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Summary

The goal of this thesis is to develop a ROS package that facilitates the control and navigation of a Duckiebot
robot. With the rise of robot swarms the need for autonomous charging system for robots is increasing. An
implementation for decentralised autonomous behaviour for a Duckiebot for a wireless charging system in a
Duckietown environment is discussed. The devised system is divided among three different modules and is
implemented in ROS:

• An image recognition module;

• A navigation module;

• A motion control module;

The image recognition module uses linear image processing techniques and YOLO object detection in order
to detect objects in images from the robots front facing camera. It detects traffic lights and road markings in
order to tell the robot where to go.

The navigation module uses odometry to keep track of the robots current position. The odometry is reset in
order to maintain accuracy. When the battery of the robot reaches a certain point the robot will decide to
charge. It will then initiate path finding using Lee’s algorithm in order to find a path to a charging park.

Finally the motion control processes all the information in order to drive the wheels of the robot. The system
is thought to be able to navigate to a charging station, charge and then leave the charging station using the
designed ROS package.
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Preface

In the past 10 weeks we delved into the world of ROS, image recognition and path finding. With our group
we together designed a wireless charging system for the Duckietown platform. We believed this experience to
be valuable as it allowed for the freedom to make our own design choices and work as a group to achieve the
goal of the project. The project served as a good learning experience and we hope that our implementation
and methods can be used in further projects for the Duckietown or Lunar Zebro.

We would like to thank Ir. Dr. C.J.M. Verhoeven for proposing and supervising the project, and providing the
facilities to be able to work on this project.

Joost van Veen
Yannick Goudzwaard

Delft, July 2023
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1
Introduction

Robotic swarms are the future of large scale tasks or projects and almost all of these robots will run on
batteries. When these batteries are low the robot will need to be charged. A system is proposed where the
robots drive to a charging station where they are wirelessly charged by driving onto a charging pad. In order
to realise such a system it is implemented using the Duckietown project.

The Duckietown project provides learning experiences in robotics and AI through their developers platform
consisting of self-driving vehicles called Duckiebots and urban environment models called Duckietowns [1].
The platform is widely used by different educational institutions.

1.1. Goal of the Project
The goal of this project is to deliver a wireless charging system to serve as a basis for further development
and improvements for other autonomous robot swarms such as the Lunar Zebro project. The most import
goal is to provide a rule set for how the robots should behave around the charging station and to provide
a behaviour on when a robot is allowed to charge. This basis is formed by implementing the autonomous
wireless charging system on the Duckiebots in an adjusted Duckietown environment.

1.2. Problem Definition
In order to achieve the goal several things need to be implemented. The system has to be decentralised,
therefore all decisions are to be taken by the robot. The system has to be implemented such that the swarm
is up and operational 24/7 and no robots are left stranded without charge.

The project is divided among the following groups:

• Wireless charging hardware group — designs and implements the wireless charging hardware [2].

• Charging park design group — designs the charging park structure and defines the behaviour of the
Duckiebots within the charging park [3].

• Control and navigation group — designs and implements a way for the Duckiebots to adhere to the
predefined behaviour.

This thesis is about the control and navigation of the Duckiebots.

1.3. Introducing the Duckiebot
The Duckiebot DB-21M, as shown in Figure 1.1, is a differential-drive robot. Its two front wheels are driven
separately by DC motors which allow the robot to rotate by varying the rotational speed of both wheels. It
contains an omni-wheel at the back that provides stability. Each DC motor is equipped with a with an Hall
effect based wheel encoder. An 8 Megapixels camera is mounted at the front, which has a field of view of
160 degrees. There are 2 LEDs mounted on both the front and the back of the robot [4].
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2 Chapter 1. Introduction

Figure 1.1: The Duckiebot robot.

Additionally there are 2 sensors mounted on the Duckiebot, a ToF senor is mounted on the front and a Inertial
Measurement Unit (IMU) is mounted on the bottom in between the wheels [4]. The ToF sensor has different
modes and in its default mode can measure between 0.05 and 2 meters [5]. Lastly the Duckiebot has a
NVIDIA Jetson Nano for running artificial intelligence algorithms and neural networks.

These sensors together with the information in camera images and the power of the Jetson Nano provide
enough information and computational power for the robot to be able to navigate through the Duckietown
environment.

1.4. The Duckietown Environment
The Duckietown environment models an urban environment. It is constructed out of three different layers:

• the floor layer defines the road network. The network is constructed as a tile map, in which each tile
represents a specific road element. The available tiles are shown in Figure 1.2.

• the signal layer provides traffic signs, which enables the Duckiebots to exhibit different behaviour.

• the infrastructure layer consists of traffic lights and watch towers.

In this project only the provided floor layer will be used, as the charging park group developed their own
traffic lights. Our group combines these traffic lights with self-designed traffic signs.

Figure 1.2: The 4 different road tiles used in Duckietown environments

1.5. Structure of the Thesis
This thesis is divided among a theory and implementation part. The theoretic part starts with Chapter 3, which
introduces the idea of homogeneous coordinates and transformations. Chapter 4 utilises these coordinates to
describe the pinhole camera model. Chapter 5 describes the image process techniques that are used within the
project, after which Chapter 6 describes the process of object detection through the use of a neural network.
In Chapter 7 the basis of the maze routing algorithm is explained, which the Duckiebot uses to find its way
towards the entry point of the charging park. The theoretic part ends with Chapter 8, which describes pose
estimation through the application of odometry.

The implementation part starts with Chapter 9, which gives an overview of the developed ROS package.
In Chapter 10, the image processing and object detection techniques are combined to extract necessary
information from the camera images, Chapter 11 the process of navigating the Duckiebot towards the entry
point of the charging park, where it combines the aspects of maze routing, odometry and computer vision.
The implementation part ends with Chapter 12, which describes the process of generating updated robot
velocities from the inputs given by the image recognition and navigation modules.

At last Chapter 13 discusses the performance of the system and potential issues which could plague in the
system, after which Chapter 14 concludes the project and gives future recommendations.



2
Program of requirements

The navigation and control is responsible for implementing the predefined behaviour. The requirements for
the implementation are separated into functional and non-functional requirements, assumptions and key
performance metrics. Assumptions are made about the environment of the robot. The functional requirements
are things the behaviour has to do and the non-functional requirements are qualities which the behaviour
must have. The key performance metrics define a quantifiable metric for performance requirements the
system should adhere to.

Assumptions:

1. The road is assumed to only have the Duckietown environment markings and the coil line for coil
alignment.

2. The surface of the Duckietown environment is assumed to be planar.

Functional Requirements:

[2.1.1] The Duckiebot must be able to autonomously drive through the Duckietown environment.

[2.1.2] The Duckiebot must be able to recognise when it has arrived at a charging park.

[2.1.3] The Duckiebot must be able to align itself with the charging pad.

[2.1.4] The Duckiebot must be able to find the entrance of the charging park.

[2.1.5] The Duckiebot must decide when it leaves the charging pad.

[2.1.6] The Duckiebot must prevent collision with other Duckiebots.

[2.1.7] The Duckiebot must stay within the lane that is driving in.

Non-Functional Requirements:

[2.2.1] The processing time of all inputs to the system should not exceed the frametime of the camera.

[2.2.2] The navigation and control module must be developed using the robot operating system (ROS).

[2.2.3] The object detection algorithm should be able to detect traffic lights with a confidence score of at
least 0.5.

Key Performance Metrics:

• Input Processing Time

• Object Detection Confidence Score
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3
Homogeneous Coordinates and

Transformations

3.1. Introduction
In this project we make use of different transformations. In Euclidean space, each type of transformation is
applied using a different mathematical operation:

• Translation is performed through the addition of some offset t, such that x′1 = x1 + t.

• Rotation is performed through the multiplication of a rotation matrix R, such that x′1 = Rx1.

• Projection onto another vector x2 is performed through non-linear scaling, such that x′1 =
�

x1·x2
x2·x2

�

x2.

Chaining different transformations together results in non-linear maths. By using homogeneous coordinates,
each transformation can be performed using only matrix multiplication, which simplifies the concatenation of
transformations [6]. This chapter gives an introduction to homogeneous coordinates. It gives the translation
and rotation transformation matrices and discusses the application of combining translation and rotation
which is used within the project. The transformation matrix for projection is discussed in Chapter 4.

3.2. Homogeneous Coordinates
Points in space can be described using homogeneous coordinates [7]. They can be thought of as Euclidean
coordinates that have an extra dimension. If we describe Euclidean coordinates using parenthesis and
homogeneous coordinates using square brackets, then the 2D space conversion between both representations
is defined by

 

x
w
y
w

!

←→





x
y
w



 . (3.1)

Setting w= 1 yields the simplest form of the conversion.

By using homogeneous coordinates, linear transformations can be applied using a transformation matrix T ,
such that

x′1 = Tx1. (3.2)

Due to the associative property of matrix multiplication, the application of multiple transformations can be
chained into a single transformation matrix:

T = TnTn−1Tn−2 . . . T2T1. (3.3)

7



8 Chapter 3. Homogeneous Coordinates and Transformations

3.3. Transformations
In this section we introduce the homogeneous forms of the translational and rotational transformations were
we restrict ourselves to 2D space.

3.3.1. Translation
Translating the point (x1, y1) by an offset (xt, yt) results in a new point

�

x2

y2

�

=

�

x1

y1

�

+

�

xt

yt

�

=

�

x1 + xt

y1 + yt

�

. (3.4)

In homogeneous coordinates translation is applied using the transformation matrix

Ttranslation =





1 0 xt

0 1 yt

0 0 1



 , (3.5)

such that




x2

y2

1



=





1 0 xt

0 1 yt

0 0 1









x1

y1

1



=





x1 + xt

y1 + yt

1



 . (3.6)

3.3.2. Rotation
Rotation about the origin is achieved by multiplication of a rotation matrix. For clock-wise (CW) and counter
clock-wise (CCW) directions, the rotation matrices are defined by

RCW-rotation =

�

cos(θ ) sin(θ )

− sin(θ ) cos(θ )

�

and RCCW-rotation =

�

cos(θ ) − sin(θ )

sin(θ ) cos(θ )

�

, (3.7)

which in homogeneous coordinates yield the transformation matrices

TCW-rotation =





cos(θ ) sin(θ ) 0

− sin(θ ) cos(θ ) 0

0 0 1



 and TCCW-rotation =





cos(θ ) − sin(θ ) 0

sin(θ ) cos(θ ) 0

0 0 1



 , (3.8)

where θ is the rotation angle.

3.3.3. Combining Translation and Rotation
The pose q = [x , y,θ]T of the robot describes its rotation and translation with respect to a reference frame. By
applying a rotation about the origin of the reference frame in counter clock-wise direction and then applying
a translation, the pose can be represented by the transformation matrix

T = TtranslationTCCW-rotation, (3.9)

=





1 0 x
0 1 y

0 0 1









cos(θ ) − sin(θ ) 0

sin(θ ) cos(θ ) 0

0 0 1



 , (3.10)

=







cos(θ ) − sin(θ ) x

sin(θ ) cos(θ ) y

0 0 1






. (3.11)

Poses are member of the Special Euclidean Group (SE) [8]. The group SE(2) describes rigid motion in 2D
[9] and is defined by

SE(2) =

¨

T =

�

R x

0T
2 1

�

∈ R3×3

�

�

�

�

�

R ∈ SO(2),x ∈ R2

«

, (3.12)
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where T is a transformation matrix that represents the pose, R denotes the counter-clock wise rotation matrix
– which is part of the Special Orthogonal Group (SO) – and x denotes the translation.

The transformation matrix in SE has the property [10] that

T−1 =





RT −RTx

0T
2 1



 . (3.13)

By approaching poses as transformation matrices, poses can easily be transformed between reference frames.
Consider the situation given in Figure 3.1.

A

yA

xAxBA

yBA
B

θBA

yCB

xCB

yB

xB

C

xCA

yCA

θCB

xC

yC

Figure 3.1: Visualisation of different reference frames.

If we denote the pose of reference frame B with respect to reference frame A by TB→A, then the pose of
reference frame C with respect to reference frame A is described by

TC→A = TB→ATC→B, (3.14)

=







cos(θBA) − sin(θBA) xBA

sin(θBA) cos(θBA) yBA

0 0 1













cos(θCB) − sin(θCB) xCB

sin(θCB) cos(θCB) yCB

0 0 1






, (3.15)

=







cos(θBA+ θCB) − sin(θBA+ θCB) xBA+ xCB cos(θBA)− yCB sin(θBA)

sin(θBA+ θCB) cos(θBA+ θCB) yBA+ xCB sin(θBA) + yCB cos(θBA)
0 0 1






, (3.16)

where we used the angle sum identities

sin(α+ β) = sin(α) cos(β) + cos(α) sin(β), (3.17)

cos(α+ β) = cos(α) cos(β)− sin(α) sin(β). (3.18)

Therefore, the resulting pose becomes

qC→A =







xBA+ xCB cos(θBA)− yCB sin(θBA)

yBA+ xCB sin(θBA) + yCB cos(θBA)

θBA+ θCB






. (3.19)





4
Pinhole Camera Model

4.1. Introduction
The Duckiebot uses a forward facing camera in order to translate its 3D surroundings to a 2D image. Camera
models are used in order to describe how the pixels in an image are determined from reflected light from real
world objects. Cameras work by recording these reflected light waves. The camera that is mounted on the
Duckiebot achieves this by the means of an array of light sensors. These sensor converts photons into electric
signals which make up an image.

This chapter describes the pinhole camera model, which is the most common and simple method of modelling
a camera [7], and discusses the principle of homography, which maps points from one plane to another plane.

4.2. Pinhole Camera Model
The pinhole camera model views the camera as if the photoelectric sensors are surrounded by a box which
has one tiny hole in it. The only light that will therefore affect the image is light which passes through this
hole. The hole can therefore be seen as the centre of projection. Figure 4.1 shows how a reflected light wave
enters the camera through the pinhole.

pinhole camera

image

object

Figure 4.1: Pinhole camera: object to image relation.
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12 Chapter 4. Pinhole Camera Model

Due to this structure, the resulting image will be inverted. Since most light is blocked by the surrounding
box, the pixels will have a low intensity value. More light can be directed by using lenses, resulting in more
exposure while maintaining the sharpness of the image. However, by using a lens the image becomes distorted
[11].

The geometry of the pinhole camera model is visualized in Figure 4.2.

Y
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Figure 4.2: Pinhole camera model geometry.

The image plane has been moved in front of the centre of projection, such that we do not have to deal with
inverted images while the corresponding mathematical operations remain the same.

The distance between the centre of projection and the image plane is known as the focal length of the camera.
The origin of the reference frame of the image plane is known as the principal point. Projection is the
combination of scaling a point by the focal length of the camera and translating it by the principal point.
Therefore, the projection of a 3D point in the world onto a 2D image plane is defined by

x= PX, (4.1)
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Here P is the camera projection matrix, which can be further decomposed into
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= K[I |0], (4.3)

where K is the intrinsic camera matrix.

The camera model should also account for camera rotation and translation with respect to the world frame.
Therefore the point in the camera reference frame Xcam is described as Xcam = RX̃+ t, where R is the rotation
matrix, t is the translation vector and X̃ is the point X with respect to the world frame. This means that the
pinhole camera model can be described as

x= PXcam = K[I |0]
�

RX̃+ t
1

�

= K[R|t]X (4.4)

where the matrix [R|t] is referred to as the extrinsic matrix.
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4.3. Homography
If the Duckietown grid is assumed to be a flat plane, the principle of homography can used to map a point in
the image plane onto a point in the Duckietown ground plane. This is done by multiplying a 3×3 homography
matrix H with the homogeneous representation of one point, which gives the homogeneous representation of
a point in the other plane, such that





X
Y
W



= H





X
Y
1



 . (4.5)

The resulting transformation is shown in Figure 4.3

The homography matrix H is uniform for mapping any point from the image plane to the ground plane.
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Figure 4.3: Transforming images points to the world plane.

4.4. Camera Calibration
In order to determine the intrinsic camera matrix, distortion coefficients and homography matrix correspond-
ing to the camera model, the model needs to be calibrated. The camera is calibrated by means of the robot
looking at a checker-board pattern where the size of the squares are known. By placing the pattern on the
ground and looking at it from different angles and distances, the intrinsic camera and homography can be
determined as well as the distortion coefficients. The intrinsic camera matrix and distortion coefficient are
used to rectify the image [11].





5
Image Processing Techniques

5.1. Introduction
Image processing is the process of applying operations on an image in order to extract information from it. By
processing the images captured by the camera of the robot, the robot is able to detect lane and intersection
lines. This chapter describes the image processing techniques that have been used in the project.

5.2. Image Convolution
Most image processing techniques use convolution with the images in order to extract features of the image.
Images are convolved with matrices called kernels. Kernels can be of different size and can highlight different
features. The resulting output pixel is determined by the convolution of a pixel and its neighbourhood with a
kernel. The size of the neighbourhood is determined by the size of the kernel as showed in Figure 5.1
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Figure 5.1: Iteration step of the convolution of an image with a 3× 3 kernel.

5.3. Color Filtering
Since the different road lines all have different colours colour filtering is used to distinguish between these
different lines. As shown in Figure 1.2, the yellow markers indicate the leftmost side of a lane, while the
white line indicates the rightmost side of a lane.

The Duckiebot can also encounter horizontal lines of different colour:

• a red line indicates that the Duckiebot has arrived at an intersection.

• a blue line is used such that the Duckiebot can align itself with a charging coil.
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The colours in the image can be filtered based on their values in different colour spaces. For selecting different
colours in the image it is first converted into a HSV colour space since this will make filtering for a colour
easier. This is due to how the HSV and RGB colour space work. Instead of being divided into a red, green
and blue values a colour is divided into hue, saturation and value, this mostly has the effect that the colour is
more defined by the hue and saturation while the value defines the intensity of the colour. This means that
when looking at the road under different lighting condition for the HSV colour space only the value property
would see significant change while for RGB all three values would change. Since it can not be expected that
the environment will always have the same lighting condition the HSV colour space is far more reliable for
filtering for different colours.

For the filtering itself a upper and lower value is set for each colour, then all pixel values which lie inside this
bound are selected. This will return a mask in which all the pixels where the colour is the colour for which
filtering was done are set to 1 and all other pixels are set to 0.

5.4. Gradient Edge Detection
Edge detection is the process of identifying edges inside of an image in which an edge is described as a sharp
change in image brightness. The gradient describes the direction and intensity of this change. There are
numerous different gradient edge detection filter like Sobel, Laplacian of Gaussian, Prewitt and Canny just
to list a few of the most common. Of the different edge detection filters Canny is thought of by most to
be the most optimal [12][13], however it is far more complex then regular Sobel edge detection. Canny
edge detection works by first applying a Gaussian blur to the image. This is done to remove noise from the
image before detecting the edges. Then Sobel edge detection with two 3× 3 sized kernel is done to find the
horizontal and vertical gradients, the used kernels can be seen below:

Gx =





−1 0 1
−2 0 2
−1 0 1



 and Gy =





−1 −2 −1
0 0 0
1 2 1



 (5.1)

Using the horizontal and vertical gradients the gradient magnitude can be calculated using the formula
|G|= |Gx |+ |Gy |. It then places a threshold on the gradient magnitude to further reduce noise and find the
main strong edges of the image. It then detects potential edges and removes weaker edges which are not
connected to the stronger main edges by looking at neighbourhood of that edge.

For using edge detection for finding lane markings just Sobel edge detection should be enough due to the
roads having very little noise. Most noise in the image will be above the horizon or have small gradient
magnitudes, both of which can be filtered out. The Gaussian blur can still be applied in order to reduce the
little noise that might in the image.



6
Convolutional Neural Networks and YOLO

Object Detection

6.1. Introduction
For detecting more complex objects in the image, which may be surrounded by significantly more noise then
the road markings, object detection is commonly implemented. It using neural networks and deep learning
algorithms to locate objects within the image.

6.2. Convolutional Neural Networks
Neural networks are part of machine learning and are the centre of deep learning algorithms. They are
comprised of different layers, each layer identifies properties of the data and assigns weights to these
properties. Convolutional Neural Networks (CNN) use different layers to identify properties of an image and
assign these properties to a class. CNN use 3 different type of layers; convolution, pooling and connected
layers. Convolution layers apply multiple convolution filters to the image, each filter is meant to extract some
features from an object in an images. These layers are commonly combined with Rectified Linear Units (ReLU)
which maps all negative values to zero and maintaining positive values. This is then followed by a pooling
layer which performs non-linear down sampling in order to simplify the output. Multiple of these layers in
row allow the network to detect all the features in the image. After the features are extracted the data is
put through a connected layer, this predicts the class of the data. So in short a CNN works by extracting the
features of an images and then passing these through a classification layer which leads to class prediction.
The strength of a CNN is the ability to process large amounts of data like images.

6.3. YOLO Algorithm
You Only Look Once (YOLO) is an object detection algorithm using CNN designed by Joseph Redmon,
Santosh Divvala, and Ross Girshick [14]. YOLO mostly differs from other detection methods like Regional
Convolutional Neural Networks (R-CNN) and Deformable Parts Models (DPM) because it gives the bounding
box coordinates and class probabilities directly from the images pixels. Other approaches, like R-CNN, first
look for possible bounding boxes and then try and classify the bounding boxes. YOLO therefore has the
advantage that only a single neural network is needed for object detection. This makes YOLO faster than
faster R-CNN and other object detection algorithms [14][15]. However YOLO does have a drawback that it is
less accurate at locating the bounding boxes for objects [14].

6.3.1. Model Training
In order to create a model a dataset is required to train the model for the objects it needs to detect. A dataset
for YOLO has a .txt file for each image. This file contains the bounding boxes for each object in the image for
which the model needs to be trained. This file has one row per object in the image with each row consisting
of the class of the image, the x and y coordinates of the centre of the bounding box and the width and height
of the bounding box. For example an image and .txt file for a dataset will look something like in Figure 6.1.
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Figure 6.1: Visualisation of image and .txt file for dataset definition.

The data set is then split into a training set and validation set. The training set is used to train the model and
then the validation set is used to measure the performance of the model. In order to train the model the
batch size and epochs need to be set. The batch size determines how many images the model goes through
before changing the model parameters. The number of epochs is how many times the model will go through
the whole data set. The values for these parameters can not be perfectly determined before hand, but only by
validating the model.

6.4. Validating Model Performance
In order to validate the performance of a model the validation and training loss of the model is important.
This will show if the model is underfitted, overfitted or a good fit. Underfitting means that the model is
unable to model the training data. Overfitting means that works well with the training data but poorly on
new data. A good fit means that the model works well on both the training data and new data. The loss
is the errors the model makes for a set, so the training loss is the errors the model makes with the training
data while the validation loss is for the validation data. For the YOLO model three loses are calculated: the
localisation loss, the objectness loss and the classification loss. The localisation loss is the error in detecting
the bounding box location and size. The objectness loss is the error in detecting objects in the image. Lastly
the classification loss is the error of classifying an object in the image. So the localisation loss is important for
finding where the object is in the image. The objectness loss is important for finding objects within the image
and the classification loss is important for the correct classification of these objects.

Another way of validating a model is by looking at the precision and recall. The precision is how many of the
predictions that were made are correct and recall is how many of objects which were present where correctly
predicted. This can also be done by looking at the mean average precision (mAP). The mAP is the mean of
the average precision (AP) of all the classes [16]. The AP defines the precision-recall curve into a single value.
The mAP is a good indicator of the performance of a model since it shows how good it is at detecting objects
and correctly classifying them. Still the best way to test if a model works well is by testing it on new data.



7
Maze Routing Algorithm

7.1. Introduction
Due to the fact that the structure of a Duckietown is based upon a tile map, finding a route from one tile to
another tile can be thought of as a maze routing problem. This analogy is visualized in Figure 7.1. Examples
of path finding algorithms are the A-star (A∗), Dijkstra and Breadth-First Search (BFS) algorithms. In terms
of computer processing and execution time, Permana et al. [17] determined that the A∗ algorithm can be
considered to be the best maze routing algorithm in general. However, they also demonstrated that in some
cases the A∗ algorithm has a longer execution time than both the Dijkstra and BFS algorithms.

(a) (b)

Figure 7.1: Visualisation of analogy between grid (a) and maze (b) representations of a Duckietown.

In this project we will utilize the algorithm developed by Lee [18][19], which essentially uses the BFS
algorithm to find an optimal path. In this chapter we describe the workings of the Lee algorithm.

7.2. Definitions
Maze Array
A maze can be represented as a two-dimensional array, where each cell represents a specific tile. Cells that
represent the walls of the maze have a value of −1, and the remainder of cells are assigned the value 0. A
cell is located at row i and column j, such that its position can be denoted by (i, j). Rows and columns are
zero indexed.

Start- and Target Cell
The start and target cell represent the beginning and end of the resulting path respectively.
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Cell Neighbours
Each cell in the maze array has up to 4 neighbours:

• a northern neighbour at (i − 1, j).

• an eastern neighbour at (i, j + 1).

• a southern neighbour at (i + 1, j).

• a western neighbour at (i, j − 1).

A neighbour is considered valid when it respects the boundaries of the grid and has a positive associated
value.

Visitor Queue
The visitor queue is a queue in which nodes are added that need to be processed by the Lee algorithm. The
benefit of using a queue is such that we do not need to iterate over all cells within the maze array, which
reduces the number of operations needed to perform the algorithm and thus reduces its execution time.

Initially, the visitor queue is empty.

Path List
The path list contains the cells that together form the path resulting from the Lee algorithm.

Breadth-First Search
Breadth-first search is a searching technique that searches for a node within a tree by starting at the root of
the tree and visiting every node within the current depth level before moving on to nodes at the next depth
level. The technique always finds a solution node given that it exists.

7.3. Maze Routing Procedure
This section discusses the procedure of applying the Lee algorithm to an arbitrary maze, where we take the
maze in Figure 7.2 as the maze to be solved. The start and target cells are assigned the colors cyan and
orange respectively.

0 0 0 0 0 1

0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0

Figure 7.2: State of the maze array before BFS.

As shown in Figure 7.2, the Lee algorithm starts with assigning the value 1 to the target cell. The target cell
is then added to the visitor queue, after which the BFS algorithm is applied.

7.3.1. Application of the BFS Algorithm
The breadth-first search application performs the following steps:

1. The first element in the visitor queue is de-queued.

2. Each valid neighbour of the de-queued cell is assigned the value of the de-queued cell incremented by
one.

3. Each valid neighbour is added to the visitor queue.

This process, of which a single iteration is visualized in Figure 7.3, repeats itself until one of the following
conditions is satisfied:

(i) The start cell holds a value greater than 0. This indicates that there exists a path from the start cell to
the target cell.
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(ii) The visitor queue is empty after performing a procedure iteration. This indicates that there does not
exist a path from the start cell to the target cell.

In both cases, the visitor queue is emptied after completion of the BFS algorithm.
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Figure 7.3: Iteration step within the BFS part, where (a) is the start situation, and in which (b) the first element is dequeued, in (c) the
valid neighbors are incremented, and in (d) the valid neighbors are added to the visitor queue.

In case of Figure 7.2, the result after BFS is shown in Figure 7.4.

12 11 10 3 2 1
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12 11 10 8 5

12 9 8 7 6 7 8

Figure 7.4: State of the maze array after BFS.

7.3.2. Path-tracing
The result of the BFS procedure is that every valid cell has one or more neighbors with a lower value. Using
this fact a path can be traced from the start cell to the target cell.

After the start cell is added to the visitor queue, the path-tracing procedure follows similar steps to that of the
BFS procedure:

1. The first element in the visitor queue is de-queued and is added to the path list.

2. Each valid neighbour is checked for a lower value.

3. The first neighbour with a lower value is added to the visitor queue.

The path tracing procedure ends when the visitor queue is empty. The resulting path in case of Figure 7.2 is
shown in Figure 7.4.

12 11 10 3 2 1

0 9 8 7 6 5 4

12 11 10 8 5

12 9 8 7 6 7 8

Figure 7.5: Resulting path.





8
Odometry of Differential-Drive Robots

8.1. Introduction
Odometry allows one to estimate the pose of a robotic agent — which we define as a vector that contains the
position and orientation of the agent with respect to a reference frame — using its available motion sensors.
It is a simple and cheap option for determining the momentary position of a mobile robot [20]. This chapter
describes the application of odometry to a Duckiebot, alongside conflicts that arise over time.

8.2. Duckiebot Geometry
The Duckiebot DB21-M is a differential-drive robot consisting of one omni-wheel and two front-wheels of
radius R (note that in reality, the radius of both wheels will vary). The reference frame of the Duckiebot
is chosen such that its origin is at the center of the baseline B between both wheels. If L represents the
distance between the reference frame and each wheel, the baseline can be expressed as B = 2L. The resulting
geometric representation is shown in Figure 8.1.
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Figure 8.1: Relevant geometry of the Duckiebot for the application of odometry.

8.3. Duckiebot Application of Odometry
Each of the DC motors of the Duckiebot is equipped with a Hall effect sensor wheel encoder. The encoder
contains a magnetic ring in which 2N magnetic poles are equally spaced. The Hall effect sensor then sends N
pulses (which we call ticks) per motor turn [21]. In case of the Duckiebot, the Hall effect encoders have a
resolution of Nmax = 135 ticks per revolution.

Suppose that the wheel encoder sends N∆t ticks in a time interval of ∆t seconds. Then the rotation of the
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wheel becomes

∆φ =
N∆t

Nmax
· 2π, (8.1)

yielding an angular velocity of ω=∆φ/∆t, assuming that the wheel has a constant linear speed.

By measuring the angular velocity of each wheel, the linear and angular displacement can be determined
from which the pose can be estimated [22]. The linear and angular velocity of the reference frame of the
robot become

vDB =
ωLR+ωRR

2
and ωDB =

ωLR−ωRR
2L

, (8.2)

which yields the linear and angular displacements

d = vDB∆t and ∆θ =ωDB∆t, (8.3)

where the subscripts L and R distinguish the left- and right front wheels.

The resulting pose relative to the world reference frame W is estimated by

x(t +∆t) = x(t) + d cos [θ (t +∆t)], (8.4)

y(t +∆t) = y(t) + d sin [θ (t +∆t)], (8.5)

θ (t +∆t) = θ (t) +∆θ . (8.6)

8.4. Validity of Odometry
The application of odometry is based upon simple equations that assume that wheel revolutions can be related
linear displacement of the robot. However, this assumption is of limited validity [23].

Errors that accumulate over time, such as the possible misalignment of the wheels, are known as systematic
errors. Non-systematic errors are due to the environment that the robot is driving in, such as an uneven floor.
The predominance of either systematic or non-systematic errors depends on the surface that the robot drives
on [20]. In case of the Duckietown environment (which can be seen as a smooth even surface), systematic
errors will be the predominant type of error source. Due to the accumulation of systematic errors over time,
the odometry model requires a reset using an absolute position update [20] in order to maintain accuracy.

By calibrating the odometry model, the error propagation can be reduced [24]. By formulating the linear
velocity of each wheel as being dependent of the linear and angular velocities of the robot reference frame,
the corresponding angular velocity of the motors can be determined [25].

The calibration method proposed by the Duckietown project [26] relates the previous denoted linear and
angular velocities to a trim variable. By adjusting the trim variable, the Duckiebot calculates the radius of
each wheels and the baseline parameter. Initially, the wheels are assumed to be of equal radius, such that the
trim variable has a value of zero.

Then the calibration is performed using the following procedure:

1. The motors are given the commands that correspond to the robot frame driving in a straight line.

2. Due to improper calibration, the Duckiebot drifts away from the straight line. By measuring the
deviation from the line, the trim variable can be adjusted, which affects the driving command given in
step 1.

3. Repeat the previous steps until a satisfactory result is achieved.

When the calibration has been completed successfully, the Duckiebot stores the parameters of the odometry
model in memory.



Part II

Implementation
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9
Introduction to the ROS package

9.1. Introduction
This chapter discusses the basic principles of the robot operating system (ROS). The Duckietown platform
natively provides some functionality upon which the designed ROS package is build.

9.2. The Robot Operating System (ROS)
The robot operating system (ROS) is an open source software tool that is used to implement robotic applica-
tions. It forms the bridge between software and hardware. A ROS network consists of nodes – which are
small executable programs – that can communicate with each other using ROS topics. A node can write
specific data messages to a topic, which is called publishing. It can also subscribe to a topic. In that case,
whenever the data message of the topic changes, the node can execute a function as a callback. Note that
nodes can publish and subscribe to multiple topics.

9.3. Duckiebot Native Functionality
The following scripts that the Duckiebot provides are build upon by the designed package:

• DeadReckoningNode — applies odometry in order to estimate the pose of the Duckiebot with respect
to its initial reference frame.

• controller — translates the error between centre of the lane into linear and angular velocities using
a PID controller.

9.4. Overview of the Created ROS package
A ROS package is made to implement the robot behaviour. It is build up out of multiple ROS nodes which
communicate which each other through multiple newly created topics. The ROS nodes can be divided into 3
categories: Image recognition, Navigation and Motion & SoC control. An overview of the how the categories
are connected can be seen in Figure A.1.

9.5. The SoC Control
The State of Charge controller reads the battery info the battery publishes, extracts the SoC from the info and
publishes it. Additionally it also receives the coil alignment error. If the error is within a threshold it means
the coils are properly aligned and it sends the enable to the receiver side of the charging system in order for
the robot to enable charging. If the SoC reaches the maximum mission SoC the robot disables the charging.
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Image recognition

10.1. Introduction
The robot uses the camera to detect multiple objects. On the road it needs to detect the lines who indicate
the edge of a lane. It also needs to detect intersection lines on the ground. This tells the robot when it is
at an intersection in order to reset the homography and make turns. For charging the robot should also be
able to detect a charge line. Then homography is applied and by comparing the distance to the line with a
reference to distance it is able to align with the coil to enable charging. Some of the detection algorithms will
use so called horizon masks, these masks use homography to filter out pixels which are more then a certain
distance away from the Duckiebot.

Another thing the robot needs to detect is if there is a traffic light in the image. This is done by using a YOLO
model which is trained for the different type of traffic lights.

10.2. Detecting Intersection Lines
Since odometry is only accurate for short distances it needs to be reset in order to limit the error. This is done
at intersections since their locations are easily detected by the robot and the location in the world frame is
known. The robot knows it is at an intersection if it detects a intersection line. Intersection lines are red and
span across the road horizontally.

Other than the intersection lines there are no other red lines so only filtering for the road and that colour
should result in no other objects being detected. They are detected by looking beneath the horizon for red
patches. If a patch has 4 or more corner points and the centre of the patch is close to the centre of the lane
then it assumed to be an intersection line. This filters out other intersection lines of the intersection or red
objects which are not located on the road.

Each time the image is updated the node applies a colour filter for red HSV values resulting in a red colour
mask. This mask is multiplied with a horizon mask set at a distance of 0.3 meters. This is done since the
robot should only react to the intersection lines if it is close and to filter out other uninteresting lines. After
this contours are detected in the combined mask. It then goes through each contour, if any are found, and
determines if one could be a intersection line. This is done by checking if the contour is near the centre of the
road. If so it will publish that it has detected a intersection line and will calculate the pose of the Duckiebot
with reference to the intersection.

This is done by applying homography to the points in order to get the position with reference to the Duckiebot.
Then the centre of the intersection line with reference to Duckiebot is calculated using those points. The
angle of Duckiebot is determined by the angle of a line drawn between the top right and bottom right points
of the intersection line or the top left and bottom left points of the intersection line. It decides if it looks
at the left or right points on the basis of the y-value of the position of the intersection with reference to
Duckiebot. If the y-value of the centre is larger then zero it will look at right points otherwise it will look at
the left points. This is due to where the robot points in reference to the centre of the intersection line. As
seen in Figure 10.1 the angle of the Duckiebot with reference to the intersection is the same as the angle of
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the right 2 intersection line points with reference to the Duckiebot. The distance between the Duckiebot and
the intersection line is used to find the pose of the Duckiebot with reference to the intersection.
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Figure 10.1: Duckiebot pose with reference to the intersection

10.3. Lane Detection
If the robot is not at an intersection it should drive forward and stay within its lane. However even if the
robot starts in the middle of the lane facing perfectly forward it will still drift to the left or right. This is due to
the wheels and motors not being perfect. The motor commands might tell the motors to both drive at exactly
the same speed but there will still be some drift. Combined with the omnidirectional wheel, which has a
lot of resistance and runs far from smooth, the robot needs to make corrections in the direction it is driving.
Therefor a lane detector is implemented, the robot is able to see the lanes, from which it can determine where
the middle of the road is. The robot does this by detecting the right edge of the left lane and left edge of the
right lane. These edges are found by combining multiple masks, a mask which filters colour, a horizon mask
and a edge detection mask. The colour masks are created by HSV colour filtering the image, which results in
two masks, one for the yellow of the middle line and one for the white of the right line. The horizon mask is
set at one meter.

For the edge mask multiple masks are used to get the edges which correspond with the lanes. First the
horizontal and vertical edge gradients are calculated using Sobel edge detection on an Gaussian blurred
image. These are used to make a gradient magnitude mask by calculating the gradient magnitude for all
pixels and removing all magnitudes below 40. This is done since the contrast between the dark colour of the
road and the light colour of the lanes results in high gradient magnitude, so all low values are considered
noise. After this masks are made of only the positive horizontal and negative horizontal gradient values. The
same is done for the vertical gradient values. This is done in order to filter for certain gradient angles. Lastly
two masks are created which select either the left or right half of the image.

The left edge is detected by combing the yellow colour, negative horizontal and negative vertical gradient,
gradient magnitude and horizon masks and looking at the left side of the image. The right edge is detected
by combing the white colour, positive horizontal and negative vertical gradient, gradient magnitude and
horizon masks and looking at the right side of the image. The masks and the resulting combined mask can be
seen in Figure 10.2.

The ideal path is found by finding the points which lie in between these lines as seen in Figure 10.2. By
plotting a line through the points and finding the angle of this line with the y-axis of the image can be
calculated. This angle is published so it can be used to determine the robots velocities.

10.4. Detecting Coil Alignment Lines
For aligning the coil the detection is almost the same as the intersection detection, however now it is not
filtered for the color red but blue. The robot detects the corner coordinates the same way it does for the
intersection lines. It then publishes these coordinates for the motion control.
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Figure 10.2: The different masks used for lane detection and the middle of the lane found using the masks

10.5. Object Detection
The Duckiebot needs to detect traffic lights in order to know if it can cross the intersection. It also needs to
detect traffic lights to know if it is at a charging park or station and if they are occupied or not. This is done
using YOLO object detection.

10.5.1. YOLOv5 Model
The YOLOv5 model is used for detecting traffic lights in images. YOLO is used since it is fast and easy to
train. The only drawbacks of using YOLO is that the bounding box location can be inaccurate, however since
the location of the traffic light in the images is unimportant this is not a problem.

10.5.2. Model Training and Performance
After the data set is created the model can be trained. The data set used for training the model consist of 90
images for training and 19 for validation. The batch size is set at 64 and the epoch amount is increased until
a good model is achieved. This can be seen in the graphs for training and validation losses The resulting
training and validation losses for 300 epochs can be seen in Figure 10.3.

Figure 10.3: Training and validation losses, precision and recall and mAP graphs of the model.

The x-axis of the graphs show the result at each epoch. In Figure 10.3 it can be seen the training en validation
classification loss cls_loss as well as the objectness loss align well and both bottom out at around 100
epochs. The loss will then only decrease slightly for each extra epoch. The localisation loss box_loss is not
interesting to us since the location of the traffic light does not matter. Further model results can be seen in
Appendix B.

The model with 100 epochs was tested using a webcam to determine the accuracy on new data. It was found
that the model is good at detecting traffic lights. The detected traffic light had a confidence around 0.9 and
the model was able to classify the traffic lights correctly.





11
Navigation

11.1. Introduction
The goal of this chapter is to describe the implementation of letting the Duckiebot navigate itself to the
charging park. It combines the aspects of maze routing, odometry and computer vision to achieve this.

11.2. Lee Algorithm Adjustment
One factor that the Lee algorithm does not account for is the orientation of the Duckiebot. There exists a
possibility that the algorithm determines a path for which the Duckiebot would need to switch lanes and
reverse its direction. This would however result in the fact that requirement [2.1.7] would not be satisfied.
To overcome this problem, the BFS part of the Lee algorithm has been adjusted such that the tile behind the
Duckiebot cannot update the start cell. To avoid having to deal with complex cases, the Lee algorithm is only
initiated when the Duckiebot is driving on a straight road tile.

Suppose that a Duckiebot is facing southwards, as shown in Figure 11.1. Since the tile at row 1 and column
7 is directly behind the Duckiebot, it is not allowed to update the start cell. The maze routing algorithm
continuous and provides the path as shown in the figure.

12 11 10 3 2 1

13 9 8 7 6 5 4

12 11 10 8 13

12 9 10 11 12 13 0

−→

−→

Figure 11.1: Preventing value assignment from behind the Duckiebot.

However, applying this adjustment can result in the algorithm not being able to find a path at all. In case of
Figure 11.1, this problem would arise for the case that the Duckiebot is at the tile at (1, 3), which has been
surrounded by a dark blue box. This issue can be resolved by taking one of three measures:

1. The structure of the Duckietown should be selected such that this problem never arrises, as is the case
for the Duckietown present in Figure 7.1. This is the measure that was taken during the project.

2. In the case that no path is found, the Duckiebot should try to find a path when it arrives at a different
straight tile.

3. Neglect requirement [2.1.7] and allow the Duckiebot to turn and switch lanes.

11.2.1. Intersection Instructions
Since the robot can drive along straight and curved road sections on its own, we decided to transform a
determined path into a queue of instructions corresponding to specific intersections.
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We distinguish the following intersection instructions:

• STRAIGHT — The Duckiebot should follow a straight path.

• LEFT — The Duckiebot should steer to the left with smaller steering angle.

• RIGHT — The Duckiebot should steer to the right with larger steering angle.

In Figure 11.1, the path consists of the intersections I = {(3,7), (1,4), (1,7)}. Given the direction of the
Duckiebot and the path itself, the resulting instructions yield a queue Q = {RIGHT,RIGHT,LEFT}.

11.3. Applications of Odometry and Homography
The goal of applying odometry is to determine the pose of the Duckiebot with respect to the Duckietown,
which is the information that the maze routing algorithm needs in order to find a suitable path.

11.3.1. Reference Frame Transformation
The Duckiebot is provided with an odometry package, which utilizes the wheel encoders for both wheels in
order to estimate the pose of the Duckiebot. Figure 11.2a shows the pose that the odometry package publishes.
In order to obtain the pose of the robot with respect to the Duckietown frame, as shown in Figure 11.2b, the
odometry reference frame must be translated and rotated.
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Figure 11.2: Poses of the Duckiebot with respect to (a) the odometry reference frame and (b) the Duckietown reference frame.

If we assume that the initial pose of the Duckiebot with respect to the Duckietown reference frame is known,
then so is the pose of the odometry reference frame. By applying the theorem explained in Chapter 3, the
transformation matrix corresponding to the pose of the Duckiebot with respect to the Duckietown reference
frame becomes

TDB→DT = TOD→DT TDB→OD, (11.1)

=







cos(θOD,DT + θOD) − sin(θOD,DT + θOD) xOD,DT + xDB,OD cos(θOD,DT)− yDB,OD sin(θOD,DT)

sin(θOD,DT + θOD) cos(θOD,DT + θOD) yOD,DT + xDB,OD sin(θOD,DT) + yDB,OD cos(θOD,DT)

0 0 1






,

(11.2)

where θOD,DT is the angle of the pose of the odometry reference frame with respect to the Duckietown
reference frame.

Then the resulting pose becomes

qDB→DT =







xOD,DT + xDB,OD cos(θOD,DT)− yDB,OD sin(θOD,DT)

yOD,DT + xDB,OD sin(θOD,DT) + yDB,OD cos(θOD,DT)

θOD,DT + θOD






. (11.3)
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11.3.2. World to Grid Conversion
Given that a certain m×n Duckietown grid contains tiles which sides have length s, the position (xDB,DT, yDB,DT)
of the Duckiebot can be converted into the grid coordinates

row=
�m · s− yDB,DT

s

�

, (11.4)

column=
j xDB,DT

s

k

. (11.5)

Since the maze routing algorithm only considers NESW-directions, the orientation of the robot must be
mapped onto such direction. The approximations are shown in Figure 11.3.
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Figure 11.3: Grid approximations of (a) position and (b) direction.

11.3.3. Odometry Reset Procedure
As mentioned in Chapter 8, the accuracy of the dead-reckoning model decreases over time. To overcome this
problem, the model must be reset using absolute position updates.

The following procedure, visualized in Figure 11.4, is followed in order to reset the odometry model:

1. When the robot detects a stop line, it applies a homography to determine the pose of the Duckiebot
with respect to the reference frame of the detected stopline.

2. If the Duckiebot knows the pose of the intersection line with respect to the Duckietown reference frame,
it can determine its own pose relative to the Duckietown reference frame.

3. The resulting pose is translated and rotated to the odometry reference frame.
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Figure 11.4: Relevant reference frames associated with the odometry reset procedure.
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This procedure is performed using the transformation given by

TDB→OD = TDT→ODTIL→DT TDB→IL, (11.6)

= (TOD→DT)
−1TDB→DT, (11.7)

=







cos(θOD,DT − θDB,DT) sin(θOD,DT − θDB,DT) xDB,OD

− sin(θOD,DT − θDB,DT) cos(θOD,DT − θDB,DT) yDB,OD

0 0 1






, (11.8)

where

xDB,OD = [xDB,DT − xOD,DT] cos(θOD,DT) + [yDB,DT − yOD,DT] sin(θOD,DT), (11.9)

yDB,OD = [xOD,DT − xDB,DT] sin(θOD,DT) + [yDB,DT − yOD,DT] cos(θOD,DT). (11.10)

Then the resulting pose becomes

qDB→OD =







[xDB,DT − xOD,DT] cos(θOD,DT) + [yDB,DT − yOD,DT] sin(θOD,DT)

[xOD,DT − xDB,DT] sin(θOD,DT) + [yDB,DT − yOD,DT] cos(θOD,DT)

θOD,DT − θDB,DT






. (11.11)

11.4. State-of-Charge Based Behaviour
The Duckiebot uses a lithium-ion (Li-ion) battery, which is charged using the constant current constant voltage
(CC-CV) method. In this method, charging takes place in two stages. In the first stage, the current of the
battery cell is kept constant until the battery cell voltage reaches a threshold value. At stage 2, the battery is
charged using a trickle current that is being applied by the constant output voltage of the charger. From the
moment that stage 2 begins, the rate of charge decreases over time [27].

Now suppose that the robot has a mission — which consists of driving to a location, performing a task at that
location, and driving back to the charging park — for which it does not require the battery to be completely
charged. By letting the robots charge to a certain threshold rather than to maximum capacity, the efficiency
of the charging method increases.

The navigational decisions that the Duckiebot has to make are based upon its State-of-Charge (SoC), of which
the different modes of behaviour are shown in Figure 11.5.

0%

100%

maximum mission SoC

minimum mission SoC

maze routing SoC

emergency SoC

Figure 11.5: State of Charge behaviour distribution.

The Duckiebot acts differently depending on its SoC and the fact whether it is charging or not.

When the Duckiebot is charging:

• It wants to charge to at least the minimum mission SoC, but preferably to the maximum mission SoC.

• It is willing to leave the charging pad for other Duckiebots that are below their emergency SoC only if
its current SoC is above the minimum mission SoC.
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When the Duckiebot is not charging, it navigates to the charging park if its SoC is below the maze routing
SoC. When it arrives at the charging park, their exist 3 possibilities:

1. In case that the entry traffic light of the charging park is off, it enters the charging park.

2. In case that the entry traffic light of the charging park is on, it will either

• enter a waiting queue if its SoC is above the emergency SoC.

• enter the charging park if its SoC is below the emergency SoC.

11.5. ROS Implementation of Odometry and Maze Routing
The navigation module combines the aspects of maze routing, odometry and computer vision in order to let the
Duckiebot navigate towards a charging park when it wants to. This section describes the ROS implementation
of the navigation module, which is made up of a module that handles the odometry aspect and a module that
handles the maze routing aspect.

11.5.1. The Odometry Handling Module
The module that handles the odometry is shown in Figure 11.6. As stated before, the Duckiebot contains a
package that applies the principle of odometry to determine the pose of the Duckiebot. This package has
been slightly adjusted such that its pose variables can be updated.

OdometryReset
Node

updated Duckiebot pose w.r.t.
odometry reference frame DeadReckoning

Node

Duckiebot pose w.r.t.
odometry reference frame

DuckietownGrid
Nodeintersection pose w.r.t.

Duckietown reference frame

(row,column,direction)

intersection line detection flag

Duckiebot pose w.r.t.
intersection reference frame

Figure 11.6: Odometry handling module.

Each time that the DeadReckoning node publishes an odometry message, the DuckietownGrid node
produces a 2D pose with respect to the Duckietown reference frame. Using the characteristics of the
Duckietown it can relate the pose to a certain tile within the Duckietown. The row and column of the specific
tile and the NESW-direction of the Duckiebot are then published, which the maze routing module utilizes to
determine the intersection instructions that are needed to navigate to the charging park.

When the Duckiebot detects an intersection line, the DuckietownGrid node publishes the known pose of
the intersection line, which the OdometryReset node uses to determine the pose qDB→OD. It then publishes
its result to the DeadReckoning node, which effectively resets the odometry.

11.5.2. The Maze Routing Module
The maze routing module, shown in Figure 11.7, determines the instructions that the Duckiebot needs to
follow to arrive at the charging park.
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MazeRouting
Node

(row,column,direction) StartRouting
Nodestart flag

RoutingEnabler
Node

enable flag

SoC

instructions

Figure 11.7: Maze routing module.

When the Duckiebot is below the predefined maze routing SoC, the StartRouting node sets its start flag to
high. Then the MazeRouting node performs the Lee algorithm, in which the start cell is the current tile that
the Duckiebot occupies and the target cell is the entry of the charging park. The RoutingEnabler node sets
its enable flag to low, resulting in the StartRouting node being unable to update its start flag. This is done
such that the Lee algorithm is only performed when the Duckiebot is not already following a predetermined
path.

When a path is found, the MazeRouting node publishes the instructions that the Duckiebot needs to perform
to arrive at the charging park. The RoutingEnabler node sets its enable flag to high when the Duckiebot
drives out of the charging park, such that the maze routing start procedure can be initiated again when the
Duckiebot’s SoC is below the maze routing SoC.
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Motion Control

12.1. Introduction
The motion control unit it responsible for processing the information the robot has and determining what the
wheels should do. The motion control gets all the visual information, whether there is a intersection, coil
lines, traffic lights and the lane error. It also gets information from the navigation part what it should do if it
encounters a intersection. Lastly it also knows if the robot’s SoC is at a critical state and the value of the ToF
sensor. All this information is processed by the motion control and then publishes the angular and linear
velocity.

12.2. Motion Control ROS node
The motion control node needs to process all it’s different inputs. Firstly it is important that if the speed at
which the robot drives depends on if the space in front of the robot is clear and no other objects are present.
If the value of the ToF is below a certain distance the robot will drive slower so it will not hit a robot driving
in front of it. Then the motion control has multiple modes depending on what the robot has detected and
what instruction is has received from the navigation unit. An overview of the in- and output of the node can
be seen in Figure 12.1

Motion Control

stop detected

coil corner coordinates

lane angle

detected traffic light

instructions

(v, ω)

ToF SoC

Figure 12.1: Overview of the inputs of the Motion Control ROS node

12.2.1. Lane Following Mode
The standard mode is the lane follower mode, in this mode will simply follow the road and adjust to stay
in the centre of the lane. When the robot detects a traffic light it will update its next instruction. The next
instruction tells the motion control what it should do at the next intersection.
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12.2.2. Traffic Light Detection
If the robot detects a traffic light which indicates the entrance of a charging park it decides to go straight
at the intersection if the light is off and the SoC is such that the robot wants to charge or if the light is on
but the robot is below the emergency SoC. If these cases are not met the robot will turn left and enter the
charging park queue in order to wait until a charging pad is clear.
If the robot detects a charging station traffic light it means it is in the charging park so if the light is on it will
keep going straight since the charging pad is occupied. Otherwise the pad is free and it will turn right.
If the robot detects a normal traffic light and other traffic lights it will simply follow the instruction received
by the navigation command. If the light is off it means no traffic is approaching and the robot can drive onto
the intersection. When the light is on it means the robot needs to wait at the intersection line until the light
turns off.

12.2.3. Intersection and Coil Alignment Detection
When a robot detects a intersection line it will see if it needs to wait for the traffic light or not. If it needs to
wait for the traffic light it will go into wait mode, where it will stay until it detects that the traffic light has
switched off. If this is not the case it will simply keep driving until a intersection line is no longer detected,
this means the robot is now on the intersection. It will then go into the mode depending on the set instruction.

Lastly if the robot detect a coil alignment line it means it is in a charging station and needs to charge. Therefor
it will then go into alignment mode and adjust it position until the required alignment is reached. This is
done by applying homography to the points and comparing with reference points.

12.2.4. Motion Control Mode Overview
So the robot has six modes, the robot checks which mode it is in and publishes linear and angular velocity
accordingly every time the lane error is updated. The way the robot transitions between modes can be seen
in Figure 12.2.
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Driving Straight

Turning Left Turning Right
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Traffic Light

Aligning
for Coil

lane detected

intersection line detected
instruction: left

intersection line detected
instruction: straight

lane detected

lane detected

intersection line detected
instruction: right

line detected
charge alignment

charge offstop at
light: false

stop at lights: true
intersection line detected

Figure 12.2: Overview of the different motion control modes and when the transition between modes happen

In each mode the angular and linear velocity the motion control publishes are determined differently. In the
lane following mode it uses the lane angle and distance error in order to determine the velocities. In waiting
for traffic light mode the velocities are zero. In the turning and driving straight mode it will continuously
send out the same velocities until a lane is once again detected and it returns to lane following mode. Since
all of the intersections are equal in size the radius of the turn is the same for each intersection. Lastly for
the coil alignment the robot will drive according to the error between the found points and the reference
points. If this error is within a certain range it will no longer drive since it is able to charge. Then it will wait
until it is done charging after which it return to lane follower mode. Unless its SoC is above the minimum
mission SoC and another Duckiebot wants to use the charging pad then it will return to the lane follower
mode immediately.
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13
Discussion

In this project different algorithms have been implemented in order to have the Duckiebot behave as according
to the requirements. The algorithms that were used are thought to be accurate however in certain cases some
algorithms may be inaccurate or fail entirely.

13.1. Discussion of the Path Finding Algorithm
Besides the potential issues with path finding algorithm described in Chapter 11, other problems could arise.
Namely, in case of larger Duckietowns – think of Duckietowns whose grid consists out of hunders of rows and
columns – the path finding algorithm may exceed the proposed maximum execution time. However, this will
only affect the Duckiebot negatively if it is in very close proximity of an intersection the moment that the
algorithm is initiated.

In case that the distance between intersections is large, the odometry becomes more inaccurate over time.
This could potentially lead into the Duckiebot estimating its NESW-direction relative to the Duckietown
incorrectly, resulting in the path finding algorithm producing an incorrect path, or is not even able to find a
path.

13.2. Discussion of the Image filtering techniques
In the image the HSV values for colour change under different lighting conditions. In order to cover different
lighting conditions the range for the HSV values needs to be larger then for one lightning condition. This
could increase the change of potential error due to noise not being filtered out.

The line detection was found to be a method accurate for detecting lanes and detecting the centre of the
path. It is only perceptible to errors on left side due to left line not being continuous. The gaps in the line
could lead to errors if some points left of the line are in the masks.

However most importantly the system is very depended on the accuracy of homography. Homography is
responsible for resetting the odometry and aligning the coil for example. They are essential for making sure
the system functions. If the coil alignment is inaccurate the Duckiebot might charge very slow or not at all.
Therefore the camera calibration needs to be able to very accurately determine the homography matrix.

13.3. Accuracy of the YOLO Object Detection
The YOLO neural network is very good at detecting and differentiating between different traffic lights with a
confidence score around 0.9. However the model was not trained to detect whether the traffic lights were on
or off. To detect this the model has to be retrained or the Duckiebot has to look at colour values in the centre
of the bounding box. The first option depends on the ability of the newly trained model to distinguish between
a traffic light which is on or off. The second option depends on the models accuracy to draw bounding boxes.
The bounding box loss of the model was around 0.02 at 100 epochs as seen in Figure B.1. It is higher than
the objectness and classification loss but still very low.
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14
Conclusions and Recommendations

14.1. Conclusion
The goal of the project was to implement the robot behaviour of a wireless charging system to serve as a basis
for further development. Different modules were made to implement the behaviour. The navigation part
guides the robot to the charging station when its SoC is low. The image processing part extracts information
from the camera images of the robot. Lastly the motion control drives the robot depending on the available
information. These modules together full fill the requirements set beforehand.

The system is fully implemented using ROS so it can be used on other robots which also run ROS. The
Duckiebot uses both YOLO object detection to know it has arrived at a charging park or charging station. It
uses the camera images and homography to align itself with the charging pad. The image processing and
object detection allow the robot to drive autonomously through the Duckietown without going outside of its
lane. It avoid collision using the ToF sensor and intersection traffic lights. Additionally the Duckiebot only
leaves a charging station if it is charged to level itself has deemed appropriate.

Currently the resulting processes of the input has not been tested on the Duckiebot therefore it can not
confidently be said that the processing time of the inputs is below the frametime of the camera. Testing on a
laptop however computing times were below the frame rate of the camera. Since the Jetson Nano located on
the Duckiebot is designed to run neural networks and artificial intelligence algorithms it is believed that the
Duckiebot’s processing time would be below the frametime.

14.2. Recommendations
Since the project was meant as a basis the following potential improvements are recommended:

• The project should be performed with robots that can communicate bidirectional. This could lead to
more of discussion between robots for priority of a charging pad.

• In stead of programming the structure of the Duckietown into the memory of the Duckiebot, it could
map the structure on its own.

• The Duckiebot should have an ability to dynamically adjust its SoC threshold distribution based upon
its current mission.

• Adding support for differentiating between multiple charging parks.

• Adding machine learning for modelling the time between encounters of charging station while per-
forming a task in order to change its SoC threshold.

• Path finding can be changed so the Duckiebot can turn and travel in the opposite direction.

• Using machine learning to determine to which charging park the Duckiebot should navigate depending
on the chance the charging park has an available charging pad.
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implementation
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Figure A.1: Overview of subsystems of the ROS implementation
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B
Graphics of the Trained Model

Figure B.1: Training and validation losses, precision and recall and mAP graphs of the model for 100 epochs.

Figure B.2: PR curve for 100 epochs.
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56 Appendix B. Graphics of the Trained Model

Figure B.3: P curve for 100 epochs.

Figure B.4: R curve for 100 epochs.

Figure B.5: F1 curve for 100 epochs.
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Figure B.6: Confusion matrix for 100 epochs.
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