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Abstract

We present the first fixed-parameter algorithm for constructing a tree-child phylo-
genetic network that displays an arbitrary number of binary input trees and has
the minimum number of reticulations among all such networks. The algorithm
uses the recently introduced framework of cherry picking sequences and runs in
0 ((Sk)kpoly(n, t)) time, where n is the number of leaves of every tree, ¢ is the number
of trees, and k is the reticulation number of the constructed network. Moreover, we
provide an efficient parallel implementation of the algorithm and show that it can deal
with up to 100 input trees on a standard desktop computer, thereby providing a major
improvement over previous phylogenetic network construction methods.
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1 Introduction

Evolutionary histories are usually described by phylogenetic trees or networks. A
phylogenetic tree describes how a collection of studied taxa (e.g., species, strains or
languages) have evolved over time by divergence events, often also called speciation
events. A phylogenetic network can additionally describe events where lineages merge,
such as hybridization or lateral gene transfer, which are called reticulation events. A
central goal of computational phylogenetics is to develop methods for reconstructing
phylogenetic networks from various types of inputs.

One of the most fundamental problems in this area, HYBRIDIZATION NUMBER, is to
find a phylogenetic network with the minimum number of reticulation events among
all networks that contain a given collection of phylogenetic trees. The network is said
to display each of the input trees and is also referred to as a hybridization network
of the set of input trees. Each of these trees represents the evolution, through specia-
tion events and mutation, of a particular gene. Accordingly, we refer to it as a “gene
tree”. Reticulation events such as hybridization or lateral gene transfer can lead to
discordance between gene trees. The requirement that each gene tree should be con-
tained in the constructed network ensures that the network provides the required paths
along which each gene could be passed from ancestors to descendants in a manner
consistent with its gene tree. Following the parsimony principle, a network with the
minimum number of reticulations that displays all inputs trees offers a simplest possi-
ble model of the evolution of a set of taxa consistent with the given gene trees. Hence
the goal to compute a phylogenetic network with as few reticulations as possible. Since
not all discordance between gene trees is due to reticulation events, such a network
provides only an estimate of the actual number of reticulation events. Nevertheless,
hybridization networks have proven to be a valuable tool in the study of the evolution
of different sets of taxa. Computing hybridization networks with the minimum number
of reticulations, however, has proven to be a major challenge.

Initial research focused on the special case when the input consists of only two
trees, in which case there exists a nice mathematical characterization of the problem in
terms of maximum acyclic agreement forests (MAAFs) [3]. This characterization has
shown to be extremely useful for the development of fixed-parameter algorithms for
phylogenetic network construction problems on two trees [6,9,19], with the currently
fastest algorithm for HYBRIDIZATION NUMBER running in O (3.18%n) time [19].

When the input consists of more than two trees, the problem becomes significantly
harder. Kernelization is still possible [ 16,18]. However, existing algorithms for solving
kernelized instances, TREETISTIC [11], PIRN [21], PIRNs [15] and HYBROSCALE[1,2],
are limited to (very) small numbers of input trees and/or (very) small numbers of
reticulation events. None of these algorithms is fixed-parameter tractable (FPT) unless
combined with kernelization. A bounded-search FPT algorithm with running time
O (c*poly(n)) for the special case of three input trees was proposed in [17] (n is the
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number of taxa, k the number of reticulations), but the constant ¢ is much too big for
the algorithm to be useful in practice.

The main bottleneck hindering the development of practical algorithms seemed to
be the missing mathematical characterization for the problem on more than two trees,
analogous to the MAAF characterization for two trees. Such a characterization, in
terms of cherry picking sequences, was developed recently and is very different from
the MAAF characterization for two trees. The first characterization in terms of cherry
picking sequences was developed for the restricted class of temporal networks [10].
Subsequently, it was generalized to the larger class of tree-child networks [14], in which
each non-leaf vertex is required to have at least one non-reticulate child. However,
Humphries, Linz, and Semple [10] provide only a theoretical FPT result based on
kernelization for temporal networks, and Linz and Semple [14] do not present any
algorithmic results. Hence, the fixed-parameter tractability of the tree-child version
of HYBRIDIZATION NUMBER remained open, as well as the development of practical
FPT algorithms based on the new characterization.

Our contribution is to fill this algorithmic gap. We show that there exists an FPT
algorithm for HYBRIDIZATION NUMBER restricted to tree-child networks on an arbi-
trary collection of binary input trees. Its running time is O ((8k)¥ - poly(n, 1)), where
n is the number of taxa, ¢ is the number of trees, and k is the number of reticulations
in the computed network. We verify experimentally that, combined with two heuristic
improvements that both preserve the correctness of the algorithm, it can solve fairly
complex instances of tree-child HYBRIDIZATION NUMBER. These two heuristics are
cluster reduction [7] and a redundant branch elimination technique introduced in this
paper. The implementation used in our experiments is available from https://github.
com/nzeh/tree_child_code.

The main practical benefit of our algorithm is that it can handle many more input
trees than existing methods. Indeed, in experiments on synthetic inputs, the running
time grows roughly linearly in the number of trees and taxa. On the other hand, the
running time still has a large exponential dependency on the number of reticulation
events k. Nevertheless, as long as k is small (at most 7—12), our algorithm can solve
inputs with up to 100 input trees and 200 taxa. In our experiments on real-world data,
we observed that these data sets have substantially more structure than random syn-
thetic data sets, which makes cluster reduction and redundant branch elimination more
effective and allowed our algorithm to solve inputs with up to 8 trees and 50 reticula-
tions. As the number of trees increases, however, the inputs become less “clusterable”,
which reduces the number of reticulations our algorithm can handle.

We also compared our algorithm directly to HYBROSCALE. For instances consisting
of two input trees, HYBROSCALE is much faster because it exploits the MAAF charac-
terization for this case. When the number of input trees is at least three, our algorithm
turns out to be much faster than HYBROSCALE. HYBROSCALE was able to handle only
very few instances with more than five trees.

We restrict our attention to tree-child networks for two reasons. First, although
Linz and Semple [14] also provided a characterization of unrestricted hybridization
networks in terms of cherry picking sequences, this characterization is based on adding
leaves; since it is not known where to add these leaves, this characterization does not
seem to be directly useful for developing FPT algorithms. Furthermore, we observed

@ Springer


https://github.com/nzeh/tree_child_code
https://github.com/nzeh/tree_child_code

Algorithmica

in our experiments that the optimal tree-child network for a set of trees often has the
same number of reticulations as an optimal unrestricted hybridization network. Hence,
the restriction to tree-child networks allows us to deal with larger numbers of input
trees without changing the problem substantially.

The remainder of this paper is organized as follows: Sect. 2 formally defines the key
concepts including the HYBRIDIZATION NUMBER and TREE- CHILD HYBRIDIZATION
problems. Section 3 presents our FPT algorithm for TREE- CHILD HYBRIDIZATION.
Section 4 presents our redundant branch elimination heuristic for speeding up the
algorithm in practice. This section also shows that redundant branch elimination pre-
serves the correctness of the computed cherry picking sequence. Section 5 presents
some details of our implementation of the algorithm and discusses our experimental
results. We present some concluding remarks in Sect. 6.

2 Preliminaries and Definitions
2.1 Phylogenetic Trees and Networks

Throughout this paper, we denote by X a finite non-empty set of taxa. A phylogenetic
network on a subset X' C X is a directed acyclic graph N whose nodes satisfy the
following properties: There is a single node of in-degree 0 and out-degree 2, called the
root; the nodes of in-degree 1 and out-degree 0 are bijectively labelled with elements
from X' (the leaves); all other nodes either have in-degree 1 and out-degree 2 (the
tree nodes) or have out-degree 1 and in-degree at least 2 (the reticulations). This is
illustrated in Fig. la. A phylogenetic tree on X' is a phylogenetic network on X’
without reticulations; see Fig. 1b. Given a directed edge uv in a phylogenetic network
or tree, we say that u is a parent of v and v is a child of u. Unless stated otherwise,
edges and paths are always directed in this paper.

For brevity, we usually refer to phylogenetic networks and phylogenetic trees as
networks and trees, respectively. When we feel the need to state the label set X’ of a
phylogenetic tree explicitly, especially when we want to emphasize that a set of trees
all share the same leaf set, we do refer to this tree as an X'-tree.

Given an edge uv in anetwork N, we call uv a reticulation edge if v is a reticulation;
otherwise, uv is a tree edge. A tree path in N is a path composed of only tree edges.
A tree path is shown in red in Fig. 1a. The reticulation number of N is the number of
reticulation edges in N minus the number of reticulations. Alternatively, the reticula-
tion number is the number of edges that need to be deleted from the network to obtain
a tree.

Let X’ C X be a subset of the label set of an X-tree T, and let 7" be the smallest
subtree of T that contains all edges on undirected paths between leaves in X’. The
restriction of T to X’ is the tree obtained from 7" by suppressing all vertices with
in-degree 1 and out-degree 1. To suppress a node v with parent u and child w is to
delete v and its incident edges and add an edge uw connecting u to w. If T is an X-tree
and 7" is the restriction of 7" to some subset X’ C X, we write T/ C T. We also write
T \ T' to denote the difference X \ X’ of the label sets of the two trees.
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Fig.1 a A phylogenetic network that is not tree-child because both children of the red node are reticulations.
Its reticulation number is 2. A tree path from the root to the leaf labelled a is shown in red. b The four
phylogenetic trees displayed by the network in (a). For example, the first tree can be obtained by deleting
the dotted edges in (a). The red and black edges constitute an embedding of this tree into the network
(Colour figure online)

Let N’ be a subgraph (e.g., a path) of the network N. Any edge uv € N such that
u € N and v ¢ N’ is called a pendant edge of N'; v is a pendant node of N'. When
N is a tree, we say the subtree rooted at v is a pendant subtree of N'.

Remark We note that all nodes of a phylogenetic network as defined in this paper
have out-degree at most 2. This is consistent with the definitions used by Linz and
Semple [14]. As noted by Linz and Semple, restricting network nodes to have out-
degree at most 2 does not result in any loss of generality. In particular, for the problems
discussed in this paper, any instance that has a network with out-degree greater than
2 as a solution also has a network with out-degree at most 2 as a solution.

While phylogenetic trees may in general have unbounded out-degree, we require
phylogenetic trees to have maximum out-degree 2 in this paper, that is, we restrict our
attention to binary trees. It is an open question whether our algorithm can be extended
to input trees of unbounded out-degree. We note that Linz and Semple’s result relating
tree-child networks to tree-child cherry picking sequences imposes no restriction on
the out-degree of phylogenetic trees but does not offer any algorithm to find an optimal
tree-child cherry picking sequence or network even for binary trees.

2.2 Minimum Tree-Child Hybridization

Given a network N on a set of taxa X and a tree T on a subset X’ C X, we say that
N displays T if T can be obtained from a subgraph of N by suppressing nodes of
out-degree and in-degree 1. Equivalently, N displays T if there exists a function f,
called an embedding of T into N, that maps nodes of T to nodes of N, and edges of
T to paths in N, such that

e Every leaf of T is mapped to the leaf of N with the same label;
e For each edge uv in T, the path f(uv) is a pathin N from f(u) to f(v); and
e Forany two distinct edges e and e’ of T', the paths f (e) and f (¢’) are edge-disjoint.

For any embedding f and any node or edge x, we call f(x) the image of x (under
/). This definition extends naturally to arbitrary subgraphs 7’ C T by defining the
image f(T’) of T’ to be the union of the images of all nodes and edges in T”’. For a set
of trees T = {T1, ..., Ty}, we say that N displays T if N displays every tree T; € 7.
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abecd ((a,b),(c,d),(c,b),(c,e),(b,e),(a,e),(e,d),(d,—))
(a) (b)

Fig.2 a An optimal tree-child network for the four trees in Fig. 1b. Note that this network has reticulation
number 3, one more than the non-tree-child hybridization network for these trees in Fig. 1a. The tree-child
cherry picking sequences corresponding to this network is shown in (b)

For example, the network in Fig. 1a displays all trees in Fig. 1b. An embedding of the
first tree into the network is shown.

The MINIMUM HYBRIDIZATION problem takes as input a set T of phylogenetic trees
and an integer k, and asks for a network displaying J and with reticulation number
at most k, if such a network exists. In this paper, we focus on a restricted version of
MINIMUM HYBRIDIZATION, described below.

A network N is tree-child if every non-leaf node of N has at least one child that is
a tree node or leaf. Note that this is equivalent to requiring that every node in N has a
tree path to a leaf. The network in Fig. 1a is not tree-child because the children of the
red node are both reticulations. A tree-child network displaying the trees in Fig. 1b is
shown in Fig. 2a.

MINIMUM TREE- CHILD HYBRIDIZATION

Input: A set T = {T1, ..., T;} of phylogenetic trees on X and an integer k.

Output: A tree-child phylogenetic network N on X that displays T and has at most k
reticulations, if such a network exists; NONE otherwise.

ForasetT = {11, T», ..., T;} of X-trees, let h(7T) denote the hybridization number
of T, that is, the minimum reticulation number of all networks that display 7. Similarly,
let hy(T) denote the tree-child hybridization number of T, that is, the minimum
reticulation number of all tree-child networks that display 7.

2.3 Cherry Picking Sequences

For any tree 7 on X’ € X and any two taxa x, y € X', we say that {x, y} is a cherry
of T if the leaves labelled with x and y are siblings in 7. Observe that any tree with
two or more leaves contains at least one cherry. A pair {x, y} is a cherry of a set of
trees T if it is a cherry of at least one tree in T. It is a trivial cherry of T if {x, y}is a
cherry of every tree in 7 that contains both x and y.

Linz and Semple [14] gave a characterization of tree-child hybridization number in
terms of cherry picking sequences, which we define next. Informally, a cherry picking
sequence is a sequence of pairs of leaves, describing a sequence of operations on a
set of trees J. In particular a "proper" pair of the form (x, y) denotes the operation
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of removing the leaf x from any tree in 7 that has {x, y} as a cherry, while a pair of
the form (x, —) is added to the end of the sequence if the proper pairs in the sequence
reduce at least one tree in J to the single leaf x.

Formally, a cherry picking sequence is a sequence

S = <(.X], yl)v (-x27 J’Z), ey (xra )’r)’ (xr-i-l, _)’ (xr+2a _)7 ceey (-xSa _)>

with {x1,x2,..., X5, Y1, ¥2, ..., ¥} € X. We write |S| to denote the length s of
S. It may be that s = r, in which case the last element is (x,, y,), that is, there
are no pairs of the form (x;, —). We call such a sequence a partial cherry picking
sequence. A sequence is full if s > r and {x],...x;} = X.Forany 1 <i < j <

s, we denote by S; ; the subsequence ((x;, y;), ..., (x;,y;)) (where y is replaced
with — for 2 > r). Given two sequences S = ((x1, y1),..., (xr, y,)) and &' =
(] YD e s G Y1), (X s =) -+ (X7, =), we denote by S o S” the sequence

(e Yo ey Gy )5 Gy 1) e ooy (X5 90)s (X0 s =), e, (X, —)). We say that
S 0 8’ is an extension of S, and that S is a prefix of S o §'. If S’ # (), then we call S a
proper prefix of S o §'.

For a tree T on X' C X, the sequence S defines a sequence of trees
(T(O), T ., T®) as follows:

e TO =7T;
o If {x;, y;} is a cherry of 7U=D then TV is obtained from T7U=D by removing
xj and suppressing y;’s parent. Otherwise, TV = 10D,

For notational convenience, we refer to T as T'/S, the tree obtained by applying
the sequence S to T'. In addition, for a set of trees T = {77, ..., T;}, we write TU) to

denote the set {Tl(J), R T,(J)}, and J/S to denote the set {T1/S, ..., T,/S}.

A full cherry picking sequence S = ((x1, y1), (x2, ¥2), - ., (xr, ¥r), (Xr+1, —),
(Xr42, =), ..., (x5, —)) is a cherry picking sequence for a set of trees T if every tree
in T/S has a single leaf and that leaf is in {x,41, ..., x5}. The weight w(S) of S is
defined to be | S| — | X]|.

A cherry picking sequence S is tree-child if s <r +1and y; # x; forall 1 <i <
J < s.(Thus,if S isatree-child cherry picking sequence for T, then 7'/ S consists of the
single leaf x; for every tree T € T.) The tree-child cherry picking sequence for the set
of trees in Fig. 1b corresponding to the tree-child network in Fig. 2a is shown in Fig. 2b.

Given a partial tree-child cherry picking sequence S = ((x1, y1), ..., (xr, yr)), We
call the leaves {x1, ..., x,} forbidden leaves with respect to S because every tree-child
extension S o 8" = ((x1, y1), ..., (0r, Y1)y (Kra1s Yrt1), -+ - (X7, y7)) Of S satisfies
the condition {xy, ..., x-} N {yr+1, ..., yr} = @, that is, the leaves {x1, ..., x,} are

forbidden to appear as the second element of any pair (x;, y;) withr < j < r’in
S’. We say that S o §’ is an optimal tree-child extension of S if S o §’ is a tree-child
cherry picking sequence for T and every extension S o S” of § that is a tree-child
cherry picking sequence for T satisfies w(S o §”) > w(S o §'). For the purpose of the
algorithmic construction of sequences, we adopt the convention that SoNONE = NONE
for any sequence S and that w(NONE) = oo.

Let s (7) be the minimum weight of all tree-child cherry picking sequences for
7. Linz and Semple showed that the problem of finding the tree-child hybridization
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number of a set T of X -trees is equivalent to finding the minimum weight of a tree-child
cherry picking sequence for J:

Theorem 1 (Linz and Semple [14]) Let X be a set of taxa, and T = {1y, T», ..., Tt}
a collection of phylogenetic X -trees. Then

Stc(T) = hie (7).

3 Finding an Optimal Tree-Child Sequence

In this section, we show that MINIMUM TREE- CHILD HYBRIDIZATION is fixed-
parameter tractable with respect to k. Our proof is based on Linz and Semple’s
characterization of tree-child hybridization number in terms of tree-child cherry pick-
ing sequences (see Theorem 1). As such, our main technical contribution is to give a
fixed-parameter algorithm, TCS, for the problem of finding a tree-child cherry picking
sequence of weight at most k, if such a sequence exists. By the following proposition,
a corresponding tree-child network can then be found in polynomial time.

Proposition 2 (Linz and Semple [14]) There exists a linear-time algorithm that, given
a set T of X-trees and a tree-child cherry picking sequence S for T, computes a
tree-child network N displaying T with h(N) < w(S).

For completeness, the pseudocode of this algorithm, TREECHILDNETWORKFROM-
SEQUENCE, is given in the appendix. (Linz and Semple do not state a running time
for this algorithm, but it is easy to observe that their algorithm takes linear time in the
length of the given cherry picking sequence.)

Our algorithm for computing a tree-child cherry picking sequence of length at most
k has the following structure: Starting with the set of trees T and the empty sequence
S = (), the algorithm repeats the following as long as J/S still has a cherry. If T/S
has a trivial cherry {x, y} such that y is not forbidden with respect to S, it adds (x, y)
to the end of S. If J/S has no trivial cherry, we show that 7/S has at most 4k unique
cherries or A (T) > k. The algorithm makes one recursive call for each pair (x, y)
such that {x, y} is a cherry of J/S, starting each recursive call by adding (x, y) to
the end of S. (Note that every cherry {x, y} of T/S gives rise to up to two recursive
calls, one for the pair (x, y) and one for the pair (y, x).) As this kind of branching step
cannot occur more than k times in a sequence of weight at most k, this gives a search
tree for our algorithm of depth k and branching number at most 8k.

In the remainder of this section, we prove the correctness of procedure TCS and
analyze its running time. This is summarized in the following theorem (we denote by
lg the logarithmic function with base 2).

Theorem 3 Given a collection T of t X-trees with | X| = n, it takes O ((8k) nt lgt +
nt lg nt) time to decide whether T has tree-child hybridization number at most k and,
if so, compute a corresponding tree-child cherry picking sequence.

Combined with Proposition 2, this proves the following corollary.
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Procedure TCS(T7, S, k)

Input: A collection of phylogenetic trees 7, a partial tree-child cherry picking sequence S, and an
integer k
Output: An optimal solution of (T, S) if (7, S) has a solution of weight at most k; NONE otherwise
1 while there exists a trivial cherry {x, y} of T/S with y not forbidden with respect to S do

2 | S < So(lx,yh

37T <« T/S;

4 if T’ contains a cherry {x, y} with x, y both forbidden with respect to S then
5 | return NONE;

6 else

7 n' < |{x € X : x is aleaf of a tree in T’} |;

8 | K < |S|—|X|+n";

9 C < {(x,y) | {x, y}is a cherry of some tree in 7"};

10 if |C| = 0 then

11 ‘ return S o ((x, —)), where x is the last remaining leaf in all trees;
12 else if |C| > 8k or k' > k then

13 | return NONE;

14 else

15 Sopt <~ NONE;

16 foreach (x, y) € C with y not forbidden with respect to S do

17 Stemp <= TCS(T, S o ((x, ¥)), k);

18 if w(Stemp) < w(Sopr) then

19 L Sopt <~ Stemp§

20 return Sopt;

Corollary 4 Given a collection T of t X-trees with | X| = n, it takes O ((8k)*nt1gt +
nt lgnt) time to decide whether T has tree-child hybridization number at most k and,
if so, compute a corresponding tree-child hybridization network that displays 7.

Itis easy to see that procedure TCS returns a sequence S only if it is a valid tree-child
cherry picking sequence for J. Thus, it suffices to show that if a partial tree-child cherry
picking sequence S has an extension S o §” of weight at most k that is a cherry picking
sequence for T, then the invocation TCS(T, S, k) finds a shortest such extension. In
the remainder of this section, we call an extension S o S’ of a partial tree-child cherry
picking sequence S a solution of (T, S) if S o §’ is a cherry picking sequence for T,
S o 8’ is an optimal solution of (7, S) if there is no solution of (T, S) that is shorter
than S o S’.

We split the proof of Theorem 3 into two parts: First, we show that we deal with
trivial cherries correctly: if (T, S) has a solution of weight at most k and 7/ = T/S has a
trivial cherry {x, y} such that y is not forbidden with respect to S, then (T, So ((x, ¥)))
has a solution of weight at most k£ and any optimal solution of (T, So((x, y))) is also an
optimal solution of (T, §). Thus, adding trivial cherries to S as TCS does in lines 1-2
is safe. Section 3.1 presents this first part of our proof. Second, we show that if T’
has no trivial cherries, then either the trees in J” have at most 4k unique cherries or
(7, S) has no solution of weight at most k. Thus, aborting the search if |C| > 8k
(since C contains two pairs for each cherry of J7), as we do in line 13, is correct.
The proof of this bound on the number of unique cherries is divided into two parts.
In Sect. 3.2, we show that this bound holds if § = (), that is, if all trees in T’ are
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X-trees. In Sect. 3.3, we extend this result to arbitrary partial tree-child cherry picking
sequences S. Sect. 3.4 then completes the proof of Theorem 3.

3.1 Pruning Trivial Cherries

Our algorithm begins by repeatedly pruning trivial cherries in lines (i)—(ii); that is, as
long as there exists a trivial cherry {x, y} in T/S with y not forbidden with respect to
S, the algorithm extends S by adding the pair (x, y) to S. In this section, we show that
this is safe: if (T, S) has a solution of weight at most k, then so does (T, S o ((x, ¥))),
and any optimal solution of (T, So ((x, y))) is an optimal solution of (T, S). We begin
with some simple observations.

Proposition5 Let S = ((x1, y1), (x2, ¥2), - - -, (Xr, ¥), (Xr41, —)) be a tree-child
cherry picking sequence for a set of X-trees T. Then the following properties hold
forall j e[r]:!

(i) If y € X is not forbidden with respect to S\, j, then y is a leaf in every tree in T,
(ii) If {x, v} is a cherry of T, then e;’ther (x,y) or (y,x) is apairin Sji1,r.
(iii) If {x;, y;} is a trivial cherry of TU=D, then Xj is not in any tree in T,

Proof Property (i) holds because y is not forbidden with respect to S ; and, thus,
y # x; forall i € [j]. Property (ii) follows because S, must delete at least one
of x, y from the tree containing {x, y} as a cherry and only the pair (x, y) or (y, x)
achieves this. To see why Property (iii) holds, observe that y; is not forbidden with
respect to S1,j—1. Thus, by Property (i), every tree in JU=D contains y j as aleaf. In
particular, every tree in TU~1 containing x j also contains y;. Thus, by the definition
of a trivial cherry, every tree in TU D containing xj contains the cherry {x;, y;}. Thus,
applying the pair (x;, y;) to TU=D deletes x ; from any tree containing x; and no tree
in T contains x;. O

Lemmaé6 Let S = ((x1,y1), (x2, ¥2), ..., (Xr, ¥), (Xr+1, —)) be a tree-child cherry
picking sequence for a set of X-trees T and suppose that {x, y} is a trivial cherry of
TG and y is not forbidden with respect to S1,j. Then there exists a tree-child cherry
picking sequence S’ for T such that |S'| = |S|, Si,j = 81,j, and (x, y) is a pair in
S}—H,r'
Proof We start with the following trivial observation: Let T be a set of trees and let
S be a tree-child cherry picking sequence for J. For an arbitrary permutation 7w of X
and any X-tree T, let T}, be the tree obtained from T by changing the label of each
leaf from its label z in T to the label 7w (z) in T;. Let Tz = {T|z | T € T}. Similarly,
let S| be the sequence obtained from S by replacing every occurrence of an element
z € X in S with 7 (z). Then S, is a tree-child cherry picking sequence for T}, . Here,
we consider the permutation 7 such that 7(x) = y, 7(y) = x, and 7 (z) = z for all
z € X\ {x, y}, where {x, y} is a trivial cherry of 7).

By Proposition 5(ii), either (x, y) or (y, x) is a pair in S;j;1,,. In the former case,
the sequence S’ = § satisfies the lemma. In the latter case, neither x nor y is forbidden

' We use [m] to denote the set of integers {1, ..., m} and [m]g to denote the set of integers {0, ..., m}.
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with respect to Sy ;. It follows from Proposition 5(i) and the fact that {x, y} is a trivial
cherry of TU) that every tree in TU) has {x, y} as a cherry. In particular, neither x nor
y is part of a pair in §7 ;. Thus, since § is a tree-child cherry picking sequence, the
sequence " = S1j o (Sj41,r41)|x is a tree-child cherry picking sequence such that
S{’j = Si,jand (x,y) € S}H)r. To see that S’ is a tree-child cherry picking sequence
for T, observe that 1,41 is a tree-child cherry picking sequence for T, Thus, as

just observed, (Sj+1,,41)|x is a tree-child cherry picking sequence for ‘J"(;). However,
since {x, y} is a cherry of every tree in T/), we have ‘3"(7-5) = TV, thatis, (Sj41,r41)|x

is a tree-child cherry picking sequence for T7/) and §' = S1,j o (Sjt1r4D)x is a
tree-child cherry picking sequence for 7. O

Lemma7 LetT bean X-tree,letT' C T,andlet S = {(x1, y1), (x2, ¥2), ..., (xr, ¥))
be a partial tree-child cherry picking sequence such that (T\T") N {y1, y2, ..., yr} =
#. ThenT'/S C T/S.

Proof We prove the claim by inductionon |S|.If|S| = 0,thenT’/S =T C T =T/S,
so the claim holds in this case. If |S| > 0, thenlet R" = T'/S;1 and R = T /Sy 1.
Notethat R O T — x;. If x; ¢ T/, then R  =T' C T —x; C R. If y; ¢ T, then
y1 ¢ T because y; ¢ T\ T'. Thus, " =T' C T =R.

So assume that x1, y; € T’. If {x1, y1} is a cherry of T/, then R = T’ — x; C
T —x; C R.If {x1, y1} is not a cherry of T, then x1, y; € T’ implies that the path
from x| to y; in T’ has at least one pendant subtree. Since T’ C T, this implies that
the path from x to y; in T also has at least one pendant subtree, that is, {x1, y;} is not
a cherry of T either. Therefore, " =T’ C T = R.

We have shown that in all possible cases, R” C R. Now observe that R \ R’ C
(T \ T) U {x;}. Since S is a partial tree-child cherry picking sequence, S, is a
partial tree-child cherry picking sequence and x; ¢ {y2, y3,..., y}. Since (T \ T")N
{y2, ¥3, ..., yr} = @, this implies that (R \ R") N {y2, y3, ..., ¥} = @. Thus, by the
induction hypothesis, T'/S = R'/S>, C R/S>, =T/S. O

We are now ready to prove a stronger version of Lemma 6, which establishes that
pruning trivial cherries is safe.

Proposition8 Let S = ((x1, y1), (x2, y2), ..., (xr, ¥r), (Xr41, —)) be a tree-child
cherry picking sequence for a set of X-trees J and suppose that {x, y} is a trivial
cherry of TY) and vy is not forbidden with respect to S\, j- Then there exists a tree-
child cherry pf'cking seqetence S = ((x{, )/)i), (x/é, V3)sooon (XL, V0, (x;ur], =) for
T such that |S'| < |S|, S} ; = S1,j, and (x) 1, ¥ ) = (x, y).

Proof By Lemma 6, there exists a tree-child cherry picking sequence S’ =

(G ), (5, 99D, e

(/. ¥7), (x4, =) for T such that v < 7, §] ; = Sp,; and (x,y) € S, . We

choose S’ from the set of all such cherry picking sequences so that the index j/ > j
with (xj/, yj) = (x, y) is minimized. If j* = j + 1, the lemma holds. If ;" > j + 1,
we obtain a contradiction to the choice of S’ by transforming S’ into another tree-child
cherry picking sequence S” = ((x{, y{). ..., (x, y/,), (x;/,,H, —)) for T such that
1S”] < 18] < 18], S{/,j = S{’j = S1,j,and (x;.’,_l, y}’,_l) = (x,y).
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So assume that j* > j + 1 and let (x y 1,y o) = (v, w). We distinguish two
cases:

w = x: In this case, we setr”’ =r" — 1, (xh yh) = (xh yh) foralll <h < j' —2,
and (x, y;) = (x}, 1, Yy ) forall j'—1 < h < r”+1; that is, we obtain S”
by deletlng the pair (x}_l, )’}/,1) from §’. Thus, S” C §’, |S”| < |S'|, and
(x 1 y )= (x;.,, y;.,) = (x, y). Since S’ is a tree-child cherry picking
sequence, this implies that §” also is a tree-child cherry picking sequence.
To see that S” is a tree-child cherry picking sequence for T, it suffices to
prove that T/S1 iy = T/Si’jf1 and, thus, T/S§" = (T/Si,j'fz)/S;",r' =
(T/S;, /,_1)/ = =T/§ foreverytree T € 7.

To prove this, observe that v # y and y € T/ S{ﬁ , forall T € T and all
1 < h < j because yy = y, that is, y is not forbidden with respect to
S’ -1 Thus, since {x, y} is a trivial cherry of /S ; = T/S] and] <j,

{x y} is acherry of every tree T/S] in ‘T/S’ that contains x. Since yisalso
a leaf of every tree 7'/ S 2 inJ/ S1 i (again because y is not forbidden
with respect to S i 1) thlS implies that {x, y} is also a cherry of every tree
in ‘J‘/Sl i, that contalns x. In particular, since v # y, {v, w} = {v, x} is not

acherry of any tree T/S] =2 in ‘I/Si _, and T/S 2 = =T/S] = for
allT € 7.
w # x: In this case, we set (x, YD = (x/,, ,) (x Yy "y = (x/ v, ])

and (x, y;) = (x, yh) for allh ¢ {j —1 J } that is, we obtain S” by swap-
ping (x s y _) = (v, w)and (xj,, yj ,) = (x, y) in S. This clearly implies
that |S”| |S/| and (xj,_l, y b)) = (x’,, ’,) = (x, y). To see that S” is a
tree- child cherry picking sequence, observe that every pair (xh yy)in §” with
h # j'is preceded by a subset of the pairs that precede it in S’. Thus, since
S’ is a tree-child cherry picking sequence y,, is not forbidden with respect
to S{;,_ ;. For the pair (x/ ) y is not forbidden with respect to Si/,//—z

because S” =S -2 and (x ] (x, , , _1)- This 1mphes'that

y], is not forbidden with respect t0 S1 i1 because y /= y =W FEX=
oW

X = )cj,_1

It remains to show that 7/S” = T/S’ forall T € T. To this end, it suffices to
show that T/S” C T /S’ because T /S’ has only one leaf, x, 1, and T /S” # @,
thatis, T/S” € T /S’ implies that T/S”" = T/S'.

To see that 7/S”" € T/S, let T' = T/S1 ji—2- Then T'/{(x,y)) <
T, T" \ (T'/{(x,y))) < {x}, and x ¢ {w,y}. By Lemma 7, this
implies that 7'/ {(x, y), (v, w), (x,y)) € T'/{(v, w), (x, y)). However, as
argued above, {x,y} is a cherry of T/, so x ¢ T’/{(x,y)) and, thus,
x ¢ T'/{(x,y), (v, w)). This implies that T'/{(x, y), (v, w), (x,y)) =
T'/{(x,y), (v, w)) and, therefore, T'/{(x, y), (v, w)) € T'{(v, w), (x, y)).
Since T’ = T/S’ L, =T/5 s S o= S -2 o ((v, w), (x,y)),
and Sf‘j Si/j 0 {(x,y), (v, w)), this shows that T/S”’j/ - T/S”j,.
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Using Lemma 7 again, this shows that T/S" = (T/S{ .)/S7,, .

(T/SY DI85y, S TSy D/S5y, =T/S. O

3.2 Bounding the Number of Cherries in Irreducible X-Trees

Once the algorithm has eliminated all trivial cherries from a set of input trees, each of
the remaining (non-trivial) cherries of J/S is a candidate for being the next pair to be
added to S. Our algorithm makes one recursive call for each possible choice of this
next pair (lines 15-20). In order to limit the number of recursive calls it makes, the
algorithm aborts and reports failure if there are more than 8k choices to branch on. To
prove that this does not prevent us from finding a tree-child cherry picking sequence
of weight at most k, if such a sequence exists, we need to prove the following claim:

Proposition9 If (T, S) has a solution of weight at most k and T/S has no trivial
cherries, then the number of unique cherries in J/S is at most 4k.

Note that this claim refers to the weight k of the whole sequence S o S’, not the
weight of §’. This is because the proof uses the structure of S and S’ to bound the
number of unique cherries in J/S.

Our proof has two parts: In this subsection, we consider the case when S = (), that
is, when we have a set of X-trees T with tree-child hybridization number at most k
and no trivial cherries. In the next subsection, we prove the claim for S # (), via a
reduction to the case when § = ().

Lemma 10 IfT isaset of X -trees without trivial cherries and with tree-child hybridiza-
tion number k, then the total number of cherries of the trees in T is at most 4k.

Proof Let N be a tree-child network with k reticulations that displays T and, for each
tree 7; € 7, let f; be an embedding of 7; into N. Our strategy is to charge each cherry
{x, ¥} of T to some reticulation edge in a manner that charges every reticulation edge
for at most two cherries. Since N has at most k reticulations and, therefore, at most
2k reticulation edges, this proves the lemma.

We start by proving a number of auxiliary claims about how the images of cherries
interact with reticulation edges and with each other. The first three claims consider a
fixed cherry {x, y} of some tree T; € T and a fixed tree 7 that does not have {x, y} as
a cherry. Since {x, y} is non-trivial, such a tree T} exists. Let p be the common parent
of x and y in 7; and let e, = px and ey, = py be the parent edges of x and y in T;,
respectively. Since 7 is an X-tree, we have x, y € T;. Let u be the lowest common
ancestor (LCA) of x and y in T}, that is, the node in T farthest from the root that is
an ancestor of both x and y, and let P, and P, be the paths from u to x and from u to
y in T}, respectively. Since {x, y} is not a cherry of 7, the undirected path Py U Py
has at least one pendant edge.

Claim 1 All pendant nodes of fi(ex) U fi(ey) are reticulations.
Proof Consider any pendant node w of f;(ex)U f;(ey) and let e be the edge connecting

w to anode v in fi(ex) U f;(ey). Neither endpoint of e is the root of N. Since N is
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a tree-child network, there exists a tree path Q from w to a leaf f;(¢,,). Consider the
path P from the root to £,, in T;. Since e, and e, are notin P, fi(ex) U f;(ey) and
fi (P) are edge-disjoint. On the other hand, since Q is a tree path, Q C f;(P). Since
w is not the root of N and f; (P)’s top endpoint is the root of N, Q is a proper subpath
of f;(P),thatis, f;(P) contains a parent edge of w. If f; (P) contained e, then f;(P)
would be a proper superpath of Q U e because e’s top endpoint also is not the root of
N.Thus, f;(P) would contain the parent edge of v, thatis, f;(P) and f;(ex) U fi(ey)
would not be edge-disjoint, a contradiction. Therefore, e ¢ f;(P) and w has another
parent edge, that is, w is a reticulation. O

Claim 2 The undirected path f;(e,) U fi(ey) contains at most one reticulation. This
reticulation is a child of f;(p).

Proof We prove that only the top edge of f;(ex) can be a reticulation edge. An analo-
gous argument shows that only the top edge of f;(ey) can be a reticulation edge. Thus,
all reticulation edges in f;(ex) U f;(ey) are incident to f; (p). If the top edges of f; (ex)
and f;(ey) are both reticulation edges, then both children of f;(p) are reticulations,
a contradiction because N is a tree-child network. Thus, f;(ey) U fi(ey) contains at
most one reticulation.

So assume that f; (e, ) contains a reticulation edge and choose such an edge e = vw
that is farthest from f; (p). If v = p, then our claim holds. So assume that v # p. If v
is a reticulation node, then w is its only child. Since e is a reticulation edge, w is also
a reticulation node, a contradiction because N is a tree-child networks. Thus, v must
be a tree node. By Claim 1, this implies that both of v’s children are reticulations, a
contradiction again because N is a tree-child network. O

Claim 3 If the path fi(ex) U f;(ey) contains no reticulation, then it has at least one
pendant node.

Proof If f;(ex)U fi(ey) contains no reticulation and has no pendant nodes, then f; (x)
and f;(y) are children of f;(p) in N. Thus, both f;(Py) and f;(Py) include f;(p).
Since fj(Py) and f;(Py) share only their top endpoint f;(u), we have f;(u) = f;(p)
and thus f;(Py) = fi(ex) and f;(Py) = fi(ey). This, however, is a contradiction
because fi(ex) U fi(ey) has no pendant nodes but P, U Py has a pendant node in 7},
thatis, f;(Py) U f;(Py) must also have a pendant node in N. O

For the next two claims, fix two distinct cherries {x, y} and {w, z} of two trees
T; € Tand T; € T, respectively. Let p be the common parent of x and y in 7;, and let
q be the common parent of w and z in 7.

Claim4 fi(ex) U fi(ey) and fj(ey) U fj(e;) do not share any reticulation edge.

Proof Assume the contrary. Then let e be a reticulation edge in (fi(ex) U fi(ey)) N
(fj(ew) U fj(e;)) and assume w.l.o.g. thate € fi(ex) N fj(ew). By Claim 2, f;(p) =
fi(q); e is the first edge in both f;(ex) and in f;(ey); fi(ey) and f;(e;) are both tree
paths from f;(p) to f; (y) and f;(z), respectively; and the subpaths of f;(ey) to f;(ey)
from e’s bottom endpoint to f;(x) and f;(w), respectively, are also tree paths.

Since every pendant node of f;(ey) is a reticulation, by Claim 1, none of these
pendant nodes can belong to f;(e;). Thus, f;(z) = fi(y), thatis, z = y. Similarly,
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none of the pendant nodes of the subpath of f; (x) from e’s bottom endpointto f; (x) can
belongto fj(w). Thus, f;(w) = f;(x),thatis, w = x. This showsthat {x, y} = {w, z},
a contradiction. O

Claim 5 If neither fi(ex) U fi(ey) nor fj(ey) U fj(e;) contains a reticulation edge,
then these two undirected paths are vertex-disjoint.

Proof Assume that neither f;(ex) U f;(ey) nor fj(ey) U fj(e;) contains a reticulation
edge and assume first that f;(ex) U fi(ey) and f;(ey) U fj(e;) are not edge-disjoint.
Then, w.l.o.g., fi(ex) and f;(ey) share an edge e. Since fi(ey) and fj(ey) are tree
paths, the same argument as in the proof of Claim 4 shows that x = w. If f;(ey)
and f;(e;) also share an edge, then the same argument shows that y = z. Otherwise,
w.Lo.g. f;(q) is an internal node of f;(ey) and the first node after f;(g) in fj(e;) isa
pendant node of f;(e,). By Claim 1, this node is a reticulation, a contradiction. This
shows that f;(ex) U fi(ey) and fj(ey) U fj(e;) are edge-disjoint.

If fi(ex) U fi(ey) and fj(ey) U fj(e;) are edge-disjoint but not vertex-disjoint,
then their shared vertex v satisfies either v # fi(p) and v # f;(q) or wlo.g. v =
fi(p). In the former case, the parent edge of v belongs to both f;(ex) U fi(ey) and
filew) U fj(e;), a contradiction. In the latter case, both child edges of v belong to
filex) U fi(ey) and fj(ey) U fj(e;) has to contain at least one of them, again a
contradiction. O

Now we call a cherry {x, y} of some tree T; a type-I cherry if the undirected path
fi(ex)U fi(ey) contains areticulation edge; otherwise, itis a type-1I cherry. We charge
each type-I cherry {x, y} to the reticulation edge in f;(ex) U fi(ey). By Claim 4, every
reticulation edge is charged for at most one type-I cherry. For every type-II cherry
{x, ¥}, Claim 3 shows that w.l.o.g., f(x)’s sibling v in N is a pendant node of f (ey).
By Claim 1, v is a reticulation. Thus, the edge e between v and f(x)’s parent is a
reticulation edge. We charge the cherry {x, y} to e. Since e has an endpoint in f(ey),
Claim 5 implies that e is charged for only one type-II cherry. This proves that every
reticulation edge is charged for at most two cherries, one of type I and one of type II.
Figure 3 illustrates this. This finishes the proof. O

3.3 Bounding the Number of Cherries in General Irreducible Trees

Having shown, in Lemma 10, that Proposition 9 holds when § = (), we extend the
proof to arbitrary partial tree-child cherry picking sequences in this section, thereby
completing the proof of Proposition 9. The main idea is to construct a set of X-trees T
that has the same set of cherries as 7/ (and in particular has no trivial cherries) and
then show that T has reticulation number at most k. By Lemma 10, this implies that
‘j', and thus J/S, has at most 4k cherries.

Lemma 11 Ler T be a set of X-trees and let S = ((x1, y1), (x2, ¥2), ..., (Xr, Y1),
(Xy+1, —)) be a tree-child cherry picking sequence for T of weight at most k. For any
j € [rlo, either there exists a trivial cherry of T, or TU) has at most 4k unique
cherries.
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abe cd abe cd abecd

Fig.3 The embeddings of the four trees in Fig. 1b into the network in Fig. 2a. The set of cherries of these
trees is {{a, b}, {c, d}, {c, e}, {b, c}, {b, e}}. We use the embedding of the first tree to charge the cherries
{a, b} and {c, d} to reticulation edges, the embedding of the second tree to charge the cherry {c, e} to a
reticulation edge, the embedding of the third tree to charge the cherry {b, c} to a reticulation edge, and the
embedding of the fourth tree to charge the cherry {b, e} to a reticulation edge. The cherries {a, b} and {c, d}
are type-I cherries because the two undirected paths between a and b and between ¢ and d in the embedding
of the first tree contain the two highlighted reticulation edges, which are the edges we charge for these
cherries. Similarly, the cherry {c, e} is a type-I cherry because the undirected path between ¢ and e in the
embedding of the second tree contains the highlighted reticulation edge, which is charged for this cherry.
The cherry {b, c} is also a type-I cherry because the undirected path between b and ¢ in the embedding of
the third tree contains the highlighted reticulation edge, which is charged for this cherry. Finally, the cherry
{b, e} is a type-II cherry because the undirected path between b and e in the embedding of the fourth tree
contains only tree edges. The parent of b on this path has a reticulation node as its other child, and the edge
between b’s parent and this reticulation is the edge we charge for the cherry {b, ¢}

Proof For j = 0, the claim holds by Lemma 10. For j > 0, we cannot apply Lemma 10
directly because the trees in T7/) may have different leaf sets. Assume that T) has
no trivial cherry, because otherwise the lemma holds. In order to use Lemma 10 to
bound the number of unique cherries in T¢), we transform T into a set of X-trees
TG with the following properties:

1. T has the same unique cherries as T);
2. ‘I(j ) has no trivial cherries; and
3. TU) has tree-child hybridization number at most k.

By Properties 2 and 3 and Lemma 10, T() has at most 4k unique cherries. Thus, by
Property 1, T7) has at most 4k unique cherries.

To obtain T from TU ). let T/ C T be the subset of trees T € T such that 7¢)
has at least two leaves. We can assume that T’ # ¢ because otherwise, 7 has no
cherries and the claim holds. Also note that every cherry of TU) is a cherry of some
tree T7U) with T € T’. Now consider any tree T € 97 and let iy < ... < iy be the
indices in [j] such that (x;,, y;,) is a cherry of 7@~ for all I < h < £. In other
words, T * T¢=D if and only if i € {if,...,ip}. Observe that T has label set
X\ {xi,,...,x;,}. Let C be a caterpillar with leaf set {z, x;,, ..., x;,}, from bottom to
top; that is, C is a tree such that z and x;, are siblings and, for 1 < j < £, the parent
of x;, is a sibling of x; . We construct a tree 7) from 7/ and C by identifying z
with the root of 7)), This is illustrated in Fig. 4. TU) is the set of all such trees 7/
T = (T | T T,

Property 1 holds because the trees in TU) \ (77)/) have no cherries and, for every
tree T € T, TU) has the same cherries as T): T() is a pendant subtree of TUW, so
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every cherry of T\ is a cherry of T, Every cherry of 70U that is not a cherry of
T would have to involve some leaf x;, , but none of these leaves is part of a cherry
because 7/) has at least two leaves.

To see that Property 2 holds, observe that every trivial cherry {x, y} would have
to be a cherry of every tree in T() because all trees in T¢) have the same label set.
Thus, by Property 1, {x, y} would be a cherry of every tree T/ such that T € 7”. By
the definition of 77, {x, y} would therefore be a trivial cherry of 7/, but T() has no
trivial cherries. Thus, JU) has no trivial cherries.

To prove that T¢) has tree-child hybridization number at most k (Property 3), we
construct a tree-child cherry picking sequence SU) of weight at most k for T This
sequence is defined as

SD = (01, Vi 1)s e os Gy 2)s (K1 Xr1)s <oy (s X 1)y (1, =),

that is, we swap the subsequences ((x1, ¥1),..., (x;, y;)) and ((xXj41,Yj+1)s---,
(xr, yr)) of S and then replace y; with x,41 in every pair (x;, y;) with 1 <i < j. By
construction, $U) has the same weight as §, that is, its weight is at most k.

To see that $U) is a tree-child cherry picking sequence, observe that ((x; 1, yj+1),

, (x, ¥r)) is a subsequence of a tree-child cherry picking sequence, namely S, and
is thus a partial tree-child cherry picking sequence. Since S reduces each tree in T
to the single leaf x,11, we have x,+1 ¢ {x1,...,x:}, SO x;41 is not forbidden with
respect (o ((Xj+1, Yj+1)s -+ s (X, ¥r)s (X1, Xr41)s -5 (X, Xr41)), for any i € [flo-
Thus, $U) is a tree-child cherry picking sequence.

It remains to prove that SO is a cherry picking sequence for every tree TUV ¢
J(U). Observe that the sequence S’ = ((Xj41,Yj+1)s--., (xr, y,)) reduces T to
the single leaf x, . Thus, after applying S’ to 7(), we obtain a subtree C’ of the
caterpillar C with z replaced with x,1 1. (§’ may also delete some leaves of C.) Since

the leaves x;,, ..., x;, of C appear in this order from bottom to top in C, the sequence
((x1, Xr41), ..., (xj, x,41)) reduces C’ to the single leaf x,;. Thus, SW isa cherry
picking sequence for 7V, O

3.4 Proof of Theorem 3

Using the results from the previous three subsections, we are now ready to prove
Theorem 3. While our algorithm computes I’ only in line 3, and »’, k/, and C
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only in lines 7-9, it is convenient for the sake of this proof to view them as quan-
tities that evolve over time, as functions of S. We define n'(T7,S) = |{x € X |
x is a leaf of a tree in T/S}| and kK'(T, S) = |S| — | X| + n'(T, S) for any partial tree-
child cherry picking sequence S.

We divide the proof of Theorem 3 into three parts. First, we prove that ¥'(T, S) is
invariant over the course of any invocation TCS(7, S, k) and that 0 < k'(T, S) < k in
every invocation the algorithm makes. This will be used in the analysis of the running
time of the algorithm and in proving the correctness of the algorithm in the case when
it returns a sequence in line 11. Then, we bound the running time of the algorithm by
0((8k)knt lgt + nt lgnt), where n = | X| and r = |7|. This implies in particular that
the number of recursive calls the algorithm makes is finite, a fact that will be used
in the correctness proof. Finally, we consider the tree of recursive calls the algorithm
makes and use induction on the number of descendant invocations of any invocation
TCS(7, S, k) to prove the correctness of this invocation.

Lemma 12 For a collection of X-trees T, any partial cherry picking sequence S, and
any non-trivial cherry {x, y} of T/S, kK'(T, S o ((x, y))) = k'(T, S) + 1.

Proof Since {x, y} is a non-trivial cherry of J/S, there exists a tree 7 /S € T/S that
contains both x and y but not the cherry {x, y}. Thus, applying the pair (x, y) to T/S
does not remove x from all trees in T/S. In particular, n’(T, S o ((x, y))) = n'(T, )
and, therefore, kK'(T, S o ((x,y))) = |S o {((x, Y))| — |X| +n'(T, S o {(x,y))) =
IS|+1—|X|+n'(T,S)=k(T,S)+1. O

Lemma 13 The value of k'(T,S) is invariant over the course of any invocation
TCS(T, S, k) and satisfies 0 < k'(T, S) < k. Moreover, an invocation TCS(7, S, k)
satisfies k' (T, S) = 0 if and only if S = ().

Proof First we prove that k'(T, S) does not change over the course of any invocation
TCS(T, S, k). Note that in a given invocation TCS(T, S, k), S changes only in line 2.
Each execution of line 2 adds a pair (x, y) to S, thereby increasing |S| by one. Since
{x, y} is a trivial cherry of 7" and y is not forbidden with respect to S in this case, this
also removes x from all trees in T/S, so n'(7, S) decreases by one and k' (T, §) =
|S| — |X]| + n'(T, S) remains unchanged.

We prove the bounds on k' (T, ) for each invocation TCS(T, S, k) by induction on
|S].

If |S| = 0, then S = (). In this case, T/S = T, so n/(T,S) = |X]|, that is,
K(T,8) =S| —|1X|+n'(T,8) =|S|— |X|+|X|=0.

If |S| > 0, then TCS(T, S, k) is called by another invocation TCS(T, §’, k) with
|S’] < |S]. By the induction hypothesis, we have k'(T, S) > 0. Let S” be a snapshot
of S’ in line 12 of the invocation TCS(T, §’, k). Then S = S” o ((x, y)), where
{x, y} is a non-trivial cherry of T/S”. Thus, by Lemma 12, k’(T, S) = k'(7, S”) + 1.
Since k' (T, 8") = k'(T,S’), this implies that k'(T, S) > k'(T,S’) > 0. By the
second condition in line 12, we have k'(T, S”) < k (because TCS(T, S’, k) makes the
recursive call TCS(T, S, k)), so k'(T, S) = k'(T,§")+1 <k. O

The following proposition now establishes the running time bound stated in Theo-
rem 3.
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Proposition 14 The total running time of the invocation TCS(T, (), k) and all its
descendant invocations is O ((8k)*nt1gt + nt 1gnt), wheren = |X| and t = |7T|.

Proof We only provide a sketch of the argument that the algorithm’s state can be
initialized in O (nt lgnt) time and that each invocation of procedure TCS, excluding
the recursive calls it makes, has cost O (nt 1gt). A careful proof is straightforward but
tedious. To prove the proposition, it then suffices to prove that the algorithm makes
O ((8k)*) recursive calls.

Instead of computing J” from scratch as in the pseudo-code of procedure TCS, we
first construct the state of the top-level invocation TCS(T, (), k) consisting of J" and
the lists of trivial and non-trivial cherries. Whenever an invocation makes a recursive
call, it makes a copy of its state to be modified by the recursive call.

Identifying the cherries in T’ = T for the top-level invocation TCS(T, (), k) takes
O (nt 1gnt) time using appropriate dictionaries (e.g., balanced binary search trees) to
identify leaves with the same labels in different trees and to collect all occurrences of
the same cherry in different trees.

Copying the state of the current invocation for each recursive call the algorithm
makes takes O (nt) time because the state is easily seen to have size O (nt). We charge
this cost to the recursive call. Each pair added to S eliminates the corresponding cherry
from up to 7 trees and thereby creates up to 7 new cherries. Updating 7’ and the lists of
trivial and non-trivial cherries for each such cherry takes O (lg¢) time, O(¢1gt) time
in total for each pair added to S. Each invocation adds at most n pairs corresponding to
trivial cherries to S, in line 2. Each pair (x, y) added to S in line 17 can be charged to
the recursive call TCS(T, S o ((x, y)), k) made in line 17. Thus, each invocation adds
at most one pair corresponding to a non-trivial cherry to S. The cost of updating 7" and
the list of trivial and non-trivial cherries in each invocation is thus O (nt 1g¢). Adding
the cost of making a copy of the parent invocation’s state at the beginning of each
invocation, the cost per invocation is thus O (nt1g¢). To obtain the time bound stated
in the proposition, it remains to bound the number of recursive calls the algorithm
makes by O ((8k)).

Let my be the number of invocations TCS(T, S, k) with k¥'(T,S) = k’. By
Lemma 13, every invocation TCS(T, S, k) the algorithm makes satisfies 0 <
k'(T,S) < k and the total number of invocations is therefore Zi/:o my. Also by
Lemma 13, there is exactly one invocation TCS(T, S, k) with k'(T, S) = 0, namely
the top-level invocation TCS(T, (), k). Finally, by Lemma 12, every child invocation
TCS(T, S, k) of an invocation TCS(T, Sy, k) satisfies k' (T, S», k) = k'(T, Sy, k) + 1.
Thus, since each invocation makes at most 8k recursive calls in line 17, we obtain
my 41 < 8k - my . A simple inductive argument now shows that my < (Sk)k, for all
0 < k' < k. Thus, the total number of recursive calls the algorithm makes is at most

, k+1_
Sh_oBF = 82— — o(@8Kh). O

To establish the correctness of procedure TCS, we need a few simple auxiliary
lemmas.

Lemma 15 Let S be a partial cherry picking sequence S without any pairs of the form
(x, —). Any solution of (T, S) has weight at least k' (T, S).
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Proof Consider any cherry picking sequence S o S’ for T. Let X be the set of leaf
labels of the trees in T/(S o §’), and let X, be the subset of leaf labels of the trees in
T/§ that are not in X|. Then n'(T, S) = | X{| + | X2|.

Every leaf x € X, must be removed from the trees in T/S by at least one pair
(x,y) € . Forevery leaf x € X1, S’ must contain a pair (x, —). Thus, |S| > |X1| +
| X2 = n'(T, S). Therefore, |So S| — | X| = |S|+|S'|— |X| > |S|—|X|+7n/(T,S) =
kKT, S). O

Lemma 16 Let T be a collection of X -trees, and S a partial tree-child cherry picking
sequence such that at least one tree in T /S has more than one leaf. Then any optimal
solution of (T, S) is an extension of some sequence S o ((x,y)), where {x, y} is a
cherry of T/S.

Proof Consider any optimal solution S o S’ of (T, S). Since there exists atree T € T
such that 7'/ S has at least two leaves, the first pair in S’ is a pair (x, y) with x, y € X.
Let 8’ = {(x, y)) o S” and assume for the sake of contradiction that {x, y} is not a
cherry of any tree in T/S. Then So §” C SoS’,s0 SoS” is a tree-child cherry picking
sequence and |SoS”| < |SoS’|. Since {x, y} isnota cherry of any tree in T/S, we have
T/(So{(x,y))=T/Sforall T € T. Thus, T/(SoS”")=T/(So{(x,y))o8") =
T/(So S forall T € 7. Since S o S’ is a cherry picking sequence for T, this shows
that S o §” is a cherry picking sequence for 7, a contradiction. O

The following proposition now finishes the proof of Theorem 3 by proving that the
invocation TCS(T, (), k) returns a shortest tree-child cherry picking sequence for 7T if
and only if T has a tree-child cherry picking sequence of weight at most k.

Proposition 17 Given a set T of X -trees, a partial tree-child cherry picking sequence
S, and an integer k, TCS(T, S, k) returns an optimal solution of (T, S) if and only if
(T, S) has a solution of weight at most k. Otherwise, it returns NONE.

Proof Consider the tree of recursive calls made by the algorithm and let [ITCS(T, S, k)|
be the number of descendant invocations of the invocation TCS(T, S, k), including
the invocation TCS(T, S, k) itself. By Proposition 14, |TCS(7, S, k)| is finite. Thus,
we can use induction on |TCS(T, S, k)| to prove the proposition.

If ITCS(T, S, k)| = 1, then TCS(7, S, k) makes no recursive calls. Thus, it returns
a sequence in line 11 or NONE in line 5 or 13. (Note that TCS(7, S, k) cannot reach
line 20 without making a recursive call, as this is only possible if |C| = 0 or every
cherry {x, y} of some tree in 7’ has x, y both forbidden, and these cases are covered
by lines 11 and 5, respectively.) By Proposition 8, if S; is a snapshot of S at the start
of the invocation TCS(T, S, k) and S is a snapshot of S in line 3, then (7, S1) has a
solution of weight at most k if and only if (T, $>2) has a solution of weight at most k,
and any optimal solution of (T, $) also is an optimal solution of (T, Sy).

If TCS(T, S, k) returns NONE in line 5, then 7/, has a cherry {x, y} with both x
and y forbidden with respect to S». Any solution S, o S” of (T, S2) must include the
pair (x, y) or (y, x) in S’ because otherwise the tree in T/, that has {x, y} as a cherry
is not reduced to a single leaf by §’. Since both x and y are forbidden with respect
to S5, there is no such extension S, o S’ of S, that is tree-child. Thus, (T, S») has no
solution, and neither does (7, S;). It is therefore correct to return NONE.
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If TCS(T, S, k) returns S» o ((x, —)) in line 11, then observe that S; is a partial
tree-child cherry picking sequence. Indeed, by the assumption of the proposition, Sj is
a partial tree-child cherry picking sequence. For every pair (x, y) added to S in line 2,
y is not forbidden with respect to S, so S o ((x, ¥)) is also tree-child. By applying this
argument inductively, we conclude that S is tree-child.

Since TCS(T7, S, k) returns Sz o ((x, —)) inline 11 only if |C| = 0, S, reduces each
tree in J to a single leaf. Since S; is tree-child, this is the same leaf x for every tree
T € 7. Indeed, assume that S, reduces some tree 7 € T to some leaf x and another
tree T’ € T to some leaf y # x. Let x’ be the last leaf pruned from T by S5, and let
¥’ be the last leaf pruned from 7’ by S. Then S, contains the two pairs (x’, x) and
(v, y). W.lo.g., assume that (x’, x) occurs before (y’, y) in Sy. Since S, reduces T
to the single leaf x, it prunes y from 7. Since x’ is the last leaf pruned from 7T, the
pair (y, z) in S5 used to prune y from T cannot occur after the pair (x, x) in S. Thus,
this pair (y, z) occurs before the pair (y’, y) and S, is not a tree-child cherry picking
sequence, a contradiction.

Since S, reduces every tree T € T to the same leaf x, the sequence > o ((x, —)) is
a solution of (T, S>). Since every solution Sy o S’ of (T, $2) must include at least one
pair (z, —) in §’, S3 o {(x, —)) is an optimal solution of (T, S,) and, therefore, also of
(T, S1). Finally, by Lemma 13, |Sy| — | X | +7/(T, $2) = k'(T, $) < k;n'(T, ) =1
because, as just observed, each tree in T/ S> has x as its only leaf. Thus, | S>| — | X| < k
and |$2 0 ((x, —))| —|X| < k, thatis, (T, S») and (T, S1) both have solutions of weight
at most k and returning S o ((x, —)) is correct.

Finally, if TCS(T, S, k) returns NONE in line 13, then |C| > 8k or C # (J and
K(T, S, k) > k.

If |C| > 8k, then T/S, has more than 4k unique cherries. Since 7/.S, has no trivial
cherries, Proposition 9 shows that (7, S2) has no solution of weight at most &, and
neither does (7, S1). Thus, returning NONE is correct.

If C # @and k' (T, S2) > k, then observe that {x, y} is a non-trivial cherry of T/S»
forevery pair (x, y) € C.Lemma 12 showsthatk’ (T, Syo{(x, y))) = k'(T, S2)+1 > k
for all (x, y) € C. By Lemma 15, this shows that (T, S3 o ((x, y))) has no solution of
weight at most k for any (x, y) € C. By Lemma 16, this implies that (T, Sz) has no
solution of weight at most k, and neither does (7', S1). Thus, returning NONE is correct.
This finishes the proof that every invocation TCS (T, S, k) that makes no recursive calls
gives a correct answer.

Next consider an invocation TCS(T, S, k) that does make recursive calls. Then
C # (). By Lemma 16, (7, $>) (and thus (7, S1)) has a solution of weight at most & if
and only if there exists a pair (x, y) € C such that (T, $> o ((x, y))) has a solution of
weight at most k. Moreover, if such a pair exists, then one such pair has the property
that any optimal solution of (T, $2 o ((x, ¥))) also is an optimal solution of (7, S>)
and, thus, of (7, S7).

If there exists a pair (x, y) such that (T, S»o((x, y))) has a solution of weight at most
k, then choose (x, y) so that any optimal solution of (T, S>o((x, y))) also is an optimal
solution of (7, S1). By the induction hypothesis, the invocation TCS (T, S>o((x, y)), k)
in line 17 returns an optimal solution S of (T, S2 o ((x, y))). The solution Sy of
(T, S1) returned in line 20 is no longer than S’. Since Sopt 1s a solution of some
instance (T, $> o ((x’, ¥))) with (x/, y") € C, it is a solution of (7, S») and is thus
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an optimal solution of (T, $2) and (7, S1). Thus, the algorithm produces the correct
answer.

If there is no pair (x, y) € C such that (7, S2 o ((x, ¥))) has a solution of weight at
most k, then all recursive calls made in line 17 of the invocation TCS(T, S, k) return
NONE. Thus, TCS(7, S, k) also returns NONE. Since Lemma 16 shows that (7, S1)
has no solution of weight at most & in this case, this is correct. O

4 Redundant Branch Elimination: A Heuristic Improvement

In this section, we discuss a method used in our implementation of procedure TCS to
improve its running time. We prove that it preserves the correctness of the algorithm,
but we do not know whether it provably improves the algorithm’s running time. In this
sense, it is a heuristic.

The intuition behind redundant branch elimination is the following: Suppose that
T/{(x,y), (z, w)) and T/{(z, w), (x, y)) resultin the same set of trees. (This can easily
happen, for example, if x, y, z, w are all distinct.) Then the branch of the algorithm
that starts by applying the sequence ((x, y), (z, w)) finds a solution if and only if the
branch that starts by applying the sequence ((z, w), (x, ¥)) does. So the algorithm
does not need to explore this second branch; it is redundant, and redundant branch
elimination ensures that the algorithm does not make this recursive call.

Procedure TCS2 below is a modified version of procedure TCS that uses redun-
dant branch elimination. The only difference between procedures TCS and TCS2 is
that TCS2 maintains a set R of redundant pairs (with R set to ¥ in the top-level invo-
cation TCS2(7, (), k, ¥)) and ignores extensions S o {(x, y)) of the current sequence
S such that (x,y) € R. If {x, y} is a trivial cherry, this means that the invocation
TCS2(7, S, k, R) returns NONE. If {x, y} is anon-trivial cherry, then TCS2(7, S, k, R)
does not make the recursive call TCS2(T, S o ((x, ¥)), k, R). Note that R does not
contain all redundant pairs for S, only a subset for which we prove below that they
can safely be ignored based on the recursive calls the algorithm has made so far.

Procedure TCS2 calls a procedure UpdateR in lines 3 and 22. Given a partial tree-
child cherry picking sequence S, a set of pairs R that are redundant for S, and a pair
(x, ), UpdateR(T, S, (x, y), R) returns the subset R C R containing all pairs that
are redundant also for S o {(x, y)).
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The following definition formalizes the concept of a redundant pair.

Procedure TCS2(7, S, k, R)

Input: A collection of phylogenetic trees 7, a partial tree-child cherry picking sequence S, an
integer k, and a set R of redundant pairs for S
Output: An optimal solution of (T, S) if (7T, S) has a solution of weight at most £ and there do not
exist a proper prefix S, C S and a pair (x, y) € R such that S o ((x, y)) dominates some
optimal solution of (T, §). NONE if (T, S) has no solution of weight at most k. In any other
case, the output may be NONE or a (possibly suboptimal) solution of (T, S).
while there exists a trivial cherry {x, y} of T/S with y not forbidden with respect to S do
if (x,y) ¢ R then
R < UpdateR(T, S, (x,y), R);
§ <« So((x, )
else
L Return NONE;

T N

7T <~ T/S;
8 if 77 contains a cherry {x, y} with x, y both forbidden with respect to S then
9 | return NONE;

10 else

11 n' < |{x € X : x is aleaf of a tree in T’};

12 K < |S|—|X|+n';

13 C < {(x,y) | {x, y}is a cherry of some tree in 7"};

14 if |C| = 0 then

15 \ return S o ((x, —)), where x is the last remaining leaf in all trees;
16 else if |C| > 8k or k' > k then

17 ‘ return NONE;

18 else

19 Sopt < NONE;

20 R < R;

21 foreach (x, y) € C \ R with y not forbidden with respect to S do
2 R" < UpdateR(7, S, (x,y),R');

23 Stemp < TCS2(T, S o ((x, »), k, R");

24 if w(Stemp) < w(Sepr) then

25 L Sopl <~ Stemp§

26 R < R U{(x,y)};

27 | return Sops;

Procedure UpdateR(7, S, (x, ), R)

Input: A collection of phylogenetic X-trees T, a partial tree-child cherry picking sequence S, a pair
(x,y) € X x X, aset R of redundant pairs for S;
Output: A subset R* C R of redundant pairs for S o ((x, y));
1 return {(x’, y’) € R | x’ # y and count(x’, y', T/(S o {(x, y)))) = count(x’, y', T/S)};

Definition 1 Let T be a set of X-trees, S a tree-child cherry picking sequence, and
(x,y) € X x X. Let count(x, y, T/S) be the number of trees in T/S that have {x, y}
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as a cherry. An extension S o S’ of S is dominated by S o ((x, y)) if there exists an
index j > 1 that satisfies the following conditions:

e (x,y) is the jth element of §;
o count(x,y,T/S) = count(x,y, T/(S o S;’j_l)); and

e forall (x/,y) € S;’jfl, y' # x and {x', y'} # {x, y}.

If a sequence S o S o {(x, y)) is dominated by S o ((x, y)), we say that (x, y) is a
redundant pair for S o §'.

The next observation follows immediately from Definition 1.

Observation 18 If a sequence S o S’ is dominated by S o {(x, y)), then so is any
extension of S o S and any prefix S o 8” C S o 8’ such that (x,y) € S”.

Lemma 19 Ifa sequence S o S is dominated by S o {(x, y)) and (x, y) is the jth pair
in §’, then count(x, y, T/(S o Si’i)) = count(x,y, T/(S o Si’i_l))foralli e[j—1]

Proof Let 7' = T/S and let (x/, y/) be the ith pair in §’, for any index i €
[j — 11. Since {x],y} # {x,y}, the pair (x/,y!) does not eliminate the cherry
{x, y} from any tree in ‘.T//Si’if] that contains this cherry, so count(x, y, ‘J'//S{,i) >
count(x,y,T'/S} ; ). By Definition 1, count(x, y,T') = count(x,y, T//Si,jfl)'
Thus, if count(x, y, ‘T’/Si’l.) > count(x, y, ‘T’/Si’i_l), then there also exists an index
i’ € [j — 1] such that count(x, y, ‘I//S”l.,) < count(x, y, T//S;,i’—l)’ a contradic-
tion because we just argued that count(x, y, T'/S| ,)) = count(x,y,T'/S| ,,_,) for
all i’ € [j — 1]. This proves that count(x, y, T'/S} ;) = count(x, y, T'/S; ,_ ) for all
ielj—1] O

Lemma20 Ler (x,y) € X x X, and S o S| 0o S» o S3 a cherry picking sequence. If
S o ((x,y)) dominates S o S1 o S o ((x,y)) and S o S1 o ((x, y)) dominates S o
S1 080830 ((x,y)) 08, for some sequence S', then S o ((x, y)) also dominates
So0Si080830({(x,y))oS8”, for any sequence S .

Proof First assume that |S;| > 0, |S3] > 0, and (x, y) ¢ S; oS> o S3. Then (x, y)
is the jth element of S} 0 Sy 0 S30 ((x,y)) 08", for j =[S0 8 0 S3| +1 >
1. Since S o ((x, y)) dominates S o S; o S» o ((x,y)) and (x,y) ¢ S; o Sy, we
have y' # x and {x, y} # {x/, y'} for every pair (x’, y') € S| o S» and Lemma 19
shows that count(x,y,T/S) = count(x,y, T/(S o S1)) = count(x,y,T/(S o S| o
S>)). Similarly, since S o S; o ((x, y)) dominates S o S} o S» 0 §3 o {(x,y)) o &
and (x,y) ¢ S» oS3, we have y' # x and {x’, y'} for every pair (x’,y’) € $> 0 53
and count(x, y, T/(S o S1)) = count(x,y, T/(S o S1 0o §2 o §3). Together, these two
observations imply that count(x,y, T/S) = count(x,y,T/(S o S1 0 S2 0 S3)) and
y' # x and {x’, ¥’} # {x, y} for every pair (x, y) € S1 0 S» 0 S3. Thus, S o ((x, y))
dominates S o S; 0 52 0 S3 0 ((x, y)) o S”.

If |S1] = 0, then S o ((x, y)) = S o S o ((x, y)) and it follows immediately that
So{(x, y)) dominates SoS0S30830((x, y))oS’. By Observations 18, this implies that
So{(x, y)) dominates SoSj0S30830((x, y)) and thus also SoSj0S>0830((x, y))oS”.
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If |S3] = 0,then So S; 0 S0 ((x,y)) = S08] 080830 ((x,y)), soit follows
immediately that S o {((x, y)) dominates S o S; 0 Sy 0830 ((x, ¥)). By Observation 18,
this implies that S o {(x, y)) also dominates S o S| 0 § 0 S3 0 {(x, y)) o S”.

If (x, y) € S1 0 2, then the fact that S o ((x, y)) dominates S o S1 o $7 o ((x, ¥))
and Observation 18 imply that it also dominates S o S1 0 S, and thus also S0 Sj 0 8> 0
S30{(x,y)) 08"

Finally, if (x, y) € S3, then consider the longest prefix Sé C 83 such that (x, y) ¢
S5. Then, by Observation 18, S o Sy o ((x, y)) dominates S o Sj o S5 0 S5 o ((x, ¥)).
As shown so far, this implies that S o ((x, y)) dominates S o Sj 0 $7 o Sg o ((x, y)).
Since S5 o ((x, y)) is a prefix of S3 and, thus, of S3 o ((x, y)) o §”, Observation 18
now shows that S o {(x, y)) dominates S o Sj 0 S 0 S3 0 ((x, y)) 0 §”. O

The significance of redundant pairs stems from the following proposition.

Proposition 21 Let T be a set of X -trees, and SoS’ a tree-child cherry picking sequence
for T. Suppose that S o S’ is dominated by S o {(x, y)), for some pair (x, y) € X x X.
Then there exists a tree-child cherry picking sequence S o ((x, y)) o S” for T with
w(So{((x,y) oS8 <w(SoS).

In other words: If some branch of the algorithm already looks for an optimal solution
of (T,S o ((x, y))), then there is no need to also look for an optimal solution of
(T, S 08", for any sequence S o S” that is dominated by S o ((x, y)).

Proof We can write S’ = §” o {(x, y)) o §”" such that (x, y) ¢ S”. Let |S”| = h. For
0<i<hletS = Si/’i o {(x,y)) o Si//+1,h o 8. We prove by induction on i — i
that S o Slf is a tree-child cherry picking sequence for 7, for all 0 < i < h. Since
Sy = ((x,¥)) 08" 08" and w(S o §)) = w(S o "), this proves the proposition.

S o S}, is clearly a tree-child cherry picking sequence for T because S; = S’. So
assume that i < h and that S o §; 41 1s a tree-child cherry picking sequence for 7.

Let (x/, ¥') be the (i + 1)st pair in S”, that is, (x, y') is the predecessor pair of
(x,y)in S/, . Since So((x, y)) dominates S o S’, the choice of S” implies that y" # x
and, by Lemma 19, count(x, y, T/(S o Si”i)) = count(x,y,T/(S o Si/,i—&-l))' Since
So Slf 4 is tree-child, the former implies that S o S[ is tree-child. We use the latter in
the following proof that S o S/ is a cherry picking sequence for T.

Let T € T be an arbitrary tree, let T = T/(SoSi/’l.), letT, =T'/{(x",y), (x,y)),
and let T, = T'/{(x, y), (x, y')). We show that T, C T, and that T, \ T C {x'}.
Thus, since S o S7_ | is a tree-child cherry picking sequence and, therefore, x" # y”
forall (x”, y") € Sz{/-i-Z,h 08", Lemma 7 shows that T /(So §}) = Tb/(Sl{/-i-Z,h 08" C
Ta/(Slf/H’h 08"y =T/(SoS],,).Since T/(SoS;, ) hasasingleleaf and T /(S0 S;)
has at least one leaf, this shows that 7 /(S o §7) = T/(S o S;_ ), that is, S o S is a
cherry picking sequence for 7. Since this is true for every tree T € T, So S/ is a cherry
picking sequence for 7.

Tt remains to show that 7j, € T, and T,\ T}, € {x'}. Since count(x, y, ‘J'/(SoS{”i)) =
count(x, y, T/(So S|, )).citherboth T’ = T/(So S} ) and T'/{(x', y')) = T/(So
S{ ;1) contain {x, y} as a cherry or neither of them does.
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If neither T’ nor T’'/{(x’,y’)) contains {x,y} as a cherry, then 7T, =
T' /{1, (x, ) = TG, y)) = T/ {(x, ), &', y)) = Tp, s0 T € T, and
T\ Ty =0 C {x').

Ifboth 7" and T’ /{(x’, y')) contain {x, y} as a cherry, then observe that T’ /{(x’, y'))
does not contain {x’,y’} as a cherry. If T’ also does not contain {x’,y’} as a
cherry, then we have that T, = T'/((x',y)), (x,y)) = T'/{(x,y)) and T, =
T'/{(x,y), (x",¥)) = T,/{(x', y")). Since applying the pair (x’, y') to T, can only
remove the leaf x’, this shows that T, € T and T, \ Tj, C {x'}.

The final case is when T’ contains both {x, y} and {x’, y'} as cherries. Since
{x’, y'} # {x, y}, T’ must contain distinct vertices p and g such that p is the common
parent of x and y, and ¢ is the common parent of x" and y’. It follows that T} and
T, can both be derived from T’ by deleting x and x’ and suppressing p and g. Thus,
T, = Ty, that is, once again, T, C T, and T, \ T, = ¥ C {x'}. O

While our algorithm uses redundant pairs to ignore some dominated sequences
in its search for a shortest tree-child cherry picking sequence, it cannot ignore all
dominated sequences. Indeed, in many cases, every possible tree-child cherry picking
sequence for T is dominated by another sequence. Consider, for example, a binary
tree on X = {a, b, ¢, d} with cherries {a, b} and {c, d}. Any sequence for this tree
must begin with (a, b), (b, a), (¢, d) or (d, c). If the first pair is (a, b), then the second
pair must be either (c, d) or (d, ¢). But the sequence ((a, b), (¢, d)) is dominated by
((c,d)), and similarly ((a, b), (d, ¢)) is dominated by ((d, ¢)). A similar argument
applies to any other sequence we might try. Thus, if we did ignore all redundant pairs
for every sequence, the algorithm would not find any cherry picking sequence for 7.
This is the reason why procedure TCS2 explicitly keeps a set R of redundant pairs
that are safe to ignore; it ignores a sequence S o ((x, y)) only if (x,y) € R.

Following the terminology of Linz and Semple [14], we call a pair (x;, y;) in a
partial cherry picking sequence S = ((x1, y1), ..., (x;, yr)) essential if T/S1 ; #
J/81,j—1, thatis, {x;, y;} is a cherry of at least one tree in J/S; ;1 and, therefore,
applying the pair (x;, y;) to J/Sy, j—1 removes x; from at least one tree in T/S7 ;1.

Our correctness proof of procedure TCS2 is divided into two parts: First we prove
that if, for a given invocation TCS2(7, S, k, R), every pair in S is essential and every
pair in R is redundant for S, then

(i) This is true at any time during the execution of this invocation (even though the
invocation may modify S and R) and

(ii) For every recursive call TCS2(T, S”, k, R”) this invocation makes, every pair in
S” is essential and every pair in R” is redundant for S”.

Since the top-level invocation TCS2(T, (), k, #) satisfies S = () and R = (J, that
is, all pairs in § are trivially essential and all pairs in R are trivially redundant for
S, an inductive argument then implies that every pair in S is essential and every
pair in R is redundant for S at any time during the execution of any invocation
TCS2(7, S, k, R). The second part of the proof shows that, under this condition, the
invocation TCS2(7, (), k, ) returns a shortest tree-child cherry picking sequence for
T if this sequence has weight at most k; otherwise, it returns NONE.
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The following lemma shows that replacing R with the set returned by
UpdateR(7, S, (x, y), R) whenever we append a pair (x, y) to a sequence S main-
tains the property that every pair in R is redundant for S.

Lemma 22 Let So{(x, y)) be a partial tree-child cherry picking sequence whose pairs
are all essential, and let R € X x X. For every pair (x',y') in the subset R C R
returned by UpdateR (T, S, (x, y), R), the sequence So {(x, y), (x', ¥")) is dominated
by S o {((x",y)).

Proof By the definition of R’ in line 1 of procedure UpdateR, we have x’ # y and
count(x’,y', T/S) = count(x’, y', T/(So{(x, y)))) forall (x’, y’) € R’. Observe also
that {x, y} # {x’, y'}. Indeed, since every pair in S o ((x, y)) is essential, there exists
atree in T/ S that has {x, y} as a cherry, while there is no tree in /(S o ((x, y))) that
has {x, y} as a cherry. Thus, if {x, y} = {x’, ¥}, we would have count(x’, y', T/S) #
count(x’, y', T/(S o ((x, y)))), so (x',y’) ¢ R’. Since (x/,y’) is not the first pair
in {(x, y), (x’, ¥)), the sequence S o {(x, y), (x, y)) is therefore dominated by S o
(", ¥1). o

We are now ready to prove Claims (i) and (ii) above. Since each invocation
TCS2(T, S, k, R) may modify S and R, we use Sy and Ry to refer to the values
of S and R passed as arguments to this invocation, and S and R to refer to the current
values of S and R at any point during the execution of TCS2(7, S, k, R).

Lemma 23 Consider any invocation TCS2(T, So, k, Ro) such that every pair in Sy is
essential and every pair in Ry is redundant for So. Then

(i) At any time during the execution of this invocation, every pair in S is essential
and there exists a proper prefix S, C So for each pair (x’,y") € R such that
Sy o ((x',y") dominates S o ((x’, y)); and

(ii) For every recursive call TCS2(T, S”, k, R") this invocation makes, every pair in
S" is essential and every pair in R" is redundant for S

Proof (i) Initially, we have S = Sy and R = Ry. Thus, since every pair in Sy is
essential and every pair in Ry is redundant for Sp, (i) holds for this choice of S and R.
Next we prove that any modification the invocation makes to S and R maintains (i).
Observe that TCS2(7, So, k, Rp) modifies S and R only in lines 3 and 4. Consider one
iteration of the loop in lines 1-6 and let (x, y) be the pair added to S in this iteration.
Since {x, y} is a trivial cherry of TJ/S in this case and every pair in S essential,
every pair in S o ((x, y)) is essential. By Lemma 22, every pair (x’, y’) in the set
R’ returned by UpdateR(7, S, (x, y), R) in line 3 has the property that S o {(x’, y'))
dominates S o ((x, y), (x’, ¥")). Since R" C R, there exists a proper prefix S, C Sp
such that S, o ((x’, y')) dominates S o ((x’, y)). Thus, by Lemma 20, S, o ((x’, y))
also dominates S o ((x, y), (x’, y")) (where S and S o §; in Lemma 20 correspond
to S, and S respectively, S = (), and S3 = ((x, y))). Therefore, replacing S with
S o {(x, y)), and R with the set returned by UpdateR(7, S, (x, y), R) maintains that
every pair in S is essential and, for every every pair (x, y') € R, there exists a proper
prefix S, C So such that S, o ((x’, y')) dominates S o ((x’, y')).

(ii) Consider any recursive call TCS2(T, S o ((x, y)),k, R”) the invocation
TCS2(7, S, k, R) makes in line 23. By (i), all pairs in S are essential. Since (x, y) € C,
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{x, ¥} is a cherry of J/S. Thus, every pair in S o ((x, y)) is essential. By Lemma 22,
the set R” returned by UpdateR(7, S, (x, y), R') in line 22 contains only pairs that
are redundant for S o ((x, y)). Thus, (ii) holds. O

The following corollary follows by applying Lemma 23 inductively after observing
that So = () and Ry = ¢ for the top-level invocation TCS2(7, (), k, ¥).

Corollary 24 At any point during the execution of an invocation TCS2(T, So, k, Ro),
there exists a proper prefix S, C So for each pair (x', y') € R such that S, o ((x', y"))
dominates S o ((x', y')).

The next lemma states the fairly weak correctness guarantee that each invoca-
tion TCS2(T, So, k, Ro) provides. As we show below, in Corollary 26, this lemma
implies that the invocation TCS2(T, (), k, ¥) returns a shortest tree-child cherry pick-
ing sequence for T if there is such a sequence of weight at most k.

Lemma 25 Consider any invocation TCS2(T, So, k, Ro) the algorithm makes. If
(T, So) has a solution of weight at most k, then either TCS2(T, So, k, Ro) returns an
optimal solution of (T, So) or there exist an extension Syo S’ of Sy, a pair (x, y) € Ry,
and a proper prefix S, C So such that S, o ((x, y)) dominates S o S'.

Proof Since no invocation TCS2(T, S, k, R) makes more recursive calls than the
corresponding invocation TCS(T, S, k), Proposition 14 shows that each invocation
TCS2(7, S, k, R) has a finite number of descendant invocations, which we denote
by |[TCS2(7, S, k, R)|. Thus, if the lemma does not hold, we can choose an invo-
cation TCS2(T, So, k, Ro) that violates the lemma and has the minimum number of
descendant invocations |TCS2(7, Sp, k, Ro)| among all such invocations.

Since TCS2(T, So, k, Rp) fails to find an optimal solution of (7, Sp), TCS2
(T, So, k, Rp) returns NONE in line 6, 9, 17 or 27, or it returns a suboptimal solu-
tion of (T, Sp) in line 15 or 27. Next we consider these different cases:

TCS2(T, S0, k, Ry) returns NONE in line 9 or 17: Inthis case, TCS(T, Sy, k) would
have returned NONE in line 5 or 13. Thus, by Proposition 17, (T, Sp) has no
solution of weight at most &, a contradiction.

TCS2(T,So.k, Ry) returns a sequence Sg o S’ in line 15: In this case, TCS(T, Sp,
k) would have returned the same sequence in line 11. Thus, by Proposition 17,
Sop o S is an optimal solution of (T, Sp), a contradiction.

TCS2(T,S¢,k, Rp) returns NONE in line 6: In this case, consider the contents of S
and R immediately before TCS2(T, So, k, Ro) returns. There exists a trivial
cherry {x, y} of 7/S such that y is not forbidden with respect to S and (x, y) €
R. Since (7, Sp) has a solution of weight at most k, Proposition 8 shows that
(T, So{((x, y))) also has a solution of weight at most k and any optimal solution
of (T, So((x, y))) is also an optimal solution of (7, S). By Corollary 24, there
exists a proper prefix S, C Sg such that S, o((x, y)) dominates So((x, y)) and,
thus, by Observation 18, So{(x, y))oS’, for any optimal solution So{(x, y))oS’
of (T, S o {((x,y))), acontradiction.

TCS2(J,S¢,k, Rp) returns NONE or a suboptimal solution in line 27: In this case,
the corresponding invocation TCS(T, So, k) would have reached line 20.
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Since (7T, Sp) has a solution of weight at most k, Proposition 17 shows that
TCS(T, Sp, k) would have returned an optimal solution Sy o S of (T, Sp). This
solution satisfies Spo S’ = So((x, y))oS”, for some pair (x, y) € C, referring
to the state of S in line 3 of TCS(T7, S, k). This shows that there exists a pair
(x,y) € C such that (T, S o ((x, y))) has a solution of weight at most k and
any optimal solution of (T, S o ((x, y))) is also an optimal solution of (7, Sp).

Now consider the subset Cope C C of all pairs (x, y) such that (T, S o ((x, y)))
has a solution of weight at most k and any optimal solution of (7, S o ((x, y))) is
an optimal solution of (T, So). Order the pairs in Cop so that the pairs in Cope \ R
precede the pairs in Copy N R, and the pairs in Cope \ R are arranged in the order
in which TCS2(T, So, k, Ro) makes the corresponding recursive calls TCS2(7, S o
((x, ), R"). If for a pair (x,y) € Cop, TCS2(T, So, k, Rg) makes the recursive
call TCS2(T, S o {(x,y)), R”) and this recursive call returns an optimal solution
So((x,y))oS8" of (T, So((x, y)), then TCS2(T, Sy, k, Rp) returns a solution Sy o §’
of (T, Sp) that is no longer than S o ((x, y)) o §”. By the choice of Cop, So o §” is
thus an optimal solution of (T, Sp). Since we assume that TCS2(7, Sp, k, Rg) does not
return an optimal solution of (T, Sp), it follows that for each pair (x, y) € Copy, either
TCS2(T, Sy, k, Ro) does not make the recursive call TCS2(T, So((x, y)), k, R”) (that
is, (x, y) € Copt N R) or it makes this recursive call (that s, (x, y) € Copt \ R) but the
recursive call returns NONE or a suboptimal solution of (7T, S o ((x, y))).

Now let (x, y) be the first pair in Cyp; according to the ordering defined above.

o IfTCS2(T, S, k, Ro) does not make the recursive call TCS2(T, So{(x, y)), k, R"),
then (x, y) € R. Thus, by Corollary 24, there exists a proper prefix S, C Sy such
that §), o ((x, y)) dominates S o ((x, y)). Since S o ((x, y)) is an extension of Sp,
this is a contradiction.

o If TCS2(T, Sy, k, Ry) does make the recursive call TCS2(T, S o {(x, y)), k, R"),
then TCS2(T, S o ((x, y)), k, R”) does not return an optimal solution of (T, S o
((x, ¥))). Thus, since |TCS2(T, S o {(x, y)), k, R")| < |TCS2(T, Sy, k, Ro)|, the
choice of TCS2(T, Sy, k, Ro) implies that there exist an extension S o {(x, y))o S’
of S o ((x,y)),aprefix S, C S, and a pair (x’, y') € R” such that S, o ((x’, y))
dominates S o {(x, y)) o §". Now we distinguish two cases.

- If (', y') € R, we prove that there exists a proper prefix S), C So such that
S;, o {(x’, ¥)) dominates S o ((x, y)) o §’. Since Sy € S o ((x, y)) o §" and
R C Ry, this implies that TCS2(T, Sp, k, Ryg) does not violate the lemma, a
contradiction. If §;, C Sp, we can set S; = §p. So assume that Sy € S, C S.
Since (x', y") € R, Corollary 24 shows that there exists a proper prefix S ;7 C So
such that S;, o{(x’,y")) dominates S o ((x’, y')). By Lemma 20, S; o ((x, ¥y))
also dominates S o ((x, y)) o S' (where (x, y) in Lemma 20 corresponds to
(x',y),and S, S0 S;, 5081082, 8508080830 ((x,y)) oS” correspond
to S;), S0, Sp, S o ((x,y)) oS respectively).

- If (x',y) ¢ R, then (x’,y") € R’ \ R, which implies that (x',y") €
C \ R and, therefore, TCS2(T, Sy, k, Ro) makes a recursive call TCS2(T, S o
((x’, y)), k, R"") before the recursive call TCS2(T, S o {(x, y)), k, R”). Since
So{(x’,y")) dominates S o {(x, y)) o S’, Proposition 21 shows that there exists
a solution So ((x’, y')) o S” of (T, So ((x’, ¥))) that satisfies w(S o ((x’, y)) o
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") < w(S o {(x,y)) oS). Since S o ((x,y)) oS is an optimal solution of
(T, So), this implies that So ((x’, y')) 0.S” is also an optimal solution of (T, Sp).
Thus, (x’, y") € Copt, a contradiction because (x, y) is the first pair in Copy.

O

Corollary 26 The invocation TCS2(T, (), k, ?) returns a shortest tree-child cherry
picking sequence for T if there exists such a sequence of weight at most k. Other-
wise, TCS2(T, (), k, @) returns NONE.

Proof 1f there is no tree-child cherry picking sequence for T of weight at most k,
then Proposition 17 shows that the invocation TCS(7, (), k) returns NONE. Since each
invocation TCS2(7, S, k, R) is easily seen to return a sequence only if TCS(T, S, k)
returns a sequence, this implies that TCS(7, (), k, #) returns NONE if there is no tree-
child cherry picking sequence of weight at most k.

So assume that there exists a tree-child cherry picking sequence for T of weight
at most k. If TCS2(T, (), k, ) does not return a shortest tree-child cherry picking
sequence for T, then Lemma 25 states that there exists an extension S of (), proper
prefix S, C (), and a pair (x, y) € ¥ such that S, o ((x, y)) dominates S. However,
neither S, nor the pair (x, y) can exist. Thus, TCS2(T, (), k, ¥) returns a shortest
tree-child cherry picking sequence for 7. O

As already observed in the proof of Lemma 25, each invocation TCS2(7, S, k, R)
makes at most as many recursive calls as its corresponding invocation TCS(7, S, k), so
the total number of recursive calls made by the algorithm is still bounded by O ((8K)%).
Using standard techniques, including binary search trees and integer sorting, and a
careful implementation of lines 1-6 that avoids calling UpdateR in each iteration, it
is possible to show that the cost per recursive call remains O (nt 1gt), including the
cost to query and maintain R. Thus, the worst-case running time of the algorithm
remains O ((8k)*nt lgt + nt Ignt). Since we are interested in using redundant branch
elimination mainly as a heuristic improvement of the running time of the algorithm
in practice, we do not prove this here. Note that redundant branch elimination is a
heuristic only as far as improving the running time is concerned; Corollary 26 above
shows that it preserves the algorithm’s correctness.

5 Implementation and Experiments

In order to evaluate the usefulness of the algorithm presented in this paper, we imple-
mented it and ran experiments on synthetic and realistic inputs to answer the following
questions:

e How difficult inputs can our algorithm handle, both in terms of the number of
reticulations in the computed network and the number of trees in the input?

e How does the running time of our algorithm compare to that of its closest com-
petitor, HYBROSCALE?

The answer to this second question is that, for inputs with at least 3 trees, our algorithm
ran significantly faster than HYBROSCALE. Since HYBROSCALE computes optimal
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hybridization networks, without any restrictions on their structure, while our algo-
rithm computes optimal tree-child networks, we effectively buy this faster running
time at the price of restricting the types of outputs we can compute and, consequently,
possibly missing some optimal networks that are not tree-child. This raises the fol-
lowing natural question:

e For inputs for which both our algorithm and HYBROSCALE were able to compute
a network, by how much did the reticulation numbers of the computed networks
differ?

The discussion of our experimental results is divided into the following subsec-
tions: Sect. 5.1 discusses the hardware and software environment on which we ran our
experiments, as well as some high-level characteristics of our implementation. The
complete source code, test data, and the programs we used to prepare the test data
are available from https://github.com/nzeh/tree_child_code, including detailed doc-
umentation. Section 5.2 describes the data sets used in our experiments. Section 5.3
briefly discusses the tuning parameters of our implementation used throughout our
experiments. Section 5.4 discusses our experimental results.

5.1 Evaluation Environment and Some Implementation Details

Our evaluation platform was a Linux system with a quad-core Intel Xeon W3570
running at 1.7GHz and 24GB of DDR3 RAM clocked at 1333MHz. The operating
system was Debian GNU/Linux 9 with a 4.19.46-64 Linux kernel. Our code for com-
puting a tree-child network was implemented in Rust version 1.27.0. HYBROSCALE
was implemented in Java, and we used Java version 1.8.0_161 to run it.

Our code implements procedure TCS2, that is, it uses redundant branch optimiza-
tion. It also uses a number of additional optimizations:

Check for redundant pairs using occurrence counts: The check for redundant
pairs (pairs in R) was implemented by recording two counts c(,,y) and
C(y,x) for each cherry {x, y} of J/S; c(y,y) is the number of trees that con-
tained the cherry {x, y} the last time an ancestor invocation made a recursive
call TCS2(T, S o ((x,y)),k, R); c(y,x) is the number of trees that con-
tained this cherry the last time an ancestor invocation made a recursive call
TCS2(T, S o ((y, x)), k, R). Whenever we append a pair (v, w) to S, we set
Cix,y) = 0if w = x, and ¢(y x) = 0if w = y. It is easy to verify that this
ensures that (x, y) is redundant for the current sequence S if and only if the
number of trees in T/ that contain the cherry {x, y} equals ¢y, y). Similarly,
(v, x) is redundant for S if and only if the number of trees in J/§ that contain
the cherry {x, y} equals c(y ).

No copying of an invocation’s state for each recursive call: The state of each invo-
cation (current set of trees, set of trivial cherries, set of non-trivial cherries,
partial tree-child cherry picking sequence, and information about the cherries
and trees containing each leaf) is fairly large. To avoid the overhead of copying
this state for each recursive call, each recursive call instead modifies its parent
invocation’s state without making a copy. These modifications are recorded
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in a log and are undone when the recursive call returns, thereby restoring the
parent invocation’s state.

Search for the optimal k: The search for an optimal tree-child cherry picking
sequence calls the procedure TCS2(7, (), k, #) with increasing values of k
until it reports success. This guarantees that the parameter & is no larger than
the tree-child hybridization number of each input.

Parallelization: The different branches of the recursive search for an optimal tree-
child cherry picking sequence are clearly independent and can thus be assigned
to different threads of a parallel implementation of procedure TCS2. One chal-
lenge was that, especially in the presence of redundant branch elimination, the
computational costs of different branches can differ substantially.

To balance the load between threads, we implemented a work sharing scheduler that
allows idle threads to send messages to busy threads to request part of their workload.
In response to such a request, the busy thread sends a branch on its recursion stack
that is yet to be explored to the requesting thread. In the interest of minimizing the
number of messages exchanged between threads, the busy thread always shares the
next branch from the bottom of its recursion stack, hopefully corresponding to a large
subtree in the algorithm’s recursion.

The communication protocol was implemented using light-weight spinlocks to
minimize the amount of time busy threads spend on communicating with other threads.

Cluster reduction Cluster reduction [4,13] has been observed to be the most impor-
tant optimization in phylogenetic network construction methods for pairs of
trees [12]. While we expect cluster reduction to be less effective for more
than two trees, our implementation still applies cluster reduction because it is
relatively cheap and should still have a significant impact on the algorithm’s
running time for real-world inputs.

In order to complete all our experiments in a reasonable amount of time, we limited
every run of our algorithm or of HYBROSCALE to 60 minutes. If the algorithm did not
produce a result within this time limit, we consider this input to be unsolvable by the
algorithm in the context of this evaluation.

5.2 Test Data
We used synthetic and real-world data for the performance evaluation of our algorithm.
5.2.1 Synthetic Data

To generate a test instance with 7 trees over a set of n leaves and with tree-child
hybridization number close to k, we generated a random tree-child network N on n
leaves and with k reticulations. Then we extracted a random set of ¢ trees displayed
by N.

Network generation To generate the network N, we initialized N to be a tree with two
leaves. A network with n leaves and k reticulations could then be obtained by adding
s, = n+k — 2 tree nodes and k, = k reticulations to N. The total number of non-leaf
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nodes to be added was s, + k. Thus, as long as s, > 0 and k, > 0, we added either a
tree node or a reticulation.

To add a tree node, we chose an existing leaf # and added two new leaves v and
w with parent u. This turned u into a tree node while not affecting any existing
reticulations or tree nodes. Thus, s, decreased by one while k, remained unchanged.

To add a reticulation, we chose two leaves u# and v; merged v into u, making u
and v the same node; and then added a new leaf w with parent u. This turned u into
a reticulation while not affecting any existing reticulations or tree nodes. Thus, k;
decreased by one while s, remained unchanged.

In order to ensure that the network was tree-child, the two nodes u and v to be
merged were chosen from the set M of all nodes whose parents and siblings were tree
nodes or leaves. We also ensured that the network had no parallel edges by picking
u and v so that they had different parents. Thus, if |[M| = 1 or [M| = 2 and the two
nodes in M had the same parent, then there were no two nodes u and v that could be
added while keeping the network tree-child and not introducing any parallel edges. In
this case, we added a new tree node. If it was possible to add a reticulation node, then
we added a tree node with probability srikr and a reticulation with probability srlikr .

If we added a tree node, we chose the leaf u to be turned into a tree node uniformly
at random from the current set of leaves.

If we added a reticulation, we chose u and v uniformly at random from the set M. If
the two chosen nodes « and v had the same parent, we repeated this selection process
until they did not.

This random addition of tree nodes and reticulations continued until 5, = 0 or

kr = 0.If k, = 0 and s, > 0, we kept adding tree nodes using the procedure above
until s, = 0. If s, = 0 and k. > 0, we kept adding reticulations using the procedure
above until either k, = 0 or it was impossible to add more reticulations because either
[M| = 1or |M| =2 and the two leaves in M had the same parent.
Tree generation We selected ¢ (or fewer) trees displayed by N by repeating the follow-
ing process: We deleted one of the parent edges of each reticulation in N uniformly
at random and suppressed every node with only one child in the resulting tree. If the
newly generated tree already existed within the list of trees (with the same Newick
representation), then we did not add it to the list. We maintained a count of the number
of times this occurred. Once this count reached 100 or we had ¢ trees in our list, we
terminated the process and returned the trees.

Note that the set of trees generated using this process was not guaranteed to have
tree-child hybridization number k. First, the network generation did not guarantee that
we obtained a network with k reticulations if we stopped the network generation with
a value of k. > 0 and without any pairs of leaves that could still be merged. Second,
even if N did have k reticulations, there may exist a tree-child network with fewer
than k reticulations that also displays the obtained set of trees.

5.2.2 Real-World Data
The real-world data we used in our experiments was derived from a collection of gene

trees for 159,905 distinct homologous gene sets found in a set of 1,173 bacterial and
archaeal genomes. These gene trees were constructed by Beiko and are described in
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more detail in [5]. They were also used as a test data set, for example, in the evaluation
of a method for constructing SPR supertrees [20]. Beiko’s data set (as almost every
real-word data set) poses two challenges for our algorithm. First, bipartitions with low
support in this data set were collapsed, so the input trees are multifurcating. Second,
since not all genes are present in all taxa, the label sets of the input trees differ.

To obtain a collection of binary trees over the same label set, we used a two-step
process: First, given the desired number of leaves n as a parameter, we selected a subset
of n taxa X and all trees that contained all of these taxa. Then we restricted the selected
trees to the chosen label set X, thereby obtaining a collection of multifurcating trees
over this set of n taxa. Second, we resolved multifurcations in these trees to obtain
a collection of binary trees. If we had resolved multifurcations randomly, it would
have been very likely that any network displaying the constructed trees contains many
reticulations that result only from inconsistent resolutions of the input trees. To avoid
this, we introduced inconsistent resolutions into different input trees only if the input
trees forced us to do so. This procedure is described in more detail below and at https://
github.com/nzeh/tree_child_code.

We did not evaluate whether the resulting trees are biologically plausible (beyond
the degree to which every binary resolution of a well supported multifurcating tree
is plausible). Our only goal was to construct a test data set whose characteristics, in
terms of number of reticulations and existence of clusters that allow the input to be
decomposed into easier inputs, resemble those of typical real-world inputs, in order
to evaluate the usefulness of our algorithm to construct phylogenetic networks for
non-trivial real-world inputs.

Selection of leaf set and trees To extract as many trees with a given number of common
leaves n, we used the following strategy: we started with an empty set of leaves X =
and the entire set of 159,905 input trees J. Then we repeated the following process
n times: Let Y be the set of all unique taxa of the trees in T and letx € Y \ X be a
taxon that occurs in the maximum number of trees in J. Then we added x to X and
discarded all trees from 7 that did not contain x. At the end of this iterative process,
we obtained a set of trees J that contained all taxa in X. As already mentioned, the
next step was to restrict every tree in T to the label set X.

Binary resolution Binary resolutions were obtained by repeating the following process
until all trees were binary: Inspect the trees in T in an arbitrary order. For each tree,
inspect its multifurcations in an arbitrary order. For each multifurcation u, consider
all pairs {v, w} such that v and w are children of u. For each such pair, count the
number of resolved triplets (triplets of the form ab|c as opposed to a|b|c) that would
be introduced by resolving {v, w} (that is, by making v and w children of a new node
1’ and making u’ a child of «) and which are also present in at least one other tree in
J.

If there exists such a pair {v, w} that introduces at least one introduced resolved
triplet that exists also in some other tree in 7T, then resolve the pair that maximizes
the number of introduced resolved triplets that exist in other trees. If no such pair is
found, then move on to the next multifurcation in the current tree or to the next tree if
there are no more multifurcations left to inspect in the current tree.
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If the above steps resolve at least one multifurcation, then start another iteration.

Otherwise, pick an arbitrary multifurcation in one of the trees and a random pair
of children of this multifurcation and resolve it. Then start another iteration. (This
random resolution will be matched by all other trees in the next iteration, thus forcing
consistency between the trees.)
Test instances By running the above procedure with parameter n € {10, 20, 30, 40,
50, 60, 80, 100, 150}, we generated tree sets with this number of leaves and with
between 21 and 1,684 trees for n = 150 and n = 20, respectively. To obtain an input
with a given number of leaves n and a given number of trees ¢, we selected ¢ of the
trees with n leaves uniformly at random.

5.3 Parameter Tuning

Our implementation of procedure TCS2 accepts a number of command-line argu-
ments, mainly to facilitate the type of performance evaluation we conducted. The
most important options are turning cluster reduction on or off, turning redundant
branch elimination on or off, configuring the number of threads across which to dis-
tribute the algorithm’s work, and controlling how frequently busy threads check for
work requests from idle threads. More threads allow the operating system to help with
load balancing but too many threads result in scheduling overhead. Similarly, frequent
checks for work requests from idle threads help with load balancing by ensuring that
idle threads never remain idle for too long but increase the overhead that slows down
busy threads.

In preliminary experiments, we determined that we obtained the best performance
using eight threads (-p 8) on our system. The frequency of checks for work requests
had negligible impact on the algorithm’s performance as long as idle threads did not
wait for work for too long. Throughout the experiments discussed here, we made a busy
thread check for work requests from idle threads every 100 iterations through its main
loop (-w 100). Cluster reduction never hurt performance but helped substantially on
most real-world inputs, so we never turned it off. Since redundant branch elimination is
a potentially important optimization of our algorithm discussed in Sect. 4, we dedicate
a separate section to discussing its impact on the algorithm’s performance.

5.4 Results
5.4.1 Does Redundant Branch Elimination Help?

Our first experiments concerned whether redundant branch elimination helps to reduce
the running time of the algorithm in practice. To evaluate this, we ran the algorithm
with redundant branch elimination on a synthetic data set. For the runs with redundant
branch elimination, we used three test inputs for every possible combination of the
following parameters:

e Number of trees: t € {2, 5, 10, 15, 20, 50, 100}
e Number of reticulations in the original network: k € {2,3,4,5,6,7,8,9, 10,
11,12}
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Fig. 5 The speed-up (running time without redundant branch elimination (-BR) divided by the running
time with redundant branch elimination (+BR)) achieved by redundant branch elimination on 658 instances
solvable with and without redundant branch elimination. a as a function of the number of reticulations and b
as a function of the running time without redundant branch elimination. The shading of reticulation numbers
7 and 8 indicate that not all inputs with 7 or 8 reticulations were solved by the algorithm, so particularly
the flattening of the curve may be the result of limiting the running time of the algorithm and testing only a
restricted set of inputs. We would expect that the effect of redundant branch elimination keeps increasing
as the number of reticulations increases, given that there seems to be no plateauing of the speed-up as a
function of running time in (b)

e Number of leaves: n € {20, 50, 100, 150, 200}

resulting in a set of 1155 inputs. The algorithm was able to solve 1016 of these inputs
within the 1-h time limit. Without redundant branch elimination, the algorithm was
not able to solve any synthetic inputs with k > 8 within the time limit. Of the 735
inputs with k < 8, it was able to solve 658 inputs within the time limit.

Figure 5 shows the speed-up achieved by using redundant branch elimination on
the 658 inputs the algorithm was able to solve without it. As can be seen, the effect
of redundant branch elimination increased with increasing reticulation number and,
correspondingly, with increasing running time of the algorithm, reaching a speed-up
of up to 1000 on some instances with six and seven reticulations.

Figure 6 shows that redundant branch elimination increased the difficulty of inputs
our algorithm was able to solve within the 1-h time limit. Without branch reduction,
the algorithm was able to solve all instances with reticulation numbers up to six and
some instances with up to eight reticulations. With redundant branch reduction, the
algorithm was able to solve all instances with reticulation numbers up to eight and
some instances with up to 11 reticulations.

5.4.2 Real-World Inputs That Can Be Solved

Our next experiment tested whether we can solve real-world instances with non-
trivial numbers of reticulations efficiently using our algorithm. For this experiment, we
extracted ten test instances from the real-world data set for every possible combination
of the following parameters:

e Number of trees: ¢ € {2,3,4,5,6,7, 8}
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Fig.6 Running times of our algorithm with and without redundant branch elimination, as functions of the
number of reticulations. As in Fig. 5, the shaded regions indicate reticulation numbers for which not all
input instances were solved within the 1-h time limit. Transparent dots are data points, opaque dots indicate
the average together with the 95% confidence intervals
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Fig.7 Running times of our algorithm on real-world data as a function of the reticulation number (left) or
the level (right)

e Number of leaves: n € {10, 20, 30, 40, 50, 60, 80, 100, 150}

The algorithm was run with redundant branch elimination and cluster reduction. Of
the 630 test inputs, our algorithm was able to solve 306 within the 1-hour time limit.
The left graph in Fig. 7 shows the running time of our algorithm on the instances it
was able to solve as a function of the number of reticulations. We make two important
observations: First, even though our algorithm was not able to solve any synthetic
inputs with more than 11 reticulation even with redundant branch elimination turned
on, it was able to solve real-world inputs with up to 50 reticulations. Second, the
running time varied greatly across instances with the same number of reticulations.
Both observations can be explained by the fact that the real-world data has much
more structure and can be decomposed into non-trivial clusters. The time needed to
find a (tree-child) hybridization network for such an input then depends primarily on

@ Springer



Algorithmica

parameter
e

parameter
25 ® e
level

network complexity
network complexity
-
G
°

10 IIIIIII 7'511

¥

10 20 30 40 50 60 80 100 150 2 3 4 5 6 7 8
leaves trees

Fig.8 The reticulation number and the level as a function of the number of leaves and trees in the real-world
inputs

the maximum (tree-child) hybridization number of these clusters (as opposed to the
hybridization number of the whole input, which can be much higher). This maximum
(tree-child) hybridization number of all clusters is commonly referred to as the (tree-
child) level of the input. Figure 8 shows the number of reticulations and the level of the
real-world inputs as a function of the number of trees. These figures demonstrate that
the network levels were significantly lower than the number of reticulations, something
that had also been observed for inputs consisting of two trees and which is the key
to the fast running times of MAAF-based algorithms for pairs of trees. It came as a
bit of a surprise that the same was true also for more than two trees. However, the
right graph in Fig. 8 demonstrates that the gap between level and reticulation number
narrowed as the number of trees increased.

Using cluster reduction, the running time of the algorithm is determined by the
level of the computed network rather than the reticulation number. Thus, the right
graph in Fig. 7 shows the running time as a function of the level of the computed
network. This figure highlights another important fact: We were able to solve real-
world instances with level up to 21 whereas level 11 was the limit for synthetic inputs.
This suggests that even the clusters seemed to have significantly more structure than
random instances, which allowed the algorithm to branch on fewer non-trivial cherries
in each recursive call than on synthetic instances.

5.4.3 Dependence of the Running Time on the Number of Trees and Number of
Leaves

The theoretical analysis of our algorithm predicts an exponential dependence of its
running time only on the number of reticulations /., whereas the running time should
depend only nearly linearly on both n and ¢. To verify this, we divided the observed
running times, for each value of A between 1 and 8, by n and then by 7. Figure 9
shows the results. The negative slopes of these curves confirms that the running time
in practice depends at most linearly on each of n and .
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Fig.9 Running times of the algorithm with redundant branch elimination on all synthetic test inputs divided
by the number of trees (left) and the number of leaves (right). Error bars denote a 95% confidence interval

5.4.4 Comparison with HYBROSCALE

The most interesting question is whether optimal tree-child networks can be computed
significantly faster than unrestricted hybridization networks. To answer this question,
we compared the running time of our algorithm against that of its closest competitor
HYBROSCALE, which computes unrestricted hybridization networks. For this compar-
ison, we used synthetic data and real-world data. In order to test a wide range of test
inputs, we limited the time per run to 20 min for synthetic inputs and to 60 min for
real-world inputs. Since we ran our algorithm with eight threads, we did the same for
HYBROSCALE.

Synthetic data We tested both our algorithm and HYBROSCALE on six test inputs for
every possible combination of the following parameters:

e Number of trees: r € {3, 5, 10, 20}
e number of reticulations in the original network: k € {1,2,3,4,5,6,7,8,9, 10,
11,12}

and on six inputs with 2 trees and k € {2, 4, ..., 28, 30}. All instances had 20 leaves.
We used a wider range of reticulation numbers (and compensated for this by using only
three instances for each value of k) for inputs with only two trees because we expected
HYBROSCALE to run very fast on such inputs (because MAAF-based algorithms are
very fast for pairs of trees).

Ascanbeseenin Fig. 10 and as expected, HYBROSCALE outperformed our algorithm
on inputs consisting of two trees and for more than seven reticulations. For more
than two trees, our algorithm ran faster than HYBROSCALE due to the near-linear
dependence of our algorithm on the number of trees and the exponential dependence
of HYBROSCALE on the number of trees. The difference became very pronounced for
10 and 20 trees, where HYBROSCALE was unable to solve most instances whereas
our algorithm solved all test instances within the 20-min time limit. Additionally,
HYBROSCALE ran out of memory on certain occasions.

Real-world data For this experiment, we used the same data set as in Sect. 5.4.2. As
mentioned before, our algorithm solved 306 of the 630 inputs in the 1-hour time limit;
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Fig. 10 Running times of our Algorithm and HYBROSCALE on synthetic inputs. Since our algorithm solved
all test instances and HYBROSCALE did not, we chose the tree-child hybridization number as the x-axis.
Bars indicate a 95% confidence interval. Stars indicate significant differences between the running times
of the two algorithms using an independent 7-test with unequal variances (*: p < 0.05, **: p < 0.01)

HYBROSCALE solved 152 inputs, which were a subset of the 306 inputs solved by our
algorithm. On 5 of the 2-tree inputs, HYBROSCALE outperformed our algorithm. On
all other inputs, including all other 2-tree inputs, our algorithm was faster. Figure 11
shows the detailed results.

5.4.5 Hybridization Versus Tree-Child Hybridization

The final question we were interested in was whether optimal tree-child hybridization
networks have significantly more reticulations than the optimal unrestricted hybridiza-
tion networks for the same sets of trees or whether tree-child hybridization networks
are often also optimal hybridization networks.

Of the 268 synthetic inputs that both our algorithm and HYBROSCALE were able to
solve, only 3 had a greater tree-child hybridization number than their hybridization
number. For all three inputs, the difference was 1.

Of the 142 real-world inputs solved by both our algorithm and HYBROSCALE, 21
had a greater tree-child hybridization number than their hybridization number. For 20
of these inputs, the difference was 1; for 1 input, the difference was 2.

This indicates that very often, tree-child hybridization networks achieve the optimal
hybridization number and, even when they do not, they offer a reasonable approxi-
mation of optimal hybridization networks. Given that they are substantially easier to
compute, as our results in the previous subsection demonstrate, tree-child networks
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Fig. 11 Running times of our algorithm and HYBROSCALE on real-world inputs. Since our algorithm solved
all test instances that HYBROSCALE was able to solve, we chose the tree-child level as the x-axis. Bars
indicate a 95% confidence interval. Stars indicate significant differences between the running times of the
two algorithms using an independent 7-test with unequal variances (*: p < 0.05, **: p < 0.01)

therefore offer a useful analysis tool that can be used in place of hybridization networks
in many instances.

6 Conclusion

We have presented the first fixed-parameter algorithm for computing optimal tree-child
networks for many binary trees on the same label set, based on the recently introduced
concept of tree-child cherry picking sequences. While the theoretical running time of
our algorithm is substantially greater than that of MAAF-based network construction
methods for two trees, our experimental results confirm that our algorithm can be used
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to solve non-trivial real-world inputs efficiently. Similarly to MA AF-based algorithms
for two trees, a key factor determining whether an instance can be solved efficiently is
whether it can be decomposed into non-trivial clusters. While it comes as no surprise
that randomly generated inputs consisting of more than two trees (almost) cannot
be decomposed into clusters and thus cannot be solved efficiently, except for fairly
small numbers of reticulations, the real-world inputs in our experiments contained
sufficiently many non-trivial clusters, which allowed us to solve some inputs with up
to 50 reticulations within one hour or less.

The closest competitor of our algorithm, HYBROSCALE, which computes unre-
stricted hybridization networks, outperformed our algorithm on inputs consisting of
two trees, which was to be expected because MAAF-based methods are very effi-
cient for computing optimal hybridization networks for pairs of trees. Already for
three trees, our algorithm outperformed HYBROSCALE and, for more than six trees,
HYBROSCALE was not able to solve any of the inputs our algorithm was able to solve,
due to its exponential dependence on the number of trees.

While our results are promising, they should only be considered to be a first
important step towards efficient algorithms for computing (tree-child) hybridization
networks from many input trees. Here are two natural and important open questions
to be addressed by future work:

Can tree-child hybridization networks be computed faster than in 0((ck)k .
poly(n, t)) time, ideally in o(ck . poly(n, t)) time? For temporal networks, a recent
result [8] shows that this is indeed the case. An interesting open question is whether
the techniques used in that algorithm can also be used to obtain faster algorithms for
computing general tree-child networks.

Most real-world inputs are multifurcating, as a result of suppressing branches in
gene trees with low support. Thus, it would be of great importance to obtain effi-
cient methods for constructing (tree-child) hybridization networks from multifurcating
trees. Our algorithm is able to do this but only if we sacrifice the FPT bound on its
running time: the bound on the number of non-trivial cherries in Proposition 9, which
is the key to bounding the branching number of our algorithm, holds only if the input
trees are binary. It remains an open question whether there exists a fixed-parameter
algorithm for computing optimal tree-child hybridization networks for multifurcating
trees.
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A Construction of a Tree-Child Network from a Tree-Child Cherry Pick-
ing Sequence

Procedure TreeChildNetworkFromSequence(7, S)

R I R

_
==

e
B W N

—
n

—
a

Input: A set of X-trees T and a tree-child cherry picking sequence
S =((x1,51), -+ &, ¥r), (5pgq, —)) for T
Output: A tree-child phylogenetic network N on X that displays T and with reticulation number at
most w(S)

if |X| = 1 then

‘ return the unique network consisting of a single node labelled with the element of X ;
else
N < the directed graph with nodes p and x, | and a single edge px,41;
for j < r downto 1 do
Split the parent edge of y; in N by adding a node p;
if x; is a leaf of N then
if x; s parent in N is a reticulation r then

| g <r
else

L Split the parent edge of x; in N by adding a node g;

else
Add xj to N;
L g < xj;
| Add the edge pg to N;

return N;
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