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ABSTRACT

Microseismic methods are crucial for real-time monitoring of the hydraulic fracturing

dynamic status during the development of unconventional reservoirs. However, unlike the

active-source seismic events, the microseismic events usually have low signal-to-noise ratio

(SNR), which makes its data processing challenging. To overcome the noise issue of the

weak microseismic events, we propose a new workflow for high-resolution microseismic event

detection. For the preprocessing, fix-sized segmentation with a length of 2 ∗ wavelength

is used to divide the data into segments. Later on, 191 features have been extracted and

used as the input data to train the support vector machine (SVM) model. These features

include 63 1D time/spectral-domain features, and 128 2D texture features, which indicate

the continuity, smoothness, and irregularity of the events/noise. The proposed feature

extraction maximally exploits the limited information of each segment. Afterward, we

use a combination of univariate feature selection and random-forest-based recursive feature

elimination for feature selection to avoid over-fitting. This feature selection strategy not
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only finds the best features, but also decides the optimal number of features that are needed

for the best accuracy. Regarding the training process, support vector machine (SVM) with

a Gaussian kernel is used. In addition, a cross-validation (CV) process is implemented

for automatic parameter setting. In the end, a group of synthetic and field microseismic

data with different levels of complexity show that the proposed workflow is much more

robust than the state-of-the-art short-term-average over long-term-average ratio (STA/LTA)

method and also performs better than the convolutional-neural-networks (CNN), for this

case where the amount of training datasets is limited. A demo for the synthetic example is

available: https://github.com/shanqu91/ML_event_detection_microseismic.

Key words: machine learning, high-resolution, 2D texture features, microseismic, event

detection, SVM
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INTRODUCTION

It has been well known that microseismic monitoring plays an important role in char-

acterizing physical processes related to fluid injections and extractions in hydrocarbon and

geothermal reservoirs (Shapiro et al., 2006; Xia et al., 2013). In general the microseismic

data are recorded by downhole or buried, shallow surface geophone arrays, which offer the

significant advantages of being sufficiently close to the fracture and being unaffected by the

free surface (Warpinski, 2000). However, the energy stimulated from the hydraulic frac-

turing is usually extremely weak. As a result, the weak signal is easily overwhelmed by

the background noise, which may lead to unauthentic arrival time-picks and localization of

microseismic events when no proper denoising algorithms or event detection techniques are

applied. Therefore, prior to the localization and mechanism analysis of the source, the iden-

tification and detection of microseismic events or applying a reliable and effective denoising

process become important challenges (Forghani-Arani et al., 2013; Mousavi and Langston,

2016a,b; Liu et al., 2016).

The state-of-the-art denoising algorithms include transforming domain thresholding

methods (Candes et al., 2006), singular spectrum analysis (Vautard et al., 1992), low-

rank-approximation-based methods (Huang et al., 2016), dictionary-learning-based methods

(Elad and Aharon, 2006), empirical-mode-decomposition and empirical-mode-decomposition-

like methods (Huang et al., 1998), etc. Denoising microseismic data will inevitably cause

useful small-amplitude signal damage, which degrades the fidelity of the processed data (Li

et al., 2016; Huang et al., 2016; Zhang et al., 2019). Moreover, the damaged waveform

amplitude will greatly affect the subsequent source localization and mechanism analysis

(Maxwell et al., 2010). Considering the potential disadvantages caused by denoising, a
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robust event detection method is a strong demand in the microseismic community.

Traditional event detection is based on energy analysis (Hatherly, 1982; Allen, 1978;

Vaezi and Van der Baan, 2015), which is a widely used method due to few assumptions about

the data based on some statistic criterion. For example, a popular criterion is the short-

term average over long-term average (STA/LTA) ratio, in which the ratio of the continuously

calculated average energy of the data in two consecutive moving-time windows, a short-term

window and a subsequent long-term window, is used as a statistical criterion (Allen, 1982,

1978; Vaezi and Van der Baan, 2015). However, this method has some disadvantages. It

requires a careful setting of parameters (threshold and window lengths) (Trnkoczy, 1999).

Moreover, these algorithms are sensitive to sudden amplitude increases, therefore the noise

whose energy is comparable to or greater than microseismic events may be detected as a

microseismic event (Withers et al., 1998). In order to mitigate this noise issue, another

event detection method that is based on template matching was proposed by Gibbons and

Ringdal (2006). It takes advantage of predetermined events, known as the master event,

and cross-correlates them with continuous recordings to detect events with high similarities

(Gibbons and Ringdal, 2006; Song et al., 2010; Senkaya and Karsli, 2014). The template-

matching-based method is sensitive to small amplitude events and therefore a typical way

to detect weak events in earthquake seismology (Song et al., 2010) even in the presence of

high background noise. These detection methods are especially useful to lower the detection

threshold and increase the detection sensitivity. Michelet and Toksöz (2007); Arrowsmith

and Eisner (2006) have also shown that these methods can be effective as long as the

separation between the master event and target event is less than the dominant wavelength.

Gelchinsky and Shtivelman (1983) proposed a hybrid method that combines the benefits of

template-matching-based methods and the energy-analysis-based methods. However, the
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template-matching-based method requires a master (or known) event as an input, which

is not always available. In addition, it is limited to detect events that are similar to the

master event, which means it might have a high false-negative rate, and is a computationally

expensive method.

In recent years, some researchers have already done investigations on supervised machine-

learning-based event detection or event picking (McCormack et al., 1993; Knapmeyer-

Endrun and Hammer, 2015; Akram et al., 2017; Provost et al., 2017; Rouet-Leduc et al.,

2017; Zheng et al., 2017; Zhao and Gross, 2017; Chen et al., 2017; Mousavi et al., 2018a,b;

Perol et al., 2018; Zhu and Beroza, 2018; Dokht et al., 2019) Zhao and Gross (2017) trained

a support vector machine (SVM) model with 1D features of the segments to distinguish

microseismic from noise events. However, these methods require a longer length of segmen-

tation (∼ 15∗wavelength) for providing sufficient information for each segment to provide a

stable prediction. The results, therefore, have a coarse vertical resolution. Chen (2018) pro-

posed a microseismic picking algorithm based on unsupervised machine learning that utilizes

fuzzy clustering to identify signal onsets. As shown in his experiment, this clustering-based

method is sensitive to the noise level. When the noise level becomes extremely strong, the

clustering method may make some mistakes. Zheng et al. (2017), Mousavi et al. (2018a,b),

Zhu and Beroza (2018), Perol et al. (2018), and Dokht et al. (2019) have showed successful

and promising performances of deep learning for the purpose of event detection. How-

ever, the deep-learning-based seismic event detection methods usually require much larger

training datasets compared to the traditional machine-learning-based methods like SVM.

In this work, we propose a new workflow for high-resolution microseismic event detection.

Details of the workflow are presented step by step: 1○ Fix-sized segmentation, with a

length of 2 ∗ wavelength, is used to divide the data into segments; 2○ 191 features have
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been extracted in total, including 63 1D time/spectral-domain features, and 128 2D texture

features indicating the continuity, smoothness, and irregularity of the events/noise; 3○

A combination of univariate feature selection and random-forest-based recursive feature

elimination is implemented for feature selection, which not only finds the best features but

also the number of features that are needed for the best accuracy; 4○ A C-SVM model, where

the ”C” represents a coefficient used to control the tolerance of error item, is considered in

the essential training process. In addition, a cross-validation (CV) process is implemented

for the automatic parameter setting; 5○ The trained model is then applied to detect events

of the test data. In the end, results obtained on a group of synthetic and real microseismic

data with different levels of complexity show that the proposed workflow is more robust

than the state-of-the-art STA/LTA method and also performs better than the CNN, for our

case when the amount of training datasets is limited. Note that this paper is an extended

version of work published in Qu et al. (2018).

MICROSEISMIC EVENT DETECTION AS A CLASSIFICATION

PROBLEM

The proposed workflow for microseismic event detection can be summarized as the

following steps: 1○ Segmentation and labeling; 2○ Feature extraction and normalization;

3○ feature selection; 4○ Support Vector Classification; 5○ Test on new data. To clearly

demonstrate the whole workflow for event detection, a group of synthetic microseismic

datasets is used. The synthetic microseismic datasets are simulated from the three-layer

velocity model shown in Figures 1a and 1b. The modeled training data with SNR = −13 is

shown in Figure 2a. The modeled test datasets are displayed in Figures 5a and 6a, including

SNR = −10 and SNR = −13 level of noise energy, respectively. The definition of noise
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energy is as follows:

SNRdB = 10log10

(
Psignal
Pnoise

)
, (1)

where P is the average power. In all the datasets, the noise level is much stronger than

the signal level. The receivers are located along the full surface with a spacing of 7.5m

and a time duration is 3.1s. In addition, five different traces of clean and noisy test data 2

(SNR = −10) are demonstrated in Figure 7. We can see that the signal is masked by the

strong background noise and hard to detect on a single trace.

1. Segmentation and labeling

Segmentation is a very important preprocessing stage, where the microseismic data are

split into segments. Fix-sized segmentation is used in this work and we set the length of

each segment as 2 ∗wavelength, which is 0.058s in the synthetic example. In this way, the

vertical resolution of event detection results is higher, however, each segment contains very

limited information, which makes the problem tougher to solve.

After the segmentation, the training data segments are labeled into two classes: events

and noise. For the synthetic example, a total of 12960 segments are extracted, including

4853 segments containing a microseismic event and 8107 segments of noise. The labeled

training synthetic data is shown in Figure 2b. As is well-known, supervised classification is

largely dependent on the labeled training datasets, which are usually done based on different

criteria from different users. Please note that we will discuss how using different labeling

criteria affects the final prediction in the Discussion section later on.
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2. Feature extraction and normalization

The purpose of feature extraction is to convert all the segments into relevant features,

which are served as input training vectors for the classification. The dimension of the data

is reduced in the feature extraction step, which improves the classifier’s performance. Many

researchers have already done investigations on the feature extraction for seismic event

detection (Mousavi et al., 2016; Zhao and Gross, 2017). They extracted 1D features of the

segments in time, frequency and time-frequency domains. However, as we have mentioned,

due to the high resolution of segmentation, each segment contains very limited information.

As a result, only extracting 1D features is not enough. In order to maximize the information

per segment, we propose to extract both 1D time/frequency-domain features and 2D texture

features for each segment. 191 features have been extracted, including 63 1D features,

and 128 2D features. The 1D features consist of both time-domain features and spectral

features and are listed in Table 1 with description. By only considering the 1D features of

the seismic data, the 2D features (for example, continuity, smoothness, and irregularity of

the events) are ignored, which is obviously a waste of information. Therefore, 128 extra

2D texture features are considered in our feature extraction. he microseismic data are

first converted into a grey-scale image. After that, local grey-level co-occurrence matrices

(GLCM) in a moving window are calculated. The GLCM characterizes the texture of an

image by calculating how often pairs of pixel with specific values and in a specified spatial

relationship occur in an image (Haralick et al., 1973). Certain features that characterize

texture properties of the image are then calculated from this matrix, which are Contrast,

Correlation, Energy, and Homogeneity. In addition, orientations 0o, 45o, 135o, and 90o

and distances of 1 − 8 neighboring voxels are considered. Please note that a range of

orientations and distances is considered here to make the feature extraction process more

8



general, however, causes feature redundancy, which will be discussed in more detail in

subsection 3. Feature selection. The calculated 2D texture parameters within the moving

window are severed as the features of the segment in the center of the window. Details of

the texture features are described in Table 2. Part of the 2D texture features extracted from

the training data are demonstrated in Figure 3, being the Contrast, Correlation, Energy,

and Homogeneity of GLCM, for orientations 0o, 45o, 135o, and 90o , with a distance of 3

neighboring voxels. In this figure, we can see that the 2D features can properly indicate

most of the events, even when the noise level is high.

After feature extraction, feature normalization, which is used to standardize the range

of independent features of the data, is a common requirement for most machine learning

estimators. Without standardization, the estimators might behave badly. We normalize

the features by removing the mean and scaling to unit variance in this work.

3. Feature selection

In machine learning, feature selection is the process of selecting a subset of most relevant

features for the use in model training. It can reduce over-fitting, as well as the training

time. Since we extract the 2D features with a range of orientation and distance for the sake

of generalization, there exist highly correlated 2D feature clusters, as shown in Figure 4a.

In this simple synthetic scenario, many 2D features share similar values with each other.

Therefore, those clustering features provide redundant information and feature selection is

needed to compensate this side-effect.

Univariate feature selection is a simple technique where a statistical test is applied to

each feature individually to determine the strength of the relationship of the feature with
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the outcome variable. One simple criterion is the F-value of ANOVA (Analysis of variance)

(Scheffe, 1967). We choose the 30% most significant features in this case. The corresponding

F-value as a function of feature ID is shown in Figure 4b, in which we can see that the 2D

texture features are informative features and show large relevance with respect to different

classes.

Univariate feature selection is simple to run and relatively good at gaining a better

understanding of data. However, it does not reveal mutual information among features

(Chen and Lin, 2006). Random forest (RF) is a classification method and it also provides

the branch weights that can represent feature importance (Breiman, 2001). A forest consists

of a number of decision trees, each of which is constructed with randomly sampled features.

Every node in the trees is designed to split the training sets into two parts, therefore

similar response values end up in the same set. For one feature, we randomly permute its

values in the second dataset and obtain another accuracy. The difference between the two

numbers can indicate the feature importance. RF is robust easy to use and has relatively

good accuracy, which makes it an appealing tool for feature selection. However, RF cannot

handle too many features (Chen and Lin, 2006). Therefore, a combination of univariate

feature selection and Random forest is a good choice. In practice, we first use univariate

feature selection to reduce the number of features, then apply random-forest-based recursive

feature elimination to further find the optimal number of features in a cross-validation loop.

In the end, 51 features are selected in the synthetic example.
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4. Support Vector Classification

Recently, support vector machine (SVM) has been an effective classification method

by constructing hyperplanes with a maximal margin in a multi-dimensional space, which

separates different cases of different class labels (Boser et al., 1992; Cortes and Vapnik, 1995).

Therefore, we choose SVM as the machine learning algorithm in our proposed workflow.

To construct an optimal hyperplane, SVM employs an iterative training algorithm, which is

used to minimize an error function. In this work, given training vectors xi ∈ Rn, i = 1, ..., N

in two classes, and a vector of labels yi ∈ {1,−1}, we use the C-SVM model (Hsu et al.,

2003), where a coefficient C is used to control the tolerance of the systematic outliers

that allows fewer outliers to exist in the opponent class. This model solves a quadratic

optimization problem:

min
ω,b,ξ

=
1

2
ωTω + C

N∑
i=1

ξi

subject to the constraints:,

yi
(
ωTφ (xi) + b

)
≥ 1− ξi and ξi ≥ 0, i = 1, ..., N,

(2)

where ω represents the normal vector to the hyperplane, b is a constant, and C is a penalty

parameter on the training error, which is chosen to avoid over-fitting. Note that ξi is the

smallest non-negative number satisfying yi
(
ωTφ (xi) + b

)
≥ 1− ξi. The kernel φ is used to

transform the input data into the feature space.

By solving for the Lagrangian dual of the primal problem in equation 2, a simplified problem

is obtained:

max
a

=

N∑
i=1

ai −
1

2

N∑
i=1

N∑
j=1

aiajyiyjK (xi, xj) ,

N∑
i=1

aiyi = 0, C ≥ ai ≥ 0, i = 1, ..., N, j = 1, ..., N,

(3)
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where, a is introduced by Lagrangian multiplier. This dual formulation only depends on

dot-products of the features, which is the kernel function K (xi, xj) = φ(xi) · φ(xj), to map

into the higher dimensional feature space by transformation φ. The radial basis function

(RBF) in equation 3 is used as the kernel function for SVM:

K (xi, xj) = exp
(
−γ||xi − xj ||2

)
, i = 1, ..., N, j = 1, ..., N, (4)

where, γ is an adjustable parameter of certain kernel functions. In this case, we set it as

1/N . With the C-SVM model, there is only one parameter to be determined: C, which

tells the SVM optimization how much you want to avoid mis-classifying the data. We

conduct a cross-validation (CV) process to decide it. Considering a grid space of {C} with

log2C ∈ {−3,−2.5, ..., 2.5, 3}, we apply 5-fold CV on the training data to each C, and then

choose the specific C that leads to the lowest CV balanced error. In the synthetic example,

C = 2.1544 is selected with a score of 0.96. In addition, the size of the noise class is normally

different from the size of the event class. This data imbalance could lead to bias. In order

to compensate this, we adjust the weights inversely proportional to the class frequencies in

the input data.

5. Test on new data

After obtaining the trained SVM model, we apply it to the test data 1 and 2 in Figures 5a

and 6a. The predicted event detection results considering both 1D and 2D features are

shown in Figures 5b and 6b and the results considering only 1D features are shown in

Figures 5c and 6c. We can see that, when the noise level is SNR = −10dB, both of

them result in a reasonable prediction with 95% (Figure 5b) and 90% (Figure 5c) accuracy,

respectively. There is an obvious improvement in the prediction accuracy by considering
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2D texture features. When the noise level reaches SNR = −13dB, the predicted result in

Figure 6cusing only 1D features is quite noisy with a prediction accuracy of 82%. However,

by maximizing the information per segment with extracting extra 2D texture features,

the proposed workflow still ends up with a reasonably good result with 93% accuracy

(Figure 6b). Furthermore, five different traces (at 150, 525, 900, 1275, 1650m) of clean,

noisy, and predicted detection of test data (SNR = −10dB) are shown in Figure 7. It

can be seen that the events hidden in strong ambient noise can also be detected using our

proposed workflow.

Moreover, we also compare the proposed workflow to a state-of-the-art STA/LTA method

and a convolutional-neural-network approach (CNN). The STA/LTA parameter is measured

in the time domain and defined as follows:

STA (i) =
1

NSTA

i∑
j=i−NSTA

d (j) ,

LTA (i) =
1

NLTA

i∑
j=i−NLTA

d (j) ,

RSTA/LTA (i) =
STA (i)

LTA (i)
,

(5)

where d (i) denotes the input microseismic data and NSTA and NLTA denote short-

term and long-term periods, respectively. We use NSTA = 2 ∗ wavelength and NLTA =

8 ∗wavelength in this example. The results using the STA/LTA method are shown in Fig-

ures 5d and 6d. It is obvious that the STA/LTA method cannot perform well when strong

noise exists. It is worth mentioning that the STA/LTA method is usually implemented after

an initial denoising process applied to the raw data.

Regarding the CNN, we design a six-layer architecture, which is adopted from LeNet (Le-

Cun et al., 1990): two convolutional layers with 32 kernels (3×3) to learn the local features;
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followed by one max pooling layer with (10×10) to reduce the number of parameters; after a

flattening process, two fully connected layers with 128 kernels are included and a softmaxing

layer is added in the end to generate the final classification. The results using this CNN are

shown in Figures 5e and 6e. We can see that it works well in detecting events, even though

not as good as the proposed workflow in Figures 5b and 6b. Some useful events, which are

pointed with red arrows, are damaged. It is well-known that CNN is not able to show its

privilege over the traditional machine learning algorithms when very limited training data

is available.

The classification metrics of different strategies for the test data 2 (SNR = −13dB) are

written in Table 3

FIELD DATA EXAMPLE

We consider a group of surface-recorded microseismic data in a field data example. The

receiver spacing is 7.5m and the time duration is 2s. Since the STA/LTA method cannot

perform well without a denoising preprocess applied to the raw data, we only compare

SVM with only 1D features, SVM with 1D and 2D features, and CNN in this example.

For the training, only one raw training data, which is shown in Figure 8a, is considered.

The corresponding labeled training data is shown in Figure 8b. We labeled the datasets

based on a relatively strict criterion. With ”strict” we mean that only the very clear events

are selected. Afterward, the training data is split into segments with a length of 0.062s,

which is approximately twice the wavelength. There are 2970 segments in total. Part of the

extracted 2D texture features is demonstrated in Figure 9. We can see that the 2D features

show large relevance with the events. The correlation matrix of the features is shown in
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Figure 10a. Compared to Figure 4a, the correlation between 2D feature clusters is reduced,

because in this more complex scenario, different 2D features (Contrast, Correlation, Energy,

and Homogeneity with orientations 0o, 45o, 135o, and 90o and distances of 1 − 8) start to

make a difference, instead of just creating redundancy. Furthermore, the univariate score

(F-value) is shown in Figure 10b. It is obvious that the 2D texture features play a more im-

portant role in the real case, compared to the synthetic example. After feature extraction,

49 features are selected using a combination of univariate feature selection and Random

forest. In the SVM classification step, C = 12.74 turns out to be the optimal value based

on the CV experiment. Finally, the raw test datasets are shown in Figures 11a, 12a, and

13a. The event detection results considering both 1D and 2D features are shown in Fig-

ures 11b, 12b, and 13b. The event detection results considering only 1D features are shown

in Figures 11c, 12c, and 13c. We can clearly see the improvement of accuracy by using

both 1D and 2D features, because the continuity, smoothness, and regularity of the events

are largely emphasized when we label the training datasets, however, being ignored with

only 1D feature extraction. In addition, the predicted results using the CNN approach are

shown in Figures 11d, 12d, and 13d. We can see that using the CNN results in a reasonable

prediction, albeit not as good as the proposed workflow, because the CNN is not able to

show its privilege over the traditional machine learning algorithms when only one training

dataset is fed in.
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DISCUSSION

Feature importance and sensitivity analysis

With the high classification accuracy achieved by the C-SVM model, we are also inter-

ested in the prediction power of the individual features and their corresponding importance.

Here, we adopt the best random forest model trained during the recursive feature elimi-

nation process in the feature selection section using the synthetic dataset. The random

forest estimator automatically computes the normalized feature importance metric, and

the top ten most important features are listed in Table 4. We notice that the top nine

features are 2D features, which is in accordance with expectation, since 2D features carry

more information than 1D features. Furthermore, for the most important feature, being

the 135◦ orientation correlation with distance of 2 neighboring voxels (ID 121), we plot its

partial dependence in Figure 14. The partial plot here essentially fixes other features and

repeatedly alters the value of feature #121 to make a series of predictions for all of the

instances in the test dataset. Here the y axis is interpreted as the change in the prediction

from what it would be predicted at the baseline value. We see that with a positive feature

#121 value it would substantially increase the possibility of detecting a microseismic event

and this feature is indeed a robust predictor as the shaded area indicating the confidence

level is quite a bit above 0.

Parameter setting and data quality

The implementation of the proposed workflow is quite straightforward. Except for the

labeling step, this algorithm is fully automatic and hands-off. Once the feature vectors

are fixed, only two parameters are needed: the length of segmentation and regularization
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parameter C. In this work, 2∗wavelength is used as the segment length in order to obtain

high vertical resolution. The regularization parameter C is selected automatically using a

cross-validation process to avoid over-fitting.

Regarding the labeling step, the predicted results largely depend on the labeling crite-

rion. The labeled training data based on a relaxed labeling criterion is shown in Figure 15a

and the corresponding predicted results are shown in Figures 15b-15d. We can see that the

results are consistent with the labeling criterion. Therefore, a consistency of the labeling

step, which makes sure that the training datasets have a clear classification boundary, is

required. In addition, the proposed workflow works well on small datasets, because once a

boundary is established during the training, inputting more training datasets are redundant

and might even result in over-fitting issue. In this work, only one training dataset for both

the synthetic and real case is labeled and used to train the model. Using smaller datasets

also makes the prediction and labeling process very efficient. The bottom line is that the

quality of labeling process is much more important than the quantity.

Assuming that a larger number of high-quality labeled training datasets are available,

the proposed workflow might not be the optimal choice, since the training time would be too

large and an over-fitting issue might pop up. In this case, the use of neural-network-based

methods, e.g. convolutional-neural-networks (Krizhevsky et al., 2012), is recommended.

Machine learning algorithm

In this work, we choose SVM as the machine learning algorithm in the workflow, due to

its high accuracy and nice theoretical guarantees regarding over-fitting. Compared to the

other popular classification algorithm, like random forests, SVM is more memory-intensive
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and time-consuming. It is possible to replace SVM with random forests in this workflow

for the sake of efficiency. However, in that case the propositions in this paper still stand.

CONCLUSIONS

In order to overcome the noise issue of microseismic data, we proposed a new workflow

for high-resolution event detection based on support vector machine classification with a

Gaussian kernel. The proposed workflow is demonstrated in details. For the segmenta-

tion step, a length of 2 ∗ wavelength is used, which then provides the vertical resolution

of the event detection. For the feature extraction step, 191 features including both 1D

time/spectral-domain features and 2D texture features are considered. A combination of

univariate feature selection and random-forest-based recursive feature elimination is chosen

for feature selection, which finds both the best features and the best number of features

needed for the best accuracy. In the training process, the C-SVM model is used and a

cross-validation process is conducted for an automatic parameter setting. Finally, a group

of synthetic and real microseismic datasets with different levels of complexity showthat the

proposed workflow is much more robust than the state-of-the-art STA/LTA method and

also performs better than a CNN approach, when the amount of training datasets is limited.
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ID Feature Name Description

1 Mean

2 Median

3 STD Standard deviation

4 MAD Median Absolute Deviation

5 25th percentile The value below which 25% of observations fall

6 75th percentile The value below which 75% of observations fall

7 Inter quantile range The difference between 25th percentile and 75th percentile

8 Skewness A measure of symmetry relative to a normal distribution

9 Kurtosis A measure of whether the data is heavy- or light-tailed relative to normal distribution

10 Zero-crossing rate

11 Energy The sum of squares of the signal values

12 Entropy of energy The entropy of normalized energies, a measure of abrupt changes

13-25 MFCC Mel Freq. Cepstral Coef., form a cepstral representation where the freq. bands are

not linear but distributed according to the mel-scale

26 Dominant freq. magnitude The energy of a spectrum is centered upon

27 Spectral Centroid Indice of the dominant freq.

28 Spectral Spread The second central moment of the spectrum

29 Spectral Entropy Entropy of the normalized spectral energies

30 Spectral Roll-off The freq. below which 85% of the total spectral energy lies

31 RMS energy Root-mean-square energy

32 Spectral bandwidth The 2rd order spectral bandwidth

33-36 Polynomial features Coef. of fitting an 3rd-order polynomial to the spectrum

37-48 Chroma vector A 12-element feature vector indicating how much energy of each pitch class is present

in the data

49 Chroma Deviation The STD of the 12 chroma coef.

50-56 Spectral contrast It considers the spectral peak, the spectral valley, and their difference in each freq.

sub-band

57 Spectral flatness A measure to quantify how much noise-like a sound is (High value indicates the

spectrum is similar to white noise)

58-63 Tonnetz The tonal centroid features

Table 1: The list of the extracted 1D time/spectral-domain feature.29



ID Feature Name Description

64-95 Contrast Measures the local variations in the GLCM, for 0o, 45o, 135o, and 90o orientation,

with distance of 1 − 8 of neighboring voxels

96-127 Correlation Measures the joint probability occurrence of the specified pixel pairs in the GLCM,

for 0o, 45o, 135o, and 90o orientation, with distance of 1 − 8 of neighboring voxels

128-159 Energy Provides the sum of squared elements in the GLCM. Also known as uniformity or

the angular second moment, for 0o, 45o, 135o, and 90o orientation, with distance of

1 − 8 of neighboring voxels

160-191 Homogeneity Measures the closeness of the distribution of elements in the GLCM to the GLCM

diagonal, for 0o, 45o, 135o, and 90o orientation, with distance of 1− 8 of neighboring

voxels

Table 2: The list of the extracted 2D texture features
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Parameters SVM+1D/2Dfeatures SVM+1Dfeatures CNN

precision 0.93 0.82 0.91

recall 0.92 0.82 0.90

F1-score 0.92 0.82 0.90

Table 3: Classification metrics for test data 2 (Figure 6a)
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ID 121 184 168 122 104 176 127 186 72 36 Sum

Importance 0.3545 0.1255 0.1194 0.0463 0.0345 0.0188 0.0144 0.0124 0.0092 0.0090 0.7440

Table 4: Top 10 most important features, with their normalized importance scores summing

up to 0.7440. See Table 1 and 2 for the explanation of the ID numbers.
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(a) (b)

Figure 1: Synthetic example: the geometry and velocity model for the modeling of (a) raw

training data with SNR = −13dB, (b) raw test data.
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Figure 2: Synthetic example: (a) raw training data, (b) labeled training data.
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Figure 3: Synthetic example: 2D texture features of the training data: Contrast, Corre-

lation, Energy, Homogeneity, for orientations 0o, 45o, 90o, and 135o, with a distance of 3

neighboring voxels.
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Figure 4: Synthetic example: (a) correlation matrix of the 191 1D and 2D features. Note

that 2D features (ID range 64 - 191) are correlated due to the nature of the GLCM charac-

teristics, (b) the univariate score (F-value) as a function of feature ID. The feature IDs are

expained in Table 1 and 2.
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Figure 5: Synthetic example: (a) raw test data 1 (SNR = −10dB); predicted event de-

tection for test data 1 (SNR = −10dB) using (b) both 1D and 2D features, (c) only 1D

features, (d) a conventional LTA/STA method, (e) a CNN approach. The arrows point at

locations where the CNN fails.
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Figure 6: Synthetic example: (a) raw test data 2 (SNR = −13dB); predicted event de-

tection for test data 2 (SNR = −13dB) using (b) both 1D and 2D features, (c) only 1D

features, (d) a conventional LTA/STA method, (e) a CNN approach. The arrows point at

locations where the CNN fails.
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Figure 7: Synthetic example: Five traces (at 150, 525, 900, 1275, 1650m) of clean (red)

and noisy (blue) test data 2 with SNR = −13dB and the predicted event detection (yellow;

0-noise, 1-event).
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Figure 8: Field data example: (a) raw training data, (b) labeled training data.
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Figure 9: Field data example: 2D texture features of the training data: Contrast, Correla-

tion, Energy, Homogeneity, for orientations 0o, 45o, and 90o, and 135o, with a distance of 3

neighboring voxels.

Qu et al. –

41



50 100 150

Feature ID

20

40

60

80

100

120

140

160

180

F
e
a
tu

re
 I
D

-1

-0.5

0

0.5

1

(a)

0 50 100 150

Feature ID

0

0.2

0.4

0.6

0.8

1

U
n

iv
a

ri
a

te
 s

c
o

re
 (

F
-s

c
o

re
)

(b)

Figure 10: Field data example: (a) correlation matrix of the 191 1D and 2D features.

Note that 2D features (ID range 64 - 191) are correlated due to the nature of the GLCM

characteristics, (b) The univariate score (F-value) as a function of feature ID.
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Figure 11: Field data example: (a) raw test data 1, (a) predicted event detection using (b)

both 1D and 2D features, (c) only 1D features, (d) a CNN approach.
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Figure 12: Field data example: (a) raw test data 2, (a) predicted event detection using (b)

both 1D and 2D features, (c) only 1D features, (d) a CNN approach.
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Figure 13: Field data example: (a) raw test data 3, (a) predicted event detection using (b)

both 1D and 2D features, (c) only 1D features, (d) a CNN approach.
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Figure 14: Partial dependence plot for feature #121. A positive feature #121 value would

substantially increase the possibility of detecting a microseismic event, and the shaded area

denotes the level of confidence.
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Figure 15: Field data example: (a) labeled training data based on a relaxed criterion; (b-d)

predicted event detection of raw test data 1-3 based on this relaxed labeling criterion using

both 1D and 2D features.
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