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ABSTRACT

Recommender Systems play a significant part in filtering and effi-
ciently prioritizing relevant information to alleviate the information
overload problem and maximize user engagement. Traditional rec-
ommender systems employ a static approach towards learning the
user’s preferences, relying on logged previous interactions with
the system, disregarding the sequential nature of the recommen-
dation task and consequently, the user preference shifts occurring
across interactions. In this study, we formulate the recommenda-
tion task as a slate Markov Decision Process (slate-MDP) and lever-
age deep reinforcement learning (DRL) to learn recommendation
policies through sequential interactions and maximize user en-
gagement over extended horizons in non-stationary environments.
We construct the simulated environment with various degrees of
preferential dynamics and benchmark two DRL-based algorithms:
FullSlateQ, a non-decomposed full slate Q-learning based on a
DQN agent, and SlateQ, which implements DQN using slate de-
composition. Our findings suggest that SlateQ outperforms by
10.57% FullSlateQ in non-stationary environments, and that with
a moderate discount factor, the algorithms behave myopically and
fail to make an appropriate tradeoff to maximize long-term user
engagement.
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1 INTRODUCTION

The past decades have seen an exponential increase in the volume
of digital information available and the number of users capable of
accessing those resources have created a significant challenge in
filtering and efficiently prioritizing relevant information. Recom-
mender systems aim to tackle the information overload problem by
effectively modelling the users’ preferences, relying on past user
behaviour and feedback received via interactions with the system
[Aggarwal 2016; Isinkaye et al. 2015; Lu et al. 2012]. User modelling
sits at the core of many recommendation systems, as it allows the
algorithm to efficiently suggest information that matches the users’
preferences with as little latency as possible [Jawaheer et al. 2014].

However, approaches constructed on top of classic recommender,
such as Collaborative Filtering (CF) with Implicit Feedback, illus-
trated by [Hu et al. 2008], or hybrid recommender systems (CF
Supervision
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combined with content-based methods), such as HyPER introduced
by [Kouki et al. 2015], employ a static approach, and disregard
the dynamic, sequence-based decision-making process inherent to
real-world recommendation scenarios. [Adomavicius and Zhang
2012] presents how such systems fail to adapt to variations in user
preferences based on recent interactions, which ultimately leads to
poor long-term user engagement.

To fuse the capability of sequential processing, and to integrate
the optimization of user engagement and satisfaction over extended
horizons, Deep Reinforcement Learning (RL) is an ideal proposal
[Huang et al. 2021; Munemasa et al. 2018; Zhao et al. 2018]. The
process of recommendation can be modelled as a slate-MDP, as
introduced by [Sunehag et al. 2015], wherein the recommender
(i.e. the agent) interacts with the user (i.e. the environment) by
recommending a slate of items (i.e. the action), followed by feedback
from the user (i.e. the reward) (illustrated in Figure 1).
Related Work. The approach of constructing the recommenda-
tion task with slates instead of individual items is found across
many research initiatives [Liu et al. 2021; Mehrotra et al. 2019;
Zhao et al. 2018], which brings several modelling challenges to
achieve effective generalisation performance, while dealing with
the high combinatorics of slate recommendation. [Sunehag et al.
2015] proposed a setting in which slates are represented holisti-
cally and are considered primitive actions. The value of each slate
is approximated using three DQN-based approaches, out of which
two are capable of handling the combinatorics. However, they do
not address the effectiveness of exploration and its impact on the
long-term reward. Other initiatives in scientific literature adapt the
slate recommendation scenario to bandit settings, without state
transitions, and incorporates the notion of user preference varia-
tions through sudden changes in preference [Hariri et al. 2015]. This
approach however disregards previous interaction session interac-
tion history and primarily uses the current context to construct a
recommendation. Furthermore, existing literature on user prefer-
ence dynamics [Jiang et al. 2019] considers cases in which the user
interest drift is described a non-linear stochastic function, an idea
which we build on top of to integrate the the concept of session
termination. Recent initiatives in deep learning have allowed for
high-level feature extraction for modelling user preferences, which
proved effective in recommending items that match recent interests
[Tallapally et al. 2018]. Temporal models such as recurrent neural
networks or hidden Markov models have been widely used to lever-
age the sequential user-item interactions of recommender systems,
and have resulted in promising results estimating next-item predic-
tions [Jannach and Ludewig 2017; Liu and Singh 2016; Mlika and
Karoui 2020]. The former, suffers from scalability with large item
and user spaces, and has limitations in capturing variational shifts
over long horizons. The latter, on the other hand, fails to pick up the
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user’s timely interests. Advancements in Reinforcement Learning
have allowed for the optimization of long-term value (LTV) in rec-
ommendations, while dealing with the large combinatorial action
spaces, inherent to RL [Ie et al. 2019b]. However, such approaches
encounter limitations in adapting to preference shifts over long-
term horizons, particularly because of the assumed simplified user
choice behaviour and generality in the user transition model.
Our Contribution. In this study, we seek to formalise the charac-
teristics of dynamic user preferences, and use them to investigate
the extent to which novel deep reinforcement learning algorithms
perform under such dynamics. More explicitly, the aim of this is
twofold. First, modelling the user preference trajectories and bench-
marking the performance of two DQN-based algorithms, namely
FullSlateQ and SlateQ, introduced by [Sunehag et al. 2015] and
[Ie et al. 2019b], respectively. Second, observing the effect of long-
term and immediate rewards on the algorithms’ performance under
the preference dynamics. Our contributions can be therefore broken
down into two main sub-questions:

• [Q1]How do FullSlateQ and SlateQ compare against each
other under dynamic user preferences? What factors drive
their performance?
• [Q2] How does the tradeoff between long-term and immedi-
ate reward impact the value exploration in non-stationary
environments?

The remainder of this paper is structured as follows. Section 2
introduces the problem formulation and relevant theoretical con-
cepts for understanding this study. Subsequently, the 3 gives an
in-depth overview of the core components that make up the simu-
lation environment and the proposed framework for modelling the
user preference dynamics, alongside relevant literature to support
our approaches. The experimental setup and results are outlined in
Section 4, followed by an analysis of the obtained findings in Sec-
tion 5. Next, we reflect on the responsible research aspects of this
work in Section 8. Lastly, we provide a summary and conclusion of
this work coupled with future recommendations.

2 BACKGROUND

Before providing an analysis of the preference dynamics problem,
we first describe the building blocks of our study. To this end,
this section first introduces the modelling of the recommendation
problem as a slate-MDP. Second, a brief description of the algorithms
is provided. Last, we present the simulation environment used for
training and evaluation.

2.1 Problem Formulation

We consider a setting in which a recommender agent interacts with
an environment E (i.e. the user), by suggesting a list of items (i.e.
slates) at each time step, out of which the user can either select one
or no item (skips the selection). Once a document is selected, the
user sends out a response to the selected item which consists of
the engagement time. Following the response, the user can request
subsequent recommendation slates, or terminate the session (i.e.
the sequence of recommendations). The sequential nature of the
sessions allows for modelling the recommendation task as a finite

Markov decision process (MDP) with states S, actions A, transi-
tion probability P, reward function R and discount factor 𝛾 (See
Figure 1 for a simplified illustration). In this context, the 5-tuple
⟨S,A,P,R, 𝛾⟩ can be modelled as follows:

State space S. Represents the user states S = {𝑠1, 𝑠2, ..., 𝑠𝑡 }, which
incorporate both static (fixed user attributes) and dynamic (user
interests, time budget, and the interaction history at step 𝑠𝑡 ) features
of the user.
Action space A. Is a finite discrete space A = {𝑎1, 𝑎2, ..., 𝑎𝑡 },
which represents the set of all possible slates to recommend at
step 𝑡 , based on the user state 𝑠𝑡 . A single slate can be therefore
formulated as follows 𝑎𝑡 = {𝑎1𝑡 , 𝑎2𝑡 , ..., 𝑎𝐾𝑡 }, where 𝐾 is the selected
slate size.
Transition probability P. Refers to the user state transition prob-
ability of moving to state 𝑠𝑡+1 from state 𝑠𝑡 , having taken action 𝑎𝑡 ,
i.e. 𝑝 (𝑠𝑡+1 | 𝑠𝑡 , 𝑎𝑡 ). It is worth noting that if the user selects no item,
the user state still changes (non selection is still considered as user
feedback), and thus 𝑠𝑡+1 ≠ 𝑠𝑡 holds, for all steps 𝑡 .
Reward function R. Having taken action 𝑎𝑡 from state 𝑠𝑡 , the
agent receives the reward R(𝑠𝑡 , 𝑎𝑡 ) corresponding to the user feed-
back 𝑐𝑡 (i.e. the user engagement over a recommendation session).
Discount factor 𝛾 . Represents the discount rate, indicating the
value of future rewards. As 𝛾 approaches 0, the recommender agent
behaves myopically, i.e. seeks to maximize immediate rewards, and
when approaching 1, the agent gives a higher importance to future
rewards.

Figure 1: The Interactive Recommendation task modelled as

a Reinforcement Learning problem

The aim of the recommender is to maximize the cumulative re-
ward by learning a recommendation policy 𝜋 : S → A. Given a
deterministic policy 𝜋 and the optimal policy 𝜋∗, the value func-
tion 𝑉𝜋 (𝑠) and the optimal value function 𝑉 ∗𝜋 (𝑠) can be defined as
follows, respectively:

𝑉𝜋 (𝑠) = R(𝑠, 𝜋 (𝑠)) + 𝛾 ·
∑︁
𝑠′∈S
P(𝑠 ′ | 𝑠, 𝜋 (𝑠)) ·𝑉𝜋 (𝑠 ′) (1)
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𝑉 ∗𝜋 (𝑠) = max
𝜋
𝑉𝜋 (𝑠) (2)

The on-policy and optimal action-value functions can be defined
analogously:

𝑄𝜋 (𝑠, 𝑎) = R(𝑠, 𝑎) + 𝛾 ·
∑︁
𝑠′∈S
P(𝑠 ′ | 𝑠, 𝑎) ·𝑉𝜋 (𝑠 ′) (3)

𝑄∗𝜋 (𝑠, 𝑎) = max
𝜋
𝑄𝜋 (𝑠, 𝑎) (4)

In our work, the examined RL algorithms, namely FullSlateQ
and SlateQ follow a DQN-based architecture, which improves gen-
eralisation in action-value function estimation by using a non-linear
function approximator, a neural network, defined by [Mnih et al.
2013] as a Q-network with weights 𝜃 . More formally, 𝑄 (𝑠, 𝑎;𝜃 ) ≈
𝑄∗ (𝑠, 𝑎).

2.2 FullSlateQ

The FullSlateQ (FSQ) recommender agent implements full slate Q-
learning based on a DQN Agent. The approach emplys a standard,
non-decomposed, off-policy Q-learning algorithm, which treats
each slate of items "holistically" (i.e. in its entirety) as a single
action [Ie et al. 2019b]. As the authors point out, while the FSQ has
a theoretical guarantee of convergence given enough exploration
(for the interested reader, we recommend the proof of [Regehr
and Ayoub 2021]), it is inherently unscalable, as it has to learn a
large combinatorial space of Q-values. More specifically, given a
document space D and a 𝑘-sized slate, the agent would have to
keep track of

( |D |
𝑘

)
· 𝑘! separate actions.

2.3 SlateQ

The large combinatorial action space of slate recommendation men-
tioned above poses several challenges that render the implementa-
tion of RL methods impractical in large-scale systems. One key diffi-
culty is solving the combinatorial optimization problem of selecting
a maximum Q-value slate (within the low-latency constraints of
real-world systems), a necessary component for policy improve-
ment. Therefore, [Ie et al. 2019b] introduce a decomposed version
of the FullSlateQ algorithm, which allows for the decomposition
of a slate Q-value into the individual Q-values of its items. The pro-
posed decomposition framework circumvents the combinatorics
associated with exploration and generalisation, and for action maxi-
mization, the authors describe a linear programming formulation of
the Long-term Value (LTV) slate optimization problem, and provide
two heuristics for tackling it, namely top-𝑘 and greedy.

2.4 RecSim

The deployment of novel recommender systems in real-world appli-
cation poses several challenges to the researchers and practitioners
in the field, predominantly centered around adequately modelling
the interactive (and contextual) dynamics inherent to such applica-
tions [Kuanr and Mohapatra 2021].

To best observe the effects of such dynamics on recommendation
performance, we turn to RecSim [Ie et al. 2019a], a configurable
simulation environment, which allows for the study of RL in the

context of stylized recommender settings. The RecSim environ-
ment has three main constituents, namely the document model,
user model and response model. The recommender agent interacts
with the environment by providing the user with a (fixed) slate of
documents sampled from a known prior distribution 𝑃𝐷 . The user
then makes a selection via the configured user-choice model and
sends its response to the recommender agent. Consequently, the
user’s state changes through a (configurable) transition function.
For a visual interpretation of the data flow between the simulation
components, we point the reader to Figure 1 of [Ie et al. 2019a]). It
is worth mentioning that both the user and document models can
have latent and observable features which can influence the user
response to a recommended slate.

3 METHODOLOGY

Having established the building blocks in the previous section,
we now introduce a detailed overview of the components that
make up the RecSim simulation environment, and how they were
constructed to depict an interactive dynamic environment. Sub-
sequently, we provide the reader with the proposed preference
dynamic framework for the user latent state transitions.

3.1 Simulation Components

To accurately benchmark the performance of the FullSlateQ and
SlateQ algorithms within environments in which the latent (user)
state undergoes gradual shifts, we turn to RecSim to develop a
stylized model of the environment which reflects the dynamics
of user behaviour. To this end, we provide an overview of core
components of the environment.

3.1.1 Document Model. We consider a finite set of documents
𝐷 , representing the candidate pool of items fit for recommendation.
Recall from Section 2 that a single slate can be defined as 𝑎𝑡 =

{𝑎1𝑡 , 𝑎2𝑡 , ..., 𝑎𝐾𝑡 }, where 𝐾 is the selected slate size. To abstract the
notion of the time step 𝑡 from a given item, we assume the document
set to be independent of the interaction steps. Furthermore, we
consider a finite set of topics𝑇 , which depicts all possible subjects a
document can cover, and a user can be interested in. Each document
𝑑 ∈ 𝐷 contains a topic vector 𝛿 ∈ [−1, 1] |𝑇 | , which denotes the
degree of which the document reflects each of the topics, i.e. 𝛿 (𝑑)

𝑖
is the the degree to which document 𝑑 reflects the topic 𝑖 . The
degree is ranging from −1 (totally uncorrelated) to 1, (extremely
correlated).

To represent the versatility of topics in documents, each entry in
the topic vector is distributed according to N(0, 0.5) . The proba-
bility density function of the normally-distributed topic vector will
serve an additional purpose in Subsection 3.2, for it will influence
how a user’s preference towards a given topic will shift over time.

Furthermore, each document 𝑑 has a specific length 𝜆𝑑 , which
could represent the length of a video, movie, song or article. The
length will be used to measure the user engagement with a par-
ticular recommended item. In our work, the length is normally
distributed, with 𝜇𝑙𝑒𝑛𝑔𝑡ℎ = 5 and 𝜎𝑙𝑒𝑛𝑔𝑡ℎ = 1.
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Finally, documents include a quality attribute 𝑞, representing a
measure of overall attractiveness of a document of a given docu-
ment. The quality of the documents is randomly sampled from a
fixed Beta distribution 𝑞 ∼ B(𝛼𝑞, 𝛽𝑞) with 𝛼𝑞 = 3 and 𝛽𝑞 = 3. The
chosen probability distribution with the aforementioned parameter
values is slightly skewed to the left, signifying a positive trend
in quality across the document space. Each document’s quality is
sampled independently from the topic vector, and it is assumed to
be user-independent.

3.1.2 User Model. User modelling plays a fundamental role in
our investigation, as it will incorporate the dynamics of the envi-
ronment. We consider a finite set of users 𝑢 ∈ 𝑈 that interact with
the recommender agent throughout the simulation. Each user 𝑢
contains an interest vector 𝜇, which similarly to the topic vector
mentioned in the Document Model section, reflects the degree of
interest towards a given topic for a user 𝑢. More formally, the in-
terest vector can be defined as 𝜇 ∈ [−1, 1] |𝑇 | . Analogously to the
document model, we assume the user’s degree of interest towards
a given topic to be independent of the other topics, and is normally
distributed with mean 0 and standard deviation 0.5.

The user model receives two additional fixed parameters which
control the probability of a preference shift 𝑝𝑠ℎ𝑖 𝑓 𝑡 and the step
size 𝜔 at which the said shift occurs. Subsection 3.2 will offer a
more in-depth treatment of the interplay between the user model
parameters in the environment dynamics.

3.1.3 Response Model. Achieving high-quality recommenda-
tion slates that maximize the expected future reward is correlated
with the user choice behaviour [Katahira 2015]. Choice modelling
addresses the theory of individual decisions among a discrete set
of options given stated or latent preferences within a particular
context [Thill 2009]. Originally developed by economists and math-
ematical psychologists, user choice modelling has found numerous
applications in fields such as econometrics, statistics and marketing
[Van Cranenburgh et al. 2021]. In the context of this study, once
the user is recommended a k-sized slate, they can observe the topic
vector of each of the constituent document beforemaking a choice.
Only after the consumption of an document from the slate can the
user observe the quality 𝑞 of the selected document. We believe this
to be a reasonable assumption, which is grounded in the design of
common recommender scenarios (e.g. YouTube, Netflix).

For the choice model, we consider a multinomial proportional
choice model, which assumes a finite set of user-item features
𝑥𝑖 𝑗 for a user 𝑖 and recommended document 𝑗 in slate 𝑎. The fea-
tures are computed by taking into account the dominant topic of
the recommended document, and the user preference value of the
corresponding topic, namely 𝑥𝑖 𝑗 = eargmax𝛿 ( 𝑗 ) · 𝜇 (𝑖) , where e𝑘

represents a one-hot encoded vector of the dominant topic (k). The
choice model for a user 𝑖 can be formulated as follows:

𝑃 ( 𝑗 | 𝑎) =
𝑥𝑖 𝑗 − 𝑥𝑛𝑜𝑟𝑚∑︁

𝑘 ∈ 𝑎
𝑥𝑖𝑘 − 𝑥𝑛𝑜𝑟𝑚

(5)

Where 𝑃 ( 𝑗 | 𝑎) is the probability of choosing an item 𝑗 , being
presented a slate 𝑎, and 𝑥𝑛𝑜𝑟𝑚 = −1 is the normalisation constant

to account for the negative interval [−1, 0) of the user preference
range.

3.2 User Preference Dynamics

Having analysed the core simulation components in the previous
subsection, we now examine the theoretical underpinnings behind
the dynamic user preference model. Recall from the problem for-
mulation (Section 2.1), that we examine a setting in which the
recommender interacts with a user at each time step 𝑡 by suggest-
ing a slate of items. To incorporate the sequential nature of the
recommendation problem, we assume that at each time step 𝑡 , the
user’s interest vector is resembled by 𝜇𝑡 , and 𝜇 (𝑖)𝑡 is the user’s in-
terest in topic 𝑖 at time 𝑡 . Such formalisation will prove useful in
reasoning about the user interest behaviour in subsequent parts of
this section.

To investigate the extent to which recommender systems are
capable of adapting to variational preference shifts, we first seek
to formalise such dynamics in order to be well-aligned with real-
life recommendation settings. One intuitive model of preference
dynamics suggested by [Jiang et al. 2019], is that a user’s interests
fluctuate based on the interactions with the recommender system
over time, that is 𝜇𝑡+1 > 𝜇𝑡 for positive reinforcements (i.e. the
user is more interested) and conversely, 𝜇𝑡+1 < 𝜇𝑡 for negative
reinforcements (i.e. the user is less interested), with a certain prob-
ability 𝑝𝑠ℎ𝑖 𝑓 𝑡 (See Section 3.1.2). We are interested in studying the
dynamics of the user preference behaviour over extended horizons,
and thus want to observe if the user interest vector 𝜇𝑡 at time step 𝑡 ,
evolves from the initial set of preferences 𝜇0. The interest evolution
problem can be formulated as follows:

lim
𝑡→∞

∥(𝜇𝑡 − 𝜇0)∥2 > 0 (6)

Where ∥x∥2 :=
√︃
𝑥21 + 𝑥

2
2 + ... + 𝑥

2
𝑛 is the norm of a vector x in

an 𝑛-dimensional Euclidean space R𝑛 .
Having introduced the notion of user preference shifts over long-

term horizons, we now present the updating mechanisms employed
in our experimentation. We first outline the evolution as a function
of user interests, followed by the session termination model.

3.2.1 Interest Function-based Evolution. We construct a dy-
namic preference model by assuming a parameterized density func-
tion which describes the user interest distribution over a fixed
interest range. In our experiments, we let the user interests follow
a Gaussian distribution (See Section 3.1.2), with probability density
function 𝑓 , such that:

𝑓 (𝑥 ; 𝜇, 𝜎) = 1
𝜎
√
2𝜋

exp
(
−12

(𝑥 − 𝜇
𝜎

)2 )
(7)

We consider a gradient-based approach for determining the up-
date magnitude of the user’s interests towards a set of topics. It
is worth noting the fact that the probability density function il-
lustrated in Equation 7 is defined and differentiable in the user
preference range [−1, 1] described in section 3.1.2. Taking the
first derivative (Equation 8) will yield the gradient of the density
function describing the user interests, which can be interpreted as
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the user’s inclination towards preference change. This approach is
quite similar to [Jiang et al. 2019], where the authors model the
user preference drift 𝜇𝑡+1 − 𝜇𝑡 as a nonlinear stochastic function.
The discrepancy however, is that we use the function describing
a user’s interest as a proxy for determining the direction (positive
or negative) of the preference change, and the magnitude of the
update.

∇𝑓 (𝑥 ; 𝜇, 𝜎) = −𝑓 (𝑥 ; 𝜇, 𝜎) ·
(𝑥 − 𝜇
𝜎2

)
(8)

We propose the following gradient-based algorithm for stochas-
tically updating the user’s interest, based on the items consumed.

Algorithm 1 Gradient-based Preference Updating
Require: 𝜇𝑡 , 𝛿, 𝜇𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 , 𝜎𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 , 𝑝𝑠ℎ𝑖 𝑓 𝑡 , 𝜔, 𝑛

1: 𝑚𝑎𝑠𝑘 ← Vector in [0, 1] |𝑇 | containing n random 1-positions
2: 𝑡𝑎𝑟𝑔𝑒𝑡𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑠 ←𝑚𝑎𝑠𝑘 · 𝜇𝑡
3: 𝑡𝑎𝑟𝑔𝑒𝑡𝑡𝑜𝑝𝑖𝑐𝑠 ←𝑚𝑎𝑠𝑘 · 𝛿
4: Estimate ∇𝑓 = ∇𝑓 (𝑡𝑎𝑟𝑔𝑒𝑡𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑠 ; 𝜇𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 , 𝜎𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 )
5: Compute Δ𝑡 (𝜇𝑡 ) = |𝑡𝑎𝑟𝑔𝑒𝑡𝑡𝑜𝑝𝑖𝑐𝑠 · ∇𝑓 | ⊲ Absolute change in

user interest
6: Perform an update with probability 𝑝𝑠ℎ𝑖 𝑓 𝑡 :
7: 𝑝 (𝑢𝑝𝑑𝑎𝑡𝑒, 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) ←

[
𝜇𝑡+1
𝑛+1 ·𝑚𝑎𝑠𝑘

]
8: With probability 𝑝 (𝑢𝑝𝑑𝑎𝑡𝑒, 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒):
9: 𝜇𝑡+1 ← 𝜇𝑡 + 𝜔Δ𝑡 (𝜇𝑡 ) ⊲ Positive update
10: With probability 1 − 𝑝 (𝑢𝑝𝑑𝑎𝑡𝑒, 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒):
11: 𝜇𝑡+1 ← 𝜇𝑡 − 𝜔Δ𝑡 (𝜇𝑡 ) ⊲ Negative update

Let 𝜇𝑡 be the user interest vector prior to consumption of a
particular document 𝑑 ∈ 𝐷 with an associated topic vector 𝛿 . In
Algorithm 1, 𝑛 depicts the number of entries in the user interest
vector that will be updated. In our experiments, we set 𝑛 = 3. A
positive update, 𝜇𝑡+1 ← 𝜇𝑡 + 𝜔Δ𝑡 (𝜇𝑡 ), occurs with probability[
𝜇𝑡+1
𝑛+1 ·𝑚𝑎𝑠𝑘

]
, while a negative shift, 𝜇𝑡+1 ← 𝜇𝑡 −𝜔Δ𝑡 (𝜇𝑡 ), occurs

with probability 1 −
[
𝜇𝑡+1
𝑛+1 ·𝑚𝑎𝑠𝑘

]
. Hence, stronger interests are

more likely to be reinforced, while weaker interests have a higher
likelihood of being diminished. A visualisation of the mechanism
is illustrated under Figure 2.

3.2.2 Session Termination. The second approach taken towards
modelling the user preference dynamics is based on session termi-
nation, a concept adapted from [Ie et al. 2019b]. We assume that
every user has an initial time budget 𝐵𝑢 at the start of each recom-
mendation session, unobservable to the recommender agent. Once
a user 𝑢 engages with a document 𝑑 , the engagement time 𝑒 (𝑑)𝑢 is
subtracted from the time budget. Depending on the quality of the
document, which is observed by the user after consuming it, partly
replenishes the user’s time budget. Thus higher quality documents
encourage the user to engage with more content throughout a rec-
ommendation session, which acts as the reward of this model (i.e.
the feedback of the user).

The session termination model is constructed as follows. The
replenishment of the time budget is centered around three com-
ponents, namely the user engagement, the perceived utility, and

Figure 2: Illustration of the Interest Function-based updating

approach for a given topic. The figure on the left resembles a
step taken in the "positive" direction, i.e. the user’s interest in the
topic is reinforced. The figure on the right represents a step towards
the "negative" direction, namely the user’s interest in the topic is
decreased.

a retention factor 𝜙 ∼ 𝑈 (0.1, 0.2). We assume the user model to
additionally contain a quality factor 𝜌𝑢 ∼ 𝛽 (9, 3), which indicates
the affinity of a sampled user towards higher-quality content. Us-
ing the Beta-distributed quality factors indicate a somewhat more
pronounced appeal towards higher quality items in recommenda-
tion; weighing in the quality items has been shown to improve
recommendation accuracy [Cho et al. 2008]. The user’s time budget
dynamics can be therefore defined as:

𝐵
(𝑡+1)
𝑢 = 𝐵

(𝑡 )
𝑢 − 𝑒

(𝑑)
𝑢 + 𝜙 · 𝑒 (𝑑)𝑢 · 𝑢 (𝑢,𝑑) (9)

Where the perceived utility is computed using the document
and item quality attributes:

𝑢 (𝑢,𝑑) = 𝜌𝑢 · 𝑞𝑑 (10)

The intuition behind session termination is that consuming doc-
uments of higher quality has a more positive impact on the cumu-
lative user engagement, i.e decrease the budget at a slower rate
than lower quality documents. This approach can potentially test if
the recommender agent can adapt to suggest higher quality items
that match with the user’s unobservable affinity 𝜌𝑢 towards higher
quality documents.

3.3 User Engagement and Satisfaction

Having covered the two approaches used for constructing a non-
stationary environment in the previous subsection, we now present
two models used for calculating the user’s engagement with a rec-
ommended item, and subsequently the internal satisfaction received
from consuming the document.

Once the user selects the document to consume from the recom-
mendation slate, the engagement time 𝑒 (𝑑)𝑢 is computed based on
the similarity between the user’s interest vector 𝜇𝑡 and the item’s
topic vector 𝛿 using the cosine similarity (Equation 11), a common
metric used in the context of recommender systems [BenardMagara
et al. 2018] .

cos𝜑 =
𝜇𝑡 · 𝛿
∥𝜇𝑡 ∥ ∥𝛿 ∥

(11)
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In Sections 3.1.2 and 3.1.1, we assume both the interest and topic
vector to be vary independently according to a normal distribution.
From initial empirical evaluations, we have observed that the simi-
larity values of these vectors do not attain values close to the cosine
boundaries [−1, 1], but more in the interval [−0.7, 0.7]. There-
fore we account for the shortened interval by applying a sigmoid
function to the cosine similarity with a sensitivity parameter 𝜏 = 7:

𝑒
(𝑑)
𝑢 = 𝜎 (𝜏 · 𝑐𝑜𝑠𝜑) · 𝜆𝑑 =

𝜆𝑑

1 + 𝑒−𝜏 ·𝑐𝑜𝑠𝜑 (12)

The user’s satisfaction 𝑠𝑎𝑡𝑡 varies throughout the recommenda-
tion session. We define the satisfaction in two parts - Equations 13
and 14:

𝑠𝑎𝑡 = 𝛼 · 𝑠𝑎𝑡𝑡 + 𝛽 · 𝑐𝑜𝑠𝜑 + N(0, 𝜂) (13)

Where 𝛼 and 𝛽 represent user-specific memory (forgetfulness)
and immediate discounts, respectively. In our experiments, 𝛼 is set
to 0.7, and𝑏𝑒𝑡𝑎 to 1.0, signifying that the user satisfaction is predom-
inately determined by the match between the user’s interest and the
recommended item. Finally, we add some noise in the satisfaction
with parameter 𝜂 = 0.03. Similarly to the user engagement, we pass
the calculated satisfaction through a sigmoid function adapted to
the empirically observed values of the satisfaction [−0.4, 0.4], with
sensitivity parameter 𝜏 = 3.

𝑠𝑎𝑡𝑡+1 = 𝜎 (𝜏 · 𝑠𝑎𝑡) =
1

1 + 𝑒−𝜏 ·𝑠𝑎𝑡 (14)

4 EXPERIMENTS

We present the experimental results from the comparison of the two
deep reinforcement leaning agents discussed in Section 2, namely
FullSlateQ and SlateQ, under a range of parameterized non-
stationary environments, which support different levels of magni-
tude in their dynamics. To justify the validity of our findings, we
subsequently perform the test on two other baseline recommender
agents, a standard Q-learning algorithm and a Random agent. In
this section we first introduce the setup of our experiments, fol-
lowed by an analysis of the user preference dynamics. Finally, we
discuss the experimental results and their significance in answering
the research questions.

4.1 Experimental setup

We now outline the experimental setup for training and evaluating
the agents within a dynamic environment. The main task in our
experiments is maximizing the user’s engagement throughout a rec-
ommendation session, and it’s overall satisfaction at the end of the
session. The RL algorithms used, namely FullSlateQ, SlateQ and
Q-learning, are implemented in the RecSim simulated environment
using Dopamine [Castro et al. 2018]. To assess the performance of
the algorithms, we keep track of both user satisfaction and overall
engagement, as described in Section 3.3, and we observe the quality
and satisfaction attributes of the recommended items.

We consider the each user’s initial budget 𝐵𝑢 = 500 time units,
each document 𝑑 , with length 𝜆𝑑 ∼ N(5, 1). If no document is
clicked, a penalty of 1 time unit is set, and the budget is updated
according to Equation 12. We set the number of items to 10, the

slate size to 2 and the number of topics |𝑇 | to 20. We evaluate the
FullSlateQ and SlateQ algorithms by additionally comparing
them alongside a tabular implementation of Q-learning and a ran-
dom policy. We perform each experiment using three randomly
generated seeds, and take the average of the performance to obtain
a more robust measure of the algorithms’ performance.

4.2 Preference Dynamics Analysis

As presented in Section 8, we propose a user preference updating
mechanism based on a density function. Figures 3 and 4 depict a
user’s interest evolution across 7k training steps.

Under mild conditions (Figure 3), the user’s interest barely fluctu-
ates, and behaves almost stationary for low values of 𝑝𝑠ℎ𝑖 𝑓 𝑡 (0.001,
0.005, 0.05). On the other hand, when 𝑝𝑠ℎ𝑖 𝑓 𝑡 takes higher values
(0.1, 0.5), the preference shifts become more apparent. When vary-
ing the step size 𝜔 , we also observe preference changes of higher
magnitude (e.g. Figure 4, 𝑝𝑠ℎ𝑖 𝑓 𝑡 = 0.5, 𝜔 = 1.0). One potential issue
that can be identified from both graphs is that converging to the
interest interval extremes (-1 and 1), might be difficult to combat
due to the low gradient values in that vicinity.

Figure 3: The user preference value towards a topic 𝑡 , under

mild preference updating conditions, across one iteration

4.3 Results

Within this section, we describe our empirical findings, and briefly
outline their significance towards answering the research questions.
All results showcased here are within a 95% confidence interval.
We first outline the algorithms’ performance under stationary user
preferences, and then investigate the recommendation performance
under preference dynamics. Further experimental results alongside
more documentation on the hyperparameters of the environment
will be made accessible in the code repository.

We initially attempt to replicate the findings of [Ie et al. 2019b] in
order to test the quality the recommendation policies using SlateQ,
under our preference dynamic conditions. Similar results were
achieved for non-myopic long-term value policies that optimize for
user engagement, yet the quality of recommendations didn’t show
improvements, and converges to around 0.66, as seen in Tables 1,
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Figure 4: The user preference value towards a topic 𝑡 , under

high-frequency preference updating conditions, across one

iteration

2 and 3. This is partly because user engagement is also driven by
similarity between the user interests and the topic vector of the
document, and not just the quality, alongside the fixed discounting
factor 𝛾 = 0.5.

Stationary User Preferences

Algorithm Avg. Rewards Avg. Quality Avg. Sat.
Random 424.2 0.66 0.8307

Q-Learning 424.6 (+0.09%) 0.66 (+0%) 0.8412 (+1.26%)
FullSlateQ 424.58 (+0.08%) 0.67 (+1.51%) 0.8409 (+1.22%)
SlateQ 463.23 (+9.2%) 0.68 (+3.03%) 0.873 (+5.1%)

Table 1: The performance of the algorithms under stationary

user preference conditions: 𝑝𝑠ℎ𝑖 𝑓 𝑡 = 0.

To adequately evaluate the performance of the FullSlateQ and
SlateQ algorithms in dynamic environments, we first investigate
their performance under a stationary environment: 𝑝𝑠ℎ𝑖 𝑓 𝑡 = 0. We
present our results in 1. We train each algorithm over 12k training
steps, and evaluate the performance over 3000 different users in a
hold out evaluation set. We also display the relative performance
improvement to the random baseline next to the metrics. While the
average reward over episodes of FullSlateQ does not show drastic
improvement over the two baselines, SlateQ yields a moderate
increase in performance of 9%. Additionally, SlateQ is able to offer
a 5.1% improvement over the baseline and achieves the highest user
satisfaction out of all the experiments.

To evaluate the impact of non-stationary environments on the
algorithms’ performance, we run multiple experiments with differ-
ent user preference conditions (𝑝𝑠ℎ𝑖 𝑓 𝑡 = 0.001, 0.005, 0.05, 0.1, 0.5
and 𝜔 = 0.05, 0.1, 0.5). The results of all the experiments can be
found in the accompanying repository containing the source code,
yet here in this work we present the most representative results. To
this end, we divide the problem into two cases: (i) a mild preference
dynamics setting, where 𝑝𝑠ℎ𝑖 𝑓 𝑡 = 0.005, 𝜔 = 0.05 and (ii) a high-
frequency preference dynamic setting, with 𝑝𝑠ℎ𝑖 𝑓 𝑡 = 0.1, 𝜔 = 0.5,

Mild User Preference Dynamics

Algorithm Avg. Rewards Avg. Quality Avg. Sat.
Random 421.27 0.664 0.841

Q-Learning 423.17 (+0.45%) 0.6667 (+0.41%) 0.841 (+0%)
FullSlateQ 424.72 (+0.82%) 0.667 (+0.45%) 0.841 (+0%)
SlateQ 465.25 (+10.43%) 0.68 (+2.41%) 0.854 (+0.95%)

Table 2: The performance of the algorithms under mild user

preference conditions: 𝑝𝑠ℎ𝑖 𝑓 𝑡 = 0.005, 𝜔 = 0.05.

High-Frequency Preference Dynamics

Algorithm Avg. Rewards Avg. Quality Avg. Sat.
Random 420.11 0.64 0.841

Q-Learning 424.74 (+1.1%) 0.667 (+4.06%) 0.842 (+0.16%)
FullSlateQ 424.35 (+1.01%) 0.667 (+4.32%) 0.842 (+0.14%)
SlateQ 479.8 (+14.22%) 0.668 (+4.375%) 0.857 (+1.91%)

Table 3: The performance of the algorithms under high-

frequency user preference conditions: 𝑝𝑠ℎ𝑖 𝑓 𝑡 = 0.1, 𝜔 = 0.5.

and showcase their performance in Table 2 and Table 3, respec-
tively. Similarly to the stationary environment, the average quality
remains centered at around 0.67 for all agents, indicating that the
agents are unable to converge to higher-quality documents.

Remarkably, under both mild and high-frequency conditions,
SlateQ offers higher overall user engagement than the stationary
setting, with 10.43% and 14.22% improvements over the Random
agent, respectively. This is most likely attributed to the fact that
the slate decomposition reduced the complexity of generalisation
and allows for more effective TD and Q-learning [Ie et al. 2019b].

5 DISCUSSION

We now present a more in-depth treatment of the results outlined in
Section 4, and correlate them with answering our both our research
questions.

5.1 Comparison between FullSlateQ and

SlateQ

In order to approach the first research question RQ1, we measure
the performance of the algorithms by observing the average reward
(i.e. user engagement) over recommendation sessions. We show the
results in Table 2 and Table 3, and illustrate the performance of
FullSlateQ and SlateQ in Figure 5.

Our findings suggest that SlateQ performs significantly better
than FullSlateQ and the two baselines, offering, on average, a near
10.57% improvement over FullSlateQ. Furthermore, SlateQ con-
tinues to outperform FullSlateQ on user satisfaction (See Figure 6)
and recommendation quality, although not as apparent for the latter.
Additionally, FullSlateQ has to learn the Q-values of

(10
2
)
· 2! = 90

distinct slates, which makes exploration and generalisation much
more difficult in reasonable time. Moreover, the training time of
FullSlateQ takes around 1.5X more time then that of SlateQ for
this particular slate configuration, yet previous experiments with
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𝑘 = 3 slate, i.e.
(10
3
)
· 3! = 720 states, the training time equaled to

around 6X that of SlateQ. The aforementioned findings indicate
the substantial value in Slate decomposition approaches, as they
not only exhibit increased performance over FullSlateQ, but also
render RL tractable with slate recommendations.

Figure 5: The average episodic rewards of FullSlateQ and

SlateQ in evaluation for stationary and non-stationary en-

vironments.

5.2 Effect of long-term and immediate reward

on value exploration

To investigate the impact of immediate and long-term value policies
over the value exploration - RQ2, we turn our focus towards the
average quality of recommended items and the user satisfaction.
We perform the experiments with a discount factor 𝛾 = 0.5, and
we observe that the the agents generally adopt a myopic policy
when recommending items, optimizing for immediate reward. In
our case translates to suggesting items with topics closer to the
user’s interest, resulting in higher satisfaction (as seen in Figure
6), yet lower values for quality. Thus, the agents fail to make an
suitable tradeoff between guiding the user’s preferences towards
higher quality documents at the expense of temporarily diminishing
the user budget.

6 CONCLUSION AND FUTUREWORK

In this study we have formulated the recommendation problem as
a slate-MDP, and have investigated the ability of FullSlateQ and
SlateQ to learn recommendation policies through sequential in-
teractions over extended horizons in non-stationary environments.
Based on the results obtained using RecSim, we can conclude that
SlateQ offers notable improvements (10.57%) in user engagement
compared to FullSlateQ in dynamic environments, while concomi-
tantly rendering RL tractable with slates, and therefore scalable
in practical applications. On the other hand, we have observed
how with a relatively moderate discounting factor, both SlateQ
and FullSlateQ generally adopt a myopic recommendation pol-
icy, and therefore failing to make a suitable tradeoff to maximize
recommendation quality and user engagement.

Figure 6: The average Satisfaction of FullSlateQ, SlateQ

and Random agents in evaluation for stationary and non-

stationary environments.

Our contributions suffer from two limitations. First, to reliably
measure the impact preference dynamics on the recommender sys-
tems, a more accurate non-linear model could be implemented to
resemble the nature of user change in interest. Second, the synthetic
nature of the stylized environment carries several key assumptions
about the user and item spaces. In our case, one particular example
of such assumption would be the interdependence of interest be-
tween topics. Thus, in future work, online testing should be carried
out to validate the findings in a real-world setting. Finally, fur-
ther experimentation with different values of discounting factors
would prove useful in evaluating if optimizing for long-term user
engagement using DRL yields performance increase over myopic
approaches.
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8 RESPONSIBLE RESEARCH

Throughout the study, we sought to adhere to the principles of
conducting reproducible and ethical computational research. This
section first reflects on the ethical implications of this work. We
then address the reproducibility of the work for potential future
contributions.

8.1 Ethical Implications

Recommender Systems are ubiquitous and have beenwidely adopted
by several digital services ranging from streaming services to e-
commerce.

Gathering user personal information often poses serious privacy
risks and challenges. These impasses may be seen as unavoidable,
given that the majority of successful recommender systems rely
heavily on user data to create personalised recommendations. We
approach this risk by using synthesized user data, sampled from a
fixed distribution with injected probabilistic noise, as described in
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Section 3.1.2. This helps us achieve two of our desiderata: eliminat-
ing privacy risks, andmodelling the sequential, interactive nature of
a recommendation system. Notwithstanding, conclusions regarding
the performance of RS algorithms under various stylized contexts
with synthetic data should be interpreted carefully, as further re-
search using real-life data is necessary to validate their performance
before migrating to commercial use.

8.2 On the Reproducibility of Experiments

The reproducibility of experiments is an important aspect of Ma-
chine Learning research, as it allows for verifying the reliability
and integrity of the proposed results. To ensure that the experi-
mental results from this work can be reproduced, we provide all
the necessary resources and abide by the principles stated in the
Machine Learning Reproducibility checklist, introduced in the 2019
edition of the Neural Information Processing Systems (NeurIPS)
conference [Pineau et al. 2020]. We further make the source code
and supplementary material related to experimentation publicly
accessible1.
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