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We propose a hybrid quantum system consisting of a magnetic particle inductively coupled to two supercon-
ducting transmon qubits, where qubit-qubit interactions are mediated via magnons. We show that the system
can be tuned into three different regimes of effective qubit-qubit interactions, namely, a transverse (XX + YY ),
a longitudinal (ZZ), and a nontrivial ZX interaction. In addition, we show that an enhanced coupling can be
achieved by employing an ellipsoidal magnet, carrying anisotropic magnetic fluctuations. We propose a scheme
for realizing two-qubit gates, and simulate their performance under realistic experimental conditions. We find
that iSWAP and CZ gates can be performed in this setup with an average fidelity �99%, while an iCNOT gate
can be applied with an average fidelity �88%. Our proposed hybrid circuit architecture offers an alternative
platform for realizing two-qubit gates between superconducting qubits and could be employed for constructing
qubit networks using magnons as mediators.

DOI: 10.1103/PhysRevB.110.104416

I. INTRODUCTION

Hybrid quantum systems provide a promising route to-
wards practical applications by combining the advantages
of different platforms for quantum information tasks [1,2].
For example, superconducting (SC) qubits make excellent
processors for quantum computing [3–5]. Quantum gates
for SC qubits can be performed within several nanoseconds
[6–8], with fidelities exceeding 99%, as required for the error
correction schemes of surface codes [9–11]. However, the
dissipation rates of SC qubits make them impractical for long-
term data storage, imposing the need for integration with more
appropriate physical systems in order to construct quantum
memories [1,2]. Furthermore, SC circuits do not couple di-
rectly to optical photons, which is an important requirement
for building quantum networks [1,2]. Therefore, there is a
practical need for bridging systems of diverse nature and
functionality.

Magnons, the collective excitations of ordered spin sys-
tems, have shown promising properties to operate as such
mediators [12–14] owing to their capability of coupling co-
herently to various excitations, e.g., optical photons [15–19],
microwaves [20–24], phonons [25–30], and spins [31–33].
These couplings can be further enhanced using magneti-
zation squeezing [34], which can be implemented using

*Contact author: martijn.dols@rwth-aachen.de
†Contact author: marios.kounalakis@gmail.com
‡Contact author: kusminskiy@physik.rwth-aachen.de

anisotropically shaped magnetic structures [35]. Moreover,
by considering insulating magnetic materials, such as the
paradigmatic yttrium iron garnet (YIG), magnon dissipation
channels can be minimized [36]. These properties suggest
that magnons can be useful for mediating the coupling be-
tween different types of qubits, e.g., in spin- or SC-based
platforms. The coupling of magnons to SC transmon qubits
has been indeed experimentally demonstrated via mediating
microwave cavities [37–40]. Furthermore, it has been pro-
posed that coherent coupling between a transmon qubit and
a YIG sphere can also be achieved by the dipolar fields in free
space, resulting in an interaction that can be tuned between a
radiation-pressure and an exchange type [41]. This interaction
can, for example, be employed in order to control and entangle
magnons in distant YIG spheres, using the qubit as a mediator
and bypassing the need for microwave cavities [42].

In this work, we extend this framework by exploring the
possibility of using magnons as mediators to couple SC qubits
in free space. Various methods have been demonstrated to
couple qubits to each other directly, including capacitive
[7,43–45] and inductive [46–50] coupling. Alternatively, a
cavity bus or other qubits can be employed to mediate the
coupling [51–54]. These schemes focus on either direct cou-
pling via circuit elements or indirect coupling via other circuit
modes. Adding magnons to the list of possible mediators
can open up new directions in qubit-qubit coupling schemes,
e.g., by harnessing chiral coupling [55,56]. We show that,
using magnons as virtual mediators of a tunable qubit-qubit
interaction, a set of quantum gates can be realized with dif-
ferent degrees of fidelity which we characterize and optimize.

2469-9950/2024/110(10)/104416(13) 104416-1 ©2024 American Physical Society
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FIG. 1. Proposed setup consisting of two transmon qubits induc-
tively coupled via their SQUID loop to a YIG ellipsoid. The ground
state of the magnetization is along the z axis due to the external mag-
netic field Hex = H0ez. The magnetic quantum fluctuations �Mx of
the YIG ellipsoid in the x direction induce a flux in each SQUID loop,
thereby modulating the inductance of both qubits and resulting in an
effective qubit-qubit coupling mediated by magnons. Two dedicated
flux bias lines, carrying DC and AC current, are used to control the
flux in each loop.

Specifically, we propose a hybrid quantum system consisting
of two flux-tunable transmon qubits coupled via a magnet.
We consider a magnet with an anisotropic shape, which can
enhance the coupling strength. We find that, by appropriately
choosing the SC qubit parameters, three different types of
effective qubit-qubit interactions can be realized: XX + YY ,
ZZ , and ZX . We use these to simulate three two-qubit gates,
namely, an iSWAP gate, a controlled-Z (CZ) gate, and an iCNOT

gate, respectively. Using experimentally realistic parameters
for the setup, we obtain average gate fidelity values �99%
for the iSWAP and CZ gate, and �88% for the iCNOT gate. The
combination of any of these two-qubit gates with single-qubit
rotations forms a universal gate set [57,58].

The remainder of this paper is structured as follows: In
Sec. II we review the theory of flux-tunable transmon qubits
coupled to an anisotropic magnet leading to squeezing of
the relevant quadrature of the magnetization fluctuations. In
Sec. III we derive the different regimes of magnon-mediated
qubit-qubit interaction giving rise to the corresponding gates
and compare the performance of the dissipative system against
the ideal case by defining a gate-fidelity measure. In Sec. IV
we present the conclusions and discuss possibilities for im-
proving the average gate fidelity values. Some details of the
calculations have been relegated to the Appendix.

II. MODEL AND COUPLING

We consider two flux-tunable SC transmon qubits coupled
to a magnet of an anisotropic shape as depicted in Fig. 1.
A flux-tunable transmon qubit [59] consists of a supercon-
ducting quantum interference device (SQUID) made of an SC
loop with two Josephson junctions with Josephson energies
E1

J and E2
J , shunted by a capacitor C with charging energy

EC = e2/(2C). An important parameter is the SQUID asym-
metry, given by aJ = |E1

J − E2
J |/E�

J , where E�
J = E1

J + E2
J .

Applying current through a nearby external bias line induces
a flux �b into the SQUID loop. We define the reduced flux

as ϕb = π�b/�0, where �0 = h/(2e) is the magnetic flux
quantum. The transmon Hamiltonian reads [59]

ĤQ = 4ECn̂2 − E�
J S(ϕb) cos (ϕ̂), (1)

where n̂ corresponds to the number of Cooper pairs partici-
pating in tunneling, S(ϕb) = [cos2(ϕb) + a2

J sin2(ϕb)]1/2, and
ϕ̂ = δ̂ − arctan[aJ tan(ϕb)] is the SC phase difference. We
consider the transmon regime E�

J S(ϕb) � EC , in which the
qubit becomes insensitive to charge noise [59]. Expanding the
cosine and introducing the annihilation and creation operators
ĉ and ĉ†,

n̂ = i
ε

2
(ĉ† − ĉ), ϕ̂ = 1

ε
(ĉ† + ĉ), (2)

with ε4 = E�
J S(ϕb)/(2EC ), one obtains [59]

ĤT = h̄ωqĉ†ĉ − EC

2
ĉ†ĉ†ĉĉ, (3)

where we defined the transmon frequency ωq =
{[8ECE�

J S(ϕb)]1/2 − EC}/h̄. The nonlinearity of the second
term in Eq. (3) results in anharmonic energy levels, which is
a necessary condition for the construction of a qubit [60].

For the magnet we consider an ellipsoidal shape of dimen-
sions Lx � Ly = Lz, where Li is the length of the semi-axis
of the magnet in the ith direction (see Fig. 1) and Vm =
4πLxL2

z /3 is its volume. An external homogeneous magnetic
field is applied along the z axis, Hex = H0ez. This field fulfills
H0 > Ms/2 such that the classical ground state of the mag-
net is M = Msez, where Ms is the saturation magnetization.
The shape anisotropy favors fluctuations of the magnetization
along the x direction, implying that the quantum fluctuations
of the ground state |0〉m, denominated a squeezed vacuum,
are anisotropic [61]. In what follows we consider only the
magnon excitations associated with the uniform precession of
the spins, called Kittel magnons. Within the linear spin wave
approximation they are described by

ĤM = h̄ωmm̂†m̂, (4)

where m̂(†) are the magnon annihilation (creation) operators
operating on the squeezed vacuum such that m̂|0〉m = 0, and
the frequency is given by [35]

ωm = μ0γ0H0

√
1 − Ms

H0
(3NT − 1). (5)

Here, γ0 is the modulus of the gyromagnetic ratio and NT is
a dimensionless factor of the demagnetization tensor which
depends on the shape of the magnet [62,63]. For Lx � Lz

as considered in this work we have NT ≈ 1/2 [63]. In the
isotropic case NT = 1/3 the Kittel mode frequency for a
spherical magnet, independent of demagnetization factors, is
recovered.

Fluctuations of the magnetization, which are proportional
to 1/

√
Vm [35], give rise to fluctuations of the magnetic dipole

moment �μ̂,

�μ̂x = μzpfe
r (m̂ + m̂†), �μ̂y = iμzpfe

−r (m̂ − m̂†). (6)

Here, μzpf = h̄γ0
√

Ns/2 is the value of the isotropic zero
point fluctuations with Ns = ρsVm the total number of spins,
and ρs the spin density. Magnets with volumes greater than
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100 nm3 and typical YIG spin densities [37] obey Ns � 1.
Since �μ̂z/μzpf ∝ 1/Ns, we can neglect the z fluctuations
of the magnetic moment [64]. The factor r is the squeezing
parameter and satisfies [35]

er =
(

1 − Ms

H0
(3NT − 1)

)− 1
4

. (7)

In the limit H0 → (3NT − 1)Ms, the magnon frequency ωm

vanishes, see Eq. (5), and the squeezing parameter r diverges.
In this case, �μ̂x exponentially diverges with r, whereas �μ̂y

is suppressed. In practice, however, achievable cryogenic tem-
peratures and the stability of the magnetically ordered ground
state for these values of H0 impose a lower bound on ωm, and
therefore an upper bound on squeezing [35].

We consider the magnet positioned between the qubits as
shown in Fig. 1. The magnetic field due to the fluctuations �μ̂

induces a flux through the SQUID loop

�(�μ̂) = μ0

4π

∑
i=x,y

Ii�μ̂i, (8)

where μ0 is the magnetic constant and Ii are geometrical
factors which have the dimension of 1/length. Due to the
symmetry of the chosen setup one finds Iy = 0. The geo-
metrical factor Ix is the largest for SQUID loops which are
positioned at the x = 0 plane and increases as d (the minimal
distance between the center of the magnet and the SQUID
loop) decreases. A lower bound on d is imposed by the critical
field that the SC wire can support [64]. To determine Ix, we use
the field of an ellipsoid [65]; see details in Appendix A. We
find Ix = −0.1/ µm for Lx/Lz ≈ 4. The stray magnetic field
of the magnet is about two orders of magnitude lower than the
critical field of typical superconductors [66], as we elaborate
in Appendix A.

The flux bias ϕb can be controlled by the magnetic field
generated by the wires carrying electric currents as shown in
Fig. 1. The reduced flux caused by �μ̂ is given by

ϕ(�μ̂) = μ0Ixμzpfer

4�0
(m̂† + m̂). (9)

Replacing ϕb → ϕb + ϕ(�μ̂) in Eq. (1) and considering
flux fluctuations much smaller than ϕb gives the interaction
Hamiltonian Ĥint = ĤJ + Ĥg [41]. The first term is a coherent
exchange interaction between a qubit and the magnons

ĤJ = h̄J
(
ĉ†m̂ + ĉm̂†),

with the coupling constant

J = −μ0IxμzpfaJer

4�0

(
2EC

(
E�

J

)3

S(ϕb)5

) 1
4

, (10)

while the second term is given by

Ĥg = h̄gĉ†ĉ(m̂† + m̂),

with the coupling strength

g = −μ0Ixμzpfer

8�0

(
2ECE�

J

S(ϕb)3

) 1
2

sin (2ϕb)
(
1 − a2

J

)
. (11)

This second interaction term resembles an optical photon-
magnon coupling [17] or radiation pressure in optomechanical

systems [67]. Note that, because of the enhanced fluctuations
of the magnetic moment �μ̂x due to squeezing, the coupling
strengths J and g are enhanced by er .

The total Hamiltonian of the system with two SC qubits
therefore reads

Ĥtot = Ĥ0 + Ĥint, (12)

where

Ĥ0 = ĤM +
∑
i=1,2

Ĥ i
T , (13)

where ĤM is the magnon Hamiltonian given by Eq. (4), and

Ĥ i
T = h̄ωqi ĉ

†
i ĉi − EC

2
ĉ†

i ĉ†
i ĉiĉi (14)

is the Hamiltonian for each SC qubit labeled by i ∈ {1, 2}. The
interaction term between the SC qubits and the magnon mode
is given by

Ĥint =
∑
i=1,2

Ĥ i
J + Ĥ i

g, (15)

with

Ĥ i
J = h̄Ji(ĉ

†
i m̂ + ĉim̂

†), (16)

and

Ĥ i
g = h̄giĉ

†
i ĉi(m̂

† + m̂), (17)

where the coupling constants of the magnons to each qubit can
be tuned independently and are given by Eqs. (10) and (11).

III. QUANTUM GATES

The Hamiltonian Ĥtot can be brought into the form of an
effective qubit-qubit interaction up to second order in the
coupling constants Ji and gi by performing a Schrieffer-Wolff
(SW) transformation, as we show in Appendix C. The effec-
tive interaction allows us to identify the coupling parameters
that are required in order to realize different gates by appro-
priately tuning the coupling constants. These can be tuned
by controlling the SQUID asymmetry aJ (which is a design
parameter) for each qubit, and the reduced flux ϕb. We identify
two limiting cases: (i) for symmetric SQUIDs, aJ = 0, where
the coupling strength J = 0, following Eq. (10), and (ii) for
a highly asymmetric SQUID with aJ → 1 and a value of
the reduced flux ϕb = π/2, where the coupling constant g
vanishes according to Eq. (11). In Appendix C we show that
combinations of these limiting cases give rise to the three
gates studied in this section: iSWAP, CZ, and iCNOT. In what
follows we characterize the performance of the gate generated
by the Hamiltonian Ĥtot of Eq. (12) for the parameter regime
of each gate (which we denote by Ĥgate) and in the presence of
dissipation, compared with the ideal gate associated with the
corresponding effective qubit-qubit Hamiltonian.

To take into account the dissipative evolution of the sys-
tem we use a Liouvillian description. Depending on the gate,
we apply a specific Hamiltonian Ĥgate and hence a specific
Liouvillian Lgate. The time evolution of the density matrix
of the composite system ρ̂c, describing both qubits and the
magnon field, can be found by solving the Lindblad master
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equation d
dt ρ̂c(t ) = Lgate[ρ̂c(t )], where

Lgate[ρ̂c] = − i

h̄
[Ĥgate, ρ̂c]

+
6∑

n=1

(
L̂nρ̂cL̂†

n − 1

2
{L̂†

nL̂n, ρ̂c}
)

. (18)

Here, L̂n are the Lindblad operators. Magnon damping is
taken into account by L̂1 = √

κ (1 + nth )m̂, where κ is the
magnon linewidth and the bosonic expectation number nth =
{exp[h̄ωm/(kBT )] − 1}−1, with kB as the Boltzmann factor
and T as the temperature. The linewidth is known from ex-
periments to have the form κ = αGωm + κ̃ [68–70], where αG

is the Gilbert damping and κ̃ is the inhomogeneous damping.
The thermal excitation of magnons is given by L̂2 = √

κnthm̂†.
For the qubits we include the decay of the transmons with
L̂3 = √

1/T1ĉ1 and L̂4 = √
1/T1ĉ2, where T1 is the qubit life-

time, and pure dephasing terms L̂5 = √
1/Tφ ĉ†

1ĉ1 and L̂6 =√
1/Tφ ĉ†

2ĉ2, where Tφ is the dephasing time.
We assume for simplicity that initially the magnons are

prepared in the vacuum state, and we describe the two-qubit
space by the density matrix ρ̂. This assumption does not
affect significantly our results as long as the initial thermal
occupation is low, as we discuss in Sec. III B. We propagate
the initial state until an appropriately chosen gate time Tgate at
which the desired gate is applied. After the time propagation,
the magnons are traced-out, since we are solely interested in
the qubit dynamics. In summary, we consider the following
quantum channel:

Egate[ρ̂] = Trm[eLgateTgate [ρ̂ ⊗ |0〉 〈0|m]]. (19)

To quantify how well Egate simulates a given gate Ûgate, we
determine the average gate fidelity given by F̄ (Egate, Ûgate ),
where F̄ is defined as [71]

F̄ (E, Û ) =
∫

dψ 〈ψ | Û †E[|ψ〉 〈ψ |]Û |ψ〉 . (20)

Here, one integrates over the uniform measure dψ , which is
normalized such that

∫
dψ = 1. This integral can be simpli-

fied to a finite summation over a unitary basis [71], as we
elaborate in Appendix B.

One can find the SW transformed Hamiltonian with gen-
eral qubit levels in Appendix C. To find the gate times which
come from the effective qubit-qubit coupling and to identify
the frame in which the gate is performed, we limit the qubits
of these effective Hamiltonians to their energetically lowest
two levels in the next sections. One can recognize Hamil-
tonians in the two-level approximation by the usage of the
Pauli operators: σ̂+ = |1〉 〈0|, σ̂− = |0〉 〈1|, and σ̂ z = |1〉 〈1|.
In simulations we use Hamiltonians which do not involve
truncated qubit levels and are written in terms of the ladder
operators ĉi and ĉ†

i . We summarize the strategy applied to
evaluate the different gates in Fig. 2.

A. iSWAP

For highly asymmetric SQUIDs with aJ1 , aJ2 → 1 and re-
duced flux ϕb1 , ϕb2 = π/2 we have g1, g2 → 0. We obtain the

FIG. 2. Visual summary of the method used to obtain the quan-
tum channel Egate[ρ̂]. A given set of coupling constants J1, J2, g1, and
g2 yields the total Hamiltonian for a particular gate, Ĥ gate. With a SW
transformation we obtain an approximate qubit-qubit Hamiltonian
Ĥ gate

SW , where the effective coupling strength dictates the gate time
Tgate. We cancel single-qubit rotations with a unitary transformation
ÛSQ(t ) to obtain the effective Hamiltonian Ĥ gate

eff . We apply this uni-
tary transformation to the initial Hamiltonian as well to find Ĥ gate

tot . We
use this final Hamiltonian to construct the quantum channel, which
we use in our simulations. For the system Hamiltonians indicated by
blue boxes, all quantum levels are included in the analysis, whereas
green boxes indicate that the two-level approximation is applied.

effective qubit-qubit interaction for these parameters from Ĥtot

as detailed in Appendix C 1. We find

Ĥ iSWAP
SW = h̄

⎛
⎝ωm −

∑
i=1,2

J2
i

ωqi − ωm

⎞
⎠m̂†m̂

+
∑
i=1,2

h̄

(
ωqi + J2

i

ωqi − ωm

)
σ̂ z

i

+ h̄gS (σ̂+
1 σ̂−

2 + σ̂−
1 σ̂+

2 ), (21)

with the effective qubit-qubit coupling constant

gS = J1J2

2

(
1

ωq1 − ωm
+ 1

ωq2 − ωm

)
. (22)

We note that, besides the exchange-like induced qubit-qubit
coupling term, the interaction induces a Stark shift of the
frequencies ωm and ωqi . This transformation is valid for Ji �
ωqi − ωm, i.e., in the dispersive regime.

Time propagation of the coupling term of the Hamiltonian
of Eq. (21) for a time TS = π/(2|gS|) gives an iSWAP gate:
exp[−igSTS (σ̂+

1 σ̂−
2 + σ̂−

1 σ̂+
2 )] = ÛiSWAP, where we defined

ÛiSWAP = 1
2 (Î ⊗ Î ∓ iσ̂x ⊗ σ̂x ∓ iσ̂y ⊗ σ̂y + σ̂z ⊗ σ̂z ). (23)

Here, σ̂x, σ̂y, and σ̂z are the Pauli matrices. This gate swaps
|01〉 ↔ |10〉 while adding a phase ∓i and leaves the symmet-
rical states |00〉 and |11〉 untouched. The sign of the phase ∓i
corresponds to gS ≷ 0.

The second term of Eq. (21) causes the qubits to undergo
rotations on top of the interaction. We assume for simplicity
identical qubits, so that J = J1 = J2 and ωq = ωq1 = ωq2 . A
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FIG. 3. (a) Average fidelity F̄ (blue, solid) and gate time TS (green dashed) for the iSWAP gate as a function of the magnon frequency ωm in
units of the SC qubit frequencies ωq = ωq1 = ωq2 . TS drops at low frequencies due to the squeezing enhancement of the qubit-qubit coupling
strength gS , and approaches 0 for ωm/ωq → 1 due to the resonant enhancement of gS . Undesired magnonic excitations near resonance and
thermal excitations at low frequencies cause the average fidelity to drop. The maximum fidelity is F̄ = 99.00% at ωm/ωq = 0.94 (vertical
dashed line). (b) Qubit and magnon dynamics following the evolution with the Hamiltonian of Eq. (26) in the presence of dissipation at the
optimal magnon frequency ωm = 0.94ωq. The input state is |ψ〉 = |10〉. The occupation of both qubits (blue dash-dotted and red dashed)
and magnons (green, solid) as a function of time t are shown. In this regime, the magnon occupation remains ≈0 at all times. The gate time
TS = 0.5 µs is indicated with a vertical dashed line, at which the target state equals ÛiSWAP |ψ〉 = −i |01〉. Parameters: Lx = 16 µm, Lz = 3.9 µm,
R = 25 µm, d − Lz = 10 nm, αG = 10−4, κ̃/(2π ) = 0.1 MHz [68–70] and T = 10 mK, T1 = 100 µs, and Tφ = 100 µs [72–74].

unitary transformation with

ÛSQ(t ) = exp

⎡
⎣it

(
ωq + J2

ωq − ωm

)⎛⎝m̂†m̂ +
∑
i=1,2

σ̂ z
i

⎞
⎠
⎤
⎦
(24)

cancels these phase rotations, yielding

Ĥ iSWAP
eff = ÛSQĤ iSWAP

SW Û †
SQ + ih̄

dÛSQ

dt
Û †

SQ

= h̄

(
ωm − ωq − 3J2

ωq − ωm

)
m̂†m̂

+ h̄gS (σ̂+
1 σ̂−

2 + σ̂−
1 σ̂+

2 ). (25)

To cancel the single-qubit rotations at the level of the origi-
nal Hamiltonian, we apply this transformation to Ĥtot , which
yields

Ĥ iSWAP
tot = h̄

(
ωm − ωq − J2

ωq − ωm

)
m̂†m̂

−
∑
i=1,2

(
h̄J2

ωq − ωm
ĉ†

i ĉi + EC

2
ĉ†

i ĉ†
i ĉiĉi

)

+
∑
i=1,2

h̄J (ĉ†
i m̂ + ĉim̂

†). (26)

We use this Hamiltonian to obtain the channel EiSWAP[ρ̂] and
compare it to the ideal iSWAP gate given by Eq. (23), by com-
puting the average gate fidelity as a function of the magnon
frequency, see Eq. (20). The result is shown in Fig. 3(a).

We see that the average fidelity is a nonmonotonic function
of the magnon frequency, which is a consequence of two
competing factors affecting the effective coupling strength gS

and therefore the gate time TS . Minimizing the gate time is

important in order to minimize the effect of dissipation and
hence to improve the gate fidelity. On the one hand, Eq. (22)
shows that gS is enhanced as the magnon frequency ap-
proaches the resonance condition ωm = ωq. This is reflected
in Fig. 3(a), where the gate time TS goes to zero when ap-
proaching ωm/ωq = 1. Note however that, as this resonance
is approached, the SW transformation used to obtain the ideal
gate breaks down (signaled by a diverging coupling gS) so that
the effective, ideal-gate Hamiltonian is not a good approxi-
mation to the total one at this point. Physically, a resonant
magnon-qubit coupling causes real magnonic excitations (as
opposed to the virtual ones in the off-resonant case) which ad-
versely affect the gate fidelity. This causes the rapid decrease
of the average gate fidelity as the resonance is approached.
On the other hand, the coupling strength is enhanced by
magnon squeezing. As Eq. (22) shows, the coupling is pro-
portional to J1J2 and hence gS ∝ e2r . To have er � 1 the
magnon frequencies are required to be small ωm � γ0μ0Ms,
which corresponds to the far left side of Fig. 3(a). At such
low frequencies, however, magnonic thermal excitations are
important, decreasing the gate fidelity. The effect of squeez-
ing around the qubit frequency region is generally negligible
due to er ≈ 1. This competition of effects gives rise to the
maximum of the average gate fidelity at low frequencies.

For the results shown in Fig. 3 we set aJ = 0.9 for both
qubits, considering fabrication constraints [75] and in order
to maintain the frequency tunability [41]. The reduced flux of
both qubits is set to ϕb = π/2 such that g1 = g2 = 0, in agree-
ment with the considered iSWAP regime. We assume typical
transmon energies EC/h = 150 MHz and E�

J /h = 35 GHz,
such that the qubit frequency is ωq/(2π ) = 6.0 GHz [76].
In the simulations we use Fock spaces with size 3 for the
qubits and 4 for the magnons [77]. A maximal fidelity of
F̄ = 99.00% is obtained at ωm/ωq = 0.94. For this magnon
frequency the effective qubit-qubit coupling is gS/ωq = 8.2 ×
10−5 corresponding to gS/(2π ) = 0.49 MHz for the parame-
ters used.
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In Fig. 3(b) we show the dynamics of the system including
dissipation for a given input state, |10〉 and for a magnon
frequency tuned to the optimal average fidelity. From t = 0 to
t = TS , which corresponds to the dashed line, the swap takes
place. We see that the excitation of the first qubit is transferred
to the second qubit, as we expect from ÛiSWAP |10〉 = −i |01〉,
whereas the magnon occupation remains close to zero as
expected for virtual transitions.

To turn off the qubit-qubit coupling once the gate has been
realized at the gate time TS , the interaction term in Eq. (21)
can be made off resonant by detuning the qubits. This can
be achieved by varying the reduced flux bias ϕb. Simulations
show that changing the reduced flux of one qubit to ϕb = π/3
while keeping the other at ϕb = π/2 is sufficient.

The configuration described above can also be used to
construct a

√
iSWAP gate by choosing a gate time TS/2. This

gate can be used to create Bell-like states, such as |01〉 − i |10〉
[78]. In our setup, using the same parameters as in Fig. 3, we
find that such a state can be prepared with an average gate
fidelity F̄ = 99.54%.

B. CZ

In the case of symmetric SQUIDs with aJ1 , aJ2 → 0, we
have J1, J2 → 0. In this case we obtain the following effective
interaction Hamiltonian (see Appendix C 2)

Ĥ CZ
SW = h̄ωmm̂†m̂ +

∑
i=1,2

h̄

(
ωqi − g2

i

ωm

)
σ̂ z

i − h̄gZ σ̂ z
1 σ̂ z

2 , (27)

where the effective coupling strength is given by

gZ = 2g1g2

ωm
. (28)

This transformation is valid for gi � ωm. At TZ = π/gZ ,
the coupling term in Eq. (27) results in a CZ gate, since
exp(igZTZ σ̂ z

1 σ̂ z
2 ) = ÛCZ, where we defined

ÛCZ = |0〉 〈0| ⊗ Î + |1〉 〈1| ⊗ σ̂z. (29)

If either of the qubits is excited, a Pauli gate σ̂z is applied on
the target qubit.

The second term of the transformed Hamiltonian (27)
causes qubit rotations regardless of the state of the control
qubit. We cancel these with the unitary transformation

ÛSQ(t ) = exp

⎧⎨
⎩it

⎡
⎣∑

i=1,2

(
ωqi − g2

i

ωm

)
σ̂ z

i

⎤
⎦
⎫⎬
⎭. (30)

This yields

Ĥ CZ
eff = h̄ωmm̂†m̂ − h̄gZ σ̂ z

1 σ̂ z
2 (31)

for the effective Hamiltonian, and

Ĥ CZ
tot = h̄ωmm̂†m̂ +

∑
i=1,2

h̄g2
i

ωm
ĉ†

i ĉi − EC

2
ĉ†

i ĉ†
i ĉiĉi

+
∑
i=1,2

h̄giĉ
†
i ĉi(m̂

† + m̂) (32)

when applied to Ĥtot with J1 = J2 = 0. We substitute the total
Hamiltonian of Eq. (32) into the quantum channel ECZ[ρ̂],
which we use in the optimization of the average gate fidelity
and which we compare with the CZ gate in Eq. (29), as dis-
played in Fig. 4(a).

As discussed before, we aim to minimize the gate time in
order to limit the effect of dissipation on the gate performance.
Unlike the iSWAP gate, the coupling constant does not depend
on the qubit frequency. Both squeezing and the 1/ωm propor-
tionality of the coupling constant benefit from low magnon
frequencies, so that the gate time improves as the magnon
frequency decreases as Fig. 4(a) shows. Thermal occupation
at low frequencies, in turn, leads to a decrease of the average
fidelity as for the iSWAP gate (see Fig. 3(a) for comparison),
leading to a maximum of the average gate fidelity. As the
magnon frequency is decreased, the parametric interaction
term between magnons and qubits is resonantly enhanced [see
Eq. (32)], causing a small oscillating magnon occupation as
seen in Fig. 4(b). The amplitude of these oscillations depends
on the magnon frequency, resulting in the oscillations of the
average fidelity as a function of frequency in Fig. 4(a), with
increasing amplitude for lower frequencies.

To obtain the results depicted in Fig. 4 we set aJ = 0
and ϕb = π/4 for both qubits corresponding in this case to
ωq/(2π ) = 5.3 GHz. We increased the Fock space size of
the magnons to six. We find an optimal average gate fi-
delity of F̄ = 99.43% for ωm/ωq = 0.027. This corresponds
to gZ/ωq = 4.0 × 10−4 [gZ/(2π ) = 2.1 MHz], a thermal ex-
pectation number nth = 1 and a squeezing enhancement of
er = 4.2.

The time dynamics of the proposed gate is illustrated in
Fig. 4(b) for the input state |1+〉 = |1〉 ⊗ (|0〉 + |1〉)/

√
2. For

simplicity we take the first qubit to be the control qubit. Since
this qubit is in the excited state, σ̂z is applied to the target qubit
according to Eq. (29). This gives σ̂z |+〉 = (|0〉 − |1〉)/

√
2 =

|−〉. Due to σ̂x |+〉 = |+〉 and σ̂x |−〉 = − |−〉, we find that the
expectation value of the second qubit changes from 1 at t = 0
to −1 at t = TZ , as Fig. 4(b) confirms.

The proposed gate of Eq. (19) assumes vacuum as the
initial state for the magnons. Since the thermal expectation
number is nth ≈ 1 for the optimal magnon frequency we
found, a protocol for magnon cooling would need to be intro-
duced in order to prepare the initial state into the ground state.
To circumvent this necessity, we checked the performance
of a gate using instead an initial magnon thermal state with
nth = 0.99. Taking a magnon Fock space size of 12 in order
to implement this thermal state in the simulations, we find an
average gate fidelity F̄ = 99.36%.

We note that by flux-driving both qubits, a concept we
introduce in the next section, we can effectively turn off the
gate when required. In this case, the coupling constant gZ
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FIG. 4. (a) Average fidelity F̄ (blue, solid) and gate time TZ (green dashed) of the CZ gate as a function of the magnon frequency ωm in
units of the qubit frequencies ωq. A competition between squeezing enhancement of the coupling gZ and thermal occupation at low frequencies
results in a maximum fidelity F̄ = 99.43% at ωm/ωq = 0.027 (vertical dashed line). The oscillatory behavior for low magnon frequencies is
due to a resonant enhancement of the parametric interaction between magnons and qubits, causing an oscillating magnon occupation, see
also green solid line in panel (b). (b) Demonstration of the proposed CZ gate for a given input state (|1+〉) at the optimal magnon frequency
ωm = 0.027ωq. We plot the occupation of qubit 1 (blue, dash-dotted) and of the magnons (green, solid) as a function of time. In addition, we
plot the evolution of the expectation value of the Pauli σ̂x operator for the second qubit (red dashed). The target state, achieved at TZ = 0.23 µs
(vertical dashed line), equals ÛCZ |1+〉 = |1−〉. Parameters as in Fig. 3.

is proportional to 1/(ωm − ωac), where ωac is the driving
frequency. Flux-driving at frequencies much larger than the
magnon frequency can therefore be used to increase the de-
tuning ωm − ωac such that the coupling is negligible, allowing
to realize the gate efficiently by turning off the coupling in this
manner after the gate time.1

C. iCNOT

We consider the limit aJ1 → 0 for one qubit, let it be qubit
1. For qubit 2 we set aJ2 → 1 and ϕb2 = π/2. This gives
J1, g2 → 0. To make the interaction term leading to the iCNOT

gate energetically allowed, in this case we need to consider a
weak external ac bias �b = �ac cos(ωact ) with amplitude �ac

and frequency ωac applied to the first qubit. This changes the
flux ϕb → ϕac cos(ωact ), where ϕac = π�ac/�0. For ϕac � 1
we find g(ϕb) → g̃cos(ωact ), with [41]

g̃ = −μ0Ixμzpfer

8�0d

√
8ECE�

J ϕac. (33)

In the rotating frame of the drive we obtain

Ĥ iCNOT
RF = h̄δmm̂†m̂ +

∑
i=1,2

h̄δqi ĉ
†
i ĉi − EC

2
ĉ†

i ĉ†
i ĉiĉi

+ h̄g̃1

2
ĉ†

1ĉ1(m̂† + m̂) + h̄J2(ĉ†
2m̂ + ĉ2m̂†), (34)

where we defined δm = ωm − ωac and δqi = ωqi − ωac and
used the rotating wave approximation, which is valid for

1One could attempt to use flux-driving in order to increase the
effective coupling strength, choosing ωac close to the magnon fre-
quency. However, flux-driving also changes the coupling strengths
g1 and g2, as will be shown in the next section. These new coupling
strengths are typically lower than their nondriven equivalents. Ulti-
mately, the fidelity values including driving turned out to be lower
than without driving.

g̃1 � 4ωac. Performing an SW transformation as detailed in
Appendix C 3 and choosing ωac = ωq2 + J2

2 /(ωq2 − ωm)
yields

Ĥ iCNOT
SW = h̄

(
δm − J2

2

δq2 − δm

)
m̂†m̂

+ h̄

(
δq1 − g̃2

1

4δm

)
σ̂ z

1 + h̄g̃NOTσ̂
z
1 (σ̂+

2 + σ̂−
2 ), (35)

with the coupling strength

g̃NOT = g̃1J2

4

(
1

δq2 − δm
− 1

δm

)
. (36)

The frequency of the flux drive ωac is chosen by matching the
Stark-shifted frequency of the second qubit in order to make
the interaction term resonant. The SW transformation is valid
for J2 � ωq2 − ωm and g̃1 � 2δm. Time propagation of the
coupling term of the effective Hamiltonian of Eq. (39) up to
TNOT = π/(2|g̃NOT|) gives an iCNOT gate

ÛiCNOT = |0〉 〈0| ⊗ Î ∓ i |1〉 〈1| ⊗ σ̂x, (37)

since exp[−ig̃NOTTNOTσ̂
z
1 (σ̂+

2 + σ̂−
2 )] = ÛiCNOT. This gate re-

sembles a CNOT gate but adds a phase ∓i if the control qubit,
i.e., the first qubit, is excited. Thus, we denominate it an iCNOT

gate. The sign of the phase ∓i corresponds to g̃NOT ≷ 0.
Similarly as performed for the previous gates, in order to

compensate for single qubit rotations we cancel the diagonal
term of the control qubit of Eq. (35) by performing the unitary
rotation

ÛSQ(t ) = exp

[
it

(
δq1 − g̃2

1

4δm

)
σ̂ z

1

]
. (38)

For Eq. (35) we find

Ĥ iCNOT
eff = h̄

(
δm − J2

2

δq2 − δm

)
m̂†m̂ + h̄g̃NOTσ̂

z
1 (σ̂+

2 + σ̂−
2 ).

(39)
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FIG. 5. (a) Average fidelity F̄ (blue, solid) and gate time TNOT (green dashed) of the iCNOT gate as a function of the magnon frequency ωm.
The competition of magnon squeezing versus magnon-qubit resonance to optimize the gate fidelity is similar to the iSWAP gate of Fig. 3. The
maximum fidelity, F̄ = 88.66%, is found at ωm/ωq2 = 0.97 (vertical dashed line). (b) Qubit and magnon dynamics following the evolution with
the Hamiltonian of Eq. (40) including dissipation. We use the magnon frequency ωm = 0.97ωq2 found in panel (a). The occupations of both
qubits (blue dash-dotted and red dashed) and magnons (green solid) as a function of time are shown. The target state is ÛiCNOT |10〉 = −i |11〉
at the gate time TNOT = 5.5 µs (vertical dashed line). Parameters are as in Fig. 3.

Rotating the Hamiltonian before the SW transformation of
Eq. (34) with the same unitary transformation yields

Ĥ iCNOT
tot = h̄δmm̂†m̂ + h̄g̃2

1

4δm
ĉ†

1ĉ1 + h̄δq2 ĉ†
2ĉ2 −

∑
i=1,2

EC

2
ĉ†

i ĉ†
i ĉiĉi

+ h̄g̃1

2
ĉ†

1ĉ1(m̂† + m̂) + h̄J2(ĉ†
2m̂ + ĉ2m̂†). (40)

For the channel EiCNOT[ρ̂] we use the total Hamiltonian of
Eq. (40). We compute the average fidelity of the proposed gate
EiCNOT[ρ̂] with the ideal gate ÛiCNOT, which can be found in
Eq. (37). The result is shown in Fig. 5(a). The dependence
of the average gate fidelity on the magnon frequency is akin
to the iSWAP gate. The coupling constant g̃NOT reminds us of
a combination of gS and gZ of Eqs. (22) and (28), respec-
tively. Since δq2 − δm = ωq2 − ωm, magnon frequencies close
to the frequency of the target qubit give rise to large coupling
strengths, but approach the breakdown of the SW transforma-
tion, as signalled by a vanishing gate time in Fig. 5(a). Also,
the factor δm is small for these magnon frequencies due to
ωac ≈ ωq2 . Similarly to the iSWAP gate, magnon frequencies
in this regime lead to little increase of the coupling constant
due to squeezing: g̃NOT ∝ e2r ≈ 1. To increase the cou-
pling constant through squeezing one needs ωm � γ0μ0Ms.
Thus, the competition to maximize the coupling constant
and hence to restrict dissipative processes is similar to the
iSWAP gate.

For the results displayed in Fig. 5 we set the asymmetry pa-
rameter and reduced flux of the first (second) qubit to aJ1 = 0
and ϕac1 = π/10 (aJ2 = 0.9 and ϕb2 = π/2), corresponding to
ωq1 = 6.2 GHz (ωq2 = 6.0 GHz). We find a maximum average
fidelity of F̄ = 88.66% for ωm/ωq2 = 0.97, at an effective
coupling strength of g̃NOT/ωq2 = 7.6 × 10−6 corresponding to
g̃NOT/(2π ) = 46 kHz.

Figure 5(b) displays the dynamics of the system for the
magnon frequency which maximizes the average fidelity and
|10〉 as our input state. At t = TNOT we should find the state
ÛiCNOT |10〉 = −i |11〉. However, due to a relatively large gate
time TNOT = 5.5 µs compared with decay T1 and dephasing Tφ ,

dissipation has a relatively large influence. Therefore, we see
that the control qubit, i.e., the first qubit, has lost some of its
initial excitation. The target qubit does not reach 〈ĉ†

2ĉ2〉 = 1
either. Turning off the coupling after the gate time TNOT can be
simply achieved by switching off the ac driving of the control
qubit.

Although the iSWAP and iCNOT gate have some resem-
blances regarding the effective coupling strength g̃NOT, the
iCNOT gate does not achieve a similar fidelity. The reason is
that g̃NOT is proportional to g̃1, which is a factor ten smaller
than its iSWAP equivalent J1, leading to a more detrimental
effect of dissipation.

IV. CONCLUSIONS

We have demonstrated theoretically that magnons can be
used to mediate strong qubit-qubit coupling, where for feasi-
ble experimental parameters we obtained coupling strengths
surpassing the qubit dissipation. The coherent magnon-qubit
exchange interaction and radiation-pressure interaction can
be adopted to engineer two-qubit quantum gates. With the
exchange interaction an iSWAP gate is realized by using highly
asymmetric SQUIDs. The nonlinear interaction generated by
symmetric SQUIDs realizes a CZ gate. By combining the
exchange interaction on a highly asymmetric SQUID and
the radiation-pressure on a symmetric SQUID an iCNOT gate
is implemented. We numerically tested these proposed gates
under realistic experimental conditions and find an average
gate fidelity which equals 99.00% for the iSWAP gate, 99.43%
for the CZ gate and 88.66% for the iCNOT gate. The cou-
pling strengths with respect to the qubit dissipation equal
T1gS/(2π ) = 49 for the iSWAP, T1gZ/(2π ) = 214 for the CZ

and T1g̃NOT/(2π ) = 4.6 for the iCNOT gate. Furthermore, we
found no leakage out of the computational space for both
qubits.

In all of our simulations, we assumed the initial magnonic
state to be vacuum instead of a thermal state for computational
simplicity. We found that the optimal magnon frequency for
the iSWAP and iCNOT gate is in the GigaHertz regime, and
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thus vacuum state assumption can be achieved passively by
cooling the system down to temperatures <50 mK. However,
the optimal magnon frequency we found for the CZ gate is
in the MegaHertz regime, leading to a sizable thermal popu-
lation of magnons for the temperature used in the simulations
(10 mK). To verify the validity of our results, we simulated the
CZ gate further with an initial magnon thermal state dictated
by the optimal magnon frequency at the given temperature,
and found a similar average fidelity F̄ = 99.36%.

While the average gate fidelities for the iSWAP and CZ gates
are above the error correction threshold [10,11], this is not
the case for the iCNOT, for which the gate time is not small
with respect to the qubit relaxation timescales. One could
improve this by introducing waveguides that transport the
electromagnetic wave emitted by the magnet to the SQUID
loop [56], thereby increasing the total flux through the loop
and, as a result, the coupling. Moreover, we have shown that
the qubit-magnon coupling strength can be enhanced with
magnetization squeezing for magnon frequencies much lower
than γ0μ0Ms, and using qubit frequencies close to this regime.
However, transmons typically operate at higher frequencies
in the 4–8 GHz regime [78]. Therefore, the performance
of the iSWAP and iCNOT gates could be further improved in
qubit-magnon hybrid systems involving low-frequency qubits
[79,80]. For lower operating frequencies the impact of thermal
occupation should be evaluated.
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APPENDIX A: GEOMETRICAL FACTOR

With the scalar potential P(r) caused by the magnetization
and which obeys B = −μ0∇P(r), we describe the magnetic
stray field B. We decompose the potential in terms which
are given rise to by the magnetic moment of each Cartesian
component, such that

P(r) =
∑

i=x,y,z

μi pi(r). (A1)

We use the magnetic field which is caused by μz to obtain
Fig. 6, where we plotted the z component of this field and
used μz = MsVm. We set the magnetic moment of the x and
y component equal to the magnetic moment fluctuations of
Eq. (6) and treat them as operators, so μx = �μ̂x and μy =
�μ̂y. We determine the flux through the SQUID loop caused
by these fluctuations with

�(�μ̂) = −μ0

∑
i=x,y

�μ̂i

∫
SQUID

∇pi(r) · dA. (A2)

FIG. 6. Magnetic field in z direction in units of the critical field
Bc for an ellipsoidal and spherical magnet as a function of the dis-
tance z in units of Lz.

By comparing this relation with Eq. (8), we find

Ii = −4π

∫
SQUID

∇pi(r) · dA. (A3)

Due to the symmetry of the setup we find Iy = 0.
As described in the main text, a limiting factor of Ix is the

superconducting critical field Bc. The amplitude of the stray
magnetic field in the z direction, Bz, at z = d should be smaller
than Bc. For the magnet with an ellipsoidal shape, the field
Bz(z = Lz ) is about two orders of magnitude lower than the
critical field of typical superconductors [66], as one can see in
Fig. 6. Thus, the SQUID loop can be positioned at touching
distance from the magnet and hence we set d − Lz = 10 nm.
Furthermore, Lx and Lz should be chosen such that NT ≈ 1/2.
However, Lx � Lz resembles a magnet infinitely stretched
along x axis, which is known to have less magnetic field in
its direct vicinity in the x = 0 plane than a spherical magnet.
Therefore, we set NT = 0.45, which fixes the ratio of Lx and
Lz. Increasing the loop radius R leads to an increase in the
coupling strength, yet gives rise to more qubit noise. We
put R = 25 µm. By varying Lx we find an optimal effective
coupling constant for Lx = 16 µm and Lz = 3.9 µm−1. This
corresponds to Ix = −0.12 µm. Note that coherent magnon
quantum states have been demonstrated in magnets of sizes
up to 1 mm [40], significantly larger than the sizes considered
here.

Considering a sphere with the same volume and with radius
r̃ such that r̃3 = LxL2

z , while fixing d − r̃ = 10 nm, gives an
effective coupling constant which is a factor 2.8 higher than
the coupling constant for an ellipsoidal magnet excluding the
squeezing enhancement.

APPENDIX B: AVERAGE GATE FIDELITY

To determine the average gate fidelity efficiently we use the
following relation [71]:

F̄ (E, Û ) =
∑

j tr[Û †
j Û †E[Ûj]Û ] + d2

d2(d + 1)
, (B1)

where the unitary operators Ûj form an orthogonal basis
and d = 4 is the dimension of the two-qubit space. We
choose Ûj = σ̂k ⊗ σ̂l , where σ̂m is identity or a Pauli ma-
trix, so σ̂m ∈ {Î, σ̂x, σ̂y, σ̂z}. The input of E[ρ̂] is restricted
to density matrices. Since the Pauli matrices have zero
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trace, we write these in terms of the density matrices. We
find Î = ρ̂0 + ρ̂1, σ̂x = 2ρ̂+ − ρ̂0 − ρ̂1, σ̂y = 2ρ̂i− − ρ̂0 − ρ̂1,
and σ̂z = ρ̂0 − ρ̂1. Here, ρ̂i = |i〉 〈i|, |+〉 = 1√

2
(|0〉 + |1〉), and

|i−〉 = 1√
2
(|0〉 − i |1〉). We use the linearity of E[ρ̂] to rewrite

the expressions. For example, one finds

E[Î ⊗ σ̂x] = 2E[ρ̂0 ⊗ ρ̂+] − E[ρ̂0 ⊗ ρ̂0] − E[ρ̂0 ⊗ ρ̂1]

+ 2E[ρ̂1 ⊗ ρ̂+] − E[ρ̂1 ⊗ ρ̂0] − E[ρ̂1 ⊗ ρ̂1].

(B2)

APPENDIX C: SCHRIEFFER-WOLFF TRANSFORMATION

With a SW transformation one transforms a Hamiltonian Ĥ
according to ĤSW = e−ŜĤeŜ with an anti-Hermitian generator
Ŝ = −Ŝ†. We write Ĥ = Ĥ0 + Ĥint, where Ĥ0 is already diag-
onalized with respect to the tensor product of the number basis
for qubits and magnon, on the contrary to Ĥint. We assume that
both Ŝ and Ĥint are proportional to a coupling constant (e.g., J
or g). We approximate to second order in this constant. Using
the Baker-Campbell-Hausdorff formula to second order gives

ĤSW ≈ Ĥ0 + Ĥint + [Ŝ, Ĥ0] + [Ŝ, Ĥint] + 1
2 [Ŝ, [Ŝ, Ĥ0]].

By imposing [Ŝ, Ĥ0] = −Ĥint one gets

ĤSW = Ĥ0 + 1
2 [Ŝ, Ĥint].

This approximation is valid for |Ŝ| � 1.
The diagonalized Hamiltonian can be found in Eq. (13) and

the interaction Hamiltonian in Eq. (15). We use the generator
Ŝ = ŜJ + Ŝg, where

ŜJ =
∑
i=1,2

Ji[χi(ĉ
†
i ĉi )ĉ

†
i m̂ − ĉim̂

†χi(ĉ
†
i ĉi )], (C1)

with transmon susceptibility

χi(ĉ
†
i ĉi ) = 1

ωm − ωqi + EC
h̄ (ĉ†

i ĉi − 1)
, (C2)

and

Ŝg =
∑
i=1,2

gi

ωm
ĉ†

i ĉi
(
m̂† − m̂

)
. (C3)

We compute

[ŜJ , Ĥ0] =
∑
i=1,2

{
Ji[χi(ĉ

†
i ĉi )ĉ

†
i m̂ − ĉim̂

†χi(ĉ
†
i ĉi )], h̄ωqi ĉ

†
i ĉi − EC

2
ĉ†

i ĉ†
i ĉiĉi

}
+
∑
i=1,2

{Ji[χi(ĉ
†
i ĉi )ĉ

†
i m̂ − ĉim̂

†χi(ĉ
†
i ĉi )], h̄ωmm̂†m̂}

= −
∑
i=1,2

h̄Ji(ĉim̂
† + ĉ†

i m̂) = −
∑
i=1,2

Ĥ i
J (C4)

and

[Ŝg, Ĥ0] =
∑
i=1,2

h̄giĉ
†
i ĉi[m̂

† − m̂, m̂†m̂] = −
∑
i=1,2

h̄giĉ
†
i ĉi
(
m̂† + m̂

) = −
∑
i=1,2

Ĥ i
g. (C5)

Thus, we verify

[Ŝ, Ĥ0] = [ŜJ , Ĥ0] + [Ŝg, Ĥ0] = −
∑
i=1,2

Ĥ i
J + Ĥ i

g = −Ĥint. (C6)

This leaves us to determine

[Ŝ, Ĥint] = ĤJ,J + ĤJ,g + Ĥg,J + Ĥg,g, (C7)

with ĤJ,J = [ŜJ ,
∑

i=1,2 Ĥ i
J ], ĤJ,g = [ŜJ ,

∑
i=1,2 Ĥ i

g], Ĥg,J = [Ŝg,
∑

i=1,2 Ĥ i
J ], and Ĥg,g = [Ŝg,

∑
i=1,2 Ĥ i

g]. We find

ĤJ,J =
∑
i=1,2

h̄J2
i

{
2χi(ĉ

†
i ĉi )ĉ

†
i ĉi − [2χi(ĉ

†
i ĉi + 1)(1 − ĉ†

i ĉi ) + 2χi(ĉ
†
i ĉi )ĉ

†
i ĉi]m̂

†m̂

+ [χi(ĉ
†
i ĉi ) − χi(ĉ

†
i ĉi − 1)](ĉ†

i )2m̂2 + [χi(ĉ
†
i ĉi + 2) − χi(ĉ

†
i ĉi + 1)]ĉ2

i (m̂†)2
}

+ h̄J1J2[χ1(ĉ†
1ĉ1)ĉ†

1ĉ2 + ĉ1χ1(ĉ†
1ĉ1)ĉ†

2] + h̄J1J2[χ2(ĉ†
2ĉ2)ĉ†

2ĉ1 + ĉ2χ2(ĉ†
2ĉ2)ĉ†

1], (C8)

ĤJ,g =
∑
i=1,2

h̄Jigi{χi(ĉ
†
i ĉi )ĉ

†
i [ĉ†

i ĉi − (m̂ + m̂†)m̂] + χi(ĉ
†
i ĉi + 1)ĉi[ĉ

†
i ĉi − (m̂ + m̂†)m̂†]}

+ h̄J1g2ĉ†
2ĉ2[χ1(ĉ†

1ĉ1)ĉ†
1 + ĉ1χ1(ĉ†

1ĉ1)] + h̄g1J2ĉ†
1ĉ1[χ2(ĉ†

2ĉ2)ĉ†
2 + ĉ2χ2(ĉ†

2ĉ2)], (C9)

Ĥg,J =
∑
i=1,2

h̄Jigi

ωm
[(ĉ†

i + ĉi )(m̂
†m̂ + 1) − ĉi(m̂

†)2 − ĉ†
i m̂2 − ĉ†

i ĉiĉ
†
i − ĉiĉ

†
i ĉi] − h̄g1J2

ωm
ĉ†

1ĉ1(ĉ†
2 + ĉ2) − h̄J1g2

ωm
(ĉ†

1 + ĉ1)ĉ†
2ĉ2,

(C10)

and, finally,

Ĥg,g = −
∑
i=1,2

2h̄g2
i

ωm
(ĉ†

i ĉi )
2 − 4h̄g1g2

ωm
ĉ†

1ĉ1ĉ†
2ĉ2. (C11)
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Thus, the transformed Hamiltonian we obtain is

ĤSW = Ĥ0 + 1
2 (ĤJ,J + ĤJ,g + Ĥg,J + Ĥg,g). (C12)

We note that Eq. (C8) contains a SWAP-like qubit-qubit
term, Eqs. (C9) and (C10) show a controlled-SWAP form and
Eq. (C11) a controlled-phase term. By choosing different
combinations of coupling constants J and g, we can tune
between these interactions.

1. iSWAP

For g1 = g2 = 0 we find ĤJ,g = Ĥg,J = Ĥg,g = 0. There-
fore, we find

Ĥ iSWAP
SW = Ĥ0 + 1

2 ĤJ,J . (C13)

Truncating the higher qubit levels, such that only the ground
and first excited states remain, gives

ĤJ,J =
∑
i=1,2

2h̄J2
i χi(1)

(
σ̂ z

i − m̂†m̂
)

+ h̄J1J2[χ1(1) + χ2(1)](σ̂+
1 σ̂−

2 + σ̂−
1 σ̂+

2 ). (C14)

This leads to Eq. (21).

2. CZ

For J1 = J2 = 0 we have ĤJ,J = ĤJ,g = Ĥg,J = 0. This
gives

Ĥ iSWAP
SW = Ĥ0 + 1

2 Ĥg,g. (C15)

Taking only the ground and first state of the qubit gives

Ĥg,g = −
∑
i=1,2

2h̄g2
i

ωm
σ z

i − 4h̄g1g2

ωm
σ̂ z

1 σ̂ z
2 , (C16)

since (σ̂ z
i )2 = σ̂ z

i . This yields Eq. (27).

3. iCNOT

We set J1 = g2 = 0. Since ĤJ,J , ĤJ,g, Ĥg,J , and Ĥg,g do not
vanish, the transformed Hamiltonian is given by Eq. (C12).
From now on, we limit the qubit to its lowest two lev-
els. Equation (34) shows that we can use the results of the
SW transformation if we implement following substitutions:
ωm → δm, ωqi → δqi , and g1 → g̃1/2. We find

ĤJ,J = 2h̄J2
2

δm − δqi

(
σ̂ z

2 − m̂†m̂
)
, (C17)

ĤJ,g = h̄g̃1J2

2(δq2 − δm)
σ̂ z

1 (σ̂+
2 + σ̂−

2 ), (C18)

Ĥg,J = − h̄g̃1J2

2δm
σ̂ z

1 (σ̂+
2 + σ̂−

2 ), (C19)

and

Ĥg,g = − h̄g̃2
1

2δm
σ̂ z

1 . (C20)

With Eq. (C12) we find

Ĥ iCNOT
SW = h̄

(
δm − J2

2

δq2 − δm

)
m̂†m̂ + h̄

(
δq1 − g̃2

1

4δm

)
σ̂ z

1

+ h̄

(
δq2 + J2

2

δq2 − δm

)
σ̂ z

2

+ h̄g̃1J2

4

(
1

δq2 − δm
− 1

δm

)
σ̂ z

1 (σ̂+
2 + σ̂−

2 ). (C21)

We cancel the frequency of the target qubit by setting ωac =
ωq2 + J2

2 /(ωq2 − ωm). This gives Eq. (35).

[1] G. Kurizki, P. Bertet, Y. Kubo, K. Mølmer, D. Petrosyan, P.
Rabl, and J. Schmiedmayer, Quantum technologies with hybrid
systems, Proc. Natl. Acad. Sci. USA 112, 3866 (2015).

[2] A. Clerk, K. Lehnert, P. Bertet, J. Petta, and Y. Nakamura,
Hybrid quantum systems with circuit quantum electrodynamics,
Nat. Phys. 16, 257 (2020).

[3] D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina,
D. Esteve, and M. H. Devoret, Manipulating the quantum state
of an electrical circuit, Science 296, 886 (2002).

[4] J. Clarke and F. Wilhelm, Superconducting quantum bits,
Nature (London) 453, 1031 (2008).

[5] F. Arute, K. Arya, R. Babbush, J. Bardin, R. Barends, R.
Biswas, S. Boixo, F. Brandao, D. Buell, B. Burkett, Y. Chen,
Z. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth,
E. Farhi, B. Foxen, and J. Martinis, Quantum supremacy using
a programmable superconducting processor, Nature (London)
574, 505 (2019).

[6] J. M. Chow, L. DiCarlo, J. M. Gambetta, F. Motzoi, L. Frunzio,
S. M. Girvin, and R. J. Schoelkopf, Optimized driving of su-
perconducting artificial atoms for improved single-qubit gates,
Phys. Rev. A 82, 040305(R) (2010).

[7] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey,
T. White, J. Mutus, A. Fowler, B. Campbell, Y. Chen, Z. Chen,

B. Chiaro, A. Dunsworth, C. Neill, P. O’Malley, P. Roushan,
A. Vainsencher, J. Wenner, and J. Martinis, Superconducting
quantum circuits at the surface code threshold for fault toler-
ance, Nature (London) 508, 500 (2014).

[8] D. C. McKay, C. J. Wood, S. Sheldon, J. M. Chow, and J. M.
Gambetta, Efficient Z gates for quantum computing, Phys. Rev.
A 96, 022330 (2017).

[9] D. S. Wang, A. G. Fowler, and L. C. L. Hollenberg, Surface
code quantum computing with error rates over 1%, Phys. Rev.
A 83, 020302(R) (2011).

[10] A. G. Fowler, A. C. Whiteside, and L. C. L. Hollenberg, To-
wards practical classical processing for the surface code, Phys.
Rev. Lett. 108, 180501 (2012).

[11] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland,
Surface codes: Towards practical large-scale quantum computa-
tion, Phys. Rev. A 86, 032324 (2012).

[12] A. Chumak, V. Vasyuchka, A. Serga, and B. Hillebrands,
Magnon spintronics, Nat. Phys. 11, 453 (2015).

[13] H. Yuan, Y. Cao, A. Kamra, R. A. Duine, and P. Yan, Quantum
magnonics: When magnon spintronics meets quantum informa-
tion science, Phys. Rep. 965, 1 (2022).

[14] B. Z. Rameshti, S. V. Kusminskiy, J. A. Haigh, K. Usami, D.
Lachance-Quirion, Y. Nakamura, C.-M. Hu, H. X. Tang, G. E.

104416-11

https://doi.org/10.1073/pnas.1419326112
https://doi.org/10.1038/s41567-020-0797-9
https://doi.org/10.1126/science.1069372
https://doi.org/10.1038/nature07128
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1103/PhysRevA.82.040305
https://doi.org/10.1038/nature13171
https://doi.org/10.1103/PhysRevA.96.022330
https://doi.org/10.1103/PhysRevA.83.020302
https://doi.org/10.1103/PhysRevLett.108.180501
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1038/nphys3347
https://doi.org/10.1016/j.physrep.2022.03.002


MARTIJN DOLS et al. PHYSICAL REVIEW B 110, 104416 (2024)

Bauer, and Y. M. Blanter, Cavity magnonics, Phys. Rep. 979, 1
(2022).

[15] A. Osada, R. Hisatomi, A. Noguchi, Y. Tabuchi, R. Yamazaki,
K. Usami, M. Sadgrove, R. Yalla, M. Nomura, and Y.
Nakamura, Cavity optomagnonics with spin-orbit coupled pho-
tons, Phys. Rev. Lett. 116, 223601 (2016).

[16] T. Liu, X. Zhang, H. X. Tang, and M. E. Flatté, Opto-
magnonics in magnetic solids, Phys. Rev. B 94, 060405(R)
(2016).

[17] S. V. Kusminskiy, H. X. Tang, and F. Marquardt, Coupled
spin-light dynamics in cavity optomagnonics, Phys. Rev. A 94,
033821 (2016).

[18] X. Zhang, N. Zhu, C.-L. Zou, and H. X. Tang, Optomagnonic
whispering gallery microresonators, Phys. Rev. Lett. 117,
123605 (2016).

[19] J. A. Haigh, N. J. Lambert, S. Sharma, Y. M. Blanter, G. E. W.
Bauer, and A. J. Ramsay, Selection rules for cavity-enhanced
Brillouin light scattering from magnetostatic modes, Phys. Rev.
B 97, 214423 (2018).

[20] Ö. O. Soykal and M. E. Flatté, Strong field interactions between
a nanomagnet and a photonic cavity, Phys. Rev. Lett. 104,
077202 (2010).

[21] H. Huebl, C. W. Zollitsch, J. Lotze, F. Hocke, M. Greifenstein,
A. Marx, R. Gross, and S. T. B. Goennenwein, High cooper-
ativity in coupled microwave resonator ferrimagnetic insulator
hybrids, Phys. Rev. Lett. 111, 127003 (2013).

[22] Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K. Usami,
and Y. Nakamura, Hybridizing ferromagnetic magnons and mi-
crowave photons in the quantum limit, Phys. Rev. Lett. 113,
083603 (2014).

[23] X. Zhang, C.-L. Zou, L. Jiang, and H. X. Tang, Strongly cou-
pled magnons and cavity microwave photons, Phys. Rev. Lett.
113, 156401 (2014).

[24] M. Goryachev, W. G. Farr, D. L. Creedon, Y. Fan, M.
Kostylev, and M. E. Tobar, High-cooperativity cavity QED with
magnons at microwave frequencies, Phys. Rev. Appl. 2, 054002
(2014).

[25] M. Weiler, H. Huebl, F. S. Goerg, F. D. Czeschka, R. Gross,
and S. T. B. Goennenwein, Spin pumping with coherent elastic
waves, Phys. Rev. Lett. 108, 176601 (2012).

[26] X. Zhang, C.-L. Zou, L. Jiang, and H. X. Tang, Cavity mag-
nomechanics, Sci. Adv. 2, e1501286 (2016).

[27] K. An, A. N. Litvinenko, R. Kohno, A. A. Fuad, V. V. Naletov,
L. Vila, U. Ebels, G. de Loubens, H. Hurdequint, N. Beaulieu,
J. Ben Youssef, N. Vukadinovic, G. E. W. Bauer, A. N. Slavin,
V. S. Tiberkevich, and O. Klein, Coherent long-range transfer of
angular momentum between magnon Kittel modes by phonons,
Phys. Rev. B 101, 060407(R) (2020).

[28] C. A. Potts, E. Varga, V. A. S. V. Bittencourt, S. V. Kusminskiy,
and J. P. Davis, Dynamical backaction magnomechanics, Phys.
Rev. X 11, 031053 (2021).

[29] R. Schlitz, L. Siegl, T. Sato, W. Yu, G. E. W. Bauer, H. Huebl,
and S. T. B. Goennenwein, Magnetization dynamics affected by
phonon pumping, Phys. Rev. B 106, 014407 (2022).

[30] M. Müller, J. Weber, F. Engelhardt, V. A. S. V. Bittencourt, T.
Luschmann, M. Cherkasskii, M. Opel, S. T. B. Goennenwein,
S. Viola Kusminskiy, S. Geprägs, R. Gross, M. Althammer, and
H. Huebl, Chiral phonons and phononic birefringence in ferro-
magnetic metal–bulk acoustic resonator hybrids, Phys. Rev. B
109, 024430 (2024).

[31] F. Casola, T. van der Sar, and A. Yacoby, Probing condensed
matter physics with magnetometry based on nitrogen-vacancy
centres in diamond, Nat. Rev. Mater. 3, 17088 (2018).

[32] I. Bertelli, J. J. Carmiggelt, T. Yu, B. G. Simon, C. C. Pothoven,
G. E. W. Bauer, Y. M. Blanter, J. Aarts, and T. van der Sar, Mag-
netic resonance imaging of spin-wave transport and interference
in a magnetic insulator, Sci. Adv. 6, eabd3556 (2020).

[33] M. Bejarano, F. J. T. Goncalves, T. Hache, M. Hollenbach, C.
Heins, T. Hula, L. Körber, J. Heinze, Y. Berencén, M. Helm,
J. Fassbender, G. V. Astakhov, and H. Schultheiss, Parametric
magnon transduction to spin qubits, Sci. Adv. 10, eadi2042
(2024).

[34] A. Kamra, W. Belzig, and A. Brataas, Magnon-squeezing as a
niche of quantum magnonics, Appl. Phys. Lett. 117, 090501
(2020).

[35] S. Sharma, V. A. S. V. Bittencourt, A. D. Karenowska, and S. V.
Kusminskiy, Spin cat states in ferromagnetic insulators, Phys.
Rev. B 103, L100403 (2021).

[36] V. Cherepanov, I. Kolokolov, and V. L’vov, The saga of
YIG: Spectra, thermodynamics, interaction and relaxation of
magnons in a complex magnet, Phys. Rep. 229, 81 (1993).

[37] Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki,
K. Usami, and Y. Nakamura, Coherent coupling between a
ferromagnetic magnon and a superconducting qubit, Science
349, 405 (2015).

[38] D. Lachance-Quirion, S. P. Wolski, Y. Tabuchi, S. Kono,
K. Usami, and Y. Nakamura, Entanglement-based single-shot
detection of a single magnon with a superconducting qubit,
Science 367, 425 (2020).

[39] S. P. Wolski, D. Lachance-Quirion, Y. Tabuchi, S. Kono,
A. Noguchi, K. Usami, and Y. Nakamura, Dissipation-based
quantum sensing of magnons with a superconducting qubit,
Phys. Rev. Lett. 125, 117701 (2020).

[40] D. Xu, X.-K. Gu, H.-K. Li, Y.-C. Weng, Y.-P. Wang, J. Li, H.
Wang, S.-Y. Zhu, and J. Q. You, Quantum control of a single
magnon in a macroscopic spin system, Phys. Rev. Lett. 130,
193603 (2023).

[41] M. Kounalakis, G. E. W. Bauer, and Y. M. Blanter, Analog
quantum control of magnonic cat states on a chip by a super-
conducting qubit, Phys. Rev. Lett. 129, 037205 (2022).

[42] M. Kounalakis, S. V. Kusminskiy, and Y. M. Blanter, Engineer-
ing entangled coherent states of magnons and phonons via a
transmon qubit, Phys. Rev. B 108, 224416 (2023).

[43] A. Dewes, F. R. Ong, V. Schmitt, R. Lauro, N. Boulant, P.
Bertet, D. Vion, and D. Esteve, Characterization of a two-
transmon processor with individual single-shot qubit readout,
Phys. Rev. Lett. 108, 057002 (2012).

[44] R. Barends, J. Kelly, A. Megrant, D. Sank, E. Jeffrey, Y. Chen,
Y. Yin, B. Chiaro, J. Mutus, C. Neill, P. O’Malley, P. Roushan,
J. Wenner, T. C. White, A. N. Cleland, and J. M. Martinis, Co-
herent Josephson qubit suitable for scalable quantum integrated
circuits, Phys. Rev. Lett. 111, 080502 (2013).

[45] A. Kandala, K. X. Wei, S. Srinivasan, E. Magesan, S. Carnevale,
G. A. Keefe, D. Klaus, O. Dial, and D. C. McKay, Demonstra-
tion of a high-fidelity CNOT gate for fixed-frequency transmons
with engineered ZZ suppression, Phys. Rev. Lett. 127, 130501
(2021).

[46] J. Q. You, Y. Nakamura, and F. Nori, Fast two-bit operations
in inductively coupled flux qubits, Phys. Rev. B 71, 024532
(2005).

104416-12

https://doi.org/10.1016/j.physrep.2022.06.001
https://doi.org/10.1103/PhysRevLett.116.223601
https://doi.org/10.1103/PhysRevB.94.060405
https://doi.org/10.1103/PhysRevA.94.033821
https://doi.org/10.1103/PhysRevLett.117.123605
https://doi.org/10.1103/PhysRevB.97.214423
https://doi.org/10.1103/PhysRevLett.104.077202
https://doi.org/10.1103/PhysRevLett.111.127003
https://doi.org/10.1103/PhysRevLett.113.083603
https://doi.org/10.1103/PhysRevLett.113.156401
https://doi.org/10.1103/PhysRevApplied.2.054002
https://doi.org/10.1103/PhysRevLett.108.176601
https://doi.org/10.1126/sciadv.1501286
https://doi.org/10.1103/PhysRevB.101.060407
https://doi.org/10.1103/PhysRevX.11.031053
https://doi.org/10.1103/PhysRevB.106.014407
https://doi.org/10.1103/PhysRevB.109.024430
https://doi.org/10.1038/natrevmats.2017.88
https://doi.org/10.1126/sciadv.abd3556
https://doi.org/10.1126/sciadv.adi2042
https://doi.org/10.1063/5.0021099
https://doi.org/10.1103/PhysRevB.103.L100403
https://doi.org/10.1016/0370-1573(93)90107-O
https://doi.org/10.1126/science.aaa3693
https://doi.org/10.1126/science.aaz9236
https://doi.org/10.1103/PhysRevLett.125.117701
https://doi.org/10.1103/PhysRevLett.130.193603
https://doi.org/10.1103/PhysRevLett.129.037205
https://doi.org/10.1103/PhysRevB.108.224416
https://doi.org/10.1103/PhysRevLett.108.057002
https://doi.org/10.1103/PhysRevLett.111.080502
https://doi.org/10.1103/PhysRevLett.127.130501
https://doi.org/10.1103/PhysRevB.71.024532


MAGNON-MEDIATED QUANTUM GATES FOR … PHYSICAL REVIEW B 110, 104416 (2024)

[47] M. Grajcar, Y.-x. Liu, F. Nori, and A. M. Zagoskin, Switchable
resonant coupling of flux qubits, Phys. Rev. B 74, 172505
(2006).

[48] A. O. Niskanen, K. Harrabi, F. Yoshihara, Y. Nakamura, S.
Lloyd, and J. S. Tsai, Quantum coherent tunable coupling of
superconducting qubits, Science 316, 723 (2007).

[49] Y. Chen, C. Neill, P. Roushan, N. Leung, M. Fang, R. Barends,
J. Kelly, B. Campbell, Z. Chen, B. Chiaro, A. Dunsworth, E.
Jeffrey, A. Megrant, J. Y. Mutus, P. J. J. O’Malley, C. M.
Quintana, D. Sank, A. Vainsencher, J. Wenner, T. C. White
et al., Qubit architecture with high coherence and fast tunable
coupling, Phys. Rev. Lett. 113, 220502 (2014).

[50] M. Kounalakis, C. Dickel, A. Bruno, N. Langford, and G.
Steele, Tuneable hopping and nonlinear cross-Kerr interactions
in a high-coherence superconducting circuit, npj Quantum Inf.
4, 38 (2018).

[51] J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson,
J. A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A.
Wallraff, A. Blais, M. H. Devoret, S. M. Girvin, and R. J.
Schoelkopf, Coupling superconducting qubits via a cavity bus,
Nature (London) 449, 443 (2007).

[52] D. C. McKay, S. Filipp, A. Mezzacapo, E. Magesan, J. M.
Chow, and J. M. Gambetta, Universal gate for fixed-frequency
qubits via a tunable bus, Phys. Rev. Appl. 6, 064007 (2016).

[53] M. Roth, M. Ganzhorn, N. Moll, S. Filipp, G. Salis, and S.
Schmidt, Analysis of a parametrically driven exchange-type
gate and a two-photon excitation gate between superconducting
qubits, Phys. Rev. A 96, 062323 (2017).

[54] Y. Xu, J. Chu, J. Yuan, J. Qiu, Y. Zhou, L. Zhang, X. Tan, Y. Yu,
S. Liu, J. Li, F. Yan, and D. Yu, High-fidelity, high-scalability
two-qubit gate scheme for superconducting qubits, Phys. Rev.
Lett. 125, 240503 (2020).

[55] J. Chen, T. Yu, C. Liu, T. Liu, M. Madami, K. Shen, J. Zhang,
S. Tu, M. S. Alam, K. Xia, M. Wu, G. Gubbiotti, Y. M. Blanter,
G. E. W. Bauer, and H. Yu, Excitation of unidirectional ex-
change spin waves by a nanoscale magnetic grating, Phys. Rev.
B 100, 104427 (2019).

[56] T. Yu, Y.-X. Zhang, S. Sharma, X. Zhang, Y. M. Blanter, and
G. E. W. Bauer, Magnon accumulation in chirally coupled mag-
nets, Phys. Rev. Lett. 124, 107202 (2020).

[57] M. J. Bremner, C. M. Dawson, J. L. Dodd, A. Gilchrist,
A. W. Harrow, D. Mortimer, M. A. Nielsen, and T. J. Osborne,
Practical scheme for quantum computation with any two-qubit
entangling gate, Phys. Rev. Lett. 89, 247902 (2002).

[58] N. Schuch and J. Siewert, Natural two-qubit gate for quantum
computation using the XY interaction, Phys. Rev. A 67, 032301
(2003).

[59] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster,
J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J.
Schoelkopf, Charge-insensitive qubit design derived from the
Cooper pair box, Phys. Rev. A 76, 042319 (2007).

[60] D. P. DiVincenzo, The physical implementation of quantum
computation, Fortschr. Phys. 48, 771 (2000).

[61] A. Kamra and W. Belzig, Super-Poissonian shot noise of
squeezed-magnon mediated spin transport, Phys. Rev. Lett. 116,
146601 (2016).

[62] D. Stancil and A. Prabhakar, Spin Waves: Theory and Applica-
tions (Springer, New York, 2009).

[63] J. A. Osborn, Demagnetizing factors of the general ellipsoid,
Phys. Rev. 67, 351 (1945).

[64] C. C. Rusconi, M. J. A. Schuetz, J. Gieseler, M. D. Lukin, and
O. Romero-Isart, Hybrid architecture for engineering magnonic
quantum networks, Phys. Rev. A 100, 022343 (2019).

[65] H. Chang, Fields external to open-structure magnetic devices
represented by ellipsoid or spheroid, Br. J. Appl. Phys. 12, 160
(1961).

[66] M. Popinciuc, V. E. Calado, X. L. Liu, A. R. Akhmerov, T. M.
Klapwijk, and L. M. K. Vandersypen, Zero-bias conductance
peak and Josephson effect in graphene-NbTiN junctions, Phys.
Rev. B 85, 205404 (2012).

[67] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity
optomechanics, Rev. Mod. Phys. 86, 1391 (2014).

[68] S. Klingler, H. Maier-Flaig, C. Dubs, O. Surzhenko, R. Gross,
H. Huebl, S. T. B. Goennenwein, and M. Weiler, Gilbert damp-
ing of magnetostatic modes in a yttrium iron garnet sphere,
Appl. Phys. Lett. 110, 092409 (2017).

[69] S. Kosen, A. F. van Loo, D. A. Bozhko, L. Mihalceanu, and
A. D. Karenowska, Microwave magnon damping in YIG films
at millikelvin temperatures, APL Mater. 7, 101120 (2019).

[70] H. Maier-Flaig, S. Klingler, C. Dubs, O. Surzhenko, R. Gross,
M. Weiler, H. Huebl, and S. T. B. Goennenwein, Temperature-
dependent magnetic damping of yttrium iron garnet spheres,
Phys. Rev. B 95, 214423 (2017).

[71] M. A. Nielsen, A simple formula for the average gate fidelity of
a quantum dynamical operation, Phys. Lett. A 303, 249 (2002).

[72] M. Kjaergaard, M. E. Schwartz, J. Braumüller, P. Krantz, J. I.-
J. Wang, S. Gustavsson, and W. D. Oliver, Superconducting
qubits: Current state of play, Annu. Rev. Condens. Matter Phys.
11, 369 (2020).

[73] C. Wang, X. Li, H. Xu, Z. Li, J. Wang, Z. Yang, Z. Mi, X.
Liang, T. Su, C. Yang, G. Wang, W. Wang, Y. Li, M. Chen, C.
Li, K. Linghu, J. Han, Y. Zhang, Y. Feng, and H. Yu, Towards
practical quantum computers: transmon qubit with a lifetime
approaching 0.5 milliseconds, npj Quantum Inf. 8, 3 (2022).

[74] A. Place, L. Rodgers, P. Mundada, B. Smitham, M. Fitzpatrick,
Z. Leng, A. Premkumar, J. Bryon, A. Vrajitoarea, S. Sussman,
G. Cheng, T. Madhavan, H. Babla, H. Le, Y. Gang, B. Jaeck, A.
Gyenis, N. Yao, R. Cava, and A. Houck, New material platform
for superconducting transmon qubits with coherence times ex-
ceeding 0.3 milliseconds, Nat. Commun. 12, 1779 (2021).

[75] M. D. Hutchings, J. B. Hertzberg, Y. Liu, N. T. Bronn, G. A.
Keefe, M. Brink, J. M. Chow, and B. L. T. Plourde, Tunable
superconducting qubits with flux-independent coherence, Phys.
Rev. Appl. 8, 044003 (2017).

[76] A. Blais, A. L. Grimsmo, S. M. Girvin, and A. Wallraff, Circuit
quantum electrodynamics, Rev. Mod. Phys. 93, 025005 (2021).

[77] J. Johansson, P. Nation, and F. Nori, Qutip: An open-source
python framework for the dynamics of open quantum systems,
Comput. Phys. Commun. 183, 1760 (2012).

[78] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson,
and W. D. Oliver, A quantum engineer’s guide to superconduct-
ing qubits, Appl. Phys. Rev. 6, 021318 (2019).

[79] U. Vool, A. Kou, W. C. Smith, N. E. Frattini, K. Serniak, P.
Reinhold, I. M. Pop, S. Shankar, L. Frunzio, S. M. Girvin, and
M. H. Devoret, Driving forbidden transitions in the fluxonium
artificial atom, Phys. Rev. Appl. 9, 054046 (2018).

[80] M. F. Gely, M. Kounalakis, C. Dickel, J. Dalle, R. Vatré,
B. Baker, M. D. Jenkins, and G. A. Steele, Observation and
stabilization of photonic Fock states in a hot radio-frequency
resonator, Science 363, 1072 (2019).

104416-13

https://doi.org/10.1103/PhysRevB.74.172505
https://doi.org/10.1126/science.1141324
https://doi.org/10.1103/PhysRevLett.113.220502
https://doi.org/10.1038/s41534-018-0088-9
https://doi.org/10.1038/nature06184
https://doi.org/10.1103/PhysRevApplied.6.064007
https://doi.org/10.1103/PhysRevA.96.062323
https://doi.org/10.1103/PhysRevLett.125.240503
https://doi.org/10.1103/PhysRevB.100.104427
https://doi.org/10.1103/PhysRevLett.124.107202
https://doi.org/10.1103/PhysRevLett.89.247902
https://doi.org/10.1103/PhysRevA.67.032301
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::aid-prop771>3.0.co;2-e
https://doi.org/10.1103/PhysRevLett.116.146601
https://doi.org/10.1103/PhysRev.67.351
https://doi.org/10.1103/PhysRevA.100.022343
https://doi.org/10.1088/0508-3443/12/4/308
https://doi.org/10.1103/PhysRevB.85.205404
https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1063/1.4977423
https://doi.org/10.1063/1.5115266
https://doi.org/10.1103/PhysRevB.95.214423
https://doi.org/10.1016/S0375-9601(02)01272-0
https://doi.org/10.1146/annurev-conmatphys-031119-050605
https://doi.org/10.1038/s41534-021-00510-2
https://doi.org/10.1038/s41467-021-22030-5
https://doi.org/10.1103/PhysRevApplied.8.044003
https://doi.org/10.1103/RevModPhys.93.025005
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1063/1.5089550
https://doi.org/10.1103/PhysRevApplied.9.054046
https://doi.org/10.1126/science.aaw3101

