
 
 

Delft University of Technology

A closed-form solution of dowel action based on beam on elastic foundation theory and
fracture mechanics

Lu, Jiandong; Yang, Yuguang; Hendriks, Max A.N.

DOI
10.1016/j.engstruct.2024.118430
Publication date
2024
Document Version
Final published version
Published in
Engineering Structures

Citation (APA)
Lu, J., Yang, Y., & Hendriks, M. A. N. (2024). A closed-form solution of dowel action based on beam on
elastic foundation theory and fracture mechanics. Engineering Structures, 315, Article 118430.
https://doi.org/10.1016/j.engstruct.2024.118430

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.engstruct.2024.118430
https://doi.org/10.1016/j.engstruct.2024.118430


Engineering Structures 315 (2024) 118430

Available online 20 June 2024
0141-0296/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

A closed-form solution of dowel action based on beam on elastic foundation 
theory and fracture mechanics 

Jiandong Lu a,*, Yuguang Yang a, Max A.N. Hendriks a,b 

a Deparment of Engineering Structures, Delft University of Technology, Stevinweg 1, Delft 2628CN, the Netherlands 
b Department of Structural Engineering, Norwegian University of Science and Technology, Richard Birkelands vei 1A, Trondheim 7491, Norway   

A R T I C L E  I N F O   
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A B S T R A C T   

This paper proposes a new mechanical model to describe the dowel action with the aim of using the model to 
gain a deeper understanding of the unstable dowel splitting cracking observed in shear experiments of beams 
without shear reinforcement. The model was developed by combining beam on elastic foundation (BEF) theory 
and fracture mechanics. The proposed model is able to predict the whole evolution process of dowel action until 
the propagation of the dowel splitting crack becomes unstable. The model theoretically proves that the devel-
opment of a dowel splitting crack can become unstable under certain conditions, therefore leading to the un-
stable shear failure of the whole member. In addition to the derivation of the analytical model, the paper also 
validates the model using data from the literature. Finally, an analytical solution of the critical shear displace-
ment that triggers the unstable dowel splitting crack is derived. It can be used to improve the failure criterion 
initially proposed in the Critical Shear Displacement Theory (CSDT).   

1. Introduction 

Dowel action is recognized as one of the primary shear transfer 
mechanisms by many researchers [1–9]. It stands for the mechanism 
that reinforcement transfers shear force perpendicular to its axial di-
rection. As a shear transfer mechanism, it was first reported by Friberg 
[10]. In 1965, Acharya and Kemp [11] emphasized the importance of 
dowel action in the reinforced beam without shear reinforcement. 

Various studies in literature [12–15] suggest that dowel action 
typically contributes 15 %− 25 % of the total shear resistance of a 
reinforced concrete (RC) beam without shear reinforcement. Therefore, 
it was not regarded as the most critical shear transfer mechanism. 
However, Chana [16] found in his shear tests that the width of the dowel 
crack increased rapidly as the specimens reached the flexural-shear 
failure. This observation implied that flexural-shear failure is associ-
ated with dowel splitting. He also demonstrated that the shear capacity 
of an RC member could be increased significantly if the dowel splitting is 
limited by providing additional ‘links’ locally along the longitudinal 
reinforcement. A similar observation and conclusion can be found in the 
test done by Kim and White [17]. Fischer and König [18] pointed out 
that the failure of dowel action is a necessary and sufficient condition for 
the flexural-shear failure based on their numerical simulation. Further 

developed from these observations, Yang [6,9] concluded that unstable 
dowel splitting triggered the flexural-shear failure based on the energy 
balance of the whole system and proposed the Critical Shear Displace-
ment Theory (CSDT). The CSDT further assumes that unstable dowel 
splitting occurs when the vertical shear displacement along a flexural 
crack reaches a critical value. Therefore, it uses the critical shear 
displacement as the failure criterion. These models suggest that despite 
its limited contribution to the total shear resistance, in-depth under-
standing and modelling of dowel cracking is essential to model the shear 
failure process of RC members without shear reinforcement. 

Several empirical and mechanical models have been proposed in 
literature based on experimental observations dedicated to dowel action 
[7,8,15,19–23]. A brief summary of these models is given here. Krefeld 
and Thurston [19] proposed a novel block-type beam experiment, as 
shown in Fig. 1(a), to achieve this goal and eliminate the contribution of 
aggregate interlock. They proposed, based on the observation in the 
experiments, an empirical equation and concluded that the ultimate 
capacity of dowel action was related to the distance between the crack 
initiation point and the support, the beam height, the beam width, the 
concrete compressive strength, the concrete cover, and the rebar 
diameter. Taylor [15] and Baumann & Rüsch [24] used a similar test 
setup to further investigate dowel splitting. However, they reported two 
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different types of load-displacement curves. Taylor [15] reported a 
post-peak softening behaviour, while Baumann & Rüsch’s [24] results 
showed a nearly perfect elastoplastic curve for dowel splitting failure. 

Autrup et al. [7] carried out an experiment using the improved 
block-type beam experiment, as shown in Fig. 1(b), to further investi-
gate the influence of axial force on dowel splitting. The results they 
reported were similar to the perfect elastoplastic behaviour when the 
axial force is relatively low. Nevertheless, the recent experimental data 
reported by de Resende et al. [8] showed a clear post-peak softening 
behaviour for the specimens made of conventional concrete. Fig. 2 
schematically summarizes the three different responses observed in 
literature. They show contradictory results, accordingly, no consistent 
model is available to describe the dowel splitting yet. Additionally, most 
of the existing available models are aiming at predicting the maximum 
dowel resistance, the mechanical behaviour after the fracture of con-
crete is not considered in these models. Consequently, a relationship 
between dowel resistance and vertical displacement and cracking 
opening is not well-established, which is crucial to evaluate the shear 
capacity of RC beams without shear reinforcement using 
kinematic-based models, Critical Shear Crack Theory (CSCT) [25,26], 
Critical Shear Displacement Theory (CSDT) [6,9], Shear Crack Propa-
gation Theory (SCPT) [5], etc. 

This paper introduces the nonlinear tension softening behaviour of 
concrete described by concrete fracture mechanics into the Beam on 
Elastic Foundation (BEF) theory. Different from the plasticity-based BEF 
theories which are mostly focused on force equilibrium and ultimate 
limit state, the proposed model can provide the full load-deformation 
evolution of the dowel action considering the nonlinear behaviour of 
concrete. The proposed model is further validated with experimental 
data from the literature, both in ultimate strength and deformation. 

2. Proposed mechanical model for dowel action 

The model proposed in this paper distinguishes the propagation 
process of a dowel splitting crack along a longitudinal rebar into three 
stages, namely the elastic stage before cracking, stable dowel cracking 
and unstable dowel cracking. This is based on the observation of the 
propagation process of a dowel crack in literature. In each stage, cor-
responding models based on the equilibrium conditions along the lon-
gitudinal rebar and the material constitutive models are established. 

2.1. Elastic stage before cracking 

In the elastic stage, the force equilibrium conditions along the lon-
gitudinal reinforcement are established using the BEF theory. Following 
the theory, the reinforcement is treated as a beam placed on an elastic 
foundation, as shown in Fig. 3. We further assume that it is a semi- 
infinite long beam in the longitudinal direction to obtain a more 
compact analytical solution. This assumption is based on the fact that 
the distance between the initial dowel cracking point and the support is 

sufficiently long for a slender beam. It is valid following Marcus’ state-
ment [27] that the cracking load for dowel action is not significantly 
affected by the embedded length of the rebar if the rebar is longer than 
eight times of rebar diameter. The influence of the beam length is further 
discussed in Section 4.2. 

We further use the solution suggested by Hetényi [28] on a 
semi-infinite long beam subjected to a concentrated force Vdw at the free 
end as shown in Fig. 3. The dowel force Vdw per rebar is defined as 
Vdw/n, with n is the number of rebars. The dowel force is applied at the 
free end of each rebar. According to Hetényi [28], with a given Vdw/n, 
the longitudinal distributions of vertical displacement uz, rotation θ, 
moment M, and shear force V along the rebar can be expressed using Eq. 
(1)~(4): 

uz(x) =
2λVdw

kn
e− λx cos λx (1)  

θ(x) =
2λ2Vdw

kn
e− λx

(

cos λx+ sin λx
)

(2)  

M(x) = −
Vdw

λn
e− λx sin λx (3)  

V(x) = −
Vdw

n
e− λx

(

cos λx − sin λx
)

(4)  

λ =

̅̅̅̅̅̅̅̅̅̅

k
4EsIs

4

√

=

̅̅̅̅̅̅̅̅̅̅

ϕkf

4EsIs

4

√

(5) 

Fig. 1. Block-type test setup for testing dowel action: (a) the setup used by Krefeld and Thurston, reproduced from [19]; (b) the setup used by Autrup et al. 
reproduced from [7]. 

Fig. 2. Schematic illustration for different relationships between dowel force 
and vertical displacement observed in literature [7,8,15,24]. 
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Fig. 3. Schematic drawing of dowel action based on Beam on Elastic Foundation Theory.  

Fig. 4. Illustration for the derivation of equilibrium equation: (a) free body diagram of an infinitesimal element in the longitudinal direction; (b) cross-sectional 
analysis at an arbitrary section A-A for transversal distribution of concrete stress; (c) assumed shear stress distribution along the height. 
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where λ is the characteristic value of the beam system, 1/λ is called 
characteristic length, x is the distance along the beam starting from the 
free end, ϕ is the rebar diameter, kf is the foundation modulus in pres-
sure per length, Es is Young’s module of reinforcement, n is the number 
of rebars and Is = πϕ4/64 is the moment of inertia of an individual rebar. 

The empirical equation proposed by Soroushian et.al [23] is used in 
this paper to determine the distributed stiffness of the concrete foun-
dation kf in N/mm3: 

kf = 127cf
̅̅̅̅
fc

√
(1/ϕ)2/3 (6)  

Where cf is an empirical coefficient ranging from 0.6 to 1.0, and fc is the 
concrete compressive strength in MPa and ϕ is in mm. In this paper, the 
cf was adopted as 0.6 for multiple rebar situations and 1 for single rebar 
situations. 

After determining the material properties, with a given dowel force 
Vdw, the distribution of vertical displacement uz along the rebar can be 
calculated using Eq. (1). Then, the vertical reaction force distribution p 
caused by a single rebar in the concrete foundation can be calculated by: 

p(x) = kuz(x) = 2λ
Vdw

n
e− λx cos λx (7) 

If the action of rebar is replaced by the vertical force distribution on 
the concrete p, as shown in Fig. 4(a), an infinitesimal element of the 
concrete part along the longitudinal direction is selected for further 
analysis. Based on the vertical force equilibrium, the following equation 
can be derived: 

dVc = np(x)dx (8)  

where Vc is the shear force carried out by the selected concrete cross- 
section. 

Then, an arbitrary cross-section A-A along the height direction is 
selected to further examine the internal force in concrete, as shown in 
Fig. 4(b). To simplify the derivation, the concrete stress distribution σct 
in the cross-section A-A is assumed to be uniform along the width di-
rection of the member. The assumption implied behind this statement is 
in fact the failure mode during the dowel cracking process. As shown by 
Vintzeleou and Tassios [20], two failure modes – bottom and side 
splitting can be observed in dowel splitting failure. The bar spacing is 
one of parameters which can affect the failure mode. However, there is 
no clear quantitative criterion of bar spacing to distinguish these two 
failure modes in literature. The adopted assumption in this paper can be 
only used for side splitting failure. Based on this assumption, the 
following equation can be derived based on the vertical force 
equilibrium: 

bσctdx = np(x)dx − αdVc (9)  

where b is the width of the beam, σct is concrete tensile stress in the 
width direction at a certain height and α is a factor indicating shear force 
carried by the partial concrete cross-section. 

The factor α is obtained by assuming that the shear stress in the 
concrete cross-section follows a parabolic-shape distribution along the 
height with the maximum value at the middle height, as shown in Fig. 4 
(c). Therefore, the factor α can be represented by the ratio between the 
shadow area and the total area enclosed by the shear stress distribution. 
For a rectangular cross-section, the factor can be calculated in the 
following equation: 

α =

∫ hA
0 − 4τmax

h2

(

s2 − hs
)

ds

∫ h
0 − 4τmax

h2

(

s2 − hs
)

ds
=

3hh2
A − 2h3

A
h3 (10)  

where hA is the vertical distance between a certain cross-section and the 
bottom of the cross-section and τmax is the maximum shear stress at the 
middle height. 

Substituting Eqs. (7), (8) and (10) into Eq. (9), the distribution of 
concrete stress σct along the width direction can be expressed by the 
following equation: 

σct =
(1 − α)np(x)

b(hA)
(11) 

If different combinations of x and hA are examined, one may find that 
the maximum concrete transversal stress σct,max is reached when x = 0 
and hA = c + ϕ /2, because the vertical reaction force p reaches the 
maximum value and the cross-section width is minimum. Then, Eq. (11) 
can be further simplified as follows: 

σct, max =

(

1 − αcrit

)
2λVdw

bn
(12)  

where bn = b – nϕ is the net width of the beam, αcrit can be calculated 
using Eq. (13). It should be noted that α in the rest of the following 
derivation refers to the αcrit for simplicity. 

αcrit = 3
(

c + ϕ/2
h

)2

− 2
(

c + ϕ/2
h

)3

(13) 

Finally, by assuming the dowel splitting crack occurs when σct,max 
reaches the concrete tensile strength fct, the dowel cracking load Vdw,cr 
can be derived using the following equation: 

Vdw,cr =
1

(1 − α)
bnfct

2λ
(14) 

Substituting Eq. (14) into (1), the cracking displacement at the free 
end uz,cr can be obtained: 

uz,cr =
1

(1 − α)
bnfct

nk
(15) 

Then, the relationship between dowel resistance Vdw and vertical 
displacement uz,max at the free end before cracking can be described 
using the following linear equation: 

Vdw =
uz, max

uz,cr

1
(1 − α)

bnfct

2λ
uz ≤ uz,cr (16)  

2.2. Stable dowel cracking 

After the dowel splitting crack occurs, the whole system can be 
divided into two parts by the point of the crack tip: the uncracked part 
and the cracked part, as shown in Fig. 5. The uncracked part can still be 
treated using BEF theory. However, it should be noted that a moment 
Mtip should be applied to the crack tip point (the new free end of the BEF 
model) in addition to a concentrated force Vtip. The cracked part, on the 
other hand, can be simplified as a cantilever beam subjected to the 
externally applied dowel force Vdw and the residual tension stress σres in 
the fracture progress zone (FPZ). The length of the cantilever beam 
equals the total length of the dowel crack Ldw. The cantilever beam has 
an initial vertical rigid movement uz,tip and rotation θtip and it is in fact a 
composite beam consisting of both concrete and rebars. 

2.2.1. Equilibrium in the uncracked part 
The equilibrium conditions in the uncracked part are examined first. 

The analytical solutions for a semi-infinite beam discussed in the first 
stage are extended to include the influence of a concentrated moment at 
the free end according to [28]. The vertical displacement uz,tip and the 
rotation θtip at the crack tip are as follows: 

J. Lu et al.                                                                                                                                                                                                                                        
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uz,tip =
2λ
k

Vtip

n
+

2λ2

k
Mtip

n
(17)  

θtip =
2λ2

k
Vtip

n
+

4λ3

k
Mtip

n
(18)  

where Vtip and Mtip are the concentrated force and moment acting on the 
crack tip. 

Considering that the dowel crack is driven to propagate further, the 
maximum concrete transversal stress σct,max at the crack tip shall satisfy 
the following conditions based on the BEF theory. 

σct, max =
(1 − α)

bn
nkuy,tip = (1 − α)

2λ
(
Vtip + λMtip

)

bn
= fct (19) 

Using Eq. (19) to further simplify Eqs. (17) and (18), the following 
expressions can be obtained. 

uz,tip =
1

(1 − α)
fctbn

kn
= uz,cr (20)  

θtip =
2
(
1 − α

)
λ3Mtip + λfctbn

(1 − α)kn
(21) 

It turns out that the vertical displacement at the crack tip uz,tip always 
equals the dowel cracking displacement uz,cr and is a constant depending 
on the material properties, while the rotation θtip can be determined 
only after knowing the moment applied at the crack tip Mtip. 

2.2.2. Equilibrium in the cracked part 
In the cracked part, the main unknown variable is the distribution of 

the residual tensile stress σres in the FPZ. The simple power law rela-
tionship between residual tensile stress and crack width proposed by 
Reinhardt [29] is used in this paper: 

σres = fct

(

1 −

(
w
wc

)c1)

≥ 0 (22)  

where w is the crack width, c1 = 0.31 is an empirical coefficient, wc 
= Gf/fct⋅(1 +c1)/c1 is the characteristic crack width that can transfer the 

residual strength and Gf is the fracture energy of concrete, which can be 
calculated using Gf = 0.073fc0.18 (Gf is in N/mm and fc is in MPa) ac-
cording to fib Model Code 2010 [30]. Fig. 5 shows how the force and 
moment equilibrium of the cracked part are established: 

Vtip = Vdw − bn

∫ Ldw

0
σresdx (23)  

Mtip = VdwLdw − bn

∫ Ldw

0
σresxdx (24) 

The residual tensile stress σres expressed by Eq. (22) depends on the 
crack width distribution along the cracked part. The crack width along 
the cracked part is assumed to follow a linear distribution, thus we 
ignore the elastic deformation of the cracked part because of the large 
moment inertia of the composite cross-section in the cracked part with 
respect to the low magnitude of dowel force. This assumption satisfies 
the experimental observations in some recently published work [7,8]. 
With this assumption, the crack width distribution w along the cracked 
part can be described using the rotation θtip at the crack tip. 

w = θtipx (25) 

Considering the geometric condition shown in Fig. 5, the maximum 
crack width wmax is expressed by the following expression: 

wmax = uz, max − uz,cr (26)  

where uz,max is the vertical displacement at the free end of the cracked 
part. 

Substituting Eqs. (20), (21) and (26) into Eq. (25), the length of 
dowel crack Ldw can be expressed by the following equation: 

Ldw =
wmax

θtip
=

(
1 − α

)
knuz, max − fctbn

2
(
1 − α

)
λ3Mtip + λfctbn

(27) 

Combing Eqs. (19), (22), (23) and (24), a closed-form analytical 
equation for Mtip can be derived:   

Fig. 5. Proposed mechanical model after dowel splitting cracking.  
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Depending on vertical displacement uz,max at the crack end, two 
different equations can be derived. The detailed derivation procedure 
can be found in Appendix A. On the right-hand side of Eq. (28), the 
variables Ldw and θtip can be represented by Mtip and uz,max using the Eqs. 
(21) and (27). By substituting Eqs. (21) and (27) into Eq. (28), only two 
unknowns remain in this equation, which are Mtip and uz,max To solve the 
equation, uz,max is used as an input parameter, and then, Mtip can be 
obtained by implementing a numerical method, for instance, the 
bisection method. With a calculated Mtip, the dowel resistance Vdw can 
be obtained using Eq. (24). 

2.3. Unstable dowel cracking 

The last stage of the dowel fracturing process is unstable dowel 
cracking. In this stage, the propagation of the dowel crack becomes 
unstable. This is often observed in shear tests of members without shear 
reinforcement, and some of the dowel tests [15,19,24]. To demonstrate 
this phenomenon, an example is given by implementing the model with 
the material properties of Specimen Beam 2.2 in [15]. The relationships 
between the input vertical displacement uz,max and Mtip, Vtip are shown 
in Fig. 6, in which Mtip increases while Vtip decreases as the vertical 
displacement uz,max increases. Without any constraint condition, the 
value of Vtip can be even lower than zero, it suggests that at certain 
vertical displacement, the required shear force at the crack tip is nega-
tive, which means the cracking is fully driven by the moment applied to 
the crack tip Mtip from that point on. Under that situation, the dowel 
splitting crack can propagate further without any additional vertical 
force at the free end until the boundary conditions change, for instance, 
the crack reaches the support. This stage is defined as unstable cracking 
in this paper. 

The moment at the crack tip just before the unstable cracking occurs 

is in fact the maximum allowable moment. It is defined by Mtip,max and 
can be derived using Eq. (19) and Vtip = 0. 

Mtip, max =
fctbn

2(1 − α)λ2 (29) 

Substituting Eqs. (21) and (29) into Eq. (28), the critical dowel crack 
length Ldw,crit and the corresponding critical vertical displacement at the 
free end uz,crit, before the unstable dowel cracking occurs, can be ob-
tained. When uz,crit ≥ wc + uz,cr, in this case, the maximum crack width 
wmax is larger than the characteristics crack width wc defined in Eq. (22) 
for transferring the residual tensile stress. Then, an analytical solution of 
both Ldw,crit and uz,crit can be derived as follows: 

Ldw,crit =
(1 + c1)fctbn

(1 − α)2c1wcλkn
+
(1 − α)(1 + c1)wckn

4(2 + c1)λfctbn
(30)  

uz,crit =
2
(
1 + c1

)
f2

ctb
2
n

(1 − α)3c1wck2n2
+
(1 + c1)wc

2(2 + c1)
+

fctbn

(1 − α)kn
(31) 

Regarding the situation when uz,crit < wc + uz,cr, the corresponding 
maximum dowel crack length Ldw,crit and the vertical displacement at 
the free end uz,crit can be calculated by implementing a numerical 
method. The first scenario is in most cases. 

2.4. Summary and solution flowchart 

The solution flowchart of the proposed model can be seen in Fig. 7. 
This calculation procedure generates the full relationship between ver-
tical displacement at the free end uz and dowel resistance Vdw. Taking 
Beam 2.2 in [15] as an example again, Fig. 8(a) shows the full shear 
force-displacement curve calculated from the proposed model compared 
with the measurement reported in [15]. The model proposed in this 

Fig. 6. Calculation results using the proposed model: (a) relationship between uz,max and Mtip; (b) relationship between uz,max and Vtip.  

Mtip =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fctbnLdw

2(1 − α)λ(1 + λLdw)
+

fctbnL2
dw

[
1
2
−

1
(1 + c1)(2 + c1)

(
θtipLdw

wc

)c1
]

(1 + λLdw)
uz,cr ≤ uz, max ≤ wc + uz,cr

fctbnLdw

2(1 − α)λ(1 + λLdw)
+

fctbn

[
c1Ldwwc(
1 + c1

)
θtip

−
c1w2

c

2
(

2 + c1

)
θ2

tip

]

1 + λLdw
uz, max > wc + uz,cr

(28)   
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Fig. 7. Solution flowchart for the proposed model.  

Fig. 8. The displacement versus force curve of Beam 2.2: (a) comparison against Beam 2.2 from [15] (b) contributions from different mechanisms.  
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paper can capture both the maximum dowel resistance and the 
post-peak behaviour. Fig. 8(b) shows the contributions made by two 
mechanisms during the full dowel splitting cracking evolution. After 
reaching the cracking load Vdw,cr, the contribution from the BEF starts to 
decrease since part of the transversal tensile stress σct,max is induced by 
the moment at the crack tip. On the other hand, the contribution of the 
residual tensile strength starts to increase and stabilises as the crack 
opening increases. Therefore, the characteristics of the stable dowel 
cracking stage are determined by both the concrete tensile behaviour 
and the rebar configuration. When the contribution from the BEF fully 
diminishes, the unstable cracking starts because the crack opening is 
fully driven by the moment acted at the crack tip. A more extensive 
validation of the proposed model can be seen in Chapter. 3. 

2.5. Simplified equation for the maximum dowel force 

It should be noted that there is no analytical equation for the 
maximum dowel force Vdw,max in the proposed model. However, as 
shown in, Fig. 8(a), the maximum dowel force Vdw,max is very close to the 
cracking dowel force Vdw,cr, which coincides with the observations for 
conventional concrete in [8]. If the differences between Vdw,cr and Vdw, 

max are ignored, a simplified expression for Vdw,max can be derived by 
substituting Eqs. (5) and (6) into Eq. (14) and setting Young’s modulus 
of steel Es = 210 GPa and cf = 0.6. 

Vdw, max ≈ Vdw,cr = 2.4βbnϕ
11
12fctf

−
1
8

c (32)  

where β = 1/(1-αcrit) is a factor to consider the influence of concrete 
cover and αcrit can be calculated using Eq. (13). 

If a relationship between concrete tensile strength fct and compres-
sive strength fc is adopted, Eq. (32) can be further simplified, which can 
be found in Section 4.3. 

3. Model verification 

3.1. Maximum dowel force 

To evaluate the proposed model, in total 53 specimens were 
collected from the literature [8,15,19,24]. A detailed list of the corre-
sponding data is given in Appendix B. Considering the assumptions of 
the model, only test results using the block-type testing setup, indicated 
by Fig. 1(a), and with one layer of rebar are selected in the database. 

Moreover, for consistency, only the experiments with reported tensile 
splitting strength were used in the comparison, which resulted in 44 
specimens. However, a more extensive discussion on the influence of 
selected tensile strength will be discussed in Section 4.3. Fig. 9 describes 
the comparison between the results calculated by the proposed model 
and the experimental results. The maximum dowel force Vdw,max is 
normalized by using the area underneath the centre of the rebar so that 
the data is easier to compare within the range. Overall the proposed 
model slightly underestimates the maximum dowel force but with 
reasonable accuracy. The average value of the ratio between Vdw,max,cal 
and Vdw,max,exp is 0.85 and the coefficient of variation (CoV) is 0.16. On 
the other hand, it should be noted that most of the available experiments 
on dowel splitting tests were conducted on small-size specimens and 
only the maximum dowel force was recorded. More experiments with a 
realistic size on dowel splitting and more refined measurement tech-
niques are recommended in future work. 

3.2. Displacement versus force curve 

The older experiments usually only reported the maximum dowel 
force. However, the full load-deformation relationship is very crucial for 
a better understanding of the dowel action mechanism. Therefore, four 
specimens were collected from the recent work published by de Resende 
[8] besides the comparison of Beam 2.2 shown in Fig. 8. The letter D in 
the legend stands for the experiments performed with additional mea-
surement techniques according to [8]. 

Fig. 10 shows the comparison between model prediction and 
experimental data. Using the mechanical properties provided by [8], the 
proposed model underestimates the experimental results, while the 
tendency of softening behaviour is very similar. The underestimation 
can be partly attributed to the scatter of the concrete tensile strength. 
For the specimens with 12.5 mm rebar, as shown in Fig. 10 (a), the 
calculated vertical displacement for unstable cracking uz,crit is compa-
rable to the last recording point of the experimental data, although the 
reasons for terminating the test were not reported in [8]. For the spec-
imens with 16 mm rebar, as shown in Fig. 10 (b), a stabilized stage can 
be observed in the last part of the curve and the vertical displacement of 
the starting point of the stabilized stage is comparable to the calculated 
vertical displacement for unstable cracking. 

4. Discussions 

4.1. Novelty of the proposed model 

In literature there are several different models based on BEF theory 
that can describe the dowel action. There are two major differences 
between the proposed model and these models. The fundamental dif-
ference between the models in literature and the proposed model is that 
most models in literature are plasticity-based models and the equilib-
rium conditions are not considered after the occurrence of the cracking.  
Fig. 11 (a) shows the assumed concrete tensile stress distribution along 
the rebar using BEF theory. Along the assumed characteristic length L0 
the stress level of concrete is constant, accordingly the maximum dowel 
force is: 

Vdw, max = bnfctL0 (33) 

The value of L0 is back-calibrated by the experimental data or related 
to the inflexion point of concrete tensile stress distribution [20,22,24]. 
This assumption is clearly different from the concrete post-crack 
behaviour generally observed in reality. Such a model is therefore not 
capable of predicting dowel action responses after the formation of 
dowel crack. 

The proposed model, on the contrary, considers the residual tensile 
strength σres of concrete after cracking, which allows us to derive an 
expression of the full response of the dowel cracking process in terms of 
vertical displacement and dowel force. As an important step in the Fig. 9. Comparison between calculated results and experimental data.  
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derivation, the proposed model also considers the additional moment 
Mtip acted at the crack tip after dowel cracking. This is essential to model 
the softening behaviour after the peak load and especially the unstable 
cracking stage of dowel cracking. Therefore, the proposed model can 
predict the full load-displacement response for the propagation of dowel 
splitting crack. It has the potential to be further incorporated into the 
existing kinematic-based shear models, which may lead to new insight 
into the shear failure of beams without shear reinforcement. 

4.2. Influence of the total length 

In Section 2.1, the analytical solutions for a semi-infinite beam in 
BEF theory are used for the sake of simplicity in formulation. The impact 
of this assumption is examined in this section. The analytical solutions 
for both a finite beam and a semi-infinite beam under a unit concen-
trated load and moment are compared. The comparison uses the me-
chanical properties based on the data of Specimen 12.5 reported in [8]. 
In Fig. 12 (a), the differences between the two types of models in terms 
of the maximum vertical displacement under concentrated load as well 
as moment are compared. It is clear that when the ratio between the 

Fig. 10. Comparison of full displacement versus force curve between calculated results and experimental data: (a) specimens with rebar of 12.5 mm (b) specimens 
with rebar of 16 mm. 

Fig. 11. Differences between the existing models and proposed model: (a) existing models (b) proposed model.  

Fig. 12. Differences between the finite beam solutions and semi- 
infinite solutions. 
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beam length L and rebar diameter ϕ is larger than 5, the difference be-
tween the two solutions is very limited. On the other hand, when the 
ratio is smaller than 5, using the finite beam solutions can give a smaller 
vertical displacement. Then, according to Eq. (19), the maximum 
transversal tensile stress in the concrete is smaller. As a consequence, a 
large load is needed to induce the dowel cracking. Therefore, a higher 
maximum dowel force is expected, which also coincides with the 
conclusion drawn by Krefeld and Thurston [19]. In most cases, the 
dowel splitting in a normal reinforced beam occurs under the condition 
of L/ϕ larger than 5. 

4.3. Influence of the concrete tensile strength 

In Section 3.1, the comparison between the experimental data and 
the calculations shows a relatively high scatter, which can be attributed 
to the scatter in the concrete tensile strength by nature. A parametric 
study is performed using two different concrete tensile strengths. They 

are both calculated using the concrete compressive strength, which was 
reported for all specimens. Therefore, all 53 specimens are included in 
the following comparisons. For the comparison shown in Fig. 13(a), the 
direct tensile strength fct is used and the value is determined based on 
the compressive strength fc using the relationship proposed by the fib 
Model Code 2010 [30]. For the comparison shown in Fig. 13(b), the 
splitting tensile strength fct,sp is used and the value is determined by Eq. 
(34) proposed by Bentz et al. [31]. The comparison shows that using the 
tensile strength translated from the compressive strength can reduce the 
scatter in the comparison, which means a smaller CoV can be obtained. 
However, using tensile strength fct can lead to a relatively conservative 
prediction with an average ratio of 0.69. If the splitting tensile strength 
fct,sp is used, a lower CoV of 0.13 and a higher average value of 0.82 can 
be obtained. Therefore, it is suggested to use splitting tensile strength fct, 

sp to calculate the maximum dowel force: 

fct,sp = 0.62
̅̅̅̅
fc

√
(34) 

Fig. 13. Comparison between calculated results and experimental data: (a) using tensile strength based on fib Model Code 2010 [30]; (b) using splitting tensile 
strength based on Eq. (34) proposed in [31]. 

Fig. 14. Comparison between calculated results and experimental data: (a) simplified equation; (b) equation proposed by Baumann & Rüsch [24].  
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where fct,sp is in MPa and fc is in MPa. 
In Section 2.5, a simplified equation for the maximum dowel force 

based on the proposed model was proposed. By combining Eq. (34) and 
Eq. (32), a more compact equation can be derived: 

Vdw, max = 2.4βbnϕ
11
12fctf

−
1
8

c ≈ 1.5βbnϕf
3
8
c (35)  

where bn is in mm, ϕ is in mm and fc is in MPa. 
The comparison against experimental data using the simplified 

equation can be seen in Fig. 14(a). Although The form of Eq. (35) is very 
similar to the equation proposed by Baumann & Rüsch [24], which can 
be found in Fig. 14(b), the proposed equation is derived analytically 
without any calibrations. As a comparison, the results calculated by their 
equation are also shown in Fig. 14(b). Compared to their equation, the 
proposed simplified equation can achieve the same level of CoV and 
higher accuracy with an average value of 0.96. The improvement of the 
accuracy can be attributed to the consideration of the factor β, which can 
include the influence of the concrete cover. 

4.4. Influence of the tensile force in the reinforcement 

As a limitation of the proposed model, the influence of the tensile 
force of the reinforcement is not considered in this model yet. It is 
inevitable to have tensile force in the reinforcement of a beam subject to 
bending. The difference of the tensile forces in the reinforcement at 
different cross sections will inevitably result in bond stresses between 
concrete and the reinforcement, which will affect the stress conditions of 
concrete around the reinforcement. However, there is no consensus 
regarding the influence of axial force on dowel action among the sci-
entific community yet. According to Autrup et al. [7], the existence of 
high axial force, which is around 0.6 times the yielding strength of rebar, 
can highly affect the dowel action responses. Houde and Mirza [32] 
concluded that the dowel action capacity was not influenced by the axial 
force when the axial stresses were less than the yielding strength of the 
rebar. Jimenez et al. [33] observed a slight decrease in dowel capacity 
when the axial stress was around 275 MPa to 400 MPa. For the sake of 
simplicity in formulation, the axial force in reinforcement is not 
considered in this paper. Therefore, it shall be noted that the proposed 
model is more suitable for cases where the axial force is small compared 
to the yield strength of the rebar. For cases where the axial force is 
comparable to the yield strength, readers can refer to the model pro-
posed by Mihaylov [34] or Autrup [7]. 

5. Conclusions 

This paper proposes a mechanical model which is analytically 

derived based on the beam on elastic foundation theory and fracture 
mechanics. The main findings of the paper can be summarized as 
follows:  

• By introducing the residual tensile strength of concrete after 
cracking, the model can capture the post-peak softening behaviour of 
dowel action, which is validated by experimental results reported in 
literature. 

• The proposed model theoretically proves and explains the occur-
rence of unstable propagation in dowel action. A closed-form 
expression for the maximum vertical displacement and dowel crack 
length at the onset of unstable cracking is derived. 

• When compared with experimental data obtained from the litera-
ture, the model can predict both the maximum dowel force and shear 
displacement with reasonable accuracy.  

• A simplified analytical expression of the maximum dowel force is 
suggested with pleasing accuracy. 
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Appendix A. Derivation of closed-form analytical equation for Mtip 

Substituting Eq. (23) into Eq. (24), the following equation can be obtained. 

Mtip − VtipLdw = bnLdw

∫ Ldw

0
σresdx − bn

∫ Ldw

0
σreslxdx (A.1) 

Then, substituting Eq. (19) into Eq. (A.1), a closed-form equation of Mtip can be obtained after simplification. 
(

1+ λLdw

)

Mtip =
bnfctLdw

2(1 − α)λ + bnLdw

∫ Ldw

0
σresdx − bn

∫ Ldw

0
σresxdx (A.2) 

For the first integral on the right-hand side, two situations can be obtained depending on whether the maximum crack width wmax exceeds wc that 
can transfer the residual strength. 
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bnLdw

∫ Ldw

0
σresdx = fct

∫ Ldw

0

[

1 −

(
w
wc

)c1
]

dx

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

bnfctL2
dw

[

1 −
1

c1 + 1

(
θtipLdw

wc

)c1]

wmax < wc

bnfctLdw
wc

θtip

c1

c1 + 1
wmax ≥ wc

(A.3) 

For the second integral, it can be simplified using the same approach. 

bn

∫ Ldw

0
σresxdx = fct

∫ Ldw

0
l

[

1 −

(
w
wc

)c1
]

dx

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

bnfctL2
dw

[
1
2
−

1
c1 + 2

(
θtipLdw

wc

)c1
]

wmax < wc

bnfct

(
wc

θtip

)2 c1

2(c1 + 2)
wmax ≥ wc

(A.4) 

Finally, substituting Eqs. (A.3) and (A.4) into Eq. (A.2) can result in the governing equation Eq. (28). The governing equation Eq. (28) can be solved 
by numerical methods such as the bisection method. 

Appendix B. Database of dowel action from literature 

Note:  

1. The splitting tensile strength listed in the table were collected from the literature;  
2. The calculated results were obtained based on the translated splitting tensile strength using Eq. (34). Therefore, the calculated results in the table 

correspond to the results in Fig. 13(b).    

No. name source L 
[mm] 

h 
[mm] 

b 
[mm] 

c 
[mm] 

ϕ 
[mm] 

n 
[-] 

fc 
[MPa] 

fct,sp 
[Mpa] 

Vdw,max, 

exp 
[kN] 

Vdw,max, 

cal 
[kN] 

Vdw,max,cal/ Vdw, 

max,exp 
[-]  

1 Beam 
1.1 

Taylor 1969[15]  87.00  87.00  44.00  7.60  6.00  2.00  18.20  2.76  1.11 0.81  0.73 

2 Beam 
1.2  

87.00  87.00  44.00  7.60  6.00  2.00  24.00  3.17  1.00 0.90  0.90 

3 Beam 
1.3  

87.00  87.00  44.00  7.60  6.00  2.00  21.90  3.31  1.06 0.87  0.82 

4 Beam 
1.4  

87.00  87.00  44.00  7.60  6.00  2.00  21.90  3.66  1.19 0.87  0.73 

5 Beam 
2.1  

174.00  87.00  44.00  7.60  6.00  2.00  21.40  3.07  1.07 0.86  0.80 

6 Beam 
2.2  

174.00  87.00  44.00  7.60  6.00  2.00  24.10  4.14  1.27 0.90  0.71 

7 Beam 
2.3  

174.00  87.00  44.00  7.60  6.00  2.00  19.30  3.17  1.16 0.83  0.71 

8 Beam 
2.4  

174.00  87.00  44.00  7.60  6.00  2.00  20.70  3.17  1.12 0.85  0.76 

9 Beam 3  174.00  87.00  44.00  7.60  6.00  2.00  18.30  3.38  1.09 0.81  0.75 
10 Beam 4  174.00  87.00  44.00  7.60  6.00  2.00  22.10  3.31  1.17 0.87  0.74 
11 Beam 5  174.00  87.00  44.00  7.60  6.00  2.00  18.20  3.17  0.94 0.81  0.86 
12 Beam 6  174.00  87.00  44.00  7.60  6.00  2.00  38.90  4.83  1.27 1.06  0.84 
13 Beam 7  130.00  87.00  44.00  7.60  6.00  2.00  22.90  3.37  0.96 0.88  0.92 
14 Beam 8  174.00  87.00  44.00  7.60  6.00  2.00  27.50  3.93  1.06 0.94  0.89 
15 Beam 9  218.00  87.00  44.00  7.60  6.00  2.00  24.20  3.58  1.06 0.90  0.85 
16 Beam 10  263.00  87.00  44.00  7.60  6.00  2.00  24.50  3.79  1.05 0.90  0.86 
17 Beam 11  174.00  87.00  44.00  7.60  6.00  2.00  21.40  3.31  1.01 0.86  0.85 
18 Beam 12  174.00  87.00  44.00  7.60  6.00  2.00  25.80  4.03  1.10 0.92  0.84 
19 Beam 13  174.00  87.00  44.00  7.60  6.00  2.00  22.10  3.51  1.08 0.87  0.81 
20 Beam 14  174.00  87.00  44.00  2.50  6.00  2.00  24.10  3.34  0.89 0.88  0.99 
21 Beam 15  174.00  87.00  44.00  7.60  6.00  2.00  26.20  3.72  1.10 0.92  0.84 
22 Beam 16  174.00  87.00  44.00  12.70  6.00  2.00  24.10  2.72  1.06 0.93  0.88 
23 Beam 17  174.00  87.00  44.00  7.60  6.00  1.00  24.10  2.96  1.10 0.92  0.84 
24 Beam 18  174.00  87.00  44.00  7.60  6.00  2.00  20.00  3.17  1.10 0.84  0.76 
25 Beam 19  174.00  87.00  44.00  7.60  6.00  3.00  24.10  3.72  1.01 0.77  0.76 
26 Beam 20  174.00  87.00  49.00  7.60  6.00  2.00  24.80  3.38  1.36 1.04  0.76 
27 Beam 21  174.00  87.00  54.00  7.60  6.00  2.00  22.70  2.69  1.18 1.14  0.96 
28 Beam 22  174.00  87.00  59.00  7.60  6.00  2.00  25.20  3.38  1.57 1.31  0.84 
29 Beam 25  174.00  87.00  44.00  7.60  6.00  2.00  13.10  1.65  0.94 0.72  0.77 

(continued on next page) 
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(continued ) 

No. name source L 
[mm] 

h 
[mm] 

b 
[mm] 

c 
[mm] 

ϕ 
[mm] 

n 
[-] 

fc 
[MPa] 

fct,sp 
[Mpa] 

Vdw,max, 

exp 
[kN] 

Vdw,max, 

cal 
[kN] 

Vdw,max,cal/ Vdw, 

max,exp 
[-] 

30 Beam 26  174.00  87.00  44.00  7.60  6.00  2.00  14.80  2.00  0.96 0.75  0.79 
31 Beam 27  174.00  87.00  44.00  7.60  6.00  2.00  15.50  2.20  0.96 0.77  0.80 
32 Beam 28  174.00  87.00  44.00  7.60  6.00  2.00  12.70  1.72  0.96 0.72  0.74 
33 P1  609.00  304.50  154.00  38.16  22.00  2.00  38.60  3.86  13.60 12.02  0.88 
34 P2  609.00  304.50  154.00  38.16  22.00  2.00  37.00  3.70  14.00 11.83  0.85 
35 P3  609.00  304.50  154.00  38.16  22.00  2.00  37.50  3.75  15.75 11.89  0.76 
36 P4  609.00  304.50  154.00  38.16  22.00  2.00  36.50  3.65  14.45 11.78  0.81  

37 DA-2 Krefeld & Thurston 1966 
[19]  

304.80  304.8  152.40  38.16  22.23  2.00  18.28    15.90 9.04  0.57 
38 DA-3  457.20  304.8  155.45  38.16  22.23  2.00  18.28    14.01 9.29  0.66 
39 DA-1  609.60  304.8  152.40  38.16  22.23  2.00  15.79    8.90 8.57  0.96 
40 DA-6  304.80  304.8  203.20  38.16  22.23  2.00  18.07    14.46 13.15  0.91 
41 DA-7  762.00  304.8  206.25  38.16  22.23  2.00  17.93    12.23 13.36  1.09 
42 DA-9  304.80  381  152.40  114.36  22.23  2.00  16.48    20.02 10.66  0.53 
43 DA-8  609.60  381  152.40  114.36  22.23  2.00  16.48    15.57 10.66  0.68 
44 DA-5  304.80  304.8  158.75  38.00  28.65  2.00  19.10    16.01 11.02  0.69 
45 DA-4  609.60  304.8  152.40  38.00  28.65  2.00  19.10    13.12 10.35  0.79  

46 15 Baumann & Rüsch 1970 
[24]  

450.00  320  110.00  20  20.00  2.00  31.22  2.29  5.88 6.30  1.07 
47 8  450.00  320  110.00  33  16.00  2.00  24.01  2.90  6.37 5.26  0.83 
48 11  450.00  320  110.00  33  26.00  2.00  24.01  2.90  6.37 6.26  0.98 
49 16  450.00  320  110.00  51  20.00  2.00  31.22  2.29  6.37 6.70  1.05  

50 12.5 de Resende et al. 2020[8]  360.00  250.00  150.00  25.00  12.50  2.00  38.70  2.88  9.31 7.90  0.85 
51 D12.5  360.00  250.00  150.00  25.00  12.50  2.00  36.70  2.88  9.94 7.75  0.78 
52 16  360.00  250.00  150.00  25.00  16.00  2.00  38.70  2.88  11.50 9.41  0.82 
53 D16  360.00  250.00  150.00  25.00  16.00  2.00  36.70  2.88  12.00 9.23  0.77                       

AVG  0.82                       
CoV  0.13  
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[20] Vintzēleou E, Tassios T. Mathematical models for dowel action under monotonic 
and cyclic conditions. Mag Concr Res 1986;38(134):13–22. 

[21] Fenwick R, Paulay T. Mechanisms of shear resistance of concrete beams. J Struct 
Div 1968;94(10):2325–50. 

[22] Soroushian P. Behavior of bars in dowel action against concrete cover. Struct J 
1987;84(2):170–6. 

[23] Soroushian P, Obaseki K, Rojas MC. Bearing strength and stiffness of concrete 
under reinforcing bars. Mater J 1987;84(3):179–84. 

[24] Baumann T, Rüsch H. Tests studying the dowel action of the flexural tensile 
reinforcement of reinforced concrete beams. Versuche zum Studium der 
Verdubelungswirkung der Biegezugbewehrung eines Stahlbetonbalkens. Berlin: 
Wilhelm Ernst und Sohn,; 1970. p. 42–82. 

[25] Muttoni A. Punching shear strength of reinforced concrete slabs without transverse 
reinforcement. Acids Struct J 2008;105:440–50. 

[26] Cavagnis F, et al. Shear strength of members without transverse reinforcement 
based on development of critical shear crack. Acids Struct J 2020;117(1). 

[27] Marcus H. Load carrying capacity of dowels at transverse pavement joints. J Proc 
1951. 
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