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ABSTRACT: The downstream product transformation of lignin
depolymerization is of great interest in the production of high-
value aromatic chemicals. However, this transformation is often
impeded by chemical oxidation under harsh reaction conditions. In
this study, we demonstrate that hypohalites generated in situ by
the vanadium-containing chloroperoxidase from Curvularia in-
aequalis (CiVCPO) can halogenate various electron-rich and
electron-poor phenol and phenolic acid substrates. Specifically,
CiVCPO enabled decarboxylative halogenation, deformylative
halogenation, halogenation, and direct oxidation reactions. The
versatile transformation routes for the valorization of phenolic
compounds showed up to 99% conversion and 99% selectivity,
with a turnover number of 60,700 and a turnover frequency of 60
s−1 for CiVCPO. This study potentially expands the biocatalytic toolbox for lignin valorization.
KEYWORDS: vanadium-containing chloroperoxidase, lignin valorization, decarboxylation, halogenation, biocatalysis

■ INTRODUCTION
Looking ahead to the future of the biobased chemical industry,
there is growing interest in converting plant-derived raw
materials into chemical building blocks.1−4 Specifically,
lignocellulose, which consists of cellulose, hemicellulose, and
lignin, is widely recognized as a sustainable feedstock for
biorefineries.5,6 In a typical biorefinery process, lignocellulose
is separated via an energy-intensive process into its structural
components with a primary focus on cellulose production.7,8

However, further depolymerization of the remaining lignin and
its effective utilization present significant challenges.9 Con-
sequently, there is a high demand for lignin processing
methods. Lignin can be polymerized into a considerable
number of phenolic acids and phenols using various chemical
and biochemical methods.9−11 Various phenolic acids, such as
p-hydroxy benzoic acid, p-coumaric acid, vanillic acid, gallic
acid, and cinnamic acid, can be obtained. The abundance of
the phenolic acid product is influenced by the catalytic
methods and the lignin compositions.
While these obtained feedstocks are versatile compounds for

direct use in chemical processing, their value can be
substantially increased through further conversion into high-
value-added chemicals.10 To unlock this potential, the
utilization of existing catalysts and the development of novel
catalytic methods are essential. In the past decades, biocatalysis
has been continuously investigated for the conversion of
biobased wastes into value-added products.12 A variety of

enzymes and bacteria involved in reactions such as
hydroxylation, esterification, amination, halogenation, decar-
boxylation, and dearomatization have been demonstrated
under mild reaction conditions as compared to the chemical
counterparts (Scheme 1A).13−22 More recently, combining
engineered methyltransferase and ammonia lyase in an
engineered Escherichia coli strain,23 a methylation−hydro-
amination of lignin-derived phenolic substrates was established
to generate L-veratrylglycine, a key precursor to L-DOPA.
Overall, the converted products of lignin-derived compounds
are of significant interest to the pharmaceutical, polymer, food,
and chemical industries. However, decarboxylation and
halogenation reactions have been underexplored for lignin-
derived monomer valorization. In nature, various enzymes have
been shown to catalyze decarboxylation24,25 and halogen-
ation26 reactions. Accordingly, the decarboxylation of lignin-
derived phenolic acids produces valuable phenols, and the
halogenation of phenols can yield bioactive compounds that
are particularly intriguing for pharmaceuticals and agro-
chemicals. Despite notable progress in understanding the
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Scheme 1. Biocatalytic Methods for the Valorization of Lignin-Derived Phenolic Compoundsa

a(A) Established pathways using enzymes or bacteria and (B) the envisioned chemoenzymatic valorization of lignin-derived monomers in various
transformations using a single vanadium-containing chloroperoxidase.
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biosynthesis mechanisms involving decarboxylation or halo-
genation, the use of isolated enzymes to catalyze these
reactions is still limited compared with other extensively
studied reactions. One typical challenge of this scenario lies in
the high substrate specificity of decarboxylases27,28 or
halogenases.29−31 Therefore, the development of innovative
biocatalytic techniques and the broadening of enzyme
substrate scopes offer significant potential for enhancing the
value of phenolic compounds that can be derived from lignin
depolymerization.
We have recently developed a chemoenzymatic Hunsdieck-

er-type reaction that enables the bromodecarboxylation of α,β-
unsaturated carboxylic acids.32 The vanadium-containing
chloroperoxidase from Curvularia inaequalis (CiVCPO) is a
highly robust catalyst that can tolerate high concentrations of
H2O2 and various organic solvents.

33−35 CiVCPO efficiently
oxidizes halides to hypohalites by using only H2O2 as an
oxidant. Following this oxidation, the resulting hypohalites
diffuse out of the enzyme channel.36 This process potentially
overcomes limitations on the substrate scope, as the overall
chemoenzymatic reaction occurs outside of the enzyme pocket.
CiVCPO’s exceptional catalytic performance has encouraged
us to investigate its potential as a (bio)catalyst for establishing
new pathways of the valorization of feedstocks derived from
lignin degradation under mild conditions (Scheme 1B). We
envision that the chemoenzymatic process would allow
CiVCPO to serve as a versatile catalyst (e.g., one enzyme for
quadruple reactions) due to the diverse patterns of monomeric
phenolic compounds that can be derived from lignin
depolymerization.

■ RESULTS AND DISCUSSION
We started our investigations using p-hydroxy benzoic acid (1)
as a model substrate, which can be obtained via catalytic
hydrogenolysis37 or hydrothermal pretreatment38 of wood. In
accordance with the reported pH spectrum of CiVCPO,39 a
clear preference for acidic reaction media was observed under
reaction conditions (Table 1), presumably originating from a
combination of increasing affinity of the enzyme for the halide
and the increasing Nernst potential of the Br−/OBr− redox
couple. At pH 3.5, we observed that in 3 h almost complete
conversion (97.6%) of the starting material into 1,3,5-
tribromophenol (1a), a compound as fungicide, wood
preservative, and a precursor to prepare flame retardants.
Reducing the molar surplus of KBr to 42% (mol × mol−1; i.e.,
ca. 0.25 equiv with respect to the tribromination reaction)
resulted in incomplete conversion of the starting material as
well as broader distribution of mono- and dibrominated
products (Table S1). Among the cosolvents tested, acetone
and DMSO excelled, whereas ethanol and acetonitrile gave
only mediocre results in terms of low conversion and a
significant amount of brominated substrate (Table 1).
Negative controls in the absence of H2O2, KBr, CiVCPO or
in the presence of free Na3VO4 did not give noticeable
conversion under otherwise identical reaction conditions
(Table S2).
A typical time course for the reaction conditions in Table 1

(entry 1) is shown in Figure 1 (with HPLC chromatograms
shown in Figure S1). Already after 30 min reaction time, the
initial starting material was converted at more than 90% into
the desired tribromophenol product corresponding to a

Table 1. Reaction Parameters Influencing the Efficiency of the Chemoenzymatic Decarboxylative Halogenation of p-Hydroxy
Benzoic Acida

aReaction conditions: [1] = 10 mM, citrate buffer (100 mM, pH 3.5−5), [CiVCPO] = 150−250 nM, [KBr] = 12.5−100 mM, [H2O2] = 100 mM,
30 °C, 20% cosolvent, 3 h, 1 mL reaction scale. TTN (total turnover number) = ([1a]/[CiVCPO]). The concentration was determined by HPLC
at 3 h.
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turnover number and turnover frequency for the biocatalyst of
60,700 and 60 s−1, respectively. Interestingly, in this experi-
ment, only trace amounts of the partially halogenated products
were observed (Figure S1). Apparently, for p-hydroxy benzoic
acid, the decarboxylative bromination step was not overall rate
limiting in the chemical part of the overall reaction. It is worth
mentioning that substituting p-hydroxy benzoic acid by one of
the putative intermediate bromination products under
otherwise identical conditions mostly led to full conversion
into tribromophenol (Table S3).
Vanadium-containing haloperoxidases catalyze the H2O2-

driven oxidation of halides into their corresponding hypo-
halites (Scheme 2A).33,35,40−44 As pointed out by Wever and

Barnett,36 the oxidative hypohalite product diffuses out of the
enzyme active site. Therefore, an influence of the biocatalyst
on the (regio)selectivity of the following chemical halogen-
ation reaction was expected, as shown in the model reaction
with substrate 1.
The observed decarboxylation reaction of phenolic acids can

be explained straightforwardly via the σ-complex originating
from the electrophilic attack of the hypohalite to the
carboxylate-bearing arene atom (Scheme 2B). In this complex,
rearomatization can be attained via decarboxylation. This
mechanism may also explain the apparent faster decarbox-
ylative halogenation as compared to the “regular” aromatic

substitution, as observed in Figure S1. Especially under acidic
conditions, proton elimination may be considered to be less
favorable than the CO2 extrusion. Along with our previous
discovery,32 the chemoenzymatic Hunsdiecker-type reaction
has proven a powerful strategy in converting the lignin-derived
compounds into high-value added chemicals.
Next, we investigated the substrate scope of the proposed

decarboxylative halogenation reactions. All substrates are
potential monomers from the degradation of lignin with
various substitution patterns.10 First, o-, m-, and p-hydroxy
benzoic acids were readily converted in the reaction scheme,
already suggesting a wide substrate scope (Figure 2 and
Figures S2−S14). The 4-hydroxy-3-nitrobenzoic acid (Figure
2, substrate 5), a nitrated product from nitric acid-mediated
treatment of lignin,45 was also investigated. The electron-
withdrawing nitro group accelerated the decarboxylative
bromination reaction, whereas electron-donating substituents
(such as methoxy, Figure 2, substrate 4 or an additional
phenolic OH, Figure 2, substrate 6) considerably slowed down
the reaction rate. Protecting the carboxylate group (e.g., as
methyl ester) prevented the decarboxylation reaction but
apparently did not impair the bromination reaction (Figure 2,
substrates 7 and 8).
Interestingly, also, formyl-substituted phenols were con-

verted (Figure 2, substrates 9 and 10). The previously
observed preference of electron-poor phenols was observed
as well. Even more interestingly, however, also, deformylative
bromination was observed here. At first glance, this may be
explained by the oxidation of the benzaldehyde group by
hypohalites. However, in none of these experiments were
indications for benzoic acid found. Further analysis of the
reaction mixture revealed that in these cases, formic acid was
formed as a byproduct (Figures S15 and S16). Following the
suggestion by Larrosa and co-workers46 in the case of the
deformylative halogenation reaction, we suggest a nucleophilic
attack of the hypohalites to the aldehyde carbonyl group
(Scheme 3), followed by a concerted intramolecular
substitution of formate by the halogen atom, resulting in the
observed halogenated starting material and formic acid.
Next, we investigated the conversion of some alkyl-

substituted phenols as they also represent a significant fraction
of the lignin refining process (Figure 3 and Figures S17−
S36).10 Quite expectedly, halogenation occurred preferentially
in the o- or p-position to the phenolic OH group. In the
presence of another directing group (such as OCH3), also,
some further bromination in the o-position to the methoxy
group (meta with respect to OH) was observed. This
halogenation reaction also leads to new compounds such as
13b, as proved by its crystal structure (Table S4).
It is worth noting that in the presence of further +M

substituents (i.e., additional methoxy substituents, the so-called
phenolic derivatives of syringic type19), “thorough oxidation”
to the corresponding quinones was observed (Figure 3,
substrates 16−19). The observed exclusive formation of 2,6-
dimethoxy-l,4-benzoquinone is expected to follow the oxygen-
based radical oxidation as documented with lignin peroxidase47

and horseradish peroxidase.48

Finally, we performed a preparative-scale reaction of the
bromo-decarboxylative valorization of p-hydroxybenzoic acid
(Figures S37−S40). In a 100 mL reaction scale (1.38 g of the
substrate, 100 mmol), the desired 2,4,6-tribromophenol (1a)
continuously precipitated upon complete transformation of the
substrate in 12 h. The downstream process was exploited by

Figure 1. Time course of the CiVCPO-initiated transformation of 1 to
1a. Reaction conditions: [1] = 10 mM, citrate buffer (100 mM, pH
3.5), [CiVCPO] = 250 nM, [KBr] = 100 mM, [H2O2] = 100 mM, 30
°C, 20% acetone, 3 h, 1 mL reaction scale. The concentration was
determined by HPLC at 3 h. Duplicate experiments were performed.

Scheme 2. Mechanism of Enzymatic Generation of
Hypohalite (A) and Proposed Mechanisms for the
Chemoenzymatic Decarboxylation Reactions (B)
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multiple precipitation of the reaction mixture at 4 °C, which
was followed by the simple centrifugation. In this way, the
overall downstream process yielded 3.17 g of the product
(95.8% isolated yield) with an E-factor of 38.3 (Table S5). The
E-factor analysis49 of the preparative-scale reaction reveals that
far more than 90% of the wastes generated have been caused
by the solvents (aqueous buffer and acetone) used in this
reaction. Therefore, further increase of the reagent payload
(e.g., through a fed-batch strategy) will further reduce the
waste generation and advance the current method toward a
more sustainable approach for lignin valorization.

■ CONCLUSIONS
To summarize our studies, we used vanadium-containing
chloroperoxidase to develop new catalytic approaches for the
valorization of phenolic compounds that can be obtained from
lignin depolymerization. A range of new substrates were
converted, which also leads to the production of various
valuable chemicals in very high turnover numbers and turnover
frequencies under mild conditions. Compared to the use of
stoichiometric hypohalites such as hypochlorites (hypobro-
mites are not commercially available) or even organic
precursors such as N-halo succinimides (NXSs), the proposed
method for the derivatization of phenols and phenolic acids

appears advantageous. The vanadium-containing chloroperox-
idase can be combined with other enzymes via in vitro
cascades, or in synthetic metabolic pathways to access a variety
of halogenated products, thus expanding the biocatalytic
toolbox for lignin valorization.

■ EXPERIMENTAL SECTION
Enzymes. The vanadium-containing chloroperoxidase from

Curvularia inaequalis (CiVCPO) was prepared in-house, and
the detailed procedures are included in the Supporting
Information.
Enzymatic Reactions. In a typical procedure of the

decarboxylative bromination, to a 2 mL glass vial were added
p-hydroxybenzoic acid (1) (10 mM), H2O2 (100 mM), KBr
(100 mM), CiVCPO (250 nM), cosolvent acetone (20% v/v),
and citrate buffer (100 mM, pH 3.5), and the reaction volume
was adjusted to 1 mL using citrate buffer. The above
concentration means the final concentration of each
component. The reaction mixture was placed in a thermal
shaker at 30 °C and 800 rpm for 3 h. During the intervals, the
mixture was subjected to HPLC or GC−MS analysis to
determine the conversion or product concentration. For the
halogenation, deformylative bromination, and oxidation

Figure 2. Substrate scope of the decarboxylation reactions with varied substituents on the arene. Reaction conditions, unless otherwise specified:
[substrates] = 10 mM, citrate buffer (100 mM, pH 3.5), [CiVCPO] = 250 or 400 nM for substrate 3, [KBr] = 100 mM, [H2O2] = 100 mM, 30 °C,
20% acetone, 3 h, 1 mL reaction scale. The conversion was determined by GC−MS at 3 h.

Scheme 3. Mechanism of Enzymatic Deformylation Reactions Enabled by CiVCPO
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reactions catalyzed by CiVCPO, similar reaction products were
adopted, as described in the decarboxylative reactions.
Preparative-Scale Synthesis. The reaction using p-

hydroxybenzoic acid (1) was performed in 100 mL. To a
reaction mixture, 1.38 g (100 mM) of the p-hydroxybenzoic
acid, H2O2 (1 M), KBr (1 M), CiVCPO (3 μM), cosolvent
acetone (20% v/v), and citrate buffer (100 mM, pH 3.5) were
added. After stirring at 30 °C and 800 rpm for 12 h, the
products (1a) were collected by precipitation and centrifuga-
tion at 4 °C. The product was dried at 50 °C for 5 h, and 3.17
g of white solid was obtained (95.8% isolated yield).
Crystallography. The crystal of 13b was measured by

keeping the sample at 100.01(10) K during data collection.
Using Olex2, the structure was solved with the unknown
structure solution program and refined with the unknown
refinement package.
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