
Offline Compression of Convolutional Neural Networks on Edge Devices

Simon Tulling1 , Lydia Chen1 , Masoud Ghiassi1 , Bart Cox1

1TU Delft

Abstract
Edge Devices and Artificial Intelligence are im-
portant and ever increasing fields in technology.
Yet their combination is lacking because the neural
networks used in AI are being made increasingly
large and complex while edge devices lack the re-
sources to keep up with these developments. Neu-
ral network model compression will allow these
edge devices to run these models due to overcom-
ing memory constraints. This paper proposes to use
both singular value decomposition and canonical
polyadic decomposition as a way to decrease the
size of convolutional neural networks at the cost of
some accuracy. This compression pipeline can be
run on an edge device and is configurable to change
the trade-off between file size and accuracy. This
creates a possibility to run convolutional neural net-
works natively on edge devices.

1 Introduction
IoT (Internet of Things) devices and AI (artificial intelli-
gence) are technologies that have been built for decades and
are increasing in popularity. These technologies are getting to
a point where people are no longer surprised if their fridge is
connected to the internet. However, the integration between
these two technologies leaves a lot to be desired. Take for
instance the smartphone, which is, one of, if not the most
used computational device on earth. Yet when we look at
the integration of native AI on smartphones, in 2019 26% of
all smartphones had AI running natively on the devices[10].
All other smartphones had to offload their AI computations to
centralized servers in order to let the more powerful servers
do the computations. This is even more apparent for smaller
IoT devices such as cameras and wearables where it’s not
worth it to fit a powerful processor into it in order to run the
AI natively.

However, there’s currently a big gap between the technol-
ogy of AI, which is creating larger and larger models that can
understand and indentify things in images, and the abilities
of edge devices to execute them. Can we find a way to let
IoT devices run the neural networks without the need for an
internet connection. If this can be done, then a big problem
for IoT devices such as longevity and logistics can be solved.

Longevity because these devices don’t depend on other ser-
vices such as centralized servers anymore. We shouldn’t as-
sume servers that devices need to work stay online forever.
Therefor devices will not be made arbitrarily obsolete if they
can work without the need of external services. This will also
help with logistics since devices will be able to work without
an active internet connection so they can be used in places
where internet infrastructure is scarce.

The reason why these devices aren’t currently running the
AI models natively is because they are resource constrained.
Wearables and edge devices have memory and processing
constraints to a point where it’s faster to send the data to a
server, run the computations there, and then send it back [9].
There is other research going on within the peer group to im-
prove the speed of the computations on edge devices. Their
research is about loading, scheduling and processing the mod-
els as fast as possible. A way to complement this research is
by making the neural network models smaller to begin with.

The aim for this paper is to explore the optimal method of
compressing neural network models to be used for inference
in edge devices. We aren’t investigating a method to com-
press a single model for use in edge devices but are looking
for a generalized method, a compression pipeline, to com-
press any given neural network model.

In this paper we present the compression methods and
pipeline for compressing models to be used for inference in
edge devices. The expected contribution of this research is:

• We develop a compression pipeline to be used in edge
devices that compresses models according to the prefer-
ence of the user.

With preference of the user, we mean that the user can
specify if they want more accuracy or a smaller file size.
These two are related as in most cases the accuracy of a model
decreases when you decrease the file size.

Neural network compression is a well researched field in
AI research, however other research have not taken into ac-
count the fact that the model will be compressed on the edge
device itself and not off the device. This brings several re-
strictions that we will have to take into account when doing
the research. The constraints of the research include:

• Retraining: The results of my research should be a com-
pression pipeline that does not depend on retraining,
since this will be inconvenient/impossible on edge de-

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering



vices.
• Resource Constraints: The compression pipeline should

work with resource constraints. This is the main reason
why there is no retraining.
• Partial Loading: The model resulting from the compres-

sion pipeline should be able to be partially loaded.
• No change in architecture: The output model from the

compression pipeline needs to be a Caffe model having
the same supported layers as the input model.

In order to create this compression pipeline we need to
answer the research question and its sub-questions. The re-
search question is:
What is the best way of compressing neural network models,
provided the compression has to be done in an environment

with resource constraints?
In order to find this method we will inspect multiple

compression methods and see if they could be used in our
compression pipeline. While there has been a lot of research
in the field of neural network compression, most of this
research do not take into account the constraints we have
specified. Therefore, most methods might look great at first
but could be inapplicable because of processing time on an
edge device or due to other limitations.

There are some sub-research questions that need to be
answered first in order to find the applicable methods for the
compression pipeline to answer the main research question.
• What methods are applicable in an environment with

memory constraints?
We’re not interested in a method that is unfeasible on an
edge device. A method that would take hours to days on
an edge device aren’t applicable.
• What methods do not change the underlying architecture

of the model?
The output model should work in the same environment
as the input model.
• Which methods results in a model that can be partially

loaded?

We want a method that results in a network that
can be partially loaded. This way it can be used in other
research within the peer group that are focusing on the
optimization of partial loading on edge devices.

In the following paragraphs we will go through the dif-
ferent methods for compression and try to apply them to the
problem in order to see whether they can help with compress-
ing models on edge devices.

2 Background on Neural Network
Compression

We’ll start off by clarifying that in neural network models
there are two main types of layers that are the most inter-
esting, the fully connected layers and the convolutional lay-
ers. This is because those two layers contain most of the
weights that are unique to each model and are in turn very

large memory-wise. So in my research we are looking for
ways to compress these layers in particular.

However the concept of fully connected and convolutional
layers may seem foreign at first. But once we translate the
layers into their mathematical forms they become more fa-
miliar. For instance the fully connected layer, at its core, is
a 2D matrix containing the weights for all connections be-
tween the nodes. Where the size of one dimension is equal to
the amount of input nodes, and the size of the other dimen-
sion is equal to the amount of output nodes. In the same way
a convolutional layer is a 4D matrix where the dimensions are
the dimensions of the individual convolutions and the amount
of input and output nodes.

Now that the neural network layers might be a bit more
familiar to us we will refer to them as matrices for a lot of the
explanations in this paragraph.

Now, in order to answer the research question we’ll have
to find out different compression techniques and apply them
to models and see the results. We’ll also need to figure out
which compression methods are applicable given the restric-
tions. Because neural network compression is such a big
field, there are quite a lot of methods to consider. The se-
lection of methods that we will consider are:

• Sparse Matrices[11]

• Knowledge distillation[3]

• Quantization[12]

• Singular Value Decomposition[6]

• Canonical Polyadic Decomposition[4]

We will go over each method and show how they work in
the context of neural networks and explain whether or not
they are applicable for the problem. We will also use a neu-
ral network called AgeNet in our examples, this is a network
with 3 fully connected and three convolutional layers that is
used to classify the age of a person from a photo of their face.

Sparse Matrices
We’ll start off with sparse matrices. Since most weights in
neural network layers are close to, if not equal to, zero, it
might be tempting to only store the weights in the matrix that
are significant. This means only storing weight that are not
close to zero. However, this will only give a speedup when
the amount of weights in the matrix under the significance
threshold is more than around 90% [11]. This is unfortunately
not the case in the models tested in the paper, and this cannot
be lowered without retraining. Apart from that, sparse matri-
ces are also not included in Caffe by default so this violates
the ”no change in infrastructure” restriction. That is why this
method is not used in this paper.

Knowledge distillation
Knowledge distillation is a technique where you train a
smaller model based on a larger model in order to create a
smaller model with similar accuracy. This technique is really
promising in the field of object detection[1]. However we can
see immediately that this violates the restriction of retraining
so we will not consider this method.



Quantization
The third considered method is Quantization. At it’s core this
method converts the 32 bit floats of a weight matrix into in-
dices for a list of clustered weights. This turns a weight ma-
trix consisting of 32 bit floats into a weight matrix containing
8 bit indices. This way the size of a single layer is decreased
around 4 times. But this method has the same problem as the
sparse matrices. These quantization layers are not included in
Caffe by default, so this violates the ”no change in infrastruc-
ture” restriction.

Singular Value Decomposition
This is the first method that’s actually used in the compression
pipeline. This technique is less reliant on the properties of
layer architectures and are more grounded in linear algebra.
Singular value decomposition, which we will call SVD going
forward, is a technique that splits up a two dimensional matrix
into 3 different, smaller, two dimensional matrices. These
matrices can then also be interpreted as three different fully
connected layers, thus reducing the total amount of memory
needed and increasing the amount of total layers for a model,
which helps with partial loading. Currently SVD is limited
to only working on two dimensional matrices so it can only
be used on fully connected layers and it will not work on
convolutional layers.

In the explanation of this method, and it’s applications for
compression, we will use the names of the matrices as defined
in figure 1. We will not go into detail on how to calculate
these three U , Σ and V T matrices as it seems out of the scope
of this paper, but will instead go into how these matrices can
be used in order to compress a fully connected layer.

Figure 1: The matrices being created by applying the SVD

These three matrices U , Σ and V T can then be multiplied
together again to create the original matrix A. However, this
doesn’t look that interesting, we just turned a single matrix
to three different matrices where one of the matrices, in this
instance matrix U , is even bigger that the original matrix A.
The interesting part comes when the matrices are truncated.
Figure 2 shows that these three matrices can get truncated by
some number r, which we call the rank. What we mean with
truncating matrices is that we change the dimensions of the
matrices by leaving out a bunch of information. Multiplying
these truncated matrices together afterwards can create an ap-
proximation of matrix A, in this case called A∗. As the rank
r gets bigger, the size of the matrices U , Σ and V T will in-
crease, however, the similarity of A∗ to A will also increase.
This can be seen as the trade-off between file size and accu-
racy when applying this to neural networks.

A big part of the SVD algorithm is the calculation of the
optimal rank for the situation. We will explain my own

Figure 2: Multiplying truncated matrices

method of calculating the rank for the SVD given the users
preference further on in this paper.

In the case of neural network layers we will turn the re-
sulting layers from the SVD into individual layers. However
there is a small trick in order to optimize this further. Instead
of creating three new fully connected layers to represent the
matrices U∗, Σ∗ and V T∗, we can actually combine the first
two matrices U∗ and Σ∗ into a new layer. Since the formula
for dimensions when multiplying two arbitrary matrices of
size (m× n) and (n× k) is:

(m× n) · (n× k) = (m× k)

And the matrices U∗ and Σ∗ with dimensions (n × r) and
(r × r) gives as a multiplication:

(n× r) · (r × r) = (n× r)

Which is the same size as U∗, so we can simply multiply U∗

by Σ∗ and get a resulting matrix which has the same size of
U∗ while retaining the same information of U∗ and Σ∗. This
results in the compression saving a whole layer for Σ∗.

So the SVD will actually result in two different fully con-
nected layers, instead of three, in order to save file size.

Figure 3: How the SVD compresses individual fully connected lay-
ers

Canonical Polyadic Decomposition
Canonical Polyadic Decomposition (CPD), sometimes re-
ferred to as CANDECOMP/PARAFAC, is similar to SVD as
we are again deconstructing a layer from the neural network,
and in this case we are targeting the convolutional layers in-
stead of the fully connected layers. This technique will turn
a single convolutional layer into 4 smaller ones. Instead of
calculating the decomposed matrices first and then truncating
them, CPD needs to know the rank beforehand to calculate



the matrices. Another limitation is that the process of cal-
culating these matrices is significantly more computationally
expensive than SVD, which is used for fully connected lay-
ers. Nevertheless, this seemed like a good way to compress
convolutional layers since it does not violate any restrictions.

The main way CPD works is by creating multiple rank-1 4d
matrices that try to approximate the original 4d matrix repre-
senting the convolutional layer when added together, after-
wards it will combine the rank-1 matrices to create the rank-n
matrices. This process can be seen in the figure below on a
three dimensional matrix, this is done on a three dimensional
matrix since it’s easier to visualize three dimensional matrices
than four dimensional matrices. Nevertheless the outcome is
roughly the same.

Figure 4: Visualization of CPD with rank n on a three dimensional
matrix

The main problem of this method is the way that the rank-1
matrices are calculated. Instead of SVD, where three matri-
ces are calculated and then truncated by a specific rank. CPD
given a rank r creates r rank-1 matrices. Afterwards the algo-
rithm tries to optimize these r matrices to match the accuracy
of the original as best as possible.

These are the methods considered for the compression on
edge devices. In the end we ended up with using singu-
lar value decomposition for the fully connected layers and
canonical polyadic decomposition for the convolutional lay-
ers since these two techniques only apply to those layers. In
the upcoming chapters we will look at my contribution when
using these techniques in a compression pipeline and their re-
sults.

3 Compression Pipeline
Our main contribution is a compression pipeline that can
compress models on edge devices. This pipeline gives the
user the option to specify the ratio between focusing of accu-
racy or file size. This ratio goes between a model with mini-
mal ranks which is extremely small but has incredibly low no
negligible accuracy and the original model, since you cannot
get more accuracy than the original model.

In order for this to work, the pipeline should correctly opti-
mize each layer based on the input ratio and then reconstruct
the model afterwards. As stated in the previous section, the
SVD and CPD methods rely on rank for their accuracy and
file size. So the main objective for the pipeline is to find the
optimal rank for the given ratio and apply it to a given layer.
It should be noted that these optimizations and rank calcula-
tions have to be done separately for each layer in the network
as they all will have a different optimal rank.

SVD Rank Optimization
As seen in the previous section, the SVD needs a truncation
to be effective otherwise it will only increase the size of the

layer instead of compressing it. So we have to figure out a the
optimal rank in order to find the best compression of that layer
given the ratio from the user. We’ll start off by seeing the ef-
fect on the accuracy of a network when truncated on different
ranks. In this figure we show the validation accuracy of the
AgeNet model with different ranks applied to it’s largest fully
connected layer. The specifics of the model aren’t interesting
and will be elaborated on in the next section.

Figure 5: Validation accuracy on the test set using different ranks

This graph in figure 5 is created by validating each model
where the biggest fully connected layer is truncated to dif-
ferent ranks with the same test set. The graph is spiking up
and down at some random points but the general form can
be seen throughout. In general, the accuracy increases as the
rank increases. But it should be noted that when the rank in-
creases the model size also increases. So we would want to
look for the highest accuracy while keeping the rank as low
as possible. it is also clear that the accuracy increases im-
mensely from the start and then flattens out near the end, for
a greatly compressed model we would want to take the rank
at the point where the flattening starts. In this case it would
be around a rank between 20 to 50. However, this way of cal-
culating the accuracy of a rank is computationally expensive
and also requires a test set. Since this compression pipeline is
used on an edge device without the test set available we need
to find another metric that represents this accuracy.

In the case of the SVD we can use the resulting matrices to
get important information about the layer. As seen in figure
1, apart from the two matrices of eigenvectors U and V T , we
also get a single diagonal matrix Σ consisting of eigenvalues.
These eigenvalues are in decreasing order for the weights,
thus when we plot the values along the diagonal of Σ we get
this figure.

Figure 6: The values on each index of the diagonal in Σ

As you might see this does inversely correlate with the ac-
curacy of the model in figure 6, so we used this metric as a
substitute for accuracy, in particular the error rate which is
the inverse of accuracy. Meaning that when the values of the
ranks go down, then the accuracy goes up. Since we would
want the metric to be as low as possible, in order to get a
high accuracy, it would be simple to just select the minimal



value of the graph, which in most, if not all, cases will be the
largest rank. However we want to also see the effect of rank
on the file size. For this we create another graph looking at
the effects of a different rank to the resulting size of the layer,
since this is a paper about method compression after all. As
seen in the explanation of the SVD in the methodology and
using figure 6 as an example, if the rank r is increased by one
then n ∗ r + d ∗ r = (n + d) ∗ r new connections are added.
This will create a linear relation between rank and file size. If
we plot the file size use of the largest fully connected layer of
AgeNet on a graph and we get this as a result.

Figure 7: Amount of memory used by the layer compared to their
rank

As you can see, there is a point where there is a limit to the
positive effect of SVD on file size, at least at very high ranks.
This is because there is a point where SVD actually increases
filesize, this can be seen if we look at the formulas that cal-
culate the amount of connections in both the original fully
connected layer and the layers resulting from the SVD. The
formula for the amount of connections in a fully connected
layer with n inputs and d outputs is n ∗ d. As explained ear-
lier, the amount of connections in the same fully connected
layer but with SVD applied and rank r gives us (n + d) ∗ r.
With this we can clearly see that eventually the layer that had
SVD applied to it can be bigger than the original layer at a
high rank, specifically at rank r = nd

n+d .
For this reason we consider the upper bound of the rank to

be at nd
n+d and the lower bound at 1 and normalize the file size

according to the rank between these values.
We do the same thing for the eigenvalues, normalizing

them between the maximum value and zero.
This results in two different normalized graphs, one repre-

senting decrease in error as rank increases. The other graph
represent file size, which increases linearly as rank increases.
This is where the user specified ratio comes in. The ratio
which the user provided gives the tradeoff between filesize
and accuracy. We thus add the two graphs together using this
ratio like so:
filesize of(r) ∗ ratio + accuracy of(r) ∗ (1− ratio)

Where r is a rank. In figure 8 we show an example on the
effects different ratio is fully connected layer of AgeNet using
ratios: 0.2, 0.4, 0.6 and 0.8 in that order.

Each ratio gives a different unique graph, and in order to
take the optimal ratio for a given ratio between accuracy and
filesize we find the minimum of the corresponding graph. It

Figure 8: Effects on changing in ratio for the choice of the rank

is visible in the graphs that as the ratio increases, the rank
decreases and a decrease in rank results in lower filesize and
lower accuracy.

CPD Rank Optimization
As stated in the previous section, while the results of the SVD
and CPD seem very similar, they do not compute the result-
ing matrices in the same way. While SVD calculates the new
matrices at first and then truncates them according to a given
rank, CPD creates the matrices with a rank r and tries to im-
prove the accuracy of the new matrices in an iterative process.
Each time you generate a solution for a CPD of a convolu-
tional layer for a new rank, it has to calculate the CPD from
scratch instead of just truncating a previous solution. This re-
sults in a lot of processing in trying to find the optimal rank.
In figure 9 we show the difference between the CPD approxi-
mation of a convolutional layer and the original convolutional
layer.

Figure 9: Effect of ranks 1 through 100 on the difference of the
decomposition

This figure is only calculated up to 100 ranks, since it’s
too computationally expensive to calculate this up to the
maximum amount of ranks for a given layer, that’s why
we need to find another method of computing the accuracy
lost when applying CPD to a layer. As of this moment we
could not find a method that improves the speed of CPD
computations or a better way to see the effects of a rank
on the accuracy. This is why we will only be compressing
convolutional layers with a max rank below a threshold since
the lower ranks can be calculated quickly. The threshold
chosen in this paper relies on the application but we found
that a threshold of 100 works well.



Pipeline
For the pipeline itself, the steps are very simple. We will show
how it works using the pseudocode below.

Algorithm 1: Compression Pipeline
input: A ratio x used for compression

A network net that we want to compress
Result: The compressed network compressed net
compressed network ← createemptynetwork();
for layer ∈ net do

if layer is convolutional layer then
r ← optimal rank of layer using ratio x;
layercpd ← CPD of layer using rank r;
add layercpd to compressed network;

else if layer is fully connected layer then
r ← optimal rank of layer using ratio x;
layersvd ← SVD of layer using rank r;
add layersvd to compressed network;

else
add layer to compressed network;

end
end

The algorithm takes the two inputs from the user, original
model and ratio, and uses these arguments to create a com-
pressed model. It recreates a new compressed model based
on the original model by compressing the convolutional and
fully connected layers.

Restriction Violations
For the final piece of the compression pipeline and before we
look at the results we will revisit the restrictions in this paper
and see why none of them were violated. The main restric-
tions of this paper were: Retraining, Resource Constraints,
Partial Loading and No change in architecture.

There is not a single instance of retraining in this compres-
sion pipeline so this restriction is not violated.

While not explicitly stated, all of the methods can be ran on
a device with constrained resources. Even though the CPD of
a convolutional layer can be really taxing, we chose an upper
bound for when checking for ranks in order to make it run
with a limited amount of resources.

The compression pipeline does not remove the capability
of model to be partially loaded as we do not change the ar-
chitecture of the underlying model. In fact the compression
pipeline helps the partial loading by turning large layers into
multiple smaller ones, this increases the granularity of the
layers in the compressed model.

4 Experimental Setup and Results
Testbed and Setup
The experimental setup for this research was an Ubuntu vir-
tual machine running on a Windows 10 host. Since the results
of this paper are not based on performance, the specifications
of the computer running the tests are irrelevant.

The software framework for running the pipeline and vali-
dating the models is Caffe[5]. This is a neural network frame-
work written in C++ which is a framework that is focused on
speed and thus can be used on an edge device. The compres-
sion pipeline is written in Python 3.7 [8] and uses pycaffe,
which is a python interface for Caffe, to read and save the
models.

Tested Models
The convolutional neural network models tested in this pa-
per are the GenderNet[7] and AgeNet [7]. These models are
used in the Caffe format and are thus compatible with the
pipeline. The two models, GenderNet and AgeNet, are very
similar in architecture as they both have the same layers in
the same order. Three convolutional layers followed by three
fully connected layers. The main difference between these
two models is the ammount of different classifications of each
model. GenderNet only checks if the person in an image is
male or female, so just two classifications. Instead AgeNet
gives an age range, in this case the model uses eight different
age ranges, so eight classifications.

The setup for generating the results of the compression
pipeline for a given model with different ratio’s is done by
first creating 21 different ratio’s. In our case these are just all
ratios from 0 to 1 with 0.05 step increments. Then we run
the pipeline on the given model using all of these ratio’s one
by one. This gives us 21 different compressed models each
based on a different ratio.

We do the same using a naive approach for compression.
This uses the same techniques as our compression pipeline
but has a simpler and more linear way to calculate the opti-
mal rank. This pipelien will instead just take bases the rank
directly on the ratio without looking at the accuracy of file-
size. This method for calculating the rank of a layer is defined
by:

rank = (1− ratio) ∗max rank

We also apply this naive pipeline, referred to as ”linear”, to
the model with the same ratio’s. This gives us 42 compressed
models per model using two different compression pipelines
per ratio.

Test Set
The test set that was used for the validation of the models is
the ”AdienceFaces” dataset [2]. This is a test set containing
labelled images with age and gender data. This is also the
dataset that was used in training the GenderNet and AgeNet
models.

All model comparisons are calculated by testing the accu-
racy of each model using the same test set. This means that
we take a random subset of 1000 labelled images and use it
to infer every model and see if the result of that model is the
same as the label of the image. We use the same random
subset for each model to remove any variations in accuracy
created by validating each model with different image sub-
sets.

Results
Before going into the results of the pipeline we have to look
at the baseline for the tested methods. These baselines can be



seen in table 1 and help to show the effects of compression.

Models Accuracy (%) File Size (MB)
AgeNet 59.4 47.6

GenderNet 84.9 47.8

Table 1: Baseline values for the different tested models

Effects of ratio on compression
Here we will show the different effects of ratio for each com-
pression pipeline on each model. In order to keep the table
small, we will pick out three evenly spaced ratio’s in this ta-
ble. We’ll pick the extremes 0 and 1 and include the halfway
point 0.5. This table is here for me to explain and visualize
the trade-off between accuracy and file size. After the table
we’ll take a look at the final results in graphs.

Ratio Model Pipeline Accuracy File Size
0 AgeNet Our 59.4% 47.6 MB

Linear 59.4% 47.6 MB
GenderNet Our 84.9% 47.8 MB

Linear 84.9% 47.8 MB
0.5 AgeNet Our 35.0% 7.8 MB

Linear 45.6% 26.8 MB
GenderNet Our 85.0% 7.0 MB

Linear 84.9% 27.0 MB
1 AgeNet Our 13.2% 6.1 MB

Linear 11.3% 6.1 MB
GenderNet Our 46.1% 6.1 MB

Linear 49.3% 6.1 MB

Table 2: Effects of ratio on both our pipeline and a naive approach

As expected a ratio of 0 doesn’t change the model from
the baseline as this value of the ratio is fully focused on accu-
racy. It is usually the case that compression comes at a cost of
information and with less information the model should be-
come less accurate, that’s why the model does not compress
with a ratio of 0. However if you look at the data using our
pipeline for GenderNet using ratio 0.5, you can actually see a
small accuracy increase, this could be attributed to noise re-
duction in the model due to the compression. It’s interesting
to see but this could be attributed to bias in the data set and
will be elaborated on in the responsible research section.

Now we’ll take a look at 1. A ratio of 1 minimizes filesize
with no regard to accuracy. As shown in the table, the ac-
curacy for both models have gone down to roughly the same
as a random guess. As GenderNet has two choices, a correct
random guess would happen 50% of the time, on the other
hand AgeNet has eight choices, in this case a correct random
guess would happen 12.5% of the time. This seems to cor-
relate with the accuracy of the models that were minimizing
filesize, which is very low but basically useless since the ac-
curacy is as good as a random guesss.

Finally we will look at a ratio of 0.5, this ratio shows dif-
ferent things, in the case of GenderNet our pipeline clearly
outperforms a linear compression method by having a file-
size which is over 4 times as small with comparable accu-

racy. However when looking at AgeNet we may have some
conflicting ideas, the filesize is a lot smaller but so is the ac-
curacy. This is why our pipeline is configurable with a ratio.
If users think the accuracy is too low, they can decrease the
ratio such that the accuracy will increase at the cost of file
size.

Resulting figures
Considering our previous findings it’s interesting to see the
continuous effects of the ratio on models, to see this we ap-
ply our testset on all 42 models per model as specified in the
”Tested Models” section. We will take a look at three differ-
ent graphs per model, each model will show the effects of a
specific rank on a metric of that model, on both our pipeline
and the linear pipeline. The metrics we will take a look at are:
Accuracy, File Size and Compression Factor. Accuracy and
File Size are self explanatory. Compression factor basically
shows the quality of a compression. The calculation for the
compression factor cf of a compressed model with accuracy
acc and file size fs, given the accuracy accorig and file size
fsorig of the uncompressed model is like so:

cf =
acc/accorig
fs/fsorig

This leads compressed models with the same accuracy as the
original but half the filesize to have a compression factor of
2. And the original model having a compression factor of 1.

AgeNet

Figure 10: The accuracy of both pipelines using different ratios

In figure 10 the results don’t seem spectacular, the accu-
racy of the models from our pipeline are very close to the
accuracy of the models with the same ratio from the linear
pipeline. Sometimes the accuracy of the linear pipeline is
actually higher than ours. This slightly disappointing result
bring us to our next figure.

In figure 11 we can finally see where our linear pipeline got
it’s name from. Apart from that we can luckily see that our
pipeline is significantly outperforming the linear pipeline at
every ratio except for 1 and 0, which results in the pipelines
compressing the models the same way, so this should not be
a surprise. Evidence of this is seen in table 2.

Finally we reach figure 12 which is arguably the most im-
portant graph. This graph shows that our pipeline again sig-
nificantly outperforms the linear pipeline. This compression



Figure 11: The file size of both pipelines using different ratios

Figure 12: The compression factor of both pipelines using different
ratios

factor shows that there is never a moment where the linear
pipeline would be a better option that our pipeline, except at
0 and 1. This means that you will never get a lower accuracy
when using our pipeline compared to a model from the lin-
ear pipeline if they have the same size, at least in the case for
AgeNet.

GenderNet

Figure 13: The accuracy of both pipelines using different ratios

In figure 13 the results are interesting to say the least.
Again, the accuracy of the models from our pipeline are very
close to the accuracy of the models with the same ratio from

the linear pipeline.

Figure 14: The file size of both pipelines using different ratios

In figure 14 we can see once again that our pipeline is sig-
nificantly outperforming the linear pipeline at every ratio ex-
cept for 1 and 0.

Figure 15: The compression factor of both pipelines using different
ratios

Then finally we reach figure 15. This graph shows that our
pipeline again significantly outperforms the linear pipeline.
All the same things apply to GenderNet just like AgeNet, for
both model you will never get a lower accuracy when using
our pipeline compared to using linear pipeline if the resuling
compressed models have the same size.

5 Responsible Research
We tried to explain the methods used in this paper thoroughly
enough for others to replicate. Nevertheless, we will release
the source code at some time in the future such that anyone
can use the compression pipeline and validate the results for
themselves.

6 Conclusions and Future Work
In this paper, we presented a compression pipeline that is con-
figurable by the user to answer the research question:

What is the best method of compressing neural network
models, provided the compression has to be done in an

environment with resource constraints.



Given the constraints and scope of the research which were:

• Retraining: The results of my research should be a com-
pression pipeline that does not depend on retraining,
since this will be inconvenient/impossible on edge de-
vices.

• Resource Constraints: The compression pipeline should
work with resource constraints. This is the main reason
why there is no retraining.

• Partial Loading: The model resulting from the compres-
sion pipeline should be able to be partially loaded.

• No change in architecture: The output model from the
compression pipeline needs to be a Caffe model having
the same supported layers as the input model.

The answer to this question is to compress fully connected
and convolutional layers using a technique called singular
value decomposition and canonical polyadic decomposition
respectively. These techniques do not break the constraints
set in the paper, and provide results based on the users cho-
sen trade-off between file-size and accuracy.

Future Work
In this paper we already stated some interesting methods in
neural network compression that we did not implement in our
compression pipeline usually because of the ”No Change in
Architecture” restriction. There can be a lot of improvements
however if we disregard this restriction. If you would allow
the compression pipeline to use a modified version of Caffe,
or even a whole different framework, the pipeline could use
additional layer compression techniques.

As for improvements on the current technique, there are a
lot of restrictions on the compression of convolutional lay-
ers in our compression pipeline. The largest part of this is
the problem with calculating the optimal rank for CPD using
any filesize/accuracy ratio, as this is very computationally ex-
pensive. There could be further work into finding an optimal
rank faster or using a different method for compressing con-
volutional layers

Another issue is that in it’s current state, our pipeline likely
requires multiple runs with different ratios in order to find a
model that is roughly the file size you want.

References
[1] Guobin Chen, Wongun Choi, Xiang Yu, Tony X. Han,

and Manmohan Krishna Chandraker. Learning efficient
object detection models with knowledge distillation. In
NIPS, 2017.

[2] Eran Eidinger, Roee Enbar, and Tal Hassner. Age
and gender estimation of unfiltered faces. Information
Forensics and Security, IEEE Transactions on, 9:2170–
2179, 12 2014.

[3] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network, 2015.

[4] Frank L. Hitchcock. The expression of a tensor or a
polyadic as a sum of products. Journal of Mathematics
and Physics, 6(1-4):164–189, 1927.

[5] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey
Karayev, Jonathan Long, Ross Girshick, Sergio Guadar-
rama, and Trevor Darrell. Caffe: Convolutional ar-
chitecture for fast feature embedding. arXiv preprint
arXiv:1408.5093, 2014.

[6] V. Klema and A. Laub. The singular value decompo-
sition: Its computation and some applications. IEEE
Transactions on Automatic Control, 25(2):164–176,
1980.

[7] Gil Levi and Tal Hassncer. Age and gender classifica-
tion using convolutional neural networks. 2015 IEEE
Conference on Computer Vision and Pattern Recogni-
tion Workshops (CVPRW), 2015.

[8] Python. https://www.python.org/downloads/.
[9] Xukan Ran, Haoliang Chen, Zhenming Liu, and Jiasi

Chen. Delivering deep learning to mobile devices via
offloading. In Proceedings of the Workshop on Virtual
Reality and Augmented Reality Network, VR/AR Net-
work ’17, page 42–47, New York, NY, USA, 2017. As-
sociation for Computing Machinery.

[10] Shobhit Srivastava, Shubhadeep Guha, Alex Jenkins,
Research Analyst, and Counterpoint Research. Apple
to drive native ai adoption in smartphones, Oct 2017.

[11] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen,
and Hai Li. Learning structured sparsity in deep neural
networks, 2016.

[12] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and
Yurong Chen. Incremental network quantization: To-
wards lossless cnns with low-precision weights, 2017.


	Introduction
	Background on Neural Network Compression
	Compression Pipeline
	Experimental Setup and Results
	Responsible Research
	Conclusions and Future Work

