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SUMMARY

Artificial intelligence (AI) is rapidly becoming an integral part of many real-world products
and services. This is mainly facilitated by the extensive computing resources provided by
the cloud infrastructure. However, cloud-based AI processing suffers from drawbacks like
high latency, huge network costs, data privacy/security concerns, and service disruptions
due to internet outage. Edge computing for AI (edge-AI) addresses these problems by
combining data sources with on-board AI processing hardware. Such hardware must
be energy efficient to achieve prolonged operation, given the limited energy resources
on edge devices. Moreover, it should be compact in size to facilitate seamless system
integration and enhanced portability. Conventional hardware cannot meet these require-
ments due to data transfer bottleneck in von Neumann architecture and limitations of
conventional memory technologies. Computation-in-memory (CIM) overcomes these
challenges by in-situ data processing using emerging memory technologies called mem-
ristors. Thus, CIM can facilitate energy efficient and compact edge-AI hardware design.
Healthcare domain stands out as a prime target for CIM-based edge-AI hardware, due
to two main reasons. Firstly, it holds significant real-world importance due to its direct
impact on human well-being. Secondly, the increasing adoption of AI in healthcare can
significantly benefit from efficient hardware for data processing. CIM-based edge hard-
ware can greatly enhance the effectiveness of AI-based healthcare through rapid, reliable,
and secure processing of medical data at its source. Hence, design of CIM-based edge-AI
hardware for healthcare applications presents a promising research direction.

The process of designing CIM-based edge-AI hardware for healthcare can be ex-
pressed as a stack of six abstraction layers: application, algorithm, optimization, mapping,
micro-architecture and circuits, and device. These abstraction layers can be further
grouped into two distinct design phases. The first phase is application-dependent, cover-
ing the first three abstraction layers (application, algorithm and optimization). It involves
creating a customized neural network model for the given healthcare application. The
challenge in this phase is to achieve strong algorithmic performance, while incorporating
features to exploit the full potential of CIM hardware. Conversely, the second phase is
application-independent and comprises of the remaining abstraction layers (mapping,
micro-architecture and circuits, and device). It solely focuses on translating the model
computations into CIM hardware operations. However, the non-ideal characteristics of
memristor devices introduce computational errors in hardware operations. This under-
mines the advantages of CIM as energy-efficient computations are of no use if they are
incorrect. Hence, mitigating memristor non-idealities becomes the primary challenge in
this phase. Moreover, it is important to integrate the customized model and non-ideality
mitigation strategies into a comprehensive hardware solution and realize it through pro-
totyping. This gives rise to the following three research topics: 1) healthcare AI models for
CIM-based edge hardware, 2) dealing with memristor non-idealities, and 3) CIM edge-AI
prototyping for healthcare.

iv



SUMMARY v

We adopt a cross-layer approach in this thesis to address these research topics, cover-
ing all six layers of the CIM abstraction stack. We begin by creating neural network models
for two healthcare applications: cardiac arrhythmia classification and diabetic retinopa-
thy screening. Our contributions in this application-dependent design phase span across
the first three abstraction layers (application, algorithm and optimization). At the appli-
cation layer, we introduce new features in the model tailored to the specific healthcare
application. This enhances its real-world impact by addressing the unique medical needs
more effectively. Moving to the algorithm layer, we customize the computational flow
within the model to exploit the characteristics of the healthcare data. This improves design
performance in key aspects like accuracy and energy efficiency. Moreover, we strategically
refine the model computations to further maximize post-deployment benefits on CIM
hardware. At the optimization layer, we employ techniques like resampling, quantization
and pruning to optimize hardware resource requirements, without compromising the
model’s algorithmic performance.

After creating the neural network models, we proceed to the application-independent
design phase. Focusing on RRAM-based memristor devices, we first identify three key
non-idealities that significantly impact inference accuracy on CIM hardware. We then
devise mitigation strategies against these non-idealities, encompassing the remaining
abstraction layers (mapping, micro-architecture and circuits, and device). At mapping
layer, we propose a hardware-aware training methodology to combat the conductance
variation non-ideality. Moving to the micro-architecture level, we present two mitigation
strategies. The first addresses non-zero Gmin error non-ideality through a novel approach
to CIM micro-architecture design. The second introduces an adaptive micro-architecture
that adjusts its sensing conditions to counteract the effects of read-disturb non-ideality.
At the device level, these strategies indirectly contribute by circumventing the necessity
for extensive device engineering, ensuring accurate inference even in the presence of
non-idealities. Building upon this foundation of model development and non-ideality
mitigation, we integrate the optimal ECG classification model with the proposed mitiga-
tion strategies to create a CIM edge-AI prototype. Thus, our contributions pave the way
towards a future with enhanced effectiveness and efficiency of AI-powered healthcare.



SAMENVATTING

Kunstmatige intelligentie (AI) wordt in snel tempo een integraal onderdeel van veel pro-
ducten en diensten in de echte wereld. Dit wordt voornamelijk mogelijk gemaakt door de
uitgebreide computerbronnen die door de cloudinfrastructuur worden geboden. Cloudge-
baseerde AI-verwerking heeft echter te kampen met nadelen zoals hoge latentie, enorme
netwerkkosten, zorgen over gegevensprivacy/-beveiliging en serviceonderbrekingen als
gevolg van internetstoringen. Edge computing voor AI (edge-AI) pakt deze problemen
aan door databronnen te combineren met ingebouwde AI-verwerkingshardware. Derge-
lijke hardware moet energie-efficiënt zijn om langdurig gebruik te kunnen garanderen,
gezien de beperkte energiebronnen op edge-apparaten. Bovendien moet het compact
van formaat zijn om naadloze systeemintegratie en verbeterde draagbaarheid te verge-
makkelijken. Conventionele hardware kan niet aan deze eisen voldoen vanwege het
knelpunt in de gegevensoverdracht in de von Neumann-architectuur en de beperkingen
van conventionele geheugentechnologieën. Computation-in-memory (CIM) overwint
deze uitdagingen door in-situ gegevensverwerking met behulp van opkomende geheu-
gentechnologieën die memristors worden genoemd. CIM kan dus een energiezuinig
en compact edge-AI-hardwareontwerp mogelijk maken. Het gezondheidszorgdomein
onderscheidt zich als een belangrijk doelwit voor op CIM gebaseerde edge-AI-hardware,
vanwege twee belangrijke redenen. Ten eerste is het in de praktijk van groot belang
vanwege de directe impact op het menselijk welzijn. Ten tweede kan de toenemende
acceptatie van AI in de gezondheidszorg aanzienlijk profiteren van efficiënte hardware
voor gegevensverwerking. Op CIM gebaseerde edge-hardware kan de effectiviteit van
op AI gebaseerde gezondheidszorg aanzienlijk vergroten door snelle, betrouwbare en
veilige verwerking van medische gegevens aan de bron. Daarom biedt het ontwerp
van CIM-gebaseerde edge-AI-hardware voor toepassingen in de gezondheidszorg een
veelbelovende onderzoeksrichting.

Het proces van het ontwerpen van CIM-gebaseerde edge-AI-hardware voor de ge-
zondheidszorg kan worden uitgedrukt als een stapel van zes abstractielagen: applicatie,
algoritme, optimalisatie, mapping, microarchitectuur en circuits, en apparaat. Deze
abstractielagen kunnen verder worden gegroepeerd in twee verschillende ontwerpfasen.
De eerste fase is applicatie-afhankelijk en omvat de eerste drie abstractielagen (appli-
catie, algoritme en optimalisatie). Het gaat om het creëren van een aangepast neuraal
netwerkmodel voor de gegeven zorgtoepassing. De uitdaging in deze fase is het bereiken
van sterke algoritmische prestaties, terwijl functies worden geïntegreerd om het volledige
potentieel van CIM-hardware te benutten. Omgekeerd is de tweede fase toepassings-
onafhankelijk en bestaat uit de overige abstractielagen (mapping, microarchitectuur en
circuits, en apparaat). Het richt zich uitsluitend op het vertalen van de modelberekenin-
gen naar CIM-hardwarebewerkingen. De niet-ideale kenmerken van memristorapparaten
introduceren echter rekenfouten bij hardwarebewerkingen. Dit ondermijnt de voordelen
van CIM, aangezien energie-efficiënte berekeningen nutteloos zijn als ze onjuist zijn.
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Daarom wordt het verzachten van de niet-idealiteiten van memristors de belangrijkste
uitdaging in deze fase. Bovendien is het belangrijk om het aangepaste model en de
strategieën voor het beperken van niet-idealiteiten te integreren in een alomvattende
hardwareoplossing en deze te realiseren door middel van prototyping. Dit geeft aanlei-
ding tot de volgende drie onderzoeksthema’s: 1) AI-modellen voor de gezondheidszorg
voor CIM-gebaseerde edge-hardware, 2) omgaan met niet-idealiteiten van memristors,
en 3) CIM edge-AI-prototyping voor de gezondheidszorg.

In dit proefschrift hanteren we een cross-layer benadering om deze onderzoeksonder-
werpen aan te pakken, waarbij we alle zes lagen van de CIM-abstractiestapel bestrijken.
We beginnen met het creëren van neurale netwerkmodellen voor twee toepassingen in
de gezondheidszorg: classificatie van hartritmestoornissen en screening van diabetische
retinopathie. Onze bijdragen in deze applicatie-afhankelijke ontwerpfase bestrijken de
eerste drie abstractielagen (applicatie, algoritme en optimalisatie). Op de applicatielaag
introduceren we nieuwe features in het model afgestemd op de specifieke zorgapplicatie.
Dit vergroot de impact ervan in de echte wereld door effectiever in te spelen op de unieke
medische behoeften. Als we naar de algoritmelaag gaan, passen we de rekenstroom
binnen het model aan om de kenmerken van de gezondheidszorggegevens te benutten.
Dit verbetert de ontwerpprestaties op belangrijke aspecten zoals nauwkeurigheid en
energie-efficiëntie. Bovendien verfijnen we de modelberekeningen op strategische wijze
om de voordelen na de implementatie op CIM-hardware verder te maximaliseren. Op de
optimalisatielaag gebruiken we technieken zoals resampling, kwantisering en pruning
om de hardwareresourcevereisten te optimaliseren, zonder de algoritmische prestaties
van het model in gevaar te brengen.

Na het maken van de neurale netwerkmodellen gaan we over naar de applicatie-
onafhankelijke ontwerpfase. Door ons te concentreren op op RRAM gebaseerde memris-
torapparaten, identificeren we eerst drie belangrijke niet-idealiteiten die een aanzienlijke
invloed hebben op de nauwkeurigheid van de gevolgtrekkingen op CIM-hardware. Ver-
volgens bedenken we mitigatiestrategieën tegen deze niet-idealiteiten, waarbij we de
resterende abstractielagen (mapping, microarchitectuur en circuits, en apparaat) om-
vatten. Op de kaartlaag stellen we een hardwarebewuste trainingsmethodologie voor
om de niet-idealiteit van de geleidingsvariatie te bestrijden. Op het niveau van de mi-
croarchitectuur presenteren we twee mitigatiestrategieën. De eerste richt zich op de
non-idealiteit van Gmin fouten die niet nul zijn, door middel van een nieuwe benadering
van CIM-microarchitectuurontwerp. De tweede introduceert een adaptieve microarchi-
tectuur die de detectieomstandigheden aanpast om de effecten van niet-idealiteit van
leesverstoring tegen te gaan. Op apparaatniveau dragen deze strategieën indirect bij door
de noodzaak van uitgebreide apparaatengineering te omzeilen, waardoor nauwkeurige
gevolgtrekkingen worden gegarandeerd, zelfs als er niet-idealiteiten aanwezig zijn. Voort-
bouwend op deze basis van modelontwikkeling en niet-idealiteitsmitigatie, integreren we
het optimale ECG-classificatiemodel met de voorgestelde mitigatiestrategieën om een
CIM edge-AI-prototype te creëren. Zo effenen onze bijdragen de weg naar een toekomst
met verbeterde effectiviteit en efficiëntie van door AI aangedreven gezondheidszorg.
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1.1. MOTIVATION

1.1.1. EDGE COMPUTING FOR AI (EDGE-AI)
Recent advancements in artificial intelligence (AI) have paved the way for its seamless
integration into various real-world products and services [1]. Cloud computing plays a piv-
otal role in this integration, providing the users with access to vast computing resources in
the data centers to execute AI algorithms. This enables extensive data processing without
the need for managing the physical infrastructure and streamlines the deployment of AI-
based solutions across diverse sectors like healthcare, finance, automotive etc. However,
such cloud-based AI processing (cloud-AI), shown in Figure 1.1a, suffers from several
drawbacks [2]. Firstly, it can introduce high response latency due to factors such as net-
work congestion, bandwidth limitations, processing queues for server sharing etc. This
poses a severe challenge in scenarios requiring real-time responsiveness. For instance,
consider AI-based industrial automation where timely detection and response to safety
hazards is paramount. A delay in data processing can lead to late emergency response
and increase the risk of accidents. Secondly, continuous data transfer to the cloud can
incur substantial network costs. For example, augmented reality applications streaming
high-resolution images can consume significant bandwidth and lead to huge network
expenses. Thirdly, transmitting sensitive data to remote servers is susceptible to privacy
and security concerns. As an example, a breach of financial data can lead to severe conse-
quences like substantial monetary losses and identity theft. Lastly, internet-dependency
makes cloud computing susceptible to service disruptions, especially in environments
with limited or unreliable network connectivity. This can prove catastrophic in fields like
healthcare. For instance, limited internet access can impede AI-based health monitoring
devices from providing timely alerts and endanger the user’s life.

Edge computing for AI (edge-AI) addresses these challenges by processing the data
directly at its source [3], shown in Figure 1.1b. It integrates the data source with on-board
edge-AI hardware, which is a specialized chip that executes AI algorithms like neural
networks. This effectively overcomes the response latency and network cost issues. It

(a) Cloud-AI: processing occurs in data center. (b) Edge-AI: processing occurs at the data source.

Figure 1.1: Cloud-AI and edge-AI computing paradigms.
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also enhances data privacy as the sensitive information is now maintained and processed
locally. Moreover, it bolsters reliability by alleviating reliance on a centralized internet-
based infrastructure. The importance of these edge-AI benefits is also reflected in the
$14.7 Billion valuation of global edge-AI market in 2022 [4].

To fully harness these advantages of edge-AI, the on-board hardware must adeptly
handle the resource constraints in edge environments. This necessity translates into two
key design constraints for edge-AI hardware: i) It should be energy efficient to achieve ex-
tended battery life and prolonged uninterrupted operation. ii) It should have a small area
footprint to facilitate seamless integration with the data source and enhanced portability.
For instance, consider a drone equipped with edge-AI hardware to enhance navigation
capabilities in complex environments. If the navigation hardware consumes excessive
energy, it would quickly deplete the drone’s battery. This would severely curtail its flight
time and operational range, negating the benefits of AI-enabled navigation. Conversely,
energy-efficient navigation hardware extends flight duration and operational reach. This,
combined with improved navigation capabilities, results in comprehensive and superior
exploration. Moreover, from an area perspective, a bulky navigation hardware would
present a significant challenge for integration with other system components. Its bulki-
ness would also restrict the drone’s range and maneuverability. These issues will essen-
tially nullify the benefits of AI-based navigation. On the other hand, a compact hardware
can be easily integrated into the drone system without any adverse effects. With these
edge-AI design constraints in mind, the next section explores how conventional hardware
struggles to meet them.

1.1.2. LIMITATIONS OF CONVENTIONAL HARDWARE
Conventional hardware designs adhere to von Neumann architecture for computing and
use conventional memory technologies for data storage. They are not suited for edge-AI
processing due to two main challenges: 1) data transfer bottleneck in von Neumann
architecture and 2) limitations of conventional memory technologies, discussed next.

DATA TRANSFER BOTTLENECK

Most edge-AI applications use neural networks because of their ability to learn complex
features directly from the data. Matrix multiplications form the computational backbone
of neural networks, accounting for 70-90% of the total operations [5]. A matrix multi-
plication is fundamentally made up of several multiply-accumulate (MAC) operations
shown in Figure 1.2. Hence, edge-AI hardware design incorporates optimized dataflow

Figure 1.2: Multiply-accumulate (MAC) operation as the fundamental computation unit of matrix multiplication.
Notations P1, P2 and P3 denote the partial sums within the MAC operation.
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Figure 1.3: Conventional edge-AI hardware architecture based on [6].

for performing MAC operations. A typical example of conventional edge-AI hardware
is shown in Figure 1.3. It employs a network of specialized processing elements (PEs)
to perform MAC operations. These PEs are connected to a hierarchical memory system
consisting of a high-speed global buffer (Static Random Access Memory, SRAM), a larger
but slower main memory (Dynamic Random Access Memory, DRAM), and a non-volatile
storage (Flash). The global buffer offers the fastest access for frequently used data, while
the main memory provides more capacity at the cost of slower retrieval. Finally, the
non-volatile storage retains data even after power loss, making it ideal for storing the
trained neural network weights. Upon device boot-up, these weights are loaded from
non-volatile storage to main memory and then transferred to the global buffer as needed
for computations. Moreover, intermediate calculations/outputs also use global buffer
and main memory for temporary storage. In this architecture, accessing data from global
buffer and main memory consumes 6× and 200× more energy respectively, compared to
the energy of a MAC operation [6]. This leads to a substantial amount of energy spending
on data movement rather than the actual calculations. This becomes a significant barrier
to deploying conventional hardware in energy constrained edge-AI environments.

LIMITATIONS OF CONVENTIONAL MEMORY TECHNOLOGIES

Conventional memory technologies such as SRAM and DRAM struggle to provide energy-
efficiency desired for edge-AI. SRAM consumes energy even when it is not actively being
accessed, known as static energy. Figure 1.4a shows that SRAM suffers from high static
energy consumption, which increases further with each new technology node [7]. Simi-
larly, DRAM wastes a significant portion of energy on non-operational tasks in the form of
refresh energy and background energy in Figure 1.4b [8, 9]. Furthermore, these memory
technologies also struggle to provide area-efficiency and high storage density required for
edge-AI. A single SRAM cell incurs a large area footprint of 100F2-200F2 [10]. Although
DRAM exhibits a smaller cell size of 8F2-10F2 [11], scaling it down to smaller technol-
ogy nodes presents severe challenge to its reliability [12]. Thus, conventional memory
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(a) Static Random Access Memory (SRAM) [7]. (b) Dynamic Random Access Memory (DRAM) [8]

Figure 1.4: Energy consumption breakdown for conventional memory technologies. In subfigure (b), rf: refresh
energy, rd/wr: read/write energy, act/pre: activate/precharge energy, and bg: background energy.

technologies are not suited to fulfill the energy-efficiency and storage density needs of
edge-AI.

1.1.3. COMPUTATION-IN-MEMORY (CIM)
Computation-in-memory (CIM) presents a promising alternative to overcome the afore-
mentioned limitations of von Neumann architecture and conventional memory technolo-
gies. It achieves this by performing in-place computations and using emerging memory
technologies known as memristors, as discussed next.

IN-PLACE COMPUTATION

CIM utilizes memristor devices for in-place MAC computations, leveraging their con-
ductance states for data storage as shown in Figure 1.5. Here, operand A is encoded into
voltages (V’s) and applied to operand B encoded as memristor conductances (G’s). The
multiplication of A and B is achieved in analog domain through Ohm’s law, in the form
of currents I1 and I2. These currents get accumulated as per Kirchhoff’s law to produce
current Iout, which represents MAC output in analog domain. To obtain the final digital
MAC result, Iout then undergoes analog-to-digital conversion. Thus, MAC is performed
in-place, without fetching operand B out of the memristors and without storing/fetching

Figure 1.5: In-place multiply-accumulate (MAC) operation in memristor-based CIM.
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Figure 1.6: Computation-in-memory edge-AI hardware architecture.

the intermediate calculations like partial sums. A CIM-based edge-AI processor consists
of in-memory processing elements (PEs) that leverage this in-place MAC computation
ability of memristors as shown in Figure 1.6. These PEs store the network weights using
an array of memristor devices and directly return the final MAC result via in-situ com-
putations within the memory array. This eliminates the memory hierarchy, significantly
reduces the data movement and alleviates the data transfer bottleneck.

MEMRISTOR TECHNOLOGY

Memristors offer non-volatile data storage, where they retain information without a
power supply by virtue of of data storage as conductance instead of charge. As a result,
memristors do not suffer from standby energy consumption like SRAMs (static energy)
and DRAMs (refresh energy and background energy). Thus, memristors provide bet-
ter energy-efficiency compared to conventional memory technologies [13]. Moreover,
memristors are capable of achieving a compact cell size of 4F2 and a single memristor
device can store multiple bits by exhibiting intermediate conductance levels. This enables
memristors to achieve better area efficiency and storage density than conventional mem-
ory technologies [10]. Additionally, memristor devices are highly scalable and directly
compatible with CMOS fabrication process [14]. Hence, memristors present a promis-
ing alternative to conventional memory technologies for energy-efficient and compact
edge-AI hardware [15].

1.2. RESEARCH TOPICS
Having identified the benefits of CIM for edge-AI, we now delve into the design process
of CIM-based edge-AI hardware. It encompasses the abstraction layer stack shown in
Figure 1.7. Each layer within this stack serves a distinct purpose, described as follows:

• Application layer: It involves comprehensive assessment of functionality, require-
ments and practical implications of the given application to define the design
specifications.

• Algorithm layer: It first determines the high-level computational structure to
achieve efficient and effective data processing for the given the design specifications.
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Figure 1.7: Research topics addressed in this thesis and their distribution across various CIM abstraction levels.

It then determines optimal AI algorithm for each computational block within this
structure through design-space exploration.

• Optimization layer: It streamlines the AI model computations without compromis-
ing its functionality. This leads to reduced hardware resource utilization when such
model is deployed for on-field processing.

• Mapping layer: It translates the AI model parameters and structure into functional
unit configurations and control sequences on the hardware.

• Micro-architecture and circuits layer: It encompasses two key aspects: i) micro-
architecture, which governs the dataflow within hardware functional units. and ii)
circuits, which focuses on implementing the micro-architecture using fundamental
electronic components such as transistors.

• Device layer: It includes development of fundamental electronic components like
transistors, memristors etc. and engineering their physical properties.

The first three abstraction layers (application, algorithm, and optimization) are heav-
ily influenced by the specific application for which CIM hardware is being designed.
Hence, they represent an application-dependent design phase, where a customized neu-
ral network model is created for the given application. The core challenge in this phase
is to develop a neural network model that: i) delivers strong algorithmic performance
for the application, and ii) incorporates features to maximize the advantage of CIM
hardware for the application. In contrast, the remaining abstraction layers (mapping,
micro-architecture and circuits, and devices) constitute an application-independent
design phase. This is because they focusing solely on translating model computations



1.2. RESEARCH TOPICS

1

8

into executable operations on CIM hardware. The accuracy of these operations can be
compromised by the non-ideal characteristics of memristor devices, which introduce
computational errors. Therefore, dealing with memristor non-idealities becomes the
primary challenge in this phase.

This thesis explores the challenges in both the aforementioned design phases, with
a focus on healthcare applications and RRAM-based memristor devices. Moreover, it
also puts emphasis on realizing the presented ideas and solutions through prototyping.
This leads to the following three research topics: 1) healthcare AI models for CIM-based
edge hardware, 2) dealing with RRAM non-idealities, and 3) CIM edge-AI prototyping for
healthcare. We will now discuss them in detail.

1.2.1. HEALTHCARE AI MODELS FOR CIM EDGE HARDWARE
Healthcare domain stands out as a prime target for AI integration due to its direct and
significant impact on human well-being. AI is already cementing its role in healthcare
applications, encompassing crucial functions like health monitoring and diagnostics [16].
CIM-based edge-AI hardware can further enhance this integration by providing fast,
reliable, and secure processing of medical data at the source, enabling prompt and
effective healthcare interventions.

Developing neural network model for healthcare application aimed at deployment on
CIM-based edge hardware presents several research opportunities. First, we can introduce
new features in the model tailored to the specific healthcare application. This can enhance
its real-world impact by addressing the medical needs more effectively. Second, dataflow
within the model can be customized to exploit the unique characteristics of the healthcare
application. This can improve its performance in key aspects like accuracy and energy
efficiency. Third, strategically refining the model computations and dataflow can further
maximize post-deployment benefits on CIM hardware. Last, techniques like quantization
and pruning can be employed to optimize hardware resource requirements, without
compromising the model’s algorithmic performance. This thesis explores the above
research opportunities in the context of following two healthcare applications:

• Cardiac arrhythmia classification: Heart-related disorders, known as cardiovas-
cular diseases (CVDs), are one of the major causes of death globally [17]. Early
diagnosis of CVDs can facilitate timely treatment to mitigate the health risks. This
can be achieved by identifying abnormal heart activity, known as arrhythmia. Edge-
AI can facilitate arrhythmia identification through wearable healthcare devices.
These devices acquire and monitor heart activity via electrocardiogram (ECG) sig-
nals. These ECG signals are then classified by a neural network model into various
arrhythmia types (classes). Our goal is to develop a neural network model cus-
tomized for performing arrhythmia classification on CIM-based edge-AI hardware.

• Diabetic retinopathy screening: Diabetic retinopathy (DR) refers to irreversible
retinal damage caused by elevated glucose levels and blood pressure. It is a leading
cause of permanent vision impairment across the globe [18]. Moreover, every
diabetic person is susceptible to the development of DR [19]. Regular screening
for DR is necessary to detect it at an early stage and facilitate timely treatment
to prevent further retinal damage. Edge-AI can achieve such screening in a fast,
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efficient, and convenient manner by employing neural networks to categorize
retinal images into distinct screening classes. We aim to create a neural network
model for DR screening, targeting deployment on CIM-based edge-AI hardware.

1.2.2. DEALING WITH MEMRISTOR NON-IDEALITIES
Using a developed neural network model to execute real-world tasks (e.g. image classi-
fication) with on-field data is referred to as inference. When a neural network model is
deployed on CIM-based edge-AI hardware for inference, its weights are stored in the hard-
ware using memristor conductances (G’s) as shown in Figure 1.8. The memristor devices
exhibit certain characteristics called non-idealities, which lead to deviation (∆G’s) from
their expected (ideal) conductance behavior (G’s). This gives rise to deviation (∆I’s) from
their ideal current contributions (I’s). These current deviations then get accumulated via
Kirchhoffs law and introduce errors in the MAC output. Such erroneous computations
can significantly diminish inference accuracy of CIM hardware.

In this thesis, we focus on RRAM-based memristor devices and identify their three key
non-idealities which significantly affect the inference accuracy of CIM hardware. These
non-idealities are depicted in Fig. 1.8 and described as follows:

• Non-zero Gmin Error: Ideally, a memristor with zero conductance should be used
in CIM to represent a zero weight in the neural network. However, real-world
memristor devices exhibit a non-zero minimum conductance (Gmin). Consequently,
zero weights are represented with Gmin conductance in CIM hardware. When an
input voltage (non-zero input) is applied to a Gmin memristor (zero weight), it yields

Figure 1.8: Illustration of the impact of memristor non-idealities on computational accuracy of CIM. We focus
on three key non-idealities of RRAM-based memristors: i) non-zero Gmin error, ii) conductance
variation, and iii) read-disturb.
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a non-zero output current. Such outcome contradicts the mathematical fact that
multiplying a non-zero input by a zero weight should produce zero output. This
inconsistency is termed as non-zero Gmin error.

• Conductance Variation: The programmed conductance of a memristor deviates
from its target value, due to the stochastic nature of device physics and fabrication
imperfections [20]. This phenomenon is called conductance variation.

• Read-disturb: Read operations on memristor are carried out using low voltage to
prevent any disturbance to its conductance state. However, unintended minuscule
change in conductance can still occur despite this precaution [21, 22]. The accu-
mulation of these small changes into a substantial conductance change over many
read operations is known as read-disturb [23].

Dealing with these non-idealities is critical to uphold the practical value of CIM
benefits in real-world scenarios. This is because energy-efficient computations serve no
practical purpose if they are functionally incorrect. Moreover, we should ensure that non-
ideality mitigation solutions do not introduce excessive overheads and undermine the
advantages of CIM hardware. In this thesis, we aim to develop strategies that mitigate the
impact of non-idealities while incurring minimal overheads, thereby facilitating accurate
and energy-efficient CIM-based edge-AI design.

1.2.3. CIM EDGE-AI PROTOTYPING FOR HEALTHCARE
The groundwork for CIM-based edge-AI design for healthcare is established through the
previous two research topics. The first topic explored the creation of AI models tailored for
healthcare applications, while ensuring their efficient execution on CIM hardware. The
second topic addressed the challenge of mitigating memristor non-idealities, to achieve
error-free inference on CIM hardware. Building upon this foundation, our research now
arrives at the final objective: prototyping of healthcare edge-AI solutions. This involves
integrating the optimal AI models and non-ideality mitigation schemes from the first
two research topics, into a hardware prototype using the ASIC design flow. In this thesis,
our goal is to design a small-scale CIM edge-AI prototype for a healthcare application,
incorporating our optimal AI model and non-ideality mitigation schemes.

1.3. THESIS CONTRIBUTIONS
We adopt a cross-layer approach in this thesis to address the aforementioned research
topics, covering the entire CIM abstraction stack as shown in Figure 1.9. We will now
describe our contributions in detail.

Contributions to healthcare AI models for CIM edge hardware:

• Memristor-based CIM for ECG arrhythmia classification: We present a severity-
based, accurate, and energy-efficient ECG arrhythmia classifier, targeting deploy-
ment on CIM-based edge devices. Initially, we assess the severity impact of various
arrhythmia classes and evaluate their implications for both end-users as well as
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Figure 1.9: Thesis contributions (in yellow color) across the entire CIM abstraction stack covering three research
topics. Each contribution is also annotated with its corresponding chapter number in the thesis.

medical professionals. Based on this analysis we develop a severity-based classifica-
tion approach which serves two key purposes. First, it improves assistance offered
by model to both end-users and medical professionals. Second, it decomposes the
overall ECG classification task into a hierarchical arrangement of sub-classifiers,
each managing simpler sub-tasks. This hierarchical classification structure en-
hances energy efficiency by selectively activating only the necessary sub-classifier
for each input. It also achieves high accuracy as each sub-classifier deals with only a
subset of total arrhythmia classes. Moreover, we perform design-space exploration
to identify the optimal neural network topology for each sub-classifier, which pro-
vides the best balance between energy efficiency and accuracy. As a result, energy
efficiency of the hierarchical classifier is improved while preserving its accuracy.
This work was published in [24].

• Memristor-based CIM for Diabetic Retinopathy Screening: We propose a reli-
able and energy-efficient classifier for DR screening on CIM-based edge devices.
We first analyze practical implications of training data quality and diagnostic in-
formation availability on neural network-based DR screening. To alleviate the
reliability concerns due to training data quality, we create a custom training dataset
which enables the model to effectively handle on-field data variations and minority
classes. Moreover, we introduce a pseudo-binary classification scheme which cou-
ples multiclass DR classification with a decision-making logic to produce binary
screening outcomes. This offers two key advantages. First, it extracts valuable diag-
nostic information by refining the multiclass classifier’s internal outputs. Second, it
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bolsters the model reliability by improving its classification performance. This is
achieved by considering the cumulative probabilities of various DR classes within
each screening category, leading to more informed decisions. We then develop
a pseudo binary DR screening model using our custom training dataset, through
design-space exploration across two neural network architectures: Inception-V3
and DenseNet-121. Subsequently, we optimize the final model for CIM-based edge
deployment through pruning and quantization. This work was published in [25].

Contributions to dealing with memristor non-idealities:

• Hardware-aware Biased Training: This training methodology mitigates the impact
of conductance variation non-ideality. First, we analyze memristor conductance
states to identify those inherently more immune to variation, called favorable
states. We then establish a favorability constraint, which defines a range of weight
values that directly get mapped to favorable states. Following this, we employ a
two-stage training process. In the initial stage, we train the model in a hardware-
unaware manner to establish a baseline. We then analyze the trained model to
identify the weights important for CIM hardware accuracy. In the next stage, we
retrain this model while enforcing the favorability constraint on important weights.
Consequently, post-retraining values of important weights directly map to favorable
states. As a result, execution of important calculations becomes error-free, leading
to high inference accuracy on CIM hardware. This work was published in [26].

• Unbalanced Bit-slicing Scheme: This approach to CIM micro-architecture design
effectively mitigates non-zero Gmin error non-ideality. It involves two key elements.
First, the memristor array is designed with a higher sensing margin allocation for
most significant bits (MSBs). This directly combats the detrimental effects of non-
zero Gmin error on these crucial bits. Second, the digital post-processing circuitry
utilizes 2’s complement arithmetic, whose differential nature further minimizes
the influence of non-zero Gmin error. While this approach yields superior accuracy,
it also incurs energy overhead due to extra sensing margin allocated to MSBs. To
address this, we minimize hardware requirements by adjusting margin allocation
for less critical bits, while maintaining high margins for MSBs. This reduces energy
consumption without sacrificing the gains in accuracy. Moreover, it facilitates a
trade-off between accuracy and energy efficiency. By exploring this trade-off, we
can prioritize accuracy or energy efficiency as per the specific requirements of the
application. This work was published in [27, 28].

• Adaptive Referencing Architecture: This CIM micro-architecture mitigates the
impact of read-disturb non-ideality. Its design commences with an analysis to
extract key insights into the read-disturb phenomenon. The findings from this
analysis are then used to develop two architectural components: i) read-disturb
detection unit ii) adaptive ADC equipped with control logic. The read-disturb
detection unit identifies instances of read-disturb during operation. It achieves this
by monitoring the most vulnerable column in the memristor array, that has been
identified through pre-mapping profiling. Once the read-disturb event is detected,
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the adaptive ADC dynamically adjusts sensing conditions to counteract the effect
of read-disturb. Thus, error-free operation is restored, resulting in high inference
accuracy on CIM hardware. This work was published in [29].

• Besides mitigating the impact of non-idealities, these contributions also alleviate
the need for device engineering to enhance memristor device characteristics. This
paves the way for capitalizing on the energy-efficiency benefits of CIM, without
relying on advancements in memristor device technology..

Contribution to CIM edge-AI prototyping for healthcare:

• ECG Classification Prototype: Our goal is to integrate the proposed ECG classifica-
tion model and non-ideality mitigation strategies into a prototype. We select the
first hierarchical level in the ECG classification model for prototyping, due to its
significant impact of on human well-being. Moreover, we choose unbalanced bit-
slicing for prototyping among the proposed non-ideality mitigation strategies. This
is because we use polysilicon-based resistive storage due to memristor fabrication
and integration unavailability, which only suffers from non-zero Gmin error. We
develop the prototype incorporating these choices through a three-phase process.
First, we further optimize the model through resampling and quantization to re-
duce hardware resource usage. Second, we design a system architecture comprising
of analog vector-matrix multiplication (VMM) units and digital processing logic.
The analog VMM includes a novel CIM crossbar and a new ADC design (both out of
the scope of this thesis). The digital processing logic is tailored to efficiently handle
the outputs of the analog VMM units. Last, we implement the system-on-chip (SoC)
layout for this architecture in TSMC 40nm technology. Its analog parts are imple-
mented through custom layouts, while the layouts for digital parts are generated
by standard cell-based physical design. These parts are integrated using analog-
on-top flow and sent to the foundry for fabrication. Upon receiving the fabricated
prototype, we create a testbench for its measurement and characterization. This
evaluation phase is currently ongoing.

1.4. THESIS ORGANIZATION
The rest of this thesis consists of eight chapters that are grouped into five parts. We now
present an overview of this organization structure.

PART-I Background (Chapter 2)
This part provides the fundamental knowledge necessary for understanding this thesis.
Its constituent chapter is described next.

• Chapter 2 presents the fundamentals of neural networks and CIM. It begins by intro-
ducing basic terminologies in artificial intelligence. This is followed by a discussion
on neural networks, covering their types and operational modes. We then delve into
the CIM system architecture, focusing on its role in vector-matrix multiplication
which is the dominant operation in neural networks. Finally, we explore different
memristive crossbar array designs and memristor device technologies.
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PART-II Healthcare AI Models for CIM Edge Hardware (Chapters 3 and 4)
This part focuses on model development for CIM-based edge-AI in healthcare domain. It
includes the following chapters.

• Chapter 3 presents an ECG arrhythmia classifier for CIM-based edge-AI. We begin
with an introduction that outlines the motivation, discusses state-of-the-art, and
highlights our contributions. Following the introduction, we provide a concise
overview of cardiac arrhythmia and its classification. We then describe the details
of our proposed methodology. It leverages a severity-based classification approach
specifically tailored for arrhythmia classification. This approach allows for the
creation of multiple hierarchical classification architectures. We then outline the
criteria for selecting the optimal architecture from these options. Furthermore,
we provide a design-space exploration technique to efficiently design the network
components within the chosen architecture, ensuring high accuracy while mini-
mizing energy consumption. Later, we describe details of the simulation setup and
present simulation results to demonstrate the effectiveness of our classifier. Finally,
the conclusion section summarizes the key findings and insights.

• Chapter 4 proposes a diabetic retinopathy (DR) screening classifier tailored for de-
ployment on CIM-based edge devices. We start with an introduction that covers the
motivation, related work, and our key contributions. The background section then
provides essential context on DR as a health condition and its screening process.
We then delve into the details of our proposed methodology. This starts with an
overview to facilitate a high-level understanding of our approach. Next, we focus
on reliable model development, which includes custom dataset creation and a
pseudo binary classification scheme. Furthermore, we explore model optimization
through pruning and quantization to improve energy efficiency upon deployment
on CIM hardware. Afterwards, we describe the simulation setup and present simu-
lation results. Last, the conclusion section ends the chapter with a summary of key
insights.

PART-III Dealing with Memristor Non-idealities (Chapters 5, 6 and 7)
This part presents solutions for dealing with memristor non-idealities, to improve the
computational accuracy of CIM hardware. It consists of the following chapters.

• Chapter 5 describes the biased training method aimed at addressing conductance
variation non-ideality. We commence with an introduction section, offering insights
into motivation, prior art, and our contributions. Next, we present details of our
proposed methodology. It starts with a high-level overview, followed by an analysis
to determine the favorable conductance states. This analysis is subsequently used
for developing the biased training algorithm. We then detail the simulation setup
and present the simulation results. The chapter ends with a summary in conclusion
section.

• Chapter 6 introduces an unbalanced bit-slicing approach for CIM micro-architecture
design, that mitigates the impact of non-zero Gmin error non-ideality. First, an
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introduction section describes the motivation, state-of-the-art, and our key contri-
butions. Next, we dive into the details of the proposed methodology. It starts with a
general overview of our approach. This is followed by a detailed explanation of two
distinct variants of unbalanced bit-slicing. One variant prioritizes high accuracy,
while the other explores a trade-off between accuracy and energy efficiency. Later,
we describe the simulation setup and present the simulation results. We finally
summarize important findings and takeaways in the conclusion section.

• Chapter 7 presents an adaptive referencing architecture for mitigating read-disturb
non-ideality. We first include an introductory section that describes the motivation,
discusses the state-of-the-art, and outlines our contributions. We then describe
our proposed architecture in detail. This description begins with an overview of
the proposed referencing approach. We then describe the design of two crucial
architectural components: the read disturb detection unit which identifies read-
disturb events, and the adaptive ADC which dynamically adjusts its referencing
mechanism to counteract read-disturb errors. Next, we provide simulation setup
details and present the simulation results. Lastly, the conclusion section offers a
summary of the chapter.

PART-IV CIM Edge-AI Prototyping for Healthcare (Chapter 8)
This part focuses on prototype design by integrating the optimal AI model and non-
ideality mitigation solutions. It comprises of the following chapter.

• Chapter 8 provides details of the ECG classification prototype. We begin with a
brief introduction that covers the intuitions behind our design choices and an
overview of our three-phase prototyping approach. We then describe the first
phase, which optimizes the model for reducing hardware resource usage. This is
followed by the details of second phase, where we design the system architecture.
We then present the third phase, which involves layout implementation for the
system architecture. Finally, we provide the details of PCB and testbench design for
evaluating the fabricated prototype.

PART-V Conclusions (Chapter 9)
This is the final part which concludes this thesis. It contains the following chapter.

• Chapter 9 provides summary of all the chapters in the thesis and also offers insights
into future research directions.
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2.1. INTRODUCTION TO NEURAL NETWORKS
Figure 2.1 depicts relationship between three key terms used in the context of developing
cognitive machines: artificial intelligence, machine learning, and neural networks. They
can be distinguished from each other as follows:

• Artificial intelligence (AI): It is a broad field focusing on building intelligent ma-
chines, that can perform cognitive tasks like humans.

• Machine learning (ML): It is a sub-field of AI that enables machines to autonomously
learn from the data without explicit programming.

• Neural networks (NN): It is a sub-field of ML which draws inspiration from the
workings of human brain.

Figure 2.1: The relationship between three fundamental AI terminologies.

In today’s world, neural networks stand as the most prevalent method for creating
intelligent machines due to their exceptional capacity for cognitive processing and adapt-
ability. At their core, neural networks operate by emulating the computational structure of
the brain. The human brain achieves cognitive abilities through a network of specialized
cells called neurons and their interconnection called synapses. Neurons are the brain’s
computational units and communicate with each other through synapses. The synapses
act like weighted connections and modulate the biological signals passed between neu-
rons. The computational neural networks mimic this brain structure, employing neuron
functions interconnected by weighted connections (synapses) as shown in Figure 2.2. The
neurons perform weighted sum of the inputs coming from input synapses. The subse-
quent outputs undergo non-linear transformations to enhance the network’s cognitive
capability. This emulation empowers neural networks to autonomously extract features
from raw data and effectively handle complex relationships within data. Hence, they have
demonstrated remarkable performance across a diverse array of real-world cognitive
tasks, leading to their widespread adoption in modern AI applications.
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Figure 2.2: Biological neural network as the inspiration for computational neural network.

2.2. TYPES OF NEURAL NETWORKS
Achieving optimal performance for a given application typically requires using appropri-
ate type of neural network suited for its characteristics. We will now describe the different
types of neural network used within the scope of this thesis.

2.2.1. FULLY-CONNECTED NEURAL NETWORK
The most basic type of neural network is the fully-connected network shown in Figure 2.3.
It consists of an input layer, one or more hidden layers and an output layer. All neurons
in a layer are connected to all neurons in the next layer, hence the name fully connected
network. The number of neurons in the input layer is determined by the dimensions
of the input data. These input neurons receive the input data and transfer it to the first
hidden layer. The hidden layers remain concealed from both the input and output of the
network. Hidden layer neurons compute the weighted sum of inputs from the preceding
layer, then apply a nonlinear activation function and pass the result to next layer. Output
of the last hidden layer is passed onto the output layer. The number of neurons in the
output layer is equal to the number of prediction classes. Weighted sum outputs of this
layer undergo softmax operation to produce prediction probabilities for each class.

Figure 2.3: Fully-connected neural network

Fully connected neural network struggles to capture spatial or temporal information
effectively due to its simple structure and computations. Hence, there exists a need for
specialized neural networks that can more adeptly handle complex cognitive tasks like



2.2. TYPES OF NEURAL NETWORKS

2

20

image processing, sequence learning etc. We will discuss such specialized networks in
the upcoming subsections.

2.2.2. CONVOLUTIONAL NEURAL NETWORK
Convolutional neural network (CNN) is a specialized neural network primarily designed
for image processing tasks. It excels at capturing spatial patterns in the images through
convolution operations. CNN comprises of several stacks of convolution and pooling
layers, followed by one or more fully connected layers as shown in Figure 2.4. Convolution
layers apply a series of filters to the inputs and extract features at different spatial locations.
These features are then passed through pooling layers, which compress the feature maps
while retaining essential information. Finally, the extracted feature maps are flattened
and fed into fully connected layers for classification. The effectiveness of CNNs stems
from their hierarchical learning architecture. Early convolution layers learn fundamental
features like edges and textures, which are progressively combined by subsequent layers
to recognize increasingly complex patterns. This hierarchical approach allows CNNs to
develop a sophisticated understanding of images, transitioning from low-level features
to high-level concepts. This ability is a key factor behind their widespread adoption and
success in computer vision tasks.

Figure 2.4: Convolutional neural network (CNN).

2.2.3. RECURRENT NEURAL NETWORK
Recurrent neural network (RNN) is a specialized neural network aimed at processing
sequential data such as time series. It possess the ability to retain information about
the previous inputs and uses this context for processing new sequential data. Long
short-term memory (LSTM) network is a variant of RNN, that is widely used due to its
effectiveness at capturing long-term dependencies in sequential data. A typical LSTM
structure consists of an input layer, one or more hidden layers with LSTM cells as neurons
and an output layer, as shown in Figure 2.5. The internal structure of an LSTM cell is
depicted in Figure 2.6. It uses two memory variables: i) the cell state (Ct) which represents
long term memory and ii) the hidden state (ht) which represents short term memory.
These memory variables are regulated through four gating functions, described as follows:

• Forget gate: It controls which existing part of previous information in the cell state
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Figure 2.5: Long short-term memory (LSTM) neural network.

should be discarded.

• Input gate: It determines which new information should be incorporated in the cell
state.

• Cell state update: It updates the cell state based on inputs from the forget gate and
the input gate.

• Output gate: It determines the new hidden state based on the updated cell state.

These gating mechanisms capture long-term dependencies by selectively acquiring useful
information and discarding irrelevant details over time.

Figure 2.6: Long short-term memory (LSTM) neuron (also called LSTM cell) with Xt as the input. State inputs
coming from previous LSTM neuron in the same layer are indicated by Ct-1 and ht-1. The outputs are
given by Ct and ht. Notations concat and σ denote concatenation and sigmoid function respectively.

Although LSTMs excel at using past information for predictions, many tasks like
sentiment analysis require context from both past and future information. Bidirectional



2.2. TYPES OF NEURAL NETWORKS

2

22

LSTM (BLSTM) overcomes this issue by employing a combination of two LSTM layers as
shown in Figure 2.7. Here, one LSTM layer processes the input sequence in the forward
direction (past to future), while the other processes the sequence in the reverse direction
(future to past). The final prediction is made by combining the outputs of both forward
and backward LSTMs.

Figure 2.7: Bidirectional long short-term memory (BLSTM) neural network.

2.2.4. TEMPORAL CONVOLUTIONAL NETWORK
Temporal convolutional network (TCN) offers a compelling alternative to LSTM for pro-
cessing sequential data with very long dependencies. It achieves this through dilated
convolutions, which capture extensive temporal contexts without exponentially increas-
ing the number of parameters. Additionally, TCN is better suited for hardware acceleration
compared to LSTM. This is because its core operations are highly parallelizable, while
LSTM relies on sequential computations. This advantage also becomes particularly sig-
nificant when dealing with very long sequences.

Figure 2.8: Temporal convolutional network (TCN).
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A typical TCN consists of multiple layers of dilated convolutions organized into resid-
ual blocks as shown in Figure 2.8. Each residual block is characterized by kernel size (k)
and dilation rate (d). The dilation rate controls the spacing between elements considered
by the filter, allowing the model to increase the receptive field without extra parameters.
The residual block employs causal convolutions. This ensures that only past and current
information is considered during filtering to preserve the sequence order. Additionally,
an optional 1×1 convolution adjusts feature map dimensions before aggregation. The
dilation rate is exponentially increased across the residual blocks to progressively captures
larger temporal contexts. Lastly, one or more fully connected layers followed by a softmax
function are used to generate the prediction probabilities.

The choice between TCN and LSTM depends on the specific task and characteristics
of the data. LSTM can be a preferred for handling short sequences. Additionally, its
simpler architecture can facilitate faster development cycle. On the other hand, TCN is
well suited for dealing with very long sequences. Also, TCN can be preferred over LSTM
for projects that allow ample development time for meticulous design and optimization

2.3. OPERATIONAL STAGES OF NEURAL NETWORKS
Now that we have covered various neural network types, let us delve into the two stages of
their operation: training and inference, shown in Figure 2.9. We will discuss both these
stages from an algorithmic perspective as well as a hardware design perspective.

(a) Neural network training.

(b) Neural network inference.

Figure 2.9: Neural network operation stages.

2.3.1. NEURAL NETWORK TRAINING
The human brain contains a network of neurons and synapses, which forms its structural
foundation. However, this structure becomes adept at cognitive tasks only after it un-
dergoes a process called learning. The learning process involves modulation of synaptic
connections, adjusting their strengths in response to the learning stimuli. Thus, it imparts
cognitive abilities to the brain for processing the pertinent information, while preserving
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the brain’s structural foundation. In a similar manner, computational neural networks
have a foundational structure comprising of neuron units and weighted connections. This
structure just provides the framework for acquiring the knowledge necessary to perform
cognitive tasks. The actual development of cognitive abilities occurs through a process
known as neural network training. It involves adjusting the neural network weights in
response to training data, while keeping its underlying structure unchanged.

The neural network training process is depicted in Figure 2.9a. It begins with collect-
ing the training dataset, consisting of data samples and corresponding expected outputs.
The network then processes the training data samples and produces outputs. The ex-
tent of mismatch between network outputs and expected outputs is quantified using a
loss function. After loss function calculation, the network undergoes a process called
backpropagation. It involves calculating the gradient of loss function with respect to
network weights. This gradient indicates how much each weight should be changed to
minimize the loss function and bring the network output closer to the expected output.
The network then continuously fine-tunes its weights across several iterations through
backpropagation. With each iteration, the network outputs get closer to the desired
outputs, improving its overall accuracy. The training process ends once the desired level
of accuracy is attained. As training typically involves large training datasets and iterative
weight update calculations, it requires extensive computing resources and can also extend
over a long period of time. Hence, it is typically carried out in cloud environments due to
their scalability and abundance of hardware resources.

2.3.2. NEURAL NETWORK INFERENCE
After completing the training stage, the neural network is deployed on-field to perform
cognitive tasks using its acquired knowledge. This operational stage is known as inference.
It involves using the trained (fixed) weights of the network to process new on-field data as
shown in Figure 2.9b. For instance, consider an image recognition system performing
inference. It feeds an input image into its neural network. The network then calculates a
vector containing probabilities of the image belonging to various predefined classes. The
class with the highest score becomes the prediction output for the given image.

Inference can take place either in the cloud or on edge devices. Nowadays, there is a
growing preference for performing inference on edge devices. This is driven by several
benefits of edge processing such as reduced latency, improved privacy, and better reli-
ability. For example, consider real-time applications like autonomous vehicle or drone
navigation. In these scenarios, edge inference can provide faster response by eliminat-
ing the communication delays with the cloud. Additionally, its local data processing
can mitigate the data privacy and reliability risks associated with cloud infrastructure.
Moreover, even for non real-time services like Apple Siri where cloud reliance is not a
major issue, transitioning to edge inference can still yield benefits in terms of privacy and
security. However, limited energy resources on edge devices pose a significant challenge
in designing hardware for neural network inference on such platforms. This presents an
interesting research opportunity from hardware design perspective.
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2.4. COMPUTATION-IN-MEMORY FOR NEURAL NETWORKS
Memsristor-based computation-in-memory (CIM) has emerged as a promising comput-
ing paradigm, to achieve the energy efficiency desired for neural network inference on
edge devices. We will now delve into the fundamentals of CIM, adopting a top-down
approach. We begin with the CIM system architecture, followed by the details of CIM
vector processing unit. We then explore the design of the memristor crossbar array and
conclude with a discussion on memristor device technologies.

2.4.1. CIM SYSTEM ARCHITECTURE
A typical CIM system architecture leverages a tiled structure to exploit the inherent
parallelism in neural network computations. Such architecture is depicted in Figure 2.10.
It consists of tiles, functional units, global buffer, and global control logic. Tiles are
responsible for performing vector-matrix multiplication (VMM) operations. Functional
units perform other computations such as summing up partial outputs from tiles, pooling,
or activation function. Global buffer serves as a storage for input/output feature maps,
while global control logic governs the interactions among all system components.

Figure 2.10: CIM system architecture.

Each tile is made up of CIM-based VMM units, input buffer, output buffer, tile aggre-
gation units and control logic. This structure allows distribution of the workload across
multiple VMM units for parallel execution. Control logic regulates the operation of all the
tile components. Additionally, it synchronizes control sequences with the global control
logic. VMM units receive input data from the the input buffer. Their outputs are post-
processed by tile aggregation unit through appropriate shift-and-add operations. The
final aggregated outputs are stored in the output buffer. Each VMM unit includes control
logic, a memristive memory array called crossbar and peripheral circuits. The crossbar
holds the network weights, enabling VMM between weights and inputs (activations) in
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the analog domain. The peripheral circuits act as interface between the crossbar and the
rest of the system. They first convert digital inputs from input buffer into analog domain
to perform VMM within the crossbar. Subsequently, they convert analog VMM outputs
back into digital domain for further processing in the system. This approach allows the
VMM unit to benefit from energy-efficiency of analog computations while maintaining
compatibility with surrounding digital system.

The operation of this system can be described as follows. The global control unit first
distributes the input data from global buffer across all tiles. Each tile stores the assigned
inputs in its input buffer and feeds it into its VMM units. The partial outputs generated by
the VMM units within each tile are then combined and stored in the tile output buffers.
After all tiles finish their VMM computations, their output buffer data is consolidated by
global aggregation units. This combined data is then passed through activation and/or
pooling units and the resulting outputs are stored back in the global buffer.

2.4.2. CIM VECTOR-MATRIX MULTIPLICATION ( VMM) UNIT
We will now explore the working of CIM-based VMM unit shown in Figure 2.11, which
is the core component of CIM system architecture. It utilizes memristor-based memory
cells for data storage. These cells are arranged in a grid-like structure known as crossbar,

Figure 2.11: Illustration of the operation of CIM VMM unit with an example.
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to enable dense data storage and parallel computation. Within the crossbar, weight
matrix is stored as conductance values (G’s) within each memory cell. Due to the limited
bit-capacity of memristor devices, multi-bit weights are typically split across multiple
memory cells in a single row. For instance, a 2-bit weight is distributed across two 1-bit
memristors. This technique known as bit-slicing [30–32]. The input vector is converted
into voltages (V ’s) using digital-to-analog converters (DACs) and applied to crossbar rows.
Multi-bit inputs are often divided into smaller chunks and applied to crossbar using
time-division multiplexing, due to the limitations associated with input voltage range
and high-resolution DACs. For example, a 2-bit input is divided into single bit chunks
that are converted to voltages and applied to the crossbar rows across two timesteps

At each timestep, the current flowing through each G is equivalent to element-wise
multiplication of V ’s and G’s as per Ohm’s law. Currents from all the G’s in a column
get accumulated according to Kirchhoff’s law to produce output currents (I ’s). These
aggregated currents represent multiply-and-accumulate (MAC) operations in analog
domain. The MAC operations across all the columns together represent a partial VMM
operation (for that specific timestep). These partial VMM outputs are converted to digital
domain by analog-to-digital converters (ADCs). The ADCs are typically shared across
multiple columns due to their large pitch size compared to the crossbar. The ADC outputs
undergo shift-and-add operation to account for weight slicing across multiple columns.
An additional round of shift-and-add operations then merges this output with that of
previous timestep, to account for time-division multiplexing of input bits. The final full
precision output is obtained by repeating this process till the last timestep of input vector.

2.4.3. MEMRISTIVE CROSSBAR TYPES
We now present three types of memristive crossbar designs for CIM-based VMM unit.

ONE-RESISTOR (1R) CROSSBAR

The 1R crossbar, also known as passive crossbar, uses memory cells containing only
the memristor device as shown in Figure 2.12. Programming and reading of a specific

Figure 2.12: 1R (passive) crossbar design.
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memristor is achieved by applying suitable voltages at the bit lines (BLs) and the source
lines (SLs). Passive crossbar can achieve the best area efficiency and memory density
due to the small size of memristor devices. However, it suffers sneak path issues, where
SL and BL voltages to program/read a specific memristor also induce current flow in
other memristors of the crossbar. During write operations, sneak path current causes
an additional voltage drop along wire parasitics. This can result in write failures due to
insufficient voltage at the intended memristor. During read operations, sneak currents
from other memristors introduce deviations in the read current of the selected memristor.
This can cause read failure due to incorrect interpretation of the target memristor’s
conductance state. Thus, sneak paths present a significant challenge for widespread
adoption of 1R crossbars. This issue can be mitigated by integrating an additional selector
device in series with the memristor, giving rise to the two crossbar types discussed next.

ONE-SELECTOR AND ONE-RESISTOR (1S1R) CROSSBAR

The selector is basically a device with bidirectional diode-like I–V characteristics [33].
The memory cells in 1S1R crossbar integrate such a selector device in series with each
memristor as shown in Figure 2.13. This eliminates the sneak path issue. Moreover,
the selector device can be stacked on top of the memristor, potentially yielding a high
memory density and small area footprint. However, development of selector devices
that meet the desired performance requirements remains a significant challenge. This
limitation hampers the widespread adoption of 1S1R arrays.

Figure 2.13: 1S1R crossbar design.

ONE-TRANSISTOR AND ONE-RESISTOR (1T1R) CROSSBAR

This crossbar incorporates memory cells composed of transistors in series with the mem-
ristors as shown in Figure 2.14. It requires additional control lines, known as word lines
(WLs), to selectively activate or deactivate the transistors. This approach effectively miti-
gates the sneak paths, ensuring accurate programming and reading of the memristors.
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Figure 2.14: 1T1R crossbar design.

Although the inclusion of a transistor in each memory cell leads to a larger area foot-
print for 1T1R crossbar, it still remains the most preferred choice in CIM designs. This
widespread adoption is driven by maturity CMOS fabrication processes, enabling by
high-yield production of large-scale 1T1R crossbars.

2.4.4. MEMRISTOR DEVICE TECHNOLOGIES
We will now discuss the device technologies used for implementing memristors in the
crossbar memory cells. We focus on the four most prominent technologies namely RRAM,
PCM, STT-MRAM and FeFET, followed by an assessment of their commercial availability.

RESISTIVE RANDOM ACCESS MEMORY (RRAM)
The RRAM device is made up of an oxide material sandwiched between two metal elec-
trodes [34, 35], as shown in Figure 2.15. Its conductance can be modulated by creating
and disrupting the conductive filament (CF) composed of oxygen vacancies within the
oxide layer. The RRAM device exhibits a high conductance (logic 1) when CF connects
the electrodes, while a disrupted CF leads to low conductance (logic 0).

Figure 2.15: Resistive random access memory (RRAM) device.
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The SET process achieves high conductance state through a high electric field that
forces oxygen ions to drift towards one electrode. This leaves behind vacant oxygen sites
in oxide layer, which form CF to increase its conductivity. The RESET process leads to low
conductance state using an electric field with polarity opposite to that in SET process.
This causes oxygen ions to migrate back into the oxide layer. These ions combine with
oxygen vacancies to disrupt the CF , reducing the conductivity of oxide layer. To read
data from RRAM device without altering the stored information, a small voltage is applied
across it to detect its conductance state.

PHASE CHANGE MEMORY (PCM)
The PCM device consists of a top electrode, a phase-change material layer (e.g. Ge2Sb2Te5)
and a bottom electrode [36, 37], as shown in Figure 2.16. The phase change material ex-
hibits high conductance in crystalline phase (logic 1) and low conductance in amorphous
phase (logic 0).

Figure 2.16: Phase change memory (PCM) device.

The transition from low to high conductance state is termed the SET process. Here, a
current pulse heats the amorphous material above its crystallization threshold but below
its melting point, for a duration sufficient enough for crystallization to occur. Conversely,
transitioning from high to low conductance state involves a high-current pulse with an
abrupt trailing edge. This pulse melts the phase-change material through Joule heating,
followed by rapid cooling to solidify it in the amorphous state. To read the state of the PCM
device without disturbing its existing state, a small electrical current is passed through it
for detecting its conductance.

SPIN-TRANSFER TORQUE MAGNETIC RANDOM ACCESS MEMORY (STT-MRAM)
The STT-MRAM device consists of an oxide barrier sandwiched between two ferromag-
netic layers [38], as shown in Figure 2.17. One ferromagnetic layer (called reference layer)
maintains a fixed magnetic field direction, while the other ferromagnetic layer (called
free layer) has a programmable magnetic field direction. A parallel (P) alignment of mag-
netic fields in these layers yields high conductance (logic 1), while an anti-parallel (AP)
alignment results in low conductance (logic 0).

Data is written to the STT-MRAM device using current, which must exceed a minimum
threshold value to switch the magnetic field direction of the free layer. For the SET
operation (changing from AP to P orientation), a write current surpassing this threshold
flows from the reference layer to the free layer. The reference layer acts as a spin filter,
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Figure 2.17: Spin-transfer torque magnetic random access memory (STT-MRAM) device.

only allowing electrons aligned with its magnetic field to pass through. These filtered
electrons then apply spin-transfer torque to the free layer, altering its magnetic field
direction. This results in parallel orientation of the two magnetic layers, which leads to
high conductance [39, 40]. In the RESET operation (changing from P to AP orientation), a
write current above the threshold flows from the free layer to the reference layer. Out of
the electrons emerging from the free layer, reference layer reflects back those with spins
opposite to its magnetic field. Such reflected electrons apply spin-transfer torque to the
free layer. This alters free layer magnetic field direction toward anti-parallel orientation,
resulting in low conductance [39, 40]. Reading a STT-MRAM device without disturbing its
existing state involves applying a small current to detect its conductance.

FERROELECTRIC FIELD-EFFECT TRANSISTOR (FEFET)
The FeFET device is basically a transistor with an additional ferroelectric (FE) layer in
the MOS structure [41], as shown in Figure 2.18. The polarization of FE layer can be
modulated by applying gate to source voltage (|VGS|) exceeding a coercive voltage (VC).
The device manifests high conductance (logic 1) if FE layer polarization helps in channel
formation, while exhibits low conductance (logic 0) if it opposes channel formation.

Figure 2.18: Ferroelectric field-effect transistor (FeFET) device.

In an nMOS-based FeFET (n-FeFET), SET process involves a positive VGS (VGS>VC)
to polarize FE layer in the direction pointing to the channel. This assists the electrons in
the substrate to form a channel, leading to high conductance state. Conversely, RESET
process uses a negative VGS (|VGS|>VC) to polarize the FE layer in the direction pointing
to the gate terminal. This obstructs the electrons from forming a channel, resulting in
low conductance state. Similar concept can be directly extended to a pMOS-based FeFET
(p-FeFET). Reading the data from FeFET device without disturbing its state involves
applying a small read voltage at its gate to sense the drain-to-source current (IDS) [42].
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FABRICATION PROCESSES

Commercial fabrication processes for memristor technologies are now available from
leading manufacturers like TSMC, Intel, STMicroelectronics, Globalfoundries, and Sam-
sung as shown in Table 2.1. The RRAM process examples include TSMC 40/28/22 nm
RRAMs [43–45], along with Intel 22 nm RRAM [46]. The advancements for PCM are
evident with TSMC 40 nm PCM [47] and STMicroelectronics 28 nm PCM [48]. The
STT-MRAM technology has seen progress with TSMC 22 nm STT-MRAM [49], Intel 22
nm STT-MRAM [50], Globalfoundries 22 nm STT-MRAM [51], and Samsung 28 nm STT-
MRAM [52]. Lastly, Globalfoundries has made notable advancements in FeFET technology
with implementations at 28 nm and 22 nm [53, 54].

Table 2.1: Examples of commercial fabrication processes for memristor device technologies.

Memristor device Fabrication process

RRAM TSMC 40/28/22 nm [43–45], Intel 22 nm [46]

PCM TSMC 40 nm [47], STMicroelectronics 28 nm [48]

STT-MRAM TSMC 22 nm [49], Globalfoundries 22 nm [51],
Intel 22 nm [50], Samsung 28 nm [52]

FeFET Globalfoundries 28/22 nm [53, 54]

The industry-mature memristor fabrication processes typically offer 1-bit storage
per memristor. Multi-level cell capability, where a single memristor stores multiple bits
using intermediate conductance states, has drawn particular interest from the research
community. Efforts in this direction have shown promising results for RRAM and PCM
technologies [55, 56]. This signifies a pivotal step towards enhancing memory density of
CIM architectures.
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3.1. INTRODUCTION
Heart plays an important role in human survival and any heart-related disorders, com-
monly known as cardiovascular diseases (CVDs), can present a significant danger to
human life. CVDs are reported to be one of the leading causes of death worldwide [17]
and are estimated to cause up to 23 million deaths by 2030 [58]. Diagnosis of CVDs at an
early stage can facilitate timely medical treatment and greatly reduce CVD-related health
risks. Such early diagnosis can be achieved by detecting the abnormal activity of the heart
known as arrhythmia. There exist several types of arrhythmia based on the manner in
which the heart activity deviates from its normal behavior. Timely detection of various
types of arrhythmia requires monitoring of the activity of the heart. Wearable healthcare
devices provide the most convenient way of achieving such monitoring. These devices are
equipped with sensors that can record the heart activity in the form of electrocardiogram
(ECG) signal. The task of identifying various types of arrhythmia is then expressed as the
classification of heartbeats in the recorded ECG signal into different arrhythmia types
(classes). As neural networks are inherently best suited for such classification tasks, these
devices use neural networks as ECG classifiers to automatically identify various types of
arrhythmia.

The neural network-based ECG classifier in a wearable healthcare device should
have high classification accuracy to detect various arrhythmia types correctly. Moreover,
it has to be energy-efficient as wearable healthcare devices are battery-powered and
thereby have limited energy resources. Its classification outputs should also indicate
the severity impact of detected arrhythmia classes which can help the users in knowing
how urgently they need to seek medical attention, which can potentially prove to be life-
saving. However, state-of-the-art neural network-based ECG classifiers fail to meet these
requirements. Many works have adopted neural networks with a large number of layers
to obtain high accuracy [59–61]. This results in high energy consumption as such big
neural networks require a lot of hardware resources. Most of the existing works just focus
on developing ECG classification models without taking into account the implications
on hardware performance metrics such as energy [62–70]. Moreover, none of them take
the severity impact into account. Hence, there is a strong need for ECG classification
hardware that can deliver high accuracy and energy efficiency while also considering
severity impact.

In this work, we address the challenge of designing a severity-based, accurate, and
energy-efficient ECG classifier. We first create a classification architecture that consists of
multiple small sub-classifiers connected in a hierarchical manner instead of a single large
and complex classifier. Each sub-classifier deals with only a subset of arrhythmia classes
which leads to good accuracy. This hierarchical design also allows us to activate various
sub-classifiers only when needed, thereby saving energy. The proposed architecture uses
a novel severity-based activation structure for sub-classifiers. The top levels of the hierar-
chy indicate how quickly the user should seek medical attention. The bottom hierarchical
levels help the doctors in diagnosis (the process of finding the physiological root cause of
arrhythmia) and then prescribing treatment (medicines, medical procedures, etc.) for ar-
rhythmia based on the diagnosis. Moreover, we propose a hardware design methodology
for each internal sub-classifier using the most energy-efficient neural network while still
ensuring good accuracy. This hardware design is based on the computation-in-memory
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(CIM) paradigm which uses emerging memory technologies such as resistive random
access memory, also known as memristors, to provide higher energy efficiency compared
to conventional von Neumann architecture-based implementation for neural networks.
Our key contributions are summarized as follows:

• We develop a hierarchical classification architecture that breaks down the full
classification task into smaller sub-tasks to achieve high accuracy and activates
various architectural components only when required in order to save energy.

• We propose a severity-based activation structure that helps the users in seeking
timely medical attention as well as helps the medical professional in speeding up
the diagnosis and treatment.

• We provide a methodology for the hardware design of various components in the
hierarchical ECG classification architecture using memristor-based computation-
in-memory paradigm to achieve the best balance between energy efficiency and
accuracy.

Simulation results show that the proposed architecture consumes an average energy of
0.11 µJ per heartbeat classification and requires 0.11 mm2 area, which results in 25× less
average energy consumption and 12× less area compared to the state-of-the-art while
maintaining high accuracy.

3.2. CARDIAC ARRHYTHMIA

3.2.1. BASICS
The human heart is made up of four chambers. The upper two chambers are called atria
and the lower two chambers are called ventricles. These chambers undergo contraction
and relaxation in a periodic manner. This activity can be recorded as a graph of voltage
versus time known as electrocardiogram (ECG). A single ECG recording contains multiple
cycles of contraction and relaxation of the heart chambers. These cycles are known as
ECG beats. A visualization of an ECG beat is shown in Figure 3.1 which begins with the
contraction of atria represented by ‘P’. This is followed by relaxation of the atria and
contraction of the ventricles observed as the ‘QRS’ complex. ‘Q’ wave represents the

Figure 3.1: Illustration of ‘PQRST’ cycle for an ECG beat, where P: atrial contraction, Q: interventricular septum
contraction, R: ventricular contraction (main mass), S: ventricular contraction (at heart’s base), and
T: ventricular relaxation. Atrial relaxation is obscured by QRS complex.
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Table 3.1: AAMI [73] grouping of ECG arrhythmia classes in MIT-BIH dataset [71]

AAMI Class Arrhythmia Class

Normal (N)

Normal Beat (N)

Left Bundle Branch Block Beat (L)

Right Bundle Branch Block Beat (R)

Atrial Escape Beat (e)

Nodal (Junctional) Escape Beat (j)

Supraventricular
Ectopic Beat (S)

Atrial Premature Beat (A)

Aberrated Atrial Premature Beat (a)

Nodal (Junctional) Premature Beat (J)

Supraventricular Premature Beat (S)

Fusion Beat (F) Fusion of Ventricular and Normal Beat (F)

Ventricular
Ectopic Beat (V)

Premature Ventricular Contraction (V)

Ventricular Escape Beat (E)

Unknown Beat (Q)
Paced Beat (/)

Fusion of Paced and Normal Beat (f)

Unclassifiable Beat (Q)

contraction of the interventricular septum. ‘R’ wave indicates the contraction of the main
mass of the ventricles. ‘S’ wave denotes the contraction of the ventricles at the base of
the heart. The beat ends when the ventricles undergo relaxation denoted as ‘T’. When a
recorded ECG beat deviates from its expected normal behavior, it represents the abnormal
activity of the heart chambers called arrhythmia. There exist several different classes
(types) of arrhythmia based on the exact manner in which the recorded ECG beat deviates
from its normal behavior. For instance, MIT-BIH Arrhythmia dataset [71] (provided
through PhysioNet [72]) consists of 15 arrhythmia classes which are further grouped into
5 superclasses by Association for the Advancement of Medical Instrumentation (AAMI) [73]
as shown in Table 3.1. The arrhythmia classes can be distinguished from each other (as
well as the normal heart activity) by using different features of the ‘QRS’ complex such as
timing, amplitude, etc. Hence, the ‘QRS’ complex in an ECG beat plays a crucial role in
identifying arrhythmia classes.

3.2.2. DETECTION
Activity of the heart should be regularly monitored for timely detection of arrhythmia.
This involves recording the ECG signal and identifying the types of abnormal beats in it.
Various approaches used for such monitoring are as follows:

• Manual: In this case, medical professionals record the ECG signal at the hospital and
identify the abnormal beats by visual inspection. This requires frequent visits to the
hospital which are time-consuming and inconvenient for most people. Moreover,
arrhythmia may get detected late as there is no monitoring of the heart activity in
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the time span between successive hospital visits.

• Semi-automated: Problems such as inconvenience in frequent hospital visits and
late arrhythmia detection in the manual approach can be solved by using wearable
healthcare devices. Such devices allow the monitoring of heart activity without
hospital visits. These devices contain sensors that can directly record the ECG signal
and are also equipped with hardware that can identify the types of abnormal beats.
If the hardware in such devices uses traditional machine learning techniques (which
do not involve neural networks) like support vector machine [74], the features have
to be first manually extracted from the ECG recording and provided as inputs to
the device. Hence, such an approach is known as semi-automated. It suffers from
poor classification performance due to the imprecise nature of manual feature
extraction.

• Fully automated: The need for manual feature extraction in the semi-automated
approach can be eliminated by using neural networks. They are inherently capable
of extracting the features from ECG recordings and then performing classification
based on the extracted features. Hence, this approach is called fully automated.
Moreover, automatic feature extraction results in superior classification perfor-
mance compared to manual feature extraction. This can prove crucial for correct
diagnosis and timely treatment.

Hence, neural network-based fully automated ECG classification is the most effective
approach to building smart arrhythmia detection solutions. The generic flow for the
development of neural network-based ECG classification solutions is shown in Figure 3.2.
The recorded ECG data is pre-processed to remove the noise and enhance the regions of
interest such as the ‘QRS’ complex in each ECG beat. It is then divided into a training set,
a validation set, and a test set. The neural network training and hyperparameter tuning
is performed using the training set and validation set, respectively. The classification
performance of the trained network is then evaluated using the test set followed by the

Figure 3.2: Development flow for neural network-based ECG classification.
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model deployment once the performance on the test set is deemed satisfactory.

3.3. PROPOSED METHODOLOGY

3.3.1. SEVERITY-BASED CLASSIFICATION APPROACH
A medical disorder represents improper functioning of a certain organ in the human body
and has various subtypes based on the manner in which the malfunctioning occurs in
that organ. For instance, arrhythmia is a disorder that indicates improper functioning
of the heart, and there exist different arrhythmia subtypes based on which part of the
heart is affected as well as the way in which it is affected. The disorder subtypes differ in
severity impact based on the extent to which they obstruct the organ’s normal functioning.
Severe subtypes may highly impact the organ leading to life-threatening situations, while
others may have a minor impact leading to just a temporary inconvenience. The severity
impact determines the urgency with which a person should seek medical help for certain
disorder subtypes. For example, severe subtypes may need medical attention immediately
while the non-severe ones may need it within a few days. Moreover, the desired speed
of diagnosis and treatment is also governed by the severity impact. For instance, severe
subtypes may need faster diagnosis and treatment to prevent further damage to health
over time, while such a speedup may not be necessary for the non-severe subtypes.

The influence of severity impact on the urgency in seeking medical attention as
well as the speed of diagnosis and treatment can be leveraged to create severity-based
classification with a two-level hierarchical structure as shown in Figure 3.3. First level of
the hierarchy is intended for the user of the wearable device and indicates how urgently
one needs to seek medical attention. Knowing the severity impact alone would suffice
for this purpose, without knowing the exact disorder subtype. Hence, we can group the
disorder subtypes into four broad classes based on their severity impact as follows:

• Normal: This class represents normal working of the human body and does not
require any medical attention.

• Mild: This class includes disorder subtypes that have a very minor impact on
normal organ functioning and do not lead to life-threatening scenarios over time. It
is advisable to schedule a checkup in the upcoming few days if this class is detected.

• Moderate: This class includes disorder subtypes that have a minor impact on nor-

Figure 3.3: Severity-based hierarchical classification for a wearable device monitoring a medical disorder.
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mal organ functioning at onset, but can potentially cause life-threatening scenarios
over time. It requires faster medical attention than mild class, but not immediately.

• Severe: This class includes disorder subtypes that can significantly affect normal
organ functioning at onset and are very likely to lead to life-threatening scenarios.
It requires immediate medical attention upon detection.

Such a grouping can potentially improve the classification accuracy as the wearable de-
vice needs to detect only four broad classes instead of tens of subtypes of the considered
medical disorder. Moreover, as the number of output classes is reduced, a smaller neural
network can be used to reduce energy consumption while still maintaining high accu-
racy. The second level of this hierarchy is intended for speeding up the diagnosis and
treatment. This can be achieved if the wearable device detects the exact disorder subtype
and presents this information to the medical professional. Such speedup is only required
for disorder subtypes that are either life-threatening from the onset or which become
life-threatening over time. Hence, we need to only detect the disorder subtypes which
are grouped together into moderate and severe classes at hierarchical level-1. As a result,
hierarchical level-2 only consists of subtypes of moderate class and subtypes of severe
class. We refer to the process of detecting the disorder types contained within a broad
level-1 class as finer classification. As discussed earlier, it is clear that finer classification
is only required for moderate and severe classes in level-1. Finer classification becomes
redundant and is not required for mild class as everything will be thoroughly examined in
a full checkup. Also, there is no need for finer classification of normal class as it needs no
medical attention. As finer classification is not required for all disorder subtypes, this also
simplifies the classification task as well as the hardware design providing further accuracy
and energy efficiency benefits.

For this work, Table 3.2 shows the mapping of arrhythmia classes (subtypes) in the MIT-
BIH arrhythmia dataset [71] to our severity-based classification structure. The rationale

Table 3.2: Severity-based ECG classification hierarchy for arrhythmia classes in MIT-BIH dataset, with details
regarding advice for medical attention and need of finer classification.

Hierarchical Class MIT-BIH Dataset Class Advice for Medical Attention Finer Classification

Normal
Normal Beat (N)

No medical attention required. Not required.
Paced Beat (/)

Mild

Left Bundle Branch Block Beat (L)

A checkup in the upcoming days. Not required.Right Bundle Branch Block Beat (R)

Atrial Escape Beat (e)

Nodal (junctional) Escape Beat (j)

Moderate

Atrial Premature Beat (A)

Medical attention within a few hours. Required.
Aberrated Atrial Premature Beat (a)

Nodal (junctional) Premature Beat (J)

Supraventricular Premature Beat (S)

Ventricular Escape Beat (E)

Severe

Fusion of Ventricular and Normal Beat (F)

Medical attention immediately. Required.Premature Ventricular Contraction (V)

Fusion of Paced and Normal Beat (f)

Unclassifiable Beat (Q)
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behind this mapping can be explained as follows [75, 76]:

• “N" beats belong to the normal class as they represent the normal working of the
heart. Moreover, "paced" beats (/) also belong to the normal class as they indicate
the normal working of the heart when aided by a pacemaker.

• “L", “R", “e", “j" beats belong to mild class because even though they deviate from
perfectly normal beats (“N" and “paced"), they do not affect the functioning of the
heart significantly and do not result in life-threatening scenarios over time.

• “A", “a" and “S" beats are related to improper functioning of atria which do not
contribute significantly to the blood circulation process, while “J" and “E" beats
indicate only a minor impact on ventricles which are vital for blood circulation.
Hence, these beats have little impact on proper heart functioning at the onset.
However, they can potentially lead to life-threatening scenarios over time and
hence belong to the moderate class.

• “V" beat arises due to abnormal functioning of ventricles which are vital for blood
circulation and indicates danger to human life. “F" and “f" beats represent superim-
position of cardiac cell potentials which can also lead to life-threatening scenarios.
Hence, “V", “F" and “f" belong to the severe class. Moreover, we conservatively
include unclassifiable beat (“Q") in severe class as its exact nature is not clear.

3.3.2. HIERARCHICAL HARDWARE ARCHITECTURES
Human health often falls within normal and mild classes, outnumbering instances of
moderate and severe classes. When health deteriorates to moderate or severe class, in-
dividuals seek medical intervention and return to normal or mild classes. Thus, ECG
classifier predominantly deals with normal and mild classes, while encountering mod-
erate and severe classes infrequently. This presents an opportunity to enhance energy
efficiency by employing a hierarchical architecture of smaller classifiers. Each classifier
would be dedicated to a specific subset of arrhythmia classes, leveraging the following
strategy:

• Activate classifiers dealing with infrequent classes only when necessary. This con-
serves energy by keeping them inactive for extended periods.

• Simplify the design of classifiers handling frequent classes (e.g. by using smaller or
simpler neural networks) to further reduce energy consumption.

This approach leads to four possible architectures for our severity-based hierarchy as
shown in Table 3.3, discussed next.

ARCHITECTURE-1
This is the simplest architecture for the severity-based ECG classification. Classifier-1
classifies the input into four classes: normal, mild, moderate and severe. Classifier-2 and
classifier-3 classify moderate and severe classes further into their subtypes. Classifier-1
activates classifier-2 or classifier-3 when it detects moderate or severe class.
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Name Architecture Structure

Architecture-1

Architecture-2

Architecture-3

Architecture-4

Table 3.3: Possible hardware architectures for severity-based ECG classification. ECG input data is indicated
by red arrows, while the blue arrows represent classification outputs that also act as enable signals.
Classifier names are shown in brackets, where the classifiers present in different architectures but
having the same output classes are given the same name.

This architecture leads to energy savings as classifier-2 and classifier-3 remain inactive
for most of the time. As classifier-1 is always on, it needs to use a smaller neural network
to improve energy efficiency. Moreover, high accuracy for classifier-1 is important as its
output advises the user about seeking medical help. However, a small neural network
may not lead to high accuracy for classifier-1. Hence, there is a potential challenge
of simultaneously achieving high accuracy and energy efficiency for classifier-1 in this
architecture.

ARCHITECTURE-2
Architecture-2 can facilitate high accuracy with a small neural network for classifier-1
by using only three classes. This is achieved by grouping moderate and severe classes
into a single abnormal class for classifier-1 and using an additional classifier-2 to split the
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abnormal class into moderate and severe classes. Classifier-2 activates classifier-3 and
classifier-4 to classify moderate and severe classes further into their subtypes.

This architecture can potentially achieve high accuracy and low energy consumption
for classifier-1 by using a smaller neural network, as classifier-1 now handles three classes
unlike four classes in architecture-1. However, this architecture requires a total of four
classifiers instead of three classifiers in architecture-1 which can increase overall energy
consumption.

ARCHITECTURE-3
Architecture-3 can reduce the number of classifiers from four (in architecture-2) to three,
while still maintaining only three classes in classifier-1. This is achieved by making
classifier-2 handle six classes: five of them being subtypes of moderate (A, a, J, S, E) and
sixth being the severe class. Thus, classifier-1 still handles three classes: normal, mild, and
abnormal. It activates classifier-2 if it detects abnormal class. Classifier-2 then classifies
abnormal class into six classes: A, a, J, S, E, and severe. If classifier-2 detects severe class
then it activates classifier-3 which further classifies the severe class into its subtypes.

This architecture can retain all the benefits of classifier-1 in architecture-2 while
reducing the overall energy consumption compared to architecture-2 as it needs only
three total classifiers unlike four total classifiers in architecture-2. However, classifier-2
in this architecture has to deal with six classes unlike classifier-2 in architecture-2 which
deals with only two classes. This can result in reduced accuracy.

ARCHITECTURE-4
Architecture-4 provides another way of reducing the total number of classifiers in architecture-
2 by making classifier-2 handle five classes: four of those being subtypes of severe (F, V,
f, Q) and the fifth one being the moderate class. Classifier-1 still has to deal with only
three classes: normal, mild, abnormal and activates classifier-2 if it detects the abnormal
class. Classifier-2 then classifies abnormal into five classes: F, V, f, Q, and moderate. If
classifier-2 detects moderate class then it activates classifier-3 which further classifies
moderate into its subtypes.

Classifier-1 in this architecture provides the same benefits as classifier-1 in architecture-
3. However, classifier-2 and classifier-3 remain on for significantly more amount of time
compared to those in architecture-3 as moderate classes occur more frequently than
severe ones. This makes architecture-4 a worse version of architecture-3 in terms of
energy efficiency. Hence, we do not select architecture-4, and it is just included here for
completeness purpose.

3.3.3. ARCHITECTURE SELECTION PROCESS
Our goal is to select the appropriate architecture out of those presented in the previous
section, considering accuracy and energy consumption. We can rule out architecture-4
as discussed in the previous subsection, which leaves us with architecture-1, architecture-
2, and architecture-3 as possible choices. Table 3.4 lists various classifier components
needed for implementing architecture-1, architecture-2, and architecture-3. We assign
names (C1, C2....C6) to the individual classifier components to make it easy to refer
to a particular classifier. The architecture selection process consists of two phases as
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Table 3.4: List of classifier components required for various architectures.

Classifier Output Classes Used in

C1 Normal, Mild, Moderate, Severe Arch1

C2 Normal, Mild, Abnormal Arch2, Arch3

C3 Moderate, Severe Arch2

C4 Moderate Subtypes (A, a, J, S, E) and Severe Arch3

C5 Moderate Subtypes (A, a, J, S, E) Arch1, Arch2

C6 Severe Subtypes (F, V, f, Q) Arch1, Arch2, Arch3

depicted in Figure 3.4. In the first phase, our goal is to select an architecture that results
in better accuracy on abnormal (moderate and severe) classes. This is governed by
classifier C1 for architecture-1 and classifier C2 for architecture-2 as well as architecture-3.
Thus, if classifier C1 is better at detecting abnormal classes then we select architecture-1.
Otherwise, we discard architecture-1 and perform further exploration to select either
architecture-2 or architecture-3 in the second phase.

The selection between architecture-1 and architecture-2 in the first phase depends on
the choice between C1 and C2 as follows:

• If C1 has a significantly higher accuracy than C2, then select architecture-1.

• If C2 turns out to be significantly more accurate than C1, then select architecture-2.

• If C1 and C2 have similar overall accuracy, select architecture-1 if C1 performs better

Figure 3.4: Architecture selection process.
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Figure 3.5: Design space exploration flow for implementing a given hierarchical hardware architecture.

on moderate and severe classes (life-threatening scenarios). Otherwise, choose
architecture-2 if C2 excels in these classes.

• If C1 and C2 have similar overall and critical (moderate and severe classes) accuracy,
select the architecture that uses more energy-efficient classifier.

If we end up selecting architecture-2, the second phase involves comparing architecture-2
and architecture-3 based on classifiers C3 and C4 as follows:

• If C3 turns out to be significantly more accurate than C4, we select architecture-2.

• If C4 has much higher accuracy than C3, we select architecture-3.

• If C3 and C4 have similar overall accuracy, then select architecture-2 if C3 has higher
accuracy on severe class (life-threatening), otherwise select architecture-3 if C4 has
higher accuracy on severe class.

• If C3 and C4 have similar overall and critical (severe class) accuracy, choose the
architecture that uses the less energy consuming classifier out of these two.

Thus, we have defined clear selection criteria for the architectures. To use it, we have
to determine the topology and network configuration for each classifier which provides
the best balance between accuracy and energy efficiency when implemented in CIM
hardware. This is achieved by design space exploration as shown in Figure 3.5 across four
types of neural networks: fully-connected network (FC) [77, 78], long short-term memory
network (LSTM) [79, 80], bidirectional long short-term memory network (BLSTM) [81, 82]
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and temporal convolutional network (TCN) [83, 84]. We first list the various classifiers
needed for a given hierarchical hardware architecture. We then choose a classifier from
this list and implement it using all four aforementioned network types (FC, LSTM, BLSTM
and TCN) so that each network achieves its maximum possible accuracy. Energy con-
sumption for all four resulting networks is then estimated by considering a CIM-based
hardware implementation. Finally, we select the network (FC or LSTM or BLSTM or
TCN) which provides the best balance between accuracy and energy consumption for the
classifier. This process is repeated for all the classifiers required in the given architecture.
Standard convolutional neural network (CNN) [85] is not included for this design space
exploration as we already consider TCN, which is an advanced form of CNN that deals
more effectively with time series data like ECG. For completeness, we will compare our
hierarchical ECG classification with state-of-the-art CNN-based ECG classification in
Section 3.5.

3.4. SIMULATION SETUP

3.4.1. PERFORMANCE METRICS
Performance metrics for the evaluation of our hierarchical ECG classification are consid-
ered at two levels: algorithmic and hardware, described in detail as follows:

ALGORITHMIC METRICS

• Accuracy: It is the ratio of the total number of correctly classified beats to the total
number of input beats, expressed as a percentage.

• Critical Accuracy: We define critical classes as a subset of the total output classes
that can be more life-threatening and hence considered more important. Table 3.5
defines critical classes for various classifiers required in severity-based classification
architectures presented in Section 3.3.2. The concept of critical classes is only appli-
cable to classifiers that handle at least one of the broad classes (normal, abnormal,
mild, moderate, and severe) which are fundamentally based on severity differences.
It is not applicable to classifiers that only handle subtypes of moderate or subtypes
of severe as the subtypes indicate similar severity levels. We now define critical
accuracy as the ratio of the total number of correctly classified beats belonging to
the critical classes to the total number of input beats belonging to the critical classes.

Table 3.5: Critical class definitions for classifiers.

Classifier Output Classes Critical Classes

C1 Normal, Mild, Moderate, Severe Moderate, Severe

C2 Normal, Mild, Abnormal Abnormal

C3 Moderate, Severe Severe

C4
Severe and

Moderate Subtypes: A, a , J, S, E
Severe

C5 Moderate subtypes (A, a, J, S, E) -

C6 Severe subtypes (F, V, f, Q) -
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For instance, consider classifier C1 in Table 3.5 with four output classes: normal,
mild, moderate, and severe. As moderate and severe can lead to life-threatening
scenarios, they are considered critical classes. Critical accuracy for classifier C1 can
then be obtained as follows:

Critical accuracy for C1 (%) =100× Correctcrit

Totalcrit

Correctcrit: Correct classified moderate and severe beats
Totalcrit: Total input moderate and severe beats

HARDWARE METRICS

• Energy: As wearable healthcare devices are battery-powered, the energy consumed
by the CIM-based ECG classifier is an important hardware performance metric.

• Area: Apart from energy efficiency, wearable healthcare devices should be compact
in size. Hence, the area occupied by the CIM-based ECG classifier is considered
another hardware performance metric.

3.4.2. SIMULATION PLATFORM
We use the MIT-BIH arrhythmia dataset [71] available in Physiobank [72] for our simula-
tion experiments. It consists of ECG recordings from 48 patients across 15 arrhythmia
types. The distribution of ECG beats for each of the arrhythmia types is given in Table 3.6.
As this work focuses on ECG classification and not on QRS peak detection, we directly
use the QRS peak annotations available in the MIT-BIH dataset. QRS peak detection at
runtime can be achieved by algorithms like Pan-Tompkins algorithm [86] which can also
be implemented in hardware [87].

Accuracy and critical accuracy are evaluated by implementing the neural networks
using PyTorch [88] with RMSProp [89] optimizer. The details of the used neural networks
are described below. Please note that only the number of output neurons (nout) varies
from two to six based on which classifier is being implemented, the rest stays the same.

• Fully-connected network (FC) [77, 78]: It has an input layer of 250 neurons, a hidden
layer of 100 neurons, and nout output neurons. FC network can thus be expressed
as 250-100-nout. The activation function used is ReLU.

• Long short-term memory network (LSTM) [79, 80]: An input sequence of 250
samples is fed to two cascaded standard LSTM units, each having a hidden state
size of 30. The output from the last LSTM unit corresponding to the final timestep
is flattened and connected to an output layer consisting of nout neurons. LSTM
structure can be expressed as 250-LSTM(30)-LSTM(30)-Flatten-nout.

• Bidirectional long short-term memory network (BLSTM) [81, 82]: Its structure is
exactly the same as the LSTM described earlier, with standard LSTM units being
replaced by their bidirectional version. BLSTM structure can be expressed as 250-
BLSTM(30)-BLSTM(30)-Flatten-nout.
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Table 3.6: Distribution of ECG Beats in MIT-BIH arrhythmia dataset.

MIT-BIH Arrhythmia Class No. of Beats

Normal Beat (N) 75022

Paced Beat (/) 7025

Left Bundle Branch Block Beat (L) 8072

Right Bundle Branch Block Beat (R) 7255

Atrial Escape Beat (e) 16

Nodal (junctional) Escape Beat (j) 229

Atrial Premature Beat (A) 2546

Aberrated Atrial Premature Beat (a) 150

Nodal (junctional) Premature Beat (J) 83

Supraventricular Premature Beat (S) 2

Ventricular Escape Beat (E) 106

Fusion of Ventricular and Normal Beat (F) 802

Premature Ventricular Contraction (V) 7129

Fusion of Paced and Normal Beat (f) 982

Unclassifiable Beat (Q) 33

Total Heartbeats 109452

• Temporal convolutional network (TCN) [83, 84]: It is provided with a 250 sample
long single channel input sequence. This sequence is fed into a cascade of six
temporal blocks. The convolutions within each temporal block have a kernel size
of four and 20 output channels. Output from the last temporal block corresponding
to the final timestep is flattened and connected nout neurons in the output layer.
TCN structure can be expressed as 250-TB1-TB2-TB3-TB4-TB5-TB6-Flatten-nout,
where TBn represents nth temporal block.

We split the ECG data as 60% for the training set, 20% for the validation set, and 20% for
the test set. The networks are trained using the training set and the validation set is used
for hyperparameter tuning. The test set is not exposed to the network during training or
the hyperparameter tuning process. It is used only after the network is fully trained and
tuned. All the accuracy and critical accuracy results are presented for the test set so that
they correctly reflect the generalization performance on unseen test data.

We have developed a Python-based framework to estimate energy and area for neural
networks using computation-in-memory hardware known as ISAAC presented in [30]. Its
main building block is shown in Figure 3.6. The full-precision neural network weights and
inputs are split into smaller bit-size chunks called slices. This is because i) the bit-capacity
of memristor devices is typically less than bit-size needed for neural network weights
and ii) digital-to-analog converters (DACs) and analog-to-digital converters (ADCs) with
high bit-resolutions consume high energy and area. For example, as shown in Figure 3.6,
2-bit slices of the weights are converted to conductances and mapped to memristors
in different crossbar columns, while 1-bit slices of the inputs are converted to voltages
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Figure 3.6: Computation-in-memory design for vector-matrix multiplication.

and mapped to different time-steps in which they are applied to the crossbar. With 1-bit
DACs and 16-bit digital inputs as an example, 1-bit is fed at a time to all the DACs and
this process is repeated 16 times (called 16 timesteps). The DACs convert the bits into
equivalent voltage which produces a current at the output of every column in the crossbar.
These currents are latched into sample and hold circuits (S&H) and then converted to
digital outputs by ADCs. The outputs of ADCs belong to various weight slices based on
which column they come from, and to different input data slices based on which timestep
they belong to. To account for the slicing of weights across different crossbar columns,
ADC outputs undergo shift and add operations across columns. Moreover, to account for
time-multiplexed inputs (1-bit at a time), the shifted and added ADC outputs undergo
another round of shift and add operations for merging with the outputs from previous
timesteps to produce the full-precision digital output. We estimate the energy and area
for neural networks using the design in [30] which utilizes this functionality.

3.5. SIMULATION RESULTS

3.5.1. HIERARCHICAL ARCHITECTURE DESIGN
As discussed in Section 3.3.3, we break the task of selecting the appropriate architec-
ture into two phases. In the first phase, we make a choice between architecture-1 and
architecture-2. The selection process stops if architecture-1 is selected. Otherwise, we pro-
ceed to the second phase to make a selection between architecture-2 and architecture-3,
as our final choice.

For the first phase, the choice between architecture-1 and architecture-2 is governed
by the comparison of classifiers C1 (Normal vs Mild vs Moderate vs Severe) and C2
(Normal vs Mild vs Abnormal) described in Table 3.4. We implement both C1 and C2
using all four types of neural networks (FC, LSTM, BLSTM and TCN). Figure 3.7 shows the
performance metrics across various network topologies for C1 and C2. It is clear that FC
provides the best balance between accuracy and energy efficiency for both C1 and C2. FC
achieves accuracy comparable to other network topologies (LSTM, BLSTM, TCN) as the
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(a) Design space exploration for classifier C1

(b) Design space exploration for classifier C2

Figure 3.7: Comparison of classifiers C1 and C2 for selection between architecture-1 and architecture-2.

classification boundaries for ECG data seem to be simple and do not benefit much from
the extra computational powers in other topologies. The low energy consumption of FC
can be attributed to two factors:

• It needs fewer hardware resources compared to LSTM, BLTSM, and TCN as it
doesn’t involve complex computations like hidden state updates in LSTM/BLSTM
or convolution operation in TCN.

• LSTM, BLSTM, and TCN involve iterative computations such as updating the hid-
den state after each input sample (LSTM and BLSTM) or sliding convolution win-
dows across input feature maps (TCN). Thus, they use the same hardware multiple
times and total energy is the sum of energies required for each iteration. The en-
ergy consumption increases further as such iterative computation is needed for
each layer in the network. FC just requires a single non-iterative matrix-matrix
multiplication per layer, saving a lot of energy.

CNN [85] is not included in the above comparison as clarified in Section 3.3.3. Never-
theless, CNN will also suffer from high energy consumption problem like TCN because
both of them involve iterative sliding window convolution as the basic computation.
We quantitatively demonstrate this later in Table 3.7 by comparing our FC-based ECG
classification with CNN-based state-of-the-art ECG classification [59–61].
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(a) Design space exploration for classifier C3

(b) Design space exploration for classifier C4

Figure 3.8: Comparison of classifiers C3 and C4 for selection between architecture-2 and architecture-3.

Mixing network topologies into a hybrid structure can potentially yield better results
when the topologies that are being mixed have a significant difference in accuracy but
not a large difference in energy consumption. However, Figure 3.7 shows that all of these
networks deliver similar accuracy while LSTM, BLSTM, and TCN consume much more
energy than that of FC. Hence, topology mixing is not useful as it would result in adding a
large energy-consuming component to the FC network for almost no change in accuracy.

As shown in Figure 3.7, FC version of C2 achieves 2% higher critical accuracy (please
see Table 3.5 for critical classes) than the FC version of C1. This is because combining
the moderate and severe classes in C1 into a single abnormal class in C2 simplifies the
classification task, as C2 has to learn only three classification boundaries (normal vs mild
vs abnormal) unlike four classification boundaries in C1 (normal vs mild vs moderate vs
severe). Higher critical accuracy also indicates that C2 correctly detects more scenarios
where the user needs to seek medical help. Hence, we select the FC version of C2 and
thereby architecture-2 in the first phase.

Having selected architecture-2 in the first phase, we then begin the second phase
to make a selection between architecture-2 and architecture-3. This depends on the
comparison between classifiers C3 (Moderate vs Severe) and C4 (A vs a vs J vs S vs E vs
Severe) described in Table 3.4. Both C3 and C4 are implemented using all four types of
neural networks (FC, LSTM, BLSTM, and TCN) and their performance comparison across
various network topologies is shown in Figure 3.8. FC network ends up delivering the
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Figure 3.9: Design space exploration for classifier C6.

Figure 3.10: Final classifier architecture with network type and configuration annotated.

best balance between accuracy and energy efficiency for both C3 and C4, for the same
reasons as discussed while comparing C1 and C2. Also, FC versions of C3 and C4 have
almost identical performance across all the metrics. However, C4 leads to architecture-3
with a total of three classifiers while C3 leads to architecture-2 which needs a total of four
classifiers. Thus, we select C4 (its FC version) and thereby architecture-3 as it needs fewer
hardware resources and less energy, with no impact on accuracy and critical accuracy.

After finalizing architecture-3, the only remaining thing is to figure out the neural
network type and configuration to use for its remaining classifier (classifier C6 in Table 3.4)
which deals with the classification of subtypes of severe class (F, V, f, and Q). We implement
it using all four possible types of neural networks (FC, LSTM, BLSTM, and TCN) and show
their performance comparison in Figure 3.9. The FC version is selected as it provides
the best balance between accuracy and energy efficiency. Thus, our final selection is
architecture-3 with all of its classifiers being FC networks with configurations as shown in
Figure 3.10. Classifier-1, classifier-2 and classifier-3 achieve accuracy of 98.29%, 98.31%,
97.26% and energy consumption of 0.094 µJ, 0.095 µJ, 0.094 µJ, respectively. As the
selection between architecture-1 and architecture-2 depends on the choice between
classifiers C1 and C2 only, while that between architecture-2 and architecture-3 depends
on the comparison between classifiers C3 and C4 only, we have not evaluated the accuracy
of classifier C5 in Table 3.5. Moreover, as we end up selecting architecture-3 which does
not include C5, there is no further need to evaluate its accuracy.

3.5.2. PERFORMANCE EVALUATION
Performance comparison of our hierarchical ECG classification with state-of-the-art is
shown in Table 3.7. It includes [60] which represents the most accurate ECG classifica-
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Table 3.7: Comparison of the proposed hierarchical classification with state-of-the-art ECG classifiers. Values
marked with * are estimated by our framework assuming memristor-based CIM implementation.
Unavailable or not applicable values are indicated by "-".

Performance Metric Wu-IEEE Access’2019 [59] Xiao-JBHI’2022 [60] Wang-TBCAS’2019 [61] This Work

Output Classes AAMI AAMI AAMI Severity-based

Finer Classification No No No Yes

Accuracy (%) 96.06 99.10 98.40 98.29

Energy per classification (µJ) 2.78 710.00 488.81* 0.11

Area (mm2) 1.40 - 1.11* 0.11

Hardware Design Complexity High High High Low

tion and [59] which represents the most energy-efficient ECG classification for AAMI
classes among state-of-the-art works. We also include [61] in Table 3.7 as its architectural
approach (selectively turning off classification components) is close to our work.

The reported accuracy of 98.29% for the proposed ECG classification architecture
in Table 3.7 is the accuracy of classifier-1 in Figure 3.10. This is because classifier-1
classifies the ECG beats only into the broad severity classes similar to the state-of-the-art
works which classify the ECG beats into broad AAMI classes only and do not detect the
actual arrhythmia classes. The accuracy comparison in Table 3.7 shows that we achieve
classification accuracy on par with state-of-the-art ECG classification solutions. Even
though the accuracies obtained by our work and state-of-the-art works are very similar,
the classification boundaries addressed by our work are different than the state-of-the-art.
For instance, the normal beat in MIT-BIH dataset belongs to AAMI class “N", while paced
beat belongs to AAMI class “Q". However, both normal beat and paced beat in MIT-BIH
dataset belong to the same “Normal" class in our severity-based ECG hierarchy. Thus,
the accuracy results do not reflect a fair comparison. Hence, the emphasis should be
on the fact that our work achieves good accuracy on severity-based classes, rather than
comparing the absolute accuracy values.

For a heartbeat that belongs to a broad severity class or a broad AAMI class, finer
classification refers to detecting its actual arrhythmia class. For instance, once we classify
a beat into the broad severity class “Moderate”, then finer classification determines the ar-
rhythmia class of that beat out of the five classes (“A”, “a”, “J”, “S”, and “E”) contained within
the broad “Moderate” class. More details about finer classification can be found in Sec-
tion 3.3.1. As shown in Table 3.7, only the proposed severity-based architecture provides
such finer classification which can help doctors with faster diagnosis and treatment.

The energy consumption for various severity-based classes in our proposed hierar-
chical ECG classification architecture (Figure 3.10) is shown in Table 3.8. If the input
beat falls into the “Normal” or “Mild” class, only classifier-1 is active which consumes
0.094 µJ. If the input beat gets classified as the “Moderate” class, both classifier-1 and
classifier-2 get utilized consuming a total of 0.094 µJ + 0.095 µJ = 0.19 µJ. If the input beat
is identified as the “Severe” class, all classifiers get utilized consuming a total of 0.094
µJ + 0.095 µJ + 0.094 µJ = 0.28 µJ which is the worst-case energy consumption for any
single heartbeat in our architecture. For a fair comparison with state-of-the-art works
in Table 3.7 which report average energy consumption, we derive the average energy
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Table 3.8: Energy consumption and test set fraction for severity classes.

Severity
Class

Energy per
heartbeat classification

Heartbeats in
test set (N)

Fraction of test set
(N ÷ 21,891)

Normal 0.094 µJ 16410 0.75

Mild 0.094 µJ 3115 0.14

Moderate 0.19 µJ 577 0.03

Severe 0.28 µJ 1789 0.08

consumption for our architecture as the weighted average of the energy consumption
across the severity classes. Here, the weight coefficients used for averaging indicate what
fraction of total heartbeats in the test set (21,891) belongs to a specific severity class as
shown in Table 3.8. This results in an average energy consumption of 0.11 µJ per heartbeat
classification with a standard deviation of 0.052 µJ.

Table 3.7 shows that the proposed hierarchical ECG classifier consumes 25× less
energy and 12× less area compared to state-of-the-art while keeping the accuracy benefits
intact. Energy savings can be attributed to the fact that hierarchical architecture simplifies
the design, activates hardware components only when necessary, and uses computation-
in-memory which further improves energy efficiency. Area savings arise from the design
simplification due to hierarchical architecture and high scalability of memristor devices.

We have presented an architecture for ECG classification which can be transformed
into a hardware chip, where neural network algorithms are implemented as hardware
components. Hence, the complexity comparison with state-of-the-art refers to the com-
plexity of designing such a chip. The simple fully-connected (FC) neural network topology
in our proposed architecture greatly simplifies the dataflow, storage of intermittent calcu-
lations, and control logic compared to complex network topologies in [59–61]. This results
in the simplification of various chip design processes like placement, routing, and timing
analysis resulting in faster chip development. Hence, our architecture greatly reduces the
hardware design complexity compared to state-of-the-art as shown in Table 3.7.

3.6. CONCLUSIONS
This chapter proposed a severity-inclusive, accurate, and energy-efficient ECG classi-
fication, using hierarchical hardware architecture and computation-in-memory (CIM)
paradigm. The hierarchical structure achieved high accuracy by breaking down the clas-
sification task into smaller subtasks and energy efficiency by activating its components
only when needed. It also accounted for severity impact of arrhythmia classes to help
the wearable device users and also assist medical professionals. We further performed
design space exploration to implement the classification subtasks using neural networks
which provide best balance between energy efficiency and accuracy on CIM hardware.
The proposed ECG classification achieved 25× improvement in terms of average energy
consumption and 12× improvement in terms of area compared to the state-of-the-art.
Thus, we have shown that tailoring the computation architecture to characteristics of the
application and the underlying hardware can lead to significant improvements in energy
efficiency and area footprint.
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4.1. INTRODUCTION
Diabetic retinopathy (DR) refers to a condition where elevated glucose levels and blood
pressure lead to irreversible retinal damage. It is a leading cause of permanent vision
impairment across the globe, and the number of affected people is expected to reach 70
million by 2045 [18]. Moreover, every diabetic person is susceptible to the development
of DR [19]. As the vision loss caused by DR is irreversible, detecting it at an early stage
is crucial for timely treatment to prevent further retinal damage. Regular screening for
DR is essential for such early detection. Recent advancements in artificial intelligence
have paved the way for developing automated systems to provide fast, efficient, and
convenient DR screening. These systems employ neural network-based DR classifiers
to categorize retinal images into distinct screening classes, capitalizing on the inherent
proficiency of neural networks in classification tasks.

The publicly available DR datasets exhibit inherent image inconsistencies to pose a
tougher classification challenge than private ones, resulting in more robust and adaptive
models. Moreover, their wider accessibility is valuable for driving further innovation in
automated DR classification. Hence, we focus on DR classification literature based on
publicly available datasets. Such works are susceptible to reliability issues, where the
model performs well during development but exhibits poor performance upon deploy-
ment. This can arise due to several factors such as small training data size [19, 91–96],
absence of external test data [97–101], and lack of diversity in training data [102, 103].
Furthermore, the inherent class imbalance in public datasets can bias the model perfor-
mance towards majority classes. This can hinder the identification of minority DR classes
(indicating retinal damage), further aggravating the reliability concern. Additionally,
supplementary information about model prediction is crucial for widespread adoption
of automated DR classification [101, 104]. For instance, when a DR model assists hu-
man specialists in double reading [105], supplementary information bolsters specialist’s
confidence when human diagnosis matches the model prediction, and helps resolve
conflicts when these two differ. However, none of the aforementioned works provide
supplementary information about model prediction. Lastly, deploying automated DR
classification on portable edge devices can address the global scarcity of DR screening
facilities [106, 107]. This requires energy-efficient hardware design of DR classifiers to
achieve uninterrupted operation despite limited energy resources, enabling large-scale
screening programs even in remote regions. However, the aforementioned literature only
focuses on software model development while neglecting hardware design considera-
tions. Hence, there exists a pressing need for hardware solution that facilitates reliable
and energy-efficient DR screening at the edge.

In this work, we present a reliable and energy-efficient DR screening hardware tar-
geting deployment on edge devices. We first develop a reliable DR classification model
via training on a newly created custom dataset. This dataset encompasses image quality
inconsistencies, diverse image sources, and reduced class imbalance. This enables our
trained model to effectively handle real-world retinal images and perform well on minor-
ity classes, ensuring post-deployment reliability. Furthermore, we introduce a pseudo-
binary classification scheme that internally uses multiclass classification to achieve binary
screening. This enhances our model’s classification performance and also provides sup-
plementary information to aid its wider adoption. We then present energy-efficient
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hardware design of our model based on computation-in-memory (CIM) paradigm. It uses
emerging memory devices known as memristors, to perform computations directly within
the memory. This eliminates the data transfer bottleneck and provides superior energy
efficiency suitable for edge device deployment. Our key contributions are as follows:

• We develop a reliable DR classification model by using inconsistent quality images
collected from diverse sources and addressing the class imbalance problem.

• We propose a pseudo-binary classification scheme to improve the classification
performance and provide a more informative classification output.

• We present an energy-efficient hardware design for our DR classification model
using memristor-based CIM to facilitate its deployment on edge devices.

Simulation results show that we achieve reliable DR classification while consuming three
orders of magnitude less energy compared to the state-of-the-art hardware platforms.

4.2. DIABETIC RETINOPATHY

4.2.1. BASICS
Diabetic retinopathy is an irreversible condition arising from elevated glucose levels and
hypertension. It damages blood vessels in the retina and can potentially cause permanent
vision impairment. Severity of DR is assessed based on the presence of specific features,
known as lesions, within the retina. Figure 4.1 depicts the four most common lesions:
microaneurysms, hemorrhages, hard exudates, and soft exudates. They can be described
as follows [19, 108]:

• Microaneurysms (MA): These are the earliest visible signs of retinal damage. They
manifest as tiny red dots arising due to capillary dilation.

• Hemorrhages (HM): These are red spots with irregular margins and/or uneven
density. They are bigger than MA and occur due to leakage of weak capillaries.

Figure 4.1: Retinal image annotated with the four most common lesions: microaneurysms, hemorrhages, hard
exudates, and soft exudates [108].
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Table 4.1: Lesion-based diagnosis of DR classes.

DR Severity Level DR Class Lesion-based Diagnosis

No DR DR-0 No lesions

Mild non-proliferative DR-1 Only MA present

Moderate non-proliferative DR-2 MA and other lesions present
Less prominence than DR-3

Severe non-proliferative DR-3 At least one of the following present:
HM (>20 in each quadrant),

Blood spillage (>2 quadrants),
No indicators of DR-4

Proliferative DR-4 Vitreous/preretinal HM and/or NV

• Hard exudates (HE): These are yellow-white deposits in outer layers of retina caused
by leakage of plasma.

• Soft exudates (SE): These are greyish oval or round-shaped patches arising due to
the swelling of the nerve fiber. They are also called cotton wool spots.

• Neovascularization (NV): It refers to the abnormal growth of new blood vessels on
the inner surface of the retina. Such blood vessels often bleed into the vitreous
cavity and lead to obscured vision.

Table 4.1 provides mapping of the five DR severity levels (classes) defined in international
standards [109] to the composition of retinal lesions.

4.2.2. DETECTION
Conventional DR detection typically begins with pre-capture medical procedures on pa-
tients to enlarge their pupils and facilitate better coverage of the retinal area during image
capture. Skilled operators then employ specialized fundus cameras and meticulously
adjust settings such as focus, exposure, alignment, etc., to capture high-quality retinal
images. Subsequently, the severity of DR is evaluated through visual inspection of various
lesions within the captured retinal image. The advancements in artificial intelligence
have opened avenues to employ automated systems to achieve DR identification from
retinal images. They leverage neural networks, which inherently excel at extracting crucial
lesion information from retinal images and autonomously categorize them into distinct
DR classes. Thus, neural network-based DR classification systems offer an effective and
efficient approach to DR detection.

4.3. PROPOSED METHODOLOGY

4.3.1. OVERVIEW OF DR SCREENING APPROACHES
An overview of both conventional and proposed approaches for developing neural network-
based DR screening solutions is shown in Figure 4.2. They both involve two phases: 1)
pre-deployment phase, where the model is trained and hardware is designed for the
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(a) Conventional Approach

(b) Proposed Approach

Figure 4.2: Overview of conventional and proposed neural network-based DR screening approaches.

trained model, and 2) post-deployment phase, where the hardware performs inference
using on-field images. Models developed using conventional approach are susceptible to
reliability issue, where they perform well during development but fail after deployment.
This is a consequence of model’s poor generalization ability arising from small-sized,
non-diverse and imbalanced training data, coupled with absence of external test data.
Moreover, they do not provide supplementary information about the model prediction.
This severely limits their widespread adoption by both specialists and patients. Addition-
ally, there has been almost no effort directed towards energy efficient hardware design for
DR classification models targeting edge device deployment, which is critical to improve
their global accessibility.

Our proposed approach overcomes all of these challenges. We first create a large,
diverse and balanced custom dataset by combining data from multiple sources and taking
measures to reduce class imbalance. We then train our DR classification model with this
dataset and also assess the model reliability with external test data. Moreover, we propose
a pseudo-binary classification scheme that improves the model performance and also
provides supplementary information to facilitate its widespread adoption. Furthermore,
we present energy-efficient hardware design for our model using memristor-based CIM,
to facilitate its deployment on edge devices for improved accessibility. Thus, we provide
a solution that offers reliable DR classification, supplementary information and energy
efficient edge deployment. We will now delve into the details of our approach in the next
subsections.

4.3.2. RELIABLE MODEL DEVELOPMENT

DATASET CREATION

The DR classification models often encounter inconsistent quality retinal images post-
deployment. This arises due to various factors such as improper exposure, misalignment,



4.3. PROPOSED METHODOLOGY

4

60

incomplete retinal coverage etc. Furthermore, the distribution of post-deployment data
can diverge substantially from the data used during model development. Hence, the
model must be trained using data that encompasses these inconsistencies and reflects
diversity of post-deployment data to ensure reliability. We build such a comprehensive
training dataset by leveraging the following publicly available datasets:

• EyePACS dataset [111]: It is provided by EyePACS Inc. for DR detection competition
sponsored by California Healthcare Foundation in 2015. It contains 88,702 images
collected from different parts of the USA.

• DDR dataset [101] : It contains 13,673 images collected across 147 hospitals in
China from 2016 to 2018. The dataset actually has 12,522 usable images as 1,151
images are deemed ungradable.

• APTOS dataset [110]: It is a part of DR detection competition organized by Asia Pa-
cific Tele-Ophthalmology Society in 2019. It contains 3662 retinal images provided
by Aravind Eye Hospital in India.

After acquiring these datasets, we filter out corrupt images and merge them in varying
proportions to create three merged datasets. We then undersample the majority classes
in each merged dataset to limit class imbalance to 10× or less. This is because 10×
or less imbalance suffices for neural networks perform well on minority classes [112],
and achieving perfect class balance is impractical due to huge number of healthy retina
images. As a result, we end up with three new proposed datasets: Small (S), Medium (M),
and Large (L). The classwise distributions of the original and new datasets is shown in
Table 4.2. It can be seen that the new M and L datasets exhibit better class balance than
original EyePACS and DDR datasets. Moreover, merging enhances the data diversity in M
and L datasets compared to EyePACS and DDR datasets. As a result, models developed
using M and L datasets can potentially exhibit better reliability in handling both on-field
image inconsistencies and minority DR classes. Furthermore, the three datasets can be
used to obtain crucial insights into how dataset size influences classification performance.

Table 4.2: Overview of the original public datasets and newly proposed datasets. Imbalance is the ratio of the
sizes of the largest and smallest class.

Original Datasets Proposed Datasets

APTOS [110] DDR [101] EyePACS [111]
Small (S):

APTOS
Medium (M):

APTOS & DDR
Large (L):

APTOS, DDR & EyePACS

DR-0 1805 6266 65343 1798 3000 10000

DR-1 370 630 6205 365 991 7180

DR-2 999 4477 13153 991 3000 10000

DR-3 193 236 2087 188 424 2504

DR-4 295 913 1914 292 1204 3117

Total 3662 12522 88702 3634 8619 32801

Imbalance 9.4× 26.5× 34.1× 9.6× 7.1× 4.0×
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Figure 4.3: Pseudo-binary classification concept.

PSEUDO-BINARY CLASSIFICATION

The recommended management guidelines for various DR classes are as follows [113]:

• Annual screening for DR-0 or DR-1.

• A follow-up every six months for DR-2.

• Referral to an ophthalmologist for DR-3 or DR-4.

Thus, the recommended DR management approach shifts from annual screening to
more frequent monitoring as the severity reaches DR-2. Consequently, grouping the five
DR classes into the following two categories suffices for screening [103]: non-referable
DR (consisting of DR-0 and DR-1) and referable DR (consisting of DR-2, DR-3, and DR-
4). Thus, DR screening becomes a binary classification task involving referable DR and
non-referable DR as its two classes.

A straightforward approach to binary screening involves relabeling the five original
classes into these two broad categories and developing a binary classification model.
However, this leads to a hard decision between the two categories which is more suscepti-
ble to misclassifications. It also weakens the interpretability by hindering the derivation of
supplementary information. To alleviate this problem, we introduce an approach called
pseudo-binary classification. It internally employs a multiclass DR classifier and uses
additional decision-making logic to ultimately produce a binary classification outcome,
as shown in Figure 4.3. It capitalizes on cumulative probabilities within non-referable
(0) and referable (1) categories instead of hinging on a single maximum probability for
decision-making, reducing susceptibility to misclassifications. Moreover, it presents the
outcome as a tuple containing prediction, confidence level, and referable DR probability,
providing better interpretability.

Algorithm 4.1 describes the pseudo-binary classification process. It begins with mul-
ticlass classification to obtain prediction probabilities for the five original DR classes.
Subsequently, it calculates a score for the non-referable (0) class by adding the probabili-
ties of DR-0 and DR-1. Similarly, a score for the referable (1) class is computed by adding
the probabilities of DR-2, DR-3, and DR-4. The broad class (referable 0 or non-referable 1)
with the higher score is selected as the prediction value. Furthermore, if the scores differ
by more than a predefined confidence threshold, we indicate high confidence (‘H’); other-
wise low confidence (‘L’). Additionally, the referable class score indicates the probability
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Algorithm 4.1: Pseudo-binary classification algorithm.

input : Confidence threshold Cth , retinal image I
output : Prediction tuple P

1 softmax ← multiclass_inference(I );
2 non_ref_score ← softmax(DR-0) + softmax(DR-1);
3 ref_score ← softmax(DR-2) + softmax(DR-3) + softmax(DR-4);
4 ∆← ref_score - non_ref_score;
5 if ∆> 0 then
6 prediction ← 1;
7 if ∆>Cth then
8 confidence ← H;
9 else

10 confidence ← L;

11 else
12 prediction ← 0;
13 if |∆| >Cth then
14 confidence ← H;
15 else
16 confidence ← L;

17 P ← (prediction, confidence, ref_score);
18 return P ;

Table 4.3: Interpretation of the pseudo-binary prediction tuples. Here, S denotes probability of referable DR.

Prediction Tuple Interpretation

(0, H, S) Healthy (no DR).

(0, L, S) DR developing, checkup recommended.

(1, L, S) DR found, seek medical help soon.

(1, H, S) DR found, seek medical help immediately.

of referable DR. For example, consider a scenario with confidence threshold 0.25 and
softmax probabilities as [0.20 (DR-0), 0.33 (DR-1), 0.4 (DR-2), 0.03 (DR-3), 0.04 (DR-4)].
This leads to a pseudo-binary prediction tuple as (0, L, 47%), indicating that the patient
has non-referable DR (class 0), detected with low confidence (L) and a 47% likelihood
of referable DR. Thus, the patient appears to be developing DR-1 and is recommended
to have a checkup in the near future. The interpretation of the various output tuples
resulting from pseudo-binary classification is summarized in Table 4.3, augmenting the
prediction with supplementary information.

4.3.3. ENERGY-EFFICIENT HARDWARE DESIGN
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PRUNING AND QUANTIZATION

Before mapping our trained pseudo-binary DR classification model to CIM hardware, we
perform pruning and quantization to reduce its hardware resource requirements. Pruning
refers to selectively removing a user-defined portion of low-magnitude weights from each
layer. The reduction in hardware resource requirements due to pruning often comes at
the cost of accuracy degradation. To counter this, we adopt pruning followed by retraining
to recover lost accuracy. An essential consideration for such post-pruning retraining is the
selection of hyperparameters, particularly the learning rate. An excessively low learning
rate can hinder the network’s adaptability to recover the pruning-induced accuracy loss.
Hence, we dynamically adjust the learning rate within a narrow range centered around
its original value during the retraining process. This iterative cycle continues until we
achieve the desired level of pruning while preserving the network’s original accuracy.
We then quantize the weights of the pruned model to further reduce hardware resource
requirements. However, an aggressive quantization can lead to high quantization error
and degraded classification performance. Hence, we adopt a design space exploration ap-
proach to minimize bit-sizes for weights while ensuring minimal impact on classification
performance.

MAPPING TO CIM ARCHITECTURE

We map our pruned and quantized pseudo-binary DR classification model to the memristor-
based CIM architecture described in [30]. The fundamental building block of this archi-
tecture is depicted in Figure 4.4. It divides the full-precision neural network weights
and inputs into smaller slices. This is because memristors have limited bit capacity and
high-resolution data converters (DACs and ADCs) consume significant energy and area.

Figure 4.4: CIM hardware architecture for DR model implementation.



4.4. SIMULATION SETUP

4

64

We transform 2-bit slices of the weights into conductance values, which are then mapped
onto distinct columns within the memristor crossbar. We also convert 1-bit slices of the
inputs into voltages that are applied to the crossbar at different timesteps. For instance,
with 1-bit DACs for 32-bit digital inputs, the DACs are fed with 1-bit at a time across
32 timesteps. The DACs convert the bits at each timestep into voltages, generating a
current in each column of the crossbar. These currents are captured by sample and
hold circuits (S&H) and then converted into digital outputs by ADCs. To account for the
slicing of weights across crossbar columns, a shift and add operation is performed across
the columns for the ADC outputs. Furthermore, an additional round of shift and add
operations is performed to merge such partial outputs from various timesteps to produce
the final full-precision digital output.

4.4. SIMULATION SETUP

4.4.1. PERFORMANCE METRICS
The key performance metrics for evaluation of the proposed DR classification are:

• Accuracy: It is defined as the ratio of the number of correctly classified retinal
images to the total number of input retinal images, expressed as a percentage.

• F1-score: While accuracy is a valuable indicator of overall classification perfor-
mance, there is a need for metrics that delve deeper into the model’s behavior.
The F1-score is one such metric that reflects the model’s ability to make correct
predictions while keeping false alarms to a minimum. It is calculated using a table
called the confusion matrix with true labels as column headers and predicted labels
as row headers, shown in Figure 4.5.

Figure 4.5: F1-score calculation from confusion matrix representation.

• Energy consumption: Deployment of automated DR screening on portable edge
devices can significantly improve its global accessibility, even in remote areas. To
achieve this, such devices must be able to operate with limited and interrupted
energy availability. Hence, energy consumed by a DR classification hardware is an
important performance metric.

4.4.2. SIMULATION PLATFORM
The overview of the simulation platform is shown in Table 4.4. We use TensorFlow [114]
framework for developing our DR classification model. Inception-v3 (IV3) [115] and
DenseNet121 (DN121) [116] neural network architectures are selected for exploration, as
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Table 4.4: Simulation platform details.

Component Specification

Deep learning framework TensorFlow [114]

Network architectures Modified inception-v3 (IV3)
Modified densenet121 (DN121)

Datasets New merged datasets (in Table 4.2):
Small (S), Medium (M), Large (L)

CIM hardware ISAAC [30]

Conventional hardware CPU: Intel Core i7-9750H [118]
GPU: NVIDIA GeForce GTX 1650 [119]
mTPU: Google Edge TPU on Coral dev board [120]

Power profiling tools CPU: s-tui [121]
GPU: nvidia-smi [122]
mTPU: datasheet [123]
CIM: data provided in [30]

Latency profiling tools CPU: Tensorflow profiler [124]
GPU: Tensorflow profiler [124]
mTPU: Python datetime package [125]
CIM: data provided in [30]

they have demonstrated remarkable performance on complex image datasets [117]. We
adapt these architectures for DR classification by introducing three new fully-connected
layers (IV3: 2048×128, 128×128, 128×5 and DN121: 1024×128, 128×128, and 128×5) and
dropout layers (probability 0.5). We train these networks with each of our new S/M/L
datasets, following the train-validation-test split shown in Table 4.5. Employing transfer
learning, we only train the newly added fully connected layers while freezing the pre-
trained weights from the ImageNet dataset for all the other layers. During this training
phase, we perform grid search followed by manual fine-tuning to establish optimal values
for the hyperparameters. The post-training model performance is evaluated with the
corresponding S/M/L test set.

To evaluate the reliability of the trained models, we employ publicly accessible
Messidor-2 dataset [126–128] as an external training set. It contains 1748 images where
1058 images are provided by the Messidor program partners [126] and the remaining are
collected at Brest University Hospital in France between 2009 and 2010. The labels for
Messidor-2 dataset are sourced from [129], following the study in [130]. This labeling
process has deemed four images ungradable, leaving 1744 usable images with classwise

Table 4.5: Training-validation-test split for the newly proposed datasets: Small (S), Medium (M) and Large (L).

Dataset Training Set Validation Set Test Set

DR-0 DR-1 DR-2 DR-3 DR-4 DR-0 DR-1 DR-2 DR-3 DR-4 DR-0 DR-1 DR-2 DR-3 DR-4

Small (S) 1059 229 589 112 191 382 67 197 33 48 357 69 205 43 53

Medium (M) 1775 598 1808 257 733 620 202 565 87 250 605 191 627 80 221

Large (L) 6021 4314 5992 1465 1887 2034 1432 1975 517 603 1945 1434 2033 522 627
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distribution as follows - DR-0: 1017, DR-1: 270, DR-2: 347, DR-3: 75, and DR-4: 35. As
Messidor-2 embodies a data characteristics distinct from S/M/L train-validation-test sets,
model performance on Messidor-2 serves as an indicator of its reliability.

To map the trained reliable model onto the memristor-based CIM hardware, we
employ the architecture described in Section 4.3.3. We leverage power consumption
and latency data as presented in [30] to assess CIM energy consumption. This energy
consumption is then compared against three conventional state-of-the-art hardware
platforms: CPU (Intel Core i7-9750H [118]), GPU (NVIDIA GeForce GTX 1650 [119]), and
mTPU (Google Edge TPU on Coral development board [120]). CPU and GPU represent
general-purpose conventional hardware, while the mTPU embodies AI-optimized con-
ventional hardware. To quantify energy consumption across these conventional hardware
platforms, we first measure their latency and power consumption, and then calculate
energy consumption as a product of these two values. The latency for both CPU and
GPU is obtained via TensorFlow profiler [124], while that for mTPU is measured using
Python datetime package [125]. The power consumption of the CPU is recorded using
s-tui [121], while nvidia-smi [122] is used to record GPU power consumption. We use
mTPU’s datasheet to obtain its power consumption [123].

4.5. SIMULATION RESULTS

4.5.1. MODEL RELIABILITY ASSESSMENT
We train IV3 and DN121 networks across our three new datasets (S, M, and L in Table 4.2)
by employing the pseudo-binary classification approach. This yields six distinct models:
IV3-S (IV3 network trained on S dataset), IV3-M (IV3 network trained on M dataset),
IV3-L (IV3 network trained on L dataset), DN121-S (DN121 network trained on S dataset),
DN121-M (DN121 network trained on M dataset), and DN121-L (DN121 network trained
on L dataset). The development phase performance of these models is assessed as their
accuracy and F1-score on the corresponding S/M/L test set. To emulate post-deployment
scenarios, we evaluate their accuracy and F1-score on Messidor-2 as an external test
dataset. A reliable neural network model should exhibit consistent accuracy and F1-

(a) IV3 accuracy. (b) DN121 accuracy.

Figure 4.6: Reliability assessment of IV3 and DN121 models in terms of accuracy.
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(a) IV3 F1-score (b) DN121 F1-score.

Figure 4.7: Reliability assessment of IV3 and DN121 models in terms of F1-score.

score, both during the development phase (on S/M/L test sets) and in post-deployment
situations (on Messidor-2 dataset). This criterion forms the basis to assess the reliability
of these six models in Figures 4.6 and 4.7.

Models developed using S dataset (IV3-S and DN121-S) show commendable perfor-
mance on S/M/L test sets but struggle on Messidor-2, indicating low reliability. The other
models trained with M and L datasets exhibit a marked improvement in reliability, con-
sistently maintaining robust performance on both S/M/L test sets and Messidor-2 data.
Also, model reliability improves as we transition from the M to the L dataset. This can be
observed as IV3-L and DN121-L models outperform their M dataset counterparts IV3-M
and DN121-M. This also highlights the pivotal role of large datasets in ensuring model
reliability. As DN121-L exhibits better reliability than IV3-L in terms of both accuracy and
F1-score, it becomes our final choice.

We now compare the reliability of our DN121-L model with other works from the
literature. While several works [91, 94, 95, 97] have conducted evaluations on Messidor-2
dataset, they incorporate it within the training data rather than exclusively reserving it for
testing. Consequently, a fair comparison with such studies is not possible. Additionally,
works like [102] use datasets other than Messidor-2 for external testing and cannot be
directly compared with our work. Therefore, we compare our approach with [103, 131]
which use Messidor-2 dataset only for external testing. As shown in Table 4.6, DN121-L
achieves competitive accuracy and F1-score despite testing on 65% more Messidor-2

Table 4.6: Comparison with other works using Messidor-2 as external testing dataset. Notation ‘N/A’ indicates
that the corresponding value is not available from the paper.

Screening Approach Test Images Accuracy (%) F1-score (%)

This Work (DN121-L) 1744 90.3 81.8

Blair et al. [131] 1054 93.5 N/A

Ludwig et al. [103] 1058 N/A 83
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images compared to [103, 131], validating its reliability. We will discuss CIM hardware
design for this reliable DN121-L model next.

4.5.2. HARDWARE DESIGN FOR RELIABLE MODEL
In this subsection, we first optimize the reliable DN121-L model for hardware design
through pruning and quantization, and then assess its energy consumption on CIM
hardware. We will now delve into the details of these steps.

PRUNING AND QUANTIZATION

Figure 4.8a shows the impact of pruning on DN121-L model. The pruning percentage
indicates the fraction of model parameters with low magnitudes that undergo removal
during the pruning process. Following the removal of the specified fraction of parameters,
we conduct retraining for a few epochs to recover the accuracy loss incurred during
pruning. Observing the classification performance across various pruning percentages, it
becomes evident that the 50% pruned version of DN121-L exhibits the best classification
performance. We select this version, denote it as DN121-L-P50 and subject it to weight
quantization. Figure 4.8b shows that we can use 4-bit weights with almost no accuracy
loss. Hence, we select the 4-bit quantized version of DN2121-L-P50 and denote it as
CIM-DN121. We will analyze its energy consumption on CIM hardware next.

(a) Pruning of DN121-L model. (b) Quantization of DN121-L-P50 model.

Figure 4.8: Impact of pruning and quantization on model accuracy.

ENERGY EFFICIENCY ASSESSMENT

The energy consumption for CIM-DN121 model, along with that of DN121 on state-
of-the-art conventional hardware platforms like CPU, GPU, and edge TPU (mTPU) is
depicted in Figure 4.9. It quantifies the energy required for executing inference on a single
retinal image. The mTPU turns out to be the least energy-efficient despite being designed
for AI applications. This is because mTPU’s efficiency is limited by other resources on
Coral dev board which handle tasks such as code context management and input/output
data processing. For a large neural network model like DN121, these resources become
the bottleneck, leading to significantly longer execution latency and increased energy
consumption compared to CPUs or GPUs. Therefore, mTPU dev board may not be the
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Figure 4.9: Energy per image inference for various hardware platforms.

best choice for energy-efficient execution of large neural network models. On the other
hand, CIM-DN121 demonstrates 5441× reduction in energy consumption compared to
CPU. Furthermore, it consumes 1144× and 9686× less energy compared to GPU and
mTPU respectively. This highlights the tremendous potential of memristor-based CIM for
developing energy-efficient hardware for DR screening.

4.6. CONCLUSIONS
This chapter presented a reliable and energy-efficient hardware design for DR screening.
We accomplished reliable classification by training the model with diverse and inconsis-
tent quality data, while addressing class imbalance issue. We then proposed a pseudo-
binary classification technique to further improve the model performance and provide
supplementary information. Furthermore, we explored energy-efficient hardware design
for our reliable DR model targeting deployment on edge devices for enhanced healthcare
accessibility. Our DR screening solution based on DenseNet121 model achieved reliable
classification with three orders of magnitude less energy consumption compared to the
state-of-the-art hardware platforms. Thus, our work has laid the groundwork for reliable
and accessible healthcare through the intersection of technology and medical science.
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5.1. INTRODUCTION
Memristors suffer from conductance variation problem where their programmed con-
ductance deviates from the target value, due to fabrication imperfections and stochastic
device physics [10]. This leads to an undesired change in the neural network weights
stored as memristor conductances, resulting in low accuracy. Prior works addressing
the conductance variation issue in CIM-based neural networks can be grouped into
four categories: i) on-chip training, ii) off-chip training or mapping based on hardware
characterization, iii) hardware compensation, and iv) write-verify programming. First,
on-chip training inherently adapts the weights to conductance variation as the network is
trained on the CIM chip [132, 133]. However, it is not scalable due to individual training
necessity for each chip, high energy consumption, and endurance issues. Second, off-
chip training using a hardware-calibrated software model of conductance variation [134,
135] is also not scalable, as each chip requires individual characterization and training.
Moreover, some works [20, 136] prevent large weights from mapping to high variation
memristors. This requires extensive chip characterization and does not address errors
due to the accumulation of variations in small weights. Alternatively, noise estimated
from a non-extensive chip characterization can be injected in off-chip training [137–142]
to enhance the network’s tolerance towards errors due to conductance variation. How-
ever, this approach fails to address the issue of reducing such errors, as memristors can
still get mapped to high variation conductance states, rendering it ineffective. Last, the
hardware compensation and write-verify programming involve significant energy and
area overheads with increased design complexity [143–146]. Hence, there is a strong need
for an effective, scalable, and low-overhead solution to mitigate conductance variation
impact on CIM-based neural networks.

This work presents a mapping-aware biased training methodology to improve the
accuracy of CIM-based neural networks in the presence of conductance variation. We
first identify memristor conductance states with low variation impact (favorable states).
We then derive a favorability constraint that only allows weight values that map to these
favorable states. During training, we determine which weights are important for CIM
hardware accuracy and impose the favorability constraint on them. The resulting post-
training values of these important weights then directly map to favorable states, leading
to high inference accuracy on CIM hardware. Our key contributions can be summarized
as follows:

• A favorability constraint analysis to find the weight values desirable for reducing
conductance variation errors.

• An approach to identify the important weights which significantly influence the
hardware accuracy.

• A mapping-aware biased training with favorability constraint on important weights
for high hardware accuracy.
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Figure 5.1: Overview of the conventional and proposed training methodologies.

5.2. PROPOSED METHODOLOGY

5.2.1. OVERVIEW OF TRAINING APPROACHES
The deployment of a neural network on CIM hardware for inference involves two phases
as shown in Fig. 5.1: i) Training the neural network weights to obtain high classification
accuracy. ii) Mapping the trained weights to memristor conductances for inference on
CIM hardware. Conventional training can result in the mapping of weights to conductance
states having a high variation impact (unfavorable states). This can lead to low hardware
accuracy despite high software accuracy. Our proposed mapping-aware biased training
restricts the neural network weights during training, so that their post-training values
directly get mapped to conductance states having a low variation impact (favorable states).
However, restricting too many weights hinders backpropagation and leads to low software
accuracy. This in turn results in low hardware accuracy, as it is upper bounded by software
accuracy. Conversely, if too few weights are restricted, the hardware accuracy will be
poor as many memristors can get mapped to unfavorable states. Hence, our proposed
mapping-aware biased training only restricts the important weights. This leads to high
software accuracy due to the adaptability of non-important weights and also provides
high hardware accuracy as important weights get mapped to favorable memristor states.

5.2.2. FAVORABLE CONDUCTANCE STATES ANALYSIS
Fig. 5.2 shows a CIM-based multiply-accumulate operation, where Ierror is the error cur-
rent in a single memristor device due to conductance variation. As small Ierror is desirable,
the preference order of states in Fig. 5.2 is: G00 (best), G01, G11, G10 (worst). Despite
having a higher variation percentage, G00 and G01 are preferred over G11 and G10 as their
small mean values result in small Ierror. Hence, the preference order of conductance states
must be based on Ierror contribution instead of the variation percentage. The ordered
conductance states are then grouped into: i) unfavorable states (U) to avoid for mapping,
and ii) favorable states (F) to prefer for mapping. Based on Fig. 5.2, the possible grouping
configurations are:

• Config-1: F={G00}, U={G01,G11,G10}
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Figure 5.2: Favorable conductance states analysis for a 2-bit memristor (four conductance states). The used
conductance variation data is obtained from [147].

• Config-2: F={G00, G01}, U={G11,G10}

• Config-3: F={G00, G01, G11}, U={G10}

Config-1 sets weights only to zero while config-2 forces them to the same sign. This is
undesirable as the neural network requires both positive and negative non-zero weights.
As config-3 can represent non-zero weights with different signs, it is used in our mapping-
aware biased training methodology.

We now determine a favorability constraint on the weights to ensure the mapping of
desired weight bits to favorable conductance states. This constraint depends on memris-
tor bit capacity and CIM mapping scheme details like fixed-point format, underlying CIM
architecture, etc. For example, consider 2-bit memristors (slices), 8-bit fixed-point weights
(6-bit fraction), and CIM architecture in [30]. The mapping scheme first converts trained

Figure 5.3: Illustration of favorability constraint derivation for mapping MSB slice of 8-bit weight to favorable
conductance states in a 2-bit memristor.
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weights to 2’s complement fixed-point format. It then shifts the 2’s complement weight
range by 27 to overcome the difficulty in isolating the sign contribution from a multi-bit
slice [30]. Fig. 5.3 then shows the favorability constraint to map the most significant 2-bit
slice to favorable states in Section 5.2.2 (G00, G01, and G10) for this example.

5.2.3. BIASED TRAINING ALGORITHM
The flowchart of our mapping-aware biased training is shown in Fig. 5.4. We first train
the neural network in a standard (hardware-unaware) manner. These weights are used as
initial weights for mapping-aware biased training for faster convergence. After this, we
determine the favorability constraint on the weights for mapping to variation-immune
states. We now perform a new epoch of backpropagation using training data and then
determine which weights are important for high hardware accuracy. In a neural network,
some weights have more importance than others for high software accuracy. However, in
CIM hardware design for the same network, instead of individual weights, some crossbar
columns (groups of weights) are more important than others for high hardware accuracy.
This is because the basic computation in CIM is the column-wise multiply-accumulate
operation. Let HIc denote the importance of a CIM column for high hardware accuracy
and SIw denote the importance of a weight for high software accuracy. If P denotes the
network output (without softmax) and L denotes the one hot label, then SIw is given by
Eq. 5.1.

SIw = ∂Q

∂w
, where Q =

Batch size∑
i=1

Pi ×Li (5.1)

HIc is then obtained by dividing the software weight matrix into crossbar-sized chunks
and adding SIw of weights per column across all chunks. A high HIc value indicates

Given: Memristor bit capacity, CIM mapping scheme,
important columns percentage, favorable states,

standard (hardware unaware) trained weights

Determine the favorability constraint

Perform a backpropagation epoch with training data

Identify important weights for CIM accuracy 

Apply favorability constraint to important weights

Save the 
constrained

weights

Is Atest the best accuracy till now?

Last epoch?

Evaluate post-constraint test accuracy  (Atest)

Map the saved weights to CIM hardware

NO

YES

YES

NO

Figure 5.4: Flowchart of the proposed mapping-aware biased training.
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more influence on hardware accuracy. We now select m% columns with the highest HIc

(m is obtained by design-space exploration, details in Section 5.4.1). Weights in these
columns are restricted as per the favorability constraint and test accuracy is evaluated.
This process is repeated for a given number of biased training epochs and weights with
the best post-restriction test accuracy are mapped to CIM hardware.

5.3. SIMULATION SETUP
We have developed a Python-based framework for behavioral simulation of neural net-
work inference on CIM hardware. It is based on in-situ multiply-accumulate (IMA) unit in
state-of-the-art CIM architectures [30, 31]. Power and area for various IMA components
are also obtained from [30]. We consider 8-bit weights split across four memristors of
2-bit capacity. Memristor device parameters and conductance variation data are obtained
from [147] which presents experiments on real memristor devices. We have performed
evaluations using MNIST [85], Fashion MNIST (FMNIST) [148], and EMNIST letters
(EMNIST-L) [149] datasets on LeNet-5 neural network [85]. The mapping-aware biased
training is carried out in software and trained weights are used in our Python-based
framework to evaluate the hardware inference accuracy.

5.4. SIMULATION RESULTS

5.4.1. NEURAL NETWORK ACCURACY
We perform design space exploration to determine the optimal percentage of crossbar
columns, which are designated as important and subjected to favorability constraints in
all neural network layers, as depicted in Fig. 5.5. A high percentage results in low software
accuracy as restricting more weights obstructs the minimization of the cost function.
The hardware accuracy is also reduced as it is upper bounded by software accuracy. A
moderate percentage can provide high accuracy in both software and hardware by bal-

Figure 5.5: Design-space exploration for the percentage of important columns per neural network layer. Circle
denotes the peak hardware accuracy per dataset.
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Figure 5.6: Neural network inference accuracy comparison across various datasets.

ancing the freedom of non-important weights and restriction on important weights. The
optimal percentage varies from one dataset to another as indicated in Fig. 5.5. The hard-
ware accuracy using weights at the optimal percentages is used for comparison between
proposed mapping-aware biased training and conventional training (backpropagation)
in Fig. 5.6. The proposed mapping-aware biased training has a slightly lower software
accuracy compared to conventional training. This is because cost function minimiza-
tion during training becomes difficult due to the favorability constraint on important
weights. Our proposed biased training provides up to 2.4× hardware accuracy compared
to conventional training. This can be attributed to the mapping of important weights to
conductance states having a low variation impact. The accuracy improvement is higher
for complex datasets (FMNIST, EMNIST-L) than simpler ones (MNIST), as they need more
error-free computations for correct classification.

5.4.2. HARDWARE PERFORMANCE METRICS
The comparison of hardware metrics between the proposed mapping-aware biased
training and the conventional training (backpropagation) is shown in Table 5.1. They
both need identical hardware components and hence consume the same energy and area.
We define a new metric “correct operations per unit energy" as the ratio of the number

Table 5.1: Hardware metrics per in-situ multiply-accumulate unit.

Metric Conventional Training Proposed Biased Training

FMNIST accuracy (%) 35.4 85.2

Energy consumption (pJ) 3738 3738

Area (µm2) 21765 21765

Correct operations per unit
energy for FMNIST (GOP/J)

96.9 233.4
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of correct operations to energy consumption (unit: Giga-operations per joule (GOP/J)).
Here, the number of correct operations is the product of accuracy (as fraction) and the
total number of operations. Table 5.1 shows that the proposed mapping-aware biased
training achieves up to 2.4× correct operations per unit energy than conventional training
without any hardware overhead.

5.5. CONCLUSIONS
This chapter presented a mapping-aware biased training to mitigate the impact of con-
ductance variation on CIM-based neural networks. This was achieved by restricting the
important weights during training, so that their post-training values directly get mapped
to conductance states with low variation impact. The proposed biased training achieved
up to 2.4× hardware accuracy and up to 2.4× correct operations per unit energy compared
to the conventional training, with no hardware overhead. Such high accuracy and energy
efficiency can facilitate the deployment of CIM-based neural networks for edge-AI.
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6.1. INTRODUCTION
CIM architectures face the limitation of not being able to support the high bit-precision
demands of neural network applications [32]. Therefore, a bit-slicing scheme [30, 31] is
commonly employed in CIM architectures where multiple memristor devices represent a
full-precision neural network weight. Bit-slicing CIM architectures represent a zero weight
in the neural network using a memristor device with non-zero conductance equal to the
minimum possible memristor device conductance denoted as Gmin [150]. Multiplication
of any non-zero digital input with a zero digital weight must produce a zero digital output.
However, a non-zero output current is produced when a non-zero input in the form of
a voltage is applied to a memristor with Gmin conductance. This is known as non-zero
Gmin error, which violates the functional equivalence between the digital output and CIM
output, leading to errors in VMM and degraded neural network accuracy.

State-of-the-art bit-slicing CIM architectures cannot provide good accuracy in pres-
ence of non-zero Gmin error. For instance, ISAAC [30] and PUMA [31] use balanced
bit-slicing (BBS) scheme which suffers from accuracy degradation due to non-zero Gmin

error. PANTHER [32] proposes heterogeneous bit-slicing (HBS) scheme, which is an exten-
sion of BBS and thereby struggles to provide good accuracy in the presence of non-zero
Gmin error. Current subtraction technique (CST) [150] can be utilized to mitigate the
impact of non-zero Gmin on BBS and HBS. However, it becomes less effective when con-
ductance variation is considered along with non-zero Gmin error. Hence, there is a strong
need for an effective solution to mitigate the impact of non-zero Gmin error on bit-slicing
CIM architectures while taking conductance variation into account.

We propose an unbalanced bit-slicing (UBS) scheme for CIM architectures to miti-
gate the impact of non-zero Gmin error. UBS provides higher sensing margin for more
important bits; i.e. most significant bits (MSBs) to reduce the impact of non-zero Gmin.
Moreover, UBS is supported with 2’s complement arithmetic whose inherent differential
nature further helps in this mitigation task leading to improved neural network accu-
racy. Assigning higher sensing margin for more important bits i.e. most significant bits
(MSBs) leads to achieve high accuracy at the expense of energy overheads. We extend
UBS with a new variant which allocates just good enough sensing margin to the slices to
improve the energy-efficiency by reducing the hardware requirements while retaining
the accuracy benefits. We also provide an algorithm for optimal energy-efficient slice size
selection which leverages an inherent accuracy versus energy tradeoff. Lastly, we also
demonstrate the effectiveness of UBS across different datasets and neural networks. Our
key contributions can be summarized as follows:

• We propose an unbalanced bit-slicing scheme which provisions high sensing mar-
gin for more important slices to achieve high accuracy in presence of non-zero Gmin

error and an algorithm to find slice sizes for optimal accuracy under given resource
constraints.

• We develop a methodology to tailor the unbalanced bit-slicing scheme for energy-
efficiency by constraining the sensing margin for slices in order to reduce the
hardware resources while maintaining good accuracy.

• We present a holistic solution consisting of unbalanced bit-slicing logic and 2’s
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complement arithmetic which mitigates non-zero Gmin error impact in presence of
conductance variation.

• We demonstrate the effectiveness of the proposed unbalanced bit-slicing scheme
by performing comprehensive analysis and comparison with state-of-the-art across
different datasets and neural networks.

Simulation results show that UBS achieves up to 7.3× accuracy and up to 7.8× correct
operations per unit energy consumption compared to state-of-the-art with reasonable
overheads.

6.2. PROPOSED METHODOLOGY

6.2.1. OVERVIEW OF BIT-SLICING SCHEMES
A bit-slicing scheme consists of bit-slicing logic and associated crossbar arithmetic. The
bit-slicing logic determines how a full-precision neural network weight is split into smaller
slices, whereas the crossbar arithmetic governs the way in which the partial outputs from
the crossbar columns are combined to obtain the final full-precision output. Along the
same lines, an overview of the state-of-the-art as well as the proposed bit-slicing schemes
is shown in Figure 6.1. For the state-of-the-art bit-slicing scheme, balanced bit-slicing
logic splits the full-precision neural network weight into equal-sized (balanced) slices and
unsigned binary arithmetic is used to combine the column-wise partial outputs. Whereas,
in our proposed unbalanced bit-slicing (UBS) scheme, we split the full-precision neural
network weight into a mix of equal-sized and unequal-sized (unbalanced) slices in such a
way that the resulting allocated sensing margins minimize the impact of non-zero Gmin

error. The sensing margin allocation strategy in UBS can be adapted based on whether
the goal is to achieve high accuracy or high energy-efficiency. If the target is to achieve
high accuracy, UBS delivers high sensing margin to more important bits (MSBs). On
the other hand, if energy-efficiency is the primary goal then UBS provides just enough

Figure 6.1: Overview of state-of-the-art and proposed bit-slicing schemes.
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sensing margins to the slices to reduce the hardware resource requirements resulting in
a high energy-efficiency while maintaining a sufficiently good accuracy. Moreover, UBS
uses 2’s complement arithmetic which results in negative scaling factor for the column
containing MSB slices when combining the column-wise partial outputs using shift-and-
add operations. The full-precision output denoted as Dacc is obtained by performing
shift-and-add operations on n columns as per Eq. 6.1a, where Di s and Si s denote the
column-wise partial outputs and scaling factors respectively.

Dacc =
n∑

i=1
Si ·Di (6.1a)

Dacc =
n∑

i=1
Si ·Ti +

n∑
i=1

Si ·Ei (6.1b)

Eacc =
n∑

i=1
Si ·Ei = (−S1·E1 +

n∑
i=2

Si ·Ei ) (6.1c)

Expressing Di = Ti +Ei leads to Eq. 6.1b for Dacc , where Ti is the ideal column output
(Gmin = 0 scenario) and Ei is the error due to non-zero Gmin. The summation over Ei in
Eq. 6.1b gives the accumulated non-zero Gmin error denoted as Eacc which is present in the
full-precision output Dacc . The contribution of the negatively scaled 2’s complement MSB
column (i = 1) towards Eacc can be separated from the other positively scaled columns (i
= 2 to n) as shown in Eq. 6.1c, where E1 is the error in MSB column and −S1 is the MSB
column scaling factor where S1 > 0 denotes magnitude of the MSB column scaling factor.
It is clear from Eq. 6.1c that the negative MSB column scaling factor reduces the overall
accumulated error Eacc in the final output due to weighted subtraction of column-wise
errors. However, such weighted subtraction will not be perfectly zero resulting in a non-
zero accumulated error which can be large enough to cause substantial deviation from the
correct VMM computation. The sensing margins provided by the unbalanced slice sizes
in UBS ensure that this accumulated error remains small. Thus, sensing margin allocation
and 2’s complement arithmetic work together to minimize the impact of non-zero Gmin

error for improved neural network accuracy. In the next subsections, we first describe the
details of UBS for achieving high accuracy followed by its more energy-efficient variant.

6.2.2. UNBALANCED BIT-SLICING FOR HIGH ACCURACY

BIT-SLICING LOGIC

Goal of the bit-slicing logic is to minimize the accumulated error represented by Eacc in
Eq. 6.1c that remains after combining the column-wise partial outputs using 2’s comple-
ment arithmetic. It is clear that the accumulated error can be minimized by achieving a
good matching between the magnitudes of negatively scaled error in MSB column and
sum of the positively scaled errors in the rest of the columns as illustrated in Figure 6.2.
If all the column-wise errors (Ei in Eq. 6.1c, i = 1 to n) are individually large, then the
mismatch between the scaled errors will be large leading to a high accumulated error.
On the other hand, a small accumulated error can be obtained if the columns with high
scaling factors have low errors. As columns with high scaling factors correspond to MSB
slices, our bit-slicing logic aims at reducing the errors in as many MSB slices as possible for
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Figure 6.2: Error reduction approach for high accuracy.

achieving low accumulated error and high neural network accuracy. Non-zero Gmin error
at the output of a crossbar column with a certain slice size can be reduced by providing
the slices with higher sensing margin. This can be achieved by using a memristor device
with n-bit capacity as an m-bit memory-cell (slice) such that m<n. This results in wider
separation between the conductance states leading to higher sensing margin and reduced
error in the crossbar column output due to non-zero Gmin as shown in Figure 6.3.

As discussed earlier, reducing the individual errors in as many MSB slices as possible
will result in better accuracy. Different UBS configurations can be obtained based on how
many MSBs are provided with high sensing margin to reduce the individual errors. For
instance, using 2-bit memristors for 8-bit weights, [1,1,2,2,2] bits/slice (first 2 MSBs with

Figure 6.3: Illustration of the impact of sensing margin on bit-slicing schemes.
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Algorithm 6.1: UBS slice configuration selection for high accuracy.

input :CIM system architecture (A), Energy constraint (C),
memristor bit-capacity (B), Bits per full-precision neural weight (N)

output :UBS slice configuration for high accuracy (S)
1 FSC ← fundamental_slice_config(B, N);
2 S ← FSC;
3 R ← compute_resource_req(A, FSC);
4 while R < C do
5 config ← next_possible_UBS_config(S, B, N);
6 R ← compute_resource_req(A, config);
7 if R < C then
8 S ← config;
9 end

10 end
11 return S

high sensing margin, total five slices) and [1,1,1,1,2,2] bits/slice (first 4 MSBs with high
sensing margin, total six slices) are some of the possible configurations. UBS configuration
with more number of slices results in better accuracy due to better matching between the
positively and negatively scaled errors leading to smaller accumulated error. However, it
needs more energy due to more analog to digital conversion operations. For minimum
energy requirement, an UBS configuration should have:

• Minimum number of slices per weight.

• High sensing margin for MSB slices.

• First MSB slice of 1-bit size for 2’s complement arithmetic compatibility (details in
Section 11).

Such configuration is called fundamental slice configuration (FSC) which is obtained for
N-bit weights and m-bit memristors as follows: 1 bit for the first MSB slice and remaining
N-1 bits divided into nearly equal chunks of m bits with small-sized chunks assigned to
MSB slices. For example, with 8-bit weights and m=2 bits per memristor, we obtain FSC =
[1,m-1,m,m,m]=[1,1,2,2,2] bits/slice which is used in Figure 6.3.

UBS provides high accuracy at the cost of additional energy. Algorithm 6.1 gives UBS
slice sizes for optimal accuracy in presence of non-zero Gmin error subjected to energy
constraint. It starts with FSC having minimum energy requirement and then progressively
assigns smaller slices to the next MSBs. Finally, the UBS slice configuration having the
highest accuracy (highest number of slices) within the specified energy limit is selected.

CROSSBAR ARITHMETIC

Weights represented in 2’s complement format cannot be mapped to a crossbar that uses
BBS. This is due to the difficulty in isolating the negative contribution of the MSB from
a multi-bit slice in 2’s complement format [30]. Hence, BBS converts signed weights
into equivalent positive weights using an offset and utilizes unsigned binary arithmetic
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(a) Balanced bit-slicing (BBS). (b) Unbalanced bit-slicing (UBS).

Figure 6.4: Accumulation of partial digital outputs in CIM crossbar.

to combine the column-wise partial outputs. In UBS, we force the MSB slice to always
be of 1-bit size for compatibility with 2’s complement weight encoding and utilize 2’s
complement arithmetic to combine the column-wise partial outputs.

Figure 6.4 shows the accumulation of partial digital outputs (Di ’s) for 8-bit weights
with 2-bit memristors using both conventional BBS and proposed UBS. We use [2,2,2,2]
bits/slice for BBS and FSC with [1,1,2,2,2] bits/slice for UBS. We obtain Eq. 6.2a and
Eq. 6.2b as the expressions for the accumulated output error for BBS and UBS respectively,
by using Eq. 6.1c for dataflow graphs shown in Figure 6.4.

Eacc-BBS = 64·E1 +16·E2 +4·E3 +E4 (6.2a)

Eacc-UBS = (−128)·E1 +64·E2 +16·E3 +4·E4 +E5 (6.2b)

These equations show that UBS can lead to lower accumulated error compared to
BBS due to weighted subtraction of column-wise errors in 2’s complement arithmetic.
This holds true for all UBS configurations, as they use 1-bit slice for the first MSB to be
compatible with 2’s complement crossbar arithmetic. Moreover, impact of non-zero Gmin

error is further reduced as unbalanced bit-slicing logic (described earlier in Section 6.2.2)
ensures that the error accumulated after weighted subtraction remains small.

6.2.3. UNBALANCED BIT-SLICING FOR ENERGY-EFFICIENCY
UBS leads to more slices per weight compared to BBS due to utilizing memristors for less
than their bit-capacity for some slices to achieve higher sensing margin. The extra slices
in UBS introduce additional analog-to-digital conversion operations resulting in higher
energy consumption. Hence, it is necessary to decrease the number of slices per weight in
UBS for reducing the energy overhead which can be achieved by using bigger slice sizes.
However, the low sensing margin in bigger slice sizes leads to higher accumulated error
and reduced accuracy. Thus, bigger slice sizes provide higher energy-efficiency at the
expense of reduced accuracy and there exists a potential accuracy versus energy tradeoff.

Neural networks can inherently tolerate some deviation from ideal VMM computa-
tions. For instance, correct classification needs the output corresponding to the correct
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Figure 6.5: Error reduction approach for high energy-efficiency.

class to be maximum, but it does not matter if it is slightly higher or much higher than the
other classes. So, instead of the targeting a very low accumulated error as done earlier in
Section 6.2.2 to obtain high accuracy, sufficiently good accuracy can still be achieved with
a higher accumulated error which is just small enough to get the correct classification
output. Thus, we can leverage bigger slices for higher energy-efficiency while incurring
reasonable accuracy loss by adjusting the sizes of the bigger slices in such a way that
the accumulated error remains small enough for correct classification. This is illustrated
in Figure 6.5. Hence, an energy-efficient UBS configuration that uses bigger slice sizes
must satisfy the following conditions to achieve high energy-efficiency while maintaining
sufficiently good accuracy:

• Less number of slices per weight than UBS FSC.

• Small enough accumulated error for correct classification.

To satisfy the constraint for number of slices, we need to utilize some slice sizes that
are bigger than the memristor bit-capacity. For instance, with 2-bit memristors for
8-bit weights, UBS FSC ([1,1,2,2,2] bits/slice) leads to five slices. If we want the UBS
configuration to fit in 4 or less slices, the only option is to keep the first MSB slice as
1-bit (for 2’s complement compatibility) and increase the sizes of other slices so that the
remaining seven bits fit in three or less slices. This leads to slice configurations such as
[1,2,2,3] bits/slice where some slices exceed the 2-bit capacity of our memristor devices.
Slices bigger than memristor bit-capacity can be implemented by overloading the existing
memristor device. Overloading refers to the process of using n-bit memristor as an
m-bit memory-cell (slice) such that m>n, where n = 2 and m = 3 for our scenario. A non-
overloaded memristor (n-bit memristor used to hold n or fewer bits) has a certain available
sensing margin and no overlap exists between the variation profiles of its conductance
states. Overloading a memristor device leads to a larger number of conductance states
within the same conductance range. This results in reduced sensing margin and overlap
between the variation profiles of the conductance states. The more we overload a device
(more difference between m and n), the lower is the sensing margin and the higher is
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the variation profile overlap. This can lead to increased errors due to non-zero Gmin in
presence of conductance variation for a column with overloaded memristors.

Overloading memristor devices to meet the first constraint for number of slices inher-
ently increases the error in overloaded columns. However, we can still use overloading
and satisfy the second constraint of small-enough accumulated error by overloading the
columns which contribute less towards the accumulated error. The scaling factors for
individual output errors (Ei s) in MSB columns are much higher compared to the LSB
columns as evident from Eq. 6.2b. Hence, low accumulated error can be achieved if MSB
slices have smaller individual output errors compared to LSB slices. Hence, MSB slices in
an energy-efficient UBS configuration should have higher sensing margin i.e. they should
be smaller and less overloaded compared to LSB slices. Thus, a possible energy-efficient
UBS configuration which can achieve low accumulated error in presence of memristor
overloading is obtained as follows:

• First MSB slice must be of 1-bit size.

• Slices per weight must be less than UBS FSC.

• LSB slices must be bigger or equal to MSB slices.

For 8-bit weights and 2-bit memristors (UBS FSC as [1,1,2,2,2] bits/slice) various possible
energy-efficient UBS configurations which satisfy the aforementioned conditions can be
listed as: [1,2,2,3] bits/slice, [1,1,2,4] bits/slice, [1,1,3,3] bits/slice, [1,1,1,5] bits/slice, [1,3,4]
bits/slice, [1,2,5] bits/slice, [1,1,6] bits/slice and [1,7] bits/slice. They provide different
levels of accuracy while consuming different amounts of energy. Algorithm 6.2 describes
the method of selecting appropriate energy-efficient UBS configuration according to
the energy and accuracy constraints. It begins with FSC whose accuracy is taken as the

Algorithm 6.2: UBS slice configuration selection for energy-efficiency.

input :CIM system architecture (A), Permissible accuracy loss w.r.t. FSC (P), Energy
constraint (C), memristor bit-capacity (B), Bits per full-precision neural weight (N)

output :UBS slice configuration for energy-efficiency (S)
1 FSC ← fundamental_slice_config(B, N);
2 FSC_Acc ← compute_accuracy(A, FSC);
3 Accmin ← FSC_Acc - P;
4 E ← list_energy_efficient_UBS_configs(FSC, B, N);
5 Eligible_configs_list ←;;
6 Eligible_configs_list.insert(FSC);
7 foreach config in E do
8 Accuracy ← compute_accuracy(A, config);
9 Energy ← compute_energy(A, config);

10 if Accuracy > Accmin and Energy < C then
11 Eligible_configs_list.insert(config);
12 end
13 end
14 S ← minimum_energy_config(Eligible_configs_list);
15 return S
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baseline. The permissible accuracy loss with respect to this baseline is also specified as an
input. Out of the various possible energy-efficient UBS configurations, the ones having
accuracy and energy within the specified limits are shortlisted. Finally, slice configuration
having the least energy requirement among the shortlisted ones is selected.

6.3. SIMULATION SETUP
We have developed a simulation framework in Python based on in-situ multiply-accumulate
(IMA) unit in [30] (shown in Figure 6.6) which is compatible with UBS, BBS and HBS. The
IMA design follows 32 nm CMOS technology [30]. The power and area details for various
IMA components are also obtained from [30]. The power consumption of ADCs in the
IMA is modelled based on the ADC design presented in [151] which is also referenced
in [30]. In order to estimate the power/area for the aforementioned ADC at different bit
resolutions while keeping rest of the ADC specifications same, we followed the methodol-
ogy given in [30]. It involves scaling the power/area of all the ADC components except
capacitive DAC (CDAC) linearly with ADC resolution and scaling the power/area of the
CDAC exponentially with ADC resolution. The ADC power/area at new bit resolution is
then obtained by summing all these scaled component-wise powers/areas. The memris-
tor device-related simulation parameters are taken from HfOx-based device presented
in [147]. All of our experiments take into account both non-zero Gmin error and con-
ductance variation together. We consider 2-bit memristors (same as [30, 31]) and 8-bit
weights. This leads to [1,1,2,2,2] bits/slice (FSC obtained using Algorithm 6.1) for UBS,
[2,2,2,2] bits/slice for BBS [30, 31] and [1,1,2,2,1,1] bits/slice for HBS [32]. Other slice
configurations are specified within the corresponding result figures.

We evaluate the performance of five datasets shown in Table 6.1 on a fully-connected
neural network (FC-NN) as well as a convolutional neural network (CNN). All of our
datasets consist of 28x28 images. The details of the used neural networks are as follows:

• FC-NN: It consist of an input layer of 784 neurons followed by two hidden layers
with 100 and 50 neurons. It has 47 output neurons for EMNIST [149] dataset and 10
output neurons for all other datasets. Thus, FC-NN can be expressed as 784-100-50-
(47 or 10). The activation function used is ReLU.

Figure 6.6: Memristor-based CIM architecture with bit-slicing.
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Table 6.1: Accuracy on the datasets considered for simulation.

Dataset
Baseline Accuracy

Fully-connected Neural Network
(FC-NN)

Convolutional Neural Network
(CNN)

MNIST [85] 97.85% 98.75%

FMNIST [148] 88.57% 88.69%

KMNIST [152] 87.99% 92.47%

RMNIST [153] 87.94% 93.75%

EMNIST [149] 82.26% 85.40%

• CNN: Its structure is similar to LeNet-5 [85] with two convolution layers having 6
kernels and 16 kernels of size 5×5, each followed by a max-pooling layer. Flattened
output from the second max-pooling layer connects to fully-connected layers with
120 neurons and 84 neurons. The output layer has 47 neurons for EMNIST [149]
dataset and 10 neurons for all other datasets. So, we can represent the CNN as 6c5-
maxpool-16c5-maxpool-flatten-120-84-(47 or 10), where mCn means m kernels of
size n×n. ReLU is used as activation function.

Moreover, to demonstrate the applicability of UBS to complex datasets and large neural
networks, we use CIFAR-10 [154] dataset on VGG-16 [155] neural network. As the original
VGG-16 network is intended for 224x224 RGB images, we adapt it for 32x32 RGB images
in CIFAR-10 by making a slight change in the final fully-connected layers. The resulting
network can be represented as follows (nCm means n convolution filters of m x m size):
Input - 64c3 - 64c3 - Maxpool - 128c3 - 128c3 - Maxpool - 256c3 - 256c3 - 256c3 - Maxpool -
512c3 - 512c3 - 512c3 - Maxpool - 512c3 - 512c3 - 512c3 - Maxpool - 512 - 10. This network
achieves a software baseline accuracy of 89%.

After training these neural networks using PyTorch [88], their inference on CIM hard-
ware is simulated using our Python-based framework. The Python-based simulation
framework is validated by comparison with SPICE simulation. All the results are shown
in terms of relative accuracy. It is calculated by expressing the accuracy obtained in
Python-based hardware simulation for a given dataset as a percentage of its ideal (soft-
ware) baseline accuracy in Table 6.1. Thus, relative accuracy acts as a measure of how
much software accuracy is preserved in CIM hardware in presence of non-zero Gmin error
and conductance variation.

6.4. SIMULATION RESULTS

6.4.1. NEURAL NETWORK ACCURACY
UBS achieves the highest accuracy while HBS achieves the lowest accuracy among BBS,
HBS and UBS for both FC-NN and CNN as shown in Figure 6.7 and Figure 6.8. The
intuition behind this can be explained as follows. Non-zero Gmin error at the output of i th

crossbar column can be expressed as:

E i = N i ·δ
S

(6.3)
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Figure 6.7: Accuracy comparison of bit-slicing schemes for fully-connected neural network.

Figure 6.8: Accuracy comparison of bit-slicing schemes for convolutional neural network.

where N i is the number of memristors (in the i th column) having Gmin conductance, δ
is the error due to a single Gmin conductance and S is the sensing margin for such an
architecture design. The column-wise errors Ei ’s result in final accumulated error Eacc

as per Eq. 6.2a and Eq. 6.2b for BBS and UBS respectively. UBS intends to reduce the
error Ei compared to BBS by providing larger S (see Eq. 6.3) using smaller slice sizes for
some important columns like MSBs. However, this also leads to higher Ni for some UBS
columns compared to their BBS counterparts as smaller slice sizes produce more digital
zero chunks which get mapped to Gmin, contributing towards increase in Ei . Nevertheless,
weighted sum in Eq. 6.2a leads to high accumulated error for BBS despite having smaller
Ni ’s. On the other hand, the impact of higher Ni ’s on the accumulated error in UBS is
severely diminished thanks to weighted subtraction due to 2’s complement arithmetic as
shown in Eq. 6.2b. The sensing margin allocation in UBS further reduces the impact of
accumulated error that remains after the weighted subtraction. Hence, UBS has a very
small accumulated error and thereby provides much higher accuracy compared to BBS.
Even though HBS provides high sensing margin for some slices, increase in Ni ’s coupled
with weighted accumulation of errors (similar to Eq. 6.2a) due to its unsigned binary
arithmetic leads to higher accumulated error and lower accuracy compared to both BBS
and UBS.

CST [150] mitigation for BBS and HBS relies on current subtraction using a common
dummy column for the entire crossbar. Such current subtraction is not perfect due to
conductance variation and yields non-zero current residues. These current residues get
accumulated across the columns leading to errors in the digital output after analog-to-
digital conversion. These errors are further amplified during weighted sums to combine



6.4. SIMULATION RESULTS

6

91

the column-wise partial digital outputs in HBS and BBS, leading to a high overall accumu-
lated error. UBS does not rely on a common column and leverages weighted subtraction
across various groups of columns. Hence, UBS outperforms HBS and BBS even when they
are augmented with CST as shown in Figure 6.7 and Figure 6.8.

The final accumulated error at the output layer is high in CNN compared to FC-NN
as our considered CNN has more layers than FC-NN. Thus, the impact of non-zero Gmin

error becomes more severe in CNN. Hence, the accuracy for BBS and HBS (with as well
as without CST) reduces on CNN when compared to that on FC-NN. On the other hand,
higher number of layers in CNN result in negligible impact on UBS accuracy as it always
inherently leads to low error for the output in each layer. This is evident in Figure 6.7 and
Figure 6.8. Thus, UBS outperforms BBS and HBS (both with and without CST) across
various datasets as well as types of neural networks.

6.4.2. ACCURACY VERSUS ENERGY TRADEOFF EXPLORATION
We only consider in-situ multiply-accumulate (IMA) unit in [30] for energy comparison as
bit-slicing schemes and configurations have no impact on its other components. Differ-
ent bit-slicing schemes and configurations lead to changes in total number of crossbar
columns as well as the number of bits per memristor device (slice size) for a given col-
umn. These changes affect various IMA components such as analog-to-digital converters
(ADCs), crossbar arrays, sample-and-hold circuits etc. However, the contribution of ADCs
towards the overall IMA energy is significantly higher compared to other components [30].
Hence, we focus on the impact of bit-slicing schemes and configurations on the energy
of ADCs which can be directly correlated to the IMA energy. A change in the number
of crossbar columns leads to a change in total number of ADCs in the IMA to maintain
constant throughput. A change in the number of bits per memristor device for a column
causes a change in the ADC resolution for correct analog-to-digital conversion. Thus,
the overall IMA energy for a bit-slicing scheme or configuration is determined by the
combined effect of the number of required ADCs and their resolutions.

Both BBS and HBS are augmented with CST for comparison in Figure 6.9 and Fig-
ure 6.10 as their accuracy is higher with CST (discussed in Section 6.4.1). UBS FSC
([1,1,2,2,2] bits/slice), BBS + CST ([2,2,2,2] bits/slice) and HBS + CST ([1,1,2,2,1,1] bits/slice)
in Figure 6.9 and Figure 6.10 all have slices which are either 1-bit or 2-bit in size. Thus,

Figure 6.9: Accuracy versus energy tradeoff for bit-slicing schemes on fully-connected neural network.
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Figure 6.10: Accuracy versus energy tradeoff for various bit-slicing schemes on convolutional neural network.

ADC resolutions used in these schemes are quite similar. Hence, their IMA energy perfor-
mance is mainly governed by total number of ADCs. The total number of ADCs required
for UBS FSC is less than that in HBS + CST as it has less number of slices per weight.
Hence, UBS FSC results in less energy than HBS + CST. On the other hand, UBS FSC has
more slices per weight than BBS + CST which results in more number of ADCs and higher
energy when compared to BBS + CST. This is shown in Figure 6.9 and Figure 6.10.

The energy overhead for UBS FSC can be lowered at the expense of reduced accuracy
by decreasing the total number of slices. As discussed in Section 6.2.3, the possible
energy-efficient UBS configurations can be listed as: [1,2,2,3] bits/slice, [1,1,2,4] bits/slice,
[1,1,3,3] bits/slice, [1,1,1,5] bits/slice, [1,3,4] bits/slice, [1,2,5] bits/slice, [1,1,6] bits/slice
and [1,7] bits/slice. Two opposite effects regarding the energy consumption come into
picture when we move from UBS FSC to energy-efficient UBS configurations:

• Energy-efficient UBS configurations have less number of slices than UBS FSC.
Hence, they need less crossbar columns and less ADCs compared to UBS FSC. This
contributes towards reduction in energy requirements.

• Energy-efficient UBS configurations use bigger slice sizes compared to UBS FSC.
Hence, they need higher resolution ADCs which demand more energy. This con-
tributes towards increase in energy requirements.

The overall energy consumption depends on which of these two effects dominates for a
given slice configuration. It can be seen in Figure 6.9 and Figure 6.10 that [1,3,4] bits/slice
consumes the least energy among all schemes and configurations (even less than BBS).
This indicates that the impact of number of slices (number of ADCs) is dominant over the
impact of slice sizes (ADC resolution) for [1,3,4] bits/slice.

The energy-efficient UBS configuration in which bit-sizes of the adjacent slices are
similar, leads to better balancing between the scaled column-wise errors. This results in
smaller accumulated error and high accuracy. Hence, [1,2,2,3] bits/slice gives the best
accuracy among all the listed energy-efficient UBS configurations. This is because the
maximum bit-size difference between its adjacent slice-sizes is 1, which is the smallest
among all the listed energy-efficient UBS configurations. Similarly, among configurations
with 3 slices, [1,3,4] bits/slice gives the highest accuracy as the maximum difference
between its adjacent slices is 2, while it is 3 and 5 for [1,2,5] bits/slice and [1,1,6] bits/slice
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respectively. Note that even though energy-efficient UBS configurations achieve slightly
less accuracy compared to UBS FSC having [1,1,2,2,2] bits/slice, they still achieve much
higher accuracy compared to BBS and HBS (both with CST) as evident in Figure 6.9 and
Figure 6.10. The configurations [1,1,6] bits/slice and [1,7] bits/slice result in significantly
poor accuracy compared to all other energy-efficient UBS configurations as depicted in
Figure 6.9 and Figure 6.10. Hence, it is not recommended to overload a 2-bit memristor
device for holding more than 5 bits. The analysis in Figure 6.9 and Figure 6.10 can be used
to find the UBS configuration having the lowest energy consumption for a given accuracy
constraint as well as the UBS configuration with the highest accuracy for a given energy
budget.

It is also interesting to note that the bit-sizes for weights in different layers of the
neural network can be selected independent of UBS. The bit-sizes for weights in each
layer are given as a design constraint to UBS (like number of bits per memristor) and
UBS tries to deliver the best possible performance for these given bit-sizes. For designs
which use the same bit-size for weights in every layer, all layers should be provided with
the same slice configuration based on the accuracy versus energy-efficiency tradeoff. For
instance, with 16-bit weights and 2-bit memristors, [1,1,2,2,2,2,2,2,2] bits/slice should be
used for all layers if accuracy is the primary concern and [1,2,2,2,2,3,4] bits/slice should
be used for all layers if energy-efficiency is the major concern. If the design uses different
bit-sizes for weights in different layers, the same strategy can be extended to layers that
use the same bit-size. For instance, consider a network where half the layers use 8-bit
weights, and half the layers use 16-bit weights. If accuracy is the primary target, then one
should use [1,1,2,2,2] bits/slice for 8-bit layers and [1,1,2,2,2,2,2,2,2] bits/slice for 16-bit
layers. On the other hand, for energy-efficiency, one should use [1,3,4] bits/slice for 8-bit
layers and [1,2,2,2,2,3,4] bits/slice for 16-bit layers. Moreover, UBS is designed to make
the vector-matrix multiplication error free. Provided that the core computation involved
in a layer is vector-matrix multiplication or matrix-matrix multiplication, any such layer
can reap the benefits of UBS by following the slice configuration allocation logic discussed
earlier. Hence, UBS is applicable to any type of deep learning layer as almost all types of
layers in deep-learning involve matrix-matrix multiplication as the core computation.

6.4.3. SCALABILITY ASSESSMENT
The accuracy comparison of various bit-slicing schemes on VGG-16 network using CIFAR-
10 dataset is shown in Figure 6.11. We have considered HBS and BBS empowered with
CST for this comparison because they achieve their highest possible accuracy with CST
as evident in Figure 6.7 and Figure 6.8. We use 16-bit weights as CIFAR-10 is a complex
dataset and VGG-16 is a large network [30]. Considering 2 bits per memristor as in Sec-
tion 6.3, we get [1,1,2,2,2,2,2,2,2] bits/slice for UBS, [2,2,2,2,2,2,2,2] bits/slice for BBS+CST
and [1,1,2,2,2,2,2,2,1,1] bits/slice for HBS+CST. To improve the energy efficiency of UBS
with 9 slices ([1,1,2,2,2,2,2,2,2] bits/slice), we follow the same logic as in Section 6.4.2
to reduce the number of slices. This leads to [1,2,2,2,2,2,2,3] bits/slice as the best (most
accurate) configuration having 8 slices and [1,2,2,2,2,3,4] bits/slice as the best (most
accurate) configuration having 7 slices. These slice configurations are also included
for the comparison in Figure 6.11. It is evident from Figure 6.11 that UBS outperforms
HBS+CST and BBS+CST on VGG-16 with CIFAR-10 dataset in terms of accuracy. This
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Figure 6.11: Accuracy comparison of bit-slicing schemes on VGG-16 neural network for CIFAR-10 dataset.

can be attributed to the mitigation provided by the sensing margin allocation which is
also supported by 2’s complement crossbar arithmetic. Moreover, energy-efficient UBS
configurations ([1,2,2,2,2,2,2,3] bits/slice and [1,2,2,2,2,3,4] bits/slice) incur a very minor
accuracy loss compared to the UBS with 9 slices ([1,1,2,2,2,2,2,2,2] bits/slice) as they
sacrifice sensing margin for LSBs to reduce the number of slices.

6.4.4. HARDWARE PERFORMANCE METRICS
The performance metrics per IMA for various bit-slicing schemes are summarized in
Table 6.2. We consider both BBS and HBS augmented with CST so that their most accurate
versions are considered for comparison. Out of the various energy-efficient UBS configu-
rations discussed in Section 6.4.2, [1,2,2,3] bits/slice and [1,3,4] bits/slice are selected as
they provide the highest accuracy and the lowest energy among UBS configurations hav-
ing 4 slices per weight and 3 slices per weight respectively. UBS FSC ([1,1,2,2,2] bits/slice)
provides 7.3× accuracy at the expense of 15.3% energy overhead compared to BBS, while
it achieves 2.7× accuracy and consumes 11.7% less energy when compared to HBS. The
UBS energy overhead with respect to BBS can be reduced from 15.3% to mere 1.1% by
using UBS with [1,2,2,3] bits/slice. We can even achieve 10% energy savings compared to
BBS by leveraging UBS with [1,3,4] bits/slice.

The net energy-efficiency represents the number of operations performed per unit

Table 6.2: Summary of the performance metrics per IMA, unit indicated in brackets with each metric. Accu-
racy values for EMNIST dataset on CNN are reported. Correct operations per unit energy = (Total
operations×Accuracy/100)/Energy, unit: giga operations per joule (GOP/J).

Metric
UBS [This work] BBS [30, 31] + CST [150] HBS [32] + CST [150]

[1,1,2,2,2]
bits/slice

[1,2,2,3]
bits/slice

[1,3,4]
bits/slice

[2,2,2,2]
bits/slice

[1,1,2,2,1,1]
bits/slice

Energy (pJ) 4311 3778 3365 3738 4883

Net energy-efficiency (GOPS/W) 237.5 271.0 304.3 273.9 209.7

Accuracy (%) 83.77 83.23 80.54 11.46 31.19

Correct operations/energy (GOP/J) 198.9 225.5 245.1 31.4 65.4

Area (µm2) 23324 23121 26985 21765 24883
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energy consumption and is expressed as giga operations per second per watt (GOPS/W) in
Table 6.2. The energy-efficiency comparison can be correlated to the energy comparison
discussed earlier by taking into account the fact that these two have inverse relationship.
For instance, the more energy-efficient scheme is the one that consumes less energy or
has higher GOPS/W. However, metrics like energy and energy-efficiency do not take into
account the fact that even though BBS appears to be energy-efficient, it is spending that
energy in performing incorrect computations as reflected in its poor accuracy. Hence,
we define a metric called “correct operations per unit energy" which takes into account
both energy and computational correctness. The number of correct operations can
be computed as a product of accuracy (in fraction format, not as a percentage) and
total operations. Correct operations per unit energy is then simply obtained by dividing
the number of correct operations by total energy consumption. UBS FSC ([1,1,2,2,2]
bits/slice) provides 6.3× and 3× correct operations per unit energy compared to BBS and
HBS respectively. [1,2,2,3] bits/slice provides 7.2× and 3.4× correct operations per unit
energy compared to BBS and HBS respectively, at the cost of just 0.54% accuracy loss
compared to UBS FSC. [1,3,4] bits/slice results in 7.8× and 3.7× correct operations per
unit energy compared to BBS and HBS respectively, at the expense of 3.23% accuracy loss
compared to UBS FSC. This shows that the number of correct computations performed
per unit energy consumption is much higher for UBS and it increases further with the use
of energy-efficient UBS configurations for a very small decrease in accuracy.

UBS FSC ([1,1,2,2,2] bits/slice) requires 7.2% more area with respect to BBS. UBS with
[1,2,2,3] bits/slice and [1,3,4] bits/slice incur area overheads of 6.2% and 24% respectively
when compared to BBS. Thus, UBS with [1,2,2,3] bits/slice is the best choice if the target
is to achieve high energy-efficiency with accuracy closest to UBS FSC and minimum area
overhead with respect to BBS. On the other hand, [1,3,4] bits/slice is the best choice if we
are willing to trade further accuracy and area for even higher energy-efficiency.

6.5. CONCLUSIONS
This chapter presented an unbalanced bit-slicing scheme to mitigate the impact of non-
zero minimum conductance of memristors on CIM architectures. It achieved this by
appropriate utilization of sensing margin and leveraging the weighted subtraction effect
of 2’s complement crossbar arithmetic. Two different sensing margin allocation strategies
were proposed based on whether the final goal is to achieve high accuracy or energy-
efficiency. The proposed scheme provided up to 7.3× accuracy and up to 7.8× correct
operations per unit energy consumption compared to state-of-the-art. Such high accuracy
and energy-efficiency can benefit a wide spectrum of AI applications.
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7.1. INTRODUCTION
Read-disturb is a phenomenon where a large number of read operations lead to a sig-
nificant resistance change in the memristor [22]. As neural network inference involves
numerous read operations on memristors, read-disturb causes an undesired change in the
weights stored as memristor resistances and results in degraded inference accuracy [23].
To reduce the impact of read-disturb, some works have recommended using low read
voltages [21, 22, 156]. However, this leads to a reduced sensing margin and increased influ-
ence of process variation, resulting in erroneous output. Alternatively, CIM-aware training
can be leveraged to address read-disturb. Such approaches fall into two categories: i)
ex-situ where software models of non-idealities are incorporated into the training [134,
157], and ii) in-situ where training involves forward path execution directly on the CIM
chip [55, 158]. The ex-situ approach only deals with design-time non-idealities, leaving
run-time non-idealities like read-disturb unaddressed. The in-situ approach requires
frequent on-chip training iterations, leading to high energy consumption and endurance
issues. A few works provide only detection of the occurrence of read-disturb [159, 160],
while [161, 162] recommend periodic reprogramming of memristors for read-disturb
mitigation which leads to excessive write energy. Some techniques periodically reverse
the direction of the read current to compensate for the resistance change due to read-
disturb [23, 163]. However, this strategy falls short due to the asymmetric behavior of
read-disturb in opposite read directions, leading to incorrect compensation. Furthermore,
it adds extra complexity to the hardware design, which can negatively affect inference
accuracy in the presence of process variation. Hence, there is a strong need for an ef-
fective read-disturb mitigation technique to improve the accuracy of CIM-based neural
networks.

We present an adaptive referencing architecture for dynamic detection and mitigation
of read-disturb in CIM-based neural networks. It begins with an analysis to extract
insights about the read-disturb phenomenon. We then develop a dynamic detection
mechanism capable of identifying instances of read-disturb occurrence at run-time.
Moreover, we propose an adaptive method based on the aforementioned analysis, that
adjusts sensing conditions in CIM hardware upon detecting read-disturb to prolong the
error-free operation. Our key contributions are as follows:

• An analysis to derive insights about the read-disturb phenomenon in memristor-
based neural networks.

• A mechanism for detecting the occurrence of read-disturb at run-time.

• An adaptive design to adjust the CIM sensing conditions to extend the correct
functionality.

Our proposed architecture provides up to 2× accuracy and up to 2× correct operations
per unit energy than conventional CIM architectures.
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Figure 7.1: Overview of conventional and proposed referencing schemes in the presence of read disturb.

7.2. PROPOSED METHODOLOGY

7.2.1. OVERVIEW OF REFERENCING SCHEMES
Based on the experiments in [23], read disturb only impacts RH memristors and decreases
their resistance. Thus, the column currents increase over time and their distributions shift
towards the right as shown in Fig. 7.1. Conventional design practice sets sensing reference
at the midpoint between adjacent column current distributions, to optimize the sensing
margin [30, 31, 164]. However, it leads to erroneous operation at run-time due to right
shift induced by read-disturb, as shown in Fig. 7.1. This challenge is also not effectively
addressed by prior works as discussed in Section 7.1. Our proposed methodology over-
comes this problem by dynamically detecting the occurrences of read-disturb and then
adapting the sensing references to restore correct operation as depicted in Fig. 7.1. This
requires new hardware components such as read-disturb detection unit, ADC adaptation
control, and adaptive ADC as shown in Fig. 7.2. The design details of these components
are discussed next.

Figure 7.2: CIM system architecture with conventional and proposed crossbar processing element (XPE), with
new/modified components indicated in yellow.
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Algorithm 7.1: Identifying the most vulnerable columns.

input :Weights (W), inputs (I), fixed point weight format (FW), fixed point input format
(FI), memristor bit-size (R), DAC resolution (D), crossbar size (X)

output :A matrix containing the location of the most vulnerable column in each crossbar
(MVC_matrix)

1 Wfxp ← fixed_point_conversion(W, FW);

2 Wsliced ← bit_slicing(Wfxp, R);

3 Wxbar ← split_into_xbar_chunks(Wsliced, X);
4 Ifxp ← fixed_point_conversion(I, FI);

5 Isliced ← bit_slicing(Ifxp, D);

6 Ixbar ← split_into_xbar_chunks(Isliced, X);
7 RVS_matrix ← track_nonzero_inputs_to_RH(Ixbar, Wxbar);
8 MVC_matrix ← max(RVS_matrix, X);
9 return MVC_matrix

7.2.2. DYNAMIC READ-DISTURB DETECTION
Dynamic read-disturb detection starts with software profiling in Algorithm 7.1. We use test
dataset for profiling as it closely emulates the post-deployment stimuli that the network
may encounter. The neural network inputs and weights are first quantized to fixed-
point numbers and bit-sliced to match the DAC resolution (for inputs) or memristor bit
capacity (for weights). These matrices with bit-sliced values are then divided into crossbar-
sized submatrices to be used for profiling. As read-disturb builds up only when an RH

memristor (digital 0 weight) receives non-zero voltage (digital 1 input), our profiling tracks
instances where each digital 0 weight in a submatrix encounters a digital 1 input. This
tally corresponds to the number of read operations (Nread) affecting each RH memristor
throughout the profiling dataset. Given that the output of a CIM crossbar is the column
current, the sum of Nread across all RH memristors in a column gives its read-disturb
vulnerability score (RVS). For each crossbar, the column with the highest RVS is designated
as the most vulnerable column (MVC).

Read-disturb detection unit (RDU), shown in Fig. 7.3, within each crossbar then
monitors its MVC to dynamically detect the occurrence of read-disturb. The RDU has
two registers: one stores the index of MVC, while the other stores a digital version of
MVC weights. When XPE’s multiplexer select line matches the MVC index, RDU performs

Figure 7.3: Read-disturb detection unit.
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a multiply-accumulate operation between the digital MVC weights register and digital
inputs retrieved from XPE’s input register. A mismatch between this multiply-accumulate
output and XPE’s ADC output serves as an indicator of read-disturb, prompting activation
of the ADC adaptation control unit. The column under RDU monitoring can be changed
by altering the contents of its internal register offering hardware adaptability for scenarios
such as varying datasets, retrained networks, etc.

7.2.3. ADAPTIVE REFERENCING DESIGN
As the column current distributions shift towards right over time due to read-disturb,
shifting the sensing references towards right upon detecting read-disturb can restore the
correct operation. This can be achieved using an adaptive ADC and a control logic.

We design adaptive ADC using successive approximation-register (SAR) ADC as the
base. This is because SAR ADC is widely used in CIM due to its low power consump-
tion [165]. It uses a binary search approach to map the analog input to the appropriate
digital output. Reference shifting in n-bit SAR ADC is achieved by augmenting its internal
digital-to-analog converter (DAC) with m additional least significant bits (LSBs) and a
tuning logic, as shown in Fig. 7.4a. The control input activates the tuning logic to incre-
ment the m-bit LSB value by 1. As a result, the reference values change by VFS/2(m+n),
where VFS denotes the full-scale voltage of the ADC. The references can be shifted at the
most 2m times, which is the maximum possible LSB value.

The adaptive ADC control logic is depicted in Fig. 7.4b. It initiates reference adap-
tations in the adaptive ADC and coordinates essential control sequences with the tile
control logic. It contains a register that holds the value of maximum possible shifts (2m)
and a counter that keeps track number of shifts that have already occurred (C). The

(a) Adaptive SAR ADC.

(b) ADC adaptation control unit.

Figure 7.4: Adaptive ADC and control logic design.
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counter is reset to zero on system startup and only gets activated by the output of the
read-disturb detection unit. Upon activation, if C < 2m, it increments by 1. It also triggers
the tuning logic within the adaptive ADC and dispatches a control sequence stall request
to the tile control unit. This prompts the tile control unit to wait for the completion of
ADC reference shifting. Conversely, if C = 2m, the control logic initiates a memristor
reprogramming request to the tile control unit.

7.3. SIMULATION SETUP
We use the following four datasets for evaluation: MNIST [85], EMNIST-Letters [149],
EMNIST-balanced [149] and CIFAR-10 [154]. We modify the VGG [155] network for CIFAR-
10 as: 32c3 → 32c3 → maxpool → 64c3 → 64c3 → maxpool → 128c3 → 128c3 → maxpool
→ flatten → 128 → 10. Here, nCm denotes a block of n filters of m kernel size with batch
normalization and relu, while a single number indicates neurons in a fully connected layer
with batch norm and relu (except the last layer). Lenet-5 [85] with batch normalization is
used for all other datasets. After training these networks in PyTorch, we perform behav-
ioral simulation of their inference on CIM hardware using our Python-based framework.
This framework leverages the crossbar processing element (XPE) in Fig. 7.2 and adaptive
ADC obtained by modifying the SAR ADC in [30, 31] as per Section 7.2.3 with four extra
LSBs. Power and area for the adaptive ADC are obtained using [166]. We performed RTL
synthesis in TSMC 40nm technology to derive power and area for read-disturb detection
unit and ADC adaptation control unit. The power and area of other XPE components
are obtained from [31]. We consider full-precision weights distributed across a group of
1-bit memristors, programmed using write-verify method in [167]. Read-disturb models
are extracted from [23] which presents experimental investigations on real memristors.
Our simulations consider both finite on-off ratio and resistance variation in addition to
read-disturb.

(b) Read voltage 0.5V. (c) Read voltage 0.6V.

Figure 7.5: Accuracy comparison between conventional CIM architectures [30, 31] and proposed methodology.
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7.4. SIMULATION RESULTS

7.4.1. NEURAL NETWORK ACCURACY
The accuracy comparison between proposed adaptive referencing and conventional CIM
architectures [30, 31] is shown in Fig. 7.5. These results are presented in terms of relative
accuracy, obtained by normalizing the accuracy of behavioral CIM hardware simulation
with corresponding software baseline accuracy. This normalization effectively quantifies
how faithfully computational correctness in software is maintained in CIM hardware.
The proposed methodology achieves up to 2× accuracy compared to conventional CIM
architectures (EMNIST-Balanced dataset with 0.5V read voltage), providing effective read-
disturb mitigation. It also accommodates diverse dataset complexities (from MNIST to
CIFAR-10) and adapts seamlessly to various network sizes (from Lenet-5 to VGG-like
architecture). Furthermore, it delivers these benefits across two different read voltages,
highlighting its robustness.

7.4.2. HARDWARE PERFORMANCE METRICS
The hardware metrics per XPE for the proposed methodology and conventional CIM
architectures [30, 31] are shown in Table 7.1. Metrics like energy and net energy-efficiency
expressed in giga operations per second per watt (GOPS/W) do not inherently account
for the energy devoted to correct computations. Hence, we introduce a new metric called
“correct operations per unit energy". It is defined as the ratio of correct operations to total
energy consumption (unit: Giga operations per joule, GOP/J), where correct operations
are given by the product of accuracy (as a fraction) and total operations. Our proposed
methodology achieves up to 2× correct operations per unit energy at the expense of 2.2%
energy overhead and 23.6% area overhead. This additional cost can be attributed to the
increased resolution of the DAC within the SAR ADC, which is necessary to accommodate
reference shifting. Thus, it is clear that its advantages outweigh the overheads.

Table 7.1: Comparison of crossbar processing element (XPE) metrics.

Metric Conventional XPE [30, 31] Proposed XPE [This work]

Energy consumption (pJ) 407.06 416.00

Net energy-efficiency (GOPS/W) 157.22 153.85

EMNIST-Balanced accuracy at 0.5V (%) 33.45 66.12

Correct operations per unit energy (GOP/J) 52.59 101.72

Area (µm2) 3735.43 4617.82

7.5. CONCLUSIONS
This chapter presented an adaptive referencing architecture for dynamic detection and
mitigation of read-disturb, to improve the accuracy of CIM-based neural networks. This
was achieved through a combination of run-time monitoring and adaptation of sensing
references. Our proposed architecture achieved up to 2× accuracy compared to that of
conventional CIM architectures. Thus, we have shown that a shrewd hardware design can
facilitate correct operation despite memristor non-idealities.
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8.1. INTRODUCTION
This chapter describes our CIM hardware prototype for ECG classification. It combines
our hierarchical ECG classification model (Chapter 3) with non-ideality mitigation strate-
gies (Chapters 5, 6, and 7), as depicted in Figure 8.1. This integration offers energy
efficiency through the CIM-tailored hierarchical classification model and ensures accu-
rate hardware computations due to non-ideality mitigation strategies. From the three
classifiers in hierarchical model, we select classifier 1 for prototyping. This decision is
based on the practical implication of each classifier. Classifier 1 plays a crucial role in
alerting end-users about the urgency of seeking medical attention. On the other hand, the
other two classifiers provide additional insights useful for medical practitioners treating
the individual. Therefore, classifier 1 becomes the prime choice for prototyping due
to its direct impact of on human well-being. Among the three non-ideality mitigation
strategies, we select unbalanced bit-slicing for our prototype. This choice arises from our
use of polysilicon-based resistive storage in place of memristors, owing to difficulties in
obtaining a commercial memristor fabrication process. Unlike memristors, polysilicon
resistive elements do not suffer from conductance variation and read disturb problems.
However, they are still affected by non-zero Gmin error non-ideality. Hence, we leverage
unbalanced bit-slicing in the prototype to address this particular challenge.

Figure 8.1: Our prototyping approach to combine hierarchical ECG classification model with non-ideality
mitigation strategies. FC indicates fully connected neural network.

We develop the prototype incorporating classifier 1 and unbalanced bit-slicing through
a three-phase process. The first phase focuses on optimizing classifier 1 further for effi-
cient hardware implementation. This is achieved through resampling and quantization.
The resampling process reduces the model complexity by decreasing the number of input
neurons and size of the hidden layer matrix. This leads to a lower computational resource
usage. We then train the streamlined model to adapt to the information loss caused by
resampling. Following the retraining, we quantize the resampled model. It involves de-
termining the smallest bit-sizes for various model components, while ensuring minimal
accuracy degradation. This reduces hardware resource usage while maintaining high ac-
curacy. In the second phase, we design CIM hardware architecture for the resampled and
quantized model. We translate the model computations into CIM hardware operations
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and associated control logic. This translation incorporates unique hardware features
such as unbalanced bit-slicing and a new ADC design (out of the scope of this thesis).
Moreover, it includes additional logic blocks to handle off-chip data and control signal
exchanges. In the final phase, we perform the physical layout implementation for this
hardware architecture. The analog parts of the architecture are implemented as custom
layouts, while the digital parts are implemented using the automated place and route
tools. These parts are integrated in an analog-on-top flow and the combined final layout
is sent to the foundry for fabrication. Upon receiving the fabricated chip, we create a
testbench to conduct measurements and characterization. The upcoming sections will
describe each of these three prototyping phases in detail.

8.2. MODEL OPTIMIZATION
The objective of this optimization phase is to minimize the hardware resource require-
ments of the model, while still preserving its classification performance. We begin by
analyzing the ECG heartbeat signal which is a recording of voltage against sample index as
shown in Figure 8.2. The sample indices represent discrete time instances spaced apart by
the sampling duration of the acquisition sensor. The specifics of the data acquisition sys-
tem are beyond the scope of this thesis and our focus lies on understanding the features
within the ECG heartbeat. We observe that the central segment around the heartbeat
peak holds the highest influence on the classification outcome. The impact of samples
progressively diminishes as we move away from this region. Moreover, the samples in the
tail section contribute minimally to classification performance.

We adopt a resampling strategy based on this insight to represent the ECG heartbeat
using a strategically chosen subset of data samples. It involves selecting all samples
within a 50-sample window from the high-influence area around the peak. Within the
moderate influence zone, we select 25 samples within a 50-sample window by selecting
every alternate sample. Samples beyond these two windows are discarded. This results
in a reduction of the input neurons from 250 to 100, thereby altering the network struc-
ture from 250-100-3 to 100-100-3 as depicted in Figure 8.2. This streamlines the model
computations and reduces the hardware resource requirements.

Figure 8.2: Resampling of ECG heartbeat to reduce the number of input neurons in the model.
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We now need to train the new 100-100-3 model with resampled ECG heartbeat data.
The training process incorporates advanced techniques such as weighted loss function
and learning rate scheduler. This helps the network in overcoming the information loss
due to ECG resampling. We use a weighted loss function with scaling factors [1,1,5] for
[normal, mild, abnormal] classes respectively. It penalizes the mistakes on normal and
mild classes equally, while those on abnormal classes incur a 5× penalty. This enables
emphasis on correct classification of abnormal class, while maximizing the overall accu-
racy. Furthermore, we explore various learning rate schedules such as cosine annealing,
step, multistep and exponential decay. Among these, the multistep scheduler emerges as
the most effective choice for our model. The 100-100-3 model trained with resampled
heartbeats using aforementioned advanced features achieves 98% overall accuracy and
95.4% critical accuracy. Thus, it incurs just 0.3% loss on both overall accuracy and critical
accuracy compared to the original 250-100-3 model. This demonstrates the effective-
ness of resampling in streamlining the model computations, while still maintaining high
classification accuracy.

We quantize the trained resampled model to further reduce its hardware resource
usage. This quantized model structure is shown in Figure 8.3. Each data sample in the
input heartbeat data is quantized to 8 bits. The weights and biases in both layer 1 and
layer 2 are also represented using 8 bits. Layer-1 outputs are quantized to 16 bits, while
layer-2 outputs quantized to 32 bits. Softmax layer is not required for inference as the class
with the highest softmax probability also has the highest raw score. Hence, we employ
argmax to determine the output class based on layer-2 outputs. This saves hardware
resources that would otherwise be required for softmax computations. The quantized
model achieves 97.9% overall accuracy and 94.9% critical accuracy. Thus, it incurs a tiny
loss of 0.4% and 0.8% in overall and critical accuracy compared to the original 250-100-3
model, while significantly reducing the hardware resource demands. This makes the
resampled and quantized classifier 1 model (100-100-3) well suited for hardware design.

Figure 8.3: The optimized (quantized and resampled) classifier 1 model.

8.3. HARDWARE ARCHITECTURE DESIGN
In this phase, we design the hardware architecture for our resampled and quantized
classifier 1 model. We first create a hardware-oriented view of this model as shown in
Figure 8.4, distinguishing analog and digital blocks through color coding. Each layer
involves two-stage mixed-signal data processing. First stage performs vector-matrix
multiplication (VMM) in analog domain. This requires time-multiplexed inputs due to
large energy consumption associated with high resolution digital-to-analog converters.
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Figure 8.4: Hardware-aware view of the optimized classifier 1 model. The analog and digital blocks are indicated
using two different colors.

Moreover, analog VMM internally employs unbalanced bit-slicing as the resistive storage
with a 2-bit capacity cannot hold a 8-bit weight. The analog VMM outputs are then
converted to digital and undergo subsequent digital processing in the second stage to
produce the layer outputs. The argmax logic then determines the output class based on
layer-2 outputs.

We now look into the internal operation of layer-1 in Figure 8.5. Its 100x100 weight
matrix translates to 100x500 crossbar due to unbalanced bit-slicing that splits each 8-bit
weight across 5 columns as [1,1,2,2,2] bits. Similarly, the 1x100 bias vector expands to a
1x500 crossbar structure. The biases are stacked below the weights to create an overall
101x500 crossbar, which enables bias addition as a part of crossbar outputs. The 8-bit
heartbeat samples are fed to the crossbar in a time-multiplexed manner. At each timestep,

Figure 8.5: Internal working of layer-1 on CIM hardware.
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the corresponding bits from all heartbeat samples are converted to analog domain and
applied to crossbar rows. The bias row is provided with a constant input. As a result, the
crossbar outputs include MAC operation between time-multiplexed inputs and sliced
weights along with bias addition. These outputs are converted to digital domain using
analog-to-digital converters. The novel ADC in our design delivers bit-by-bit digital
conversion across multiple steps (its design details are out of the scope of this thesis).
For instance, conversion of analog MAC value to a 7-bit digital output occurs over seven
steps, one bit at a time. A straightforward approach would involve collecting all ADC
bits and then performing a shift-and-add operation to account for weight slicing across
columns. However, this is computationally expensive. To address this, we combine these
two steps into a single step through selection of appropriate scaling factors. Once this
accumulation is completed across all ADC steps, we merge it with the outcome from
previous input timestep. After repeating this process over all the input timesteps, we
truncate the resulting values to 16-bits and apply ReLU activation to obtain the final
layer-1 outputs.

Layer-2 operates in a similar manner as layer-1, shown in Figure 8.6. Its 100x3 weight
matrix requires 100x15 crossbar due to slicing of 8-bit weights across 5 columns through
unbalanced bit-slicing. Similarly, its 1x3 bias vector translates to 1x15 crossbar. Stacking
biases below the weights then leads to 101x15 crossbar. This crossbar receives 16 bit
inputs from layer-1 across 16 timesteps. It produces 15 analog outputs at each timestep,

Figure 8.6: Internal working of layer-2 on CIM hardware.



8.4. IMPLEMENTATION AND TESTBENCH

8

110

Figure 8.7: ECG classification system architecture.

which undergo a single cumulative shift-and-add operation to account for ADC steps and
slicing across columns. At the last ADC step, these values get merged with outcome of the
previous input timestep. Repeating this process over all 16 timesteps produces layer-2
outputs. Truncation is not needed as 32 bits suffice to hold layer-2 outputs. Moreover,
ReLU is not needed as layer-2 is the final layer of the network. Outputs of layer-2 are then
fed into argmax to make a prediction.

We integrate the functionalities of layer-1 and layer-2 with other essential compo-
nents to form the ECG classification system, illustrated in Figure 8.7. A dataloader serially
imports ECG heartbeat into the prototype from an external source (details in the next
section). Upon acquiring the heartbeat data, it undergoes analog VMM and subsequent
digital processing across the two layers. Each layer’s analog VMM is handled by a dedi-
cated hardware block. The digital processing of both layers is encapsulated in the digital
processing logic block. Finally, argmax block determines the class with highest classifica-
tion score as the prediction outcome.

8.4. IMPLEMENTATION AND TESTBENCH
This phase focuses on creating a physical layout for the system architecture in Figure 8.7.
The resulting chip layout in TSMC 40nm technology is shown in Figure 8.8. It consists
of three analog components and one digital component. The analog components in-
clude two analog VMM units and ADC characterization circuits. Each analog VMM unit
incorporates a novel CIM crossbar with a new ADC design. The ADC characterization
circuits facilitate ADC evaluation independent of the rest of the system. The internal
design details of the novel crossbar and ADC are out of the scope of this thesis. All of these
analog components are implemented through custom layout process. It involves manual
placement and routing of the transistors to achieve the desired functionality. The sole
digital component of the layout is denoted as the digital processing unit in Figure 8.8.
We leverage RTL (register-transfer level) to layout flow for its implementation. It starts
with creating a VHDL description for the digital processing unit, which internally merges
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Figure 8.8: Layout of the ECG classification system.

the dataloader, argmax, and digital processing logic blocks of Figure 8.7. This allows
sharing of internal computations across these blocks, enabling better optimization in
later steps. The VHDL description is then converted to an optimized gate-level netlist
through RTL synthesis. Finally, the synthesized netlist undergoes automated placement
and routing to produce the optimal transistor-level digital layout. Once the layouts for
all the individual components are ready, we combine them into a full chip layout using
analog-on-top approach. It begins with exporting the digital component layout into
analog layout editor. The imported layout is then manually integrated with the layouts
of analog components and the padring. This integrated full-chip layout is sent to the
foundry for fabrication. The fabricated chip die is shown in Figure 8.9. It occupies 2.9
mm2 silicon area and operates at 100 MHz clock frequency. The IO pads of the fabricated
chip are bonded to the PCB in Figure 8.9. The PCB features a power distribution network,
integrated switches, and biasing circuits for analog crossbars. It also includes jumpers,
BNC connectors, level-shifters etc. for interfacing with off-board components.

We next develop an evaluation testbench for the prototype using this PCB, as shown in
Figure 8.10. Power supply ports and connections are omitted here for the sake of brevity.
The testbench utilizes a waveform generator to provide clock and reset signals to the
PCB. The heartbeat data first undergoes preprocessing on a PC. It involves quantizing the

Figure 8.9: The prototype die and its incorporation in the printed circuit board (PCB).
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Figure 8.10: Testbench for prototype evaluation.

heartbeat samples to 8 bits, followed by bit-slicing for compatibility with time-multiplexed
CIM processing on the prototype. This preprocessed data is loaded onto an SD card, which
is subsequently transferred to a Raspberry Pi 4 module. Python script running on the
Raspberry Pi transmits the data from the SD card to the PCB via its general-purpose
input/output (GPIO) ports. The prototype on the PCB processes this input to produce
prediction outcome. Its outputs are then observed using an oscilloscope. Measurements
on our prototype using this testbench are currently ongoing.
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9
SUMMARY AND OUTLOOK

9.1. THESIS SUMMARY
We now present a chapter-by-chapter summary of this thesis.

Chapter 1: Introduction
This chapter began with highlighting the importance of edge-AI. We then described
the drawbacks of traditional computing and introduced memristor-based computation-
in-memory (CIM) paradigm as a promising alternative for edge-AI. Following this, we
outlined three main research topics covered in this thesis. The first topic involved devel-
oping models suitable for edge-AI in healthcare applications, with a focus on optimizing
them for deployment on CIM hardware. The second topic addressed preserving the model
accuracy on CIM hardware by dealing with memristor non-idealities. The third topic
focused on prototyping the ideas and solutions presented in the previous two research
topics. We then described our contributions to each research topic in detail, followed by
an overview of thesis organization.

Chapter 2: Fundamentals of Neural Networks and Computation-In-Memory
This chapter started with introducing fundamental terminologies in the field of AI. We
then narrowed our focus to neural networks, discussing their types and operational
aspects such as training and inference. Afterwards, we introduced CIM system architec-
ture for neural network inference and provided a detailed description of its functioning.
We further covered various types of memristive crossbar designs and concluded with a
discussion on memristor device technologies.

Chapter 3: Memristor-based CIM for ECG Arrhythmia Classification
This chapter presented energy efficient and accurate cardiac arrhythmia classification
on CIM-based edge-AI hardware. Initially, we evaluated the severity impact of various
arrhythmia classes. We then devised a severity-based classification approach to enhance
support for both end users and medical professionals. Next, we established a hierarchical
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classification structure for this approach. It simplifies the overall classification task
and activates only the essential network components for a given input. This leads to
improved energy efficiency while maintaining high accuracy. Within this structure, we
incorporated the most energy-efficient neural network topology customized for CIM
hardware, identified through design space exploration. This further reduces energy
consumption and area footprint due to in-situ data processing and memristor scalability
in CIM hardware. Our proposed classification approach achieved 25× less average energy
consumption and 12× less area compared to the state-of-the-art while maintaining high
accuracy.

Chapter 4: Memristor-based CIM for Diabetic Retinopathy Screening
This chapter proposed a reliable and energy-diabetic retinopathy (DR) screening suitable
for deployment on CIM-based edge-AI hardware. We first assessed the impact of training
data quality and diagnostic information on AI-based DR screening. We first created a
custom training dataset to overcome reliability issues arising from training data quality.
Our dataset incorporated diverse image quality and sources, while also addressing class
imbalance issue. This enabled the trained model handle variations in on-field retinal
images and perform well on minority DR classes, enhancing its post-deployment relia-
bility. Subsequently, we proposed a pseudo-binary classification approach to provide
diagnostic information along with model predictions. This enhanced the real-world effec-
tiveness of our model and also helped in facilitating its widespread adoption. Moreover,
this approach improved the classification performance due to its knowledge distillation
structure. We then developed a pseudo-binary DR classification model using our custom
dataset. Furthermore, we optimized this model for deployment on CIM-based edge hard-
ware through quantization and pruning. Our DR screening solution achieved reliable
classification with three orders of magnitude less energy consumption compared to the
state-of-the-art hardware platforms.

Chapter 5: Mapping-aware Biased Training for CIM-based Neural Networks
This chapter described a biased training approach to mitigate conductance variation non-
ideality in CIM-based neural networks. First, we identified memristor conductance states
that exhibited inherent immunity to variation, termed ’favorable states’. Next, we defined
a favorability constraint to specify the range of weight values that directly get mapped
to these favorable states. Subsequently, we created a baseline model by training in a
hardware-unaware manner. We analyzed this baseline model to determine the weights
that significantly influence CIM hardware accuracy, called ’important weights’. We then
retrained the baseline model while imposing the favorability constraint on important
weights. As a result, the retrained values of important weights directly got mapped to
favorable states. This led to error-free important computations and improved inference
accuracy on CIM hardware. Our biased training approach achieved up to 2.4× hardware
accuracy compared to the conventional training.

Chapter 6: Unbalanced Bit-slicing for CIM-based Neural Networks
This chapter introduced a CIM micro-architecture design approach that mitigates non-
zero Gmin error non-ideality. It consisted of two key features. Firstly, the memristor array
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design included high sensing margins for most significant bits (MSBs). This countered the
detrimental effects of non-zero Gmin error on these important bits. Secondly, it leveraged
2’s complement arithmetic for digital post-processing, whose inherent differential nature
further reduced the impact of non-zero Gmin error. In this approach, the extra sensing
margin allocation to MSBs improved accuracy at the cost of some energy overhead. We
addressed this issue by proposing a new variant of our approach. It minimized hardware
requirements by adjusting sensing margins for less important bits, while keeping high
sensing margins for MSBs. Thus, it reduced energy consumption while maintaining
the accuracy benefits. It also facilitated a trade-off between accuracy and energy effi-
ciency, to fine-tune these metrics based on application requirements. Our proposed
approach achieved up to 7.3× accuracy and up to 7.8× correct operations per unit energy
consumption compared to state-of-the-art.

Chapter 7: Adaptive Referencing Architecture for CIM-based Neural Networks
This chapter proposed a CIM micro-architecture design to mitigate read-disturb non-
ideality. We began with an analysis to extract key insights about the read-disturb phe-
nomenon. We then used the findings of this analysis to design two key components of
this micro-architecture: i) read-disturb detection unit ii) adaptive ADC with control logic.
The design of read-disturb detection unit involved a pre-mapping profiling, to determine
that crossbar column most vulnerable to read-disturb. The read-disturb detection unit
then monitored this column to detect the occurrences of read-disturb during operation.
Upon detecting read-disturb, the adjustment of sensing conditions within the adaptive
ADC counteracted the effect of read-disturb. This restored error-free operation, resulting
in improved inference accuracy. Our proposed architecture provided up to 2× accuracy
compared to conventional CIM architectures.

Chapter 8: CIM-based ECG Classification Prototype
This chapter presented a CIM prototype for ECG classification. It incorporated the first
hierarchical level in the ECG classification model and unbalanced bit-slicing. This pro-
totype was developed through a three-phase process. First, the model was optimized
through resampling and quantization to reduce hardware resource usage. Second, a
mixed-signal system architecture was designed. It comprised of analog vector-matrix
multiplication (VMM) units and digital processing logic. Last, layout implementation
for this architecture was carried out in TSMC 40nm technology and sent to the foundry
for fabrication. Upon receiving the fabricated prototype, we created a testbench for its
measurement and characterization.

9.2. FUTURE RESEARCH DIRECTIONS
In this section, we outline potential future research avenues that can advance the contri-
butions of this thesis.

On-chip Training for CIM Hardware
Neural networks are typically trained on massive datasets stored in the cloud. Edge devices
then download the trained models for real-time inference. The accuracy of this inferences
depends heavily on how well the training data reflects real-world scenarios encountered
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by edge devices. However, it is not possible for cloud-based training datasets to capture
every single on-field variation. The potential discrepancies between training data and
on-field data can then lead to degraded inference accuracy. A potential solution to this
problem involves sending real-time data back to the cloud for retraining. However, waiting
for model updates from the cloud can stall the real-time inference for a long duration.
Such delays are not acceptable in real-time applications and scenarios demanding quick
adaptation to evolving environments. Therefore, equipping edge hardware with on-board
training capabilities presents a promising avenue for future research. This would facilitate
real-time model adaptation in response to on-field data, ensuring high inference accuracy.

CIM-based Spiking Neural Networks
Spiking neural networks (SNNs) offer a compelling avenue for healthcare applications,
due to their distinctive data processing abilities and potential for high energy efficiency.
Unlike conventional neural networks that rely on real-valued computations, SNNs use
discrete events called spikes for data processing. This event-driven nature makes them
significantly more energy-efficient compared to conventional neural networks. Thus,
combining SNNs with CIM-based hardware has the potential to achieve brain-like energy-
efficiency. Additionally, SNNs excel at handling spatio-temporal information, a character-
istic prevalent in biomedical signals. The spatio-temporal data processing and potential
for brain-like energy efficiency makes CIM-based SNNs ideal for energy-constrained
healthcare devices like wearables, implants etc. Furthermore, SNNs are inherently ro-
bust against memristor non-idealities as their computations rely on spikes instead of
precise numeric values. Hence, CIM-based SNN design emerges as an attractive research
direction towards realizing accurate and energy-efficient healthcare edge-AI.

On-chip Communication Strategies for CIM Architecture
CIM systems leverage a tiled architecture to exploit the inherent parallelism in neural
network computations. These tiles communicate with each other using on-chip inter-
connects. As neural networks follow a layered structure, tiles of a given layer send their
outputs to the tiles of next layer, through these interconnects. However, the ever-growing
complexity of neural networks creates a corresponding surge in on-chip communication.
This can lead to a substantial increase in energy consumption, potentially negating the
energy efficiency advantages of CIM. To address this issue, designing energy-efficient
communication strategies for tiled CIM architectures is crucial. Furthermore, due to di-
verse computational needs of different neural network types, a single solution might not
be effective. Therefore, developing network-specific on-chip communication strategies is
a promising area for future research in CIM system architecture.
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