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A B S T R A C T

Simulating the mechanical response of advanced materials can be done more accurately using
concurrent multiscale models than with single-scale simulations. However, the computational
costs stand in the way of the practical application of this approach. The costs originate from
microscale Finite Element (FE) models that must be solved at every macroscopic integration
point. A plethora of surrogate modeling strategies attempt to alleviate this cost by learning
to predict macroscopic stresses from macroscopic strains, completely replacing the microscale
models. In this work, we introduce an alternative surrogate modeling strategy that allows for
keeping the multiscale nature of the problem, allowing it to be used interchangeably with
an FE solver for any time step. Our surrogate provides all microscopic quantities, which are
then homogenized to obtain macroscopic quantities of interest. We achieve this for an elasto-
plastic material by predicting full-field microscopic strains using a graph neural network (GNN)
while retaining the microscopic constitutive material model to obtain the stresses. This hybrid
data-physics graph-based approach avoids the high dimensionality originating from predicting
full-field responses while allowing non-locality to arise. In addition, this approach introduces
beneficial inductive bias to the model by encoding microscopic geometrical features. By training
the GNN on a variety of meshes, it learns to generalize to unseen meshes, allowing a single
model to be used for a range of microstructures. The embedded microscopic constitutive model
in the GNN implicitly tracks history-dependent variables and leads to improved accuracy. While
the microscopic stresses are fully dependent on the microscopic strains, we found it crucial to
include both microscopic strains and stresses in the loss function. We demonstrate for several
challenging scenarios that the surrogate can predict complex macroscopic stress–strain paths.
As the computation time of our method scales favorably with the number of elements in
the microstructure compared to the FE method, our method can significantly accelerate FE2

simulations.

1. Introduction

There is a global demand for reducing the material cost of structures. One method to achieve this is by creating structures with
highly-tailored materials at various scales. However, we currently lack the ability to accurately model the mechanical response
of these materials. We typically model these applications using the finite element (FE) method, a technique for solving partial
differential equations. The type of material used influences the constitutive relation between stresses and strains. For materials with
properties described at a much smaller scale (microscale) than the physical system (macroscale), such as fiber-reinforced polymers,
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often no accurate analytical relation is known. Instead, concurrent multiscale techniques, such as FE2, can be used. In FE2, the
constitutive relations are described at the microscale where they are better known, and a full microscopic model is coupled to each
integration point of the macroscopic model.

However, multiscale modeling has a high computational cost, therefore data-driven surrogates have been proposed to replace
the microscale model directly. Examples of these surrogates are Recurrent Neural Networks (RNNs) [1–3], temporal convolutional
networks (TCNs) [4,5] and attention-based architectures [6]. These purely data-driven models require a substantial amount of data
from expensive microscale simulations to generalize to unseen situations, if they can generalize at all. Introducing physics back
into the model can partly overcome this limitation, examples being learning to predict material invariants [7], using the invariants
themselves as inputs [8], or predicting the internal variables of a constitutive relation [9]. Including the microscopic material model
directly into the data-driven surrogate reduces the necessary training data and enables phenomena such as unloading to be captured
without training for it [10–12].

To obtain training data for these methods, microstructures are simulated for a wide variety of load scenarios. There are different
sampling approaches for selecting load paths, such as those from actual FE2 simulations [1], monotonically increasing paths [5], and
Gaussian process (GP)-based paths [5,10]. Each simulated microstructure contains a rich stress field of data, which is homogenized
to a single stress vector to train the models. This means that when using these macroscale-based surrogates, it is impossible to obtain
full-field microscopic quantities. Having full-field information could for example be used in an active-learning setting by switching to
an FE solver for a few time steps. However, incorporating full-field information in the surrogate model is not trivial with traditional
data-driven models.

Next to developments of surrogates predicting a homogenized response for multiscale simulations, numerous works on data-
driven techniques focus on predicting full-field single-scale FE problems. Two related challenges here are making a model capable
of handling arbitrary domains and avoiding the curse of dimensionality. Physics-informed neural networks (PINNs) embed the partial
differential equation (PDE) equilibrium in the loss function, learning based on a few examples and generalizing well [13,14]. PINNs
and graphs can be combined to get a method closely resembling the FE method, making it possible to minimize the residuals of the
weak form of a PDE for linear elasticity [15]. Recently, the development of operators has gained a lot of attention. Operators are
analogous to learning an entire family of PDEs rather than a single instance of the equation. DeepONet, the Fourier neural operator,
and the graph neural operator are notable examples [16–18]. These operators could have been suitable alternatives for this study.

Alternatively, convolutional neural networks (CNNs) and U-net are other data-driven models that have been used to predict
quantities based on a full-field domain [19,20] and generate a full-field solution for elastic cases [21–23]. Reduced order models
have recently been combined with RNNs to recover the full-field solution in a multiscale simulation [24]. While CNNs are limited
to grid-structured data, graph neural networks (GNNs) can deal with arbitrary graphs with varying mesh resolutions, making them
well-suited for mesh-based structures [25]. Pfaff et al. propose MeshGraphNets, a GNN with an Encode-Process-Decode architecture
followed by an integrator, and use it to predict the dynamics of physical systems such as aerodynamics and structural mechanics [26].
This GNN-based method predicts the relevant quantity for each element based on information of the surrounding elements. Spreading
this information around the mesh happens using Message Passing Layers (MPLs). By increasing the number of MPLs, information
spreads faster, but too many MPLs can lead to all representations becoming very similar, a problem known as over-smoothing [27].
Both dynamic and static time-independent problems can require fast propagation of information, and adding multiple resolutions
of nodes or random augmentations allows information to spread with fewer MPLs, improving accuracy [28–32]. These GNNs for
predicting physical systems generally only predict a single time step ahead during training. To prevent the predictions from diverging
during inference over multiple time steps, a Gaussian or prediction-based noise can be added to the inputs during training [26,33].
In addition, GNNs have been used to capture multiple steps of linear hardening plasticity under unidirectional tension for simple
1-fiber microstructures [34], to create a lower-dimensional embedding of the plastic state [35], and for crystal plasticity in 3D
microstructures [36]. However, none of the aforementioned models is capable of obtaining full-field microscopic quantities for
arbitrary inelastic load paths for microstructures with any distribution.

In this work, we propose a surrogate model that makes full-field microscopic predictions for multiscale simulations. We create
a dual graph over the mesh of the microstructure — essentially connecting the integration points — and opt for a GNN model.
The direct outputs are microscopic strains, and we embed the microscopic material constitutive relations inside the model to obtain
stresses. We then in turn use standard computational homogenization to obtain macroscopic stresses. By including the material
model, and training on both the strains and the stresses, we learn to predict complex load scenarios for arbitrary meshes more
accurately than without the material model. Instead of making one-step ahead predictions during training and adding noise to the
inputs to improve stability, we train on predicting multiple time steps consecutively. The surrogate acts similarly to an autoregressive
model by using its strain predictions as inputs for the next time step, being analogous to an RNN with strong physical interpretability
due to the material model implicitly updating and preserving history-dependent variables between time steps. Furthermore, by
introducing robust geometric inductive bias, our surrogate can successfully generalize to unseen mesh sizes.

We organize the paper as follows. Section 2 provides the essential background information on concurrent multiscale simulations
and GNNs. In Section 3, we introduce our GNN-based surrogate model and provide a comprehensive description of its architecture
and the process of training it. Section 4 presents a test of the model on a scenario with monotonic loading conditions. To do so,
we start the section with an in-depth discussion on model selection, a critical aspect of developing a deep learning surrogate that
is frequently left unaddressed. Drawing parallels with the study by [10], we examine if the model can predict unloading without
being specifically trained for it. This motivates the subsequent Section 5, where we train the model on non-monotonic data. Then, we
explore the impact of the embedded material model, demonstrate the model’s capability to make predictions for various mesh sizes
and for more time steps than the model has seen during training, and compare its computational cost to classical FE simulations.
2

Finally, Section 6 presents our conclusions.
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2. Background

This section introduces single-scale FE methods before discussing multiscale FE methods and their challenges, which surrogate
odels aim to overcome. Then, we present a brief overview of GNNs, which we use as the basis for the surrogate model.

.1. Single-scale FE analysis

We aim to solve a PDE on a domain 𝛺 subject to boundary conditions, finding the resulting displacement field 𝐮. The domain
𝛺 is discretized into a number of elements, and the solution in this domain must satisfy:

𝛁 ⋅ 𝝈𝛺 = 𝟎, (1)

where 𝝈 is the stress and 𝛁⋅ indicates the divergence operator. We satisfy this relation using the following equations. The
displacement is related to the strain 𝜀 as:

𝜺𝛺 = 1
2

(

𝛁𝐮𝛺 +
(

𝛁𝐮𝛺
)𝑇 ) , (2)

nd the strain and stress relate via a constitutive model:

𝜶𝛺
𝑡 = 𝛺 (

𝜺𝛺𝑡 ,𝜶
𝛺
𝑡−1

)

(3)

𝝈𝛺
𝑡 = 𝛺 (

𝜺𝛺𝑡 ,𝜶
𝛺
𝑡
)

. (4)

For history-dependent problems, an internal material variable 𝜶 is used which evolves over time, for example, to consider elasto-
lastic problems. The functions 𝛺 and 𝛺 are material-dependent expressions. In the nonlinear case, the resulting displacement 𝐮
annot be solved for directly, and an iterative Newton–Raphson optimization scheme is used instead to find a solution that satisfies
qs. (1) to (4).

.2. Concurrent multiscale analysis

For composite materials with multiple constituents, a direct numerical simulation (DNS) approach involves explicitly modeling
he microstructure and assigning different constitutive models for different points in 𝛺. However, if the microstructural length
cales are much smaller than the size of the domain of interest, DNS becomes extremely computationally expensive. In such cases,
omogenization is necessary. Finding accurate expressions for 𝛺 and 𝛺 can be challenging. Alternatively, a concurrent multiscale
nalysis can be performed, where we replace the analytical expressions for 𝛺 and 𝛺 with solving a boundary value problem on
periodic microscopic domain 𝜔, as depicted in Fig. 1. This approach is valid if the scales can be separated, i.e. if 𝜔 ≪ 𝛺. To

onnect these scales, we assume that the microscopic displacements 𝐮𝜔 can be related by a linear contribution proportional to the
acroscopic strains 𝜺𝛺 and a periodic fluctuation term �̃�𝜔 as:

𝐮𝜔 = 𝜺𝛺𝐱𝜔 + �̃�𝜔, (5)

here 𝐱𝜔 is the microscopic coordinate vector. Eqs. (1)–(4) then hold for the microscale 𝜔 where the relations for each constituent
re accurately known. Periodic boundary conditions are constructed by relating the nodal displacements on the boundary of 𝜔 with
he nodes on the opposite side of the domain. After the microscopic problem is solved, the stresses are homogenized to obtain the
acroscopic quantity of interest:

𝝈𝛺 = 1
|𝜔| ∫𝜔

𝝈𝜔𝑑𝜔. (6)

The microscale problem together with the scale transition in Eqs. (5) and (6) take the place of the constitutive model (3)–(4) in the
macroscopic problem.

While the computational cost can be significantly reduced with respect to DNS, simulating these microscale models for all
integration points for every macroscopic time step is still prohibitively expensive for most problems. Therefore, attempts have been
made to replace the microscale simulations with surrogate models, which are much faster to evaluate. To train these surrogates,
data from these microscale models is required. Obtaining this data can be a costly process in and of itself, making it desirable to
minimize the amount of data the surrogate requires.

2.3. Graph Neural Networks

The model architecture used in this work is based on a Graph Neural Network (GNN). GNNs are used for various applications
where graph-type data is available, and numerous different GNN-based architectures exist. Here, we will provide a concise
introduction to the message-passing GNN as is used in this work, for a more thorough introduction we refer to [37].

A graph  = (𝑉 ,𝐸) consists of vertices (or nodes) 𝑉 linked with edges 𝐸. The graph can contain information on the edges (𝐞𝑖𝑗),
at the nodes (𝐯 ), and at the level of the graph itself, depending on the application. The basic building block of a GNN is a message
3
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Fig. 1. An overview of an FE2 simulation. A microscopic model 𝜔 is solved for every integration point of the macroscopic model 𝛺.

assing layer (MPL), allowing it to pass information from the nodes and edges around the graph. First, based on all edge states 𝐞𝑖𝑗
nd nodal states 𝐯𝑖, the corresponding directional edge messages 𝐦𝑖𝑗 are computed:

𝐦𝑖𝑗 = 𝐹𝐸 (𝐞𝑖𝑗 , 𝐯𝑖, 𝐯𝑗 ) (7)

fter updating the messages, every node aggregates the incoming messages from its connected edges (its neighborhood  ).

𝐦𝑖 = 𝐹𝐴(𝐦𝑖𝑗 ∣ 𝑗 ∈  ) (8)

he aggregation function 𝐹𝐴 is a symmetric operation that can handle incoming messages from an arbitrary number of edges. In
ractice, this often results in aggregation functions taking the mean or sum of incoming messages. Based on the aggregated messages,
he state of each node is updated:

𝐯𝑖 = 𝐹𝑈 (𝐯𝑖,𝐦𝑖). (9)

he functions 𝐹𝐸 , 𝐹𝐴, and 𝐹𝑈 are shared between all nodes and edges and generally operate on all node and edge tensors at once.
qs. (7)–(9) represent one MPL, and multiple MPLs can be stacked to process information between more indirectly connected nodes.
he number of MPLs is thus a hyperparameter, and when using multiple MPLs, the functions 𝐹𝐸 , 𝐹𝐴, and 𝐹𝑈 can either be either
nique functions or shared between all layers.

. GNN-based surrogate model

In this work, we create a GNN-based surrogate model with the aim of accelerating FE2 simulations. By using a GNN, we can
ake full-field predictions while avoiding the high dimensionalities that arise from predicting a full-field response as in a standard
N and giving more flexibility than the grid-based approach of a CNN. Furthermore, the mesh is used by the model as an inductive
ias, allowing it to generalize to new meshes. In this section, the details of how we construct this GNN with an embedded material
odel are presented. We start by introducing the features of the graph, after which we describe the precise architecture and training
rocedure.

.1. Graph creation

To use a GNN as a surrogate constitutive model for FE2 simulations, we create a dual graph over the mesh, connecting all the
ntegration points. This is possible because we use elements with a single integration point per element. From this point, we use
he word ‘‘nodes’’ to refer to the vertices of the graph, not the nodes of the mesh, unless specified otherwise. Based on this graph, a
umber of features are inserted for every node. The current microscopic strain state 𝜺𝜔𝑡 , the internal variables 𝜶𝜔

𝑡 , the macroscopic
trains 𝜺𝛺𝑡+1, and any additional geometric features 𝐠 are the inputs, which are encoded to 𝐯𝑖. The macroscopic strains 𝜺𝛺𝑡+1 are
he same for all nodes. The edge features 𝐞𝑖𝑗 are the positional differences in 𝑥 and 𝑦 directions between the nodes it connects:
𝑥𝑖 − 𝑥𝑗 , 𝑦𝑖 − 𝑦𝑗 ]. With bidirectional edges, this thus results in 𝐞𝑗𝑖 = −𝐞𝑖𝑗 . We are able to retain periodicity by adding extra edges
onnecting the nodes at opposite sides of the microstructure. The distances for these edges are computed with phantom nodes moved
y the length of the microstructure in the corresponding direction, but otherwise, these edges are treated identically to other edges.
4
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Fig. 2. A dual graph is created over the mesh, coinciding with the integration points. Each node of this graph has unique features providing information about
a number of the closest surrounding voids through their distances 𝛥𝑥 and 𝛥𝑦. We consider the nine closest voids, but we only show distances to three here for
clarity. Periodicity is considered in both the void features and the edge connections — nodes at opposite sides of the microstructure are connected.

Fig. 3. Abstract overview of the multi-step GNN predictions.

Although many GNN-based models for simulating physical processes impose boundary conditions based on forces and displace-
ents on the mesh nodes, this is not straightforward to apply in the context of quasi-static problems as considered here. The boundary

ondition directly influences the complete microstructure in the first step, requiring an infeasible number of MPLs to propagate this
nformation to all elements. We avoid moving to displacements and forces and instead directly input the macroscopic strains 𝜺𝛺𝑡+1
niformly to all nodes. This allows us to only consider the microscopic integration points and work with stresses and strains, which
s advantageous as embedding the material models is then straightforward. Using this approach, all nodes are directly informed of
he load, but a new way to distinguish between the nodes is required, as every point would otherwise always be updated with the
ame input features, with the undesirable consequence of making all prediction fields uniform.

It is recognized that the cause for stress variations lies in the geometry of the microstructure. Therefore, problem-specific
eometric features are provided to the model to allow the locality in the response of the model to arise. In our case, these geometric
eatures 𝐆 are the 𝛥𝑥 and 𝛥𝑦 distance from each node to the center of a fixed number of voids, as visualized in Fig. 2. For other
roblems, these features might include the element stiffness, void radius, or volume fraction and should match the application. We
re able to consider more voids as features than there are voids in the microscale mesh by accounting for periodicity. In practice,
e tile each microstructure in a grid and use a K-nearest neighbors algorithm for each node in the center mesh with respect to

he voids. This enables us to include small microstructures with only a few voids, which are cheap to obtain, while still having a
ufficient number of features.

.2. Architecture

Based on the graph and the node and edge features described in the previous section, the GNN predicts the strain for the next step
𝜔
𝑡+1. The predicted strains are then passed to a purely physics-based constitutive material model 𝜔 to compute the stresses 𝝈𝜔

𝑡+1,
this is the same constitutive model as used in the original micromodel. In this process, the internal variables 𝜶𝜔

𝑡+1 are also implicitly
btained. In the multiscale setting, 𝝈𝜔

𝑡+1 is homogenized using Eq. (6) to obtain 𝝈𝛺
𝑡+1. The updated strains 𝜺𝜔𝑡+1, internal variables 𝜶𝜔

𝑡+1
nd new macroscopic strain input 𝜺𝛺𝑡+2 are then used in the next time step. We present an abstract representation of the complete
ramework in Fig. 3. Unlike other GNN-based models that directly predict all stress and displacement-related quantities as network
utputs [26,32], our proposed method thus retains a physics-based material model. We essentially extend an Encode-Process-Decode
rchitecture [38] to an Encode-Process-Decode-Material architecture, visualized in Fig. 4. We believe that this offers an advantage
y reducing the complexity of the problem to be learned.

We compute the messages as
𝐸

5

𝐦𝑖𝑗 = 𝐹 (𝐞𝑖𝑗 , 𝐯𝑗 ), (10)
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Fig. 4. Visualization of the network architecture. The rectangles represent weight layers, where the height roughly indicates their number of weights. The center
layer in 𝐹𝑈 represents dropout.

oncatenating the neighboring nodal state with the edge features, and excluding the state of the current node. We then aggregate
he messages by summing them

𝐦𝑖 =
∑

𝑗∈𝑖

𝐦𝑖𝑗 , (11)

where 𝑖 represents the set of neighboring nodes of node 𝑖. We concatenate the aggregated message with the current nodal state and
pass this through the update function in Eq. (9) to obtain the new nodal state. The encoder 𝐹𝐸𝑛𝑐 , decoder 𝐹𝐷𝑒𝑐 , edge message 𝐹𝐸 , and
node update 𝐹𝑈 networks are all chosen as multi-layer perceptrons with 2 layers each. In the literature, we observe many slightly
varying strategies for using dropout in the GNN architecture. In [25], dropout is applied after every fully connected layer, [32]
between each MPL block, and in [39] between every GCN and Dense layer. In our model, we found only minor differences in
performance between these strategies, and have chosen to apply dropout inside each update function. We use unique layers in each
of the MPLs, as we found this to be more effective than sharing parameters between the layers. Additionally, residual connections
are added inside each MPL and from the encoded state to the final MPL output.

3.3. Training process

The aim of training the model is to learn the set of parameters of 𝐹𝐸𝑛𝑐 , 𝐹𝐷𝑒𝑐 , 𝐹𝐸 and 𝐹𝑈 that minimizes a loss function  on
the data. The direct output of the GNN-based network is 𝜀𝜔, based on which we compute 𝜎𝜔 through the material model, which we
then homogenize to 𝜎𝛺. We introduce the loss function based on these microscopic quantities as:

 = 𝜉𝜎𝜔 + (1 − 𝜉)𝜀𝜔 , (12)

where 𝜉 ∈ [0, 1] is a hyperparameter that allows us to emphasize either the full-field stress or full-field strain. While 𝜎𝜔 and 𝜀𝜔

are directly related, we have found it crucial to include both terms in the loss function. If only 𝜀𝜔 is considered, small errors for
ow-value strains can lead to large stress errors. On the other hand, if only 𝜎𝜔 is considered, stresses can potentially still be correct
ven from considerably wrong strains, e.g if the micromodel exhibits perfectly plastic behavior. This is caused by the nonlinearity
f the material model, for a linear elastic microscale material this would not be necessary. Their loss terms are computed as:

𝜀𝜔 =

√

√

√

√
1
𝑁

𝑁
∑

𝑛=1

1
𝑇𝑛𝐸𝑛𝐶

𝑇𝑛
∑

𝑡=1

𝐸𝑛
∑

𝑒=1

𝐶
∑

𝑐=1
(�̂�𝜔,𝑡𝑛,𝑒,𝑐 − 𝜀𝜔,𝑡𝑛,𝑒,𝑐 )2, (13)

𝜎𝜔 =

√

√

√

√
1

𝑁
∑ 1

𝑇𝑛
∑

𝐸𝑛
∑

𝐶
∑

(�̂�𝜔,𝑡𝑛,𝑒,𝑐 − 𝜎𝜔,𝑡𝑛,𝑒,𝑐 )2. (14)
6

𝑁 𝑛=1 𝑇𝑛𝐸𝑛𝐶 𝑡=1 𝑒=1 𝑐=1
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Here we use 𝑁 as the number of samples, 𝑇𝑛 as the number of time steps, 𝐸𝑛 as the number of elements in that sample, and C
epresents the number of components, which is 3 in the 2D case. In addition to these losses, we introduce the loss of 𝜎𝛺 which is
he relevant quantity for the macroscale model in a multiscale simulation:

𝜎𝛺 =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1

1
𝑇𝑛𝐶

𝑇𝑛
∑

𝑡=1

𝐶
∑

𝑐=1
(�̂�𝛺,𝑡

𝑛,𝑐 − 𝜎𝛺,𝑡
𝑛,𝑐 )2. (15)

This loss completely depends on 𝜎𝜔, and we empirically find it unnecessary to include in the training loss.
Updating the network parameters requires backpropagating the loss  through all time steps included for the samples. Because

the input 𝜶𝜔 depends on the output of the previous step, and since we also include stress-based targets, the loss needs to be
backpropagated through the material model. The constitutive model 𝜔 implicitly evolves 𝜶𝜔, creating a recurrency. Because of
his, the loss at any time step depends on the predictions made for all previous time steps. This leads to a complex computational
raph and expensive gradient computations, which scale with the number of time steps during training. An alternative approach
s predicting only one time step ahead, but this can lead to unstable rollouts despite low training errors. By artificially inducing
oise on the inputs this discrepancy can be reduced [26,33]. However, we find this one-step-ahead approach unnecessary here and
nstead directly propagate all time steps for a sample during training.

.4. Implementation

The data was generated with an in-house Finite Element software developed using the Jem/Jive [40] open-source C++ library.
he microstructures are represented as periodic 2D meshes generated using Gmsh [41]. The proposed GNN-based model was

mplemented using Pytorch Geometric [42]. The GNN-based model evaluates all material points in a batch in parallel, and the
oss is propagated through them using automatic differentiation. Training and time comparisons for the surrogate are performed on
n NVIDIA Tesla V100S 32 GB GPU, and FE simulations on an Intel Xeon E5-6248R 24C 3.0 GHz, both in the DelftBlue cluster [43].
e provide code and a dataset to reproduce the results in this paper at https://github.com/JoepStorm/Microscale-GNN-Surrogate.

. Results — monotonic elasto-plasticity

We start the analysis by subjecting the micromodel to monotonically increasing strains. To accurately reproduce these predictions,
he GNN model needs to demonstrate the ability to predict in an auto-regressive manner for multiple time steps and account
or plasticity for a wide variety of microstructures. We discuss the relevance of hyperparameters and perform a model selection
tudy before showing the results for the optimal model. A limitation of the model when only trained on monotonic strain paths is
ighlighted, motivating the need for training on non-monotonic data, which we discuss in the next section.

.1. Data generation

We generate a different periodic microstructure for each sample (we define a sample as one complete strain path), with a random
istribution of one to nine voids (each chosen an equal number of times) but keeping a fixed void volume fraction 𝑉𝑓 = 0.4. We also
ample a random average element size for each mesh, allowing the model to handle a wide range of mesh densities during inference.
hen, for each sample, a stress–strain path is generated by selecting a random strain direction and monotonically increasing the
train in this direction, keeping the loading proportional between components. We store the macroscopic and microscopic quantities
or each converged time step and discard intermediate Newton–Raphson iterations. We use an elasto-plastic material with von Mises

lasticity (J2), a Young’s modulus of 3130 [MPa], a Poisson’s ratio of 0.37 [−], and yield criterion 𝜎𝐶 = 64.80−33.60 ⋅ 𝑒
𝜀𝑝𝑒𝑞

−0.003407 , where
𝜀𝑝𝑒𝑞 is the equivalent plastic strain (the internal variable 𝜶𝜔 of this material model). In Fig. 5 we show examples of the resulting
macroscopic stress–strain curves after stress homogenization. We generate 4000 samples as training data, 2000 as a validation set,
and additional test sets also consist of 2000 samples unless specified otherwise. In Section 5, we will show that 4000 training samples
are sufficient by plotting the learning curve for the training sample size for a more complex case.

4.2. Model selection

For any deep learning architecture, there are many variables that have a considerable influence on the model performance.
Specifically for GNNs, these include the number of MPLs, the number of neurons per layer, the number of layers per MPL, the
number and width of layers of the encoder and decoder, the activation functions, normalization layers, residual connections, the
aggregation function, dropout layers and their rate, the optimizer, the learning rate, and the batch size. In addition, many of these
hyperparameters are interdependent and have many possible values. Performing a thorough model selection study is thus crucial
for each problem setting. However, due to the vast number of options and the computational cost of training the model, it is not
feasible to consider all combinations. Therefore, a practical approach is necessary for determining the optimal hyperparameters.

Some settings are chosen based on previous work, such as employing two layers per multi-layer perceptron as chosen in
MeshGraphNets [26]. For other architectural choices, such as choosing if and where to add normalization layers and residual
connections, we compare several options during the initial model creation and then keep this architecture fixed for the rest of
7

the study as described in Section 3.2. In purely data-driven methods the parameter count, often determined by the amount of

https://github.com/JoepStorm/Microscale-GNN-Surrogate
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Fig. 5. Examples of stress–strain curves obtained from simulating one to nine void microstructures with a monotonic strain increase.

eurons per layer, has a significant influence on the inference and training speed of the network. In our case, the computational
ime is primarily influenced by the material model instead (and scales only with the number of elements). Therefore we can afford
very high parameter count without significantly compromising in computation speed, giving us a highly flexible model, and use

he dropout rate as a hyperparameter to regularize the model. The high parameter count follows from using 512 neurons per layer,
hich is then also the dimensionality of the node state 𝐯𝑖 and messages 𝐦𝑖. For the learning rate, we use 10 warmup epochs to go

from 1𝑒−5 to 2𝑒−4 and follow this up with an exponential decay with factor 0.998: 2𝑒−4 ⋅ 0.998𝑒𝑝𝑜𝑐ℎ for a fixed time budget of 105 h
giving around 700 epochs for a typical model. The number of considered void features is kept at 9, the maximum number of voids
included in training samples.

MPLs are the defining feature of GNNs, and the number of MPLs is an important hyperparameter we study. As we are dealing
with elasto-plasticity, we find that the tradeoff between strains and stresses using 𝜉 (Eq. (12)) is also an important hyperparameter
to consider. For the number of MPLs, the dropout rate, and 𝜉 we perform several rounds of model selection, where in each round
we vary one parameter at a time and use the best value from the previous round as a starting point until the values converge.
We train two models per setting, and the resulting errors for each variable in these rounds are shown in Fig. 6. In both rounds,
mainly the value of 𝜉 and the dropout rate have an influence. The small influence of the number of MPLs is surprising and should
be investigated further in future work.

Choosing the value for 𝜉 is not straightforward, as the nature of the optimization problem changes as we change the objective
by adjusting 𝜉. Considering only the value of the combined validation loss is therefore insufficient. Instead, we need to consider the
components 𝜀𝜔 and 𝜎𝜔 separately. Based on these two separate losses, we conclude that a value of 𝜉 = 0.8 is a good choice for
our problem. Remarkably, we observe that having a value of 0 < 𝜉 < 0.8 not only decreases 𝜎𝜔 but does so without compromising
𝜀𝜔 .

Since the best settings after the second round are the same as used as the base values of the second round, we do not need to
perform an additional round. We can use the model with 3 MPLs, 𝜉 = 0.8, and a dropout rate of 0.0 for further experiments.

4.3. Prediction results

With the model determined, we can now evaluate the prediction results. Fig. 7 shows all microscopic quantities for a 5-void test
sample subjected to a random strain direction after 25 time steps and the resulting macroscopic stress–strain curve, all in comparison
with target results from the full micromodel. This example also demonstrates the differences in the strain and stress fields as a result
of the nonlinear material model. Even after 25 steps, the surrogate model correctly predicts the areas of high and low strain, and
this is well reflected in the equivalent plastic strain 𝜀𝑝𝑒𝑞 field (computed by the physics-based material models 𝛺 at each integration
oint). Furthermore, the image highlights the difficulty of the problem to solve: the 𝜎𝜔𝑥𝑦 field has little recognizable structure, yet
he model can predict it well.

.4. Extrapolating for non-monotonic paths

A conventional neural network surrogate, trained solely on the macroscopic strain 𝜀𝛺, cannot differentiate between loading
nd unloading, resulting in an unloading path identical to the loading path. However, the model has two additional sources of
nformation that could theoretically aid in distinguishing between loading and unloading. Firstly, the model is provided not only
ith the next macroscopic strain but also with the current microscopic strain and history variables. Secondly, the embedded material
odel implicitly tracks its history, and recent surrogate models with embedded material models (albeit in a very different manner)
ave been shown to be able to predict unloading without having been trained on it [10,11].

To explore the potential of the model, we examine a scenario involving unloading. We create a new test set, but instead of
onotonically increasing the strain, we decrease it from steps 15 to 19, unloading the microstructure, before resuming loading

rom steps 20 to 30 (keeping the magnitude of the strain increment fixed). In Fig. 8 we show the results for a sample and observe
8
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Fig. 6. The results for two rounds of the hyperparameter study. The initial values chosen as default values for round 1 are 𝜉 = 0.6, MPLs = 5, and dropout =
.1. For 𝜉 we plot the individual (unnormalized) validation losses 𝜀𝜔 , 𝜎𝜔 separately, as their combined loss is itself dependent on 𝜉. Based on round 1, we

choose the default values for round 2 as 𝜉 = 0.8, MPLs = 3, and dropout = 0.0.

hat the model fails to capture unloading, as during the unloading phase the stress predictions are far away from the true unloading
ranch. Despite the good predictions for monotonic paths, the model does not implicitly learn to predict unloading from monotonic
train paths. In the following section, we therefore train it on non-monotonic data.

. Non-monotonic elasto-plasticity

In an FE analysis, the local strain evolution in individual elements can be highly nonlinear functions of the evolution of boundary
onditions. In the previous section, we demonstrated that the model can make accurate predictions for monotonically increasing
oad paths with elasto-plastic behavior, but it is not yet able to predict the unloading response. Therefore, we now increase the
omplexity of the training data, to improve prediction results for more general load cases.

.1. Data generation

To create arbitrary load paths, we generate random walks based on Gaussian Processes (GP), as done in several other
orks [10,44,45]. We retain a fixed random strain direction and proportional loading, but the norm of the strain vector now follows

he magnitude of a GP sample. Specifically, we initialize a squared exponential GP with a variance of 2𝑒−3, a length scale of 8, and
it through the point [0,0]. We draw random realizations from this GP for 25 time steps per realization; ten of these are shown in
ig. 9. The generation of the microstructures and the material properties are the same as for the monotonic loading case. In Fig. 10
he resulting ground-truth stress–strain curves are shown.

.2. Model selection

We perform the same model selection process as in Section 4.2, but now for models trained with the GP-based data. The same
nitial values are used for the first round, namely 𝜉 = 0.6, 5 MPLs, and a dropout rate of 0.1, and we vary each of these parameters
ne at a time. The losses are computed on a validation set of 2000 GP-based samples, therefore these losses cannot be compared
irectly to those of the monotonic case. We visualize the results in Fig. 11. From this first round of model selection, we find that
he optimal model is obtained with 𝜉 = 0.6, 5 MPLs, and a dropout rate of 0.1. Again we find little difference between the errors
n the number of MPLs. As these values for the hyperparameters are the same as the initial values, no second round is performed,
nd the model with these settings will be used for all following experiments.

So far we have been assuming that 4000 training samples are sufficient for the model and that providing more data would not
ignificantly improve the model accuracy. Here we show that this is indeed the case using a learning curve by training models
9
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Fig. 7. Example of all full-field predictions made after 25 time steps and the complete homogenized stress–strain curve. Due to the elasto-plastic material the
strain and stress fields have different patterns — the strain fields are dominated by a few elements with large plastic deformation.

Fig. 8. The behavior of a GNN trained on monotonically increasing data,
predicting a load case with unloading.

Fig. 9. The samples of the GP used for the strain magnitude.
10
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Fig. 10. Examples of stress–strain curves obtained from simulating 1 to 9-void microstructures following a non-monotonic, GP-based strain magnitude.

Fig. 11. The results for the hyperparameter study. The initial values chosen as default values for round 1 are 𝜉 = 0.6, MPLs = 5, and dropout = 0.1. Values for
𝜉 = 1 are omitted from the plots as they lead to a very high 𝜀𝜔. Since the optimal values are the same as the base values, we do not perform a second round.

Fig. 12. The learning curve for models trained based on GP-based load paths, indicating that using 4000 training samples is sufficient. For each setting of
raining samples, we show the result of two training runs with random initialization.

ith a varying number of training samples. When the model accuracy does not increase significantly with more data, we take it
s an indication the dataset size is sufficiently large. We show the test error of the various models in Fig. 12. The trend has not
ompletely converged and a lower error could possibly be obtained with more samples, but this also comes at the cost of requiring
ore expensive data. We therefore consider that using 4000 samples is sufficient. As this GP-based loading is more complex than
onotonic loading, we argue that using the same amount of samples is more than enough for the monotonic case considered before.

.3. Prediction results

Now, we return to the manually defined unloading case from Section 4.4 and compare the performance of the model trained on
𝛺 𝛺
11

he GP-based data to that of the model trained only on the monotonic data. In Fig. 13 we qualitatively show the resulting 𝜺 − 𝝈
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Fig. 13. Comparison between a model trained on GP data and a model
trained on monotonic data in predicting the homogenized stress–strain
curve of an unloading test sample.

Fig. 14. Comparison of the test errors for unloading between the models
trained with monotonic and GP-based data.

Table 1
Overview of alternative models.

Model Material model during
training

Material model during
inference 𝜀𝑝𝑒𝑞 feature 𝜉

A: Base model ✓ ✓ ✓ 0.6
B: No 𝜀𝑝𝑒𝑞 ✓ ✓ ✗ 0.6
C: No material ✗ ✗ ✗ 0.6
D: Strain-based ✗ ✓ ✗ 0.0

curves for both models. The initial loading phase predictions are very similar for both models, but the model trained on the GP-based
data can predict the unloading phase much better. Still, predictions are far from perfect, and alternative surrogates only trained to
predict 𝜎𝛺 can outperform this model.

In addition to these qualitative results, we also compare the test errors for the two models. The results in Fig. 14 show an
mproved accuracy when training on the GP-based models. Notably, there is a larger improvement in the loss associated with 𝜎𝛺

than with 𝜎𝜔. This indicates that while predicting which elements are subject to how much unloading is still challenging, the overall
unloading pattern of the field is predicted much better. It is clear from these experiments that training on non-monotonic data is
necessary. With a model able to make full-field predictions for complex load scenarios, we now want to better understand the
influence of the physics-based material model retained by the surrogate.

5.4. Material model

One of our main contributions is including a purely physics-based material model inside the surrogate to model nonlinear material
behavior. In this section, we investigate the influence of the added material model on surrogate performance. The material model
provides two additions, which we attempt to study separately as best as possible. First, we consider a model for which we remove
the input feature of the equivalent plastic strain 𝜀𝑝𝑒𝑞 , which is obtained when computing local stresses. Second, we study the influence
of directly computing the stresses by removing the material model and instead predicting the stresses as GNN outputs while keeping
the loss function the same. This data-driven option without the material model is closest to most GNN-based surrogate alternatives,
and as it increases the complexity of the model, we expect it to require more training data to learn. We compare one additional
model where we change the nature of the problem by training only for strains but still using the material model to compute stresses
during inference. We achieve this by setting 𝜉 = 0, and since we do not compute the material model during training, we also do not
use the 𝜀𝑝𝑒𝑞 feature. We thus consider three alternatives to the base model, which we summarize in Table 1.

In Fig. 15 we compare a 𝜀𝛺−𝜎𝛺 curve between the different models. Since model B performs similarly to the base model (shown
in Fig. 13), it is unclear whether the 𝜀𝑝𝑒𝑞 feature is beneficial, at least for the current architecture. We observe that model C, without
the material model, predicts the stresses well during loading but cannot predict the unloading phase. In this example, model D
already shows a large error in the monotonic phase and does not predict the unloading slope well either.

We also quantitatively compare the models on two different test sets, one with GP-based paths, and the other is the unloading
test set introduced in Section 4.4. Starting with the GP-based test set, we compare the learning curves of the different models in
Fig. 16. The error is significantly lower for model A than for model C, regardless of the number of training samples. This indicates
that the material model directly results in better predictions rather than increasing the rate at which it learns. The improvement in
overall accuracy predominantly originates from the stress predictions.

Model B produces very similar results to model A for the GP-based dataset, indicating that the 𝜀𝑝𝑒𝑞 feature only represents a
12

minor contribution to performance. We show the errors for the unloading test set in Fig. 17, where we observe a slightly increased
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Fig. 15. A comparison between homogenized stress–strain curve predictions of the three alternative models (cf. Fig. 13 for model A).

Fig. 16. The learning curves on a GP-based test set for the various alternative models. The individual components show the unnormalized losses.

difference between models A and B. Still, we expected the model to rely more on this feature to accurately predict the stresses,
reflecting what happens in the actual FE micromodel. Across both test sets, the losses of models C and D are higher than the base
model, indicating that there is a significant benefit from including the material model. Model D outperforms model C, indicating
that training with the stresses directly as a model output can be detrimental to the performance compared to only computing them
with the actual material model during inference. We observe that the strain errors are similar between all models, and the difference
in the error is mainly due to the stress predictions.

The contribution of the material model does come at a significant computational cost. To start, the history dependency of
the material model complicates the computational graph for backpropagation. But more significant is the computational cost of
evaluating the material model itself. As the material model is evaluated for each element in the mesh in the same way as when
using the FE method, it scales with the number of elements and is therefore independent of the GNN hyperparameters. This can
become a significant computational bottleneck for expensive material models, as this operation needs to be performed many times
during training.

5.5. Predicting for more time steps

In autoregressive models, errors can accumulate over time as their inputs depend on their previous outputs. This can potentially
lead to out-of-distribution inputs, which can cause exponentially increasing errors to occur. We have only focused on the behavior
of the model during the first 25 time steps, which was also the length of the training paths, and now investigate how the model
behaves when extrapolating beyond this point. We generate a new test set of 2000 load curves with 50 time steps. For the model
13

trained on samples with 25 time steps, we compute a mean and maximum error for each time step on this test set and average over
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Fig. 17. A comparison of the test errors for unloading between the models with various alternatives to the material model.

ll samples. We compute the norm of the difference between the ground truth and predicted fields as errors that can be interpreted
ell:

Mean error = 1
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‖𝜺𝜔𝑛,𝑒 − �̂�𝜔𝑛,𝑒‖, (16)
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𝑁

𝑁
∑

𝑛=1
max(‖𝜺𝜔𝑛,𝑒 − �̂�𝜔𝑛,𝑒‖ ∀ 𝑒 ∈ 𝐸𝑛). (17)

We compute similar errors for 𝜎𝜔 and 𝜎𝛺 and compare the performance of the model A to model C (without a material model). The
results are shown in Fig. 18, from which we can make two main observations. Firstly, after the errors increase quickly in the first
few steps, the errors do not increase excessively as we go beyond the number of training steps but instead follow a near-linear trend.
Secondly, comparing the model to the one without a material model, we again observe that while the strain errors are similar, a
large discrepancy exists for the stress errors. Especially for the homogenized stress, the difference is already significant after the
first few steps, where it fails to correctly predict the fast increase in stress during the elastic phase without the material model. This
difference then stays relatively constant as we extrapolate beyond the number of training steps. The linear increase in error indicates
that the model is stable when extrapolating to more time steps. We show several representative examples in Fig. 19, where we can
qualitatively observe that the models indeed still follow the correct trend.

5.6. Microstructure scaling

By training the model on various microstructures with a different number of voids, the model is encouraged to learn to predict
general microstructures. Here we investigate how well the model can extrapolate to larger microstructures. We demonstrate the
model predictions for a representative 49-void1 sample by plotting the homogenized stress–strain curve in Fig. 20 and the full-field
stresses in Fig. 21. While the microstructure size is never explicitly given to the model, the homogenized curves match very well.
We observe that the model can predict the general trend of the full-field stresses, although the predictions are not as accurate as
for the smaller microstructures. We do not plot the strains as they are dominated by a few elements with very high strains and
therefore difficult to compare visually.

One quantity that depends on the microstructure size is the initial stiffness: for small microstructures, the stiffness is not
representative of the real behavior. When using the FE method, the homogenized stiffness is explicitly computed using the probing
method. For our model, we can compute the stiffness as

𝜕𝜎𝛺

𝜕𝜀𝛺
= 𝜕𝜎𝛺

𝜕𝜎𝜔
𝜕𝜎𝜔

𝜕𝜀𝜔
𝜕𝜀𝜔

𝜕𝜀𝛺
, (18)

which we perform using automatic differentiation. In theory, this can be achieved by applying automatic differentiation after
predicting with input 𝜀𝛺 = 0. Since our GNN is a highly nonlinear model, using only 𝜀𝛺 = 0 could potentially give a distorted
result, and we instead average over several very small random 𝜀𝛺 values.2

We create test datasets with varying microstructure sizes to test the ability to extrapolate to larger unseen geometries. The size is
determined by the number of voids (𝑛𝑣) in the microstructure, as the volume fraction and void size are kept constant. For each size
category, we generate 500 samples and compute the stiffness with an FE analysis and our model. We present the resulting stiffnesses
in Fig. 22. Our models, trained on data with an equal distribution of [1,2,3,4,5,6,7,8,9]-void microstructures, closely follow the FE
result, for both the average stiffness but also the variance. Since the stiffness is already almost converged after 9 voids, which the
model has seen during training, we train another model where we only include [1,2,3]-void microstructures during training. This

1 As a reminder, training is performed with microstructures with no more than nine voids.
2 In practice, we find the difference from doing this to be negligible.
14
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Fig. 18. Average errors based on 2000 test samples, where we extrapolate beyond the number of time steps seen during training. For each sample, the errors
are computed for each time step. In the top row we plot the average error over all samples, in the bottom row we compute the maximum error for each sample
and time step, before averaging over these maxima. We plot the quantities for base model A and model C trained without the embedded material.

Fig. 19. Examples of homogenized stress–strain curves for 50 time steps.

odel still follows the trend closely, although the mean stiffness stays relatively constant beyond four voids, instead of showing a
light downward trend towards nine voids. Nevertheless, both models give stiffness predictions that closely follow the FE results.
oreover, the decrease in variance for increasing microstructure size that is observed in the FEM predictions is reproduced also

or unseen microstructure sizes. With this, we show that there is a positive inductive bias in the microstructure geometry that our
odel benefits from.

.7. Volume fraction generalization

To further analyze the model capability, we study its capacity to predict microstructures with different void volume fractions
𝑉 ) than the one seen during training. Keeping the size of the microstructure constant at that equivalent to a 9-void microstructure
15
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Fig. 20. Homogenized stress–strain curve for a 49-void sample.

Fig. 21. Full-field stresses after 25 time steps for a 49-void sample.
16
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Fig. 22. A comparison of the stiffnesses obtained from the surrogate and an FE analysis for various microstructure sizes. The scatter shows 500 samples for
each 𝑛𝑣, with the line giving the mean for each type. The surrogate models are trained on a limited number of voids, beyond which they are extrapolating.

Fig. 23. Volume fraction extrapolation results for the unnormalized homogenized stress, full-field stress, and full-field strain losses. The gray band indicates
𝑉𝑓 = 40%, the value used for the training samples. Each result is an average based on 500 test samples..

with 𝑉𝑓 = 40%, we vary 𝑉𝑓 by changing the number of voids (𝑛𝑣). This is different from our training set, where we would change the
microstructure size when changing the number of voids to keep 𝑉𝑓 constant. The model thus needs to generalize to unseen volume
fractions, having only seen examples of one value. We generate 500 samples for each volume fraction and compute the different
loss terms.

The results are shown in Fig. 23. A U-shaped curve around the training regime is observed for the strains, with 𝑉𝑓 around 40%
still performing well. However, the performance degrades the further the 𝑉𝑓 of the samples is from that observed in training. The
difference in performance between stresses and strains becomes clear when looking at the full-field plastic strain predictions in
Fig. 24. For small volume fractions, the model predicts strains close to zero over the full domain, similar to what is seen around
isolated voids in the training set. For high volume fractions, too many bands with high strain are predicted. The nonlinearity of the
material model explains how underestimating strains leads to larger stress errors than overestimating strains.

Training on a dataset with varying volume fractions could improve the performance for unseen volume fractions. As this is
one specific case of many possible generalizations in geometry (e.g. voids with non-circular shapes, phases with different material
properties), we leave this for future work. In general, geometric features and training data should be carefully curated depending
on the application.

5.8. Computational cost

Making a fair time comparison between using the GNN surrogate and a full FE2 simulation is challenging for several reasons. The
GNN surrogate is implemented in Python using PyTorch, created for GPU execution, while our in-house FE solver is written in C++
17



Computer Methods in Applied Mechanics and Engineering 427 (2024) 117001J. Storm et al.
Fig. 24. Full-field 𝜀𝑝𝑒𝑞 predictions for a small and large volume fraction, showing the model’s bias to underpredict strains for small volume fractions and
overpredict for large volume fractions.

Fig. 25. Scaling of the computational cost between the GNN-based surrogate and FEM for an increasing microstructure size. We plot the mean and 95%
confidence interval over 5 runs.

and executed on a CPU. We therefore focus on the relative scaling of both methods with the size of the microscale mesh, rather than
on the absolute differences. We compute all steps sequentially for both the FE and GNN approaches, without using parallelization
or batching techniques.

We perform FE multiscale simulations by applying tension to a macroscopic dogbone structure with holes. We vary the
microstructure size between runs to study the scaling of the computation time. For each simulation, the strain paths and
computational cost of solving the microscale model for all time steps are recorded, considering only the final Newton–Raphson
steps that lead to macroscopic convergence. We subject the surrogate model (base model A) to the same strain paths and record the
resulting execution time.3 The resulting computation times corresponding to the microstructure size are shown in Fig. 25.

The results match the expectation that the GNN surrogate scales linearly with respect to the microstructure size, whereas FEM
scales exponentially. We also observe that computing the tangent stiffness using automatic differentiation is costly and scales worse
compared to when only computing 𝝈𝛺. Therefore, other methods to compute the tangent stiffness, such as finite differences, could
be considered instead. Some hyperparameters of the GNN model, such as the number of MPLs, will also influence the computation
time. However, these are not expected to change how the GNN scales favorably with the microstructure size compared to full FE2

simulations.

3 This method allows us to compare the computational cost of the methods, but it is not equivalent to running full multiscale simulations. Similar to other
surrogate models, embedding the GNN in an FE2 simulation might lead to unphysical behavior and cause instabilities that have not been studied in this work.
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6. Conclusion

State-of-the-art surrogate models for multiscale simulations directly replace the complete microscale simulation with a machine-
earning model. By doing so, the microscale physics and geometry are lost, and a large number of simulations from RVEs are required
or training. We presented a GNN-based surrogate that replaces only the solving of the microscopic boundary-value problem while
eeping the microscopic material models and computational homogenization intact. By obtaining all full-field quantities of interest
he surrogate could be used interchangeably with an FE solver for any time step in a multiscale model.

We demonstrated the ability of our model to accurately predict microscopic strain and stress fields for monotonically increasing
train paths with nonlinearity caused by considering elasto-plastic materials. We found that embedding the material model in the
NN is insufficient to capture complex load scenarios such as unloading while only being trained on monotonic loading. Instead, we

rained our model on a dataset with non-monotonic load paths, which improves its ability to predict unloading scenarios. Embedding
he material model inside the surrogate architecture leads to a significant performance increase. While the stress directly depends
n the strain, we found that including the stress in the loss function (in addition to the strain) not only leads to a significant
mprovement in the stress predictions but also generally improves the strain predictions. The model is autoregressive and therefore
otentially sensitive to instability, but we show that the error does not increase excessively when extrapolating beyond the number
f time steps seen during training. By training on arbitrary microstructures and predicting the stiffness of larger microstructures
han when training the model, we show the potential for GNNs to extrapolate to larger microstructures. This is possible by the
nductive bias of the GNN, which learns to use the geometry of the microstructure to make predictions. While trained on data with
fixed volume fraction, the model can predict the response of samples with other volume fractions close to the training value well,

lthough recovering a wider range of volume fractions would require augmenting the training dataset. The proposed surrogate has
otential to be faster than an FE analysis by scaling better with the number of elements in the microstructure. We also expect these
ains to be higher once our GNN code is further optimized and better integrated within existing FE code.

By keeping the multiscale nature of the problem while being faster than full FE2 simulations, this model shows promise in
ccelerating simulations of multiscale mechanical models. This is the first surrogate to integrate an elasto-plastic material into a
NN while retaining all microstructure quantities for a multiscale simulation. With countless developments on GNNs, we expect that

hey will play an increasingly important role in the field of multiscale simulations, as they are naturally suited to model mesh-based
ystems. We further expect that purely data-driven models will not be optimal, and that hybrid data-driven and physics-based models
uch as the one we show here will provide more powerful surrogates for multiscale simulations.
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