (6.3) is a stable limit cycle if
∫ T

0 ∇ · F(γ(t))dt < 0, with T = 2π√
k̄

the period of the limit cycle.

In this case, γ(t) =
(

2 sin
(√

k̄t
)
, 2 cos

(√
k̄t
))>

and ∇ · F(x̄, ȳ) = ε
(
1− ȳ2

)
, so ∇F(γ(t)) =

ε
(

1− 4 cos2(
√
k̄t)
)

. This gives the following integral:

∫ T

0
∇ · F(γ(t))dt = ε

∫ 2π√
k̄

0
1− 4 cos2(

√
k̄t)dt =

−2πε√
k̄

< 0, (6.10)

since 0 < ε � 1 and k̄ > 0. According to the Corollary, the limit cycle is stable. This result is
depicted in Figure 6.3.
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(a) Curves starting at (x̄, ȳ) = (1, 0), (2, 0), (3, 0)
with 0 ≤ t ≤ 2π.

(b) Curves starting at (x̄, ȳ) = (1, 0), (2, 0), (3, 0)
and ending at the limit cycle.

Figure 6.3: Phase portraits of (6.3) with the stable limit cycle of radius 2 (red) and curves at
the interior and exterior of the solution, moving towards the limit cycle.

To verify these results, a MATLAB script is written. This can be found in Appendix A. It
uses the Trapezoidal integration method on Equation 6.6. The result is shown in Figure 6.4. It
follows that indeed M(h) = 0 for h = 0 and h = 2.

0 1 2 3 4 5

h
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0 1 2 3 4 5

h

(b)

0
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3

4

5

6

7

8

Q
(h

)

Figure 6.4: Value of (6.6) and Q(h) for different values of h with k̄ = 1 and k̄1 = 0.

6.2 Non-linear oscillator

Both subproblems 2 and 3, as specified in Chapter 4, describe a non-linear oscillator (k̄ = 0).
This means that there is no vertical spring, but only the two horizontal springs attached to the
mass (see Figure 6.5). We distinguish two cases; the springs are either stretched out (0 < µ ≤ 1)
or pressed in (µ > 1).
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Figure 6.5: The mass-spring set-up with k̄ = 0.

6.2.1 Stretched out springs

First we look at subproblem 2, with 0 < µ ≤ 1, which means that the springs are stretched out.
The following equation is to be studied:

¨̄x− 2k̄1x̄

(
µ√

1 + x̄2
− 1

)
= ε

(
˙̄x− 1

3
˙̄x3

)
. (6.11)

Applying the theory of Chapter 5, this results in H(x̄, ȳ) = 1
2 ȳ

2− k̄1

(
2µ
√

1 + x̄2 − x̄2
)

= h and

the following system of differential equations:

F(x̄, ȳ) =

{
˙̄x = ȳ,

˙̄y = 2k̄1x̄
(

µ√
1+x̄2

− 1
)

+ ε
(
ȳ − 1

3 ȳ
3
)
.

(6.12)

Also, we find the terms

f(x̄, ȳ) = ȳ − 1

3
ȳ3,

dV

dx̄
(x̄) = −2k̄1x̄

(
µ√

1 + x̄2
− 1

)
. (6.13)

This results in V (x̄) = −k̄1

(
2µ
√

1 + x̄2 − x̄2
)

. The Hamiltonian in this case is described by

H(x̄, ȳ) = 1
2 ȳ

2 + V (x̄). Let H(x̄, ȳ) = h now be a closed orbit in the (x̄, ȳ)-plane. It is clear that
f(x̄, ȳ) only depends on ȳ. This means that the orbit is not only symmetrical in the x̄-axis, but
also in the ȳ-axis. This gives the possibility to look only at the first quadrant of the periodic
solution, from 0 to X̄h (see Figure 6.6).

With this information, the last integral (5.13) simplifies to

M(h) = ±4

∫ X̄h

0
f(ȳ)dx̄. (6.14)

The sign is yet to be figured out. The direction of the integral with respect to x̄ is known (the
blue arrow), but with respect to t is yet to be determined. Using (6.12) and taking x̄ > 0 and

ȳ = 0 as starting point of the periodic solution, we get ˙̄y = 2k̄1x̄
(

µ√
1+x̄2

− 1
)

, and because of

k̄1 > 0, x̄ > 0 and µ < 1, it is found that ˙̄y < 0. This means that the periodic orbit is negatively
oriented (see the black arrows in Figure 6.6). Notice that in the first quadrant (marked) of the
periodic solution, both integrals have the same direction. Therefore, the integral becomes

M(h) = +4

∫ X̄h

0
f(ȳ)dx̄. (6.15)
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Figure 6.6: A periodic solution of (6.12). The orientation of (6.15) is indicated with the blue
arrow and includes only the marked area. The orientation of the periodic solution is indicated
with the black arrows.

The value of X̄h is determined by V (x̄) = h. Furthermore, ȳ is determined by H(x̄, ȳ) =
1
2 ȳ

2 + V (x̄) = h, so ȳ =
√

2(h− V (x̄)). This gives

M(h) = 4

∫ X̄h

0
f
(√

2(h− V (x̄))
)
dx̄. (6.16)

This integral can be studied further:

M(h) = 4

∫ X̄h

0
f(ȳ)dx̄ = 4

∫ X̄h

0
f(
√

2(h− V (x̄)))dx̄ (6.17)

= 4

∫ X̄h

0

√
2(h− V (x̄))dx̄− 4

3

∫ X̄h

0
(2(h− V (x̄)))

3
2 dx̄. (6.18)

We define the following:

I1(h) =

∫ X̄h

0

√
2(h− V (x̄))dx̄ (6.19)

=

∫ X̄h

0

√
2h+ 2k̄1(2µ

√
1 + x̄2 − x̄2)dx̄, (6.20)

I2(h) =

∫ X̄h

0
(2(h− V (x̄)))

3
2 dx̄ (6.21)

=

∫ X̄h

0

(
2h+ 2k̄1(2µ

√
1 + x̄2 − x̄2)

) 3
2
dx̄. (6.22)

The Melnikov function can be rewritten as follows:

M(h) = 4I1(h)− 4

3
I2(h). (6.23)

As stated before, the zeros of (6.23) resemble the existence of limit cycles. We seek the value of h
for which I(h) = 0. We alter (6.23) in such a way that we can easily find M(h) = 0 numerically.

4I1(h)

(
1− I2(h)

3I1(h)

)
= 0. (6.24)
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We define Q(h) = I2(h)
I1(h) and search for the value(s) of h that give Q(h) = 3. Then we know of

the existence of a limit cycle. For a given value of h, X̄h follows from V (X̄h) = h:

X̄h = ±

√√√√ h

k̄1
+ 2µ2 ± 2µ

√
µ2 +

h

k̄1
+ 1. (6.25)

With this knowledge, (6.23) can be evaluated to find a limit cycle. This is done through a MAT-
LAB script. The script can be found in Appendix C. It uses the Trapezium integration method
to describe the integral of (6.23) against h, see Figure 6.8(a). The initial value of ȳ is always
set at 0, while the initial value for x̄ varies. For this example, the parameters are chosen to be
k̄1 = 1 and µ = 0.5. Figure 6.8(b) shows that the value for which Q(h) = 3 and thus I(h) = 0
equals h = 0.95. According to this figure, it seems to be the only value for which a limit cycle
exists. Though h = 0 is a solution, it does not give a limit cycle. Evaluating H(x̄, 0) = 0.95
gives x̄ = 1.71.

Figure 6.7: Phase portrait of (6.12) with k̄1 = 1 and µ = 0.5 with the stable limit cycle in red
with value h = 0.95, with radius x̄ = 1.71 and curves at the interior (starting at (x̄, ȳ) = (0.2, 0))
and exterior (starting at (x̄, ȳ) = (4, 0)) of the solution, moving towards the limit cycle.

In Figure 6.7 it can be seen that the limit cycle indeed goes through (1.71, 0). Curves starting
outside of this cycle move towards the limit cycle, as do the curves starting inside of it, which
indicates stability. This will be looked into more later on.

To make sure the MATLAB script is correct, it is applied to subproblem 1. This script can be
found in Appendix B. We first need Melnikov’s Function for this subproblem. This is found in
the same way as for subproblem 2, which results in the following integral:

M(h) = 4

∫ X̄h

0

√
2h− k̄x̄2dx̄− 4

3

∫ X̄h

0

(
2h− k̄x̄2

) 3
2 dx̄. (6.26)

The same definitions for I1(h), I2(h) and Q(h) hold. Again, using V (X̄h) = h, we find X̄h =
√

2h
k̄

.

Finally, the results are shown in Figure 6.9. Just as in Section 6.1, we find M(2) = 0 and
Q(2) = 3, so a limit cycle for h = 2. This validates the MATLAB script.
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Figure 6.8: Value of Melnikov’s Function (6.23) and value of Q(h) for different values of h, with
k̄1 = 1 and µ = 0.5.
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Figure 6.9: Value of (6.26) for subproblem 1 and value of Q(h) for different values of h, with
k̄ = 1.

Now we know that there is one limit cycle and, for set parameter values, where its location is, we
will determine its stability. We refer to the book of L. Perko [3], Chapter 4.10, Theorem 1. The
theorem states that for set parameter values (h, k̄1 and µ) that give M(h) = 0, and Mh(h) 6= 0,
the corresponding limit cycle is stable if εω0Mh(h) > 0. ε is defined as a positive parameter
in our problem, so we study the sign of ω0Mh(h). Therefore, we need to know the value of
ω0, which is equal to +1 when the corresponding periodic orbit is positively oriented and -1
when negatively oriented. We have seen in Figure 6.6 that the periodic solution is negatively
oriented. All that is left to do now is check the sign of Mh(h). This requires some more in-depth
calculations.
The Melnikov function for this subproblem is as follows:
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M(h) = 4

∫ X̄h

0

√
2h+ 2k̄1(2µ

√
1 + x̄2 − x̄2)dx̄− 4

3

∫ X̄h

0

(
2h+ 2k̄1(2µ

√
1 + x̄2 − x̄2)

) 3
2
dx̄.

(6.27)
The derivative of the Melnikov function with respect to h needs to be known. We define

w1(h, x̄) =

√
2h+ 2k̄1(2µ

√
1 + x̄2 − x̄2), (6.28)

w2(h, x̄) =
(

2h+ 2k̄1(2µ
√

1 + x̄2 − x̄2)
) 3

2
. (6.29)

Remember the definition of X̄h described in (6.25). In this subproblem, every± in this expression
gets a + sign. We get the following:

∂M

∂h
(h) =

∂

∂h

(
4

∫ X̄h

0
w1dx̄−

4

3

∫ X̄h

0
w2dx̄

)
(6.30)

= 4

(∫ X̄h

0

∂w1

∂h
dx̄+ w1

(
h, X̄h

)
· dX̄h

dh
− w1(h, 0) · d0

dh

)
(6.31)

− 4

3

(∫ X̄h

0

∂w2

∂h
dx̄+ w2

(
h, X̄h

)
· dX̄h

dh
− w2(h, 0) · d0

dh

)
(6.32)

= 4 ·
∫ X̄h

0

1√
2h+ 2k̄1(2µ

√
1 + x̄2 − x̄2)

dx̄ (6.33)

+
4 · w1

(
h, X̄h

)
2

√
h
k̄1

+ 2µ2 + 2µ
√
µ2 + h

k̄1
+ 1

·

 1

k̄1
+

µ

k̄1

√
µ2 + h

k̄1
+ 1

 (6.34)

− 4

3
·
∫ X̄h

0
3

√
2h+ 2k̄1(2µ

√
1 + x̄2 − x̄2)dx̄ (6.35)

−
4 · w2

(
h, X̄h

)
3 · 2

√
h
k̄1

+ 2µ2 + 2µ
√
µ2 + h

k̄1
+ 1

·

 1

k̄1
+

µ

k̄1

√
µ2 + h

k̄1
+ 1

 . (6.36)

We want to know Mh(h), with h = 0.95, k̄1 = 1, µ = 0.5 and X̄h = 1.71, since for these
parameters we find a limit cycle. Substituting these parameters in equation (6.30) gives -5.57.
Since ω0 = −1 and Mh(h) = −5.57, we find that ω0Mh(h) > 0 and thus, according to Theorem
1 of [3], the corresponding limit cycle is indeed stable.
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6.2.2 Pressed in springs

Finally, subproblem 3 is examined. Remember the equation of motion and the Melnikov function
for subproblem 2 respectively:

¨̄x− 2k̄1x̄

(
µ√

1 + x̄2
− 1

)
= ε

(
˙̄x− 1

3
˙̄x3

)
, (6.37)

M(h) = 4

∫ X̄h

0

√
2h+ 2k̄1(2µ

√
1 + x̄2 − x̄2)dx̄− 4

3

∫ X̄h

0

(
2h+ 2k̄1(2µ

√
1 + x̄2 − x̄2)

) 3
2
dx̄.

(6.38)

These stay mostly the same for subproblem 3, but there is one difference worth noting. For
the case with stretched out springs, the assumption was made that the orbit H(x̄, ȳ) = h was
symmetrical in the ȳ-axis, but this is not necessarily the case for when the springs are pressed
in. We will see two different situations, depending on the choice of parameters. First, we will
look at (k̄1, µ) = (1, 1.5) and after that at (k̄1, µ) = (1, 3).

Outer limit cycle
For the limit cycle on the outside, the symmetry in the vertical axis still holds. The results for
(k̄1, µ) = (1, 1.5) are shown in Figures 6.10 and 6.11(a). Figure 6.10 shows the results of the
MATLAB script. It gives h = −1.47 and X̄h = 2.65. This can also be seen in Figure 6.11(a).
Figure 6.11(b) shows the phase portrait without wind.
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Figure 6.10: Value of Melnikov’s Function (6.38) and value of Q(h) for different values of h,
with k̄1 = 1 and µ = 1.5.

Using the same Theorem 1 from before from Perko [3], we find the same equation (6.30). The
same reasoning as for subproblem 2 holds, since the periodic orbit is symmetrical in both the x̄
and ȳ-axis and the Melnikov function goes from x̄ = 0 to X̄h. We need to check if the periodic
orbit is also negatively oriented for these parameters:

˙̄y = 2k̄1x̄

(
µ√

1 + x̄2
− 1

)
< 0, (6.39)
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(a) (b)

Figure 6.11: (a) Phase portrait of (6.12) with k̄1 = 1 and µ = 1.5 with the stable limit cycle
in red with value h = −1.47, at amplitude x̄ = 2.65 and curves at the interior (starting at
(x̄, ȳ) = (1, 0)) and exterior (starting at (x̄, ȳ) = (4, 0)) of the solution, moving towards the limit
cycle. (b) Phase portrait of (6.12) without any disturbance.

is true for µ = 1.5 if x̄ >
√

1.25. Since the orbit starts at t = 0 in the location of (X̄h, ȳ) =
(2.65, 0), this is indeed the case and ω0 = −1. Refer to Figure 6.12 to illustrate this. Substi-
tuting the new parameters gives us ω0Mh(h) = 9.85 > 0, thus is the limit cycle stable, which is
also implied by Figure 6.11(a).

Figure 6.12: The periodic solution of (6.12) with k̄1 = 1 and µ = 1.5. The orientation of (6.38)
is indicated with the blue arrow and includes only the marked area. The orientation of the
periodic solution is indicated with the black arrows.

Inner limit cycles
As stated before, the limit cycles of this subproblem are not necessarily symmetrical in the
vertical axis. For the parameter values (k̄1, µ) = (1, 3) we find two limit cycles, for which this
is the case. The limit cycles themselves are not symmetric in their vertical axes, but they are
mirrored in the ȳ-axis. For this reason, we cannot use the Melnikov function for only the first
quadrant of the limit cycle. We call the starting point of the periodic orbit on the positive part
of the x̄-axis tR = 0, and on the negative part tL = 0. Referring to the Theory of Chapter 5, we
find the following Melnikov functions for both periodic solutions:
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MR(h) = 2

∫ X̄h2

X̄h1

√
2h+ 2k̄1(2µ

√
1 + x̄2 − x̄2)dx̄− 2

3

∫ X̄h2

X̄h1

(
2h+ 2k̄1(2µ

√
1 + x̄2 − x̄2)

) 3
2
dx̄,

(6.40)

ML(h) = −2

∫ −X̄h2

−X̄h1

√
2h+ 2k̄1(2µ

√
1 + x̄2 − x̄2)dx̄+

2

3

∫ −X̄h2

−X̄h1

(
2h+ 2k̄1(2µ

√
1 + x̄2 − x̄2)

) 3
2
dx̄.

(6.41)
The signs are based on the directions of the orientation of the periodic solution and the Melnikov
function respectively, just as for the other subproblems. In Figure 6.13, it shows that the right
orbit has a clockwise orientation, which is in the same direction as walking along the x̄-axis from
X̄h1 to X̄h2. The left limit cycle also has a clockwise orientation, but this is opposite from going
from −X̄h1 to −X̄h2. Therefore, the Melnikov function ML(h) gets a minus sign.

Figure 6.13: The periodic solution of (6.12) with k̄1 = 1 and µ = 3. The orientations of
(6.40) and (6.41) are indicated with the blue arrows and include only the marked areas. The
orientations of the periodic solutions are indicated with the black arrows.

It is also known that the two cycles are mirrored. Therefore, we will only need to study the
stability of one of them and derive the stability of the other one. We study the cycle on the
right side.

∂MR

∂h
(h) =

∂

∂h

(
2

∫ X̄h2

X̄h1

w1dx̄−
2

3

∫ X̄h2

X̄h1

w2dx̄

)
(6.42)

= 2

(∫ X̄h2

X̄h1

∂w1

∂h
dx̄+ w1

(
h, X̄h2

)
· dX̄h2

dh
− w1(h, X̄h1) · dX̄h1

dh

)
(6.43)

− 2

3

(∫ X̄h2

X̄h1

∂w2

∂h
dx̄+ w2

(
h, X̄h2

)
· dX̄h2

dh
− w2(h, X̄h1) · dX̄h1

dh

)
. (6.44)

Here, (6.28) and (6.29) still hold and we have

X̄h1 =

√√√√ h

k̄1
+ 2µ2 − 2µ

√
µ2 +

h

k̄1
+ 1, (6.45)

X̄h2 =

√√√√ h

k̄1
+ 2µ2 + 2µ

√
µ2 +

h

k̄1
+ 1. (6.46)

Because of the mirroring characteristics of the limit cycles, we get the following:
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ML(h) = −2

∫ −X̄h2

−X̄h1

√
2h+ 2k̄1(2µ

√
1 + x̄2 − x̄2)dx̄+

2

3

∫ −X̄h2

−X̄h1

(
2h+ 2k̄1(2µ

√
1 + x̄2 − x̄2)

) 3
2
dx̄

(6.47)

= 2

∫ X̄h2

X̄h1

√
2h+ 2k̄1(2µ

√
1 + x̄2 − x̄2)dx̄− 2

3

∫ X̄h2

X̄h1

(
2h+ 2k̄1(2µ

√
1 + x̄2 − x̄2)

) 3
2
dx̄

(6.48)

= MR(h). (6.49)

Before we can get any information from this, we need to determine the value of h for which
MR = ML = 0 with k̄1 = 1 and µ = 3. The results can be seen in Figure 6.15 and are retrieved
from the MATLAB script in Appendix D (which uses the left limit cycle for calculations). We
find h = −8.0 and through this we find X̄h1 = 1.23 and X̄h2 = 4.30. This can be seen in Figure
6.14, both right and left.

(a) (b)

Figure 6.14: (a) Phase portrait of (6.12) with k̄1 = 1 and µ = 3 with the stable limit cycles in
red with value h = −8.0, at X̄h1 = 1.23 and X̄h2 = 4.30 and curves at the interior (starting at
(x̄, ȳ) = (3.5, 0)) and exterior (starting at (x̄, ȳ) = (0.1, 0) and (6, 0)) of the solution, moving
towards one of the limit cycles. (b) Phase portrait of (6.12) without any disturbance.

Knowing the values of all parameters leads us to the last step. We can now establish the sta-
bility of the limit cycles. Substituting the values in Equation (6.42) and taking into account
the negative orientation of the periodic orbits, we conclude the following: ω0Mh(h) = 4.74 > 0.
This means that also these limit cycles are stable, which was implied by Figure 6.14(a).
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Figure 6.15: Value of Melnikov’s Function (6.41) and value of Q(h) for different values of h,
with k̄1 = 1 and µ = 3.

6.2.3 Three springs

For subproblem 4, Melnikov’s Method can be applied to the complete equation of motion:

¨̄x+ k̄x̄− 2k̄1x̄

(
µ√

1 + x̄2
− 1

)
= ε

(
˙̄x− 1

3
˙̄x3

)
. (6.50)

This will be left for later research.
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7: Conclusions and Discussion

In this thesis, a mathematical model for a snap-through mass-spring system (Figure 7.1) was
introduced. Equation of motion (7.1) was found for when a small disturbance, such as a wind
force, acts on the mass.

¨̄x+ k̄x̄− 2k̄1x̄

(
µ√

1 + x̄2
− 1

)
= ε

(
˙̄x− 1

3
˙̄x3

)
. (7.1)

It included several parameters to be tweaked: k̄, k̄1 and µ. To be able to study the equation
of motion, it was simplified and categorized into different subproblems, gradually increasing in
their difficulty:

1. k̄1 = 0

2. k̄ = 0, 0 < µ ≤ 1

3. k̄ = 0, µ > 1

4. k̄1, k̄ 6= 0

The first subproblem studies the case that only the vertical spring is attached to the mass.
The second and third subproblems study the case that only the horizontal springs are attached,
where subproblem 2 considers the springs to be stretched out and subproblem 3 considers them
to be pressed in. Left for further research is subproblem 4, where all three springs are attached
to the mass.

Figure 7.1: The mass-spring system with a snap-through mechanism.

Morse’s Theorem was used to find behavioral characteristics for these different subproblems.
The theory around Melnikov’s Method was studied and applied to (7.1) for certain parameter
values. Through this, we found limit cycles and their stability at certain locations that indicate
the behavior of the mass in the mass-spring system when a wind force is acting on it. As far as
possible, this was done algebraically. For more complex situations, a numerical model was set up.

The results show that for the first two subproblems, one stable limit cycle was found. The third
subproblem, when the springs are initially pressed in, either has one stable limit cycle around

37
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all equilibrium points, or two stable limit cycles, one around each centerpoint. Their amplitudes
differ and they all describe a different motion. The fourth subproblem is yet to be studied.

There are multiple subjects in this thesis that could be looked into more. The numerical model
is verified by applying it to the simplest problem, which was already analyzed algebraically.
However, only the Trapezoidal method has been used for the analysis of the more complex sub-
problems. A program that uses Runge Kutta 4 on the system of differential equations from the
more complex subproblems would ensure the results even more.

The plots that show the locations of the limit cycles (Q(h) with respect to h) seem not to
have multiple solutions. A way to prove this has not been found. This means that there might
be limit cycles for multiple values of h, though it seems highly unlikely.

Most analyses are made to the general form of the equations, but some are applied to the
equations with set parameter values. It would be an interesting study to look at what happens
to the dynamical behavior of the system when tweaking these parameters (k̄, k̄1, µ, ε). For ex-
ample, there might be a situation with both the inner and outer cycles from subproblem 3.

The last and most complex subproblem has not been studied yet. This problem takes all defined
parameters and components into account and thus describes reality best. Analyzing this would
be the next step for further research.
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Appendix

A Subproblem 1: Trapezoidal method on Equation 6.6

1 format bank
2

3 k = input ( ’ k = ’ ) ;
4 n = 40 ;
5

6 s = 100 ;
7 h = l i n s p a c e (0 , 5 , s ) ;
8

9 tbeg in = 0 ;
10 tend = (2∗ pi ) / s q r t ( k ) ;
11 t = l i n s p a c e ( tbegin , tend , n) ;
12 A1 = ze ro s ( s , n ) ;
13 f o r i = 1 : s
14 f o r j = 1 : n−1
15 A1( i , j ) = ( t ( j +1)−t ( j ) ) ∗ ( ( I1 (k , t ( j ) ,h ( i ) )+I1 (k , t ( j +1) ,h ( i ) ) )

/2) ;
16 end
17 end
18

19 M = zero s ( s , 1 ) ;
20 f o r i =1: s
21 M( i ) = sum(A1( i , : ) ) ;
22 end
23

24 p lo t (h ,M) ;
25 x l a b e l ({ ’ h ’ })
26 y l a b e l ({ ’M(h) ’ })
27

28 f unc t i on I = I1 (k , x , h)
29 I = s q r t (2∗h) ∗ cos ( s q r t ( k ) ∗x ) ∗( s q r t (2∗h) ∗ cos ( s q r t ( k ) ∗x )−1/3∗( s q r t

(2∗h) ∗ cos ( s q r t ( k ) ∗x ) ) ˆ3) ;
30 end
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B Subproblem 1: Trapezoidal method on the Melnikov Function

1 format bank
2 k = input ( ’ k = ’ ) ;
3 n = 40 ;
4

5 s = 100 ;
6 h = l i n s p a c e (0 , 5 , s ) ;
7

8 tbeg in = 0 ;
9 tend = ze ro s ( s , 1 ) ;

10 t = ze ro s ( s , n ) ;
11 A1 = ze ro s ( s , n ) ;
12 A2 = ze ro s ( s , n ) ;
13 f o r i = 1 : s
14 tend ( i ) = s q r t (2∗h( i ) /k ) ;
15 t ( i , : ) = l i n s p a c e ( tbegin , tend ( i ) ,n ) ;
16 f o r j = 1 : n−1
17 A1( i , j ) = r e a l ( ( t ( i , j +1)−t ( i , j ) ) ∗ ( ( I1 (k , t ( i , j ) ,h ( i ) )+I1 (k , t ( i

, j +1) ,h ( i ) ) ) /2) ) ;
18 A2( i , j ) = r e a l ( ( t ( i , j +1)−t ( i , j ) ) ∗ ( ( I2 (k , t ( i , j ) ,h ( i ) )+I2 (k , t ( i

, j +1) ,h ( i ) ) ) /2) ) ;
19 end
20 end
21

22 B = ze ro s ( s , 2 ) ;
23 Q = ze ro s ( s , 1 ) ;
24 f o r i =1: s
25 B( i , 1 ) = sum(A1( i , : ) ) ;
26 B( i , 2 ) = sum(A2( i , : ) ) ;
27 Q( i ) = B( i , 2 ) /B( i , 1 ) ;
28 end
29

30 subplot ( 1 , 2 , 1 ) ;
31 p lo t (h , r e a l (4∗B( : , 1 )−4/3∗B( : , 2 ) ) )
32 x l a b e l ({ ’ h ’ , ’ ( a ) ’ })
33 y l a b e l ({ ’M(h) ’ })
34 subplot ( 1 , 2 , 2 ) ;
35 p lo t (h , r e a l (Q) )
36 x l a b e l ({ ’ h ’ , ’ (b ) ’ })
37 y l a b e l ({ ’Q(h) ’ })
38

39 f unc t i on I = I1 (k , x , a )
40 I = s q r t (2∗ a − k∗x ˆ2) ;
41 end
42 f unc t i on I = I2 (k , x , a )
43 I = ( s q r t (2∗ a − k∗x ˆ2) ) ˆ3 ;
44 end
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C Subproblem 2: Trapezoidal method on the Melnikov Function

1 format bank
2 k = input ( ’ k = ’ ) ;
3 m = input ( ’m = ’ ) ;
4 n = 40 ;
5 s = 100 ;
6 h = l i n s p a c e (−2∗k∗m, 2 , s ) ;
7

8 tbeg in = 0 ;
9 tend = ze ro s ( s , 1 ) ;

10 t = ze ro s ( s , n ) ;
11 A1 = ze ro s ( s , n ) ;
12 A2 = ze ro s ( s , n ) ;
13 f o r i = 1 : s
14 tend ( i ) = s q r t (h( i ) /k + 2∗mˆ2 + 2∗m∗ s q r t (mˆ2 + h( i ) /k + 1) ) ;
15 t ( i , : ) = l i n s p a c e ( tbegin , tend ( i ) ,n ) ;
16 f o r j = 1 : n−1
17 A1( i , j ) = r e a l ( ( t ( i , j +1)−t ( i , j ) ) ∗ ( ( I1 (k ,m, t ( i , j ) ,h ( i ) )+I1 (k ,m

, t ( i , j +1) ,h ( i ) ) ) /2) ) ;
18 A2( i , j ) = r e a l ( ( t ( i , j +1)−t ( i , j ) ) ∗ ( ( I2 (k ,m, t ( i , j ) ,h ( i ) )+I2 (k ,m

, t ( i , j +1) ,h ( i ) ) ) /2) ) ;
19 end
20 end
21

22 B = ze ro s ( s , 2 ) ;
23 Q = ze ro s ( s , 1 ) ;
24 f o r i =1: s
25 B( i , 1 ) = sum(A1( i , : ) ) ;
26 B( i , 2 ) = sum(A2( i , : ) ) ;
27 Q( i ) = B( i , 2 ) /B( i , 1 ) ;
28 end
29

30 subplot ( 1 , 2 , 1 ) ;
31 p lo t (h , r e a l (4∗B( : , 1 )−4/3∗B( : , 2 ) ) )
32 x l a b e l ({ ’ h ’ , ’ ( a ) ’ })
33 y l a b e l ({ ’M(h) ’ })
34 subplot ( 1 , 2 , 2 ) ;
35 p lo t (h , r e a l (Q) )
36 x l a b e l ({ ’ h ’ , ’ (b ) ’ })
37 y l a b e l ({ ’Q(h) ’ })
38

39 f unc t i on I = I1 (k ,m, x , a )
40 I = s q r t (2∗ a + 2∗k∗(2∗m∗ s q r t (1 + x ˆ2) − x ˆ2) ) ;
41 end
42 f unc t i on I = I2 (k ,m, x , a )
43 I = ( s q r t (2∗ a + 2∗k∗(2∗m∗ s q r t (1 + x ˆ2) − x ˆ2) ) ) ˆ3 ;
44 end
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D Subproblem 3: Trapezoidal method on the Melnikov Function

1 format bank
2 k = input ( ’ k = ’ ) ;
3 m = input ( ’m = ’ ) ;
4 n = 40 ;
5 s = 100 ;
6 h = l i n s p a c e (−2∗k∗m, 2 , s ) ;
7

8 tbeg in = ze ro s ( s , 1 ) ;
9 tend = ze ro s ( s , 1 ) ;

10 t = ze ro s ( s , n ) ;
11 A1 = ze ro s ( s , n ) ;
12 A2 = ze ro s ( s , n ) ;
13 f o r i = 1 : s
14 tbeg in ( i ) = −( s q r t (h( i ) /k + 2∗mˆ2 − 2∗m∗ s q r t (mˆ2 + h( i ) /k + 1) ) ) ;
15 tend ( i ) = −( s q r t (h( i ) /k + 2∗mˆ2 + 2∗m∗ s q r t (mˆ2 + h( i ) /k + 1) ) ) ;
16 t ( i , : ) = l i n s p a c e ( tbeg in ( i ) , tend ( i ) ,n ) ;
17 f o r j = 1 : n−1
18 A1( i , j ) = r e a l ( ( t ( i , j +1)−t ( i , j ) ) ∗ ( ( I1 (k ,m, t ( i , j ) ,h ( i ) )+I1 (k ,m

, t ( i , j +1) ,h ( i ) ) ) /2) ) ;
19 A2( i , j ) = r e a l ( ( t ( i , j +1)−t ( i , j ) ) ∗ ( ( I2 (k ,m, t ( i , j ) ,h ( i ) )+I2 (k ,m

, t ( i , j +1) ,h ( i ) ) ) /2) ) ;
20 end
21 end
22

23 B = ze ro s ( s , 2 ) ;
24 Q = ze ro s ( s , 1 ) ;
25 f o r i =1: s
26 B( i , 1 ) = sum(A1( i , : ) ) ;
27 B( i , 2 ) = sum(A2( i , : ) ) ;
28 Q( i ) = B( i , 2 ) /B( i , 1 ) ;
29 end
30

31 subplot ( 1 , 2 , 1 ) ;
32 p lo t (h , r e a l (−2∗B( : , 1 ) +2/3∗B( : , 2 ) ) )
33 x l a b e l ({ ’ h ’ , ’ ( a ) ’ })
34 y l a b e l ({ ’M(h) ’ })
35 subplot ( 1 , 2 , 2 ) ;
36 p lo t (h , r e a l (Q) )
37 x l a b e l ({ ’ h ’ , ’ (b ) ’ })
38 y l a b e l ({ ’Q(h) ’ })
39

40 f unc t i on I = I1 (k ,m, x , a )
41 I = s q r t (2∗ a + 2∗k∗(2∗m∗ s q r t (1 + x ˆ2) − x ˆ2) ) ;
42 end
43 f unc t i on I = I2 (k ,m, x , a )
44 I = ( s q r t (2∗ a + 2∗k∗(2∗m∗ s q r t (1 + x ˆ2) − x ˆ2) ) ) ˆ3 ;
45 end


