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Abstract. Spin-echo small-angle scattering (SESANS) technique is a method to measure
the structure of materials from nano- to micrmeter length scales. This method could be
important for studying the packaging of DNA in the eukaryotic cell. We measured the SESANS
function from chicken erythrocyte nuclei which is well fitted by the exponential function
G(z) = exp(−z/ξ), where ξ is the correlation length of a nucleus (in experimental data ξ = 3, 3
µm). The exponential decay of G(z) corresponds to the logarithmic pair correlation function
γ(r) = ln(ξ/r). As the sensitivity of the SESANS signal depends on the neutron wavelength,
we propose the SESANS setup with the changeable wavelength in the range from 2 to 12 Å.
Such option allows one to study in great detail the internal structure of the biological cell in
the length scale from 10−2µm to 10 µm.

1. Introduction
It is well known that the cell is the basic structural and functional unit of all known living
organisms. The cell nucleus acts like the control center of the cell. In this nucleus, a complex of
macromolecules can be found which consists of DNA and proteins is called the chromatin. All
the information about the biological organism is written in the double-helix DNA sequence.

The large-scale chromatin organization in interphase nuclei is fundamentally different from
the small-scale chromatin structure [1-6]. There are several levels of chromatin organization. At
the simplest level, chromatin is a double-helical structure of DNA. After that DNA is complexed
with histones to form nucleosomes. The nucleosomes fold up to produce a 30-nm fiber. One
of the most exciting questions that scientists are trying to answer is how DNA is packed inside
the nucleus of a cell. Although DNA macromolecules extend up to a few meters in unraveled
condition, they are packed really tight in the nucleus. The most mysterious feature of DNA
in the nuclei is the way it is packed so thatany part can be accessed, read, transcripted and
translated at any time in the process of replication.

Nowadays the multiscale fractal model of DNA arrangement inside the nuclei [3, 4] is the
most promising to explain this mystery. Experimental proof of this theory is complicated firstly
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because of the necessity to investigate nuclei under conditions as close as possible to those inside
the organism and secondly by the simultaneous coexistence of DNA together with proteins inside
the nuclei. Neutron scattering seems to be the most suitable instrument for such investigation
due to such advantages of neutrons as the high penetration depth, the non-damaging and the
possibility to use the contrast variation method. The last is very important as it allows one to
illuminate a separate structure of DNA and proteins in the nuclei.

Previously, the arrangement of chromatin in intact chicken erythrocyte nuclei was investigated
by small (and ultra-small) angle neutron scattering [4, 3]. The experimental results demonstrated
the power-law character of the neutron scattering intensity versus the scattering vector I ∼ Q−D
with parameter D ≈ 2.5 in the Q-range from 1.5·10−2 to 4·10−1 nm−1 and D ≈ 3 in the Q-range
from 3 · 10−3 to 1.5 · 10−2 nm−1. It means that at lenght scales between 15 nm and 1 µm the
nucleus exhibites properties of bi-fractal structure. On the length scales between 15 and 400 nm
chromatin exhibites properties of a mass fractal with a fractal dimension of approximately 2.5.

In recent years, the data obtained via novel experimental techniques to study the genome
structure, in particular Hi-C methods [7, 8], seem to provide data supporting the topological
fractal globule approach. The fractal globule is a compact polymer state that emerges during
polymer condensation as a result of topological constraints which prevent one region of the chain
from passing across another one [8, 9]. The majority of scientists suggest that the chromatin
structure is a fractal globule.

To answer the question how DNA is packed inside the interphase nucleus at the micron
scale, the new method spin-echo SANS (or SESANS) was used. The technique allows one to
measure a full pair correlation function in samples over distances from 20 nm to 20 µm. The
ability to measure the correlation at the micron scale is incredibly important in biological cell
studies. In the present study we report the result of the spin-echo SANS measurements from
chicken erythrocyte nuclei. Analyzing these results we propose to optimize the parameters of
the SESANS setup in order to obtain the full information on the pair correlation function of the
chromatin inside a biological cell.

2. Principles of spin-echo SANS
The method is based on the Larmor precession of polarized neutrons transmitted across two
successive precession devices before and after the sample, which encodes the scattering angle
into a precession angle [10].

Spin-echo SANS technique is a method to measure structures of materials in real space. These
structures can be determined over three orders of magnitude in length scale from 20 nm to 20
µm. The measured SESANS signal G(z) depends on the spin-echo (SE) length z, which is equal
along the beam axis coordinate in real space

z = Cλ2BL cot(θ0)/2π, (1)

where C is a constant, λ is the neutron wavelength, θ0 is the angle of inclination of the precession
devices front and end faces towards beam axis, B is the magnetic field in the precession device,
and L its length [10].

As shown by Kruglov [11] the SESANS function G(z) is the projection of the spatial pair
correlation function γ(r) along the beam axis

G(z) =
2

ξ

∫ ∞
z

γ(r)r√
r2 − z2

dr, (2)

where ξ is the correlation length. The inverse transformation is found as

γ(r) = − ξ
π

∫ ∞
r

G
′
(z)√

z2 − r2
dz. (3)
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Figure 1. The relationship between the correlation function γ(r), the scattering cross section
I(Q) and the SESANS correlation function G(z) [11].

In addition, the SESANS correlation function G(z) in terms of the differential scattering cross
section I(Q) of a sample is

G(z) =
1

k20σ

∫
R2

cos(zQz)I(Q)dQydQz, (4)

where k0 is a neutron wave number, σ is the total scattering cross section and Q = (0, Qy, Qz)
is the scattering vector. The so-called Fourier – Abel – Hankel cycle relates the three functions
I(Q), G(z) and γ(r) to each other. The relationships are illustrated schematically in Fig.1 for
isotropic distributions, where the figure shows the inverse related Abel – Hankel – Fourier
transformation [12]. Nevertheless, in SANS measurements only the scattering intensity is
measured (and not the phase of the scattered neutron wave), so critical information is lost
which prevents the full retrieval of the original density (the ’phase problem’). The same situation
occurs in the SESANS method. It should be noted that both methods give information about
the spatial pair correlation function.

The polarization P/P0 in a SESANS experiment is measured as a function of the total
scattering cross section σ, the thickness of the sample l and the spin-echo length z

P (z)/P0 = exp(lσ[G(z)− 1]). (5)

3. Study of the interphase chicken erythrocyte nuclei
The sample of isolated chicken erythrocyte nuclei was investigated at the SESANS-instrument
at the HOR reactor of the Delft University of Technology, The Netherlands. To maximally
increase the neutron scattering intensity we used the densest solution possible for these samples.
To avoid the problem of agglomeration of nuclei, the detergent Triton X-100 was added to the
solution, then clusters of order of a micron and more were mechanically destroyed by passing
the solution through a syringe.

The SESANS instrument uses a constant wavelength λ = 2Å. The measurements were carried
out in solution of a D2O > 95 % to reach the maximum contrast for the scattering. Three
different thicknesses of the sample (2, 4, 10 mm) were used to obtain the SESANS signal from
the chromatin in the nucleus. The noticeable function had been measured for the sample of 10
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Figure 2. The polarization P/P0 and the SESANS function G in dependence on the SE length
z from the isolated chicken erythrocyte nuclei. The line is an exponential decay with the best
fitted parameter ξ = 3.3± 0.1 µm.

mm only. Fig.2 presents the polarization P/P0 as a function of the SE length z. As one can see
the polarisation changes from P/P0 = 1.00 ± 0.01 at small z to P/P0 = 0.85 ± 0.01 at z = 8
µm. The constant level of polarisation P/P0 at large z determines the value of the product σl
in Eq. (5). Thus the SESANS function of G(z) can be definitely determined from the measured
function P/P0(z) using Eq.(5). The SESANS function G(z) is also shown in Fig.2. We were able
to fit this function using the simple exponential decay G(z) = exp(−z/ξ), where ξ = 3.3± 0.07
µm is the correlation length of a nucleus.

The pair correlation function can be obtained using the Abel transform Eq.(3)

γ(r) =
1

π

∫ ∞
r

exp(−z/ξ)√
z2 − r2

dz =
1

π
K0(r/ξ), (6)

where K0(x) is the Macdonald function of the 0th order. In its turn, the Hankel transform
of exponential decay of G(z) gives for the neutron cross section I(Q) = A · (1 + (Qξ)2)−3/2,
which was observed in [3] for the large scale chromatin organization. However the upper border
with fractal structure had not been found with SANS experiment because of an instrument
resolution. Thus, the complementarity of SANS and SESANS can be realized via the suitable
spacial ranges for SANS from 1 to 5 · 102 nm and that for SESANS from 5 · 101 to 2 · 104 nm.
As we are interested in the correlation inside rather than outside the sample, we can restrict
ourself by a small value of r/ξ. With this focus to the internal structure of the nucleus, we can
simplify Eq.(6) when r/ξ << 1. We obtained the simplified expression of the pair correlation
function using Eq.(6) and it’s asymptotic form gives

γ(r) = ln(ξ/r). (7)

Thus the exponential law of the SESANS function corresponds to the logarithmic pair correlation
function. The correlation function increases with an additive rather than multiplicative constant,
upon reducing the ruler length by a fixed rescaling factor. This leads to a logarithmic law instead
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Figure 3. The lin-log plot of the SESANS function G as a function of the SE length from
isolated chicken erythrocyte nuclei.

of the usual power law for the fractals. The logarithmic correlation function correspond to a
hierarchically branched structure. A good sample of such structures are trees. Such a structure
provides high accessibility of enzymes to specific gene site.

4. Criteria for SESANS measurements of a biological cell
The possibilities to extract the SESANS function G(z) appear to be limited for the biological
cell due to weak neutron scattering attributed to the nuclei of the cell. Fig.2 demonstrates the
maximum of the possible signal determined by the maximum value of σl with a thickness of
l = 10 mm and maximal σ provided by the maximum contrasting of the D2O. However, as it is
shown in Fig.3, the obtained meaningful data set for the SESANS function G(z) is limited by the
range of z from 1 to 12 µm, in spite of the fact that polarization data P/P0 were measured within
3 decades of the SE length z from 0.02 to 12 µm. This limitation is caused by the experimental
errors of the measurements of the polarisation P/P0, which can be at the best measured with a
accuracy of 1 %. This value is related not with the statistical errors of the neutron measurements
but with the stability of many devices used to manipulate the orientation of the neutron spin in
the SESANS setup. This limitation can be overcome if one is able to vary not only the thickness
of the sample l but also the total neutron cross section via the neutron wavelength. The cross
section for the small-angle neutron scattering depends of the wavelength as λ2. Therefore the
change of the wavelength from λ = 2 Å to λ = 12 Å will change the sensitivity of the SESANS
method by 36 times. In the other words, as it is impossible to increase the thickness of the
specimen to infinity, one should change the other parameter, σ, which can be easily done via
variation of the neutron wavelength λ.

Often the SESANS method is applied to measure the size of the particle (10−1-10 µm).
However, the key information about the fractal properties of the particle is hidden at the small
values of z. As was argued above for the biological cell the small values of z are inaccessible.
Therefore we formulated the criteria necessary to perform a complete study of such biological
objects using the SESANS method:

• one must have the possibility to change the neutron wavelength;
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Figure 4. The lin-log plot of the SESANS correlation function from chicken erythrocyte nuclei
at the different wavelengths: λ = 2 Å (experiment), λ = 4, 6, 12 Å (calculations) taken the same
parameters of the setup such of B, inclination angle θ0 and the lenth of the SE arm L in Eq.1.

• one must use different thickness;

• one must use the contrast-variation technique.

Here we introduce the sensitivity of SESANS is an important parameter which is independent
on the polarization efficiency or statistics. The sensitivity is the difference between P0 and Pinf

normalized to P0. The bigger is this number (which runs from 0 (P0 = Pinf )) to 1 ( Pinf = 0),
the higher is sensitivity of the measurements of G(z) for those z at which P/P0 > 0. Of
course, we do not want to set Pinf = 0, as we must know its true level, but not the one which
is restricted by the measurement conditions. To demonstrate the sensitivity of the SESANS
signal on the neutron wavelength, the polarisation P/P0 was calculated for the three different
wavelengths λ = 4, 6, 12 Å, using Eq.(5) and the SESANS function from chicken erythrocyte
nuclei (G(z) = exp(z/ξ)).

Fig.4 presents the calculated values of the polarization P/P0(z) (λ = 4, 6, 12) Å and the
experimental polarization P/P0 for λ = 2 Å. The experimental polarization P/P0 (λ = 2 Å)
approaches a constant (P/P0

∼= 1) for z < 1 µm. The sensitivity of the calculated polarization
increases with increasing wavelength λ in the same z-range. However, the polarization P/P0

with λ = 12 Å can be well measured for relatively small z only, since it tends to zero at z larger
than 1 µm. In this case the value of σl can not be determined. It is clear from this consideration
that the optimum measurements can be obtained with λ = 6Å. In general, in order to really
cover the 3 decades (from 10−2µm to 10 µm) in measurements of the SESANS function G(z),
one must perform such measurements with at least 3 different values of the neutron wavelength.
Such protocol of SESANS measurements is analogous to the protocol of the SANS measurements
at 3 different sample-detector positions (2, 10, 18 m) aiming to provide a wide Q-range from
10−3 to 1 nm−1.

5. Conclusions
In summary: the use of the beam with λ = 6 Å leads to an increase of the sensitivity of the
SESANS method and opens the range of z [10−2 - 10] µm for the study of biological cells.
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A SESANS setup with a changeable wavelength in the range from 2 to 12 Å will be highly
appreciated by the community of life sciences.
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